SOLUTION OF THE DIRICHLET P.UBLE. IN PAG-DEL SI OATHS by

HYMN L. ZUCKERBERG

Submitted in partial fulrillnont of the requirements for the degree of
Doctor: of Philosophy
A. the

Belfer Graduate Schocis of Science
YESHIVA UNIVERSITY
Now York
June, 1963

Copyright (C) June, 1963 by Hyam L. Zuckerberg

In this paper we develop a constructive method of solvine the Dirichlet problem for a plane domain, Ω_{n}, whose boundary consists of a finite number of linear slits distributed along n+l parallel lines, $l_{m}=\left\{(x, y) \mid y=k_{m}\right\}, \quad(m=0,1, \ldots, n)$. We call such a donain a parallel slit domain. Our proceaure will be an extension of that used by Epsteln for the case Ω_{0}, [Quart. Appl. Math. 6: No. 3, 301-317 (Oct., 1948)].

We seek the function $u(x, y)$, harmonic and bounded in Ω_{n}, havine the boundary values $h(x)$ on the boundary slits, c, of Ω_{n}. To aetermine $u(x, y)$, we first determine its values, $f(x)$, on the complementary intervals, D, of its boundary slits along each line. We thus obtain the values of $u(x, y)$ along the boundaries $C \bigcup D$, of $n+2$ regions - two half-planes and n strips. (See Fig. (1).) From these values, we may determine $u(x, y)$ in each such region by using the appropriate Poisson integral formula.

Fig. (1):

Our procedure for finding $f(x)$ is to apply the mean value property to $u(x, y)$ at each point $P_{m}=\left(x, k_{m}\right)$ in every complementary interval aione the line $y=k_{m}$ for all m. Then, if we average $u(x, y)$ over $C_{R}\left(P_{m}\right)$, the circle of radius R and center P_{m}, (see Fig. (1)), we obtain (for $\mathrm{m}=0,1$, \ldots, n) the system of integral equations:

$$
\begin{equation*}
f(x)=g_{R}(x)+\int_{\Delta_{\text {II }}} f(\xi) K_{R}(x, \xi) d \xi, \quad P_{\text {III }}=\left(x, k_{m}\right) \in D_{\text {I }} \tag{1}
\end{equation*}
$$

where
(2)
(a) $\quad g_{R}(x)=\int_{\Gamma_{m}} h(\xi) K_{R}(x, \xi) d \xi, \quad P_{m}=\left(x, k_{m}\right) \in D_{m}$
(b) $\quad \Gamma_{\text {m }}=C_{\text {m }}$-1 $\bigcup c_{\text {m }} \bigcup c_{\text {m }+1}$
(c) $\Delta_{m}=D_{m-1} \bigcup D_{m} \bigcup D_{m+1}$
(d) $\quad c_{m}=c \prod \ell_{m}$

$$
\left(e_{-1}=\varepsilon_{n+1}=\varnothing\right)
$$

(e) $D_{m}=D \bigcap e_{m}$

The kernel $K_{R}(x, \xi)$, given in terms of the Poisson kernels of the respective regions determined by $C \bigcup D$, is discontinuous at $\xi=x \pm R$. Thus the applicability of the Fredholm alternative to the integral equation (1) over the Banach space of functions continuous and bounded on D is questionable. However, by choosing R to be the largest radius such that the disc bounded by $C_{R}\left(P_{m}\right)$ contains no points of C and Iies between the lines ℓ_{m-1} and ℓ_{m+1}, (see Fig. (1)), we show that for all P_{m} in \mathbb{D}_{n}, there exists a positive p less than one such that

$$
\begin{equation*}
0<\int_{\Delta_{m}} K_{R}(x, \xi) d \xi \leq p<1 \tag{3}
\end{equation*}
$$

which is the main result of the paper.

Under this condition it is known the the integral equation (1) nas a unique, bounded solution obtainable by the method of successive approximations -- or iteration.

To prove the inequality (3), we temporarily assume that Ω_{n} is "bounded" -- i.e., that D_{m} is bounded for each m. We then extend our result to the case that one or more of the D_{m} is unbounded, but D_{m-1} or D_{m+1} is bounded.

In the case of arbitrary, unbounded D, we form a sequence of related Dirichlet problems for the domains $\Omega_{n \alpha}$ having as boundary along each line, l_{m}, the slits, C_{α}, from $\pm \alpha,(\alpha>0)$, to infinity in adaition to the boundary, c, of Ω_{n}. We assign $\Omega_{n \alpha}$ the same boundary values, $h(x)$, as those assigned Ω_{n} along C and the boundary values zero along C_{α}. If we dencte the solutions of these problems -- obtainable by iteration -- as $u_{c i}(x, y)$, then

$$
\begin{equation*}
u_{\alpha}(x, y) \longrightarrow u(x, y) \text { as } \alpha \longrightarrow \infty \tag{4}
\end{equation*}
$$

uniformly on compact subsets of Ω_{n}.
In the paper, we precede the discussion of the general case (described above) by an outline of Epstein's solution for the domain Ω_{0} followed by a treatment of the case of Ω_{1} with bounary $c_{0} \| c_{1}$ where $c_{0}=\{(x,-\pi) \mid-a \leq x \leq a\}$ and $C_{1}=\{(x, \pi) \mid-a \leq x \leq a\}$ are assimnoci the
respective bounäary values -1 and +1 . Several asymptotic propertacs of $f(x)$ and of its iterative approximations are developed, and the results obtained for this case of Ω are then applied towards the determination of its conivimal modulus.

We conclude by applying the results obtained for the general case towards the determination of the periods of the hamenic functions conjugate to the harmonic measures of the boundary slits of Ω_{n}.

TABLE OF CONIENTS

Abstract i
I. Introduction I
II. A Particular Case of Ω_{1} 6
III. Asymptotic Properties of $f_{n}(x)$ and of $f(x)$ 13
IV. Application 29
V. Ω_{n} : Derivation of the Integral Equation 33
VI. Ω_{n} : Solvability of the Integral Equation by Iteration 42
VII. Ω_{n} : Extensions 52
VIII. Applications I 64
IX. ADplications II 70
Bibliography 76

I. Introduction ${ }^{1}$

In this paper we develop a constructive method of solvirg the
Dirichlet problem for a plane domain Ω_{n} whose boundary consists of a finite number of linear sits distributed along $n+1$ parallel lines. We call such a domain a parallel slit domain. Our procedure will be an extension of that used by Epstein $[1, p$. 310] for slits distributed along a single line. The object is to reduce the problem to the solution of a certain integral equation and to prove that the solution of this integral equation is obtainable by the method of successive approximations. We now briefly describe this procedure.

Fig. (1.1):
Let n slits be given which lie on the x-axis and extend to infinity both on the left and on the right. Iet the portion of the x-axis consisting of these slits be denoted by C and the remainder by D (consisting of the n intervals $\left.\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$. Let Ω_{0} be the domain bounded by C. The Dirichlet problem for Ω_{0} is:

Given: The function $h(x)$ defined on C such that it is bounded on each slit and continuous except perhaps at a finite number of points.

Find: The function $u(x, y)$, harmonic and bounded in Ω_{0}, which approaches $h(x)$ at every point $(x, 0)$ of continuity of $h(x)$ alon c.
(The case of n slits lying along a different line or containec in a finite interval, or having distinct boundary values prescribed on their respective upper and lower edges, may be reduced to consideration of the above problem -- see $[1, \mathrm{pp} .310,317]$. Furthermore, the

[^0]existence and uniqueness of $u(x, y)$-- both here ana in subsequent sections -- is assured by Nevanlinna [4, p. 22].)

Epstein's method of solving this problem is to determine the values $u(x, 0)$ of the function $u(x, y)$ in the intervals $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ of D. Then the values of $u(x, y)$ would be known on the entire $x-a x i s$, and for points (x, y) not on the x-axis, they could be determined by the Poisson integral formula:

$$
\begin{equation*}
u(x, y)=\frac{|y|}{\pi} \int_{-\infty}^{\infty} \frac{u\langle\xi, 0) d \xi}{(\xi-x)^{2}+y^{2}} \tag{1.1}
\end{equation*}
$$

$$
\text { Letting } u(x, 0)=\begin{align*}
& h(x),(x, 0) \in C \tag{1.2}\\
& f(x),(x, 0) \in D
\end{align*}
$$

we may rewrite (1.1) as

$$
\begin{equation*}
u(x, y)=\frac{|y|}{\pi} \int_{C} \frac{h(\xi) d \xi}{(\xi-x)^{2}+y^{2}}+\frac{|y|}{\pi} \int_{D} \frac{\rho(\xi) d \xi}{(\xi-x)^{2}+y^{2}} \tag{1.3}
\end{equation*}
$$

To determine the values $f(x)$ at the points $(x, 0)$ in D, we temporarily assume $(x, 0)$ to be fixed in one of the intervals -- say $\left(a_{K}, b_{K}\right)$-- of D and then apply the mean value property to $u(x, y)$ at the point $(x, 0)$. This will lead us to an integral equation which we may solve for $f(x)$.

Fig. (1.2):
(1.4) $\operatorname{Let}(a) \quad P=(x, 0)$
(b) $R=R(x)=\min \left(x-a_{k}, b_{4}-x\right)$
(c) $C_{R}(P)=$ The circle of radius R centered at F.

By the evenness of $u(x, y)$ in $y--a s$ seen in (1.1) -- the mean
value property of $u(x, y)$ at P may be expressed (by usint poler coorainates with origin at $(x, 0))$ es

$$
\begin{align*}
f(x)= & \frac{1}{\pi} \int_{0}^{\pi} u(x+R \operatorname{Cos} \theta, R \operatorname{Sin} \theta) d \theta= \tag{1.5}\\
& \frac{1}{\pi} \int_{0}^{\pi} \frac{R \operatorname{Sin} \theta}{\pi}\left[\int_{C} \frac{h(\xi) d \xi}{(\xi-x-R \operatorname{Cos} \theta)^{2}+(R \operatorname{Sin} \theta)^{2}}\right] d \theta= \\
& +\frac{1}{\pi} \int_{0}^{\pi} \frac{R \operatorname{Sin} \theta}{\pi}\left[\int_{D} \frac{f(\xi) d \xi}{(\xi-x-R \operatorname{Cos} \theta)^{2}+(R \operatorname{Sin} \theta)^{2}}\right] d \theta= \\
= & \int_{C} h(\xi)\left[\frac{R}{\pi^{2}} \int_{0}^{\pi} \frac{\operatorname{Sin} \theta d \theta}{(\xi-x-R \operatorname{Cos} \theta)^{2}+(R \operatorname{Sin} \theta)^{2}}\right] \\
& +\int_{D} f(\xi)\left[\frac{R}{\pi^{2}} \int_{0}^{\pi} \frac{\operatorname{Sin} \theta d \theta}{(\xi-x-R \operatorname{Cos} \theta)^{2}+(R \operatorname{Sin} \theta)^{2}}\right] d \xi
\end{align*}
$$

where the inversion of order of integration may be justified by Fubinf's theorem (which will serve as the justification for a number of such future inversions).

$$
\begin{equation*}
\text { Let } \frac{R}{\pi^{2}} \int_{0}^{\pi} \frac{\operatorname{Sin} \theta d \theta}{(\xi-x-R \operatorname{Cos} \theta)^{2}+(R \operatorname{Sin} \theta)^{2}}=K_{R}(x, \xi) \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\therefore K_{R}(x, \xi)=\left[\pi^{2}(\xi-x)\right]^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| \tag{1.7}
\end{equation*}
$$

(1.8) Let $\int_{C} h(\xi) k_{R}(x, \xi) d \xi=g_{R}(x)$

Thus $g_{R}(x)$ is a known function, and the mean value property, (1.5), yields the following integral equation for $f(x)$:

$$
\begin{equation*}
f(x)=g_{R}(x)+\int_{D} f(\xi) K_{R}(x, \xi) d \xi \tag{1.9}
\end{equation*}
$$

Since $K_{R}(x, \xi)$ is discontinuous at $\xi=x \pm R$, it is not at all clear that the integral operator generated by $K_{R}(x, \xi)$ is completely continuous as an operator on the Banach space of functions continuous and bounded on D. Thus, the applicability of the Fredholm alternative to (1.9) over this space is questionable. Furthermore, even if $K_{R}(x, \xi)$ beloneed to $L^{2}(D \times D)$, the Freaholm alternative would remain inapplicable inour case since the solution of (1.9) might merely be a solution in norm, not necessarily satisfying (1.9) pointwise.

Nevertheless, the existence theory of the Dirichlet problem
tells us that (1.9) possesses a bounded solution and it has been shown $[1, p .305]$ that this solution is unique and may be obtained by the method of successive approximations providing that there exists $0<p<1$ such that for all ($x, 0$) in D
$0<\int_{D} K_{R}(x, \xi) d \xi \leq p<1$.
2
In fact, if the integral equation (1.9) were considered independently of any potential-theoretic motivation and if $K_{R}(x, \xi)$ were any singular kernel whose absolute value satisfied the inequality (1.10), the same conclusion would hold.

[^1]Since the inequality (1.10) was proved for $\kappa_{R}(x, \xi)=$ $\left[\pi^{2}(\xi-x)\right]^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right|,[1$, p. 324$]$, It was concluded thet given any measurable $f_{0}(x)$ bounded on D, the sequence $\left\{f_{n}(x)\right\}$ definea recursively for ($x, 0$) in D by

$$
\begin{equation*}
f_{n_{2}}(x)=E_{R}(x)+\int_{D} f_{n-1}(\xi) K_{R}(x, \xi) d \xi \tag{1.11}
\end{equation*}
$$

converges uniformly to the unique, bounded function $f(x)$ (1.9).
Before proceeaing to Ω_{n}, we note that $K_{R}(x, \xi)$ is iritimately related to the Poisson kernel of the domains bounaed by $C \bigcup D$. In fact, its integrand (here) is simply $1 / \pi$ times the Poisson kernel evailuated at the pair of points $(x+R \operatorname{Cos} \theta, R \operatorname{Sin} \theta),(\xi, 0)$ [or $P+\operatorname{Re}^{i \theta}, Q$, where $\left.Q=(\xi, 0)\right]$ respectively. If the integration: had been extendea over the entire circle, the factor of $1 / \pi$ wouli have been placed by $1 / 2 \pi$.

Thus, if 8 denotes the Poisson kernel, then

$$
\begin{equation*}
K_{R}(x, \xi)=K_{R}(P, Q)=\frac{1}{2 \pi} \int_{0}^{2 \pi}{ }^{2} \rho\left(P+R e^{i \theta}, Q\right) d \theta \tag{1.12}
\end{equation*}
$$

Thus it will be the goal of our extension to determine the equivalent kernel, $K_{R}(x, \xi)$, and corresponaing integral equation, (1.9), for Ω_{n} and to prove that $K_{R}(x, \xi)$ satisilies the inequality (1.20). Then, as in the case of Ω_{0}, it will follow that the integral equation is solvable by the method of successive approximations -- or iteration.

We begin by considering a particular case of Ω_{I} and an apmication of this case. We then proceed to a slightily restricteă version of Ω_{n} which we generalize to arbitraxy Ω_{n}, and we finally treat of several anniestions.

II. A Particular Case of Ω_{1}.

Tig. (2.1):

Let Ω_{I} be the domain consisting of tine entire plane minus two parallel line segments each of length $\mathrm{za}(a>0)$ with the values ± 1 prescribed on the upper and lower segments respectively. Suppose further that these segments are so situated that, were their respentive end points to be connected by straight line segments, the resulting quadrilateral would be a rectangle. (See Fig. (2.1).) We shaml solve the Dirichlet probler for this domain with the given boundary velues.

We first note that without loss of generality we may consider these lower and upper line sements to be given respectively as
(a) $c_{0}=\{(x,-\pi) \cdot \mid-a \leq x \leq a\}$
(b) $C_{1}=\{(x, \pi) \quad \mid-a \leq x \leq a\}$

The symmetry of the problem, together with the Schwacz reflection principle, tells us that the harmonic function, $u(x, y)$, we, seek must have the value zero all along the x-axis; that is, $u(x, 0)=0$. Therefore, we may replace the above problen by the problem in which $C_{0}^{\prime}=$ the x-axis, $C_{1}^{\prime}=C_{1}$ and the boundary values are zero on C_{0}^{\prime} and unity on C_{1}^{\prime} and Ω_{1} is replaced by Ω_{1}^{\prime} as in Fig. (2.2).

