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ABSTRACT 

In this paper we develop a constructive method of solving tbe 

Dirichlet problem for a plane domain,nn 1 whose boundary consists of a 

finite number of linear slits distributed along n+l par el lines, 

P, =- {(x,y)/y = k ), (m = 0,1, .•• ,n), We call such a domain a pa.rtll l m m 

slit domain. Our procedure will be an extension of hat used by Eps�e·n 

for the case n
0

, [Quart. Appl. Math.�: No. 3, 301-317 (Oct., 1948) . 

We seek the function u(x,y), harmonic and bounded inn, having n 

the boundary values h(x) on the boundary slits, c, of n . To determine n 
u(x,y), we first determine its values, �(x), on the complementary inter-

vals, D, of its boundary slits along each line. We thus obtain .,_ e 

values of u(x,y) along the boundaries C LJ D, of n+2 regions - two 

half-planes and n strips. (See Fig. (1).) From these values, we may 

determine u(x,y) in each such region by using the appropriate Poisson 

integral formula. 

Fig, (J ): 
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Our procedure or finding f(x) is 'tO apply the mean value :pro:pe_·�y 

�o u(x,y) at each point P ; (x,k) in every complementary · terval ale 6 m m 

the line y = km for all m. Then, if we average u(x,y) over CR ?m), �be 

cir�le of radius Rand center P ,  (see F·g. (1)), we obtain (for = 0,1, m 

.•. ,n) the system of integral equations: 

(1) 

where 

(2) ( a) 

(b) 

( C) 

(d) 

-f(x) = f½(x} + J 
t::.. m 

I' = C u C u m m-l m 

t::.. = D l u D u m- m 

cm = C ( l 

cm+l 

m+l 

P = (x,k ) e; D m m m 

P = (x,k ) € D m m m 

(.t = £ = ¢) -1 n+l 
(e) D -= D m 

The kernel Ka_(x,s), given in terms of the Poisson kernels of khe 

respective regions determined by C LJ D, is discontinuous at g = x + R. 

Thus the applicability of' the Fredholm alternative to the integr eq_ a­

tion (1) over the Banach space of functions continuous and bound don D 

is questionable. However, by choosing R to be the largest radius such 

that the disc bounded by CR(Pm) contains no points or C and lies betwee 

the lines£ 1 and£ 1, (see Fig. (1)), we show that for all P in m- m+ .r . 
there exists a positive p less than one such that 



0 < 

t:,. m 

w1ich is the main result of the paper. 

Under this c.ondi tion it is known that toe integral e �uation (l) has 

a unique, bounded solution obtainable by the method or uccess·v apDrox�­

mations -- or iteration. 

To prove the inequality (3), we temporarily assume that n is n 

"bo-w1ded" -- i.e. J that D is bounded for each m. We then exte d our re­m 

sult to the case that one or more of the DID is unbounded, but D _1 or 

Dm+l is bounded. 

In the case of arbitrary, unbounded D, we form a sequence of rela­

ted Dirichlet problems for the domains n having as boundary along each na, 

line, t, the slits, C, from+ a., (a.> O), to infinity in addi ion to t.e m a. -

boundary, c, of nn. We assign n the same boundary values, h(x), as those na. 

assigned n along C and the boundary values zero along C. If we denote n a, 

the solutions of these problems -- obtainable by iteration -- as u (x,y), 
a. 

then 

(4) ua. (x,y) --> u(x,y) as a. -> DQ 

uniformly on compact subsets of n .  n 

In the paper, we precede the discussion of the general ca e (des-

cribed above) by an outline of Epstein's solution for the domai n 
0 

followed by a treatment of the case of f1:i_ ;.tith boundary C
0 

L C. wher 

C0 � ((x,-�)1-a � x � a) and c1 = ((x,�)j -a� x � a) are assignPa he 



respective boundary values -1 and +l. Several asymptotic :properties .):: 

(x) and of its iterative approximations are developed,ana t· er sul s 

obtained for this case of½_ are then applied towards the de�crm· at· 

oi: i tr COl, ,.;nna.l modUlus. 

We conclude by applying the results obtained for,: e -ener case 

i:owards the determination of the periods of the harmonic 

j�gate to the harmonic measures of the boundary slits or n n 

_ctions co -

:..v 
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I. 

In uris paper we develop a constructive method of solvinc �te 

Di ichlet problem for a plane domain n whose boundary consists o� = n 
f'n te num er of linear slits distributed along n+l paralle_ lines. e 

call such a doma·n a parallel slit domain. Our procedure will· e an 

exce sj,on of that u·sed by Epstein [1,p. 310] for sli s a·s.,::. t:.te· 

alonD a s · ngle line. The object is to reduce t Je prob em to .: e so u o. 

of a certain integral equation and to prove that the solution of this 

tei;:,ral equation is obtainable by the method of' successive approxir.,at 

We now briefly describe tis procedure. 

a 

Fig. (L 1): 

Let n slits be given which lie on the x-axis and extend to inf� -�t· 

bo�h on the left and on the right. Let the portion of the x-a:<is -onsist­

ing of these slits be denoted by C and the remainder by D (cons·s•i 

of �hen intervals (a1,b1),(a2)b2),., ,,(an,bn)). 

bounded by C. The Dirichlet problem for n
0 

is: 

Let n be "the doma.i n 
0 

Given: The f'wlction h(x) defined on C such that ·tis o de o 

each slit and continuous except perhaps at a finite number of points. 

Find: The function u(x,y),ha.rmonic and bounded inn which 
Q) 

approaches h(x) at every point (x,O) of continui"ty of h(x) alon c. 

(The case of n slits lying along a differen line or contaii.ed 

in a inite interval, or having distinct boundary values presc i ed or: 

e:i re spec ti ve upper an.a lower e es may be reduced to consj .-'l ·rat· -;1 

o"' he above problem -- see [L, pp. 310, 3n7. Furthe ,ore, 

1 n·s thesis was prepared under the supervision and guidan e of 
,r. � rnard Epstej n, to wl' om I express my deeper,t 

sc·entious effort.son my behalf, both as a teacher 
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e.:i -cen e a:--ic. uniqueness of u(x,y) -- both here and in su 

sect· ans -- is assured by Nevanlinna [4, p. 22]. ) 

Epstein's method of solving this problem is to dete ne the 

o D. T'oen the values of u(x,y) would be known on thee . . J._e x-a:-: s, 

and ror points (x ., y) not on the x-axis, they could be determine by the 

Poisson integral formula.: 

(1.1) u(x,y) = 
n: 

J 
-oo 

u{c, ,o)d; 
2 2 

(( - x) + Y 

(1.2) letting u(x,O) - h(x), (x, O ) C 

we may rewrite (l.1} as 

(1.3) u(x,y) == l�I J 

f(x), (x,O) € D 

h(;)d.E. + 
(�-xl + y2 1f 2 2 

(�-x) + Y 

To etermine the values f(x) at the points (x,O) in D, we tempera_ ly 

assume (x,O) to be fixed in one of the intervals 

ar.d then apply the mean value property to u(x,y) at the point (x,O). 

T"nis will lead us to an integral equation w ich we may solve for �(x). 

Fie;. (1. 2): 

Let (a) 

(b) 

(c) 

P = (x,O) 

R = R(x) = min(x-�, bk-x) 

CR(P); The ircle of radius R centered at?. 
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By the evenness of u(x J y) in y -- as seen in (1.l) -- t- e .. ear. 

val: e property of u(x,y) at P may be expressed (by using polar coorcin��c� 

w'ti origin at (x,O)) e.s 

(J..5) f'(x) = ; J u.(x + RCosQ, RSinQ)dG = 

TC 

[f 
l J RSinG hrn)d� 

Tt 2 
0 (�-x-RCosQ) + 

+ 1 RSinQ f'(£)d . [ I " I (�-x-RCosG/ + 

(RS nG) 2 dG = 

(RSinQ)� 

= J h(�) 
SinG dG 

] (�-x-RCosG) 2 + (RSinG) 2 ciE, 

+ J f(�} [\ f 
D 11 0 

Sin G dG 

(�-x-RCos0) 2 + (RSinG) 2 

where the inversion of order of integration may be justified by Fubin�'s 

theorem (which will serve as the. justification for a mnnber of such 

£uture inversions). 

(l. 6) 

(1. 7) 

ret L 
2 

(1. ) let J h(�) ¾(x,�) d = �(x) 
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Thus �(x) is a known function, and the mean value :property, 

(l.5), yields the following integral equation for f(x}: 

f(x) = �(x) + J .f(s)�(x,�)d� 
D 

Since �(x,�) is discontinuous at�= x ± R, it is not at all clear 

that the integral operator generated by ¾(x,�) is completely continuous 

as an operator on the Banach space of functions continuous and bounded 

on D. Thus, the &pplicability of the Fredholm alternative to (1.9) over 

this space is questionable. Furthermore, even i� �(x,�) belongtd 

to L2(D x D), the Fredholm alternative wo"ld remaih inapplicable in o"r 
case since the solution of (1.9) might merely be a solution in norm, 

not ne ce s sa.rily- sa ti sf-ying ( 1. 9) po.intwi se . 

Nevertheless, the existence theory of the Dirichlet problem 

tells us that (1.9) possesses a bounded solution and it bas been shown 

[1, p. 30'.2) that this solution is unique and may be obtained by the 

method of successive approximations providing that there exists O < p < l 

such that for all (x,O) in D 

( 1. 10) 0 < 1 � ( X, �) � � p < L 2 

In fact, if the integral equation (1.9) were considered indepen-

dently of any potential-theoretic motivation and if Kit(x,�) were any 

singular kernel whose absolute value satisfied the inequal-1ty (1.10), the 

same conclusion �ould hold. 

2Actually, the uniqueness of this bounded solution also follows from 
tbe uniqueness theory of the Dirichlet problem -- see Nevanlinna �, 
p. 22]. However, the solvability of (1.9) by successive approxima­
tions relies on the equality (1.10). 
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:'3incc the · e quali t ( 1 .  10 ) was p oved for � ( x ,  ) = 

? 
.1 c = -x) -1 

log I �  - :-: + R I D-- X - R ' p . 31 � ,  it  wa 

� r.'leasura e f
0

( x )  bo nded  on  D,  the sequence 

.ur_ ively f'or ( x , O ) in D y 

( 1 .  1 )  fn ( x )  = � ( x )  + J fn-l ( O � ( x , O · �  
D 

concluded t. a.t 

( fn (x ) ] define 

c:, "' ven 

re -

c onver�es un · forrnly �o the uni que , bounded function f ( x )  01 ( 1.9 , . 

Before proceeding to nn ., we note that � (x , � )  s int . .  ately 

rela. L.ed to the Poi s son kernel of the domains bouna.ed by C LJ D . -n 

i�s  integrand ( here ) is simply l/rr time s the Po ' sso 1·e - r.cl 

evaluated at the pair of points (x  + RCosO , RSinO) , ( � , o )  [o 

P R iQ + e , Q, where Q = ( � _, o)] re spectively . If the integration 

had oeen extended over the entire circleJ the factor o� 1/n wo d ,ave 

been placed by 1/21r. . 

Thus , if '& denotes  the Poisson kernel , then 

( 1 . 12 ) 

Thus it  will be the goal of our extension to dete ine � eq iva­

lent kernel } �(x,� ) ,  and corre sponding integral e�ua l, · on , ( 1 . 9 ) , _ or 

nn and t.o prove that �(x, f; )  satisfie s tlle ine Q.uality ( 1 . lO) . ·. e 

as in the case of n , i t  will follow that the integral e qua io _ is  
0 

solvable by the metnod of succe s sive appr oximations or iteratior. . 

We begin by considering a particular case of � a d an a:pl)i:. c �-_;_ r: 

a hi s case . We then proceed to a slightly restri cted vcrzior. o� ! 

we , ,  ne ali ze to arhi tra.ry n , and we fi nal . reat or s V"" ,, -, "' · .,  r .- -: - :: ;;; . n 



II . A -articular Case Ok n1. 

