APPROXIMATION TO SEPARATED FUNCTIONS ON CARTESIAN PRODUCT SPACES

by

Miriam Schapiro Grosof

[^0]Copyright (C) 1966 by
Miriam Schapiro Grosof

The committee for this doctoral dissertation consisted of:

Harry E. Rauch, Ph.D., Chairman
Donald J. Newman, Ph.D.
Leopold Flatto, Ph.D.
Adam Koranyi, Ph.D.

Introcuction

The purpose of this paper is to generalize some of the results comtainud in some Theorens on "Cebyšev Approximation, iy D. J. Nemman and F. S. Shapiro [8], and to exhibit the failure of certain other proposed comorelisutions. This problem was suggested oy Professor Donald J. Nownen; I wish to acknowlecge, with cieep gratitude, his innumerable helpful suggestions and constant encouragement.

The work has been carried out, in part, under N.S.F. Sumarer Pollowships for Graduate Feaching assistants (1964 and 1965).

Murbers in brackets refer to the bibliography at the end of the puper.

In [3], Newman and Shapiro are concerned primarily with uniqueness questions arising from Čebyšev approximation on Cartesion product spaces by ordinary polynomials in x_{1}, \ldots, x_{k} to functions of form $\sum_{i=1} F_{i}\left(x_{i}\right)$. Definition: A family $\left\{\varphi^{u}(x)\right\}_{u=0,1, \ldots}$ of continuous real-valued functions on some compact set X is a Haar sequence* or satisfies the Haar condition if: for any $J \geq 0$, any linear combination $\sum_{u=0}^{J} c_{u} \varphi^{u}(x)$ with c_{u} real and not all zero, has at most J zeroes in X.
Equivalently: $\sum_{u=0}^{J} c_{u^{\prime}} \varphi^{u}(x)=0$ for $x=5^{1}, 5^{2}, \ldots, \xi^{J+1}$ distinct points of x implies

$$
c_{u}=0 \text { all } u=0, \ldots, J
$$

Approximation by linear combinations of such $\varphi^{u}(x)$ are of special interest because it is well known (cf. J.R. Rice [5], p. 87 ff) that the Har condition is necessary for the uniqueness of the best approximation even for functions of one variable.

Definition: If $\left\{\varphi^{u}(x)\right\}$ is a Haar sequence, a Haar polynomial (abbrev. H.p) is any expression of the form $\sum_{u=0}^{J} c_{u} \varphi^{u}(x)$. The degree of $\sum_{u=0}^{J} c_{u} \varphi^{u}(x)$ is the largest u for which $c_{u} \neq 0$.

Thus, a H.p. of degree d has at most d distinct zeroes; and if two H.p. of degree $\leq d$ agree at $d+1$ points, they are identical.

Assume $\left\{\varphi^{u}(x)\right\}$ is a Haar sequence on X. The proofs of the following Lemmas are immediate, by standard theorems on existence and uniqueness of solutions to systems of linear equations. (Cf. Aitken [I], ch. II).

[^1]Lemma 1.1: If $\xi^{1}, \ldots, \xi^{\mathrm{J}+1}$ are distinct values of x, then

$$
\left.\begin{array}{cccc}
\varphi^{0}\left(\xi^{l}\right) & \varphi^{1}\left(\xi^{l}\right) & \ldots & \varphi^{J}\left(\xi^{1}\right) \\
\vdots & \vdots & & \vdots \\
\varphi^{0}\left(\xi^{J+1}\right) & \varphi^{1}\left(\xi^{J+1}\right), & \ldots & \varphi^{J}\left(\xi^{J+1}\right)
\end{array} \right\rvert\,
$$

Lemma 1.2 : If $\xi^{1}, \ldots \xi^{\mathrm{J}+1}$ are distinct values of x and A_{1}, \ldots, A_{J+1} are real numbers (not necessarily distinct) Then there exists one and only one H.p. of degree $\leq J$ whose value at each ξ^{j} is $A_{j} \varphi^{0}\left(\xi^{j}\right), j=1, \ldots, J+1$.

Lemma 1.3: If $\xi^{1}, \ldots, 5^{\mathrm{J}+1}$ are distinct values of x
Then there is a unique manic H.p. in x, of degree J, vanishing at $\xi^{j}, j=1, \ldots, J$.
Proof : The system $\sum_{u=0}^{J} c_{u} \varphi^{u}\left(\xi^{j}\right)=0, j=1, \ldots, J$ is really
$\sum_{u=0}^{J-1} c_{u^{\prime}} \varphi^{u}\left(\xi^{j}\right)=-\varphi^{J}\left(\xi^{j}\right)$,
which has a unique solution by Lemma 1.1.
Lemma 1.4: If ξ^{1}, \ldots, ξ^{J} are distinct values of x, and $d>J$, Then there is a unique Hop. $\sum_{u=0}^{d} c_{u^{\varphi}} \varphi^{u}(x)$ vanishing at ξ^{1}, \ldots, ξ^{J}, such that $c_{d}=1, c_{d-1}=\ldots=c_{J}=0$

Proof: Same as for Lemma 1.3.
Related results about the matrices associated with a Haar sequence can be found in Akhiezer [2] p. 67 ff .

