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ABSTRACT

In this paper we develop a ccnstructive method of solving the
Dirichlet problem for a plane domain,nn,whose boundary consists of a
finite number of linear slits distributed along n+l parsllel lines,
£ = ((x,7)]y = k.m], (m = 0,1,...,n). We call such & domain a parsllel

slit domain. Our procedure will be an extension of that used by Epstein

for the case Q_, [Qua.rt. Appl. Math. 6: No. 3, 301-317 (Oct., 19&8)].

We seek the function u(x,y), harmonic and bounded in a , having
the boundary values h(x) on the bowndary slits, C, of Q- To determine
u(x,y), we first determine its values, f(x), on the complementary inter-
vals, D, of its boundary slits along each line. We thus obtain the
values of u(x,y) along the boundaries C LHJ D, of n+2 regions - two
half-planes and n strips. (See Fig. (1).) From these values, we may

determine u(x,y) in each such region by using the appropriate Poisson

integral formula.
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Our procedure for finding f(x) is to apply the mean value property
to u(x,y) at each point Ph = (x’km) in every complementery interval zlong
the line y = km for all m. Then, if we average u(x,y) over CR{R&), the
circle of radius R and center Pm, (see Fig. (1)), we obtain (for m = 0,1,

.+.,0) the system of integral eguations:

(1) 2x) = glx) + [ R0 (%8088, B, = (xk) € D,
A
m

where

) () g = [ o eeE, B o= (r) e
1y

m
o = Yl L,J ‘n (_J Cos1
(c) Ah = Dm-l (“} Ih LJJ QE+1

(a) cC =¢C [

~~
o
-~
)
|

(b4 =ty =9

fl

(e) D =D rﬂ} L

The kernel Kh(x,g), given in terms of the Poisson kernels of tﬁe
respective regions determined by C L,J D, is discontinuous at § = X + R.
Thus the applicability of the Fredholm alternstive to the integral equa-
tion (1) over the Banach space of functions continuous and bounded on T
is questionsble. However, by choosing R to be the largest radius such
that the disc bounded by CR(Pm) contains no points of C and lies hetween
the lines ﬂm-l and £m+l’ (see Fig. (1)), we show that for sll an in 2&

there exists a positive p less than one such that
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(3) o< | Kxg)dE<p<i
fAY
m

which is the main result of the paper.

Under this condition it is known that the integral eguation (1) has
a unigue, bounded solution obtainable by the method of successive approxi-

mations -- or iteration.

To prove the inequality (3), we temporarily assume that 8 is
"bounded" -- i.e., that Dm is bounded for each m. We then extend owr re-

sult toc the case that one or more of the Dm is unbounded, but Qm-l or

Dm+l is bounded.

In the case of arbitrary, unbounded D, we form a sequence of rela-
ted Dirichlet problems for the domains ﬂmx having as boundary slong sach
line, Em, the slits, Ca’ from + «, (e > 0), to infinity in addition to the
voundery, C, of & . We assign & the same boundary values, h(x), as thosze

assigned Qn along C and the boundary values zero along Ca' If we dencte

the solutions of these problems -- obtainable by iteration -- &s u@(x,y),
then
(4) ua(x,y) —> u(x,y) a8 &« —>

uniformly on compact subsets of nn.

In the paper, we precede the discussion of the general cese (des-
eribed above) by an outline of Epstein's solution for the domain Qo
followed by a treatment of the case of ﬂl with boundary Co L“J C. where

¢, = {(x,-1)|-a < x < &} and ¢ = ((x,n)|-a < x < &) are assigned the




respective boundary values -1 and +1. Several asymptotic properties of
£(x) and of its iterative approximations sare &eveloped, and the resulics
obtained for this case of nl are then epplied towards the determination

of its conliurmal nodulus.

We conelude by applying the results obtained for the generszl casze
towards the determination of the periods of the harmenic Tunctions con-

Jugate to the harmonic measures of the boundary slits of Qn.
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1. Introdaction

In this paper we develop a constructive method of solving the
Dirichlet provlem for a plane domain Qn whose Bboundary consists of &
finite number of linear slits distributed along ntl parallel lines. We
#all such a domain a parallel slit domain. Our procedure will e an
extension of that used by Epstein [},p. 31@] for slits distributed
alonz a single line. The object is to reduce the problem to the solution
of a certain integrel equation and to prove that the solution of this in-
tegral equation is obtainable by the method of successive approximaticns.

We now briefly describe this procedure.

&y b a b a b 8, By (n=4)

1 1

]
[

let n slits be given which lie on the x-axis and extend to infinity
both on the left and on the right. ILet the portion of the x-axis zonsizt-
ing of these slits be denoted by C and the remainder by D (consisting
of the n intervals (a ’bl)’(ae’bg)"’"(an’hn))' Let 0, be the domain
bounded by C. The Dirichlet problem for QO 183

Given: The function h(x) defined on C such that it is bounded ‘on
each slit and continuocus except perhaps at & finite number of points.

Find: The function u(x,y), hermonic and bounded in Qo'which
approaches h(x) at every point (x,0) of continuity of h(x) slong C.

(The case of n slits lying along a different line or contained
in & finite intervel, or having distinct boundary values prescribed on
their respective upper and lower edges, may be reduced to consideration

of the above problem -- 3see [;, rp. 310, 31%]. Furthermore, the

et 2 . : ' v
Tnis thesis was prepared under the supervision and puidance of my adviser,

Tr, Bernard Epstein, to whom 1 express my deepest gratitude for ric con-
scientious effortson my behalf, both as a teacher and as a friena.




existence ané uniqueness of u(x,y) -- both here and in subseguent
sections -- is assured by Nevanlinna [ﬁ, D. 22].)
Epstein's method of solving this problem is to determine the

L]

values u(x,0) of the function u(x,y) in the intervals (s, ,b L...,{aﬂ,br)
. is a

of D. Then the values of u(x,y) would be known on the entire x-axzis,

and for points (x,y) not on the x-axis, they could be determined &y the

Poisson integral formula:

_ Lyl r u(,0)dE
P u(x,y) P :{: E i, B

h(x)) (X,O) e C

(1.2) letting u(x,0) =
£(x), (x,0) €D

we may rewrite (1.1) as

(1.3)  u(x,y) = |3{f|f h(e)at 2+J_“ﬂ_f o
4

(8-x)% + y MR

To determine the values f(x) at the points (x,0) in D, we temporarily
assune (x,0) to be fixed in one of the intervals -- say (ak’bk) --of D
and then apply the mean value property to u(x,y) at the point (x,0).

Tnis will lead us to an integral equation which we may solve for ©(x).

: /"(?\

x,0) 55

= (X,O)
R(x) = min(x-ak, bk-x)

-
=
ot

—_
o ®
o ¢
}] {

(c) CR(P) = The circle of radius R centered at F.




By the evenness of u(x,y) in y -- as seen in (1.1) -- the mean
value property of u(x,y) at P may be expressed (by using poler ceordinatcs

with origin at (x,0)) as

(1.5) £(x) = = u{x + RCos6, RSin0)de =

A
o<~\7a

1S

f RSin6 lrf h(t)as e
- L' (£ -x-RCos6)? + (RStn6)°

A=

7 7
, 1 [ BSine f(€)dE 80 =
= f s ‘[(E,-x—RCosO)g + (RSinG)QJ

b18
- h( ) R_ SinG 49 ~&
u! : 2 "c/; (6-x-RCosG)2 + (lFiSin@)2 “
T ol
T Sin © do &t
‘1[ Lz [ (€-x-RCos6)® + (RSine)>

whnere the inversion of order of integration may be justified by FMuoini's
theorem (which will serve as the Justification for a mumber of such

future inversions).

T
(1.6) Tak R_ Sine de = K (x,€)
- e ~c[ (ercos0)® + (ratne)? | R
o7 ST ¥ R el Xt Tl

(1.8) Let f h(E)KR(x,E)dE = gR(x)
c




Thus gR(x) is a known function, and the mean value property,

(1.5), yields the following integral equation for f£(x):

(19) ) - g + [ seg e
D

Since Kh(x,&) is discontinuous at £ = x *+ R, it is not at all clear
that the integral operator generated by Kﬁ(x,&) is completely continuous
as an operator on the Banach space of functions continuous and bounded
on D. Thus, the applicability of the Fredholm alternative to (1.9) over
this space is questicnable. PFurthermore, even 1f KR(x,ﬁ) belongeqd
to L°(D x D), the Fredholm alternative would remain tnapplicable inour
case since the solution of (1.9) might merely be a solution in norm,
not necessarily satisfying (1.9) pointwise.

Nevertheless, the existence theory of the Dirichlet problem
tells us that (1.9) possesses a bounded solution and it has been shown
[}, P. 305] that this solution is unique and may be obtained by the
method of successive approximations providing that there exists O < p <1
such that for all (x,0) in D '

(1.10) 0 <L[; Kﬁ(x,ﬁ)d& <p<l. A

In fact, if the integral equation (1.9) were considered indepen-
dently of any potential-thecretic motivation and 1f Kﬁ(x,ﬁ) were any
singular kernel whose absolute value satisfied the inequality (l.lO),‘the

same conclusion would hold.

2Actua.lly', the uniqueness of this bounded solution also follows from
the uniqueness theory of the Dirichlet problem -- see Nevanlinna [y,
P. 22]. However, the solvability of (1.9) by successive approxima-
tions relies on the equality (1.10).




Bince the ineguality (1.10) was proved for Kf 2,E) =
hY

g -2t R

£ - x -

any measurable fo(x) bogndea on D, the sequence {f,(x)} defined re-

Dﬂ D. 31{], it was cencluded that given

cursively for (x,0) in D by

(121 00 =g+ [ s
D

converges uniformly to the unique, bounded function F(x) ef (1.9)
Before proceeding to Qn’ we note that Kﬁ(x,é) 1s intimately

related to the Polsson kernel of the domains bounded ®y C l_J ORI

fact, 1ts integrand (he{e) is simply 1/n times the Poisson kernel

evaluated at the pair of points (x + RCos®@, RSine), (£,0) [or

P+ ReiO, Q, where Q = (£,0)] respectively. If the integration

had been extended over the entire circle, the factor of 1/7 would have

been placed by 1/ox.

Taus, if 'ﬁdenotes the Poisson kernel, then

21

(122) K8 =m0 - [P E+R®, Qo

0

Thus it will be the goal of our extension to determine the equUiva-
lent kernel, Kﬁ(x,&), and corresponding integrel eguation, (1.9), Tor
Q end to prove that K_(x,€) satisTies the inequality (1.10). Then,
as in the case of QO, it will follow that the integral equation iz
solvable by the method of successive approximations =- or iteration.

We begin by considering a particular case of ﬂl and en application
of this case. We then proceed to a slightly restricted version oF Q; Wi

anr Vi ngr ~

we meneralize to arhitrary Qn’ and we finally treat of saverc

oo




II. A Farticular Casec ef Ql.

< 28, >
A L
|
an
|
v
-1

let Ql be the domain consisting of the entire plane minus Two
parallel line segments each of length 2a(a > 0) with the values * 1
prescribed on the upper and lower segments respectively. Supposc
Turther that these segments are so situated that, were their respective
end points to be connected by straight line segments, the resulting
quadrilateral would be a rectangle. (See Fig. (2.1).) We shall solve the
Dirichlet problem for this domain with the given boundary velues.