< 

f 
2rr 

Fig. (2 . 1) : 
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2a 
+ 

-l 

Let n1 be the domain consi sting of tne ent · e plane m· nus uwo 

parallel line segments each of length 2a( a  > 0 )  with the value s ± l 

pre scribed on the upper and lower segment s respectively. Suppos0 

further that the se segments are so situated that , were their re spe c: �i ,e 

end points to be conne cted by ' straight line segments , �he resu· �-n."' 

quadrilateral would be a rectangle . ( See Fig . ( 2 . 1 ) . ) We s· all solve .;;· .  

Dirichlet problem for this domai. with � e given boundary values . 

We first note that without loss of generality we ay ons: ·er 

the se lower and upper line sesments to be given re spectively as 

( 2 . 1 )  
( a) 

(b )  

C =- ( (x, -rr ) . 1 - a -.=; x -.=; a} 
0 

The symmetry of the problem, together with the Schwarz re ­

flection p�inciple , tells us �hat the harmonic function , u (x ,y) , -;;<e 

see� nrust have the value zero all along the x-axi s ;  that is , u (x , O) a:c 

erefore , we may replace the above :problem by the problem · w 

c� � the x-axis , c1 = c1 and the boundary values are zero o. c; 
unity on c1 and nl is replaced by n1 as in Fig. (2 . 2 ). 
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n · l 

( -a.� rr ) --+_l _____ _ 

0 

( a ,  re )  

A s  i n  Section I ,  we note that the problem would b e  solved if w.e 

could determine the value s f (x)  of u ( x , y) along the rest of' the ine 

y = n ( ·  . e . , on D1) .  For simplicity of notation,  we will at ti:me s use 

1� (x )  to denote the value of u (x,Y)  along all of y = rc/ S_ LJ Di. ) . 

(2 . 2 )  

where 

( 2 . 3 )  

f uo(x, y) + u1 (x , y) , y f O , ,r 

u (x, y) = 0 , y = 0 

l :f ( x ) , y = n 

( a) u0 (x ,y )  = ¼ exSiny J 

u (x ,y) = 0 , 
0 

(b ) u1 (x ,y) = y-rr 

u1(x ,y )  = 0 , 

- 00  

J f (;)df, J 

e� -x + 2Cosy + e - ( � -x) 
-oo 

00 

J 
- oo  

f(g )dg 
2 2 

( � -x ) + ( y-n)  
, y > f-' 

y < j{ 



kt 
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s label the x-axis Z 
O 

)and t' e line y °" � a.s t 

t1 divide the upper half-plane into two regions S
0 

and s1 re pec� · vely 

where S
0 

is  the strip ( (x , y) I O < y < r. )  and s
1 

is  the ai._ -p: e 

( Y. � Y) , Y > ,r } . These two regions  .ave the respe tive 

L- 0 an 'I p eac 

a. . Q - I ( , 0 ) 
- ( C rr) 

of w i ch depends on t e p�int s P '  = (x , y ) i . v e 

3 on the boundary of their respe ctive c . a� 

( b )  13 0 

= r '6' o ( P
' , Qo ) 

� o (P '  , � )  

depending upon whe ther the boundary point Q lie s  

( 2 .  5 )  

Thus ( 2 . 3 ) c ould b e  rewritten as 

( a )  u ( P ' ) 
0 = !  

Qo € 

= !  
Ql€ 

( P ' ) = 0 , 0 

(b ) u1 ( P ' )  = ! '½_ E 

u1 ( P ' ) == 0 , 

l 
0 

ll  

tl  

O · te  (P ' ,Q  ) d; 
0 0 + J 

QlE 

f' ( � ) '-8 o ( P ' , '½_ ) d.;  , 

f ( � )  �5\ ( P ' , � ) d� , 

in 

ll 

t or 

f ( � ) YJ  0 ( P ' , � )  

€ s 
0 

· /4 s 0 

P '  € S 

p •  I- s_ 

. )  . . e . , Q = ( �
1
0 ) or Q = ( C n ) . We will et t:i.r.cs use thi .:,� e o:"' . -:Jt?..t -:: 

to · nfer th at either one or both of the j ,ndi ca. ed poss i i " e.:; r.c:..y h-- -� -



-9 -

We now apply the mean value property to u (P 1 ) at the � � � u 

P ' == P� = (x , r;- )  in one of tl1e intervals - - say the r1g.rit in1:-erval c;-,:· 

n1 and average over the circle CR (P1) where 

(� . 6 ) R = R (x) = min ( x-a, n ) . 

( ::,ee Fig. ( 2 . J ) . )  

( -a. , ,,- ) ---------

'i'ig . (2 . 3) : 
iO Tllerefore ,  along CR (P 1 ) ,P ' = P 1 + Re and the mean value ro er"c;,-

of u(P 1 ) at P1 may be expres sed as 

( 2. 7 )  f { x) = �re J u (P1 + ReH)) dG 

2n J 71\ (P1+Be
iG

, Q1 ) d� d; 



( 2

. 
5 )  Le -c  

( 2 . ;J ) 

w e re 

f' (x) 

( 2 . 10) 

gR (x
) 

= 

: 

- 0 -

(x) + J f (� ) � ( x, � ) d� 

I I 
> a 

a 

J �(x, �)a;, 

-

a 

To pro ve t he solvability of (2 .9 ) by iterat on, we ust : r ·rst s 

t h a .. t here exists O < :P < 1 such that for all x satisfy · ng Ix I > a 

(2

,
ll

) 

0 < J 
�

(x
,

� ) � S p  < 1 

l �
I 

> a 

( Si r ; ce � ( x
,

�
) 

is positi ve , the left he . nd ineq ality is � rivia l .
) 

Without loss of ge ne ra lit y , we may assume x > a . By (1 . 7
) 

an 

F ub i ni ' s  �he o rem , we ha ve 

( 2 . 12
) 
J � (x ,; ) d� 

l � l > a 

2
11' 

+ J 
11' 

. : 
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as may be seen by straightforward computation. 

( 2 . 14) 

I.et a <  x < a+1t. Therefore , R (x )  = x-a,  e.nd 

-l 

= _21 - 12 J u -llog I ll�uu I du :S 21\' - ( a+x) / ( x-a.) 

-1 

J 
- ( 1+2a/If) 

-1 l l+u l  
u log l-u du 

a <  X < a.+1\' � 

-1 

4 

l 

2:rr2 

- (1+2a/1( ) 

-1 

< l 1 f - 21\'2 
' 
- ( 1+2a/:rr ) 

-1 j l+u l u log l-u du < l 

-1 1 1+u 1 u log l-u du 

It has been shown [1 ,  P - 3 1 1f-] without computation that 

00 (X) 

-¾ J -l 1�1 1 J -1 l l+u j ( � -x ) log � -x-R d� = 2 u log l-u du =  l 

- oo  -co 

Alternatively., the following computati onal argument may be used : 

co 
l J -1 l l+u l 4 - u log - du = -2 l� 2 1( 1( - oo  

00 1 

= §._ L J 
,r

2 n=o 0 

1 

} _, M log 

0 

l+u) du - §_ 
1-u - 2 

,r 
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(2 .15 ) 
x > a + -rr -> R (x) = rr -- > 

J I �  
K (x r) I 

< 
> a 

= 1 - 1/rr < l . 
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III. A yrr.ptot.ic :Behavior of' .fn (x.) and of f (x )  

In this sectio w shall study the behavior of f (x) a-c · . -·::.r.i-:.:; n 
, - �t +a in terms o:f t· e behavior of f 1 (x)  at t ese oin'i:s . ·,1e w · l n-

o...l o how that 

( 3 . 1 )  r (x) ,,._, A/x2 as l x l ➔ 00 

(whe.·e A i s  a certain positive constant ) . 

Theorem ( 3 , l ) : f 1 (x )  -> a n- as x ➔ oo 

as x ➔ oo 

(A similar statement holas for x ➔ - m. ) 

Proof ; 

� (x, � ) d� + J f'n-l ( � ) � (x, � ) a� 

l � />u 

(Henceforth in this proof we take R = rr since the fac� tt.a� x 

approaches infinity implie s that eventually x > a + -rr a.nd. t• e_ .:'o_ e . .  = 

R ( x )  = -rr . ) 

A comparison of (2. 3 )  and ( 2 . 8 ) tells us that 

Therefore 

( a-x. ) /n 

J 
- ( a+x) /rr 



d. 

( 3 , 5 ) 

... l ' 
2 21l" 

-lh -

- ( a.+,c ) /TC 

= - { 
u-l f 

2 2 ,  n-
- co  

+ 12  J u-lfn-1 ( :x"+mi) log / i: l du 
2

r. ( a-x) /rr 

l + -
2-i 

+ logCos ( rrSinO-¢ )  -logCos¢] d¢d0 

+logCos ( rrSinQ-¢) -logCos¢J a¢do 

) Co.: ( :t.3 nG) .-l 

l l+u l . ( x+ ru) o I:U t.. 

Let the integrals appear:. g on the right hand side s of ( . 4 )  ar .. 

e labeled ac cording to their order of appearance as F ( :>: ) ; n . 
1,2 , . . . , 6 .  

I t  is  immediately obvious (by inspection) t at F ( )  
� 

a .! "Oac . .  zero as x ap roache s inf ini ty . ..: thermore tl'ie boi:nd0 -:1� :; of 
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F ( x )  and F (x ) each appr oach zero as x approache s infinity, sin ce t e n3 n5 

lim it s  of the re spe ctive u and ¢ in tegrations be come the same as x 

approache s infinity. Therefore we ne ed only examine F (x ) and F (x ) 
n4 n6 

as x approache s ini'inity. 

Lemma (3. la ) :  If : fn-l ( x) --+ a as x ➔ oo 

Proof : 

( 3 . 6 ) a/2 = .JL j 
2n2 

-1 l l+u l  u log l -u du 

( See Footnote No . 4 ,  p .  11 ) 

( 3 . 8 )  

( a-x ) /n 

J -1 l l+u l u log l -u du 
- 0() 

+ 2 �2 J u .. 1 [fn -l ( x+,ru ) -a] log l i� l du 
( a-x ) /1t 

( a-x) /rc J -1 1 1+u 1 u log l-u du ➔ 0 as x ➔ oo 

l 

- oo  

ja-x) /2rr 

u -1 [!n-1 (x+rru) -a] log I t:� I du 
(a-x) /1t 

1 J -l r:; ;i l l+u l 
+ 2 u Lfn-l (x+1ftl) -aJ log � du 

2
1( (a-x ) /21f 



(3 .10) 

(3 .11 ) 
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I.et M be an upper bound on j fn -l (x ) / . There fo re 

(a -x ) /21t 
1 

21£ 2 J u -
1

[fn -l (x+nu ) - a] log l i�� l d u  

(a-x )/rr 

I.et 

< 2M 
- 2 

2rr 

(a-x )/2rc 

J -1 j l+u l u log l -u du ➔ 0 

( a.-x ) /rr 

as x ➔ c o , 

(a -x )/2n 

-1 r:; � I l +u I u Lfn -l (x+nu) -<:_J log l -u du 

By (3 .6 ) - (3 ,9) , Fn
4

(x) - a/2 ➔ o as x ➔ 00 ::: > F
U,

(x
) 

➔ O 

as x ➔ 0 0 , But f 1(x) ➔ a as x ➔ 0 0 . Therefore , for a gi ve n  € > O, n-

(3 .12) 

if x +nu is large enough. But in F n.., ( x) 

(3 . 14) 

u 2: . (a-x) /21t � x+rru 2: (x+a) /2 

Tbrefore , for (x+a) /2 -- and hence x -- la rge enoug h, 

< _€_ 

2n 2 
J -1 ll+u l u log � du 

( a-x) /2rr 

< 2:2 J u-½.og l i� l du = €/2 

- 00  

Lemma (3. lb ) :  fn -l ( x ) ➔ a as x ➔ 00 

1 l Then : Fn6 ( x )  ➔ ( 2  - ; )a 



Proof : 
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It suff i c e s  to show that the i nner integral of F ( x )  - - which we 
n6 

c all Gn ( x , Q) - - satisfies 

6 

( 3 . 15 ) 

For then 

( 3 . 16 ) 

( 3 . 1 7) Let 

as x ➔ co .  

as x -> oo .  