Suppose now X_{1}, \ldots, X_{k} are closed intervals, and that for each $i=1, \ldots, k,\left\{\varphi_{i}^{j}\left(x_{i}\right)\right\}_{j=0,1, \ldots}$ is a Haar sequence on X_{i}. Definitions A Haar polynomial (Hep.) in $x_{2} \ldots x_{2}$ is any finite sum of the form

$$
\sum_{\substack{u_{i}=0 \\ i=1, \ldots, k}}^{d_{i}} \alpha_{u_{1}}, \ldots, u_{k} \varphi_{1}^{u_{1}}\left(x_{1}\right) \cdots \varphi_{k}^{u_{k} k}\left(x_{k}\right) \quad \text { where the } \alpha^{\prime} \text { s are real } \quad \text { numbers. }
$$

The x_{i}-degree of the H.p. is the largest \bar{u}_{i} such that

$$
\alpha_{u_{1}}, \ldots, u_{i-1}, \bar{u}_{i}, u_{i+1}, \ldots, u_{k} \neq 0, \text { for some } u_{1}, \ldots, \hat{u}_{i}, \ldots, u_{k}
$$

The (total) degree of the H.p. is max

$$
\max _{u_{I}, \ldots, u_{k}} \neq 0^{\left\{u_{I}+\ldots+u_{k}\right\}} .
$$

The H.p. in x_{1}, \ldots, x_{k} of x_{1}-degree $\leq d_{i}$ form a vector space of dimension $\Pi_{i=1}^{k}\left(a_{i}+1\right)$; moreover the product $\Phi_{I}\left(x_{l}\right) \cdots \Phi_{k}\left(x_{k}\right)$, where each $\Phi_{i}\left(x_{i}\right)$ is a $i=1$ H.p. in x_{i}, is defined as usual so that any finite sum $\sum_{m=I_{1}}^{M} \Phi_{1}^{m}\left(x_{1}\right) \ldots \Phi_{k}^{m}\left(x_{k}\right)$ is a H.p. in x_{1}, \ldots, x_{k}. (Note that the product $\varphi_{i}^{u}\left(x_{i}\right) \varphi_{i}^{\mathrm{v}}\left(x_{i}\right)$ is not defined.) Moreover,

Lemma 1.5: Any H.p. $P\left(x_{1}, \ldots, x_{k}\right)$ can be written in the form

$$
\sum_{u=0}^{d_{i_{0}}} A_{u}^{i_{o}^{o}}\left(x_{1}, \ldots, \hat{x}_{i_{0}}, \ldots, x_{k}\right) \varphi_{i_{0}}^{u}\left(x_{i_{0}}\right)
$$

$$
\text { where } i_{0} \text { is any of the } i=1, \ldots, k ; d_{i_{0}}=x_{i} \text {-degree of of } P \text {; }
$$

$$
A_{u}^{i_{0}} \text { is a H.p. in } x_{1}, \ldots, \hat{x}_{i_{0}}, \ldots, x_{k}
$$

Proof obvious; same as for ordinary polynomials.
Lemma 1.6: For each $i=1, \ldots, k$ let $\xi_{i}^{1}, \ldots, \xi_{i}^{d_{i}+1}$ be distinct values of x_{i}. Then the determinant of order $\prod_{i=1}\left(d_{i}+I\right)$ whose

$$
\left(\left(u_{1}, \ldots, u_{k}\right),\left(\delta_{1}, \ldots, \delta_{k}\right)\right) \text {-entry* is }
$$

$$
\begin{aligned}
& \varphi_{1}^{u_{1}}\left(\xi^{\delta} 1\right) \varphi_{2}^{u_{2}}\left(\xi_{2}^{\delta_{2}}\right) \cdots \varphi_{k}^{u_{k}}\left(\xi_{k}^{\delta_{k}}\right) \text { where } 0 \leq u_{i} \leq \alpha_{i} \text { and } \\
& 1<\delta_{i} \leq \alpha_{i}+1, i=1, \ldots, k, \text { is non-zero. }
\end{aligned}
$$

Proof: Lemma I.I and the construction of L.H. Rice [4].
Throughout the preceding there is no requirement that $\varphi^{\circ}(x)$ be a constant function, but only that it have no zeroes. Thus, in the case of ordinary polynomials, Lemma 1.2 says a polynomial of degree $d \geq I$ cannot take on the value $A \mathrm{~A}+1$ times.

Clearly, if $\left\{\varphi^{u}(x)\right\}_{u=0, \ldots}$ is a Haar sequence on X, so also is $\left\{\frac{Q^{2 i}(\underline{x})}{\bar{O}(x)}\right\}_{u=0, \ldots}$ and conversely.

Suppose for each $i=1, \ldots, k\left\{I_{i}^{0}\left(x_{i}\right), \varphi_{i}^{1}\left(x_{i}\right), \varphi_{i}^{2}\left(x_{i}\right), \ldots\right\}$ is a Haar sequence on X_{i}, and $\bar{\varphi}_{i}\left(x_{i}\right)$ is a continuous, real-valued function on X_{i} having no zeroes. Let $P\left(x_{1}, \ldots, x_{k}\right)$ be a H.p. so

$$
P\left(x_{1}, \ldots, x_{k}\right)=\sum_{u_{i}}^{d_{i}} \quad \alpha_{u_{i}}, \ldots, u_{k} \varphi_{I}^{u_{I}}\left(x_{1}\right) \ldots \varphi_{k}^{u_{k}}\left(x_{k}\right) .
$$