Fig. (2.2):

As in Section I, we note that the problem would be solve a if we could determine the values $f(x)$ of $u(x, y)$ along the rest of the line $y=\pi$ (ie., on D_{1}^{\prime}). For simplicity of notation, we will at times use $\dot{I}(x)$ to denote the value of $u(x, y)$ along all of $y=\pi\left(G_{1}^{\prime} \cup D_{1}^{\prime}\right)$.
(2.2) $u(x, y)=\left\{\begin{array}{cl}u_{0}(x, y)+u_{1}(x, y), & y \neq 0, \pi \\ 0, & y=0 \\ f(x), & y=\pi\end{array}\right.$
where
(a) $u_{0}(x, y)=\frac{1}{\pi} e^{x} \operatorname{Sin} y \int_{-\infty}^{\infty} \frac{f(\xi) e^{\xi} d \xi}{\left(e^{\xi}+e^{x} \operatorname{Cosy}\right)^{2}+\left(e^{x} \operatorname{Sin} y\right)^{2}}$ $=\frac{\text { Sin }}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{e^{\xi-x}+2 \cos y+e^{-(\xi-x)}}, \quad 0<y<\pi$

$$
u_{0}(x, y)=0,
$$

$$
y \notin[0, \pi]
$$

(b) $u_{1}(x, y)=\frac{y-\pi}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{(\xi,-x)^{2}+(y-\pi)^{2}}, \quad y>\pi$

$$
u_{1}(x, y)=0, \quad y<\pi
$$

Let us label the x-axis z_{0} and the line $y=\pi$ as z_{1}. Then b_{o} and i_{I} divide the upper half-plane into two regions S_{0} and S_{I} respectively where S_{0} is the $\operatorname{strip}[(x, y) \mid 0<y<\pi\}$ and S_{1} is the half-plane $(\{x, y) \mid y>\pi\}$. These two regions have the respective Poisson kernels \mathscr{O}_{0} and \mathscr{O}_{1}, each of which depends on the points $P^{\prime}=(x, y)$ in the interior and $Q=\binom{(\xi, 0)}{(\xi, \pi)}{ }^{3}$ on the boundary of their respective domains. Let $Q_{0}=(\xi, 0), Q_{1}=(\xi, \pi)$; therefore
(2.4)
(a) $\mathcal{S}_{1}=\mathcal{S}_{1}\left(P^{\prime}, Q_{1}\right)$
(b) $\tilde{s}_{0}=\left\{\begin{array}{l}y_{0}\left(P^{\prime}, Q_{0}\right) \\ \dot{s}_{0}\left(P^{\prime}, Q_{1}\right)\end{array}\right.$
depending upon whether the boundary point Q lies in z_{0} or in 2_{2}.
Thus (2.3) could be rewritten as

$$
\begin{align*}
\text { (a) } \begin{aligned}
u_{0}\left(P^{\prime}\right) & =\int_{Q_{0} \in \ell_{0}} 0.8_{0}\left(P^{\prime}, Q_{0}\right) d \xi+\int_{Q_{1} \in \varepsilon_{1}} f(\xi) \wp_{0}\left(F^{\prime}, Q_{1}\right) d \xi_{1} \\
& =\int_{Q_{1} \in \varepsilon_{1}} f(\xi) 8_{0}\left(P^{\prime}, Q_{1}\right) d \xi,
\end{aligned} & P^{\prime} \in S_{0} \tag{2.5}\\
u_{0}\left(P^{\prime}\right) & =0,
\end{align*} \quad P^{\prime} \neq S_{0} .
$$

3.e., $Q=(\xi, 0)$ or $Q=(\xi, \pi)$. We will at times use this type of notation to infer that either one or both of the indicated possibilities may hold.

We now apply the mean value property to $u\left(P^{\prime}\right)$ at the point
$P^{\prime}=P_{I}=(x, \pi)$ in one of the intervals - say the right interval -- of
D_{1}^{\prime} and average over the circle $C_{R}\left(F_{I}\right)$ where
(2.6) $R=R(x)=\min (x-a, \pi)$.
(See Figs. (2.3).)

Fig. (2.3):
Therefore, along $C_{R}\left(P_{I}\right), P^{\prime}=P_{I}+R e^{i \theta}$ and the mean value property of $u\left(P^{\prime}\right)$ at P_{1} may be expressed as
(2.7) $I(x)=\frac{1}{2 \pi} \int_{0}^{\pi} u\left(P_{1}+R e^{i \theta}\right) d \theta$
$=\frac{1}{2 \pi} \int_{0}^{\pi} u_{1}\left(P_{1}+R e^{i \theta}\right) d \theta+\frac{1}{2 \pi} \int_{\pi}^{2 \pi} u_{0}\left(P_{1}+R e^{i \theta}\right) d \theta$
$=\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{l_{1}} f(\xi) \mathcal{Q}_{1}\left(P_{1}+R e^{i \theta}, Q_{1}\right) d \xi\right] d \theta$
$+\frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left[\int_{l_{1}} f(\xi) \psi_{0}\left(P_{1}+R e^{i \theta}, Q_{1}\right) d \xi\right] d \theta$
$=\int_{l_{1}} f(\xi)\left[\frac{1}{2 \pi} \int_{0}^{\pi} \rho_{1}\left(P_{1}+R e^{i \theta}, Q_{1}\right) d \theta\right]$

$$
+\int_{\ell_{1}} f(\xi)\left[\frac{1}{2 \pi} \int_{\pi}^{2 \pi} \rho_{0}\left(P_{1}+R e^{i \theta}, Q_{1}\right) d \theta\right] d \xi
$$

$$
\begin{equation*}
\text { Let } K_{R}(x, \xi)=\frac{1}{2 \pi} \int_{0}^{\pi} \wp_{1}\left(P_{1}+R e^{i \theta}, Q_{1}\right) d \theta+\frac{1}{2 \pi} \int_{\pi}^{2 \pi} 8_{0}\left(P_{1}+R e^{i \theta}, Q_{1}\right) d \theta \tag{2.8}
\end{equation*}
$$

(2.9) $\quad \therefore \tilde{I}(x)=\sigma_{R}(x)+\int_{|\xi|>a} f(\xi) K_{R}(x, \xi) d \xi$
where
(2.10)

$$
E_{R}(x)=\int_{-a}^{a} K_{R}(x, \xi) d \xi
$$

To prove the solvability of (2.9) by iteration, we must first show that there exists $0<p<1$ such that for $2.11 \times$ satisfying $|x|>a$
(2.21) $0<\int_{|\xi|>a} K_{R}(x, \xi) d \xi \leq p<1$
(Since $K_{R}(x, \xi)$ is positive, the left hem inequality is trivial.)
Without loss of generality, we may assume $x>$ a. By (1.7) and.
Fubini's theorem, we have
(2.12) $\int_{|\xi|>a} K_{R}(x, \xi) d \xi=\frac{1}{2 \pi^{2}} \int_{|\xi|>a}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi$

$$
+\int_{\pi}^{2 \pi}\left[\int_{|\xi|>a} \rho_{0}\left(P_{2}+R e^{i \theta}, Q_{1}\right) d \xi\right] d \theta
$$

$$
\leq \frac{1}{2 \pi^{2}} \int_{|\xi|>2}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi+\int_{\pi}^{2 \pi}\left[\int_{-\infty}^{\infty} p_{0}\left(P_{1}+R e^{i \theta}, Q_{1}\right) \dot{\xi}\right] d \theta
$$

$$
=\frac{1}{2 \pi^{2}} \int_{|\xi|>a}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi+1 / 2-R(x) / \pi^{2}
$$

as may be seen by straightforward computation.
Let $a<x<a+\pi$. Therefore, $R(x)=x-a$, and
(2.13) $\frac{1}{2 \pi^{2}} \int_{|\xi|>a}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi=\frac{1}{2 \pi^{2}} \int_{|x+R u|>a} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u$

$$
=\frac{1}{2}-\frac{1}{2 \pi^{2}} \int_{-(a+x) /(x-a)}^{-1} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u \leq
$$

$$
\leq \frac{1}{2}-\frac{1}{2 \pi^{2}} \int_{-(1+2 a / \pi)}^{-1} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u
$$

(2.14)

$$
\therefore a<x<a+\pi \Longrightarrow
$$

$$
\int_{|\xi|>a} K_{R}(x, \xi) d \xi \leq 1-(x-a) / \pi^{2}-\frac{1}{2 \pi^{2}} \int_{-(1+2 a / \pi)}^{-1} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u
$$

$$
\leq 1-\frac{1}{2 \pi^{2}} \int_{-(1+2 a / \pi)}^{-1} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u<1
$$

${ }^{4}$ It has been shown $[1, p .314]$ without computation that
$\frac{1}{\pi^{2}} \int_{-\infty}^{\infty}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi=\frac{1}{\pi^{2}} \int_{-\infty}^{\infty} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u=1$
Alternatively, the following computational argument may be used:
$\frac{1}{\pi^{2}} \int_{-\infty}^{\infty} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u=\frac{4}{\pi^{2}} \int_{0}^{1} u^{-1} \log \left(\frac{1+u}{1-u}\right) d u=\frac{8}{\pi^{2}} \int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{u^{2 n}}{2 n+1}\right) d u$.
$=\frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \int_{0}^{1} \frac{u^{2 n}}{2 n+1} d u=\frac{8}{\pi^{2}} \sum_{n=0}^{\infty}(2 n+1)^{-2}=\left(8 / \pi^{2}\right) \cdot\left(\pi^{2} / 8\right)=1$

$$
\begin{aligned}
& \text { (2.15) } \begin{array}{l}
x>a+\pi \Rightarrow R(x)=\pi \Rightarrow \\
\int_{|\xi|>a} K_{R}(x, \xi) d \xi \leq \frac{1}{2 \pi^{2}} \int_{-\infty}^{\infty}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi+1 / 2-R(x) / \pi^{2} \\
=1-1 / \pi<1 .
\end{array}
\end{aligned}
$$

III. Asymptotic Behavior of $f_{n}(x)$ and of $f(x)$

In this section we shall study the behavior of $f_{n}(x)$ at intinity and at ± 2 in terms of the behavior of $f_{n-1}(x)$ at these points. We will cilso show that

$$
\begin{equation*}
\hat{I}(x) \sim A / x^{2} \quad \text { as } \quad|x| \rightarrow \infty \tag{3.1}
\end{equation*}
$$

(where A is a certain positive constant).
Theorem (3.I): If: $f_{n-1}(x) \rightarrow \alpha \quad$ as $x \rightarrow \infty$

$$
\text { Then: } f_{n}(x) \rightarrow\left(1-\frac{1}{\pi}\right) \alpha \text { as } x \rightarrow \infty
$$

(A similair statement holds for $x \rightarrow-\infty$.)
Prooí:

$$
\begin{equation*}
f_{n}(x)=\int_{-a}^{a} k_{R}(x, \xi) d \xi+\int_{|\xi|>u} f_{n-1}(\xi) K_{R}(x, \xi) d \xi \tag{3.2}
\end{equation*}
$$

(Hencerorth in this proof we take $R=\pi$ since the fact that x aporoaches infinity implies that eventually $x>a+\pi$ an therezore $R=$ $R(x)=\pi$.

A comparison or (2.3) and (2.8) tells us that
(3.3) $K_{\pi}(x, \xi)=\left[2 \pi^{2}(\xi-x)\right]^{-1} \log \left|\frac{\xi-x+\pi}{\xi-x-\pi}\right|$

$$
+\frac{e^{\xi}}{2 \pi^{2}} \int_{0}^{\pi} \frac{\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Sin}(\pi \operatorname{Sin} \theta) d \theta}{\left(e^{\xi}-\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Cos}(\pi \operatorname{Sin} \theta)\right)^{2}+(\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Sin}(\pi \operatorname{Sin} \theta))^{2}}
$$

Therefore
(3.4)

$$
\int_{-a}^{a} K_{\pi}(x, \xi) d \xi=\frac{1}{2 \pi^{2}} \int_{-(a+x) / \pi}^{(a-x) / \pi} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u
$$

$$
\div \frac{1}{2 \pi^{2}} \int_{0}^{\pi} \operatorname{Tan}^{-1}\left[\frac{\left(e^{a}-e^{-a}\right) \exp (x-\pi \cos \theta) \sin (\pi \operatorname{Sin} \theta)}{\exp [2(x-\pi \cos \theta)]-\left(e^{a}+e^{-a}\right) \exp (x-\pi \operatorname{Cos} \theta) \cos (\pi \operatorname{Sin} \theta) \div 1}\right] 亠 \theta
$$

and
(3.5)

$$
\begin{aligned}
& \int_{|\xi|>a} f_{n-1}(\xi) K_{\pi}(x, \xi) d \xi=\frac{1}{2 \pi^{2}} \int_{-\infty}^{-(s+x) / \pi} u^{-1} f_{n-1}\left(x^{2}+\pi\right) I \log \left|\frac{1+u}{I-u}\right| d u \\
& \quad+\frac{1}{2 \pi^{2}} \int_{(a-x) / \pi}^{\infty} u^{-1} f_{n-1}(x+\pi u) \log \left|\frac{I+u}{1-u}\right| d u \\
& \quad+\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \int_{\pi\left(\sin \theta-\frac{1}{2}\right)}^{\operatorname{Tan}-1\left[\frac{e^{-a}-\exp (x-\pi \cos \theta) \cos (\pi \operatorname{Sin} \theta)}{\exp (x-\pi \cos \theta) \operatorname{Sin}(\pi \operatorname{Sin} \theta)}\right]} I_{n-1}[x-\pi \cos \theta
\end{aligned}
$$

$$
+\log \operatorname{Cos}(\pi \operatorname{Sin} \theta-\phi)-\log \operatorname{Cos} \phi] \mathrm{a} \phi \mathrm{a} \theta
$$

$$
+\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \int_{\operatorname{Tan}}^{\pi / 2}-1\left[\frac{e^{a}-\exp (x-\pi \operatorname{Cos} \theta) \cos (\pi \operatorname{Sin} \theta)}{\exp (x-\pi \operatorname{Cos} \theta) \sin (\pi \operatorname{Sin} \theta)}\right] f_{n-1}[x-\pi \cos \theta
$$

$$
+\log \operatorname{Cos}(\pi \operatorname{Sin} \theta-\phi)-\log \operatorname{Cos} \phi] \partial \phi \mathrm{d} \theta
$$

Let the integrals appearing on the right hand sides of (3.4), and (3.5) be labeled according to their order of appearance as $F_{n_{i}}(x)$; $i=1,2, \ldots, 6$.

It is immediately obvious (by inspection) that $F_{N_{1}}(x)$ ana $F_{n_{2}}(x)$ approach zero as x approaches infinity. Furthermore the boundedness of $f_{n-1}(\xi)$-- which follows from the boundedness of $f_{0}(\xi)$-- implies that
$F_{n_{3}}(x)$ and $F_{n_{5}}(x)$ each approach zero as x approaches infinity, since the limits of the respective u and ϕ integrations become the same as x approaches infinity. Therefore we need only examine $F_{n_{4}}(x)$ and $F_{n_{6}}(x)$ as x approaches infinity.

Lemma (3.1a): If: $f_{n-1}(x) \rightarrow \alpha$ as $x \rightarrow \infty$

$$
\text { Then: } F_{n_{4}}(x) \rightarrow \alpha / 2 \text { as } x \rightarrow \infty
$$

Proof:

$$
\begin{equation*}
\alpha / 2=\frac{\alpha}{2 \pi^{2}} \int_{-\infty}^{\infty} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u \tag{3.6}
\end{equation*}
$$

(See Footnote No. 4, p. 11)

$$
\begin{align*}
& \therefore F_{n_{4}}(x)-\alpha / 2=\frac{-\alpha}{2 \pi^{2}} \int_{-\infty}^{(a-x) / \pi} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u \tag{3.7}\\
& +\frac{1}{2 \pi^{2}} \int_{(a-x) / \pi}^{\infty} u^{-1}\left[f_{n-1}(x+\pi u)-\alpha\right] \log \left|\frac{1+u}{1-u}\right| d u
\end{align*}
$$

$$
\begin{equation*}
-\frac{\alpha}{2 \pi^{2}} \int_{-\infty}^{(a-x) / \pi} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u \rightarrow 0 \tag{3.8}
\end{equation*}
$$

$$
\text { as } x \rightarrow \infty
$$

$$
\begin{align*}
& \frac{1}{2 \pi^{2}} \int_{(a-x) / \pi}^{\infty} u^{-1}\left[f_{n-1}(x+\pi u)-\alpha\right] \log \left|\frac{1+u}{1-u}\right| d u \tag{3.9}\\
& \quad=\frac{1}{2 \pi^{2}} \int_{(a-x) / \pi}^{\left.\int a-x\right) / 2 \pi} u^{-1}\left[f_{n-1}(x+\pi u)-\alpha\right] \log \left|\frac{1+u}{1-u}\right| d u \\
& +\frac{1}{2 \pi^{2}} \int_{(a-x) / 2 \pi}^{\infty} u^{-1}\left[f_{n-1}(x+\pi u)-\alpha\right] \log \left|\frac{1+u}{1-u}\right| d u
\end{align*}
$$

Let M be an upper bound on $\left|f_{n-1}(x)\right|$. Therefore

$$
\begin{align*}
& \frac{1}{2 \pi^{2}}\left|\int_{(a-x) / \pi}^{(a-x) / 2 \pi} u^{-1}\left[f_{n-1}(x+\pi u)-\alpha\right] \log \right| \frac{1+u}{1-u}|d u| \tag{3.10}\\
& \leq \frac{2 M}{2 \pi^{2}} \int_{(a-x) / \pi}^{(a-x) / 2 \pi} u^{-1} \log \left|\frac{1+u}{1-u \mid}\right| d u \rightarrow 0 \quad \text { as } x \rightarrow \infty .
\end{align*}
$$

(3.11.) Let $\left.F_{n_{7}}(x)=\frac{1}{2 \pi^{2}} \int_{(a-x) / 2 \pi}^{\infty} u^{-1}\left[f_{n-1}(x+\pi \pi)-\alpha\right]\right] \log \left|\frac{1+u}{1-u}\right| d u$

By (3.6) $-(3.9), F_{n_{4}}(x)-\alpha / 2 \rightarrow 0$ as $x \rightarrow \infty \Longleftrightarrow F_{n_{7}}(x) \rightarrow 0$ as $x \rightarrow \infty$. But $f_{n-1}(x) \rightarrow \alpha$ as $x \rightarrow \infty$. Therefore, for a given $\epsilon>0$,
(3.12) $\quad\left|f_{n-1}(x+\pi u)-\alpha\right|<\epsilon$

If $x+$ ru is lisarge enough. But in $F_{n_{7}}(x)$

$$
\begin{equation*}
u \geq(a-x) / 2 \pi \Longrightarrow x+\pi u \geq(x+a) / 2 \tag{3.13}
\end{equation*}
$$

Threfore, for $(x+a) / 2==$ and hence $x-$ - large enough,

$$
\begin{align*}
\left|F_{n}(x)\right| & <\frac{\epsilon}{2 \pi^{2}} \int_{(a-x) / 2 \pi}^{\infty} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u \tag{3.14}\\
& \leq \frac{\epsilon}{2 \pi^{2}} \int_{-\infty}^{\infty} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u=\epsilon / 2
\end{align*}
$$

Lemma (3.1b): If: $\quad f_{n-1}(x) \rightarrow \alpha$ as $x \rightarrow \infty$

$$
\text { Then: } F_{n_{6}}(x) \rightarrow\left(\frac{1}{2}=\frac{1}{\pi}\right) \alpha
$$

Proof:

It suffices to show that the inner integral of $F_{n_{6}}(x)--$ which we call $G_{M_{6}}(x, \theta)--$ satisfies
(3.15) $\quad G_{n_{6}}(x, \theta) \rightarrow(1-\operatorname{Sin} \theta) \alpha \pi \quad$ as $x \rightarrow \infty$.