We first note that without loss of generality we may consider
these lower and upper line segments to be given respectively as
(a) c, =((x,-x) .|- a < x < a)

(2.1)
(6) ¢ ={(x,n) |-a<x<a)

The symmetry of the problem, together with the Schwarz re-
flection principle, tells us that the harmonic function, u(x,y), we
seex must have the value zero all along the x-exis; that is, u(x,0) = C.
Therefore, we may replace the above problem by the problem in which
Cé = the x=-axis, Ci = Cl and the boundary values are 2erc on Cé and

unity on Ci and Ql is replaced by Qi as in #ig. (2.9).




(-a,7) (a,n)

Fig. 52.2!:

As in Section I, we note that the problem would be solved i w2
could determine the values f(x) of u(x,y) along the rest of the line
y=n=x(i.e., on Di). For simplicity of notation, we will at times use
T(x) to denote the value of u(x,y) along all of y = qﬂqiL_J Di).

Cu (xy) *u(xy), ¥4 0w .
(2.2) ulx,y) = J 0 TR Ao a,
£(x) sy Y=
where
I St f@Deng
(2.3) (&) w (x,y)==e Slnyb/\ =
5 % (eg+exCosy)2 + (exSiny)2

i +]
Sin; f(¢)ae , =
=_1rx f g-x —(g—x) 4 ch(.n.
ol e + 2Cosy + €
u (x,y) = 0, y £[0,x]
<
. £(£)a
(b) ul(X,Y) = XEE \/P ; éS) 4 5 vy >
S LE=)T Hfhst)
ul(x:y) = O Y 3

T —

hl'.c-\
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Iet us label the x-axis Lo and the line y = x as $l. Then &G and

b}

&l divide the upper helf-plane into two regions SO and Sl respectively
where S is the strip ((x,7) |0 < y < =) and 8, is the half-plane

[{x,y)fy > n}. These two regions have the respective Poisson kernels

Vs andﬁ?l, each of which dependsen the points P' = (x,y) in the intericr
vy il = "(gso)\' 3 3 J I 4 & L -
and e = \(; ﬂ)) on the boundery of their respective domzins. Lzt

223 y

R, = (€,0), Q = (£,x); therefore
(2.4) (a) '§ 1 =‘5’3_(P' 29
(9 (®.q)

() B . =
° \| @ (Fa)
N

depending upon whether the boundary point @ lies in lo or in él.

Thus (2.3) could be rewritten as

(250 () we)=[ olp e[ o@fF (7o)
Qe NSy

uo(.P') = 0, Pt f S,

®) wE) = @i e)e Pre
ety

ul(P') 2 e P/ S,

Di.e., Q= (£,0) or @ = (£,n), We will et times use this type of notation
to infer that either one or both of the indicated possivilities mey hola.




We now apply the mean value property to u{P') at the point
Bl Pl = (x,x) in ore of the intervals -- sgy the right interval -- of
D! and average over the circle CR(Pl) where

(2.6) R = R(x) = min(x-a,n).

(See Fig. (2.3).)

(-a,n) =

Therefore, along CR(Pl),Pr = Pl + Re:LO and the mean value Dproperiy

of u(P') at P, may de expressed as

1
b8
(27 B0 = %; \/ﬂ u(Pl + Reig) de
0
T 2n
c
- %’E f u, (P) + Re*®)ac + 32‘—“ f u (P, + Re™")ac
0 7T
n
1 i0
= f [f £(6)'S, (P, +Re ,Q,_L)d&]da
- R

* = Légﬁ[;zﬂ f(g)%?o(Pl+aei°,Q1)d%Jdg
1

- [ £(€) B—ﬂ f L&’l(P1+Reio,Ql)dﬂ
B

2n
1 T .
v [ o0 [B [, e e]u
n

.




~10=

4 an
S se=clils 1 10 s O & - 10 -
(2.8) et Ko (x,€) = 5= f‘ﬁ’l(Pl-i-Re ,Qp)d8 + ﬁjlfo(91+ne* ,Q, )as
0 T

2.9) 7. r(x) = gy(x) *\f T(E)K (x,6) a8
€] > 8

where

2
(2.10) gR(x) = f I%(:x;.&.)di
-3

To prove the solvebility of (2.9) by iteration, we must first show

that there exists 0 < P < 1 such that for ell x satisfying |x| > a
(2.11) o< K(x,8)d <p<1

(Since }CRGC,E_,) is positive, the left hend inequality is triviali.)

Without loss of generality, we may assume X > a. By (1.7) and

Fubini's theorem, we have




o

as may be seen by straightferward computation.

Let a < x < a+n. Therefore, R(x) = x-a, and
(2.13) —== 0 o P | o e P 2 au
e |x+Ru|> a
-1
= (e -1, |1
_2-2ﬁ2f u “log|T|du <
-(a+x)/(x-a)
-1
in
d: 1, -1 1+u
< 5 2,;2 f u " log l_u|du
-(1+28/n)
(2.1%) . o a<x<atn =
Kﬁ(x,&)d& < 1—(x-a)/ﬁ2 - —;5 u[‘ u"llog %EE du
]E|>a 2n "(1"‘23/1[)
-1
s -1
51—2,(2\[ ulg(udu<l
-(1+2a/x)
L. " .
It has been shown [1, p.314] without computation that
[*}
% L f P LY
f (E-x) "~ loge ag’ = 2 ulogl:udu-l
R -0
Alternatively, the following computatiocnal argument may be used:
~ & & - 2n
WY o OO Y USROS PR y o u )
afu logl Qﬂl u)du— 2\_/-\( Py du,
T nt n=o0
-0 0 0
- £ 2n -
s> [ oa -
-& | e Z (ent1) 2 = (8/x2)- (x2/8) = 1
1 m=o Y,




x> 2 +a




=&

III. Asymptotic Behavior of fn(x) and of f(:x)

In this section we shall study the behavicr of fn(x) et infinits
and at *a in terms of the behavior of £ l(x) at these points. We will

also show that

(3.1) T(x) ~ A/x2 as

X| =»»®

(where A is a certain positive constant).

Theorem (3.1): If: fn_l(x) Sa as x 5o
: il
Then: f‘n(x) = (1 - §)a as x o w

(A similer steatement holds for x — -o,)

Proof';
(320 =] o[ 5@k
-a € [>u

(Henceforth in this proof we take R = x since the fact thav x
approaches infinity implies that eventually x > a + n and therelfore R=
R(x) = =.)

A comparison of (2.3) and (2.8) tells us that

2 -1 - X+ %
(3.3) K (x,€) = [2a7(E~x)]™" 1og %’ﬁ
& QE_ u/‘ exp (x~-nCos@) Sin(nSine)ae
e 5 (e;-exp(x-ﬂCosg)Cos(ﬂSinG))2+(exp(x-50059)Sin(xSi:Qj:;
Therefore
a (a-x)/x
k R 1 -1 =
(3.4 L/ﬁ Kﬁ(x,g)nﬁ R \]F u log || du

-a 2% "(a%x)/x

P .

R e -




_l);_

-

e g f "‘an"l (e®-e ™) exp(x-7C0s0) Sin(#Sind) i
25° o exp [2 (x-:rCosO)] -(e®+e ™) exp(x~nCos8) Cos ( 23in0)+1
and
-(a+x) /[ L
o N - = 1 -1 2% 5
(3.5) £ (B)K _(x,6)a¢ = — u - £ . (xtm)log|=—du
n-1 T = n-1 1-u
2%
l£]>a -o0
oo
1 -1 . 14u
* == ‘jp u fn_l(x+nu) leg i:awdu
2%
(a-x)/x ;

i -1{e % -exp (x-2C050) Cos (#Sind)
an : -
exp(x=-nCos8) Sin(#3ine)

7
1 o =068
+ L f f 3 S [.».-;:Co»@
: 0 =#n(Sin0=- -2")

+ logCos(xSine-f)-logCosf]dagac

x  xnf2
£, 4 [x-nCos®

0}
A iaad
2::2 S o -ea'—e:_cg_(x-nCosG)_Cos (Sine)
exp(x-nCos6) Sin(a8inG)

+1ogCos (%SinG-F) ~logCosf] agae

t the integrals appearing on the right hand sides of (3.4) and
(3.35) be labeled according to their order of appearance &s Fn. (x);
%= 180 v asBi :
It is immediately obviocus (by inspection) that F (%) and F (%)

aprroech zero as X approeches infinjty. PFurthermore the boundednas

fn—l(‘c‘) -- which follows from the boundedness of fO(LE) == implies thet
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F (x) and B (x) each approach zero as x approaches infinity, since the
5
limits of the respective u and @ integrations become the same as x
approaches infinity. Therefore we need only examine F, (x) and E (x)
it 6

as x approaches infinity.

Lemma (3.1a) If: fn_l(x) —-Q as X o w

Then: Fnh(x) a2 as x 5w

Proof:
(3.6) af2 = % f g BEU' du
2n G
(See Footnote No. 4, p. 11)
(a=x)/x
. =1 1+u
(3.7) VLR (x) -af2 = == u "~ log ’du
2 on® e .
+_3_-2_ f u'l][f (x+nu)ajlog|;-+—qdu
21 (a~x)/x
(a-x) /x
(3.8) --E-é- u'llog%'i-du -0 as X 5™
21 3
1 1 1+u
(3.9) ;{"([ u™[E, _; (x+mu) <] Log| T  du
a-x)/n
a-x)/on
= -—l—E 1[: (x+1ru -ajlog 'du
en (a-x)/n
+ -—%f u-l[f (et mu) -a]lfog |du
2n
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Let M be an upper bound on fn_l(x)l. Therefore

(a-x) /ox

(3.10) —l'§ u-.l [__ (x+ru) -uJ log i——l—l[dul

2% | Na=x)/x l

_(a-»x)/zrr
SZM__;; lOg]]: l't’m -0 as x - o,
o (a-x)/n
5|
(3.11) Let FD‘T(X) - ia- f l’_ l(th) {ﬂloﬁlh:idu
2% “a-x)/on

By (3.6)-(3.9), F, (x) - G2 50 88 X 50 =—> Fﬁ'{(x) =0
L

as X »w. But £ ,(x) »@ as x »=. Therefore, for a given ¢ > 0,
(3.12) |fn_l(x+nu) | < ¢

if x+mu 15 large enough. But in F_ (x)

I37

(3.13) u > (8~x)/2n => x+mu > (x+a)/2

Threfore, for (x+a) /2 == and hence x -- large enough,

(3.14) IF, (x)| < -—Ea- u-llog ]l:u du :
nT 2x \(/;ﬁx)/au
< --—- f u log ﬁdu = g/2

Lemma (3.1b): Xi: fn=l(x') - 0 B8S X 9w

Then: Fns(x) - (% - ;J;-)a




Proof:
It suffices to show that the inner integral of F_ (x) -- which we
6

call G_ (x,0)-- satisfies
6

(3.15) Gns(x,o) - (1-8in@)an as X — .,

For then
b1
(3.26) F_(x) » f (1-stmo)ande = (% - Do as x e,
6 an” &
a
2 -1[e” -exp(x-nCos6)Cos(nSind) | _
(3.17) Let (a) Tan [exp(x-ﬁCOSO)S:’m(ﬁSinQ) = 6(x,8)