$$
1 \leq i \leq k
$$

Define $\bar{P}\left(x_{1}, \ldots, x_{k}\right)=\sum_{u_{i}=0}^{d_{i}} \alpha_{u_{1}}, \ldots, u_{k}^{\bar{\varphi}_{1}}{ }^{u_{1}}\left(x_{1}\right) \cdots \bar{\phi}_{k}^{u_{k}}\left(x_{k}\right)$ where

$$
\text { I. } \leq_{i}^{u_{i}=0}
$$

$\bar{\varphi}_{i}^{u}\left(x_{i}\right)=\varphi_{i}^{u}\left(x_{i}\right) \cdot \bar{\varphi}_{i}\left(x_{i}\right)$.
Then $\bar{P}\left(x_{I}, \ldots, x_{k}\right)=P\left(x_{1}, \ldots, x_{k}\right) \cdot \prod_{i=1}^{k} \bar{\varphi}_{1}\left(x_{i}\right)$. For any subset S of $x_{1}, \ldots x x_{k}, P\left(x_{1}, \ldots, x_{k}\right)$ vanishes on S if and oniy if $\bar{P}\left(x_{1}, \ldots, x_{k}\right)$ vanishes on 5 .

It follows that with no loss in generality it can be assumed that $\mathbb{Q}_{1}^{\|}\left(x_{i}\right)=1$, each $i=1, \ldots, k$, and that assumption wi.ll be made from here on.

The following are direct consequences of Lemma 1.6:

Lemma 1.7: For each $i=1, \ldots, k$ let $\xi_{i}^{1}, \ldots, \xi_{i}^{d_{i}+1}$ be distinct values of x_{i}. Let $C_{\delta_{1}}, \ldots, \delta_{k}\left(1 \leq \delta_{i} \leq d_{i}+1\right)$ be $\prod_{i=1}^{k}\left(d_{i}+1\right)$ numbers not necessarily istinct. Then there exists a unique R.p. $P\left(x_{1}, \ldots, x_{k}\right)$ of x_{i}-äegree d_{i} such that

$$
P\left(\xi_{1}^{\delta} 1, \ldots, \xi_{k}^{\delta}\right)=c_{\delta_{1}}, \ldots \delta_{k}
$$

Lemma 1.8: In particular, if all $\mathrm{C}_{\delta_{1}}, \ldots, \delta_{\mathrm{k}}$ in Lemma 1.7 are zero,

$$
P\left(x_{1}, \ldots, x_{k}\right) \text { vanishes term-by-term: all } \alpha_{u_{1}}, \ldots, u_{k}=0
$$

Lemma 1.9: If two H.p. in x_{1}, \ldots, x_{k}, each of which has

$$
x_{i}-\text { degree } \leq \alpha_{i}(i=1, \ldots, k), \text { agree on the } \prod_{i=1}^{k}\left(\alpha_{i}+1\right)
$$

k -tuples of Lemma 1.7 , then they are identical.
Lemma 1.10: Let $P\left(x_{1}, \ldots, x_{k}\right)$ be a H.p. and suppose P to have been represented as in Lemma 1.5, for some fixed i_{0}. Then $P \equiv 0$ if and only if $A_{u}^{i_{0}}\left(x_{1}, \ldots, \hat{x}_{i_{0}}, \ldots x_{k}\right) \equiv 0$ each $u=0, \ldots, d_{i_{0}}$. Proof Induction on k, using Lemma 1.8.

Definition. A continuous real-valued function $F\left(x_{1}, \ldots, x_{k}\right)$ on $X_{1} x \ldots x X_{k}$ is separated if it can be written $F_{1}\left(x_{1}\right)+\ldots+F_{k}\left(x_{k}\right)$ where each $F_{i}\left(x_{i}\right)$ is continuous on X_{i}. The function $F_{i}\left(x_{i}\right)$ is the ($i^{\text {th }}$) separate component of F.

Observe that if $P\left(x_{1}, \ldots, x_{k}\right)$ is a separated $H . p$. on $X_{1} x \ldots x X_{k}$, then the $i^{\text {th }}$ separate component of P is a H.p. also.

Let N be any non-negative integer. For each $l \leq 1 \leq k$ let there be given a closed interval X_{i} and two sets of points Σ_{i}^{+}and and Σ_{i}^{-}in X_{i}, which separate each other, such that the total
number of points in Σ_{i}^{+}and Σ_{i}^{-}together is $N+2$. Thus, if N is even, $N+2=2 r_{i}$, so Σ_{i}^{+}and Σ_{i}^{-}each contain r_{i} points; whereas, if N is odd, $N+2=2 s_{i}+1$ so one set contains s_{i} points and the other $s_{i}+1$.

Since each family $\left\{1, \varphi_{i}^{l}\left(x_{i}\right), \ldots, \varphi_{i}^{N}\left(x_{i}\right)\right\}$ satisfies the Haar condition on X_{i}, it follows (cf. Akhiezer [I] p. 74 ff) that for any function $F_{i}\left(x_{i}\right)$ real-valued and continuous on X_{i} there exists a unique H.p. of degree $\leq N$ of least Cebysev deviation from $F_{i}\left(x_{i}\right)$ on X_{i}. The (strong) extremal signatures for $\left\{1, \varphi_{i}^{1}, \ldots, \varphi_{i}^{N}\right\}$ are precisely of the form $\Sigma_{i}^{+} \cup \Sigma_{i}^{-}$.