For then

$$
\begin{equation*}
F_{n_{6}}(x) \rightarrow \frac{1}{2 \pi^{2}} \int_{0}^{\pi}(1-\operatorname{Sin} \theta) \alpha \pi d \theta=\left(\frac{1}{2}-\frac{1}{\pi}\right) \alpha \quad \text { as } x \rightarrow \infty \text {. } \tag{3.16}
\end{equation*}
$$

(3.17) Let (a) $\tan ^{-1}\left[\frac{e^{\text {a }}-\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Cos}(\pi \operatorname{Sin} \theta)}{\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Sin}(\pi \operatorname{Sin} \theta)}\right]=G(x, \theta)$
(b) $f_{n-1}[x-\pi \operatorname{Cos} \theta+\log \operatorname{Cos}(\pi \operatorname{Sin} \theta-\phi)-\log \operatorname{Cos} \phi]=F_{n-1}(x, \theta, \phi)$
(Note: Under the change of variable performed in (3.5) to yield $F_{n_{5}}(x)$ and $F_{n_{6}}(x)$,
$\xi=x-\pi \operatorname{Cos} \theta+2 \operatorname{Og} \operatorname{Cos}(\pi \operatorname{Sin} \theta-\phi)-2 \operatorname{Og} \operatorname{Cos} \phi$.
$\therefore f_{n-1}(\xi)=F_{n-1}(x, \theta, \phi)$.
(3.28) \therefore (a) $\operatorname{Lim}_{x \rightarrow \infty} G(x, \theta)=\pi\left(\operatorname{Sin} \theta-\frac{1}{2}\right)=\operatorname{Lim}_{x \rightarrow \infty} G(x / 2, \theta)$
(b) $\operatorname{Lim}_{x \rightarrow \infty} F_{n-1}(x, \theta, \phi)=\alpha$ (for each pair (θ, ϕ))
(o) $\left|x_{n-1}(x, \theta, \phi)\right| \leq M$ (uniformly); $|a \ddot{\mid}| \leq M$
(3.1.9)

$$
G_{n_{6}}(x, \theta)-(1-\operatorname{Sin} \theta) \alpha \pi=\int_{G(x, \theta)}^{\pi / 2} F_{n-1}(x, \theta, \phi) d \phi-\int_{\pi\left(\operatorname{Sin} \theta-\frac{1}{2}\right)}^{\pi / 2} \alpha d \phi
$$

$$
\begin{aligned}
& =\int_{G(x, \theta)}^{G(x / 2, \theta)}\left[F_{n-1}(x, \theta, \phi)-\alpha\right] d \phi+\int_{G(x / 2, \theta)}^{\pi / 2}\left[F_{n-1}(x, \theta, \phi)-\alpha\right] d \phi \\
& -\int_{\pi\left(\sin \theta-\frac{1}{2}\right)}^{G(x, \theta)} \alpha d \phi
\end{aligned}
$$

(3.20)
(a) $\int_{\pi\left(\operatorname{Sin} \theta-\frac{1}{2}\right)}^{G(x, \theta)} \alpha d \phi \rightarrow 0 \quad$ as $x \rightarrow \infty$
(by (3.17)(a))
(b) $\int_{G(x, \theta)}^{G(x / 2, \theta)}\left[\mathrm{F}_{n-1}(x, \theta, \phi)-\alpha\right] d \phi \rightarrow 0 \quad$ as $x \rightarrow \infty$ (by $(3.17)(a)$ and $(3.17)(c))$
(3.21)

$$
\begin{aligned}
& \text { Let } G_{n_{7}}(x, \theta)=\int_{G(x / 2, \theta)}^{\pi / 2}\left[F_{n-1}(x, \theta, \phi)-\alpha\right] \alpha \phi \\
& \therefore G_{n_{6}}(x, \theta)-(1-\sin \theta) \alpha \pi \rightarrow 0 \text { as } x \rightarrow \infty \Longleftrightarrow G_{n_{7}}(x, \theta) \rightarrow 0
\end{aligned}
$$

as $x \rightarrow \infty$, But $F_{r_{1-1}}(x, \theta, \phi)=\sum_{n-1}(\xi) \rightarrow \alpha$ as $\xi \rightarrow \infty($ or as $x \rightarrow \infty)$ for each $\operatorname{pair}(\theta, \phi)$.

Therefore, for a given $\epsilon>0$,
(3.22) $\left|f_{n-1}(\xi)-\alpha\right|<\epsilon$
providing ξ is large enough. But in $G_{n_{7}}(x, \theta)$-- where x and θ are fixed and ϕ ranges over $[G(x / 2, \theta), \pi / 2]$,
(3.23) $\quad \xi \geq x / 2+a$
(as may be verified by a straightforward calculation),
Therefore, for $x / 2+a--$ and hence $x--1$-barge enough,

$$
\begin{align*}
& \text { (3.24) } \quad\left|G_{n_{7}}(x, \theta)\right| \leq \int_{G(x / 2, \theta)}^{\pi / 2}\left|F_{n-1}(x, \theta, \phi)-\alpha\right| \alpha \phi<\epsilon \int_{G(x / 2, \theta)}^{\pi / 2} d \phi \tag{3.24}\\
& <\epsilon \int_{\pi\left(\operatorname{Sin} \theta-\frac{1}{2}\right)}^{\pi / 2} d \phi=(1-\operatorname{Sin} \theta) \pi \epsilon \leq 2 \pi \epsilon \\
& \text { (Since } G(x / 2, \theta) \geq \pi\left(\operatorname{Sin} \theta-\frac{1}{2} \lambda\right) \\
& \text { (3.25) } \therefore \operatorname{Lim}_{x \rightarrow \infty} f_{n}(x)=\operatorname{Lim}_{x \rightarrow \infty}\left[F_{n_{4}}(x)+F_{n_{6}}(x)\right]=\alpha / 2+\left(\frac{1}{2}-\frac{1}{\pi}\right) \alpha=\left(1-\frac{1}{\pi}\right) \alpha
\end{align*}
$$

Theorem (3.2): If: $\quad f_{n-1}(x) \rightarrow \beta$ as $x \rightarrow a^{+}$

$$
\text { Then: } f_{n}(x) \rightarrow 1 / 4+(3 / 4) \beta \text { as } x \rightarrow a^{+}
$$

(A similar statement holds for $x \rightarrow-a^{-}$.)

Proof:

In this proof we take $R=R(x)=x-a$ since the fact that x approaches a^{+}implies that eventually $a<x<a+\pi$ and therefore $R(x)=x-a$. We will also have recourse to equations (3.2), (3.4), and (3.5) from which the functions $F_{n_{1}}(x) ; i=1,2, \ldots, 6, G_{n_{5}}(x, \theta)$, $G_{n_{6}}(x, \theta)$, and $F_{n-1}(x, \theta, \emptyset)$ shall again be selected. However, we now replace every occurrence of π in the respective integrands (except in the fraction $\pi / 2$) by $x-a$, the value of R now under consideration, and study these functions as x approaches a^{+}.

$$
\begin{equation*}
\therefore f_{n}(x)=\sum_{i=1}^{6} F_{n_{i}}(x) \tag{3.26}
\end{equation*}
$$

and
(3.27)

$$
\begin{aligned}
F_{n_{1}}(x)= & \frac{1}{2 \pi^{2}} \int_{-(a+x) /(x-a)}^{-1} u^{-1} \log \left|\frac{1+u}{\frac{1-u}{1}}\right| d u \\
& \rightarrow \frac{1}{2 \pi^{2}} \int_{-\infty}^{-1} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u=1 / 8 \quad \text { as } x \rightarrow a^{+}
\end{aligned}
$$

By L'Hospital's rule, we find that
(3.28)

$$
\begin{align*}
& F_{n_{2}}(x)= \\
& \frac{1}{2 \pi^{2}} \int_{0}^{\pi} \operatorname{Tan}^{-1}\left[\frac{\left(e^{a}-e^{-a}\right) \exp [x-(x-a) \cos \theta \sin [(x-a) \sin \theta]}{\left.\exp (2[x-(x-a) \cos \theta])-\left(e^{a}+e^{-a}\right) \exp [x-(x-a) \cos \theta] \cos [(x-a) \sin \theta]+1\right]}\right] d \theta \\
& \rightarrow 1 / 8 \quad \text { as } x \rightarrow a^{+} \\
& \therefore g_{R}(x)=F_{n_{1}}(x)+F_{n_{2}}(x) \rightarrow 1 / 4 \quad \text { as } x \rightarrow a^{+} \tag{3.29}
\end{align*}
$$

Again we use the fact that $\left|f_{n-1}(\xi)\right| \leq M$. Thus we see (by inspection)
that
(3.30)

$$
\mathrm{F}_{\mathrm{n}_{3}}(\mathrm{x}) \rightarrow 0 \quad \text { as } \mathrm{x} \rightarrow \mathrm{a}^{+}
$$

(since the limits of integration become the same as $x \rightarrow a^{+}$).
Furthermore, letting

$$
\begin{equation*}
L(t, x, \theta)=\frac{e^{t}-\exp [x-(x-a) \cos \theta] \cos [(x-a) \sin \theta]}{\exp [x-(x-a) \cos \theta] \sin [(x-a) \sin \theta]} \tag{3.3I}
\end{equation*}
$$

we find that
(3.32) $\quad \mathrm{F}_{\mathrm{n}_{5}}(\mathrm{x}) \rightarrow 0 \quad$ as $\mathrm{x} \rightarrow \mathrm{a}^{+}$
since its inner integral
(3.33)

$$
G_{n_{5}}(x, \theta) \rightarrow 0 \quad \text { as } x \rightarrow a^{+}
$$

by the boundedness of f_{n-1} and by the fact that both limits of integration in $G_{n_{5}}(x, \theta)$ approach $-\pi / 2$ as x approaches a^{+}.

$$
\left(\operatorname{Tan}^{-1}[L(-a, x, \theta)] \text { approaches }-\pi / 2 \text { as } x \text { approaches a }{ }^{+} \text {since } L(-a, x, \theta)\right.
$$

is negative for x near a^{+}and thus approaches $-\infty$ as x approaches a^{+}.)

$$
\begin{align*}
F_{n_{4}}(x)= & \frac{1}{2 \pi^{2}} \int_{-1}^{\infty} u^{-1} f_{n-1}[x+(x-a) u] \log \left|\frac{1+u}{1-u}\right| d u \tag{3.34}\\
& \rightarrow \frac{1}{2 \pi^{2}} \int_{-1}^{\infty} u^{-1} \beta \log \left|\frac{1+u}{1-u}\right| d u=(3 / 8) \beta \quad \text { as } x \rightarrow a^{+}
\end{align*}
$$

(by Lebesgue's theorem of dominated convergence).
We now prove that $\mathrm{F}_{\mathrm{n}_{6}}(x)$ approaches $(3 / 8) \beta$ as x approaches a ${ }^{+}$ by showing that

$$
\begin{equation*}
G_{n_{6}}(x, \theta) \rightarrow[(\pi+\theta) / 2] \beta \quad \text { as } x \rightarrow a^{+} . \tag{3.35}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{n_{6}}(x) \rightarrow \frac{1}{2 \pi^{2}} \int_{0}^{\pi}[(\pi+\theta) / 2] \beta d \theta=(3 / 8) \beta \quad \text { as } x \rightarrow a^{+} \tag{3.36}
\end{equation*}
$$

Lemma (3.2): If: $f_{n-1}(x) \rightarrow \beta \quad$ as $x \rightarrow a^{+}$

$$
\text { Then: } G_{n_{6}}(x, \theta) \rightarrow[(\pi+\theta) / 2] \beta \quad \text { as } x \rightarrow a^{+}
$$

Proof:
By L'Hospital's rule
(3.37) $\quad L(a, x, \theta) \rightarrow-\operatorname{Tan} \theta / 2 \quad$ as $x \rightarrow a^{+}$

$$
\begin{equation*}
\therefore \operatorname{Tan}^{-1}[L(a, x, \theta)] \rightarrow-\theta / 2 \quad \text { as } x \rightarrow a^{+} \tag{3.38}
\end{equation*}
$$

(3.39)

$$
[(\pi+\theta) / 2] \beta=\int_{-\theta / 2}^{\pi / 2} \beta d \phi
$$

(3.40) $\therefore G_{n_{6}}(x, \theta)-[(\pi+\theta) / 2] \beta=\int_{\operatorname{Tan}^{-1}[L(a, x, \theta)]}^{-\theta / 2} F_{n-1}(x, \theta, \phi) d \phi$

$$
+\int_{-\theta / 2}^{\pi / 2}\left[F_{n-1}(x, \theta, \phi)-\beta\right] d \phi
$$

(3.41)

$$
\int_{\operatorname{Tan}^{-1}[I(a, x, \theta)]}^{-\theta / 2} F_{n-1}(x, \theta, \phi) d \phi \rightarrow 0 \quad \text { as } x \rightarrow a^{+}
$$

$$
\text { (by }(3.36) \text { and }(3.17)(b))
$$

Since $F_{n-1}(x, \theta, \phi)=f_{n-1}(\xi)$ approaches β as x (and therefore ξ)
approaches a^{+}for each pair (θ, ϕ), we conclude that

$$
\begin{equation*}
\int_{-\Theta / 2}^{\pi / 2}\left[F_{\pi-1}(x, \theta, \phi)-\beta\right] \mathrm{d} \phi \rightarrow \int_{-\Theta / 2}^{\pi / 2} \quad \operatorname{co\phi } \phi=0 \quad \text { as } x \rightarrow a \tag{3.42}
\end{equation*}
$$

(by Lebesgue's theorem of dominated convergence).

$$
\begin{equation*}
\therefore G_{n_{6}}(x, \theta)-[(\pi+\theta) / 2] \beta \rightarrow 0 \quad \text { as } x \rightarrow a^{+} . \tag{3.43}
\end{equation*}
$$

(3.44) $\therefore \lim _{x \rightarrow a^{+}} f_{n}(x)=\lim _{x \rightarrow a^{+}}\left[g_{R}(x)+F_{n_{4}}(x)+F_{n_{6}}(x)\right]$

$$
=I / 4+(3 / 8) \beta+(3 / 8) \beta=1 / 4+(3 / 4) \beta \quad \text { QED. }
$$

For simplicity of notation in what follows, we let
(3.45) (a) $\quad g_{R}(x)=g(x)$
(b) $\int_{|\xi|>a} w(\xi) K_{R}(x, \xi) d \xi=\left(K_{w}\right)(x)$

Thus the operator K as defined in (3.45)(b) satisfies
(a) $\left(K^{\circ} w\right)(x)=w(x)$
(b) $\left(K^{n} w\right)(x)=\left[K\left(K^{n-1} w\right)\right](x)$
K is a positive, additive, and bounded operator since
(3.47) $0<\int_{|\xi|>a} K_{R}(x, \xi) d \xi \leq p<1$

Let $f_{n}^{[h]}(x)$ be the $n^{\text {th }}$ approximation resulting from the initial approximation $h(x)$. Thus
(a) $f_{I}^{[h]}(x)=g(x)+(K h)(x)$
(b) $f_{2}^{[h]}(x)=g(x)+(K g)(x)+\left(K^{2} h\right)(x)$

Therefore, by a trivial induction, we obtain
(3.49) $f_{n}^{[h]}(x)=\sum_{m=0}^{n-1}\left(K^{m} g\right)(x)+\left(K^{n} n\right)(x)=f_{n}^{[0]}(x)+\left(K^{n} n\right)(x)$

If M is an upper bound on $|h(x)|$, then by (3.47) and (3.46)(b) we have
(3.50) $\left|\left(K^{n} h\right)(x)\right| \leq M p^{n} \rightarrow 0 \quad$ as $n \rightarrow \infty$

Therefore, we confine our attention to $f_{n}^{[0]}(x)$ in applying the above theorems.

Corollary (3.1):

$$
\text { (a) } \mathrm{f}_{\mathrm{n}}^{[0]}(x) \rightarrow 0 \text { as }|x| \rightarrow \infty(\text { for all } n \text {) }
$$

(b) $\quad \because f(x) \rightarrow 0$ as $|x| \rightarrow \infty$

Corollary (3.2):

$$
\begin{aligned}
& \text { (a) } f_{n}^{[0]}(x) \rightarrow 1-(3 / 4)^{n} \quad \text { as } x \rightarrow\left\{\begin{array}{l}
a^{+} \\
-a^{-}
\end{array}\right\} \\
& \text {(b) } \because f(x) \rightarrow 1
\end{aligned}
$$

Note: In each of the above corollaries, the second result follows without computation from the theory since infinity and $(\pm a, \pi)$ are points of continuity of the boundary values zero and unity given on the x-axis and C_{l}^{\prime} respectively.)

Proof: (a)
Let us label the common limit of $f_{n}^{[0]}(x)$ as x approaches $\left\{\begin{array}{c}a^{+} \\ -a^{-}\end{array}\right\}$ as B_{n}.
$(3.51) \because \beta_{0}=0, \beta_{1}=1 / 4, \beta_{2}=1 / 4+(1 / 4)(3 / 4), \beta_{3}=1 / 4+(1 / 4)(3 / 4)+(1 / 4)(3 / 4)^{2}$ and by induction we obtain

$$
\beta_{n}=\left\{\begin{array}{l}
0, \quad n=0 \tag{3.52}\\
1 / 4 \sum_{m=0}^{n-1}(3 / 4)^{m}=1-(3 / 4)^{n}, n \neq 0
\end{array}\right\}=1-(3 / 4)^{n}
$$

Theorem (3.3): $f(x) \sim A / x^{2}$. as $|x| \rightarrow \infty$ (where A is a certain positive constant).