(v) £ [x-nCoset+10gCos(#5in0-P)-1logCosf] = Fn_l(x ,0,0)

(Note: Under the change of varisble performed im (3.5) to yield .'F‘n (x)
Py
and Fns(x) 3

¢ = x-nCos@+logCos(nSine~@)-logCosfd .
Lt (8) = B (0,8, )

(3.28) .".(a) Iim G(x,0) = x(51n6 - 3) = Lim G(x/2,6)

(b) Lim Fn_l(x,e,;ﬁ) =a (for each pair (6,%))

X — 0o

(0) |, 1(x,0,8)| <M (wniformly); |a] <M

/2 /2
(3.29) G (x,0)-(1-Sine)ar = Fn_l(x,o,sﬂ)dﬁi -f a ap
6 G(x,0) n(Sin6- %)
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6(x/2,0) /2

. f [F,_,(x,0,0) <] ap + j [F__,(x,0,0) ] af
G(x,90) G(X/E,O)
G(x,0)

- o ag

#(Sino - %J

G(x,9) -
I(B.E()) [a) (04 dﬁ -0 ag X »w

2(Sin - %)
(by (3:17)(a))

G(x/2,6)
(o) E[-‘m_l(x,o,jﬂ)-qr_]d¢ -0 a5 X s
G(x,9)
(oy (3.17)(a) and (3.17)(c))
%2
(3.21) Iet Gnrtx,OJ = [F,.1 (x,0.8) ] ag
G(x/2,0)

Gne(x,e)-(l-SinG)an =0 &8s X »w > Gn7(x_,9) -0

as x —»w. But Fﬁ_l(x,o,.;é) = fn.-l(ﬁ) - as £ »w (OF 88 X —»©) For eacn

pair (°:¢)-
Therefore, for 8 given ¢ > 0,
(3.22) |fn_l(g)-a| 26
providing € is large enough. But in G_ (x,0) -- where x and @ are fixed
and @ ranges over [G(x/2,6),1/2],
(3.23) €>x/2+a
15 may be verified by a straightforward caleulation),

Therefore, for x/2 + & -- end hence x -- large enough,
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n/2 /2
(3.24) o (x,0)] < e halap< « [ o
G(x/2,0) G(x/2,9)
n/2
< ef df = (1-5in@)ne < 2n¢

TR
n(8Sine- 2)

(Since G(x/2,0) > x(Sine - % )y

(3.25) .'. Lim £ (x) = Lim [‘_F“h(x) + Fné(x)] - a/2+(% -.}‘.)a = (13
X ow X — 0o
QED.

Theorem (3.2): If: fn_l(x) -»B as x St

ﬂm:%m-dﬂ+ﬁﬁm as x »a

(A similar statement holds for x - -a~.)

In this proof we take R = R(x) = x=~- a since the fact that x
approaches af implies that eventually a < x < a + x and therefore
R(x) = x-a. We will also have recourse to equations (3.2), (3.4),
and (3.5) from which the functions = GR) I = a6 Gn (x,Q),

i > .
G, (x,0), and B l(x,9,¢) shall again be selected. However, we now
¢ 5

replace every occurrence of i in the respective integrands (except in

the fraction n/2) by x-a, the value of R now under consideration, and

+
study these functions as x approaches a .

6

(3.26) £ (x) =) _ F(x)
T I
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-1
(3.27) Fnl(x) = 2% f u’llog]l’ﬁ du
T J(atx)/(x-a)
-1
1 f -1 1+u +
- == u loglz—|du = 1/8 as x s a
2,:2 v 1l=u
By L'Hospital's rule, we find that
(3.28) F, (x) = \
2
n
= Ta.n-l (e®-e™®) exp [x-(x-a)CosQ] Sin[(x-a)Sind] ac
2n° 5 exp(2 [x-(x-8)Cosd] ) -(e®+e ™) exp [X-(x-a) CosQ] Cos [(x-a) Sin0]+1 -
-1/8 as x »a -
(3.29) gR(x) - (x) + F, (x) - 1/k as x -8

1 2
Again we use the fact that |fn_1(§)[ < M. Thus we see (by inspection)
that

(3.30) F_(x) »0 asxo—a
s

+
(since the limits of integration become the same as x —»a ). .

Farthermore, letting

et-exp Ec- (x-a)Cose]Cos [(x—a) SinQ:]

3_31) L(t, ’O) .
( S exp [x-(x-8) Cos6] Sin [(x-8) 51né]

we find that

(3.32) F (x) -0 as X —»a ‘
"

since its inner integral
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(333) G (x,0) 50 asx S

)

by the boundedness of f and by the fact that both limits of integration

n-1
2
in Gn (x,09) approach -n/2 as X approaches a .
(Tan'l[L(-a,x,O)] approaches -n/2 as x approaches a' since L(~-a,x,6)

+
is negative for x near a =and thus approaches -« as X approaches a+.)

(3.34) Fnh(X) 5 %f _l[x+(x-a)u]log %‘uu du
-1
- f 1B 10g ﬁl (3/8)8  as x —a'
2n 1

(by lebesgue's theorem of dominated convergence).
We now prove that F_ (x) approaches (3/8)B as x epproaches a
6

by showing that

(3.35) Gn6 x,0) - [(=+)/2]8 as x »a .
Then
L8
(536 5, (=) »— [ [(x+0)/2]p a0 = (3/8)8 ss x »a

+
Lemma (3.2): i fn-l(x) -p as x - a

Then: G_ (x,0) - [(n'+0)/2]5 as X o8
: g

Proof':

By L'Hospital's rule

(3'37) L(ayx,g) — -Tan 0/2 as X — a+




(3.38) Tm'l[L(a,x,o)] - -9/2 asx SR

n/2
(3-39)  [(=+e)/2]B =f B ag
-9/2
-0/2
(}m):.%gmm{mmmb=f4 Fo_,(x,8,8)a8
Tan EL(a.,x,O)_]
11/2
+f EFn_l(X,O,ﬁ)-B_']d¢
-6/2
-0/2
(3.41) F_,(x,0,§)a 50 asx g
Tan'l[L(a,x,o)]

(by (3.36) and (3.17)(®))

Since F_ (x,0,0) = fn_l(f,) approaches B as x (and therefore )

+
approaches & for each pair (9,0), we conclude that

n/"é /2
(3.42) f [Fn_l(x,o,;é)-s]dpj -+f 0ap = 0 as x »a
-6/2 -6/2

(by lebesgue's theorem of dominated convergence).

(343) % Gn6(x,0) - [(x+0) /2] » 0 gs x »a .

(Fu5) .*. xLima+ £, (x) =xLima+[gR(x) + Fnh(x) + Fn6(x)]

= 1/4 + (3/8)B + (3/8)8 = 1/4 + (3/4)8 QED,
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For simplicity of notation in what follows, we let

(3-45) (&) ep(x) = &(x)
) [ @Kk xeE = ()00
le] >a
Thus the operator K as defined in (3.45)(b) satisfies
(3.46) (a) (Kw)(x) = w(x)
(0) () (x) = [K(K*)](x)

K is a positive, additive, and bounded operator since

(3.47) O0< f rcR(x,E,)dg <p<l
lE]> a

lLet f&h](x) be the nth approximation resulting from the initial

approximation h(x). Thus

(3-18) (=) 2[x) = g0 + () ()

(0) £ (x) - g0 + (ke)(x) + (Pn)(x)

Therefore, by a trivial induction, we obtain
n-1
(39) M) = D ()0 = £ x4 (h) ()
m=0
If M is an upper bound on Jﬁ(x)l, then by (3.47) and (3.46)(b)
we have
(3.50) [(Kph)(x)l < MPn -0 as n s w

Therefore, we confine our attention to fgb](x) in applying the

above theorems.
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Corollary (3.1): (a) frgol(x) -0 as |x| o= (for all n)

(b) <y £(x) -0 as lx| -

Corollary (3.2): (a) fr{O] (x) »1 - (3/h)n as X —»{i_}

(b) E.or(x) =1 as x a{?:_}

(Note: In each of the asbove corollaries, the second result follows without
computation from the theory since infinity and (+ a,n) are points of
continuity of the boundary values zero and unity given on the x-axis

and Ci respectively. )

Proof: (a) :

&+

Let us label the common limit of f IEOJ (x) as x approaches{_ 2 j

as .
Bn

(3.51) +7.B=0, By=1/%, B =1/U+(1/4)(3/4), s3=l/h+(1/h)(3/k)+(1/h)(3/h)2

and by induction we obtain

0O, n=0
(3.52) B, = =0 =1- (3/0)°
A4 ) (3™ = 1-(3/0)", n £ 0
m=0
Theorem (3.3): f(x)m A/x? as x| - o (where A is a certain positive
constant).
Ereot?

By the Schwarz reflection prineciple, the Dirichiet problems stated

f'or ﬂl and Q.']L are not only equivalent, they are the same. Thus the common

solution, u(x,y), of both problems may be developed in a Fourier series ocutside
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the circle of radius c,52=a2+n2, centered at the origin. The Fourier
series will be uniformly convergent ocutside compact sets which properly

contain the closure of the above disc. (See Fig. (3.1).)

__,...--"""""' i

/ +1

N |
I f s T
-00 - 1

I|I a f N — +oo

o BE ol ) i
We determine the behavior of f(x) for large x by studying the

behavior of the Fourier series of u(x,y) along y = n for large x.

o

n=o0

u(r,o) =

(3.53)  «"eoulx;y) (cr/r)n[anCosno + bnSinnO]

R I e T

I

(for r

But the fact that u(x,y) is odd in y tells us that u(r,0) is

odd in 6. Therefore the cosine terms vanish; i.e., 8 = O for all n and

(3.54) u(x,y) = an(c/r)n Sin ne
n=1

But along y = =,




-,-,g 1\5.-

(3.55) (a) 8in® = n/r

(b) in2@ = g(ﬂ/r)[l_(ﬂ/r)zjl/e

(3.56) .'- u(x,n) = 'blon/‘r2 + 0|(.1/r3) + Z bn(o_/r)n Sinme
n=3

and

O{l/r3) for r large enough

Lemma (3.3a): Z bn(cr/:r)nSinnO
n=3

Proof:
—— Do (=~}

(357) |l Z b,nlfu/r)n Sinme| < Z |bn|[0/r_)n|
n=3 n=3

o0
But the fact that E b (o/r)” Sinn© is the Fourier series of a
n=3 s ¢
function of one varisble for each fixed r > ¢ implies that its coefficients

approach zero as n approaches infinity. Thus they sre certainly bounded
as n approaches infinity. Thus if we let r = ry > o, there exists

M > O such that
(3.58) |o_(o/r))"| <M

Let » > 27, > ¢,

)|
(3.99) «*: : o (o/2)"|= n; o (0/r)"(x /)| < M ni_; (ry /)"
< M(r/r)? :io (1/2)" = au(r, /r)? = 0(1/r”)  aap.
(3.60) .. £(x) = u(x,®) = byon/r® + 0(1/r3) ~ von/r®
= blorr/(x2+rr2) ~ blorr/x2 = a/x%. QED.

e oo B A e



A=

Teyma (3.3b): A= blﬂn >0

Proof:
We need only show that bl > 0 and this fact follows from

21
(3.61) bl=% fu(o,Q)SinOdO
00

since
(3.62) (a) @ ¢ (0,r) = both u(c,9), Sin6e > O

(b) © e (m,2%) => both u(0,8), Sine < O

Inequality (3.62)(a) follows from the maximum and minimum principles.
For, since u(c,8) is not constant on the boundary of Q', it is not
constant in the interior of Qi. Therefore its values in the interior
must lie strictly Dbetween their maximum and minimum on the boundary.
Therefore, except at the points (ta,n),
(3.63) © € (0,1) => 0 < u(x,y) = u(0,0) <1

Similarly, except at the points (%a,-=x),

(3.64) © ¢ (m,2x) = -1 < u(x,y) = u(g,9) <0 QED.