Let $\Sigma^{+} \Sigma_{I}^{+} \times \ldots \times \Sigma_{k}^{+}, \Sigma^{-}=\Sigma_{I}^{-} \times \ldots \times \Sigma_{k}^{-}$. The construction of [3], §2 applies here, so we have

Theorem l : For each $1 \leq i \leq k$, let X_{i} be a closed interval, let $F_{i}\left(x_{i}\right)$ be a continuous real-valued function on $X_{\dot{1}}$, let $P_{i}^{*}\left(x_{i}\right)$ be the H.p. of degree $\leq N$ of least Čeybšev deviation from $F_{i}\left(x_{i}\right)$ on X_{i}. Then among ail H.p. $P\left(x_{1}, \ldots, x_{K}\right)$ of degree $\leq N$ there is none whose Čebyšev deviation from $F\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} F_{i}\left(x_{i}\right)$ on $X_{1} x \ldots x_{k}$ is less than that of $\sum_{i=1}^{k} P_{i}^{*}\left(x_{i}\right)$ 。

That is, if $\Sigma_{i}^{+} \cup \Sigma_{i}^{-}$is an extremal signature for $\left\{1, \varphi_{i}^{1}, \ldots, \varphi_{i}^{\text {IN }}\right\}$ then $\Sigma^{+} \cup \Sigma^{-}$is an extremal signature for the set $\left\{\varphi_{l}^{u_{I}}\left(x_{1}\right) \ldots \varphi_{k}^{u_{k}}(x)\right.$; $\left.u_{i} \geq 0, u_{1}+\ldots+u_{k} \leq N\right\}$.

Section 2

We shall now prove
Theorem 2: If $P\left(x_{1}, \ldots, x_{k}\right)$ is a H.p. of degree $\leq N$ which vanishes on Σ^{+}and on Σ^{-}then $\mathrm{P} \equiv 0$.

There will then follow immediately
Theorem 3: The H.p. $\sum_{i=1}^{k} P_{i}^{*}\left(x_{i}\right)$ of Theorem 1 is the unique H.p. of degree $\leq N$ of least deviation from $\sum_{i=1}^{K} F_{i}\left(x_{i}\right)$ on $X_{1} \times \ldots x X_{K}$. That is, $\Sigma^{+} \cup \Sigma^{-}$is a strong extremal signature.
(The terminology of the preceding follows [3]).
The proof of Theorem 2 is based upon several lemmas.
Suppose first that for each $i=1, \ldots, k$ a non-empty set of points S_{i} is given, call them $\xi_{i}^{1}, \xi_{i}^{2}, \ldots, \xi_{i}^{r_{i}}$ (all distinct). Let $\mathscr{S}_{i}=\left\{\right.$ all H.p. in x_{i} vanishing on $\left.S_{i}\right\}$. Observe that no non-trivial (i.e., non-zero) H.p. in x_{i} of degree $<r_{i}$ belongs to \mathcal{B}_{i}.

Lemma 2.1:

Let $P\left(x_{1}, \ldots, x_{k}\right)$ be a H.p. and suppose that for any choice of $\xi_{1}, \ldots, \xi_{k-1}, P\left(\xi_{1}, \ldots, \xi_{k-1}, x_{k}\right)$ vanishes at each point of S_{k}. Then there exists a finite collection $\Phi_{k}^{1}\left(x_{k}\right), \Phi_{k}^{2}\left(x_{k}\right), \ldots, \Phi_{k}^{t}\left(x_{k}\right)$ of H.p. in δ_{k}^{ρ}, and also H.p. $B^{1}\left(x_{1}, \ldots, x_{k}\right), B^{2}\left(x_{1}, \ldots, x_{k}\right), \ldots, B^{t}\left(x_{1}, \ldots, x_{k}\right)$ of x_{k}-degree zero, such that $\sum_{\ell=I}^{t} B^{\ell}\left(x_{1}, \ldots, x_{k}\right) \dot{\Phi}_{k}^{\ell}\left(x_{k}\right)=P\left(x_{1}, \ldots, x_{k}\right)$.

Proof : (By induction on k.) If $k=1$, statement is obvious, because we assumed $\varphi_{i}^{0}\left(x_{i}\right)=1$. Assume it is true for H.p. in $k-1$ variables; we will show it is true for k. Let $P\left(x_{1}, \ldots, x_{k}\right)$ be a H.p. satisfying the hypothesis. Iet d_{1} be the x_{1}-degree of P; let $\xi_{1}^{l}, \ldots, \xi_{1}^{d 1}$ be distinct values of x_{1}. $P\left(\xi_{\underline{1}}^{j}, x_{2}, \ldots, x_{k}\right)$ vanishes at each point of S_{k}, for every choice of x_{2}, \ldots, x_{k-1}, every $1 \leq j \leq a_{1}+1$. By the inductive hypothesis,
$P_{j}\left(x_{2}, \ldots, x_{k}\right)=P\left(\xi_{1}^{j}, x_{2}, \ldots, x_{k}\right)=\sum_{l=1}^{t} B_{j}^{\ell}\left(x_{2}, \ldots, x_{k}\right) \cdot \dot{s}_{k, j}^{\ell}\left(x_{k}\right)$ where $\Phi_{k, j}^{\ell} \in \hat{S}_{k}^{\ell}$ and B_{j}^{ℓ} has x_{k}-degree zero. Next, let $\Omega_{1}^{j}\left(x_{1}\right)$ be the H.p. of degree d_{1} which is 1 at ξ_{1}^{j} and 0 at $\bar{S}_{1}^{\bar{j}}(\bar{j} \neq j) \quad j=1, \ldots, a_{1}+1 \quad$ (Lemma 1.7); Ω_{1}^{j} obviously has x_{k}-degree zero. Let $Q\left(x_{1}, \ldots, x_{k}\right)=\sum_{j=1}^{d_{1}+1} P_{j}\left(x_{2}, \ldots, x_{k}\right) \cdot \Omega_{1}^{j}\left(x_{1}\right)$; Q has x_{1}-degree $\leq d_{1}$. Q agrees with P for ail values of
x_{2}, \ldots, x_{k} in each of the $d_{1}+1$ values of x_{1}, hence $P \equiv Q$ by Lemma 1.9.
$\therefore P\left(x_{1}, \ldots, x_{k}\right)$ has a representation of the desired form.
Let I_{k} be the set of all H.p. of the form $\sum_{i=1}^{k}\left(\sum_{i}^{t_{i}}=1 B_{i}^{\ell_{i}}\left(x_{1}, \ldots, x_{k}\right) \Phi_{i}^{\ell_{i}}\left(x_{i}\right)\right)$ where every $\dot{\Phi}_{i}^{\ell}\left(x_{i}\right) \in \mathcal{O}_{i}$ and x_{i}-degree of $B_{i}^{l}{ }_{i}$ is zero $\quad i=1, \ldots, k$