(a) 
T -l [e

a
-e x -rrCosQ Cos r rSinQ C l  _ G(x Q) an [ exp (x -rrCosQ) Sin( rrSinO ] - ' 

(b) f.' 
1

[ x -rrCosQ+logCos( nSinQ -¢) -J.ogCos¢J = F 
1

(x, Q ,¢) n - n-

(Note : Under the change of variable performed in (3 . 5) to yield F (x) 
n5 

and F (x) , 
n6 

� � x -rrCosQ+logCos( r rSi nG -¢) -logCos¢ 

. · . f 1 (( ) 
= F 1 (x, Q ,¢) . n - n .-

( 3 . 18 ) · (a) Lim G (x, Q
) 

= r r ( SinQ - ½
)

= Lim G (x/2 ,Q
) 

(3 . 1 9
) 

X ➔ ® X ➔ co 

(b
) 

Lim Fn �l (x ,Q ,¢
) 

= a (for each pair (Q ,¢ )
) 

X ➔ oo  

(c
) 

I Fn -l (x, Q ,¢
) I 

� M (unifo rmly ) ; ja l < M 



( 3 . 20) 

(3. 21 ) 

( b ) 
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1(/2 

[Fn -l (x, Q ,¢ ) -a] d¢ + J 
G ( x/2 , 0 ) 

[_F n-1 (x,Q , ¢ )  ..a J d¢ 

as x ➔ co 

(by ( 3 . 17 ) ( a ) ) 

G (x/2 , 0) J [Fn _1 (x, o,¢) -o:] d¢ ➔ o 

G(x, Q) 

as x ➔ oo 

(by (3. 17) (a) and ( 3. l7) (c ) )  

1(/2 

I.et G (x, O) = J [! n -l (x, Q  ,¢) - a] d¢ 
� 

G(x/2, g) 

. ' . G (x, Q) - (l -SinQ)a1f ➔ 0 a.s x ➔ oo <=( =¢> G (x, O) ➔ 0 
¾ � 

as x ➔ o o . But Fn _1 (x, o ,¢ ) = fn -l (; ) ➔ a as s ➔ cx, ( or as x ➔ o o) for each 

pair (o ,¢ ) . 

Therefore, for a given € > O, 

(3. 22 ) 

p roviding ; is la rge enough. But in G (x ,O
) 

-- where x and Q are fixed 

and ¢ ranges over [ G (x/2 , 0 )  , 1f/;i} , 

( 3 . 23 ) 
(as may be ve ri fied by a st raightforward calculation ) . 

There fo re , for x/2 + a - - e.nd he nce x -- large enoug h , 



( 3 . 24 ) 

( 3 . 25 )  
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n/2 

< € J d¢ = ( l-SinQ) ne: :S 2rte: 

n( SinQ- !) 
2 

( Since G (x/2 , 9) � n( SinO - ½ � 
Lim f { x) n 

X ➔ t0 

Theorem (3 . 2) : + as x --+  a 

Then : f (x) ➔ 1/4 + ( 3/4)t, n 
+ as x 4 a 

(A similar statement holds for x ➔ -a- . ) 

Proof : 

In this proof we take R = R (x)  = x - •a since the fact that x 
+ 

approaches a implies that eventually a <  x < a +  n and therefore 

R (x)  = x-a. We will also have recourse to equations ( 3 . 2 ) , ( 3 . 4) ,  

and ( 3 . 5 )  from which the functions F (x ) ; i = 1 , 2 ,  . . .  , 6 ,  G (x, G ) , 
ni n5 

G (x ,Q ) , and F 1 ( x , Q , ¢) shall again be selected. However , we now 
n6 n -

QED. 

replace every occurrence of n in the respe ctive integrands (except in 

the fraction n/2) by x-a, the value of R now under consideration , and 

+ 
study these functions as x approaches a .  

= L  
1=-1 

• • •  f (x) n 

and 



( 3 . 28)  

( 3 . 29 )  

that 

( 3 . 30) 

-1 
-1 j l+u j u log l-u du - ( a+x) /(x-a) 

-l 

J -1 l l+u /  u log y:;; du =  1/8 
- co  

By L ' Hospital ' s rule , we .find that 

+ as x ---+ a 

___L Tan-l (ea.-e -a) expGc-(x-a)CosQ:) Sin [(x-a) SinG] dQ 
1( l: j 2• I exp(2 [x- (x-a) Cos�:] ) - ( e +e ) exp [!c- (x-a) CosQ] Cos [(x-a)  SinQJ + l 2 a 1 -

➔ 1/8 + as x ➔ a 
+ as x ➔ a 

Age.in we use the fa.ct that l fn_1 (; ) / < M.  Thus we see (by inspection)  

+ as x ➔ a 

+ ( since the l:imits of integration become the same as x -4 a  ) .  

( 3 . 31) 

Furthermore , letting 
et -exp 0- ( x-a) CosQ] Cos [( x-a) SinO] 

L( t ,x , Q ) ,_. exp [x- (x-a) CosQ] Sin [(x-a.) Sing] 
we find that 
( 3 . 32 ) 

since its inner integral 

+ as x ---+  a 



( 3 . 33 ) 
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+ as x ➔ a 

by the boundedness of fn-l and by the fact that both limits of integration 

in G (x , G )  approach -n/2 as x approaches a+ . n5 
( Tan -1 [L( -a, x , G)] approaches -rr./2 a.s x a_pproa.che s a+ since L( -a ,x, G ) 

+ - + is  negative f'or x near a and thus approache s - 00 as x approache s a • ) 

F04
(x) = 1

2 f u-
1

f'n_1 [x+ (x-a )� log ) i�� J au 
2rc _1 

1 ➔ -
2-i J 

-l 

-1 l l+u l / u � log l-u du =  ( 3  8) � 
+ as x ➔ a 

(by I.ebesgue 1 s theorem of dominated convergence ) . 
+ We now prove that F (x )  approaches ( 3/8) �  as x approache s a n6 

by showing that 

( 3 . 35 ) 

Then 

( 3 . 36)  

Lemma ( 3 . 2 ) : 

Proof : 

1 J ➔ -
2rr2 

0 

!f: fn-1 (x) ➔ � 

+ as x ➔ a .  

+ as x ➔ a 

Then : G (x, Q )  ➔ [( rr.+G) /2] � n6 

By L 1 Hospital ' s rule 

( 3 . 37 )  L(a, x,G) ➔ -Tan 0/2 + as x - a 

+ as x ➔ a 

+ as x ➔ a 



( 3 . 3 8 ) 

( 3 . 3 9
) 

rt /
2 

[ (  1t+Q) /a j 
13 = J 

f3 
d

¢ 
-Q /2 

-22 -

+ a s x ➔ a 

-0 /2 

( 3 . 4 0
) · Gn

6
(x ,Q ) - [( rt+0 ) / 2 ] 13 = J 

1 
�n -l (x , Q , ¢ ) d¢ 

Tan - [L (a , x , Q)
] 

1( /2 

+ J (!n _1
(x ,Q , ¢ ) -13] d¢ 

-Q/2 

+ as x ➔ a 

(by (3 . 36
) 

and (3 , l 7 ) (b )
) 

Since Fn _1
(x, o ,¢) ; fn _

1
(;

) 
approaches j3 as x ( and the re£ore -�

) 

approaches a +  for each pair (Q ,¢ ) , we conclude tha t 

rr/2 rr/2 

(3. 42 ) J [Fn _l (x, o ,¢ ) -13] d¢ ➔J Od¢ = o 

-0/2 -Q/2 

as x ➔ a 

(by Lebesgue ' s theorem of dominated convergence) . 

( 3 . 44 )  

+ 

as x ➔ a . 

= 1/ 4 + ( 3/8 ) (3  + ( 3/8 ) (3  = 1/ 4 + ( 3/ 4 ) 13  QED .  
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For simplicity of notation in what follows , we let 

(b ) J w(; ) � ( x ,� ) d� = (Kw)  (x )  

l � I  > a 

Thus the operator K as define d in  ( 3 . 45 ) (b ) satisfie s  

( 3 .  46) ( a )  ( K0Y ) (x) = w (x ) 

(b )  ( t1w) (x )  = [K(r-
1
v)] (x) 

K is  a positive , additive , and bounded operator since 

( 3 .  47 ) 0 < J � (x,� ) d;  � p < 1 

l � I > a 

I.et f [h] (x)  be the nth approximation re sulting from the initial n 

approxilnation h (x) . Thus 

( 3. 48 )  ( a) , f ± h] ( x) = g (x)  + (IOl ) (x )  

we have 

(b ) f [h] (x) "" g (x) + (Kg) (x)  + { Ifh ) (x )  2 

Therefore , by a trivial induc tion , we obtain 

If M is  an upper bound on I h'(x)  / , then by ( 3 . 47 )  and ( 3 .  46) (b ) 

as n ➔ oo 

Therefore , we confine our attention to rf0] (x)  in applying the 

above theorems . 



Corollary (3 . 1) : (a )  

(b ) 

Qorolle.ry (3 . 2) : ( a )  

(b ) 
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f oj ( x )  ➔ o n 

f (x) ➔ 0 

as ! x i 

as l x l  

f [o] ( x )  ....,, 1 - (3/4) n 

n 

f (x)  ➔ 1 

➔ co ( for all n ) 

➔ Cl'>  

as X ➔c�:j 

as x ➔ {�:-} 

( ote : In each of the above corollaries ,  the second re sult follows wi thout 

computation from the theory since infinity and (!, a , n )  are points of 

continuity of the boundary values zero and unity given on the x-axis 

and Ci respectively . ) 

Proof : ( a.) 

I.et us label the common limit of rl0] (x) as X approaches c:�} 

as � .  n 

and by induction we obtain 

n - 0 

( 3 . 52 ) n-1 
1/4 L ( 3/4)ro = l- (3/4) n , n f O 

rn=o 

Theoreill (3_. 3) : f (x) - A/x2 as f x l  ➔ co (where A is  a certain _positive 

constant ) . 

Proof : 

By the Schwarz reflection principle , the Dirichlet problems stated 

1�or n1 and n1 are not only equivalent , they are the same . Thu s the cm.man 

soluti on ,  u {x , y) , of both problems may be developed in  a Fourier seri s outsi de 
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2 2 2 the circle of radius cr , a =a +n , centered at the origin . The Fourier 

serie s will be uniformly convergent outside compact sets whi ch properly 

contain the closure of' the above di sc . ( See Fig . ( 3. 1 ) . ) 

� +co 

Fig. (3 . 1) : 

We determine the behavior of f (x )  for large x by studying the 

behavior of the Fourier serie s of u (x, y)  along y = re for large x .  

( 3 . 53 ) u (x ,y) = u(r , Q) = L (cr/r )
n

[anCos�Q + bnSinnQ] 
n=o 

But the fact that u(x,y)  is odd in y tells us that u ( r , Q )  is  

odd in  Q . Therefore the cosine terms vani sh ; i. e . ,  a = O for all n and n 

( 3 . 54) u(x ,y) = L b  (cr/r ) n Sin rtQ 
n=l n 

But along y = l't' ,  



-26-

( 3 . 55 )  ( a )  SinQ = �Jr 

(b ) Sin2Q = 2 ( n/r ) [_i - ( n/r ) 2J 112 

( 3 . 56 )  u (x , n ) = b 1on/r 2 + O ( l/r 3 ) + L b
n

( o/r ) n Sin "n Q  
n=3 

and 

Lemma (3. 3a ) :  L.. b ( o/r )
n

Sin n g  = 0 ( 1/r 3 ) for r lar ge enough 
n=3 n 

Pr oof : 

( 3 . 57 )  

00 00 

I ) b
n

( cr/r )
n 

Sin "Yi G j � L l b  ( cr/r )
n

l 
n= 3 n=3 n 

But the fact that L b  ( a/r ) n Sin n. Q  i s  the Fourier ser i e s  of a 
n �3 

func tion of one vari able for e ach fixe d r > c implie s th at it s coe fi ci ent s  

appr oach zero as n appr oache s infi ni ty . Thus they are c ertainly bounde d 

as n approache s infinity . Thus if we let r = r1 > o ,  there exi s t s  

M > O such that 

( 3 . 59 )  

( 3 . 60)  

Let r ?_ 2r 1 > o .  