Corollery (3.3): fépﬂ(x) = O(l/xz) for all n

Proof':

The fact that f(x) ~ A/x2 implies that f(x) = O(l/xe). Further-

more, since

(3.69) 2(0) = 1m0 = D By, g6 20

(3.66) 0< fétﬂ(x) < f(x) for all n

(.60 .. 2190 - 01/®)  for a1
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In the next section we shall need a bound on du(r,8)/dr for

large r. Therefore we state and prove

Theorem (3.4): u(r,9)/r = O(l/r2) for large r.

Proof':

Formally, we obtain from (3.54)

(3.68) 3u(r,0)/& = =) _ (b /o)(o/r)™  sinne
n=1

which we justify by showing that the derived series is uniformly convergent
for xi2 2r1 > g. The proof of its uniform convergence will also prove that
it is O(1/r%).
(3.69) | (md_fo)(o/r))™| < Mn/r)

- (by (3.58))

(3.70) +'s r>2p. >0 = [-Z (n‘bn/a)(c/r)n+151n no|
n=1

1
<D [(w_fo)(o/e)™] = D_ |(mb_fo)(afry) ™ (ry /)™
n=1 n=1
< M/r n(r /r)n rak < Mr /r2 37_ n(1/2)"™" = hMrl/r2 = O(l/rz)

n=1 n=1
Thus (3.69) and (3.70) imply that du(r,8)/dr may be obtained by
term~by-term differentiation of u(r,9) for all r > ¢ and that for all

T 2u

(3.71) &(r,e)/ax = 0(1/x)

e




Iv. Application

Consider the conformal map of Ql onto an annuius centerea at

the origin with outer radius unity and inner radius P. (See Fig. (k.1).)
Our application will be the determination of £ -- which is essentially
the conformal modulus of Ql -- (actually the conformal modulus of Ql

is defined as -2n/log P) purely in terms of the values f£(x) of u(x,y)

along y = 7.

Fig. (4.1):

The slits C0 and Cl are carried into the circles centered st the
origin of radii 1 and P respectively. The boundary values -1 and +1 are
then assumed respectively on these circles. The Dirichlet problem for this
annulus is then solved to yield
(4.1) j(r,8) = 2log r/log p - 1

If 4¢(r,9) is a harmonic conjugate of j(r,9), then
(4.2) j(r,8) + it(r,0) = 2log z/log P - 1 + 1b
ie
where z = re  , and & 1s a real constant. Thus

(4.3)  2(r,8) = 20/1og P + &

ani its period P around the inner circle is
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(%.4) P = -hnflog »
(4.5) .. p = exp(-bn/P)

Thus, to find # we must find P. But the period of s harmonic
function is a conformal invariant. Therefore, if v(x,y) is a harmonic
conjugate of u(x,y), then the period of v(x,y) as the point (x,y) per-
forms a circuit -- say B -- about Cl (the preimage of the inner circle)

is Px

Therefore, by the Ceuchy-Riemann equatlons,
“(4.6) P =JQC dv/ds ds =f /an ds
B B
where s is the parameter of arc length along B and d/dn indicates differen-
tation with respect to the outward normal slong B.
We take the circuit B to be a semicircle centered at the origin,

based on the x-axis, and surrounding only Cl (of the boundary components

of Ql). -- See Fig. (3.1).

T f Sil% as=fau/an ds+f 575, s
B -

)

We then let the radius of B expand to infinity and show that

(4.8) Jau/aa ds -0

The period, P, of v(x,y) arcund C; will then be

(b.9) P =f B 51 e +f [u(x,0) /] as

Along the large semicircle 3i1/dn = -dw/dr (by the same reasoning

as above). Therefore, by Theorem (3.4), we have




«3]=
o T

—f[___au(R,O)/&r]-RdG :fO(l/Re)-RdQ :

0 0

]

(k.10) f&l/an ds

"

0(1/R) -0 as R > w

Lim y_lEJ(x,y)-u(x,O)_-] = Lim y_lu(x,y)

(.11) du(x,0)/dy
y -0 : y =»0

H

(u(x,0) = 0, as indicated in the remark following (2.1).)
Thus, in evaluating u(x,0)/dy, we need deal only with the values

of u(x,y) in the strip

S = ((x,y)|0 <y < n).

£(€) +1 £(g)

be— 2

Fig. (4.2):

Therefore, using (4.11) and (2.3) (a), we obtain

. 1 ¢ Siny [ e(e)a
‘ (4.12) az(x,o)/ay'—yL_iino+y u(x,y) —yL_iflo+ = f B

1 e
3 “v/\ & Xipre~(EX)

Ao P L e(e)ae

(13 oops [ Eo/ales [ [ %
) © @ 5
i dx 28
SR OR N = e = n LRI AR GL

S
~-
S

[==]
)NotE: P may be approximated by Pn = %l/P fEQ](
oo

since fgd](é) converges uniformly to f£(£) and since f£cq(g) S O(l[&e) as
shown in Corollary (3.3).
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To justify interchanging the order of integration in (4.13), we
need only show that £(£) belongs to Li(-» ,0). But this follows from

the fact that f(£) = 0(1/52) for [£| > a -- as shown in Theorem (3.3) --

and that f(£) = 1 for -a < £ < a.

(hedh) 2% p= exp[-hrrz(f f(g)dﬁ)-l:l
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V. Qn: Derivation of the Integral Equation

0 S SR e R e ((m) )

(W
Y
a
—

o

Fig !5.1):

In passing from our particular case of Ql to Qn, we confine our atten-
tion at first to the case of a domain whose boundary slits elong each line
extend to infinity both on the left and on the right. Thus the ccomplementary
intervals along each line will be bounded. Such Q will be termed "bounded"
and once the result is proved for "bounded" Q we will be able to extend it
to arbitrary Qn.

Let the n+l lines containing the boundary slits be labeled zm with
corresponding equations y = km (m = 0,1,2,...,0). Let dm= km- km—l 2

(m =1,2,...,n). Without loss of generality we may assume that ko= 0 and




- 3 - |

that one of the dm =2 T

(m)
q - R

g =1,2,...,N(m) where N(m) is the number of camplementary intervals along

We label the complementary intervals aleng £ as (a0

L (see Fig. (5.1).)

N(m)
(5.1) Let (a) D = LJ' (ac(lm)’b((lm))

Q=1

(b) ¢ = 4 -D
5 5

(c) C = l_,l C,
m=0
n

(@ o= | ] 3
m=0

Let the functions hm(x), bounded and possessing at most & finite num-
ber of discontinuities, be prescribed on the ccomponents of Cm for each m,
Find the function u(x,y) harmonic and bounded in the interior of Qn which
approaches (for each m) the boundary values hm(x) at each point (x,km) of
C, at which hm(x) is continuous.

Once agein, we seek to determine the values fm(x) of u(x,y) elong Dm
for each m (though we will at times find it convenient to let fm(x) denote
the values of u(x,y) along all of Bm) and note that we thus obtain the values
of u(x,y) along C U D which divides the plane into n+2 regions in each of
which u(x,y) may be determined from its boundary values by the appropriate

Poisson integral. Let us denote these regions Wy

SThus € is the boundary of Qn.
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(5.2) (=) s, = ((x,¥)|y <0}
(0) 8 = ¥k, ; <y<k]l, (m=1,2,...,n)
(c) 8., = (V|y>k)]

(Oof course, if D b’ #, then we do not consider S 55y

() e

Il
.f{_".l.
(5.3) Jeoulx,y) = 5 i um(x:Y) s ¥ # km
m=0
fm(x) » = km
where
~ £ (E)ae
5.4) ) u (x,y) = =< f - y<o
( (E’ uo(x y P J_ (g_x)a & ye )
u, (x,¥) 0 > ¥>0
(Y] o D) f i Lo
Bl " xX,y) = Y
n+l n J (§-x)2 | (y_kn)?. & n
un‘i‘l(xly) = 0 J y < kn
(e) um(xJY) =
(= %525 511)
s S
® J(E)e Ak
- i Elyx ) f Be s
m Wom 2 mx 1

d d
Lo By B P Bosn X (v
e -e Cos —(y km-l) +| e "sin dm(y km_l)

%
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pis
d f E,Je 13
1 m, T m
+ -&- e Sin-a-—(y-km_l) f 5

-l

di11+e Cos J (y-km_l) -G Sin —(y'-k 1_)
m

<
km-l <y km

Il
O

um(x;y) » Y € [km-l’km]

]

(of course if D 2 @, then we do not consider u (x,¥).)

(n) (nil)

Equivalent to formula (5.4)(c) is the formula

~ £ (&)a
(5.5) um(x;Y) = é’— Sin g—(y-km_l)f - m-1 =
oon - - Z(e-x)
e ™ -QCos-a—(y k l) b B
m
~ £ (4)at
ol II -
+ 7 Sin (y-k )f g S e
dm m-1 @i (&-x) X g_(g-x) AR i Y m
+ 2Cos —(y-k A e %
4y
u(X;Y) = 0 b) }’¢ I}cm-l’kuj

If P = (x,y) denotes an arbitrary point of 8, @ a0 arvitrary peint

of £ , and &) the Poisson kernel of S , thenr we have
m m m :

(5.6) (s) @, = G,(Bs0)

(®) ¥ n+l iﬁ)ml(P’Qn)
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%)m(P’Qm-l’dm)
(e) Yy =
@ .(P,Q ,d )

depending upon whether the boundary point Q lies in ﬁm-l or in ﬂm. (e
include dm above since the Poisson kernel of each strip, Sm, depends on the
strip’s thickness, dm' At times, we will simply write -‘v’?m = ‘g’m(P,Q).)