By Lemmas 1.5 and 2.1 every fi .p. in I_{k} can be written $\sum_{m=1}^{M} \theta_{I}^{m}\left(x_{1}\right) \theta_{2}^{m}\left(x_{2}\right) \cdots \theta_{k}^{m}\left(x_{k}\right)$, where $\theta_{i}^{m}\left(x_{i}\right)$ is a H.p.,

Clearly, every H.p. in I_{k} vanishes on $S_{1} x \ldots x S_{k}$.

Lemma 2.2: The set of all Haar polynomials vanishing on $S_{1} \times \ldots x S_{k}$ is precisely the set I_{k}.

Proof: In view of the immediately preceding remarks, it will suffice to show:
$P\left(x_{1}, \ldots, x_{k}\right)$ vanishes on $S_{1} \times \ldots x S_{k}$ implies $P \in I_{k}$. For $k=1$, assertion is obviously true; assume it is true for ($k-1$) variables. Let $P\left(x_{1}, \ldots, x_{k}\right)$ vanish on $S_{1} \times \ldots x S_{k}$; Let $\xi_{k}^{1}, \xi_{k}^{2}, \ldots, \xi_{k}^{r_{k}}$ be the pts. of S_{k}. For $j=1, \ldots, r_{k}$, $P\left(x_{1}, \ldots, x_{k-1}, \xi_{k}^{j}\right)$ vanishes on $S_{1} x \ldots x S_{k-1}$, hence, applying the inductive hypothesis,

$$
P_{j}\left(x_{1}, \ldots, x_{k-1}\right)=P\left(x_{1}, \ldots, x_{k-1}, \bar{s}_{k}^{j}\right) \in I_{k-1}
$$

and has a representation of form

$$
\left.\sum_{i=1}^{k-1} \sum_{l_{i, j=1}^{t}}^{t_{i}, j} \quad{ }_{B_{i}, j}^{\ell_{i}, j}\left(x_{1}, \ldots, x_{k-1}\right) \Phi_{i, j}^{l_{i, j}}\left(x_{i}\right)\right)
$$

where each $\Phi_{i, j}^{\ell_{i, j}}\left(x_{i}\right) \in \not \mathcal{S}_{i}$, and x_{i}-degree $B_{i, j}^{\ell_{i, j}}\left(x_{1}, \ldots, x_{k-1}\right)$ is zero $\left\{\begin{array}{l}i=1, \ldots, k-1 \\ j=1, \ldots, r_{k}\end{array}\right.$.
Now, let $\Omega_{k}^{j}\left(x_{k}\right)$ be the x_{k}-Haar polynomial of degree r_{k} which is 1 at ξ_{k}^{j} and 0 at $\bar{\xi}_{k}^{\bar{j}}(\bar{j} \neq j), j=1, \ldots, r_{k}$ (as in Lemma 2.1).

Form
$Q\left(x_{1}, \ldots, x_{k}\right)=\sum_{j=1}^{r_{k}} P_{j}\left(x_{1}, \ldots, x_{k-1}\right) \cdot \Omega_{k}^{j}\left(x_{k}\right)$.
$P\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k-1}, x_{k}\right)-Q\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k-1}, x_{k}\right)$ vanishes at each point of s_{k} for every choice $x_{1}=\xi_{1}, x_{2}=\xi_{2}, \ldots, x_{k-1}=\xi_{k-1}$, because it is $P\left(\xi_{1}, \ldots, \xi_{k-1}, x_{k}\right)-\sum_{j=1}^{r_{k}} P\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k}^{j}\right) \cdot \Omega_{k}^{j}\left(x_{k}\right)$, so if $x_{k}=\xi_{k}^{j}$, the expression becomes
$P\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k}^{j}\right)-P\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k}^{j}\right) \cdot 1=0$.
Thus, by Lemma 2.1,
$P\left(x_{1}, \ldots, x_{k}\right)-Q\left(x_{1}, \ldots, x_{k}\right)=\sum_{l_{k}=1}^{t_{k}} \frac{B}{k}_{\ell_{k}}^{\ell_{k}}\left(x_{1}, \ldots, x_{k}\right) \cdot \Phi_{k}^{l_{k}}\left(x_{k}\right)$ where ${ }_{\Phi}^{\ell_{k}}\left(x_{k}\right) \in \not \mathcal{O}_{k}$ and x_{k}-degree of $B_{k}^{\ell_{k}}$ is zero.
Since $B_{i, j}^{\ell}{ }_{i, j}$ has x_{1}-degree zerg $i=1, \ldots, k-1$, and $\Omega_{k}^{\ell_{k}}\left(x_{k}\right)$ has x-degree zero, so does $B_{i, j}^{l_{i}, j} \cdot \Omega_{k}^{l_{k}}$.
$\therefore P\left(x_{1}, \ldots, x_{k}\right)$ has a representation of the desired form.
Lemma 2.3: Let I_{k} be the set defined in Lemma 2.2.
If $P\left(x_{1}, \ldots, x_{k}\right) \in I_{k}$ and the x_{i}-degree of P is $<r_{i}$ for
each $i=1, \ldots, k$, then $P \equiv 0$.