00 00 00 

L j bn( o/r )
n

l =  L l bn ( o/r1 )
n

( r1/r )
n

l S M ) ( r1/r )
n 

n=3 n=3 n=3 

� M(r1/r ) 3 L ( l/2 )
n = 2M ( r1/r } 3 = O ( l/r 3 ) QED . 

n=o 

QED . 



Proof' : 

s i nce 
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We need only show that b1 > 0 and this . fact fol.lows from 

21{ 

b = J:. J u( o , G ) SinQdQ l :rr 
00 

( 3 . 62 )  ( a )  G € ( 0 , rr ) ==P both u ( o ,G ) , SinG > 0 

(b )  G e  ( n ,21{ ) � both u( o , G ) , SinG < 0 

Inequality ( 3. 62 ) (  a) follows from the maximum and minimum principle s .  

For , since u (cr , G )  i s  not constant on the boundary of n1 , it is not 

constant in the interior of U£ - Therefore its value s in the inter· or 

must lie stri ctly between their maximum 001d minimum on the boundary. 

Therefore , except at the points { ±a , n ) , 

( 3 . 63 )  G € ( 0 , J{ ) 0 < u (x ,y) = u (o,G )  < 1 

Similarly, except at the points ( ±a, -n ) , 

( 3 . 64)  G € ( rr , 2n ) - -1 < u (x;y) = u ( o, G )  < 0 QED .  

Corollary (3 . 3) : f [o] {x )  = O (l/x2 ) for all n 
1,1 

Proof : 

more , 

(3 . 65 ) 

( 3 . 66 ) 

( . 67 ) 

The fact that f ( x)  N A/x2 implie s that f (x )  = 0 ( 1/x2 ) .  Further -

since 

OC) 

f ( x) = Lim f [o] (x) = L ( IC'1g)  (x) , g (x )  > 0 
n ➔ oo m=o 

0 $ :r£0] ( x )  � f ( x )  f'or all n 

for all n 
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In the next se tion we shall need a bound on w ( r  , G )  /ctr for 

large r . · Therefore we state and prove 

Theorem ( 3 .4 ) : 2 ou(r , G ) /or : 0 ( 1/r ) for large r .  

!:roof : 

( 3 . 68 )  

Fonnally, we obtain from ( 3 . 54) 

d'.l ( r ,G ) /or = - L (nb /<1 ) ( 0/r )
n+l

Sin n Q 
n=l n 

whi ch we justify by showing that the derived serie s i s  uniformly convergent 

for r � 2r1 > o. The proof of its uniform convergence will also prove that 

it i s  O (l/r2 ) .  

( 3 , 69 )  l (nbn/o ) ( o/r1)
n+l

l '.S_ Mn/r1 

( 3.70) 

- (by ( 3 . 58 ) ) 

00 00 

� M/r1 ) n (r1/r ) n+l $ Mr
1
/r2 ) n(1/2 ) n-l = 4Mr

1
/r2 = O (l/r2 ) 

n=l n=l 

Thus ( 3 . 69 )  and ( 3 . 70) :imply that o.i (r , G ) /ctr may be obtained by 

tenn-by-term differentiation of u (r , Q) for all r > a and that for al.l 

r > a 

' ( 3 . 71 )  
· 2 au(r , G) /or = 0(1/r ) .  
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IV . AEplication 

Consider the confonnal map of n1 onto an annulus centerea at 

the origin with outer rad ' us unity and inner radius P .  ( See Fig . ( 4 . 1 } . ) 

Our application will be the determination of P - - which i s  e ssentially 

the conformal modulu s of n1 -- ( actually the co�formal modu-u s  of n1 

is  defined as -2fi/log P) purely in terms of the value s f ( x )  of u ( x ,y) 

along y = n: .  

Fig. (4 . 1) :  

The slits C0 and c
1 

are carried into the circles centered at the 

origin of radii 1 and P re spectively . The boundary value s -1 and +l are 

then as sumed re spe ctively on the se cir cles. The Diri chlet problem for thi s  

annulus i s  then solved to yield 

( 4 . l ) j (r , Q ) = 2log r/log P - l 

If l (r , Q)  1 s  a harmonic conjugate of j ( r , Q ) , then 

( 4 .  2 )  

h iQ d s::. i al t t w ere z = re , an u s a re cons an . 

( 4 . 3 )  

Thus 

and its period P around the inner c ircle i s  
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P ; -41t/log P 

( 4 .. 5 )  P = exp ( -4tr/P ) 

Thus , to £ind P we must find P. But the period of a harmonic 

function is  a conformal invariant . Therefore , if v(x Jy)  i s  a harmonic 

conjugate of u (x ,y ) , then the period of v(x ,y )  as the point (x ,y )  per ­

f'orms a circuit - - say B -� a.bout c1 ( the preimage of the inner c ircle ) 

is P .  

Therefore , by the Cauchy-Riemann equations ,  

· ( 4 . 6 ) P = f ?Jv/os ds "" f  ru/an ds 

B 

where s i s  the parameter of arc length along B and o/on indi cate s di:f ere -

tation with respect to the outward normal along B .  

We take the circuit B t o  b e  a semicircle centered at the origi , 

based on the x-axis , a.nd surrounding only c1 (of the boundary co�onents 

of n1) . - - See Fig. ( 3 . 1 ) . 

( 4 .  7 )  · . .  f o.i/dn ds = J ?ti/cm d s  + J ru/cm. ds 

B ... � -+--

We then let the radius of B expand to inf'inity and show that 

( 4 . 8 )  J ou/dn ds ➔ 0 
r"\ 

The period ,  P ,  of v(x,y )  around c1 will then be 

( 4 . 9 )  P = J ru/?n ds = + J [ru(x ,O )  /ey] ds 
-oo 

Along the large semici cle /on = -ou/or (by tbe same reasoning 

as abov ) .  Therefore , by Theorem ( 3 . 4 ) , we have 
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rr rr 

( IL lO)  f 2;.t/ on  d s  = - J G  (R , G ) /or] · RdQ = J 0( 1/R2 ) · RdQ 

( 4 . 11 )  

0 0 0 

as R ➔ oo 

"cm (x , O )  /cry = Lim y-l [u (x , y) -u (x , O ) 
y --'J 0 

-1 = Lim y u ( x , y) 
y -+ 0 

(u ( x , O )  = O ,  as indicated in the remark following (2 .1 ) . ) 

Thus ,  in evaluating dU(x,o ) /oy, we need deal only with t e val e s  

o f  u (x , y) i n  the strip 

Fig . ( 4  • . 2 )_ : 

s = c ( x , y) I o  < y < 1( 1 . 

I rr 
I 

+l 

0 

Therefore , using ( 4 . ll )  and ( 2 . 3 )  ( a ) , we obtain 

( 4 . 12) 

( 4 . 13 ) 

00 

= ¼J 
-00 

00 

� -x -(� -x )  e +2+e 

00 00 

p = J [ou (x, o ) /ay] dx = J [¼ J f (E,) dE, ci dJ � -x - ( � -x) x e +2+e 
- 00 

00 00 

; J f ( � ) [J 
- 00  -00 

-00 

co 

� -x dx-(� -x) J � - ; J f ( � )  � e +2+e J 
- CIO  

P rnay be approximated by P = !f f o] (� ) �  
n 1'C n 

- 00 

5 

since rJ0J (� ) converge s uniformly to f ( � )  a.nd since r£0] (; ) = O ( l/J. 2 ) as 

shown in Corollary ( 3 . 3) . 
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To justify interchanging the order of integration in ( 4 . 13 ) , we 

need only show that f ( � ) belongs to L1( - oo ,oo ) . But this  follows fron 

the fact that f (� ) = 0 ( 1/� 2 ) for 1 � 1  > a - - as shown in Theorem ( 3 . 3 ) 

and that f (� ) = 1 for -a � � < a. 

( 4 . 14) 
-oo 
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V. n :  Derivation of the Integral Equation n 

!
kn -� 

.... -� 
\i+1 

b (m )  k (m ) b (m) 
( r (m) = • . ) 

3 
m a4 4 

k m-1 

k2 

kl 

k �O 
0 

Fig (5 . 1 ) : 

In passing from our particular c ase of � to n
n

, we c onfine our atten­

tion at first to the case of a domain whose boundary slits  along each line 

extend to infinity both on the left and on the right . Thus the complementary 

intervals along each line will be bounded. Such n will be termed ' 'bounded' '  n 

and once the re sult i s  proved for "bounded" n 'W"e will be able o extend ·t n 

to arbi tra.ry nn . 

Let the n+l lines containing the boundary slit s be labeled .em with 

corresponding equations y = k (m = 0, 1 , 2 ,  . • . , n ) . Let a - k - k 1 · m m m m-

(m ::  1 , 2 , . . . , n ) . Without loss of generality we may assume that k = 0 and 
0 
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We label the complement�rv intervals along R, as ( a  (m ) b (m ) )  · - .,  m q , q , 

q = 1 ,2 ,  . . . , - (m )  where f (m ) i s  the number o f  complementary intervals along 

N(m )  
( 5 . 1 )  Let ( a )  D = l) ( a  (m ) b (m) ) m q ' q_ 

g_::cl 

(o )  C = J, - D m m 

n 

( c )  C Ll 
m=o 

n 

( d ) D ::c 

u 
m=O 

Let the functions h (x ) , bounded and posse ssing at most a finite num­m 

ber of discontinuities ,  be prescribed on the components of C for each m. m 

Find the function u(x, y)  harmonic and bounded in the interior of f1 which n 

approaches  ( for each m )  the boundary values b (x )  at each point (x, k ) of m m 
Cm at which h (x )  is continuous. m 

Once again, we seek to determine the value s fm(x)  of u (x , y)  along Dm 

for each m ( though we will at times- find it convenient to let f (x )  denote 
ID 

the values of u(x, y)  aJ.ong all of .em ) and riote that we thus obtain the vtlues 

of u(x,y )  along C LJ D which divides the plane into n+2 regions in each of 

which u(x, y )  may be determined from its boundary values by the appropriate 

Po · s soo integral. Let us denote these regions by 

bThus C i s  the boundary of' n .  n 
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( a ) S = ( (x, y ) j y  < O }  
0 

( b )  Sm = ( (x , y) j km-l < y < km) , (m = 1, 2 , . . .  , n ) 

( c ) sn+l = ( (x, y ) j y  > kn } 

( Of course , i f  D = ¢, then we do not consider S . ) 
( 0 ) ( 0 ) 

where 

( 5 . 4 )  

. .  

n n+l 

u(x, y)  = 

n+l 

) u (x ,y )  , 
m=o m Y "f k m 

f (x)  , y = k m m 

( a )  u0 (x , y )  = � J r ( t ) a s 0 
2 2 ( s -x )  + y 

- 00 

u (x , y)  = 

y-k 
(b ) un+l (x, y ) n = 

rr 

un+l (x , y )  : 

( c ) u (x , y )  = 

(m = 1 , 2 , . . .  , n )  

0 

0:) 

J 
- 00 

0 

fn ( s  ) d;  
2 2 

( s -x ) + ( y-k ) n 

, y < 0 

' y > O 

, y > k n 

, y < k n 

2 f 



u (x, y )  = 
m 

0 

k l < y < k  m- m 

2 ) 

( Of course if D 
( 0 ) 

= ¢, then we do not consider u (x, y) . ) 
0 

n (n+l ) 