Proof:

By the Schwartz reflection principle, the Dirichlet problems state for Ω_{1} and Ω_{1}^{\prime} are not only equivalent, they are the same. Thus the common solution, $u(x, y)$, of both problems may be developed in a Fourier series outside
the circle of radius $\sigma, \sigma^{2}=a^{2}+\pi^{2}$, centered at the origin. The Fourier series will be uniformly convergent outside compact sets which properly contain the closure of the above disc. (See Fig. (3.1).)

Fig. (3.1):
We determine the behavior of $f(x)$ for large x by studying the behavior of the Fourier series of $u(x, y)$ along $y=\pi$ for large x. (3.53) $\therefore u(x, y)=u(r, \theta)=\sum_{n=0}^{\infty}(\sigma / r)^{n}\left[a_{n} \operatorname{Cos} n \theta+b_{n} \operatorname{Sin} n \theta\right]$

$$
\left(\text { for } r=\left(x^{2}+y^{2}\right)^{1 / 2}>\sigma, \quad \theta=\operatorname{Tan}^{-1}(y / x)\right)
$$

But the fact that $u(x, y)$ is odd in y tells us that $u(r, \theta)$ is odd in θ. Therefore the cosine terms vanish; i.e., $a_{n}=0$ for all n and (3.54) $u(x, y)=\sum_{n=1}^{\infty} b_{n}(\sigma / r)^{n} \sin n \theta$

But along $y=\pi$,
$(3.55) \quad$ (a) $\quad \sin \theta=\pi / r$
(b) $\sin 2 \theta=2(\pi / r)\left[1-(\pi / r)^{2}\right]^{1 / 2}$
$(3.56) \quad \therefore u(x, \pi)=b_{1} \sigma \pi / r^{2}+0\left(1 / r^{3}\right)+\sum_{n=3}^{\infty} b_{n}(\sigma / r)^{n} \sin n \theta$
and
Lemma (3.3a): $\sum_{n=3}^{\infty} b_{n}(\sigma / r)^{n} \sin n \theta=0\left(1 / x^{3}\right)$ for r large enough Proof:

$$
\begin{equation*}
\left|\sum_{n=3}^{\infty} b_{n}(\sigma / r)^{n} \sin n \theta\right| \leq \sum_{n=3}^{\infty}\left|b_{n}(\sigma / r)^{n}\right| \tag{3.57}
\end{equation*}
$$

But the fact that $\sum_{n=3}^{\infty} b_{n}(\sigma / r)^{n} \sin n \theta$ is the Fourier series of a function of one variable for each fixed $r>\sigma$ implies that its coefficients approach zero as n approaches infinity. Thus they are certainly bounded as n approaches infinity. Thus if we let $r=r_{2}>\sigma$, there exists $\mathrm{M}>0$ such that

$$
\begin{equation*}
\left|b_{n}\left(\sigma / r_{1}\right)^{n}\right| \leq M \tag{3.58}
\end{equation*}
$$

Let $r \geq 2 r_{1}>\sigma$.
(3.59) $\therefore \sum_{n=3}^{\infty}\left|b_{n}(\sigma / r)^{n}\right|=\sum_{n=3}^{\infty}\left|b_{n}\left(\sigma / r_{1}\right)^{n}\left(r_{1} / r\right)^{n}\right| \leq M \sum_{n=3}^{\infty}\left(r_{1} / r\right)^{n}$

$$
\leq M\left(r_{1} / r\right)^{3} \sum_{n=0}^{\infty}(1 / 2)^{n}=2 M\left(r_{1} / r\right)^{3}=O\left(1 / r^{3}\right)
$$

QED.
(3.60)

$$
\begin{aligned}
\therefore f(x)=u(x, \pi) & =b_{1} \sigma \pi / r^{2}+O\left(1 / r^{3}\right) \sim b_{1} \sigma \pi / r^{2} \\
& =b_{1} \sigma \pi /\left(x^{2}+\pi^{2}\right) \sim b_{1} \sigma \pi / x^{2}=A / x^{2} .
\end{aligned}
$$

Derma (3.3b): $\quad \mathrm{A}=\mathrm{b}_{1} \sigma \pi>0$
Proof:
We need only show that $b_{1}>0$ and this fact follows from
(3.6I) $b_{1}=\frac{1}{\pi} \int_{00}^{2 \pi} u(0, \theta) \sin \theta d \theta$
since
$(3.62)(a) \quad \theta \in(0, \pi) \Rightarrow$ both $u(\sigma, \theta), \sin \theta>0$
(b) $\theta \in(\pi, 2 \pi) \Longrightarrow$ both $u(\sigma, \theta), \operatorname{Sin} \theta<0$

Inequality (3.62)(a) follows from the maximum and minimum principles.
For, since $u(\sigma, \theta)$ is not constant on the boundary of Ω_{1}, it is not constant in the interior of Ω_{1}. Therefore its values in the interior must lie strictly between their maximum and minimum on the boundary. Therefore, except at the points $(\pm a, \pi)$,
(3.63) $\theta \in(0, \pi) \Longrightarrow 0<u(x, y)=u(\sigma, \theta)<1$

Similarly, except at the points $(\pm a,-\pi)$,

$$
\begin{equation*}
\theta \in(\pi, 2 \pi) \Longrightarrow-1<u(x, y)=u(\sigma, \theta)<0 \tag{3.64}
\end{equation*}
$$

QED.
Corollary (3.3): $\quad f_{n}^{[0]}(x)=O\left(1 / x^{2}\right)$ for all n

Proof:

The fact that $f(x) \sim A / x^{2}$ implies that $f(x)=O\left(1 / x^{2}\right)$. Further more, since
(3.65) $f(x)=\operatorname{Lim}_{n \rightarrow \infty} f_{n}^{[0]}(x)=\sum_{m=0}^{\infty}\left(k^{m} g\right)(x), \quad g(x) \geq 0$

$$
\begin{equation*}
0 \leq f_{n}^{[0]}(x) \leq f(x) \text { for all } n \tag{3.65}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \mathrm{f}_{\mathrm{n}}^{[0]}(\mathrm{x})=0\left(1 / \mathrm{x}^{2}\right) \quad \text { for all } \mathrm{n} \tag{3.67}
\end{equation*}
$$

In the next section we shall need a bound on $d x(r, \theta) / \mathrm{dr}$ for large r. Therefore we state and prove

Theorem (3.4): $\partial u(r, \theta) / \partial r=O\left(1 / r^{2}\right)$ for large r.
Proof:
Formally, we obtain from (3.54)
(3.68) $\partial_{\lambda}(r, \theta) / \partial r=-\sum_{n=1}^{\infty}\left(n b_{n} / \sigma\right)(\sigma / r)^{n+1} \operatorname{Sin} n \theta$
which we justify by showing that the derived series is uniformly convergent for $r \geq 2 r_{1}>\sigma$. The proof of its uniform convergence will also prove that it is $O\left(1 / r^{2}\right)$.
(3.69) $\left|\left(n b_{n} / \sigma\right)\left(\sigma / r_{1}\right)^{n+1}\right| \leq M n / r_{1}$ (by (3.58))
(3.70) $\therefore r \geq 2 r_{1}>\sigma \Longrightarrow\left|-\sum_{n=1}^{\infty}\left(n b_{n} / \sigma\right)(\sigma / r)^{n+1} \operatorname{Sin} n \theta\right|$

$$
\begin{aligned}
& \leq \sum_{n=1}^{\infty}\left|\left(n b_{n} / \sigma\right)(\sigma / r)^{n+1}\right|=\sum_{n=1}^{\infty}\left|\left(n b_{n} / \sigma\right)\left(\sigma / r_{1}\right)^{n+1}\left(r_{1} / r\right)^{n+1}\right| \\
& \leq M / r_{1} \sum_{n=1}^{\infty} n\left(r_{1} / r\right)^{n+1} \leq M r_{1} / r^{2} \sum_{n=1}^{\infty} n(1 / 2)^{n-1}=4 M r_{1} / r^{2}=O\left(1 / r^{2}\right)
\end{aligned}
$$

Thus (3.69) and (3.70) imply that $\mathrm{du}(\mathrm{r}, \theta) / \mathrm{dr}$ may be obtained by term-by-term differentiation of $u(r, \theta)$ for $a l l r>\sigma$ and that for all $r>\sigma$
(3.71) $\partial u(r, \theta) / d r=O\left(1 / r^{2}\right)$.
IV. Application

Consider the conformal map of Ω_{1} onto an annulus centered at the origin with outer radius unity and inner radius P. (See Fig. (4.1).) On application will be the determination of 0 -- which is essentially the conformal modulus of $\Omega_{1}-$ (actually the conformal modulus of Ω_{1} is defined as $-2 \pi / \log p$) purely in terms of the values $f(x)$ of $u(x, y)$ along $y=\pi$.

Fig. (4.1):
The slits C_{0} and C_{1} are carried into the circles centered at the origin of radii 1 and p respectively. The boundary values -1 and +1 are then assumed respectively on these circles. The Dirichlet problem for this annulus is then solved to yield
(4.1) $j(r, \theta)=2 \log r / \log \rho-1$

If $\ell(r, \theta)$ is a harmonic conjugate of $j(r, \theta)$, then
(4.2) $j(r, \theta)+i \ell(r, \theta)=2 \log z / \log \rho-1+i \delta$
where $z=r e^{i \theta}$, and δ is a real constant. Thus
(4.3) $\quad \ell(r, \theta)=2 \theta / \log \rho+8$
ana its period P around the inner circle is
(4.4) $P=-4 \pi / \log P$
$(4.5) \quad \therefore \quad 0=\exp (-4 \pi / P)$
Thus, to find O we must find P. But the period of a harmonic function is a conformal invariant. Therefore, if $v(x, y)$ is a harmonic conjugate of $u(x, y)$, then the period of $v(x, y)$ as the point (x, y) performs a circuit -- say B - about C_{1} (the preimage of the inner circle) is P .

Therefore, by the Cauchy-Riemann equations,

$$
\begin{equation*}
P=\oint_{B} \partial v / \partial s d s=\oint_{B} \partial u / \partial n d s \tag{4.6}
\end{equation*}
$$

where s is the parameter of arc length along B and $\partial / a n$ indicates differentation with respect to the outward normal along B.

We take the circuit B to be a semicircle centered at the origin, based on the x-axis, and surrounding only C_{1} (of the boindary components of Ω_{1}). -- See Fig. (3.1).
(4.7) $\quad \therefore \oint_{B} \partial u / d n d s=\int_{n} \partial u / d n d s+\int_{\rightarrow} \partial u / d n d s$

We then let the radius of B expand to infinity and show that
(4.8) $\int_{\curvearrowleft} d u / d n d s \rightarrow 0$

The period, P, of $v(x, y)$ around C_{1} will then be

$$
\begin{equation*}
P=\int_{\rightarrow} \partial u / \partial n d s=+\int_{-\infty}^{\infty}[\partial u(x, 0) / \partial y] d s \tag{4.9}
\end{equation*}
$$

Along the large semicircle $\partial u / \partial n=-\partial u / \partial r$ (by the same reasoning as above). Therefore, by Theorem (3.4), we have
(4.10) $\int_{\infty} \partial u / \partial n d s=-\int_{0}^{\pi}[\partial u(R, \theta) / \partial r] \cdot R d \theta=\int_{0}^{\pi} O\left(1 / R^{2}\right) \cdot R d \theta$

$$
=O(1 / R) \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(4.11) $\partial u(x, 0) / \partial y=\operatorname{Lim}_{y \rightarrow 0} y^{-1}[u(x, y)-u(x, 0)]=\operatorname{Lim}_{y \rightarrow 0} y^{-1} u(x, y)$
$(u(x, 0) \equiv 0$, as indicated in the remark following (2.1).)
Thus, in evaluating $\partial u(x, 0) / \partial y$, we need deal only with the values of $u(x, y)$ in the strip

$$
S=\{(x, y) \mid 0<y<\pi\} .
$$

Fig. (4.2):
Therefore, using (4.21) and (2.3) (a), we obtain
(4.12) $\partial u(x, 0) / \partial y=\operatorname{Lim}_{y \rightarrow 0^{+}} y^{-1} u(x, y)=\operatorname{Lim}_{y \rightarrow 0^{+}} \frac{\operatorname{Sin} y}{\pi y} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{e^{\xi-x}+2 \operatorname{Cos} y+e^{-(\xi-x)}}$

$$
=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{e^{\xi-x}+2+e^{-(\xi-x)}}
$$

(4.13) $\therefore P=\int_{-\infty}^{\infty}[\partial u(x, 0) / \partial y] d x=\int_{-\infty}^{\infty}\left[\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{e^{\xi-x}+2+e^{-(\xi-x)}}\right] d x$

$$
\begin{equation*}
=\frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi)\left[\int_{-\infty}^{\infty} \frac{d x}{e^{\xi-x}+2+e^{-(\xi-x)}}\right] d \xi=\frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) d \xi \tag{5}
\end{equation*}
$$

5 Note: P may be approximated by $P_{n}=\frac{1}{\pi} \int_{-\infty}^{\infty} f_{n}^{[0]}(\xi) d \xi$
since $f_{n}^{[0]}(\xi)$ converges uniformly to $f(\xi)$ and since $f_{n}^{[0]}(\xi)=0\left(1 / \xi^{2}\right)$ as shown in Corollary (3.3).

To justify interchanging the order of integration in (4.13), we need only show that $f(\xi)$ belongs to $L^{\perp}(-\infty, \infty)$. But this follows from the fact that $f(\xi)=O\left(1 / \xi^{2}\right)$ for $|\xi|>$ a -- as shown in Theorem (3.3) -and that $f\left(\xi_{3}\right)=1$ for $-a \leq \xi \leq a$.
(4.14) $\therefore \rho=\exp \left[-4 \pi^{2}\left(\int_{-\infty}^{\infty} f(\xi) d \xi\right)^{-1}\right]$

V. $\Omega_{n}:$ Derivation of the Integral Equation

 Ω_{n}

F18 (5.1):

In passing from our particular case of Ω_{1} to Ω_{n}, we confine our attention at first to the case of a domain whose boundary slits along each line extend to infinity both on the left and on the right. Thus the complementary intervals along each line will be bounded. Such Ω_{n} will be termed "bounded" and once the result is proved for "bounded" Ω_{n} we will be able to extend it to arbitrary Ω_{n}.

Let the $n+1$ lines containing the boundary slits be labeled ℓ_{m} with corresponding equations $y=k_{m}(m=0,1,2, \ldots, n)$. Let $a_{m}=k_{m}-k_{m-1}$ $(m=1,2, \ldots, n)$. Without loss of generality we may assume that $k_{0}=0$ and
that one of the $d_{m}=\pi$.
We label the complementary intervals along ℓ_{m} as $\left(a_{q}^{(m)}, b_{q}^{(m)}\right)$; $q=1,2, \ldots, N(m)$ where $N(m)$ is the number of complementary intervals along E ℓ_{m}. (See Fig. (5.1).)

Let the functions $h_{m}(x)$, bounded and possessing at most a finite nombet of discontinuities, be prescribed on the components of $C_{\text {In }}$ for each m. Find the function $u(x, y)$ harmonic and bounded in the interior of Ω_{n} which approaches (for each m) the boundary values $h_{m}(x)$ at each point (x, k_{m}) of C_{m} at which $h_{m}(x)$ is continuous.

Once again, we seek to determine the values $f_{m}(x)$ of $u(x, y)$ alone D_{m} for each m (though we will at times find it convenient to let $f_{m}(x)$ denote the values of $u(x, y)$ along all of $\ell_{\text {II }}$) and note that we thus obtain the values of $u(x, y)$ along $C \bigcup D$ which divides the plane into $n+2$ regions in each of which $u(x, y)$ may be determined from its boundary values by the appropriate Poisson integral. Let us denote these regions by

[^2](5.2) (a) $S_{0}=\{(x, y) \mid y<0\}$
(b) $S_{m}=\left\{(x, y) \mid k_{m-1}<y<k_{m}\right\},(m=1,2, \ldots, n)$
(c) $S_{n+1}=\left\{(x, y) \mid y>k_{n}\right\}$
(Of course, if $D_{\binom{0}{n}}=\phi$, then we do not consider $S_{\binom{0}{(0+1}}$.)