Proof: By induction on k.
If $k=1$, we already know $P\left(x_{1}\right)=0$ for $x_{1}=\xi_{1}^{1}, \ldots, \xi_{1}^{r_{1}}$
implies $\quad \operatorname{deg} P \geq r_{1}$ or $P \equiv 0$.
Assume true for $k-1$. Suppose $P\left(x_{1}, \ldots, x_{k}\right) \in I_{k}$.
Let $\xi_{k}^{l}, \ldots, \xi_{k}^{r_{k}}$ be the points of S_{k}.
Then it can readily be seen, from Lemma 1.5, that for each $j=1, \ldots, r_{k}, P_{j}\left(x_{1}, \ldots, x_{k-1}\right)=P\left(x_{1}, \ldots, x_{k-1}, \xi_{k}^{j}\right)$ has x_{i}-degree which is $\leq x_{i}$-degree $P\left(x_{1}, \ldots, x_{k}\right)<r_{i}$ for each $i=1, \ldots, k=1$. \therefore By the inductive assumption, $P_{j}\left(x_{1}, \ldots, x_{k-1}\right) \equiv 0, j=1, \ldots, r_{k}$. By Lemma 2.1, $P\left(x_{1}, \ldots, x_{k}\right)=\sum_{\ell=1}^{t} B^{\ell}\left(x_{1}, \ldots, x_{k-1}\right) \cdot \Phi_{k}^{l}\left(x_{k}\right)\left\{\begin{array}{l}\text { where } \Phi_{k}^{\ell} \in \mathscr{S}_{k}, \\ B^{\ell} \text { is a H.p. in } \\ x_{1}, \ldots, x_{k-1}\end{array}\right.$
which, by Lemma 1.5, $=\sum_{u=0}^{d} A_{u}\left(x_{1}, \ldots, x_{k-1}\right) \varphi_{k}^{u}\left(x_{k}\right)$

$$
\left\{\begin{array}{l}
\text { where } A_{u} \text { is a H.p. } \\
\text { in } x_{1}, \ldots, x_{k-1} \text { and } \\
d \leq x_{k} \text {-degree of } P \\
<r_{k}
\end{array}\right.
$$

Suppose $P \neq 0$. Then by Lenima 1.10 there exists some u_{0} and some $x_{1}=\xi_{1}, \ldots, x_{k-1}=\xi_{k-1} \ni \quad A_{u}\left(\xi_{1}, \ldots, \xi_{k-1}\right) \neq 0$.
$\therefore P\left(\xi_{1}, \ldots, \xi_{k-1}, x_{k}\right)=\sum_{k=0}^{a} A_{u}\left(\xi_{1}, \ldots, \xi_{k-1}\right) \varphi_{i}^{u}\left(x_{k}\right)$ is a Haar polynomial in x_{k}, not all of whose coefficients are zero, of degree $<r_{k}$, vanishing on S_{k}. This contradicts the Haar condition. $\therefore P \not \equiv 0$

Lemma 2.4: Let I_{k} be the set of Lemma 2.2. Let $P\left(x_{1}, \ldots, x_{k}\right): \varepsilon I_{s}$.
Then there exist, for each $i=1, \ldots, k$, Haar polynomials
$\dot{\Phi}_{i}^{\ell_{i}}\left(x_{i}\right) \in \delta_{i}, l_{i}=1, \ldots, t_{i}$, and Haar polynomials
$B_{i}^{l_{i}}\left(x_{1}, \ldots, x_{k}\right)$ of x_{i}-degree zero
such that $P\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k}\left(\sum_{i}^{t_{i}}=1 B_{i}^{\ell_{i}}{ }_{\Phi_{i}{ }_{i}}^{{ }_{i}}\right.$) and $\operatorname{deg} B_{i}^{l_{i}}{ }_{\Phi}^{\ell_{i}}{ }_{i} \leq \operatorname{deg} P$ for all $i=1, \ldots, k$, all $l_{i}=1, \ldots, t_{i}$. Proof : Let \tilde{I}_{k} be the subsct of I_{k} consisting of Haar polynomials P winich admit such a representation; suppose $I_{k}-\tilde{I}_{k}$ is not empty.
Let d be the minimal degree of all $\mathrm{H} . \mathrm{p}$. in $\mathrm{I}_{k}-\tilde{I}_{k}$. Since every $r_{i} \geq 1$, we conclude from Lemma 2.3 that $d \geq 1$. Among the H.p. of degree α in $\tilde{I}_{k}-I_{k}$ choose those with a minimal number of terms in the leading form; among these, choose those with a minimal number of terms in the next leading form, etc. Call the H.p. so chosen $Q\left(x_{1}, \ldots, x_{k}\right)$. $Q \neq 0$. Therefore, by Lemma 2.3, there is an index i_{0} and a term $c \varphi_{1}^{u_{1}}\left(x_{1}\right) \varphi_{2}^{u_{2}}\left(x_{2}\right) \ldots \varphi_{k}^{u_{k}}\left(x_{k}\right)$ for which $u_{i_{0}} \geq r_{i_{0}}$. Note $u_{1}+\ldots+u_{k} \leq d=\operatorname{deg} Q$. Let $\Gamma_{i_{0}}^{u_{i}}\left(x_{i_{0}}\right)$ be the monic \quad r.p. of degree $u_{i_{0}}$ whose zeroes include the points $\xi_{i_{0}}^{I} \ldots, \xi_{i_{0}}^{r_{0}}$ of $S_{i_{0}}$, and whose $r_{i_{0}}, \ldots, u_{i_{0}}-1$ degree terms are absent; (Lemma 1.4) ; if $u_{i}=r_{i_{0}}, \Gamma_{i_{0}}$ is the unique H.p. of Lemma 1.3. Consider