Thus (5.4) could be rewritten as

£ (8)P (P,q )ae , Pes

o

€
QO 20

(5.7) (a) uy(B) = «
0 S B

L Q

f £ (8)F,,,(BQ)a , Pes

(8) u,(B) = ¢

A OL A RLT
(c) w(P) = G1%%n.1

& Bmaa;
. % + f £ (), (P,Q,,d )ae » B'e 8,

m

G

We now apply the mean value property to u(P) at the point




P = Pm = (x,gm) in one of the intervals of qm and aversge over the circle

CR(Pm) where

[
min (x

(5.8) R = R(x) = Jmin(x

min (x
\

Along CR(Eh)’ P =P

s for @ in [x,2r] and R is

= 38 S

o
- aé ), béo)_ X, dl) =0
n n ,
- aé )’ bé ) - X, 'd.n)_, M =N
(m)  (m) |
= aq 2 bq - X, dm) dm+l:)', m o= l_,2_, “-aw ,n-.l.
o Rel'g lies either in S for @ in [b,ﬁ] or in

w+l
the largest possible radius under which this

condition holds, (At most four points of CR(EE) lie on a "boundary" line.)
See Figures (5.2) - (5.4). 4
y a
1{2 -J
|
= ey e |
kdﬂa, /’_. _ ; !
i\ B%e ) , b(ok '
RN LR ';
|
1
’ / e !
X’ f/x(/ R
2 ria e
\-\ \ B.:gniw ;r)(n-\\
\ / o
n-1 \\ L \ b
kn-2




l{m+l
m+l km
\.H (m) N
b A \
L l \ S \ ' \
A\ m \ km-l

Fig. 5.4)
Therefore the mean value property of u(P) at P = Eh mey be expressed
as
25 5%
= 1 ie 1 ig, .
(5.9) fm(x) = f u(Pm + Re 7)de = o= J um+l(Pm + Re” 7 )de
o o]
21
1 ie
+ 5 u/\ um(P + Re™)do .
1t

Now by substituting the equations (5.7) in (5.9) and then interchanging

the order of integration - as in Section II - we obtain

(5100 1,00 = [ o™ nae+ [ om0 e nae
I VA
m m

]

Gém)(x)+ f Fm(E)Klgm)(x,g)dg

A
m

where

fr T
1 - 16
Gan KMo = | & [P, e mee,e, e
o

2n
+ = [ (p+re'®,q ,a4 )ao, @ = (5,k ) c 2
21 m' m ’%n’ b A th 7 n
%

\

- - - & =4 4. 5




g =

Tt
1 ie
21 f t55?111-}-1(Pm-rRe "Qm+l’ d'm+l) 28 Q‘m+J._(E"‘l‘:r;m]. Je 40412
)

21
2 ‘;p(PJrReiG d_)de =(E,k .)e 2
2x m''m ’Qm-l’ SRR Qm-l ’"m-1 -1’
7t

o

and

C° L_J Cy ,m=20
(5.22) (a) T
m cn-l U cn ,m=n1n

6.3 U C, U Copp » ®=1,2,.00,0-1

DOUDl 5 =0
(b) B s D, 1 U D, , M =1

Dm-l U Dm U D:m+l 43S

|
[
-
n
-
-
o]
1
il

(e) Hm(§) = The known values of u(x,y) in I‘m
(d) Fm(g) = The unknown values of u(x,y) in A

(&) o™ = [ g e

Pﬂl

If we let Kém)(x,g) = KR(X,E) for £ theabscissa of a point Q = (&,y)

in T_ U o and let <

rewrite (5.10) as

B (€) = n(e)
F_(8) = £(¢)

) under similar conditions, we may then

—




o WL

(5.13) £(x) = ge(x) + f £(8)K(x,6)AE, x € JDm,{‘_'m = 0,1,2,.00,1)

FAN
m

Maloharc) & .4- { ae - - : & (m) | = £ 1Y
where x € D_means x 1 the sbcissa of B = _(x_,,km_) in D_m and G (x) = "R(‘d

for x € -
Dm




g 0,

VI. Qn: Solvability of the Integral Eguation by Iteration

Equation (5.13) is solvable by iteration if there exists 0 < p <1

such that

(6.1) 0 < \/‘ KR(x,g)dg <p<l, x¢€ qm,(m A Oyl eyt

A
™

(The left hand inequality is trivial since Kﬁ(x,g) is positive fer all x,E.)

We begin our proof of inequality (6.1) by taking note of the fact

that for P in any of the damains s having Poisson kernel ﬁ?m = 3pm(P,Q)

where Q = ( g,k(m_l)> is in the bowndary, B, of §_

m

By

f"ﬁ’m(P,Q)dE. = fl-ym(P,Q)dg =
B

Therefore, by (5.11) and by Fubini's theorem, (6.2) implies
i =
L ie - i6 s vl o
(6-3) Ko (x,6)aE = 5 ‘P, (B +Re™",Q ,4) )at+ [P (P +Re’",Q ,a, jag| a6
éb o Do Dl _J

2n
+ f'f,)(P+Re ,Q a8 (a0

O
551— f f'ﬁ’ (P +Rei9,Q)d§ ae + -2-1—- f f".P (P + Re’ , Q)dg|de
o l 7

=1/ & Yo =1
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A similar statement holds for f KR(X,g)dg for all other values of n.

Fa
m

We nGw prove inequality (6-1) for x in D, (assuming D, is not empty).

Since a comparison of (5.7)(a) and (5.4)(a) shows that

~ _ ;X ] 2 -
(6.1) ?O(PJQO) o §-x)2 n y2 » B=(x;5) ¢ SD

we conclude that

f‘D”(P+Re ,Q,)d8 = “'R‘z'f SRR
b1

(6.5)

L\.?I =

~x-—RCosG) + (.’R.‘S:ini;)2

. [211: _x)_‘ —x+R

. - -1 & -x+R

(6.6) .". f K (x,8)dE <1/2 + = f (e-x)™ log|z=roiat
JAN
o o
But it hss besn shown [1, Pe 31&] that there exists 0 <& < 1 such

that
(6.7) 0< 1—2 / (E-x‘)"l log SR dg <@ <1 for all x ¢ 'Do 3

E-xX~R

A

@

R = R(x) = min(x - .a((lo), b(gf')) - X).

ITk = R(:;c: = (il, i.e., dl < min(x - ac(;_O)"bé_O) - x) for
= (x,0) ¢ (r‘o ,b((lo ), we then have x € (aéo) +a, b((lo} - d,) and

1
[ log
o

E-

- 3

gufcwv‘dll
£ -x-cill

(6.8) at=1-% f (8x) 108 a

ro!"'




L)
q+
£ =X+
<1--% (£-x) 110g! H—% a
B gle)
Q
(o)
(= 1 x)/d1
Y e i'g i B A log %‘i—]du
(b(o) - x)/dl |
) )
(af;l aéo )4y ;
b iE ( ) ( ) u-l log %é% du = aq <1l
(bqo a.qo )/dl

The last integral inequality in (6.8) follows from the fact that the
5(9) _ B e
interval [— /dl’ (aq&l x)/d1 lies to the right of the point
u =1 (since béo) - x> d’l) and has constant length for all x. Turther-
is monotonically decreasing for u > 1 end

more the function u ™~ log i’%‘

consequently its integral over intervels of constant length lying to the
right of u = 1 decreases as the intervals move further to the right.

i v X € (aéo) +4, béo)

(2gad /% [ORE
(6.9) ;%f ullog%%duzi—z-\j ullgludu
(o) (0)_, (o)
(b " -x)/8 (og -2, ")/, !

TLeL aq =0 TR = R(x) < dl for x (aéo),b(O))




—'h5: -

(0)_m)

and thus (6.3) follows. (If @ = N(1), then 841 =

Letting al = max (e,a ), we have a' < 1 and therefcre
a=1,2,...,8(1) 2

(6.10) 0< ig f (g-x)'l log %ﬁ% df <a' <1 for all x¢ Do
b14
D
(o]
(EALLS | o f KR(x,g)dE, <1l/2 +a'/2 = p<1. Q.E.D.
A

0

T > U C I o) Dn’ we prove the inequality (6.1) by a method similar to
that used for x in Do' Therefore we now focus our attention on x in Dm;
m=1,2,...,n-1, Without loss of generality, we may pick & specific such
m and assume dm+l = M.

By the comment following (6.3), we may write

14
ie
'pm 41 (B *Re™,Q ,)dE| a6
D

o
m

(6.12) f K (x,6)a8 < 2
A
m

T
1 ie —|
+ Yy f f Lg)m-rl(Pm*'Re : qm+l,ﬁ)d§ de + 1/2
o £ J

m+1l
k14
=1/2 - = f ftg) (P_+Re*® x)dE|de + 1/2
2 m+l' m ’Qm+l’
o} C
m
0 T
<1 - -él? f f % m+l(Pm+Reig,0m+l,rr)d§ ae
o | (=)
g-1
(m)

(where qu = -w if q = 1).




o BB

(6,150,  Sek ifa) aém) e

)
(b) bgill = b

|
o’

(c) bé‘“)- y

By (6.12), we need only show that

n a
(6.14) &= f ,:ftgmﬂ(Pm + Reig,qm,n)dgldg >0, x €D
o b

in order to prove (6.1).

(6.15) Letting (a) (a + bl)/z =a
(p) min(a + =, ﬁ) = a,

(¢) ma(b, -w, &) =1,

we have the following four possibilities for R = R(x) when

B = (xk)e (aém),bém)).

(6.16) (a) a<x§a2—>R=x—a (c) &g Sx<bj-r=—=>R=nx

(b) a+n<x<a =>R=x (a) b, <x<b =R =Db-x.

We need not consider the possibility dm < and R = dm since the proof
of (6.1) for this case is similar to that of the case R = n. Furthermore,
we may assume without loss of generality that Pm lies in the left helf of
(a,bl) and therefore it suffices to consider only the possibilities
(6.16)(a),(b).

A comparison of (5.7)(e) and (5.%){¢) shows that

LA 0
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2% ic
(6.17) 11 (B 4Re™%,q )
e’ exp(x+RCos8)Sin(RSing) L

(eg- exp(x*«RCosG)Cos(RSinG))2 + (exp(x+RCosQ)Sin(RSinG))2

—

b1 a
(6.18) . . ;—ﬁ |:f(9m+l(Pm+Reig,Qm,ﬁ)diId0 |
o] b

= oo _
L. =], (e®-e°)exp(x+RCos0)Sin(RSino) | .
=eE \/ e o s o
25 b exp[é(x+RCosO[1-(ea+e )exp(x+RCosG)Cos(RSinQ)fea e

Let the argument of the arctangent in (6.18) be J(x,R,8). Of course

J(%,R,0) 1s non-negative since the Poisson kernel is non-negative. Therefore,
1
in order to prove that —x Jr Tan-l[ﬁ(x,r,eildg is positive, it suffices to
2%
0

prove the same of J(x,R,O) for 6 in some subset of [O,nj having positive
measure.

Under the conditions of (6.16)(b), we have

a b ; '
(6.19) 3(x,R,0)=3(x,1,0)= (e™-e" Jexp(x+nCosQ)Sin{nSind) -

exp[?(x.-mCosG)]—(ca+eb)exp(x+:rCosG)Cos(rrSinO)+ea

(6.20). +*: @ e [rr/6, 51(/6_] = J(x,7,0) >

(ea-eb)exp[a+ﬁ(l+0059)]Sin(ﬁSinG)
expEZ(al+nCosQI] . (ea4eb)exp(a1+nCos9)Cos(nSinQ) + e

— = L(x,8) >0 ;I

For the case (6.16)(a), we note that J(x,R,0) = J{x,x-2,6) which iz

__4




indeterminate al x = a. However, using L'Hospltel's rule, we find that
(6.21) J(x,x-8,0) —> 8in@/(1 + Cosd®) = Tan 9/2 as x - &
Therefore, if we define

(6.22)  Ten"l[3(x,x-2,0)] = /2

thengivene)O,H 8(e) >0 3 a<x < ath =—=>

% x
(6.23) iz f Tan'l[J(x,x-a,o)]dg - Lz f (6/2 - €)ae = 1/8 - ¢/2x
27 21
o )
>0 if e < n/k
Finelly, if a + ® < x < s,, then
(6.24) J(x,x-a,0) =

(ea-eb)exp [x(1+Cos0) -aCos@] Sin[(x-a)Sing|

exp[2x(1+Cos6) -2aCos0] - (ea+eb)expEc(l+Cos9)-aCose:] Cos[(x-a)Sing| + g=' 0

Using the facts that for 6 in [0,n/2], Cos © is non-negative and
Sin 0 and Cos © satisfy the respective inegusalities

(6.25) () Sin 6 > 26/x

(b) Cos ©>1 - 20/x
we find that

(6.26) e (0,n/6), a+8<x< a, = J(x,x-2,0) >




e S

(ea—eb)exp[§*5(1+CosO[JSinG

on

alm

a, b E(ao-a) —I a¥b
exp[2a2+2(a.2-a}CosEﬂ-(e +e" )exp[a+d(1+Cos0) ] [— = Sin@j & gD

= Ll(G) > 0.