E4uivalent to formula (5.4 ) ( c )  is  the forJD.ula 

+ !.._ Sin �(y-k 
) J d d m-1 n: ( t  ) m m - � -x 

- OCI d 

f ( s )  ds m 

e m + 2Cos � (y-km_1 ) 

u(x, y) 0 

+ e 

, k 1< y < k 
n: ( . .  ) 

m- m - a g -x 

, y ,j. I} l , k ] m- m 

If P = (x, y) denote s an arbitrary point of Sm' � an arbitrary po · nt 

of lm' and �m the Poisson kernel of Sm' then we have 
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depending upon whether the boundary point Q lie s in P, 1 or in P, • ( We m-

include d above since the Pois son kernel of each strip, S ,  depends on t e ID ID 

strip I s thickne ss,  d . At time s ,  we will simply write. �"J = 'i'_ (P, Q) . ) m m m 

(5 .  7 )  

Thus (5 , 4 )  could be rewritten as 

( a )  u (P )  = 

0 

( c )  um (P )  = 

(m = 1 ,2 ,  . • •  , n )  

0 

, p ¥ s 
0 

p € S l n+ 

We now apply the mean value property to u (P )  at the point 

, p E S m 

, p I. s m 
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P = P = ( x , k ) in one of the intervals of D and average over the circ e m m m 

( 5 . 8 ) R = R ( x )  = 

min (x 

min ( x  

( o ) a , q 
b ( o ) _ X 

q , 

a ( n )  b (n )  
q , q 

- x , 

<\ )  , ID = 0 

d ) , m = n  n 

min ( x  - a (m ) b (m ) - x ,  d , ,d 1 ) ,  m = 1 , 2 ,  . . .  , n-l .  
q , q m m+ 

Along CR ( P
m

) ,  P ::;:  P
m

+ Re i G lie s e ither in S
m+l for G in [o, 1r] or in 

S for G in [ir , 21t] and R i s  the large s t  po s s ible radius under whi ch thi s 

c onditi on holds . ( At mo st four point s of CR ( P
m

) lie on a "boundary " l ine . ) 

Se e Fi gure s ( 5 . 2 )  - ( 5 . 4 ) . 

/ 
r 

Fig. (5 . 2 ) :  

/ /  S L-" 
/ 

·' n+ / 
/ / 1 � ' ·, (n) 

, S � 
\ · n 

Fig. (5 . 3 ) : 

;f 

/ 
; 

k n-2 

/ / 

:11 
'. \� (n }\ 

\ '3 \ 

I I 
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k m+l 

/ 
r 

s 1 m+l .m 

(m ) s ' 8i m\ k m-l 

(5 . 4 ) : 

Therefore the mean value property of u (P )  at P � P may be expre ssed m 

2rc rc 

1 I ' G  1 J · g 
(5 . 9 )  fm(x ) = -2� u( P + Rei ) dG = -2 u 1 ( P  + Rei ) dG ,. lil re m+ m 

0 

1 + -2n 

0 

211'. 

11'. 

Now by substituting the equations ( 5 , 7 )  in ( 5 . 9 )  and then interchanging 

the order of integration - as in Section II - we obtain 

where 

(5 , ll )  K (m ) (x, s )  = 
R 

1 J · g  l,O ( P + Rei , Q , d l ) dG 2n V m+l m 1n m+ 
0 

21t 
1 J · g  + - UJ ( P  +Rei 

1 Q , d  ) dG,  Q = ( s , km )  € £ 2rc l
J 

m m -'ln m m 
1[ 
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2-rr 

JJ( f �m ( Pm+ReiQ
, \.-1, dm ) dg, \.-1= ( s , :em-1 ) € ,em-1' 

n: 

C Li Cl , m = 0 

( 5 . 12 ) ( a ) r u C m m = n n-1 n _, 

C u C u cm+l ' 
m = 1 , 2 ,  . . .  , n-1 m-1 m 

D u Dl , m ;;; Q  
0 

( b )  6 = D u D , m ""  n n-1 n 

D u D u D , m = 1 , 2, • . .  ,n-l m-1 m m+l 

( c ) H ( t )  = The known values of u(x, y) in r m � m 

( d ) F ( g )  = The unknown value s of u(x,y )  in 6 m m 

If we let Kii.m ) (x, s )  = � (x, s )  for s the absci s sa of a point Q = ( s , y) 

(H ( s ) = h( !; ) )  
in r LJ 6 and let m under similar conditions,  we may then m m F ( s )  = f ( s )  m 
rewrite ( 5 . 10 )  as 



- 41 -

(5 . 13 ) f (x) = gR (x ) + J f( s )ISt(x, ! ; )ds, x E Dm , (m = 0,1,2, . . .  , n) 
6. 

where x E D means x is the abcissa of P = (x,k ) in D and G (m ) 
(x ) = � (x) m m m m R i, 

for x E D . 
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n :  Solvability of the Integral Equation by Iteration n 

Equation ( 5 . 1-3 ) is  solvable by iteration if there exi sts O < p < l 

such that 

( 6. 1 ) 0 < J � (x, s ) dg � :p < 1 , 
!:::. 

(The left hand inequality i s  trivial since � (x, � )  i s  posi � · ve for all x, £. ) 

We begin our proof of inequality (6 . 1 ) by taking note of the fact 

that for P in eJJ.Y of the domains S having Poisson kernel '-f =-- � (P, ) m m lT' m  

where 

(6 . 2 )  

i s  in the boundary, B ,  of S m m 

J l •�m ( P, Q) ds = l 

Blil 

Therefore, by (5 .ll )  and by Fubini 1 s theorem, (6 . 2 ) implies 

= l/2 + 1/2. = l 



A similar statemen �  holds for J �(x, f. ) df. or all ot er V '· u o-· m. . 

D. m 

We now pr o ve ine quality ( 6 . 1 )  for x in D
0 

( assum · ng D
0 

i s  not e pty ) . 

Since a compar i son of ( 5 . 7 ) ( e )  and ( 5 . 4 ) ( a )  show s that 

( 6 . 4 ) -y =- - 1 
2 2 , P = (x, y )  € S 

( s -x ) + Y O 

w e  c onc lude that 

that 

21C 
1 

I 
i Q  R 

2.,. � ( P  + Re , Q ) dQ = .::..._
2 I\ 0 0 0 

2rt' 

Si G dG 

re: ( f. -x -RCo sG )
2 

+ (RSinG )
2 

But it has been shown [ 1 , p. 314] that there exis ts O < a, < 1 su ch 

O < � J ( t -x') -l log l f, -x+R
\
ds < ct < 1 for all x e D 3 2 � -x-R - o 

rt' D 0 

R =- R(x) = min(x - .a (o) ,  o(o) 
- x) . 

q_ q 

If R = R (x ) = �, i . e. , � < min(x - ai0 )
, b�o

) 
- x ) for 

P1 = (x, O) e (a�0) , b�0)
), we then have x e (a�o

) 
+ '½_, b �o

) 
- �) and 

(6. 8) 1 J 1 s -x+<½_ 1 
-2 (s -x ) - log -- ds = 1 - -

2 
n 

f , -x -'½_ 
rt' D 0 
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-l l l+u / u log r:i:i du 

-1 j l +u /  7 
u log / l�u du =  �q < 1 

The last integral inequality in (6 . 8 )  follows from the fact tha� the 

interval Gb�o ) - x ) /<½.. ,  ( a��i - x ) /a;] lie s to the right of the point 

u = 1 ( since b�o ) - x > °':L )  and has constap.t length for al.l x .  Further­

more the fUnction u-1 log [ i:�j is  monotonically decreasing for u > 1 and 

conse quently its integral over intervals of constant length lying to the 

right of u = 1 decrease s as the intervaJ.s move further to the right . 

. x c:: ( aio )  + <½_ 1 b�o ) - <½.. )  ----=� 

(6 . 9 ) 

7 L<n a.q = 0 i.f R = R(x ) < <1i_ for x 



d thus (6 . 8 ) follows. 

- 45 -

(If  q = .r ( 1 ) , then a ( o ) = co . ) q+l 

Letting a '  = ma.x (�,a ) ,  we have a ' < l and thererore 
q_=l , 2 , • • •  , r ( l )  q 

( 6 . 10 ) 

(6 . 11 ) 

0 < 2.:.. 
2 re 

. . 
6. 

0 

D 
0 

Q. E • •  

If x is in D ,  we :prove the inequality (6 . l ) by a method s imilar �o n 

that used for x in D
0

• Therefore we now focus our attention on x in m' 

m = 1, 2 , • . •  , n-l. Without los s  of generality, we may pick a specific such 

m and assume d 1 = n: .  m+ 
By the comment following ( 6 . 3 ) ,  we may write 

+ :rr J 

1 < l - 21( 

( here b (m ) = - = if q = l ) . 
q-1. 
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(6 . 13 ) Let ( a ) (m) = a 

(b ) b (m)  = b 
q-1 

( c )  b:) == bl . 

By ( 6 . 12 ) ,  we need only show that 

(6 . 14 ) 

in order to prove ( 6 . 1 ) . 

' ( 6 . 15 ) 

we have the following four possibilities for R = R (x) when 

P = (x k ) € ( a (m )  b (m ) ) • 
m ' m q ' q 

(6 . 16 )  ( a ) 

(b ) 

a < x < a -> R == x-a - 2 (c ) 8J_ S x S b1 - re > R = re 

( d )  b2 � x � bl =----> R =- bl - x .  

We need not consider the possibility q < re and R = d since the proof m m 
of ( 6 . 1 )  for thi s case i s  similar to that of the case R = � - ]urthermore ,  

we may assume without loss of generality that P lie s in the left half of m 

( a,b1 ) and therefore it suffice s to consider only the possibilities 

(6 . 16 ) ( a) ,  (b ) . 

A comparison of ( 5 . 7 ) ( c )  and (5 . 4 ) ( c ) shows that 
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e s exp(x+RCosG) Sin(RSinQ J 
n ( c 5 - exp ( x+RCosG ) Cos (RSinG ) ) 2 + ( exp ( x+ CosG ) Sin (RS1nG ) )

2 

(6 . l8 )  

1 !
:JI'. 

T -1 [ (e a- e.0 ) exp ( x+RCosG ) Sin (RSinG) ar-. = 2 an b .., 
2tc O ex.p [2 (x+RCosci )] - ( e a+e ) exp (x+RCosG) Cos ( s · nG) +e a+b 

Let the argunient of the arc tangent in (6 . 18 )  be J (x,R, G ) . Of course 

J (x , R, G )  is non-negative since the :J;>oi sson kernel is non-negative . Tberef'ore , 

J( 

l 1· 1 in order to prove that 2 Tan- [J (x, r, G )} dG 
2:n: 

is posit · ve , it 

prove the s ame of J (x, R, G )  for Q in some subset of [o,�J having positive 

me asure . 