(5.3) $\quad \therefore u(x, y)= \begin{cases}\sum_{m=0}^{n+1} u_{m}(x, y), & y \neq k_{m} \\ f_{m}(x) & , y=k_{m}\end{cases}$
where
(5.4)

$$
\begin{array}{ll}
u_{0}(x, y)=\frac{-y}{\pi} \int_{-\infty}^{\infty} \frac{f_{0}(\xi) d \xi}{(\xi-x)^{2}+y^{2}} & , y<0 \\
u_{0}(x, y)= & 0
\end{array}, y>0
$$

(b)

$$
\begin{array}{ll}
u_{n+1}(x, y)=\frac{y-k_{n}}{\pi} \int_{-\infty}^{\infty} \frac{f_{n}(\xi) d \xi}{(\xi-x)^{2}+\left(y-k_{n}\right)^{2}} & , y>k_{n} \\
u_{n+1}(x, y)= & 0
\end{array}
$$

(c)

$$
\begin{aligned}
& u_{\text {In }}(x, y)= \\
& (m=1,2, \ldots, n)
\end{aligned}
$$

Equivalent to formula (5.4)(c) is the formula
(5.5) $u_{m}(x, y)=\frac{1}{d_{m}} \operatorname{Sin} \frac{\pi}{d_{m}}\left(y-k_{m-1}\right) \int_{-\infty}^{\infty} \frac{f_{m-1}(\xi) d \xi}{e^{\frac{\pi}{d_{m}}(\xi-x)}-2 \operatorname{Cos} \frac{\pi}{d_{m}}\left(y-k_{m-1}\right)+e^{-\frac{\pi}{d_{m}}(\xi-x)}}$
$+\frac{1}{d_{m}} \sin \frac{\pi}{d_{m}}\left(y-k_{m-1}\right) \int_{-\infty}^{\infty} \frac{f_{m}(\xi) d \xi}{e^{\frac{\pi}{d_{m}}(\xi-x)}+2 \cos \frac{\pi}{d_{m}}\left(y-k_{m-1}\right)+e^{-\frac{\pi}{d_{m}}(\ddot{\xi}-x)}}, k_{m-1}<y<k_{m}$

$$
u(x, y)=0
$$

$$
, \mathrm{y} \notin\left[k_{m-1}, k_{m}\right]
$$

If $P=(x, y)$ denotes an arbitrary point of S_{m}, Q_{m} an arbitrary point of ℓ_{m}, and $\mathcal{S}_{\text {m }}$ the Poisson kernel of S_{m}, then we have
(5.6)
(a) $\mathcal{P}_{0}=\mathcal{P}_{0}\left(P, Q_{0}\right)$
(b) $\wp_{n+1}=i p_{n+1}\left(P, Q_{n}\right)$

$$
\begin{aligned}
& +\frac{1}{d_{m}} e^{\frac{\pi x}{d_{m}}} \operatorname{Sin} \frac{\pi}{d_{m}}\left(y-k_{m-1}\right) \int_{-\infty}^{\infty} \frac{\left.f_{m}(\xi) e^{\frac{\pi \xi}{d_{m}}} \frac{(\xi \xi}{\left(e^{\frac{\pi \xi}{m_{m}}}+e^{\frac{\pi x}{d_{m}}} \operatorname{Cos} \frac{\pi}{d_{m}}\left(y-k_{m-1}\right)\right.}\right)^{2}+\left(e^{\frac{\pi x}{d_{m}} \operatorname{Sin} \frac{\pi}{d_{m}}\left(y-k_{m-1}\right)}\right)^{2}}{}, \\
& k_{m-1}<y<k_{m} \\
& u_{m}(x, y)=0 \quad, y \in\left[k_{m-1}, k_{m}\right] \\
& \text { (Of course if } D_{\binom{0}{n}}=\varnothing \text {, then we do not consider } u_{\binom{0}{n+1}}(x, y) . \text {) }
\end{aligned}
$$

(c) $\varphi_{m}=\left\{\begin{array}{l}\mathscr{Q}_{m}\left(P, Q_{m-1}, \alpha_{m}\right) \\ \varphi_{m}\left(P, Q_{m}, \alpha_{m}\right)\end{array}\right.$
depending upon whether the boundary point Q lies in ℓ_{m-1} or in ℓ_{m}. (We include d_{m} above since the Poisson kernel of each strip, $S_{d I}$, depends on the strip's thickness, a_{m}. At times, we will simply write $\left.\mathscr{S}_{\mathrm{I}}=\mathcal{S}_{\mathrm{m}}(\mathrm{P}, Q).\right)$

Thus (5.4) could be rewritten as
(5.7)

We now apply the mean value property to $u(P)$ at the point
$P=P_{m}=\left(x, k_{m}\right)$ in one of the intervals of D_{m} and average over the circle $C_{R}\left(P_{m}\right)$ where

$$
(5.8) R=R(x)=\left\{\begin{array}{l}
\min \left(x-a_{q}^{(0)}, b_{q}^{(0)}-x, a_{1}\right), m=0 \\
\min \left(x-a_{q}^{(n)}, b_{q}^{(n)}-x, a_{n}\right), m=n \\
\min \left(x-a_{q}^{(m)}, b_{q}^{(m)}-x, a_{m}, a_{m+1}\right), m=1,2, \ldots, n-1 .
\end{array}\right.
$$

Along $C_{R}\left(P_{m}\right), P=P_{m}+R^{i \theta}$ lies either in S_{m+1} for θ in $[0, \pi]$ or in S_{m} for θ in $[\pi, 2 \pi]$ and R is the largest possible radius under which this condition holds. (At most four points of $C_{R}\left(P_{m}\right)$ lie on a "boundary" line.) See Figures (5.2) - (5.4).

Fig. (5.2):

Fie. (5.3):

Fig. (5.4):

Therefore the mean value property of $u(P)$ at $P=P_{m}$ may be expressed as
(5.9) $f_{m}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(P_{m}+R e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{\pi} u_{m+1}\left(P_{m}+R e^{i \theta}\right) d \theta$

$$
+\frac{1}{2 \pi} \int_{\pi}^{2 \pi} u_{m}\left(P+R e^{i \theta}\right) d \theta
$$

Now by substituting the equations (5.7) in (5.9) and then interchanging the order of integration - as in Section II - we obtain
(5.10) $f_{m}(x)=\int_{\Gamma_{m}} H_{m}(\xi) K_{R}^{(m)}(x, \xi) d \xi+\int_{\Delta_{m}} F_{M}(\xi) K_{R}^{(m)}(x, \xi) d \xi$

$$
=G_{R}^{(m)}(x)+\int_{\Delta_{m}} F_{m}(\xi) K_{R}^{(m)}(x, \xi) d \xi
$$

where
(5.11) $\underset{R}{K_{R}^{(m)}(x, \xi)=}\left\{\begin{array}{l}\frac{1}{2 \pi} \int_{0}^{\pi} P_{m+1}\left(P_{m}+R e^{i \theta}, Q_{m}, d_{m+1}\right) d \theta \\ +\frac{1}{2 \pi} \int_{\pi}^{2 \pi} P_{m}\left(P_{m}+R e^{i \theta}, Q_{m}, a_{m}\right) d \theta, Q_{m}=\left(\xi, k_{m}\right) \in \ell_{m}\end{array}\right.$

$$
\left[\begin{array}{l}
\frac{1}{2 \pi} \int_{0}^{\pi} \varphi_{m+1}\left(P_{m}+R e^{i \theta}, Q_{m+1}, \alpha_{m+1}\right) d \theta, Q_{m+1}=\left(\xi, k_{m+1}\right) \in \ell_{m+1}, \\
\frac{1}{2 \pi} \int_{\pi}^{2 \pi} \rho_{m}\left(P_{m}+R e^{i \theta}, Q_{m-1}, a_{m}\right) d \theta, Q_{m-1}=\left(\xi, k_{m-1}\right) \in \ell_{m-1},
\end{array}\right.
$$

and
(5.12) (a) $\Gamma_{m}= \begin{cases}c_{0} \cup c_{1} & , m=0 \\ c_{n-1} \cup c_{n} & , m=n \\ c_{m-1} \cup c_{m} \cup c_{m+1}, m=1,2, \ldots, n-1\end{cases}$
(b) $\Delta_{m}= \begin{cases}D_{0} \cup D_{1} & , m=0 \\ D_{n-1} \cup D_{n} & , m=n \\ D_{m-1} \cup D_{m} \cup D_{m+1} & , m=1,2, \ldots, n-1\end{cases}$
(c) $H_{m}(\xi)=$ The known values of $u(x, y)$ in Γ_{m}
(d) $F_{m}(\xi)=$ The unknown values of $u(x, y)$ in Δ_{m}
(e) $G_{R}^{(m)}(x)=\int_{\Gamma_{m}} H_{m}(\xi) K_{R}^{(m)}(x, \xi) d \xi$

If we let $K_{R}^{(m)}(x, \xi)=K_{R}(x, \xi)$ for ξ the abscissa of a point $Q=(\xi, y)$ in $\Gamma_{m} \cup \Delta_{m}$ and $\operatorname{let}\binom{H_{m}(\xi)=h(\xi)}{F_{m}(\xi)=f(\xi)}$ under similar conditions, we may then rewrite (5.10) as
$(5 \ldots 13) f(x)=g_{R}(x)+\int_{\Delta_{m}} f(\xi) K_{R}(x, \xi) d \xi, x \in D_{m}(m=0,1,2, \ldots, n)$
Where $x \in D_{m}$ means x is the abscissa of $P_{m}=\left(x, k_{m}\right)$ in D_{m} and $G_{R}^{(m)}(x)=g_{R}(x)$ for $x \in D_{m}$.
VI. Ω_{n} : Solvability of the Integral Equation by Iteration

Equation (5.13) is solvable by iteration if there exists $0<p<1$ such that
(6.1) $0<\int_{\Delta_{m}} K_{R}(x, \xi) d \xi \leq p<1, \quad x \in D_{m},(m=0,1,2, \ldots, n)$
(The left hand inequality is trivial since $K_{R}(x, \xi)$ is positive for all x, ξ.)

We begin our proof of inequality (6.1) by taking note of the set that for P in any of the domains $S_{\text {II }}$ having Poisson kernel $\gamma_{\text {m }}=\mathcal{Y}_{\text {m }}(P, Q)$ where $Q=\binom{\xi, k}{\binom{m-1}{m}}$ is in the boundary, B_{m}, of S_{m}
(6.2) $\quad \int_{B_{m}} \varphi_{m}(P, Q) d \xi=\int_{B_{m}} 1 \cdot \mathcal{P}_{m}(P, Q) d \xi=1$

Therefore, by (5.1I) and by Fubini's theorem, (6.2) implies

$$
\begin{align*}
\int_{\Delta_{0}} K_{R}(x, \xi) d \xi & =\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{D_{0}} P_{1}\left(P_{0}+R e^{i \theta}, Q_{1}, a_{1}\right) d \xi+\int_{D_{1}}^{i P_{1}}\left(P_{0}+R e^{i \theta}, Q_{1}, a_{1}\right) d \xi\right] d \theta \tag{6.3}\\
& +\frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left[\int_{D_{0}} P_{0}\left(P_{0}+R e^{i \theta}, Q_{0}\right) d \xi\right] d \theta
\end{align*}
$$

$$
\leq \frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{B_{1}} \wp_{1}\left(P_{0}+R e^{i \theta}, Q\right) d \xi\right] d \theta+\frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left[\int_{B_{0}} \wp_{0}\left(P_{0}+R e^{i \theta}, Q\right) d \xi\right] d \theta
$$

$$
=1 / 2+1 / 2=1
$$

A similar statement holds for $\int_{\Delta_{K}} K_{R}(x, \xi)$ dg for all other values of m. We now prove inequality (6.1) for x in D_{0} (assuming D_{0} is not empty). Since a comparison of (5.7) (a) and (5.4)(a) shows that

$$
\begin{equation*}
P_{0}\left(P, Q_{0}\right)=\frac{-y}{\pi} \frac{1}{(\xi-x)^{2}+y^{2}}, P=(x, y) \in S_{0} \tag{6.4}
\end{equation*}
$$

we conclude that
(6.5) $\frac{1}{2 \pi} \int_{\pi}^{2 \pi} \gamma_{0}\left(P_{0}+R e^{i \theta}, Q_{0}\right) d \theta=\frac{=R}{2 \pi^{2}} \int_{\pi}^{2 \pi} \frac{\operatorname{Sin} \theta d \theta}{(\xi-x-R \operatorname{Cos} \theta)^{2}+(R \operatorname{Sin} \theta)^{2}}$

$$
=\left[2 \pi^{2}(\xi-x)\right]^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right|
$$

(6.6) $\quad \therefore \int_{D_{0}} K_{R}(x, \xi) d \xi \leq I / 2+\frac{1}{2 \pi^{2}} \int_{D_{0}}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi$

But it has been shown $[1$, p. 314] that there exists $0<\alpha<1$ such that
(6.7) $0<\frac{1}{\pi^{2}} \int_{D_{0}}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d^{\xi} \leq a<1$ for all $x \in D_{0}$ э

$$
R=R(x)=\min \left(x-a_{q}^{(0)}, b_{q}^{(0)}-x\right) .
$$

If $K=R(x)=\bar{a}_{1}$, i.e., $a_{1}<\min \left(x-a_{q}^{(0)}, p_{q}^{(0)}-x\right)$ for $P_{1}=(x, 0) \in\left(a_{q}^{(0)}, b_{q}^{(0)}\right)$, we then have $x \in\left(a_{q}^{(0)}+a_{1}, b_{q}^{(0)}-a_{1}\right)$ and
(6.8) $\frac{1}{\pi^{2}} \int_{D_{0}}(\xi-x)^{-1} \log \left|\frac{\xi-x+d_{1}}{\xi-x-a_{1}}\right| d \xi=1-\frac{1}{\pi^{2}} \int_{C_{0}}(\xi-x)^{-1} \log \left|\frac{\xi-x+a_{1}}{\xi-x-a_{1}}\right| d \xi$

$$
\begin{aligned}
& \leq 1-\frac{1}{\pi^{2}} \int_{b_{q}^{(0)}}^{a_{q+1}^{(0)}}(\xi-x)^{-1} 10 \%\left|\frac{\xi-x+a_{1}}{\xi-x-a_{1}}\right| d \xi \\
& =1-\frac{1}{\pi^{2}} \int_{\left(b_{q}^{(0)}\right.}^{\left(a_{q+1}^{(0)}-x\right) / a_{1}} u_{u^{-1}}^{(0) / a_{1}}\left|\frac{1+u}{1-u}\right| d u \\
& \leq 1-\frac{1}{\pi^{2}} \int_{\left(b_{q}^{(0)}-a_{q}^{(0)}\right) / a_{1}}^{\left(a_{q+1}^{(0)}-a_{q}^{(0)}\right) / a_{1}} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u=a_{q}<1
\end{aligned}
$$

The last integral inequality in (6.8) follows from the fact that the interval $\left[\left(b_{q}^{(0)}-x\right) / a_{1},\left(a_{q+1}^{(0)}-x\right) / a_{I}\right]$ lies to the right of the point $u=1$ (since $b_{q}^{(0)}-x>\alpha_{1}$) and has constant length for all x. Furthermore the function $u^{-1} \log \left|\frac{1+u}{1-u}\right|$ is monotonically decreasing for $u>1$ and consequently its integral over intervals of constant length lying to the right of $u=1$ decreases as the intervals move further to the right.

$$
\therefore x \in\left(a_{q}^{(0)}+a_{1}, b_{q}^{(0)}-a_{1}\right)
$$

$\left(a_{q+1}^{(0)}-x\right) / a_{1}$
$\left(a_{q+1}^{(0)}-a_{q}^{(0)}\right) / a_{1}$
(6.9)

$7_{\left.\text {Let } a_{q}=0 \text { if } R=R(x)<\alpha_{1} \text { for } x \quad\left(a_{q}^{(0)}, b_{q}^{(0)}\right), ~\right) ~}^{\text {in }}$
and thus (6.8) follows. (If $q=N(1)$, then $a_{q+1}^{(0)}=\infty$.)
Letting $\alpha^{\prime}=\underset{q=1,2, \ldots, \mathbb{N}(1)}{\max }\left(\alpha, \alpha_{q}\right)$, we have $\alpha^{\prime}<1$ and therefore
(6.10) $0<\frac{1}{\pi^{2}} \int_{D_{0}}(\xi-x)^{-1} \log \left|\frac{\xi-x+R}{\xi-x-R}\right| d \xi \leq \alpha^{\prime}<1$ for all $x \in D_{0}$
(6.11) $\because \int_{\Delta_{0}} K_{R}(x, \xi) d \xi \leq 1 / 2+\alpha^{\prime} / 2=p<1$.
Q.E.D.

If x is in D_{n}, we prove the inequality (6.1) by a method similar to that used for x in D_{0}. Therefore we now focus our attention on x in D_{m}; $m=1,2, \ldots, n-1$. Without loss of generality, we may pick a specific such m and assume $d_{m+1}=\pi$.

By the comment following (6.3), we may write
(6.12) $\int_{\Delta_{m}} K_{R}(x, \xi) d \xi \leq \frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{D_{m}} P_{m+1}\left(P_{m}+R e^{i \theta}, Q_{m}, \pi\right) d \xi\right] d \theta$

$$
+\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{l_{m+1}} \wp_{m+1}\left(P_{m}+R^{i \theta}, Q_{m+1}, \pi\right) d \xi\right] d \theta+1 / 2
$$

$$
=1 / 2-\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{C_{m}} P_{m+1}\left(P_{m}+R e^{i \theta}, Q_{m+1}, \pi\right) d \xi\right] d \theta+1 / 2
$$

$$
\leq 1-\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{b_{q-1}^{(m)}}^{a_{q}^{(m)}} \rho_{m+1}^{\left.\left.\left.\left(p_{m}+R e^{i \theta}, Q_{m+1}, \pi\right) d \xi\right] d \theta\right] .\right]}\right]
$$

(where ${ }_{q-1}^{(m)}=-\infty$ if $q=1$).
(6.13) Let $(a) a_{q}^{(m)}=a$
(b) $\quad b_{q-1}^{(m)}=b$
(c) $\mathrm{b}_{\mathrm{q}}^{(\mathrm{m})}=\mathrm{b}_{1}$.

By (6.12), we need only show that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{b}^{a} \varphi_{m+1}\left(P_{m}+R e^{i \theta}, Q_{m}, \pi\right) d \xi\right] d \theta>0, x \in D_{m} \tag{6.14}
\end{equation*}
$$

in order to prove (6.1).
(6.15) Letting (a) $\left(a+b_{1}\right) / 2=a_{1}$
(b) $\min \left(a+\pi, a_{1}\right)=a_{2}$
(c) $\max \left(b_{1}-\pi, a_{1}\right)=b_{2}$
we have the following four possibilities for $R=R(x)$ when $P_{m}=\left(x, k_{m}\right) \in\left(a_{q}^{(m)}, b_{q}^{(m)}\right)$.
(6.16)
(a) $a<x \leq a_{2} \longrightarrow R=x-a$
(c) $a_{1} \leq x \leq b_{1}-\pi \Longrightarrow R=\pi$
(b) $a+\pi \leq x \leq a_{1} \longrightarrow R=\pi$
(d) $\mathrm{b}_{2} \leq \mathrm{x} \leq \mathrm{b}_{2} \Longrightarrow \mathrm{R}=\mathrm{b}_{1}-\mathrm{x}$.