Obvliously the numerator of Ll(Q) is positive. To see that its

denaminator, L2(G), is also positive, we must consider the separate ceses

(6.27) (a) a, =a2a+x

P
oy

)
{]

s =8 =(a+ bl)/e

Catny
[@)N
n
[0}

g
-
®

0

& + 3t === T, (0) > exp[2a+2x(1+Cos0) | -2exp [2a+5(1+Cos6)
> exp[2a+6(1+Cos9)] » (exp[n(1+Cos6)]-2) > ©
(since @ ¢ (0,x/6)).

(6.29) 8, = (a + bl)/2 —_ Lg(O) >

exp[bl(l+0039)+a(l-0059):| - (ea'+eb)exp[a+5(l+CosG)] e

a+b

ea(exp[bl(l+CosG)-aCosO:] . exp[a+6(l+CosO)]) - P exp[B(1+Cos0)] - 1) -
exp[Ea+8(l+CosO)](exp[(bl-(a.+6))(l+CosGﬂ—l) T exp[8(1+Cos6) | -l:} >

ea+b<exp[b(l+CosOZ]-;> Al exp[&(l+CosQI]-i> =0

since

(b) by~ (a48) > by - (a+d)/2 = (b,-a)/2 > 8




> o

() a<a+bd< (a+bl)/2 _— 0 <5 < (bl-a)/2 Q.E.D.
We now formulste owr result in a theorem.

Theorem (6.1): Let g bea "bounded" parsllel slit domain as deseribed in

the beginning of section V. Let the boundery values hm(s) e prescribed
along the boundary slits Cm R0 SRR BRI Qn where s is the parameter
of linear arc length along C_. Let nm(s) be bounded en each component of C
{for each m) and let it possess at most a finite number of discontinuities.
Then the Dirichlet problem for Qn with the stated boundexry velues can
be solved in a constructive way by determining the values fm(s) of its szolu-
tion u(x,y) along the ccmplementary intervals, qn, of the boundary slits, Cm.
The values ﬂm(s) are given as the unique bounded solution of the integral
equation {5.13) and are obtainable by iteration.
Thus with the values of u known all along of each of the lines Em
(ﬂm =By ij Eh), u(x,y) may be determined in the remasinder of a_ by appro-

priate Poisson integral formulas.

Corollary (6.1): Let

n
: u (:C’ ) 2 ; ]{
(6‘31) (a) U-.t(x:Y) v

ftm(x) RS
(v) ftm(g) = ft(g), £ the abeissa of a point Q = (&,y) in ?}.

Iff (s y) = P.it Sm, then let us define




- Bl -

”~

(6.32)  w (®) =u (®) = | £, (8)%_ (P,Q)as
% B

(For P ¢ 5 utm(P) = 0)

Then: If (ft(:-:)} sre the iterative approximations of f£(x), u _(P)

t

converges uniformly to u(P).

Proof: Since ft( E) converges uniformly to f£(£) - see the remarks following

(1.10) - given any € > O we may choose t(e) such that

(6.33) t > t(e) == |£(§) - ft(g)I <e, for allm

(6.34)  .tu t > t(e) == |u(P)-u (P)| £ f [£(e)-£,(€)] P, (B,Q)aE
%P
246 f ‘a’)m(P,Q)dg = ¢, for all m.
R
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VII.A Extencions

Theorem (7.1): If  satisfies D = @, then we mey ellov D , <o be

1) (1)

n n-1
unbounded and the Dirichlet problem for ﬂn will still be solvable by

iteration.

Proof: As in the casze of "bounded" Q. ve derive the integral equation (5.13)
and seek to prove that the inequality (6.1) holds for all x in D_
(m =21,2,...,n-1). It is immediately evident that (6.1) holds for

m = 2,3,...,n-2 since the corresponding qm are all bounded. Therefore, wt

need only prove (6.1) for x in D 1. Without loss of generality, we may con-

oyl
fine our attention to one of these - say Dl - and sssume it is unbounded on
the left. We may also assume that &, =, k = O. Let P; = (x,%) in D, e
in the leftmost interval of Dl' There x < b(l).

0
%y [x-bgl)[ < x, then R(x) = ]x-b(l)l and h/\K'R(X,é)dé is bounded below

o)
unity just as in section VI. (See (6.24),(6.26).) Thus we need only consider

the case fx-bgl)| > 5 which implies R = x. (See Pig. (7.1).

k2
R=x kl
=g
- 00 » + w
% ORISR e RONNORRE
kO:O
Moo (7.1):

v b g e 000
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(Once again we need not consider the possibility that d, <a - znd
therefore R = d, for x far out enough - since the proci of (6.1) for % in
A
D, is similer in both cases. )
Since D = @, we have, Tor R = n

[ AT 10 3 i0 d

(7.1) J KK(JC,E) ol > f f?e(Pl-l-xe ,Ql,da)a§+f‘5’2(jpl+,ce s, )88
Al o] Dl D2 |

i ' 2n -

+ el_n j‘ fgal(leeio,Ql,n)dg a0 < 1/2 + él_‘? f f'zi’l(Plﬂfeig’Qq_:“}dil
e L_Dl 2 31 i

By substitution in (5.4)(e), we find

2x T
1 i -
(7.2) e u[‘ JFHFH(P1+ e ,Ql,u)dg doe =
b1 £l
25 =)
_Lg f f exp( E+x+xCo0s0 )Sin (n+nSind) ag
en o ool |:e§+e;xp(x+1rCose) Cos (x+151ing) | B [exp(x+C0s6)Sin (n+=Sind) | 5
=1/2 - 1/x

st 1%t P x<b(l) |x-b§l)|>n'—==>

l, O 2

(7.3) o< f K (x,8)a8 < 1/2 + (1/2 - 1/x) <1, Q.E.D.

Al .

as

de

des
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Corollary (7.1): The metnods of theorem (7.1) can be extended to unbounded

E& if either IE , or Eﬁ+l is bounded but not if {they are boih unvounded.

Proof: According to the methods of thecrem (7.1), we let ém . = and inte-

W

grate Kﬂ(x,g) over all ef B ., obtaining the wound 1 - 1/x. Therefore,
necessary and sufficient condition for any extension of these methods to the

case of nonempty Qm- is that for all "large" x in Dm’

1A

[
(7.4) Jf Kﬂ(x,g)dg < 1/x

Qm-l

Now if Dm-l is included in Ex,ﬁ], it can be shown that
ﬁ .
(7.5) Jr K%(X,E)dé < —£§ \/ﬁ M(B,x,x,0)d0 where
on -
D o
m-1

(7.6) (a) M(,B,c.,x,c) = I(Bang) - I(“;x:g) and

_l'_et+exp(x—nCosG)Cos(nSinQ)

(v) I(t,x,0) = Tan
exp(x - nCos0)Sin(nSine)

Since M(B,x,x,8) is nonnegative and approaches zero wniformly as |x|

approaches infinity, there is a positive number «' such that for &ll 6,

(7.7) |x| > a' ==> M(B,a,x,0) <1

(F48). " | [ Boopt === f K (x,£)ag< -21—1[ < ﬁ
D
m-1

Now it is easily verified that




(7-9) M(B,x,x,8) < N(«,x,0) = =/2 - I(x,x,0)

and that N(«,x,0) increases monotonically Trom zero to nS8inG a5 x incrsasss
fraor minus infinity to infinity.

Therefore, if |x| < o', then

it x
r!
- {7.10) f Kﬁ(x,g)dg < ie J N(a,x',0)de < ig f 75in0do = 1/x

D 2% 2n
(o .

m-1

I D is unbounded, sey on the right, and therefore contains some
m-1

interval [B,e), then it can be shown that

T

= | x51neas = 1/x
25 “L

b4
(7.11) J Kﬁ(x,a)dez-g—% fN(B,x,e)ae—-a,.
18
0

gm-l

a3 X approaches infinity.

(A similar method yields the same results for Dh+l(un)bounded.) Q.- E.D.

We are now prepared to consider the solution of the Dirichlet problem
for arbitreary ﬂn - i.e., to remove the boundedness restriction on I& for any
or ellm = 0,1,2,...,n. We have thus far delayed consideration of the
"anboundegd" Q since the methods developed for proving (6.1) will not work
for x "too large" in one of the unbounded intervals of D.

To be more precise, let us recall that we proved (6.1) by proving
(6.14) for each of the possible values of R stated in (6.16). Now the un-
pomunded intervals of D will be either the leitmost intervel of Zh, the right
most interval of Dm’ or both for one or more m. Suppose, for scme m, the

rishtmost interval of Dm is unbounded. (Therefore, bﬁ?%) =&.) Nz in

e 2 laas T




section V, we may assume without loss of generality that dﬂ+j = z (unless
m=n, thend - = Q). Then, if m # n, and x in D satisfies

S
X - -Epl) > > d.m -- and is thus "too large"-- R = R(x) = xn, end the lel:

side of (6.14) assumes the form

5t a
i n
(7.12) o f /'573‘_'.1(? . ’Qm’“)dg ao =
o] b
i A =1, (®-e®)exp(sx+nC050)Sin(nSind)
-_—2_ JIII Fon a b 2th |q;;
Y expf[2(x+nCose)] - (e +e )exp(x+nCos0)Cos(nSing) + & |

(where B, (x,km), S 5151?11)1)' o b&zn(m))

as in (6.18).

However, the right side of (7.12) epproaches zero as x approaches
infinity, and therefore (6.1k4) is not setisfied.

If 4 <m, then x-a >4 impliesR = R(x) = d and thus 4 replaces
nt in the above integrands. Nevertheless the right side of (7.12) still
approaches zero as X approaches infinity and therefore (6.14) is still not
satisfied.

If m = n, we assume without loss of generality that dn = % and (7.12)

becomes

7T r" a =

1 ) ol
(1.13), = fo 1 (2xe®,q Jas a0 - 5 f tox) " 1o0g £
o Lb b

1l+ua

ldu

1 -1
= '—2—' u log
i (b-x)/x
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Once again, the integrals in (7.13) approach zero as X approsches
infinity and therefore (6.14) is satisiied for no unbounded D_.  This ic
why owr methods have thus far been unable to yield & betier extenslien of
"hounded"  than that in corollary C el

It will be noticed that as long as x is close enough toc & - 1.e.,
less than x away, or boundedly far away - (6.1h4) is true. Thus & new
method of defining R may be deemed advisable - since until now we delined
R s5 a bounded function of the distance from x to a. However, even sllow-
ing R=x - a for all x > a --and hence allowing R to approach infinity
along with the distance-- fails to prove (6.1%).