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{k}\right) & -c \varphi_{1}^{u_{1}}\left(x_{1}\right) \varphi_{2}^{u_{2}}\left(x_{2}\right) \ldots \Gamma_{i_{0}}^{i_{o}}\left(x_{i_{0}}\right) \ldots \varphi_{k}^{u_{k}}\left(x_{k}\right) \\
& =R\left(x_{1}, \ldots, x_{k}\right) .
\end{aligned}
$$

R is certainly in I_{k}; it differs
from Q in having one less term of degree $u_{2}+\ldots+u_{k}$, but it has the same number of terms of higher degree. Moreover, R is in $I_{k}-\tilde{I}_{k}$; Suppose R has a representation $\sum_{i \ell_{i}} \sum_{i}{ }^{\ell}{ }_{i} \Phi_{i}^{\ell}{ }_{i}$ with deg $B_{i}^{\ell}{ }_{i}{ }_{\Phi}{ }_{i}{ }^{i} \leq \operatorname{deg} R \leq \operatorname{deg} Q$ all i, all ℓ_{i}.

Since c $\varphi_{1}^{u_{1}}\left(x_{1}\right) \ldots \Gamma_{i_{0}}^{u_{i}}\left(x_{i_{0}}\right) \ldots \varphi_{k}^{u_{k}}\left(x_{k}\right)$ clearly has such a
representation (because $u_{1}+\ldots+u_{k} \leq d=\operatorname{deg} Q$), it follows that Q has a representation and so is in \tilde{I}_{k}. This contradicts the earlier assumptions for Q.
$\therefore I_{k}-\tilde{I}_{k}$ is empty.

Lemma 2.5: For any $I \leq i \leq k: \operatorname{Let} \mathbb{N} \geq r_{i} ; \operatorname{let}\left\{\Gamma_{i}^{\omega}\left(x_{i}\right)\right\}_{\omega_{i}}=r_{i}, \ldots, N$ be any set of Haar polymomials in x_{i}, such that $\Gamma_{i}^{\omega}\left(x_{i}\right)$ is monic, of degree precisely ω_{i}, and vanishes on S_{i}. Let $\Phi_{i}\left(x_{i}\right)$ be any Haar polynomial vanishing on S_{i}, of degree $\leq \mathbb{N}\left(\right.$ and $\left.\geq r_{i}\right)$. Then there is a unique $\left(N-r_{i}-1\right)$-tuple of real numbers $\left(\beta_{r_{i}}, \ldots, \beta_{N}\right) \ni$

$$
\Phi_{i}\left(x_{i}\right)=\sum_{\omega_{i}=r_{i}}^{N} \beta_{\omega_{i}} \Gamma_{i}^{\omega_{i}}\left(x_{i}\right) .
$$

Proof : The uniqueness follows, as usual, from Lemra 1.2 . To establish the existence, observe $\Phi_{i}\left(x_{i}\right)=\sum_{u=0}^{N} c_{u} \varphi_{i}^{u}\left(x_{i}\right)$ where $c_{r_{i}},{ }^{c_{r_{i+1}}}, \ldots, c_{n}$ are not all zero.

Proceed by induction on $\mathrm{N}-\mathrm{r}_{i}$:
If $N-r_{i}=0, \quad N=r_{i}$ and $c_{r_{i}} \neq 0, \Phi_{i}\left(x_{i}\right)=\sum_{u=0}^{r_{i}} c_{u} \varphi_{i}^{u}\left(x_{i}\right)$,
and $\Phi_{i}\left(x_{i}\right)-c_{r_{i}} \Gamma_{i}^{r}{ }_{i}\left(x_{i}\right)$ is a Haar polynomial of
degree $\leq r_{i}$-I which vanishes on S_{i}, hence is idenically zero. $\therefore \Phi_{i}\left(x_{i}\right)=c_{r_{i}} \Gamma_{i}^{r_{i}}\left(x_{i}\right)$. Next, assume proven for $N-r_{i} \leq n-1$, and suppose $\mathbb{N}=r_{i}+n$.