Under the conditions of ( 6 . 16 ) (b ) ,  we have 

( 6 . 19 )  J (  R n ) -J (  n ) - (e a-eb ) exp(x+nCosG ) Sin (nSinG) 
x , , .., - x, rc, .., - a b a-b exp [2(x.+rcCosG )] - ( e  +e )exp( x+rcCosG ) Cos ( ,rSinO ) +e 

( 6 . 20) G € [n/6 , 511:/6] y J (x, n: , G )  > 

a o a+b exp [2 (
8J_

+:rtCos G )] - (e  +e ) exp( 81_+nCosG ) Cos ( rrSinG ) + e 
= L(1r, G )  > 0 

For the c ase ( 6 . 16 ) ( a ) ,  we note that J ( x., R , G )  = J(x 1 x- <> , G ) w · c:.. - -
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indeterminate at x: = a. However,  using L '  Hospital. 1 s rule I we � nd that 

(6 . 21 ) J (x, x-a, G ) --> SinG/ (1 + CosQ ) = Tan Q/2 as x -7 a7 

Therefore , i we define 

( 6 . 22 )  

then g · ven E > 0 1 3 o (E ) > 0 3 a < X < a+o --===--> 

(6 . 23 )  

(6 . 24 )  

l Tan -l [J(x,x-a, o )] dG > 1
2 

211 

> 0 if E < rc/J+ 

Finally, if a +  5 � x � �2 , then 

J ( x , x-a, Q )  "' 

.:_r a b  :;-r 1, -
exp [2x (l+CosG ) -2aCos� - (e  +e ) exp 0 (l+CosG ) -aCos� Cos L(x-a ) SinG + 

Usi.ng the facts that for G in [o, rc/aj , Cos G is  non-negative 

Sin G and Cos Q satisfy the respective ine qualitie s  

( 6 . 25 ) ( a ) Sin G > 20/rc 

(b ) Cos G � l - 2G/� 

we find that 

(6 . 26 )  

a+b 
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( ea-eb ) exp [a+5 ( 1+CosG )] Sin 

Obviously the numerator of L
1

( G )  i s  positive .  To see that i.ts 

denominator ) L
2

( Q ) , is also positive, we must consider the separate case s 

(6 . 27 )  

( 6 . 28 ) 

(6 . 29 ) 

( a )  � = a + re 

(b ) a
2 

= 8i = ( a +  b
1

) /2 

> exp [2a+o (l+CosG [J • ( exp [Ir ( l+CosGj] -2 ) > 0 

( since G € ( 0, 7!/6 ) ) .  

exp [?a+5 ( l+CosG)] ( exp [ (b1 - ( a+5 ) ) (l+CosG i] -1 ) - e·a+b(exp � (l+Cos9 )] -1) > 

e a+b (exp [o (l+CosG I} -1) - ea+b(ex:p [5 (1+CosG [l -1) = O 

since 

( 6. 3 0 )  ( a )  a >  b 
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L e 

Q. E . D . 

We now o:rmuJ ate our result in a theorem . 

Theorem ( 6 . 1 ) : Le t  n be a 1 'bounded" parallel slit domain as de scribed in n 

the beginning of section V .  Let the boundary value s h ( s )  b e  prescribed m 

al one the boundary slits cm (m = 0 , 1 , 2 , . . .  , n )  of nn where s i s  the parsm.eter 

of linear arc length along C , Let h ( s )  be bounded on each c omponent o · C m m 

( for each m )  and let it :possess  at most a finite number of di scontinuities. 

Then the Dirichlet problem for n with the stated boundary value s can n 

be solved in a constructive way by determining the value s f ( s ) of its solu­
ID 

tion u(x, y )  along the complementary intervals , D ,  of the boundary sli� s , C , m m 

The value s f ( s )  are given as the unique bounded solution of the in egr� m 
equation (5 . l3 )  and are ootainable by iteration . 

Thus with the value s of u known sJ..l along of each of the line s £ m 

( .em ,: C
!n 

LJ Dm) ,  u(x, y )  may be determined in the remainder of nn by app1•0-

priate Poi s son integral formulas. 

Corollary (6. l ) : Let 

, y f k 1Il 

If ( x., y )  :. P in S ,  then let us define m 



- 51 -

( 6 . 32 ) ut ( P )  = 
V 

( P) = J f't ( s ) '0m (P, Q) ds 

�E Bm 

( For P i  Sm, u
tm

( P )  = o )  

Then : If  ( ft (x ) ) are the iterative approximati ons of f (x ) , ut (P 

c onverge s uniformly to u(P) . 

Proof : Since ft ( s )  converge s uniformly to f ( s )  - see the remar s follow · n 

( 1 . 10 ) - gi -ven any € > 0 we may choose t ( E:'. ) such that 

(6 . 33 ) 

• t > t ( € ) ==-> j u ( P ) -ut ( P) I < J / f ( g ) -ft ( f ) / �m(P1 Q) ds  

�EBm 

< € J If> m ( P, Q) ds = f:. ,  for aJ.l m. 

�EBm 
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·-rr .JL,,!Exten..,ions 

T1·eore . (7 . l ) : If n sati sfies  D = ¢, then we may allow .:o � � n 
( � )  ( n  _ _  ) 

unbounded and the Dirichlet problem for n will still be solva le by n 
iteration . 

Proof : As in the c a.se of "bounded" .n ,  we derive tne integral equatio ( 5 . 13 ) n 
and seek to prove that the inequality (6. 1 )  holds for all x i  

(m = 1, 2 ,  . . . , n-l ) . It is  immediately eVident that ( 6 . 1 )  holds for 

m = 2,  3 , . . .  , n -2 since the corre sponding D are all bounded. T' ere "o:re , w m 
neeu only prove (6 . 1 )  for x in D 1 

(n-1 ) 
Without loss of generali�y, we ma con-

fine our attention to one of these - say n1 - and assume it is unbounded on 

the left. We may also assume that a.1 ;:: it , k0 .= 0.  Let P1 =- (x ., rr ) in : be 

in the leftmo st interval of n1 • There x < b il ) . 

If / x-b�l) / � ;r ,  then R (x )  = / x-b�l ) I and J � (x, s ) ds i s  bounded below 

unity just as in section VI .  ( See ( 6 .  24 ) ,  ( 6 . 26 ) . ) Thus we . .  eeo. only consider 

the c ase ) x-b ( l )  I > re which implies R = :rt . ( See  Fig . (7 . l ) . 
0 

k2 

- 00 �=11'. 
" (1)  (l)° b l l b (l J  (l ) + 00 

� a2 � 0 1 2 

k =O 

Pi , . (7 . 1 ) : 



(o ce aGain we need not consider the possibility t a  2 

th refo e R = d2 for x far out enough - since the proof of (6. ) for x i .  

D1 is s ·  ilar in both cases. ) 

(7 . 1 ) 

..,_ _  
· 2rc 

(7 . 2 ) 

s ·nce D = ¢, we ave , for R = rr 
0 

= -

2rr 

2rc .--

By substitution in (5. 4 ) ( c ) , we find 

, 

l 
�

1(
2 

exp(g+x+rrCo sG )Sin ( rc-htSinG )d s 

� � +exp ( X-ht Co sQ ) Co s ( n+rrSinQ )] 
2 

+ �xp ( x+n :CosG ) Sin ( n+rrSin 

= 1/2 - 1/rr 

x € D x < b ( l )  j x - b ( l )  j > rc �> 1 ,  0 , 0 

( 7 . 3 ) 0 < J K
1
/x, s ) ds < 1/2 + ( l/2 - 1/rr ) < 1 , 

61 

Q . E . D . 

o }  
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Co ol_ru-y (7 . 1 ) : The methods of theorem (? . l )  c an  be exte ed to - .- o·...:1 - -

D i 

P-.:.·oo : 

e ither Dm-l or D +l i s  bounded but not i f  they a.re bot 

According to ti1e met. ods of theorem (7 . 1 ) , we let d 1 == ,. and i te ---
gra�e K (x, 5 ) over all o B 1 , obtaining the bound l - /1t . n m+ eref re , a 

ne cessary and sufficient condition for any extension of the se me ' ods o the 

c ase of nonempty D 1 is  that for all 1 1 large 1 1  x in D , m- m 

( 7 .  ) 
D m-1 

Now if D 1 i s  included in [a., I[! ,  it can be shown that m-

(b ) 

K (x, s ) ds 
1( 

1 

< 
2rc2 

J M( f3 , cx, , x, G )  dG 
0 

_1 [et +exp(x-J(CosG ) Cos ( rcSinG ) ] 
= Tan 

exp (x - rcCosG ) Sin (rcSinG) 

where 

Since M ( � ,a., x, G )  is nonnegative and approaches zero uni1orml.y as / x i 

approache s infinity, there is  a positive number ct. 1 such that for all G, 

[ x i > a. ' => J 
D m-1 

Now it is  easily verified that 
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(7 . 9 )  

end that N(�, x, G )  increases monotonica.l.ly rrom zero to nSin as x incre · ses 

rrrnr. � · nus in · n · ty to infinity. 

T 

- (7 . 10 )  

e�ore if  ! x i < a ' then ) - ' 

J K (x, s ) d� < ...!.._ n: - 2 
D m-1 

2;r 
0 

N(tt, � ' , G ) dQ < _!_ 
21? 

1( 

-:rSinQdG = /-re 
0 

f D 1 is unbounded, say on the right, and there ... ore co._tai .., m-
interval []3 ,oo ) 1 then 1 t can be shown that 

(7 . 11 ) 

as x approaches infinity. 

JN ( l3,x, 9 ) dG -->� -2 21( 
0 

1( 

-rcSinGdG = /rr 
0 

(A similar method yields the same results for Dm+l (un )boun ed. ) . E . D. 

We are now pre:pared to consider the solution of t e Diric et 0·01 

for arbitrary n - i . e . ,  to remove the boundednes s  re striction on D �or n ID 

or all m = 0, 1, 2 ,  . . .  , n .  We have thus fa.r delayed consi deration of t .e 

1 1unbounded1 1  n since the methods developed for provi.ng (6.1 ) will not work n 

or x "too large "  in one of the unbounded intervals of D . 

To be more precise, let us recall that we proved (6. l )  by provi 

(6 . 14 )  for each of the possible values of R stated in (6. 16 ) . 

- o ded i tervals of D will be either the le"""tmo:;t interva . 

ow t e n.-

:105 .., · nterval. of P , or both for one or more m. Supp se, for s me m, i: . e m 

r i  htmost interval of D i s  unbounded. (Therefore , b (m ) = oo . ) 
( . ) 

.:; i 
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section V , we may assume without loss of generality th :t d + =- -:::  (unle�s 

m = n, then dn+l = 0 ) . Then, if m / n,  and x in D sat · sfie s  m 

x - �( ) ) > rr > <\ii - - and i s  thus 1 1too large " - - R = R ( x )  = ;r , and the e.:.. t; 

s� c o  (6 . 14 ) as sume s the form 

(7 . 12 ) 

l 

2rc2 

1t 
-l

[ 

( ea -e b ) exp (x+JtCosG ) Sin(1tSinG) 
T� b 

0 
_ exp [g (x+J{CosQ )] (ea+e )exp(x+rcCosQ ) Cos (11SinG ) .,.. a-:-b e 

as in ( 6 .  18 ) • 

owever, the right side of (7 , 12 )  approache s zero as x approaches 

infinity, and therefore (6 . 14 ) i s  not satisried . 

I f'  dm < re ,  then x-a > dm implie s  R = R (x)  = d and thus d replaces m m 
rc in the above integrands . Nevertheless  the right side of (7 . 12 ) still 

approaches zero as x approache s inf'inity and therefore (6. 14 ) is  sti ro 

satisfie d. 

becomes 

If m = n, we as sume without los s of generality that d = rt and (7 . _2 )  n 

l 

= 
2rt2 

( a -x )/rr 

(b-x ) /ir 

u-l log l ���, du 

J ( " -x ) -1 1 f -x'T'1£ 1 d -
" log f -x--rc !; 
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O ce aga · •  , the i tegr als in (7  . 13 ) approach zero a�  7. &pp_ o� r . .., 

i f ' nity nnd therefore ( 6 . l4 ) i s  sati sfied for no unbound 

why our methods have thus far been W1able to yield a better ex�e�sio� •-

1 1 hounded 1 1  n tha.11 -r. at in corollary (7 . l ) . n 
It  will be noticed that as long as x is close enough �o a - i . " J  

le ss than re away, or -oound.edly f ex away - ( 6 . 14 ) i s  true . Thus E. new 

method of defining R may be deemed advi sable - since u.'>l.til now !le de ine 

R as a bounded function of the di stance Irom x to a . Howeve , even tl.:..ow ­

ing R = x - a for all x > a - - and hence allowing R to approach .:n1·ir_ ::_v­

along with the di stance - - rails to �rove (6 . 14 ) . 

Thus we use a ' 1limi ting" iteration method for the co  

tion of the Dirichlet _l?roblem for "unbounded" .n . AdmittedJ.y, i;. · s  met o 
n 

f'alls short of the elegance of the " ordinary" itera"tion method si_ ce i't 

requires the solution of an. infinite sequence of Dirichlet problems for 

1 1 • 0W1ded 1 1  n . It i s  the writer ' s  hope that a sati s  a.ctory ex-ten ion oi t e 
0 

8Note : If ( 6 . 12 ) had been written instead as 

l::,. m 

(i . e . ,  if the bounding were to be performed over the lower semicircle ) ,e 

would still find that 

ex ctly as in (7 . 12 ) and (7 . 13 ) .  
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" or - 1 e:ry" · 1,eration method to 1 1 unbounded 1 1  n will su .... eq_��n- 1 - l;1;; :c ..... : • . 