Thus we use z "limiting" iteration method for the constructive solu-
tion of the Dirichlet problem for "unbounded" Qn. Admittedly, this method
falls short of the elegance of the "ordinary” iteration method since 1t
requires the solution of an infinite seqguence of Dirichlet problems for
"pounded" Qn. It is the writer's hope that a setisfactory extension of the

3

“Note: If (6.12) had been written instead as

e a
L (L IRE & L n'—g’ (P +Re*®,q ,a )at|as
J KR A - e ‘j m'm 285 %y

A Tt b

)

(i.e., if the bounding were to be performed over the lower semicircle) we

would still find that

2n a

1 ie

23 ) + e 2

B f flh (P +Re ,Qm,d )ag|de > 0 as x >
b1 b

exactly as in (7.12) and (7.13).
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"ordinery” iteration method to "wnbounded" Qn will subseguently { §ovig {40
For the mament, However, we must be content with the "limiting" fterszilica
method which we now describe.

Without loss of generality, we may assume that gll the D:r. are un-
bounded - in Tact on both sides - thus meking all the Cm bounded. Since
there are only Tinitely many)(n+l),cm, there exists a positive number o

such that |x| < a, for all x in C.
(7-1%) (2) Let 8o = Qn - C'_ where

n
(B} oy = 1]
m=o

0] where
m

(e) O = {(x,km)’]x] >a > a.o}

cUc*a

n
(e) Iet D, U zm - C,
m=0

1}

(d) Let cm

(Thus Da. is the union of the complementary intervals of Ca-)

Therefore we have

Theorem (7.2): Given the Dirichlet preblem for @ , which we may assuse,

without loss of generality, has non-negative boundary velues, let there e
formulated corresponding Dirichlet provlems for &ll the daomalns .in speci-
fying the same boundary values on C as those given in the problem for .-f.n
end the boundary values zero along asll of C' o ITf the solutions of these

Dirichlet problems --solvable by iteration-- are denoted u@(x,y} and i the

solution of the Dirichlet problem for Dn is u(z,y), then




(7.15) u(x,y) = Lim  u (x,¥)
G - >
Proof;
(7.16) Let (e) fa(:::) be the values of u (x,y) along D_

(v) ha(x) be the preseribed values of um(X,Y) slong T,

Therefore,

(7-17) n(x) = b (x)
xeC

Therefore, given any B > e, @ > 3 implies that the functions

u m(x’y> are all harmonic and uniformly bounded in Qne. Murthermere

(7.18) ay >a > B —= uaz(x,y) > ual(x,y) in Q..

These facts follow from the maximum and minimu principles for

functions harmonic and bounded in Qn by the following reasoning.

B

Inf (o, Inf h(xb
xeC

(7.19) Let (a) I

(b) 8 = Sup G, Sup h(x))
xeC
(P 20). e | K Iaf h@(x) < uq’(x,y) < Sup ha(x) <S
xeCa xeCa

by the meximum and minimum principles, hence the Tirst asserticn.

Along any line Bm L
(7.21) (2) @) < |x| Lo, ——s yy (k) = 0 and

(b) u, (x,km) >0 (by the minimum principle appliied to & ) and
2 P




() |x| >z, = u, (ki) = u (x,k ) = 0 (See Fig. (7.2).
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Therefore, since u_ (x,y) = u, (x,y) along C, out u  (x,y) >
@, Wy %y =

u_ (x,y) along C_ , the minimum principle tells us that u_ (x,y) <u_ (x,y)
o @, = T,

in le. Finally, the fact that Qn

. [x%F) 5w {xy) in Q5 88 asserted in (7.9).
e 3 %o

Thus for each B > G end any sequence [cca.} such that @, > 2
P

is included in ﬁnm, implies that

A

or ell

e
(]

j) and cnj approaches infinity, the corresponding sequence [uaj(z,y)) ig B

nonotone nondecreasing sequence of functions harmonic ané uniformly bounded

in @ Therefore, by Harnack's theorem of monotone convergence, they con-

np’

verge uniformly on campact subsets to a function V(x,y) harmonic and vounded

in nna.

The limit function V(x,y) is independent of the sequence chosen; Tor

if {@,} is the sequence yielding V(x,y) and {7j} is sny other sequence (of
dJ

the "right" type), then their common refinement {O'J] yields the correspond-

ing sequence [ua (x,¥)) which converges to W(x,y) harmonic ané hounded in
J




Q.+ But since the subsequence lu (x,¥)] of {uU (x,¥)] converges to V(x,x)
i g

J
in 5, We conclude thet W(x,y) = V(x,y) in 9 4

However, now the function V(x,y) is haxrmonic and bounded in 4_.

~
Y
+ L

all > 8 since we may order the sequernce {aj} by "size places”, and by
casting off the "right" finite number of terms, begin it sbove any B thus
moeking V(x,y) haxmenic end bounded in Qna Tor any, and hence &ll, 8> = .

Therefore, V(x,y) is harmonic and bounded throughout & ; for 1f no%,
then there exists some B8 > %y such that V(x,y) is nct harmonic at (B’EE)
for some m. But,given any positive €, we can show that V(x,y) is hermonic
end bounded in ﬂh(ﬁ+e) and therefore at the point (B,km).

Finally, V(x,y) has the same boundary values as u{%,y) end hence, by

the unigueness principle for functions harmonic and bounded in ﬁﬁ, we heve

.

(7.22) Viz,y) = uw(x,y) in Qn. Q.E.D.

Thus the (limiting) iteration method may be used to solve the
PRI

Dirichlet problem for any domain whose conformal map onto "unbounded" {

is knowvm.

Example: Let Xn be a half-plene with a finite number of linear slits re-
moved along (n—l) rays emanating from a fixed point on the bounding straignt
line. Without loss of generelity, we may teke this domein to be an upper
half-plene, the bounding line to be the x-axis and the fixed point to be

the crigin. Let the rays be labeled according fo increasing argument ag

£ (@ =1,2,...,n-1) and let C, end D be taken as before. We denote the

R e

nern-nezative and non-positive halves of the x-axis by ic and Er regpeciively.




e Lol

(7.23) 4 = {(x,0)]e =0, r>0) | See
(m = 0,1,2,...,0; 0 = 6, <8 <...<@Q ,<8 = x)’] g (1.3
i
= U
\ 0=20

e
\

The function w :(k/n)log z (principle value) maps Xn onto the domain
Q consisting of a strip of width k (based on the x-axis) from which =
finite number of linesr slits lying on (n-1) lines parazllel tc <the strip's
bases have been removed. Thus the Dirichlet problem for Xn mey ve sclved
in a constructive way by solving the corresponding Dirichlet preblem for .
If Tor some £ (o = 2 el D, is unbounded (i.e., contains points
arbitrarily close to or far fram the origin), then (by corollary (7.1)) the

“ordinsry" iteration method is applicable as long as either D ., or D

-l mrL
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rcblen for X may be sclved by the
.-

'_IU
(]
2
m
ot

'

]
is bounded.” Otherwise, the Dir

"1imiting" 1teration method.

- L

9 boundedness

Mg, = the : of a particuliar I} is indicated b
In Fig. (7.3) th unboundeunesg) - m MLRERERNS W

3 zbsence = , g i i
the & of a dot &t the extreme enu(s) of* the corresponding C .
presence i




Sany

VIII. Apwvlicaticns I

The harmonic messure uﬁ(x,y), associated with the boundery siit A,
J d
of the domain Qn, ig delined as the function harmonic in Qﬁ, convinucus =nd
bounded in En’ whose boundary values are unity on Aj and zero on vhe ramsin-
der of C. If vj(x,y) is the harmonic conjugete of uj(x,y) end A is oy

boundary slit of Qn’ then the veriod pjr of vj(x,y) as the point (x,yy pal-

Jorms & circuit sbout Ar is given bty

(8.1) by = ¢ Bv,(ey)fdles = § [Bu(ry)/ailas

E E
r 1

where Er is any (sufficiently smooth) curve described in the positive sense
surrounding only the boundary component A, of C and &/dn indicates differen-
tiation with respect to the cutward pointing ncrmal.

The periods 2y of the functions vj(x,y) have several importznt uses
in the theory of conformal mapping, one of which is iIn the comngtructiun of a con-
formal map of given domain onto one of its canonical domains. Our spplicse-

“tion will be the determination of pjr purely in terms of the values :”j{x)

of the function u%(x,y) on the lines y = Km' In this section we determine
L5
er for a perticular class of the damains Qn; in the next sec¢tion we deter-
mine p. for arbitrary Q .
Sr n
Let Qn ve & parallel slit domain havimg &t least one finite boundery
slit end having the property that the projections of any two of its Tinite

boundary slits (on the x-axis) do not overlap either each other or ths infi-

nite boundery component. Furthermore, we assume that there iz «n iniinite




=05 /-

toundary component which extends along each line te -a irom the left oug

to a from the right. (& > 0. See Fig. (8.1).)

-

E
3
b5 36
R 5 I - =
+ 2
Yy 8y %
b2 8.3
_a=ai bl ay b? ) a=b8

we label the finite boundary slits in order of the appesrence Irim

left to right of their Pprojections on the x-sxis as

/ =
(8.2) Ay = [:bj,aj+l], Kj —i Y5 oI ;;'TO [N(m)—l]> g

where N(m) is the number of complementery intervals along &m and hence

N(m)-1 is the number of boundary slits along 2. Let A,
g 2

n

{8.3) T = L= Z [N(m)-1]
m=o

represent the infinite boundary component.