We need not consider the possibility $d_{m}<\pi$ and $R=d_{m}$ since the proof of (6.1) for this case is similar to that of the case $R=\pi$. Furthermore, we may assume without loss of generality that P_{m} lies in the left half of (a, b_{1}) and therefore it suffices to consider only the possibilities (6.16)(a), (b).

A comparison of (5.7)(c) and (5.4)(c) shows that
(6.17) $\hat{v}_{m+1}\left(P_{m}+R e^{i \theta}, Q_{n}, \pi\right)=$
$\frac{e^{\xi}}{\pi} \frac{\exp (x+R \operatorname{Cos} \theta) \operatorname{Sin}(R \operatorname{Sin} \theta)}{\left(e^{\xi}-\exp (x+R \operatorname{Cos} \theta) \cos (R \operatorname{Sin} \theta)\right)^{2}+(\exp (x+R \operatorname{Cos} \theta) \operatorname{Sin}(R \operatorname{Sin} \theta))^{2}}$
(6.18) $\therefore \frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{b}^{a} \rho_{m+1}\left(P_{m}+R e^{i \theta}, Q_{m}, \pi\right) d \xi\right] d \theta$

$$
=\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \operatorname{Tan}^{-1}\left[\frac{\left(e^{a}-e^{b}\right) \exp (x+R \operatorname{Cos} \theta) \operatorname{Sin}(R \operatorname{Sin} \theta)}{\left.\exp [2(x+R \operatorname{Cos} \theta)]-\left(e^{a}+e^{b}\right) \exp (x+R \operatorname{Cos} \theta) \operatorname{Cos}(R \operatorname{Sin} \theta)+e^{a+b}\right]}\right] \dot{a} \theta
$$

Let the argument of the arctangent in (6.18) be $J(x, R, \theta)$. Of course $J(x, R, \theta)$ is non-negative since the Poisson kernel is non-negative. Therefore, in order to prove that $\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \operatorname{Tan}^{-1}[J(x, r, \theta)] d \theta$ is positive, it suffices to prove the same of $J(x, R, \theta)$ for θ in some subset of $[0, \pi]$ having positive measure.

Under the conditions of (6.16)(b), we have
(6.19)

$$
J(x, R, \theta)=J(x, \pi, \theta)=\frac{\left(e^{a}-e^{b}\right) \exp (x+\pi \operatorname{Cos} \theta) \operatorname{Sin}(\pi \operatorname{Sin} \theta)}{\exp [2(x+\pi \operatorname{Cos} \theta)]-\left(e^{a}+e^{b}\right) \exp (x+\pi \operatorname{Cos} \theta) \operatorname{Cos}(\pi \operatorname{Sin} 0)+e^{a+b}}
$$

(6.20) $\therefore \theta \in[\pi / 6,5 \pi / 6] \Longrightarrow J(x, \pi, \theta) \geq$
$\frac{\left(e^{a}-e^{b}\right) \exp [a+\pi(1+\operatorname{Cos} \theta)] \operatorname{Sin}(\pi \operatorname{Sin} \theta)}{\exp \left[2\left(a_{1}+\pi \operatorname{Cos} \theta\right)\right]-\left(e^{a}+e^{b}\right) \exp \left(a_{1}+\pi \operatorname{Cos} \theta\right) \operatorname{Cos}(\pi \operatorname{Sin} \theta)+e^{a+b}}=I(\pi, \theta)>0$

For the case $(6.16)(a)$, we note that $J(x, R, \theta)=J(x, x-a, \theta)$ which is
indeterminate at $x=a$. However, using L'Hospital's rule, we ind that
(6.21) $J(x, x-a, \theta) \longrightarrow \operatorname{Sin} \theta /(1+\operatorname{Cos} \theta)=\operatorname{Tan} \theta / 2$ as $x \rightarrow \bar{a}^{+}$

Therefore, if we define
(6.22) $\operatorname{Tan}^{-1}[J(x, x-a, \theta)]=\theta / 2$
then Given $\epsilon>0, \exists \delta(\epsilon)>0 \Rightarrow a<x<a+\delta \Longrightarrow$
(6.23)

$$
\begin{aligned}
& \frac{1}{2 \pi^{2}} \int_{0}^{\pi} \operatorname{Tan}^{-1}[J(x, x-a, \theta)] d \theta>\frac{1}{2 \pi^{2}} \int_{0}^{\pi}(\theta / 2-\epsilon) d \theta=1 / 8-\epsilon / 2 \pi \\
&>0 \text { if } \epsilon<\pi / 4
\end{aligned}
$$

Finally, if $a+\delta \leq x \leq a_{2}$, then
(6.24) $J(x, x-a, \theta)=$

$$
\left(e^{a}-e^{b}\right) \exp [x(1+\operatorname{Cos} \theta)-a \cos \theta] \operatorname{Sin}[(x-a) \operatorname{Sin} \bar{\theta}]
$$

$$
\exp [2 x(1+\operatorname{Cos} \theta)-2 a \operatorname{Cos} \bar{\theta}]-\left(e^{a}+e^{b}\right) \exp [\underline{x}(1+\operatorname{Cos} \theta)-a \operatorname{Cos} \theta] \operatorname{Cos}[(x-a) \operatorname{Sin} \bar{\theta}]+e^{a+\bar{b}}
$$

Using the facts that for θ in $[0, \pi / 2], \cos \theta$ is non-negative and $\operatorname{Sin} \theta$ and $\operatorname{Cos} \theta$ satisfy the respective inequalities
(a) $\sin \theta \geq 2 \theta / \pi$
(b) $\quad \cos \theta \geq 1-2 \theta / \pi$
we find that
(6.26) $\quad \theta \in(0, \pi / 6), a+\delta \leq x \leq a_{2} \Longrightarrow J(x, x-a, \theta) \geq$
$\frac{28}{\pi} \cdot \frac{\left(e^{a}-e^{b}\right) \exp [a+\delta(1+\cos \theta)] \sin \theta}{\exp \left[2 a_{2}+2\left(a_{2}-a\right) \cos \theta\right]-\left(e^{a}+e^{b}\right) \exp [a+\delta(1+\cos \theta)]\left[1-\frac{2\left(a_{2}-a\right)}{\pi} \sin \theta\right]+e^{a+b}}$
$\quad=I_{1}(\theta)>0$.

Obviously the numerator of $L_{1}(\theta)$ is positive. To see that its denominator, $\mathrm{L}_{2}(\theta)$, is also positive, we must consider the separate cases
(a) $a_{2}=a+\pi$
(b) $a_{2}=a_{1}=\left(a+b_{1}\right) / 2$
(6.23) $\quad \therefore a_{2}=a+\pi \Longrightarrow I_{2}(\theta)>\exp [2 a+2 \pi(1+\operatorname{Cos} \theta)]-2 \exp [2 a+\delta(1+\operatorname{Cos} \theta)]$

$$
>\exp [2 a+\delta(1+\cos \theta)] \cdot(\exp [\pi(1+\cos \theta)]-2)>0
$$

(since $\theta \in(0, \pi / 6)$).
(6.29)

$$
a_{2}=\left(a+b_{1}\right) / 2 \longrightarrow I_{2}(\theta)>
$$

$$
\exp \left[b_{1}(1+\operatorname{Cos} \theta)+a(1-\operatorname{Cos} \theta)\right]-\left(e^{a}+e^{b}\right) \exp [a+\delta(1+\operatorname{Cos} \theta)]+e^{a+b}=
$$

$$
e^{a}\left(\exp \left[b_{1}(1+\cos \theta)-a \cos \theta\right]-\exp [a+\delta(1+\cos \theta)]\right)-e^{a+b}(\exp [\delta(1+\cos \theta)]-1)=
$$

$$
\exp [2 a+\delta(1+\operatorname{Cos} \theta)]\left(\operatorname { e x p } \left[\left(b_{1}-(a+\delta)\right)(1+\operatorname{Cos} \theta \bar{L}-1)-e^{a+b}(\exp [\delta(1+\operatorname{Cos} \theta)]-1)>\right.\right.
$$

$$
e^{a+b}(\exp [\delta(1+\cos \theta)]-1)-e^{a+b}(\exp [\delta(1+\cos \theta)]-1)=0
$$

since

$$
\begin{equation*}
\text { (a) } \quad \text { a }>b \tag{6.30}
\end{equation*}
$$

(b) $\quad b_{1}-(a+\delta)>b_{1}-\left(a+b_{1}\right) / 2=\left(b_{1}-a\right) / 2>8$
since
(c) $a<a+\delta<\left(a+b_{1}\right) / 2 \Longrightarrow 0<\delta<\left(b_{1}-a\right) / 2$

We now formulate our result in a theorem,

Theorem (6.1): Let Ω_{n} be a "bounded" parallel slit domain as described in the beginning of section V. Let the boundary values $h_{m}(s)$ be prescribed along the boundary slits $C_{m}(m=0,1,2, \ldots, n)$ of Ω_{n} where s is the parameter of linear arc length along C_{m}. Let $h_{m}(s)$ be bounded on each component of C_{m} (for each m) and let it possess at most a finite number of discontinuities.

Then the Dirichlet problem for Ω_{n} with the stated boundary values can be solved in a constructive way by determining the values $f_{n n}(s)$ of its solution $u(x, y)$ along the complementary intervals, D_{m}, of the boundary slits, C_{m}. The values $f_{m}(s)$ are given as the unique bounded solution of the integral equation (5.13) and are obtainable by iteration.

Thus with the values of u known all along of each of the Lines l_{m} $\left(\ell_{m}=C_{m} \cup D_{m}\right), u(x, y)$ may be determined in the remainder of Ω_{n} by appropriate Poisson integral formulas.

Corollary (6.1): Let
(6.31) (a) $u_{t}(x, y)=\left\{\begin{array}{cc}\sum_{m=0}^{n} u_{t m}(x, y), y \neq k_{m} \\ f_{t m}(x) & , y=k_{m}\end{array}\right.$
(b) $f_{t m}(\xi)=f_{t}(\xi), \xi$ the abcissa of a point $Q=(\xi, y)$ in $\underset{. .}{B_{i}}$.

If $(x, y)=P$ in S_{m}, then let us define
(6.32)

$$
\begin{aligned}
& u_{t}(P)=u_{t m}(P)=\int_{Q_{m} \in B_{m}} f_{t}(\xi) i_{v_{m}}(P, Q) d \xi \\
& \left(\text { For } P \notin S_{m}, u_{t m}(P)=0\right)
\end{aligned}
$$

Then: If $\left\{f_{t}(x)\right\}$ are the iterative approximations of $f(x), u_{t}(P)$ converges uniformly to $u(P)$.

Proof: Since $f_{t}(\xi)$ converges uniformly to $\hat{f}(\xi)$ - see the remarks following (1.10) - given any $\epsilon>0$ we may choose $t(\varepsilon)$ such that
(6.33) $t>t(\epsilon) \Longrightarrow\left|f(\xi)-f_{t}(\xi)\right|<\epsilon$, for all m
(6.34) $\quad \therefore t>t(\epsilon) \Longrightarrow\left|u(P)-u_{t}(P)\right| \leq \int_{Q_{m} \in B_{m}}\left|f(\xi)-f_{t}(\xi)\right| \delta_{m}(P, Q) d \xi$

$$
<\epsilon \int_{Q_{m} \in B_{m}} \wp_{m}(P, Q) d \xi=\epsilon, \text { for ail } m
$$

Theorem (I.1): If Ω_{n} satisfies $D_{\binom{0}{n}}=\phi$, then we may allow $D_{\binom{1}{1}}$ to bs unbounded and the Dirichlet problem for Ω_{n} will still be solvable by iteration.

Proof: As in the case of "pounded" Ω_{n}, we derive the integral equation (5.13) and seek to prove that the inequality (6.1) holds for $273 x \pm n D_{m}$ ($m=1,2, \ldots, n-1$). It is immediately evident that (6.1) holds for $m=2,3, \ldots, n-2$ since the corresponding D_{m} are all bounded. Therefore, we need only prove (6.1) for x in $\binom{1}{n-1}$. Without loss or generality, we may conFine our attention to one of these - say D_{1} - and assume it is unbounded on the left. We may also assume that $d_{1}=\pi, k_{0}=0$. Let $P_{1}=(x, \pi)$ in D_{1} ie in the leftmost interval of D_{1}. There $x<b_{0}^{(1)}$.

If $\left|x-b_{0}^{(1)}\right| \leq \pi$, then $R(x)=\left|x-b_{0}^{(1)}\right|$ and $\int_{\Delta_{1}} K_{R}(x, \xi)$ as is bounded below unity just as in section VI. (See (6.24),(6.26).) Thus we nee only consider the case $\left|x-0_{0}^{(1)}\right|>\pi$ which implies $R=\pi$. (See Fig. (7.I).

Fig. (7.1):
(Once again we need not consider the possibility that $\tilde{d}_{2}<\pi$ - and therefore $R=a_{2}$ for x far out enough - since the proof of (6.1) for $\%$ in D_{2} is similar in both cases.)

$$
\text { Since } D_{0}=\phi \text {, we have, for } R=\pi
$$

By slabstitution in (5.4)(c), we find

$$
(7.2) \frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left[\int_{l_{1}}^{\left.i P_{1}\left(P_{1}+\pi e^{i \theta}, Q_{1}, \pi\right) d \xi\right] d \theta=}\right.
$$

$$
\frac{1}{2 \pi^{2}} \int_{\pi}^{2 \pi}\left[\int_{-\infty}^{\infty} \frac{\exp (\xi+x+\pi \cos \theta) \sin (\pi+\pi \operatorname{Sin} \theta) \alpha \xi}{\left[e^{5}+\exp (x+\pi \operatorname{Cos} \theta) \cos (\pi+\pi \operatorname{Sin} \theta)\right]^{2}+[\exp (x+\pi \operatorname{Cos} \theta) \sin (\pi+\pi \sin \theta)]^{2}}\right] d \theta
$$

$$
=I / 2-1 / \pi
$$

$\therefore x \in D_{1}, x<b_{0}^{(1)},\left|x-b_{0}^{(1)}\right|>\pi \longrightarrow$
(7.3) $0<\int_{\Delta_{I}} K_{\pi}(x, \xi) d \xi \leq 1 / 2+(1 / 2-1 / \pi)<1$, Q.E.D.

Corollary (7.1): The methods of theorem (7.I) can be extended to unbounded D_{m} if either D_{m-1} or D_{m+1} is bounded but not if they are both unbounded.

Proof: According to the methods of theorem (7.1), we let $\dot{a}_{m-1}=\pi$ and antegrate $K_{\pi}(x, \xi)$ over all of B_{m+1}, obtaining the bound $I-1 / \pi$. Therefore, a necessary and sufficient condition for any extension of thesemethocs to the case of nonempty D_{m-1} is that for all "large" x in D_{m},

$$
\begin{equation*}
\int_{D_{m-1}} K_{\pi}(x, \xi) d \xi<1 / \pi \tag{7.4}
\end{equation*}
$$

Now if D_{m-1} is included in $[\alpha, \bar{\beta}]$, it can be shown that

$$
\begin{equation*}
\int_{D_{m-1}} K_{\pi}(x, \xi) d \xi \leq \frac{1}{2 \pi^{2}} \int_{0}^{\pi} M(\beta, \alpha, x, \theta) d \theta \quad \text { where } \tag{7.5}
\end{equation*}
$$

(7.6) (a) $M(\beta, \alpha, x, \theta)=I(\beta, x, \theta)-I(\alpha, x, \theta)$ and
(b) $I(t, x, \theta)=\operatorname{Tan}^{-1}\left[\frac{e^{t}+\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Cos}(\pi \operatorname{Sin} \theta)}{\exp (x-\pi \operatorname{Cos} \theta) \operatorname{Sin}(\pi \operatorname{Sin} \theta)}\right]$

Since $M(\beta, \alpha, x, \theta)$ is nonnegative and approaches zero uniformly as $|x|$ approaches infinity, there is a positive number α^{\prime} such that for all θ,
(7.7) $|x|>\alpha^{\prime} \Longrightarrow M(\beta, \alpha, x, \theta)<I$
(7.8) $\therefore|x|>\alpha^{\prime} \Longrightarrow \int_{D_{m-1}} K_{\pi}(x, \xi) d \xi<\frac{1}{2 \pi}<\frac{1}{\pi}$

Now it is easily verified that

$$
\begin{equation*}
M(\beta, \alpha, x, \theta) \leq \mathbb{N}(\alpha, x, \theta)=\pi / 2-I(\alpha, x, \theta) \tag{7.9}
\end{equation*}
$$

and that $\mathbb{N}(\alpha, x, \theta)$ increases monotonically from zero to $\pi \sin \theta$ as x increases fror minus infinity to infinity.

Therefore, if $|x| \leq \alpha^{\prime}$, then

$$
\begin{equation*}
\int_{D_{m-1}} K_{\pi}(x, \xi) d \xi \leq \frac{1}{2 \pi^{2}} \int_{0}^{\pi} N(\alpha, \alpha, \theta) d \theta<\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \pi \sin \theta d \theta=1 / \pi \tag{7.10}
\end{equation*}
$$

If $D_{\text {m-1 }}$ is unbounded, say on the right, and therefore contains some interval $[\beta, \infty)$, then it can be shown that

$$
\begin{equation*}
\int_{D_{m-1}} K_{\pi}(x, \xi) d \xi \geq \frac{1}{2 \pi^{2}} \int_{0}^{\pi} N(\beta, x, \theta) d \theta \longrightarrow \frac{1}{2 \pi^{2}} \int_{0}^{\pi} \pi \sin \theta d \theta=1 / \pi \tag{7.11}
\end{equation*}
$$

as x approaches infinity.
(A similar method yields the same results for D_{m+1} (un)bounded.) Q.E.D.