For til e moment, owever, we must be content with the "l e=a .:.c .. 

method which we no-w describe . 

Hit out loss of generality, we may assume that all the :iJ 

bounded - in r ac t  on both side s  - thus making all the C bouna.ed. m 
?1 E 

t ere are only �1 ite:y many> ( n+l \Cm, there exi sts a positive n 

such that j x I < a. for all x in C. 
0 

(7 . 14 )  ( a) 

(b ) 

( C )  

( d )  

( e )  

Let n = n - C ' where 

C '  

C 
ma, 

Let 

Let 

na. n a. 

= L,I cma. where 
m=o 

= {(x, km) / / x / > a. 

C C u c •  
CJ, 

D = 
u 

£ 
m 

m=o 

> 

CLO } 

(Thus D i s  the union of the complementary intervals of C . ) a. a 

erefore we have 

·oer a. 
0 

Ti eore11 ( 7 . 2 ) : Given the Dirichlet problem 'for n , which we may as .. e , n 

without loss of general�ty, has non-negative boundary value s , let t' ere oe 

formulated corre sponding Dirichlet problems ror all the domain n s-oeci ­
a, -

fying the same boundary value s on C as those given in the r>roblem for 
!1 

a: d the bou._1:1.dary value s zero along all of C '
Cl

. I t e solut · on of -r.h "' 

n · richlet problems - - solvable by iteration- - a.re denoted ua (x, y ) 

solu · on of the Dirichlet problem for n 
l 

u(x, y) , then 

i ' he 



(7 . 15 )  

P!-oo : 

( . 6 )  Let 
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u(x; y) = Lim. 

( ) 

(b ) 

0:. ➔ 00 

f (x ) be the value s  of u ( x, y ) ala g 
CL 

h (x) be the pre scribed value s of u (x, y }  eJ.o"" 
a, a. a. 

T erei ore , 

(7  · 7 )  h(x )  :;:; ha. (x ) I 
xe:C 

Therefore , given any J3 > CL , ex. :'::_ a implies t at tne f'U! c · o ., - 0 

u
a.

(Xi Y ) are all harmonic and uniformJ.y bounded in nn/3 · Furth · ore 

(7 . 18 )  

The se facts follow from the maximum and minimum principles o_ 

fu.>1ctions harmonic and bounded in nn.G by tbe following reasoning . 

( 7  . 19 )  Let ( a ) I = Inf (0, Inf h(x 0 
\ X€C / 

( 7 . 20 )  

(b ) S = Sup (0, SUp h(x )\ 
� XEC ') 

I <  Inf h (x )  < u (x, y)  < Sup h (x ) < S - CL - Cl.,  - a, 
XE C XE C 

a, a. 

by the maximum and minimum principle s , hence the first assert · o . 

(7 . ? ) 

Along any line P, J m 

( a ) a.1 s l x l s a.2
""""""= u (x,  ) = 0  and 

a,l m 

(b ) u .... (x, k  ) > 0 
u. m -

2 
(by the min um pr nciple ap9li • , o n � J m 

;,_ 



f 

( C )  

0 
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I x ! > a.2 ,� u (x, k ) = u {x , k )  ;:a 0 a._ m. 2 m 

C m 

- - - -
...A- - - - "\ 

0 
I 

( 
' -"---.,, 
r i I) 

-0-,2 -a;l f3 a,l 2 

Fi • · (7 . 2 ) : Picture o C
a. 

( for several a. )  along tm 

Therefore , since u {x ,y )  = u (x , y) along c, out u (x, y) > 
0:.2 0:.1 2 . -

u (x, y )  along C , the minimum principle tells us that u (x, ) < u (: , - ) 
a,l a.l al - a.Q 

in n
:na.

l Final.ly, the fact that nn� i s  included in nna.' im� ie tha� 

u� (x, y) < u (x, y)  in n �  as asserted · n  (7 . 9 ) , 
�l 

- a.2 n� 

Tbus for each � >  a. and a:ny sequence (a. . } such that a. > · I - 0 J 
j, and a.J. approac es  infinity ,  the corre sponding sequence (u (x, y) ) 

a.j 

tll 

monotone nondecreasing sequence of functions harmonic and � iro!"1llly bo ·�aed 

in nn� ·  Therefore , by Harnack 1 s theorem o f  monotone convergence , they o� ­

verge uniformly on compact subsets to a :function V(x, y)  harmonic an brr\L�ded 

The limit function V (x ,y )  is  independent of the seque ce  c' os �; : _ 

if  (a:.j } is  the sequence yielding V (x, y ) and (yj )  is  any other sequence { of 

the 1 1 r · crt 1 1  type ) , then their common refinement { er . }  yicla.s the 
J 

n,:: sequence {u (x, y ) ) which converges to W(x, y ) a.rmonic nd bo - e d  n a . 
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�n nnp' we cone ude 
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-- we q\1ence (u  (x , ) J of {u  ( :· , Y 
a,;, 

er .  
t at W(x, y )  = V(x, y) in nn� · 

However , now 1,l'ie f'W1ction V(x , y)  1 s  harmonic and bou.n -

1 � > a since -we ay order the se que ce (ct . }  by " s i ze p_ace ... " ,  a J 
astinD o f t  e 1 1ri6h .. 1 1  fin · te number of te . s J egin i-c "OOV 

iri n - · n V(x, y) harmonic and bounded in n a :ror any, and hen e Ilp , g > C, 

ere ore , V( x , y)  i s  harmonic and bounded thrrrughout n ; for no�, r: 
.e i., ere exi sts  same f:, > o.0 such that V(x, y)  is  not ha..no ic a-c ( i3 , �r:: ) 

fo some m. But, given any po sitive E ,  ,;e c an  show t at V ( '  , y )  i s  ha.r,_ z:.ic 

and bounded in nn ( �+€ ) and therefore at the point ( � , ) ,  

Finally, V(x J y ) has the same boundary value s as u( :{1 y) and he ce , b 

the uniquene ss princ · ple for functions harmonic and bouna.ed i::-i 

V(x, y ) ;; u(x., y)  in n . n 

we • a.ve 

. E.  

Thus the ( limiting } i ter at ion method may be  used to solve -che 

Dirichlet problem for any domain whose conformal map onto Punbounded' '  

is rn,m. 

Let X be a half -plane with a f ' nite number of inear s· i s n 

oved along (n-1 )  rays emanat · ng from a fixed point on the boun . .,, aight 

line . Wi tnout loss of generality, we may take this di . e..in to be 

half-pl ane ,  the bounding line to be the x- a..xi s  and the fixed po · 1: t · e 

the origin. Let the rays be labeled according to increasing argu!Jlen� 

i (m = 1, 2, . . •  , n-l ) and let C and D be t a.ken as before . We d no�e - � rn m m 

n- e ati ve and non-positive halves of' the x-axi s by .2 nd .e e rr� :: �::.-.- l C r:. 
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See 

.... ., 
(m = O., , 2 , . . .  , n ; O """ G < G1 < . . .  < G  1 < = n: ) o n- n 

\ 
Q "'  Q 

-<� • 

__,,.,A 
/'

' = 92 

----
Q = g = 0 0 

Fig . ( 7 . 3 ) : 

The function w =(k/�)log z (principle value ) ma9s Xn onto 

n consi st ·  ng of a strip 0£ width k (based on the x - ax · s )  roro w c � n 

(7 . .J / 

finite n'Lllllber of linear slits lying on (n-1 )  lines par� 1 -, to t e st •i I s 

baue s have been removed.  Thus the Dirichlet pr oblem for X ma - b solve ­n 

in a constructive way by solving the corre sponding Dirichlet pro lem ··or n 

If for some £ (m = 1 , 2, . • •  , n-l ) , D i s  unbounded ( i . e . ,  c ontain poi t m m 
ar J • tr ily close to or far from the or · 0in ) , then ( y corollary (7 . 1 )  ) the 

" ordi nctry" iteration method is  applic able as long as ei  t e · n or !) . 1 



� bounned .
9 

0 r 1i se, .e iri c et u roblem for X ma be so ve by t . e 

" imi tin 11 • ve ation method . 

9 
In Fi g . ( 7 . 3 )  the 

( bounde dne s s  ) 
of a par ti c ular i s  i ' · c ate d y 

unbounde dne s s  m 

the 
ab s en c e  ) 

o f  a dot a t  the extreme end ( s )  of the c or e pan � n[ 
:pre senc e 
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Ai:rol · cat ·  ans 

e armon c e-sure u ,  (x , y L  associated w · tn the bo a s .... :: 

o .. • t. .e c.om · n n , L. c.e.i. ed as the 11.: c V ....,  i c  in !: , CO ••  i:ii Ci., . al'.: 

hollilde d . .  n' o e bot:.ndary val es are 

·e of C . I�  v . (x, y )  · s  the harmonic conjugate o� 
J 

boundary s it of n , t' en the period p . or v . (x, y )  Jr J 
_'o s a c · reui 

(8 . 1 ) 

�out A i s  given by r 

f [ov . (x, y )/o� ds = 

E E r 

s the poi. t: (x,  y I pe_· -

where E is  any ( suf'ficiently smooth) curve de scribed in -r,he po s:�ive sense r 

surrounding only the boundary component A of C ane. o/ o in · cs.t r 

tiation with re spect to the outward pointing normal . 

Tl e periods p . of the functions v .  (x, y ) have several Jr J 
i t e theory 0.1. con ormal appi g, one a�  which i s  in t; e co t •-i;.ctio, . o-· a on-

formal map of given domain onto one of its  c anonical amain . 0-c " e. _ _,,�:ca-

· tion will be the determination of pjr purely in terms 

of the runction u . (x, y) on -r,he lines y = k . In thi s  m 

o:r the values :;:· . 'x ) 
. ,J 

u tor a narticw.ar clas s of the domains n ,· in the ne::CT. se t:on we ete_ -- r � n 

mine p .  for arbi ra:ry D . Jr  n 

et n be a parallel slit domain having a.t east on n 

slit and having �he property that the projections  o"' any two of · ts = .:.nite 

hound y slits ( on t e x- axis )  do not overlap either each otbe 

nite boundary component . Furthermore , we as sume t at t e e i - }.:: · :! • ; �- �e 



bO' d y component which extends along e ach i e .,o - a :..'r - .e le:t c. 

to a _ ·o t e r · g t . ( a > O .  See Fig. ( 8 . 1 ) . ) 

E 3 

We label the finite boundary sli ts  in order of the appe ence �� 

left to right of their projections on the x-axi s as 

(8 . 2 ) 
ID;:0 

-rbere · (  ) is the number of co plements..ry intervals along J, d · enc 

(m) -l is the umber of boundary slits along 2 m 

(8 . 3 ) J = l + L [N (m ) -1] 
m=o 

rep e e  t the in ini te boundary component . 