Since the projections of the Ar do not overlap, it is vossible --Tor
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2ach Tixed r-- to tske a3 Er & rectangle whose vertical sides are perelilel
to the y-axis and pass through the gaps (ar,br), (ar+l’b“*‘3' (
we revlace r+l1 by 1.) We will subsequently see that it is permissible o

nilow the horizental sides of Er to recede to infinity. (See Fig. (8.1)

Therefore, we may rewrite (8.1) as

8.4 poe - Lo el b
( ) Par Jr- lz+l)

where for all x in (ar,br)
(8.3] ] =j [auj(x,y)/ax_']ay:

[We will subsequently show that I,.is constant Ior x in (ar,bw).J
Jd e K
Before proceeding, we recall seversl properties of the periods P
17

which we shall have occasion to use:

(6.6) (e) p..=7P

Thus it suffices to determine the Pjr for J <4, r < J:. Therefore,
the horizontel sides of all Er wnder consideration ere each of Iinlte lengta
-~in fact they are at most of length 2a. Thus, in letting these sides
recede to infinity, we need only show that au (x,¥) /oy gpproaches zerc wni-
formly as y approaches infinity whenever x is in [—a,é}. (Tols will also

prove the constancy of Ijr(x) for x in (ar’br)') Aso, since we need only




consider § < J, we have for all m and for all x such that |x| > &,

(6.7) I“mj(x) s 1

Now &s the horizontal sides of Er recede to infipnity, they even-

tually enter snd remain in § 3 respectively where the values of u, (=,

(ngd X

n+l
e el 1 y o a Teewl ’ .
sre given by the Tormulas (5.4)(,) respectively. Since (for &llm = 0,1,
o
2,...,n) the functions imj

0 < §m=(§) < 1 by the meximum and minimum principles --upon differentis-
=13 o

(¢) sre uwniformly bounded --in Tact

tion of both sides of (5.%)(:), we find that as y epproaches infinity,

(8.8) (=) auJ(x,y)/ax—O<l/|y]3>

0 (1/;;2)

By (8.8), we see that (8.4) holds. We prove the constency of

]

() Buj(x,y)/b‘y

fal
I x) for x in (a_,b_) by considering o b on|ds where B'_ is
I,.(x) (a.,b.) by e 3 [Buy(xy)/en] ¢ Bl

B'l

T
a rectangle both of whose verticel sides pass through the gap (ay,br) anda
-
are perellel to the y-axis. OSince E'r encloses a regicn whose clésure is
interior to Q?, we conclude that
4

~

(8.9) jra [ou;(x,y)/3nas = 0
B

1

Thus as tThe horizontal sides of E‘r recede to infinity, the asssr-
tion (B8.9) remains true. 3But by (8.8)(%), the contribution of the horizen-

trl sides to the inteprsl in (8.9) approaches zero. Thus; in the 1imit,




&

i
g

(8.3) nolds. Thus, if we integrate both sides of (8.3)

over ( r-.l_,b ) --&s done in P—E, r. 127]-— we cbtein

by L

b b,

1 6
r ~ 4 )

(8.11) J Ijrax = lLDr-E'1°)I,j:r =J J[. Lqu(XJY)/CS{_J dydx
& B =
b
r ,l-"' % . i Pl e ; -

= Jr J [cruj (x,7)/éx)axay = u/ uJ_‘ (o, ,y)-uj(a:_,yﬂ_j Gy

- DO a“ g

where the inversion of order of integration is justified by (8.8)(a).

o
(8.12) (0,81, = f [ (o9} u, (a3 ] ay
-

i
n hm :7
t L J [uj(‘or,y)—uj(&r::rllﬁy+j [uj(br,:f)-uj(ar.»:f} 1y
km-l k:i :

By (5.4)(a) snd (8.7) we obtain --after twice interchenging the

o & té_a |
RED 7 - Vay = = ‘ | ae
(8.13) [u,j (‘Dr,}!}-uj(ar,'\f{_jdy e foj(ﬁ) log g_br'lub
- 00 -5 y
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Similerly,

::) ; _ 1 : g-aﬁ
g 11 I M & a i Rt { o =
(8.14) y ij(br,y) uj(ar,y) &y - L/ *nj(gj log £5, &t
K -5
7
interchanging the order

By (5.5) and (8.5) we ovtain --after twice

bT intesrsation=-

1-

D
m

r 3 ) ¢ -

o [ey(ey)ug(a,y)]ay =

(8.15) J

.:{m_l
= (2 (o1 5(8)+2, s ()] 2og | Tann [ (/24 ) (§-a, )] Ctnn[(x/24 ) (¢-b )] lfag
& E_a
1 3 ? p L i P . d'r i
(8‘»-'—6‘}‘ ’ 2 Iqu = ‘Eﬁr—a; ‘JI'J [—J,_O‘j(g)‘{”fnj(s)] lﬂg §-br d.g T

48 a
i
w(bya) &7 J = (1)

-8,

(&)1 (8 )] 1og I Tenn[(x/2d_)(§-a )] Ctnn[(n/2d )(t-v,)] a8




0 5

We now extend the results of the previous section to eriitrary Qn'
Thiz time, however, it will be more convenient for us to lebel the finite
bouneary slits --of which we assume Qn has &t leest one-- in order of their
appecrance fram left to right along their respective lines £m fromm = 0

ftom &0 as

(9.1) Ayt [aj,bj] . R - PR T (8 n)--_}

=0

Azain Aj’ where

i

(9.2) J=1+ N(m)-1

4
It
0

will represent the infinite boundary component (if there is one) and we
need only consider pjr for J <1, r<J (by 8.6). As before we set
£ .(x) = uj(x,hm) and seek to determine pjr in terms of the values %;:(;}.
We Go so by considering first those A that lie on en "intericr" line
(i.e., & line %, such that m # 0,n) and then those A, if eny, that lie
on en "end" line.

. i} Ar lies on an "interior" line, we choose B as the boundary =

t(x,y)|ar Sx<o, K Jy<k ) wherek = L ﬂﬁ)/Q. (See Fiz.

(9.1).)




._ Em-"
y=4m+l Er
& b 2
: o ' " o m
y=kK_
‘p-1
s3:-
(9:3) 7o py = [ DuE)/oy - dug(xE ) /ov]ax
m+1
ﬁ ~ -
7 [Bu,(a,,y)/ax - du (v ,y)/dxlay
m

By differentiating both sides of (5.5) and by iaterchanging the

order of integration, we find that

©
£Q

(9.4) J'“ B, (x5, )/ = Bu, (x,55,. /27 ax

ro B80Ty ()] (exp[(@n/d ) (e-e )] -exp[(2n/d, ) (25 IPEE:

dm-l-l _‘jm (l+ehp[(2~1/ _l_l)(E. 8. j (L+ex_piL(2;r/dm+l)(>-or_J)
1 f: [fmj(g)-f(m_l)j(g)] (exp[ex/ex)(g-ar)] E expl_—(E,—;/:;L:{5—':;:‘}: Jas
4y v (L+exp[(2n/d ) (&-=,)] ) (1+exp[(2n/a ) (s-b,)])




X
w1
(9-3) J [Buj(ar,y)/ax - auj(br,y)/ax]dy =
:’E"F.
“m i{m-i-l
f [a'ij(&r;b"j/ax"ﬁu_-('-”-'l,;}')/ax]dy + J [auj(al_,y)/ax—éuj(‘o:_,y";/&:-:j:;;r =
Ve, k
5 o
l A.-t 3 - e = = ﬂ = T[ = ,.".‘_‘:_f_ . __E’:: ‘
== J *(m—l)j(g) Tan ﬁ—(b—ar)becha—(g-ar)-T&th (g-orJSe\..,d (,-br).u‘_ +
m - o0 m 4 T m —_

[=]
e [ R TE t s \ r A
e PJ fmj(é) unh2T(§-a.r)Sechd—(§.-ar)-Ctnhﬁ(g—br}Secha—(;-uriJc.g o
ey £ o a m ™
m —
- N 5 P i | -
> Pff .-(E)Eltnn (£-a )Sech——(§-a )-Ctnhs——(£-b )Sech——(5-y ) d%
24 i, = 20y S S TR WL
” _—
1 I It 7 |
# o £ (&) | Tanh—"—(&-a_)Sech (E-=_)|dE
T :jm (w+l)3 [ I & PR
; i'
- Iﬁ &
= == Y ; (&) |Tanh—"—(&-b_)Sech——(z-b_)|dE
2&m+; :)' o (m+l) j 2dm +1 S dm+ 1 B 4 P

where "P" denotes the Cauchy principal value of the integral.
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note@, however, that for r # 3, ﬁmj(ﬁ) =0on A

(whieh is (a_,5_]). Furthérmore, since (ar,km) and (hr,hq) are points of

> . - L - = o o f TR S

continuity of the voundery velues of u,(x,¥y), 1mj(x) = u.{x,x ) approsches
o J -t

2 +

[ ©
.

zero &5 X approeches | +. In Tact, in & \~

&
/br\ / : 3 g o e
| £) = uﬁ(x,gm} can be expanded in a power series ol waich

\\ar ) ? fﬁd"

Sinece the hypersclic co-

:j.l

-
_.o-“/
’.l-
14}
)
)
[¢)
3
O
O
-h
4]
ct
el
(¢4
0
L)
ct
ct
L
Q
(o)
l‘"
=
(0]
cl
O
2]
o
(5]
H

- tangent has z pole of only the first order at the simple zeroes of itls
/b
srgument, the behavior of zm;(g) near | ° rullifies the eifect cf this
o 2
T

pole. Thus, for r # j, we may remove the symbol "P" in (9.5). We may then
custify interchanging the corder of integration by the sbsclute integrabl-
lity of the respective integrands. For r = j, the justificaticn is thes

ame exceyt in the case ¢f those integrels whose Cauchy orincipel velue is

taken. Thus (9.%) and (9.5) give the value of er for Ar on g interior
If A lies cn an "end" line --say zr-- we determine p. by letiing
< 1 Jr
E_ be the boundary of {(x,y)]ar <x<b,¥2 En} . (See Fig. (9.2).)

The Jjustification

10
/ /
IT AJ has vne'\ finite end points | " along %m’ (= = < :m< 4 <)
\ twe J \.%n/} =

then the intervals of integraticn of the right sides of (9.%) snd (9.9) will

be fil’;ite.




i4m
o’
b

Y=k

Fig. (9.2):

of this choice follows from the inequality (8.8)(bv).

*o]
-] .o
~ r
(9.6) BT j D‘uj ,y)/Bx--ou‘j ¥ /o] ay + J [__Smj /ouw-
Eﬁ “r

By differentiating both sides of (5.5) and (5.4)(b), ard by inter-

changing the order of integration, we find that

b
z

(9.7) f [au (x,k )/3y]ax =

a
r

f (25 (8)F 0, 1y 5 (8)] (exo(/d ) (e-2 )] - exp[(2n/a ) (E-b )] )
& (1+exp[(2n/a_)(&-a )] ) (+exp[(2n/a )(t-v,J])

(9.8) J/‘ [Buj(ary)/ax-auj(hr,y)/ai]dy =
k

n




.4
n &
(& 1 = r~
S (o \ /e S % Vs ':‘ P, ar) £ Wl ',-. o vall | h\.-,-_ T
s r,)r,’,/o.._..a..j(nr,yj/ugjd;r -i-J [_..mj(ar,y“/c&.--\m‘j(ur,_y,u/o,:,‘ dy =
1= k
."Ln n
=
v ~ [_‘ o~ .f y - —
‘__ ') f = A\ lm -': PF—&, \ éﬁ‘.‘ P g Mg 'n—“'—_(iz_-’_ 5 L __.-: Sk
2da_ ./ (n_;}J(SJLJ-Gnh——,_H:;{.a 1..)5 ﬂ—d (& ai,) .Lflnk-zdl \5=0.,) er.n_d {3 O:‘" as
e L2 a a I-
(5]
T ';. B o ‘r"‘ ;’}:ﬂ— - .)_I( =g ) =0t Xl Eol VOsehital B i;:
s 7a J nd.,(gil-cu B5d (g e.r)Bec 3 (g -z'.r) gtnt e (£ !‘.;r)..a\.\..a..d (-, ___,J\..:.
a =1 B0 n n 11 T =
(. 44 ) - e
- (e b ) . i *njtgﬁdg "
o T J (B-e )(E-p))
- 0O
Df course; the remarks following (9.5) zpply equally well here,

Thus (9.7) 2nd (9.8) give the value of o, Tor A on .Bn. Tor &_ on
o’ -

Eo we obtain formulas completely anelogous to those in (9.6)-(2.5).
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