We are now prepared to consider the solution of the Dirichlet proidem for arbitrary $\Omega_{\Omega_{1}}$-i.e., to remove the boundedness restriction on D_{m} for any or all $m=0,1,2, \ldots, n$. We have thus far delayed consideration of the "unbounded" Ω_{n} since the methods developed for proving (6.1) will not work for x "too large" in one of the unbounded intervals of D.

To be more precise, let us recall that we proved (6.1) by proving (6.14) for each of the possible values of R stated in (6.16). Now the unbounded intervals of D will be either the lestmost intervel. of D_{m}, the rightmost interval of $D_{m i}$, or both for one or more m. Suppose, fron some m, the richtmost interval of D_{m} is unbounded. (Therefore, $b_{N}^{(m)}(m)=\infty$.) $A=$ in
scction V, we may assume without loss of generality that $a_{m+1}=\pi$ (unless $m=n$, then $d_{n+1}=0$). Then, if $m \neq n$, and x in $D_{\text {㢈 }}$ satisfies
$x-a_{\operatorname{Ni}(m)}^{(m)}>\pi>d_{m}--\operatorname{and}$ is thus "too large" $-\mathrm{R}=\mathrm{R}(\mathrm{x})=\pi$, and the lent side of (6.14) asswnes the form

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{b}^{a} \wp_{m+1}\left(P_{m}+\pi e^{i \theta}, Q_{m}, \pi\right) d \xi\right] d \theta= \tag{7.12}
\end{equation*}
$$

$\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \operatorname{Tan}^{-1}\left[\frac{\left(e^{a}-e^{b}\right) \exp (x+\pi \cos \theta) \sin (\pi \operatorname{Sin} \theta)}{\exp [2(x+\pi \cos \theta)]-\left(e^{a}+e^{b}\right) \exp (x+\pi \operatorname{Cos} \theta) \operatorname{Cos}(\pi \operatorname{Sin} \theta)+e^{2+b}}\right] d \theta$
(where $P_{m}=\left(x, k_{m}\right), a=a_{N(m)}^{(m)}, b=b(m)(m)$)
as in (6.18).
However, the right side of (7.12) approaches zero as x approaches infinity, and therefore (6.14) is not sainsied.

If $a_{m}<\pi$, then $x-a>\alpha_{m}$ implies $R=R(x)=a_{m}$ and thus a_{m} replaces π in the above integrands. Nevertheless the right side of (7.12) still approaches zero as x approaches infinity and therefore (6.14) is still not satisfied.

If $m=n$, we assume without loss of generality that $\hat{a}_{n}=\pi$ and (7.12) becomes
(7.13)

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{\pi}\left[\int_{b}^{a} \sum_{n+1}\left(P_{n}+\pi e^{i \theta}, Q_{n}\right) d \xi\right] d \theta=\frac{1}{2 \pi^{2}} \int_{b}^{a}(\xi-x)^{-1} \log \left|\frac{\xi-x+\pi}{\xi-x-\pi}\right| d \xi \\
& =\frac{1}{2 \pi^{2}} \int_{(b-x) / \pi}^{(a-x) / \pi} u^{-1} \log \left|\frac{1+u}{1-u}\right| d u
\end{aligned}
$$

Once again, the integrals in (7.13) approach zero as x aggroackaz infinity and therefore (6.14) is satisfied for no unbounded $D_{m} .8$ This is Why our methods have thus far been unable to yield a better extension of "hounded" Ω_{n} than that in corollary (7.1).

It will be noticed that as long as x is close enough to ε-i.e., less than π away, or boundedly far away - (6.14) is true. Thus \& new method of defining R may be deemed aavisable - since until now we delined R as a bounded function of the distance from x to a. However, even allowing $R=x-a$ for all $x>$ a --and hence allowing R to approach infinity along with the distance-- fails to prove (6.14).

Thus we use a "limiting" iteration method for the constructive solution of the Dirichlet problem for "unbounded" Ω_{n}. Admittedzy, this method falls short of the elegance of the "ordinary" iteration method since it requires the solution of an infinite sequence of Dirichlet problems for "boundea" Ω_{n}. It is the writer's hope that a satisfactory extension of the $\bar{S}_{\text {Note: }}$ If (6.12) had been written instead as

$$
\int_{\Delta_{m}} K_{R}(x, \xi) d \xi \leq 1-\frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left[\int_{b}^{a} \rho_{m}\left(P_{m}+R e^{i \theta}, Q_{m}, a_{m}\right) d \xi\right] d \theta
$$

(i.e., if the bounaing were to be periormed over the lower semicircle) we would still find that

$$
\frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left[\int_{b}^{a} \rho_{m}\left(P_{m}+\operatorname{Re}^{i \theta}, Q_{m}, d_{m}\right) d \xi\right] d \theta \longrightarrow 0 \text { as } x \longrightarrow \infty
$$

exactly as in (7.12) and (7.13).
"orafinery" iteration method to "urbounded" Ω_{n} will subsequently be founa. For the moment, however, we must be content with the "limiting" Iteratich method which we now describe.

Without loss of generality, we may assume that ell the D_{m} are unbounded - in fact on both sides - thus making all the C_{m} bounded. Since there are only finiteiy many, $(n+1) C_{m}$, there exists a positive number a_{0} such that $|x|<\alpha_{0}$ for all x in c.
(7.14) (a) Let $\Omega_{n a}=\Omega_{n}-C_{\alpha}^{\prime}$ where
(b) $C_{\alpha}^{\prime}=\left.\right|_{m=0} ^{n} c_{m \alpha}$ where
(c) $C_{\text {max }}=\left\{\left(x, k_{\text {m }}\right)| | x \mid \geq a>a_{0}\right\}$
(d) Let $C_{\alpha}=C \bigcup C^{\prime}{ }_{\alpha}$
(e) Let $D_{\alpha}=\int_{m=0}^{n} \ell_{m}-C_{\alpha}$
(Thus D_{C} is the union of the complementary intervals of C_{Q}.)

Therefore we have
Theoren (7.2): Given the Dirichlet problem for Ω_{n}, whish we may assume, Without loss of generality, has non-negative boundary values, let there be formulatec corresponding Dirichlet problems for all the domains $\Omega_{\text {no }}$ specifying the same boundary values on C as those given in the problem for a_{n} and the boundary values zero along aill of $\mathrm{C}^{\prime}{ }_{\alpha}$. If the solutions of these Dirichlet problems --solvable by iteration-- are denoted $u_{i t}(x, y)$ and if the solution of the Dirichlet problem for λ_{Ω} is $u(x, y)$, then

$$
\begin{equation*}
u(x, y)=\operatorname{Lim}_{\alpha \rightarrow \infty} u_{\alpha}(x, y) \tag{7.15}
\end{equation*}
$$

Proof:
(7.16) Let $(\mathrm{B}) \mathrm{f}_{\alpha}(\mathrm{x})$ be the values of $u_{\alpha}(x, y)$ along D_{α}
(b) $h_{\alpha}(x)$ be the prescribed values of $u_{\alpha}(x, y)$ along C_{α}

Therefore,

$$
\begin{equation*}
h(x)=\left.h_{\alpha}(x)\right|_{x \in C} \tag{7.17}
\end{equation*}
$$

Therefore, given any $\beta \geq \alpha_{0}, \alpha \geq \beta$ implies that the functions $u_{\alpha}(x, y)$ are all harmonic and uniformly bounded in $\Omega_{n \beta}$. Furthermore

$$
\begin{equation*}
\alpha_{2}>\alpha_{1} \geq \beta \Longrightarrow u_{\alpha_{2}}(x, y) \geq u_{\alpha_{1}}(x, y) \text { in } \Omega_{n \beta} . \tag{7.18}
\end{equation*}
$$

These facts follow from the maximum and minimus principles for functions harmonic and bounded in $\Omega_{n \beta}$ by the following reasoning.

Let (a) $I=\operatorname{Inf}\left(0, \operatorname{Inf}_{x \in C} h(x)\right)$
(b) $s=\operatorname{Sup}\left(0, \operatorname{Sup}_{x \in C} h(x)\right)$
(7.20) $\quad \therefore I \leq \operatorname{Inf}_{x \in C_{\alpha}} h_{\alpha}(x) \leq u_{\alpha}(x, y) \leq \operatorname{Sup}_{x \in C_{\alpha}} h_{\alpha}(x) \leq S$
by the maximum and minimum principles, hence the first assertion.
Along any line ${ }_{\mathrm{m}}$,
(7.21) (a) $\alpha_{1} \leq|x| \leq \alpha_{2} \Longrightarrow u_{\alpha_{1}}\left(x, k_{m}\right)=0$ and
(b) $u_{a_{2}}\left(x, k_{m}\right) \geq 0$ (by the minimum principle applied to $\Omega_{n_{a_{2}}}$) and
(c) $|x|>a_{2} \Longrightarrow u_{\alpha_{I}}\left(x, k_{m}\right)=u_{\alpha_{2}}\left(x, k_{m}\right)=0 \quad$ (See Fig. (7.2).)

Fig. (7.2): Picture of C_{α} (for several α) along b_{m}

Thereiore, since $u_{\alpha_{2}}(x, y)=u_{c_{1}}(x, y)$ along C, but $u_{\alpha_{2}}(x, y) \geq$ $u_{\alpha_{1}}(x, y)$ along $c_{\alpha_{1}}$, the minimum principle tells us that $u_{\alpha_{1}}(x, y) \leq u_{\alpha_{2}}(x, y)$ in $\Omega_{n \alpha_{1}}$. Finally, the fact that $\Omega_{n \beta}$ is included in $\Omega_{n \alpha}$, implies that $u_{\alpha_{1}}(x, y) \leq u_{\alpha_{2}}(x, y)$ in $\Omega_{n \beta}$ as asserted in (7.9).

Thus for each $\beta \geq \alpha_{0}$ and any sequence $\left(\alpha_{j}\right\}$ such that $\alpha_{j} \geq \beta$ ior eil j, and α_{j} approaches infinity, the corresponding sequence $\left(u_{\alpha_{j}}(x, y)\right\}$ is a monotone nondecreasing sequence of functions harmonic anc unirormly bounded in $\Omega_{n \beta}$. Therefore, by Harnack's theorem or monotone convergence, they converge uniformly on compact subsets to a function $v(x, y)$ harmonic and bounded in $\Omega_{n \beta}$.

The limit function $V(x, y)$ is independent of the sequence chosen; for if $\left\{\alpha_{j}\right\}$ is the sequence yielding $V(x, y)$ and $\left\{\gamma_{j}\right\}$ is sny other sequence (of the "right" type), then their comon refinement $\left\{\sigma_{j}\right\}$ yields the correspondIne sequence $\left\{u_{\sigma_{j}}(x, y)\right\}$ which converges to $W(x, y)$ hamonic and boundec. In
$\Omega_{n \beta}$. But since the stiosequence $\left(u_{a_{l}}(x, y)\right\}$ of $\left\{u_{o}(x, y)\right\}$ converges to $V(x, y)$ in $\Omega_{n \beta}$, we concluae that $W(x, y) \equiv V(x, y)$ in $\Omega_{n \beta}$.

However, now the founction $V(x, y)$ is hermonic and bounded in $\Omega_{n \beta}$ for ali $\beta>\alpha_{0}$ since we may order the sequence $\left\{\alpha_{j}\right\}$ by "size places", and by casting off the "right" Iinite number of terms, begin it siove any β thus making $V(x, y)$ hamonic ana boundea in $\Omega_{n \beta}$ for any, ard henee ell, $\beta>\alpha_{c}$.

Therefore, $V(x, y)$ is harmonic and bounded tiroughout \sqrt{l}; inor if not, then there exists some $\beta>a_{0}$ such that $V(x, y)$ is not hamonic at $\left(\beta, k_{m}\right)$ Ior sone m. But, given any positive ϵ, we $c a n$ show that $V(x, j)$ is namonic and bounded in $\Omega_{n(\beta+\epsilon)}$ and thereiore at the point $\left(\beta, k_{m}\right)$.

Finally, $V(x, y)$ has the same boundary values as $u(x, y)$ and hence, by the uniqueness principle for functions harmonic and bounded in s_{n}, we have

$$
\begin{equation*}
V(x, y) \equiv u(x, y) \text { in } \Omega_{n} \tag{7.22}
\end{equation*}
$$

Q.E.D.

Thus the (limiting) iteration method may be used to solve the Dirichlet problem for any domain whose conformal map onto "unbouncec" in is known.

Example: Let X_{n} be a kali-plene with a finite numer of́linear slits removed along (n-1) rays emanating from a fixed point on the bounding straignt Iine. Without loss of generality, we may take this domein to be an upger half-plane, the bounding iine to be the x-axis and the fixed point to be the origin. Let the rays be labeled according to increasing argment as $l_{m}(m=1,2, \ldots, n-1)$ and let C_{m} and D_{m} be taken as before. We denote the nor-negative and non-positive halves of the x-axis by ℓ_{c} and ℓ_{r} respectively.

Thus
(7.23)

$$
\left.\begin{array}{l}
l_{m}=\left\{(r, \theta) \mid \theta=\theta_{m}, r \geq 0\right\} \\
\left(m=0,1,2, \ldots, n ; 0=\theta_{0}<\theta_{1}<\ldots<\theta_{n-1}<\theta_{n}=\pi\right)
\end{array}\right\} \text { See } \quad \text { :1g. (7.3) }
$$

Fig. (7.3):

The function $\omega=(k / \pi)$ log 2 (principle value) maps X_{n} onto the domain Ω_{n} consisting of a strip of wiath k (based on the x-axis) from which a finite number of linear slits lying on ($n-1$) Iines parallel to the sinip's bases have been removed. Thus the Dirichlet problem for X_{n} may de solved in a constructive way by solving the corresponaing Dirichlet problen for Ω_{n}. If ior some $\ell_{m}(m=1,2, \ldots, n-1), D_{m}$ is unbounded (i.e., contains points arbitrarily close to or far from the oricin), then (by corollary (7.I)) the "ordinary" iteration method is applicable as long as either D_{m-1} or D_{m+1}
is bounded. 9 Otherwise, the Dirichlet problem for χ_{n} may be solved by the "limiting" iteration method.

VIII. Applications I

The harmonic measure $u_{j}(x, y)$, associated with the bouncuary siit $A_{\text {, }}$ of the domain Ω_{n}, is defined as the function harmonic in Ω_{n}, continucus ord bounded in $\bar{\Omega}_{n}$, whose boundary values are unity on A_{j} and zero on the remainder of C. If $v_{j}(x, y)$ is the hamonic conugete of $u_{j}(x, y)$ and A_{r} is any boundary slit of Ω_{n}, then the period $p_{j r}$ of $v_{j}(x, y)$ as the point (x, y) perCorms a circuit about A_{r} is given by

$$
\begin{equation*}
p_{j r}=\oint_{E_{r}}\left[\partial v_{j}(x, y) / \partial s\right] d s=\oint_{E_{r}}\left[\partial u_{j}(x, y) / \partial n\right] d s \tag{8.1}
\end{equation*}
$$

Where E_{r} is any (surficiently smooth) curve described in the positive sense surrounaing only the boundary component A_{r} of C and $\partial / \partial n_{n}$ indicates differentiation with respect to the outward pointing normal.

The periods $p_{j r}$ of the functions $v_{j}(x, y)$ have several important uses in the theory of conformal mapping, one of which is in the construction of a confornal map of given domain onto one of its canonical domains. Our application will be the determination of $p_{j r}$ purely in terms of the values $f_{n j}(x)$ of the function $u_{j}(x, y)$ on the lines $y=k_{m}$. In this section we detemine $p_{j n}$ for a perticular class of the domains Ω_{n}; in the next section we determine $p_{j r}$ for arbitrary Ω_{n}.

Let Ω_{n} be a parallel slit domain having at least one finite bounary slit and having the property that the projections of any two of its finite boundary slits (on the x-axis) do not overlap either each other or the infinite boundery component. Furthermore, we assume that thare is so intinite
boundary component winch extends along each line to -a ir om the left tank to a from the right. ($a>0$. See Fig. (8.1).)