Si 1ce the projec tio s of the A do not overl p, it � s  �o � - e - - . o� r 
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- ixed r- - to -r. e as E a .... ectangle whose vertic r 

o uhe y- axi �� pass t 

w re}.)l-ce +l · y l . ) We will sub sequently see that i 

- OW Tr:c ho- · z  ntr E to recede to infinity. ( See p·g . ( �  . • . r 

l'he e re , we may rewr� ,:;e ( 8 . l ) as 

(8 . 4 ) p . r = I . - I . ( ) 
JT · J r+ 

w ere :for all x :ln ( a  J b ) r r 

0Q 

(8 . 5 )  I j r (x )  
- 00 

[ou . (xJ y) /ox dy = I .  
J Jr  

O-re will subsequently shaw tha-c I jr  is  cons,:;an,:; for x in ( ar , b:: )  .J 
Before proceeding, we recall several properties o �  � e �erio �jr 

which we shall have occasion to use : 

( 8 . 6 ( a ) J)jr = Prj 

J 

(b ) 
� 

0 J ( j  1 , 2, . . .  , .:r )  L_ pj r r=l 

Thus it suffice s to determine the pjr for j < JJ r < J . ere o -e: , 

the horizo tal sides of all E under consideration are e c of fi. i t  e� ::t r 

- -in £act t ey are a u  most of ength 2a. Thus , in letting the se si 

recede to infinity, we need only show that ou . (x, y ) /oy appro ch s zero i.Uli -

-"'ormly as y approac es  ·nf · nity whenever x is  in [- . , ci.J . ( •:""::'L ·} w:..l:.. � - .�o 

Drove the constancy o I . ( x )  for x in ( a , b ) . ) Jr  r r Al so, s · nc,! w �  nee only 
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c nsi J < J, we have _...,or and for all x such _at I x ! � a, 

f . ( x )  = 0 m 

ow as -:be bo izont al s i de s  of E recede to in in:. y, t!'le' e·;e::!­r 

... ly enter ema1n n S 0 

(n+l ) 

re spe ctively where the v61.·.1e s or u _ ( .:,:J · , 1 
,; 

2, . • .  , n )  the f'unc'tions fmj ( � ) a.re uni ormJ.y bounded -- in fact 

O < f , ( s )  < 1 by the axim and minimum principle s  -- upon , · f"-f ... e.:-_1; :;_a -- J -

tion of both side s  o (5 . ) (;) , we find that as y approache s in :.nity, 

(8 . 8 ) ( a ) ou . (x, y )/ctx = 0 (i/ l y / 3) 

(b ) ?m/x, y) /oy = O ( l/y2 ) 

By ( 8 . 8 ) , -we see t at (8 . 4 )  holds . We pr ove the c on .: 'f!.._y = 

- (x ) for x in (a , b ) by considering r r r J 
E ' r 

E '  r 

2. _ e ct gle both of w ose vertical side s  pas s  thro h he ga.31 ( a  , br ) 

are par� el to the y- axis . Sinc e E '  enclose s a re gion whose closure i r 

interior to n , e co c ude that n 

(8 . 9 )  ou/x, y) /oi� ds = 0 

E '  r 

Thus as 1:,he hor · zontal side s  o � .E ' re c e de to infinity, t � .:�i- ­
r 

t on ( . 9 ) re.'1lains true . But by ( 8 . 8 ) -, ) , tne c o  tributi on of t. r.> .a�·:. :!� -

t:-:l s i de s  ·�o th inte r in (8 . 9 ) approac�e s zero . Thus , �n t�e li--ni� ; 
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( 8 . 10 ) 

( 8 . 11 ) 

- ae 

- 00 

ere o: -e , ( 8 .  3 )  nold s . Thus , ::.. ... we i te ate bot s · de of ( � . 3 ) 

= 

127] - - we obt ain 

b r 

I . dx = (o -a ) I . = 
r r r Jr 

r 

r QO 

a - oo 
r 

[au .  (x, y) /ox] dxdy = 
- 00 a 

00 

- 00 

[u . (b , y) -
J r . ( � �' y )] ciy 

w here the in version of order of integration is just " fied by ( . 8) (a) . 

(8. 2 ) 

+ >  
m=l 

(b -a )I j = 
r r r 

0 

- 00 

[ uj (b ,y) -u . (a ,y)] dy r J r 

[ u . (b ,y ) -u . (a ,y)J dy + 5 iJ _ (b ,y ) -uJ_ (ar,y)] y 
J r J r 

km -l kn 

J3y (5. 4 ) ( a .) and (8. 7
) 

we obtain - -after twice inter han!'.r" o --cr.e. 

order of in�eg ration- -

(8 . 13
) 

- 00 

r. 
- 1 

lJ j (b ,y ) .. u . (a ,yu dy = -r J r � 

a 

-a 



s ·  ' la.rl - , 

( . 4) 
-a 

(5. 5) and (8. 5) we obtain --after twice in�erch g · nz �� oruer 

of ·nte at · o 

(8. 15) 

1 
1( 

- a 

e. 

( 8. 6 )  

l\. 

k 
m 

l ) 
1t (b - a ) -

r "' 

ru . (b , y) - . (a ,yf1 dy = Ll J r r :J 

a 

I - l 
j r - -1! (.,,-b--a--.-) 

- a  

r r - a  

[r (  l )  . ( U +f . ( 0] 1og l Tanh [( rt/2d ) ( s - a )] Ctnh [( r c/2d ) ( � - b ) I ds 
- J mJ m r m r 
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IX . 

� nm erte d �he re s ts of the previous ection to � 1· it e:t. y  . • , !: 

�- :_ ~ "c;:::...."ll J h ;i-:ev r ,  :_ : - · __ be more c onvenient for us to la cl Lr e ::_!'.1.:..te 

bound .,.. s -cs  .,,-e ssUil'.l.e n has at lee.st one - - in order of -:: _ _  eir n 
appear ..-:ce �r 

to m = n as 

(9 , 1 )  

1 r"t, o r · g t a.long their respective 

A . + [a . ,b . 
J J J , 

A;;ain Aj , where 

( 9 . 2 )  J = l + ) (m ) -J. 
m=a 

nes £ xn 

will repre sent the infinite boundary component (if  there i s  one an ,;.;e 

need only consider n .  for � Jr j < , r < .J (by 8 . 6 ) . As  before we set 

f . ( ) � u . (  ' J k )  and seek to determine pjr in �e s of the values _ 
J J m 

We do so by considerin first those A that lie on an 1 1 interio 1 1  
r i e 

(i . e . , a i e £ su h that m f OJ n )  and then those A 1 i£ SJ. YJ -hat m r 
on an "end:i i e . 

( . .  , J - - • 

If A _ies  on en " interior" line, we choose E as the bo· ·T!. �y - :· r r 

{ ( x, y )  I a < x < b , k < y < k } where k = ( r - r - - + m m-
(9. 1 ) . ) 

+ ) /2 . ( See 



( 9 . 3 ) P r = 

+ 

a r 

k 

a r 
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Y=K l m+ r 

I 

j 
b 

; r 

m 

[auj ( a , y ) /ox - au . ( b  , y ) /ox y . r J r 

�2. 

m 

!I, m-l 

By differ enti ating both side s  of ( 5 . 5 )  and by interc an -ing �­

order of' integr a-ci on, we find that 

( 9 . 4 )  

- 00 

b r 

e. r 

o . (x, k ) /oy - ou .  (x ,  +l ) /oi] ax = 
J J m 

-� . ( s ) - (�+l ) j ( UJ ( exp [( 2rr/dm+l ) ( � -ar )J -exp [( rr/ m,-l ( s - r )] ) d� 

( +exp [(2n/d +l ) (  s - a
)

] ) ( l+exp [(2;r/d + ) ( s -br )] ) 



t . .  e..t 

(9 . 5 ) 

k 

k m+_ 
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( o  . ( a , y ) /dx - au . ( o , y ) /ox ] dy  = r J r 

k m 

n+l 

[ dU . ( a  , y)/ox - o j (b , 1 /0: · _ ...... , J r . ; 

1 
26. J- f (:m-l )  . ( s ) l°;an- .2� ( " - ar ) Secrf-( s - ar ) -Tan�( � -or ) Sec � ( � -br ) d: + 

L :m m m m ..... 
- co 

+ 

2 � P J I  . ( s ) ictnh2; ( s -ar ) Sechd rr ( s -ar ) -Ctnh2d
11 

( s -br ) echd -r- _ ( !;. - Jr )-1 � 
m+ J L m+l m+_ m,l m+_ -

- 00 

00 

00 

- 00 

where 1 1 P" denote s t e Cauchy princ ipal value of t. e i te 0 7 , 
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�'j- •1.....:... � ::e � e  - :1.0we e::- , t · t for - "  ' , I= ,., ) , i/ U  - 0 n . .  

( ·, ;\ . [ a  _, ".....::-:.::. ce (a  ,k ) 1d (b , ) ru e  po::.�"t " - -· . .  

cc-- :i :-iu --

C )  r 

a r 

J 

,. . - - "· . 

, .I • 

of u .  (x, 
r m 

' )  J 

I fact, in a 

an be expan ed 

::n . (x )  = 

a pow 

-
.J 

se. · e o.. i- ::.:..t..:b. 

i s  a zer of e; :.e a -t .;he fir st order . Sir. e t' .e h rper·�olic co-

tange t has a po e o� o _  t e i st or er at the i.r.J.p e �e o s i� � 

ar of' � . ( g ) ne a.r / b r ) 
J a 

nul i i s t:-.i.e e1· :t c 

pole . hus,  for r /: j , we may remove the symbol "P" in (.,, . :; ) . {e may i:.: e:!l 

justi y interchan i.ng the order of · ntegration by �� 

lity of the respective inte ands . For r = j , the jus� · 

i t 

i 

g!• e.� - -

_ _  e 

same except in the case o "  those integrals whose Cauchy pr_ · c:::.pe- vu--e i -

ta.Ke • .  
0 1 · ne . 

T. us (9 . 4 )  .d ( 9 - 5 ) give the value of  pjr for A r 

Ii' .,. lies o. an "end" line -- say .en - - we determi: e p ,  _ · y lc�:.i!.:. . 

E be the bo c.a= a� (x, y) j a  < x < b , y > k }  . ( See  Fi . (9 . 2 ) . ) r r - - r - n 
· .e ju� · f::. ca  :..o:i 

0 

then t 

a., r . e 
two 

i terval o 

. it end :points along £ , ( - � � < 

t · o of t e ri ht s · c1es  o-:  ( 9  !, 



r 

E r 

b r 

of this choice follm. s : ram. the inequality ( 8 . B ) (b ) . 

( 9 . 6 )  p . = r 

00 

k n 

. ( a  , y )/ox-ouj (b , ) /ox dy + J r .� 

b r 

( :;- ) / . 7 . . .  x, . n  o '...J :::...· J .• 

By differentiating both sides  of ( 5 . 5 )  and (5 . 1 , ) (  ) , er. • · i1:::te:=- -

changing the order of integration, we fi d that 

(9 - 7 )  

b r 

a r 

l j [rn/ < ) - ( _ ) / S )] ( exp [(2n/dn )  ( 0 -ar )] - exp [(2�/ dn ) ( S -b )] ) a.s 

dn _ 00 
(l+exp [( 2:rc/dn ) ( t -ar )] ) (l+exp [(2tL/dn ) ( s -br ) ) 

00 

( 9 - ) 1ou . ( a  y ) /ax - ou . (b , y ) /c, � ay = � J r J r 

n 
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00 
f' 

, J 
-o u, (a , )/ �- u · 

r' )/o x dy + J [o uj (ar ,y )/ ·. :: -o u
j 

(b_ ,' )F� ct· · = 

- 00 

00 

, l p r 

T 
2 

+ 

- 00 

( a  - b  ) 

iC 

00 

• CIO 

k 

·, � (� -ar )Sechf-( s -a) -m ' 2� ( s -·o_ ) c-ec· :i: ( g -b!' J t 
.• n 

�uc :-::� -( s -ar )Sech+-( � -ar ) -Ctnh� ( g - .) 
n n n 

f' ( s ) d§ n 
( s -a }(f; - b  ) r r 

o �  cour se , the remarks following (9 . 5 ) apply e q  · '  0 wei::.. :. re . 

T us ( 9 . 7 )  2nd ( 9 . 8 )  g· ve the vtlue o ' .P for A on P, 
r r ::'O • C 

2 we obtain �orm as comple te ly analogo us to t o se · ( 9 . � ) - ( 9 . v ' . 0 
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B . Ep te.:.. , . A p ath . � o . 3 ; pp . 3 01-3 17 ( Oct. , 19.,j ) . 

_____ , • 'a!'� . .p_p • at . 14, o . 2 , pp . 25 - 32 ( July, 1956 ) . 

_____ , a.rt · � · r ere ti Equatio s ( cGraw Kill, Tew Yv ... ':.., 

1962 ) . 