Fig. (8.1):

We label the finite boundary slits in order of the appearance from left to right of their projections on the x-axis as

$$
\begin{equation*}
A_{j}=\left[b_{j}, a_{j+1}\right],\left(j=1,2,3, \ldots, \sum_{m=0}^{n}[N(m)-1]\right), \tag{8.2}
\end{equation*}
$$

Where $\mathbb{N}(\mathrm{m})$ is the number of complementary intervals along l_{m} and hence $\mathbb{N}(\mathbb{m})-1$ is the number of bounciary slits along l_{m}. Let A_{J},

$$
\begin{equation*}
J=1+\sum_{m=0}^{n}[N(m)-1] \tag{8.3}
\end{equation*}
$$

represent the infinite boundary component.
Since the projections of the A_{r} do not overlap, it is possible .- Cor
each inxed ro- to take as E_{r} a rectangle whose vertical siaes are parallel to the y-axis and pess through the gaps $\left(a_{r}, b_{r}\right),\left(a_{r+1}, b_{r+1}\right)$. (Bor $r=J$, We reviace rti by I.) We will subsequently see that it is pemmissible to nIIow the horizontel sides of ty to recede to infinity. (See Fig. (9.3).) Therefore, we may rewrite (8.1) as

$$
\begin{equation*}
p_{j r}=I_{j r}-I_{j(x+1)} \tag{8.4}
\end{equation*}
$$

where for $a l l x$ in $\left(a_{r}, b_{r}\right)$

$$
\begin{equation*}
I_{j r}(x)=\int_{-\infty}^{\infty}\left[\partial u_{j}(x, y) / \partial x\right] d y=I_{j r} \tag{8.5}
\end{equation*}
$$

[We will subsequentiy show that $I_{j r}$ is constant fiox x in $\left(a_{r}, b_{n}\right)$.]
Before proceeding, we recall severgl properties of the periods I I_{i} which we shall have occasion to use:

$$
\begin{equation*}
\text { (e) } p_{j r}=p_{r j} \tag{8.6}
\end{equation*}
$$

$$
\text { (b) } \sum_{r=1}^{J} p_{j r}=0, \quad(j=1,2, \ldots, J)
$$

Thus it suffices to detemine the $p_{j r}$ for $j<j, r<J$. Thereiore, the horizontal sides of all E_{r} under consideration are each or finite leneth --in fact they are at most of length 2a. Thus, in letting these sides recede to infinity, we need only show that $\partial u_{j}(x, y) / O y$ aprocaches zero uniformy as y approaches infinity whenever x is in $[-a, E]$. (onis will also prove the constancy of $I_{j r}(x)$ Ior x in $\left(a_{r}, b_{r}\right)$.) Also, since we need omy
consider $j<J$, we have for all m and for all x such that $|x| \geq$ a,

$$
\begin{equation*}
\hat{I}_{m j}(x) \equiv 0 \tag{8.7}
\end{equation*}
$$

Now as the horizontal sides of E_{r} recede to infinity, they eventunlly enter and remain in $S\binom{0}{n+1}$ respectively where the values of $u,(x, y)$ we eiven by the formulas $(5.4)\binom{a}{b}$ respectively. Since (for all $m=0,1$, $2, \ldots, n$) the functions $\hat{I}_{\text {mj }}$ (ξ) are uniformy bounded - in fact $0 \leq f_{m j}(\xi) \leq 1$ by the moximum and minimum principles -upon differentistion of both sides of $(5.4)\binom{2}{0}$, we find that as y approaches infinity,
(a) $\quad \partial u_{j}(x, y) / \partial x=0\left(1 /|y|^{3}\right)$
(b) oun $(x, y) / \partial y=0\left(1 / y^{2}\right)$

By (8.8), we see that (8.4) holds. We prove the constancy of $I_{j r}(x)$ for x in $\left(a_{r}, b_{r}\right)$ by considering $\left.\oint_{E_{r}^{\prime}}\left[\partial u_{j}(x, y) / \partial\right]_{r}\right]$ ds where $E^{\prime}{ }_{r}$ is a rectangle both of whose vertical sides pass through the gap (a_{r}, D_{r}) and are parallel to the y-axis. Since $E_{r}{ }_{r}$ encloses a region whose closure is interior to Ω_{n}, we conclude that

$$
\begin{equation*}
\oint_{E^{\prime}}\left[\partial u_{j}(x, y) / \partial r_{I}^{-}\right] d s=0 \tag{8.9}
\end{equation*}
$$

Thus as the horizontal sides of E_{r}^{\prime} receae to infinity, the assertion (8.9) remains true. But by (8.8)(b), the contribution of the horisontril sides to the integral in (8.9) approaches zero. Thus, in the limit,
for all α, β in $\left(a_{r}, b_{r}\right)$
(8.10)

$$
\int_{-\infty}^{\infty}\left[\partial u_{j}(\beta, y) / \partial x-\partial u_{j}(\alpha, y) / \partial x\right] d y=0
$$

Therefore, (8.3) holds. Thus, if we integrate both sides of (8.3) over $\left(n_{r}, b_{r}\right)$-as done in $[2, p .127]-$ we obtain

$$
\begin{align*}
& \int_{a_{r}}^{b_{r}} I_{j r} d x=\left(b_{r}-a_{r}\right) I_{j r}=\int_{a_{r}}^{b_{r}} \int_{-\infty}^{\infty}\left[\partial u_{j}(x, y) / \partial x\right] d y d x \tag{8.11}\\
& =\int_{-\infty}^{\infty} \int_{a_{r}}^{b_{r}}\left[\partial u_{j}(x, y) / \partial x\right] \partial r c \hat{y} y=\int_{-\infty}^{\infty}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] a y
\end{align*}
$$

Where the inversion of order of integration is justified by (B.B) (a).

$$
\begin{equation*}
\left(b_{r}-a_{r}\right) I_{j r}=\int_{-\infty}^{0}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] d y \tag{8.12}
\end{equation*}
$$

$$
+\sum_{m=1}^{n} \int_{k_{m-1}}^{k_{m}}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] d y+\int_{k_{n}}^{\infty}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] d y
$$

By $(5.4)(a)$ ana (8.7) we obtain -after twice interchanging the order of integration--

$$
\begin{equation*}
\int_{-\infty}^{0}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] d y=\frac{1}{\pi} \int_{-a}^{a} f_{0 j}(\xi) \log \left|\frac{\xi-a_{r}}{\xi-b_{r}}\right| d \xi \tag{8.13}
\end{equation*}
$$

Similarly,
(8.14) $\int_{k_{n}}^{\infty}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] d y-\frac{1}{\pi} \int_{-a}^{a} f_{n j}(\xi) \log \left|\frac{\xi-a_{r}}{\xi-b_{r}}\right| a \xi$

By (5.5) and (8.5) we obtain - after twice interchanging the order or integration-

$$
\begin{aligned}
& (8.15) \int_{k_{m-1}}^{k_{m}}\left[u_{j}\left(b_{r}, y\right)-u_{j}\left(a_{r}, y\right)\right] d y= \\
& \frac{1}{\pi} \int_{-a}^{a}\left[f_{(m-1) j}(\xi)+f_{m j}(\xi)\right] \log \left|\operatorname{Tanh}\left[\left(\pi / 2 d_{m}\right)\left(\xi-a_{r}\right)\right] \operatorname{ctnh}\left[\left(\pi / 2 d_{m}\right)\left(\xi-b_{r}\right)\right]\right| d \xi
\end{aligned}
$$

$$
(8.16) \quad \therefore \quad I_{j r}=\frac{1}{\pi\left(b_{r}-a_{r}\right)} \int_{-a}^{a}\left[f_{0 j}(\xi)+f_{n j}(\xi)\right] \log \left|\frac{\xi-a_{r}}{\xi-b_{r}}\right| d \xi+
$$

$$
\frac{1}{\pi\left(b_{r}-a_{r}\right)} \sum_{m=1}^{n} \int_{-a}^{a}\left[f_{(m-1) j}(\xi)+f_{m j}(\xi)\right] \log \left|\operatorname{Tanh}\left[\left(\pi / 2 a_{m}\right)\left(\xi-a_{r}\right)\right] \operatorname{ctnh}\left[\left(\pi / 2 a_{m}\right)\left(\xi-b_{r}\right)\right]\right| a \xi
$$

IX. Applications II

We now extend the results of the previous section to arivitrary $?_{n}$. This time, however, it will be more convenient for us to label the finite boundary slits -of which we assume Ω_{n} has at least one-- in order of their appearance Prom left to right along their respective lines b_{m} from $m=0$ to $\mathrm{m}=\mathrm{n}$ as

$$
\begin{equation*}
A_{j}+\left[a_{j}, b_{j}\right], \quad\left[j=1,2,3, \ldots, \sum_{m=0}^{n}(\mathbb{N}(M)-I)\right] \tag{9.1}
\end{equation*}
$$

Again A_{j}, where

$$
\begin{equation*}
J=1+\sum_{m=0}^{n} \mathbb{N}(m)-1 \tag{9.2}
\end{equation*}
$$

Will represent the infinite boundary component (if there is one) and we reed only consider $p_{j r}$ for $j<1, r<J$ (by 8.6). As before we set $f_{m j}(x)=u_{j}\left(x, k_{m}\right)$ and seek to determine $p_{j r}$ in terms of the values $f_{m j}(x)$. We do so by considering first those A_{r} that lie on an "interior" line (i.e., a line ℓ_{m} such that $m \neq 0, n$) and then those A_{r}, if any, that lie on an "end" line.

If A_{r} lies on an "interior" line, we choose E_{r} as the boundary of $\left\{(x, y) \mid a_{r} \leq x \leq b_{r}, \bar{k}_{m} \leq y \leq \bar{k}_{m+1}\right\}$ where $\bar{k}_{m}=\left(k_{m-1}+k_{m}\right) / 2$. (See Fig. (9.1).)

Fig. (9.1):

By differentiating both sides of (5.5) and by interchanging the order of integration, we find that

$$
\text { (9.4) } \int_{E_{r}}^{b_{r}}\left[\partial u_{j}\left(x, k_{m}\right) / \partial y-\partial u_{j}\left(x, k_{m+1}\right) / \partial y\right] d x=
$$

$$
\left.\frac{1}{a_{m+1}} \int_{-\infty}^{\infty} \frac{\left[f_{m j}(\xi)-1\right.}{} \frac{(m+1) j}{}(\xi)\right]\left(\exp \left[\left(2 \pi / a_{m+1}\right)\left(\xi-a_{r}\right)\right]-\exp \left[\left(2 \pi / a_{m+1}\right)\left(\xi-b_{r}\right)\right]\right) d \xi
$$

$$
+\frac{1}{a_{m}} \int_{-\infty}^{\infty} \frac{\left.\left[p_{m j}(\xi)-f(m-1) j(\xi)\right]\left(\exp \left[2 \pi / a_{m}\right)\left(\xi-a_{r}\right)\right]-\exp \left[\left(2 \pi / a_{m}\right)\left(\xi-b_{r}\right)\right]\right) a \xi}{\left(1+\exp \left[\left(2 \pi / a_{m}\right)\left(\xi-a_{r}\right)\right]\right)\left(1+\exp \left[\left(2 \pi / a_{m}\right)\left(\xi-b_{r}\right)\right]\right)}
$$

and that

$$
\begin{aligned}
& \bar{k}_{m+1} \\
& \text { (9.5) } \\
& {\left[\partial u_{j}\left(a_{r}, y\right) / \partial x-\partial u_{j}\left(b_{r}, y\right) / \partial x\right] d y=} \\
& \int_{\bar{k}_{m}}^{k_{m}}\left[\partial u_{j}\left(a_{r}, y\right) / \partial x-\partial u_{j}\left(b_{r}, y\right) / \partial x\right] d y+\int_{k_{m}}^{\bar{k}_{m+1}}\left[\partial u_{j}\left(a_{r}, y\right) / \partial x-\partial u_{j}\left(b_{r}, y\right) / \partial x\right] d y= \\
& \frac{1}{2 a_{\text {m }}} \int_{-\infty}^{\infty} \sum_{(m-1) j}(\xi)\left[\operatorname{Tanj} \frac{\pi}{2 \dot{a}_{m}}\left(\xi-a_{r}\right) \sec \frac{\pi}{a_{\text {m }}}\left(\xi-a_{r}\right)-\operatorname{Tanh} \frac{\pi}{2 \dot{a}_{\text {m }}}\left(\xi-\dot{o}_{r}\right) \operatorname{sech} \frac{\pi}{a_{\text {mi }}}\left(\xi-b_{r}\right)\right] d \xi+ \\
& \frac{1}{2 a_{m}} P \int_{-\infty}^{\infty} f_{m j}(\xi)\left[\operatorname{ctnh} \frac{\pi}{2 a_{m}}\left(\xi-a_{r}\right) \operatorname{sech} \frac{\pi}{a_{m}}\left(\xi-a_{r}\right)-\operatorname{ctnh} \frac{\pi}{2 a_{m}}\left(\xi-b_{r}\right) \operatorname{sech} \frac{\pi}{a_{i n}}\left(\xi-b_{r}\right)\right] d \xi+ \\
& \frac{1}{2 a_{m+1}} P \int_{-\infty}^{\infty} \vec{j}_{m j}(\xi)\left[\operatorname{ctni} \frac{\pi}{2 a_{m+1}}\left(\xi-a_{r}\right) \operatorname{sech} \frac{\pi}{a_{m+1}}\left(\xi-a_{r}\right)-\operatorname{ctnh} \frac{\pi}{2 a_{m+1}}\left(\xi-b_{r}\right) \operatorname{sech} \frac{\pi}{a_{m+1}}\left(\xi-b_{r}\right)\right] d \xi \\
& +\frac{1}{2 a_{m+1}} \int_{-\infty}^{\infty} f_{(m+1) j}(\xi)\left[\operatorname{Tanh} \frac{\pi}{2 a_{m+1}}\left(\xi-a_{r}\right) \operatorname{sech} \frac{\pi}{a_{m+1}}\left(\xi-a_{r}\right)\right] d \xi \\
& -\frac{1}{2 a_{m+1}} \int_{-\infty}^{\infty} f_{(m+1) j}(\xi)\left[\operatorname{ranh} \frac{\pi}{2 a_{m+1}}\left(\xi-b_{r}\right) \operatorname{sech} \frac{\pi}{a_{m+1}}\left(\xi-b_{r}\right)\right] d \xi
\end{aligned}
$$

where " P " denotes the Cauchy principal value of the integral.

It shcula be notse, however, that for $r \neq j, I_{m j}(E) \equiv 0$ on A_{r} (which is $\left.\left[a_{n}, b_{N}\right]\right)$. Furthemore, since $\left(a_{r}, k_{m}\right)$ and $\left(b_{r}, k_{m}\right)$ mere points of continuity of the boundary values of $u_{j}(x, y), f_{m j}(x)=u_{j}\left(x, k_{m}\right)$ approsches zero es x approaches $\binom{b_{2}^{+}}{a_{r}^{-}}$. In fact, in a $\binom{$right }{left } neighborhood of $\binom{b_{r}}{a_{r}}, f_{m j}(x)=u_{j}\left(x, k_{m}\right)$ can be expanded in a power series of which $\binom{h_{r}}{a_{r}}$ is a zero of at least the firsi order. Since the hyperbolic cotangent has a pole of only the first order at the simple zeroes of its Ergument, the behavior of $f_{m, j}(\xi)$ near $\binom{b_{r}}{a_{r}}$ nullifies the effect of this pole. Thus, for $r \neq i$, we may remove the symbol "P" in (9.5). We may then justily interchanging the order of integration by the absolute intecrais lity of the respective integrands. For $r=j$, the justification is the same except in the case of those integrals whose Cauchy principal value is taiken. Thus (9.4) and (9.5) give the value of $p_{j r}$ for A_{r} on an interior line. ${ }^{10}$

If A_{n} lies on an "end" line --say $\ell_{n_{1}}$ - we determine $p_{j n}$ by Ietting $E_{r} b \in$ the boundary of $\left\{(x, y) \mid a_{r} \leq x \leq b_{r}, y \geq \bar{k}_{n}\right\}$. (See Fig. (9.2).) The justification

10

$$
\text { If } A_{J} \text { has }\binom{\text { one }}{\text { two }} \text { finite end points }\binom{\alpha_{m}}{\beta_{m}} \text { along } \ell_{m},\left(-\infty<\alpha_{M}<\infty<\infty\right) \text {, }
$$ then the intervals of integration of the right sicies of (9.4) and (9.5) will be finite.

Fig. (9.2):
of this choice follows from the inequality (8.8)(b).

By differentiating both sides of (5.5) and (5.4)(b), and by interchanging the order of integration, we find that

$$
\begin{align*}
& \text { (9.7) } \int_{a_{r}}^{b_{r}}\left[\partial u_{j}\left(x, \bar{k}_{n}\right) / \partial y\right] d x= \\
& \frac{1}{a_{n}} \int_{-\infty}^{\infty} \frac{\left[f_{n j}(\xi)-f(n-1) j(\xi)\right]\left(\exp \left[\left(2 \pi / a_{n}\right)\left(\xi-a_{r}\right)\right]-\exp \left[\left(2 \pi / a_{n}\right)\left(\xi-b_{r}\right)\right]\right) \bar{a} \xi}{\left(1+\exp \left[\left(2 \pi / a_{n}\right)\left(\xi-a_{r}\right)\right]\right)\left(1+\exp \left[\left(2 \pi / a_{n}\right)\left(\xi-b_{r}\right)\right]\right)} \\
& \text { (9.8) } \int_{\bar{k}_{n}}^{\infty}\left[\partial u_{j}\left(a_{r} y\right) / \partial x-\partial u_{j}\left(\bar{n}_{r}, y\right) / \partial x\right] d y=
\end{align*}
$$

$$
\begin{aligned}
& \text { 2 }
\end{aligned}
$$

$$
\begin{aligned}
& \div \frac{\left(a_{2}-b_{n}\right)}{\pi} P \int_{-\infty}^{\infty} \frac{I_{n j}(\xi) d \xi}{\left(\xi-i_{r}\right)\left(\xi-D_{r}\right)}
\end{aligned}
$$

of course, the remarks following (9.5) apply equally well pere. Thus (9.7) and (9.8) give the value of $p_{j r}$ for A_{F} on b_{n}. For A_{2}, on ℓ_{0} we obtain formulas completely analogous to those in (9.6)-(9.8).
[1] B. Eostein, Quart. App1. Math. 6, No. 3, pp. 301-317 (Oct., 1943).
[2] , Quart. Appl. Math. 14, No. 2, pp. 125-132 (July, 1956).
[3] \qquad Pertial Differential Equations (McGraw Hill, New York, 2962).
[4] R. Nevanlinna, Eindeutige Analytische Funktionen, Second Edition (Springer Verlag, Berlin, 1953).

[^0]: $l_{\text {Tris }}$ thesis was prepared under the supervision and cuidance of my aciviser, Dr. Bernara Epstein, to whom I express my aeepest gratitude for hic conscientious efforts on my behalf, both as a teacher and as a friend.

[^1]: ${ }^{2}$ Actually, the uniqueness of this bounded solution also follows from the uniqueness theory of the Dirichlet problem -- see Nevanlinna [4, p. 22]. However, the solvability of (1.9) by successive approximations relies on the equality (1.10).

[^2]: Thus C is the boundary of Ω_{n}.