Then $\Phi_{i}\left(x_{i}\right)-c_{r_{i}+n} \Gamma_{i}^{r_{i}+n}\left(x_{i}\right)$ is a Haar polynomial of degree $\leq r_{i}+(n-1)=N-1$, hence by the inductive assumption has a representation $\sum_{\omega_{i}=r_{i}}^{N-1} \omega_{i} \Gamma_{i}^{{ }^{W}}\left(x_{i}\right)$.

$$
\begin{aligned}
& \therefore \Phi_{i}\left(x_{i}\right)=c_{r_{i}+n^{\Gamma}}{ }^{r}{ }^{r+n}\left(x_{i}\right)+\sum_{\omega_{i}=r_{i}}^{N-1} \beta_{\omega_{i}} \Gamma_{i}^{\omega}{ }^{i}\left(x_{i}\right) \text {, and letting } \\
& \beta_{N}=c_{r_{i+n}} \text { we have the desired form. }
\end{aligned}
$$

In particular, we could suppose the $\Gamma_{i}{ }^{i}\left(x_{i}\right)$ to be the Haar polynomials of Lemma 1.4.

Combining Lemmas 2.2, 2.4 and 2.5 we have
Corollary 2.6: Given $P\left(x_{1}, \ldots, x_{k}\right)$ of degree $\leq N$, vanishing on $S_{1} x \ldots x S_{k}$, there is a representation

$$
\sum_{i=1}^{k}\left(\sum_{i}^{N}=r_{i} A_{i}^{\omega}{ }^{i}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots x_{k}\right) \Gamma^{w_{i}}\left(x_{i}\right)\right)
$$

such that $\operatorname{deg} A_{i}{ }^{i} \Gamma_{i}{ }^{\omega} \leq N$

$$
\begin{aligned}
& \operatorname{deg}^{\Gamma_{i}}{ }_{i}=\omega_{i} \\
& x_{i}-\operatorname{deg} A_{i}^{\omega_{i}}=0 .
\end{aligned}
$$

Proof: With the notation of Lemmas 2.4 and 2.5,

$$
A_{i}^{i}=\sum_{i}^{\omega_{i}^{i}} B_{i}^{l} \beta_{\omega_{i}}^{l} \quad\left\{\begin{array}{l}
i=1, \ldots, k \\
r_{i} \leq \omega_{i} \leq N
\end{array}\right.
$$

Now, suppose Σ_{i}^{+}and Σ_{i}^{-}, r_{i} and s_{i}, Σ^{+}and Σ^{-}are as specified in Section 1. Let $P\left(x_{i}, \ldots, x_{k}\right)$ be a Faar polynomial of degree $\leq N$ which vanishes on Σ^{+}and Σ^{-}. Applying Corollary 2.6, we can Write

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{k}\right) & =\sum_{i=1}^{k}\left(\sum_{\omega_{i}=\rho}^{N} A_{i}{ }_{i}{ }^{i}\left(x_{1}, \ldots, x_{k}\right){ }_{\phi}{ }_{i}{ }^{i}\left(x_{i}\right)\right) \\
& =\sum_{i=1}^{k}\left(\sum_{\omega_{i}=\sigma_{i}}^{N} B_{i}{ }^{W}\left(x_{1}, \ldots, x_{k}\right) \psi_{i}{ }_{i}\left(x_{i}\right)\right)
\end{aligned}
$$

where
(*)

$$
\left\{\begin{array}{l}
\rho_{i}=\text { cardinality of } \Sigma_{i}^{+}, \sigma_{i}=\text { cardinality of } \Sigma_{i}^{-} \\
\omega_{i}\left(x_{i}\right) \text { vanishes on } \Sigma_{i}^{-}, \Psi_{i}\left(x_{i}\right) \text { vanishes on } \Sigma_{i}^{-} \\
\text {degree } \Phi_{i}=\text { degree } \Psi_{i}^{\omega_{i}}=\omega_{i} \text { precisely } \\
x_{i} \text {-degree } A_{i}^{\omega_{i}}=x_{i} \text {-degree } B_{i} B_{i}=0 \\
\text { degree } A_{i}^{\omega_{i}} \omega_{i} \leq \mathbb{N}, \text { degree } B_{i}{ }_{i}^{\omega_{i}}{ }_{i} \leq N
\end{array}\right\}
$$

$$
\text { For each } 1 \leq i \leq k ;
$$

each w_{i}.
There are two cases, according to the parity of \mathbb{N} : For \mathbb{N} even, $N+2=2 r_{i}, \rho_{i}=\sigma_{i}-r_{i}$, and $r_{i} \leq \omega_{i} \leq N$ implies $0 \leq N-w_{i} \leq N-r_{i}=r_{i}-2$. \therefore degree $A_{i}^{\omega_{i}}$, degree $B_{i}^{\omega_{i}} \leq r_{i}-2$. For \mathbb{N} odd, $N+2=2 s_{i}+1$, either $\rho_{i}=s_{i}$ and $\sigma_{i}=s_{i}+1$, or vice versa. $s_{i} \leq \omega_{i} \leq \mathbb{N}$ implies $0 \leq N-\omega_{i} \leq N-s_{i}=s_{i}-1$, and $s_{i}+1 \leq N-\omega_{i} \leq N-\left(s_{i}+1\right)=s_{i}-2 \therefore$ degree $A_{i}^{\omega_{i}} \leq s_{i}-1$ and degree $B_{i}^{\omega_{i}} \leq s_{i}-2$, or vice versa.
[Lemma 2.3 implies we may suppose $N>0$: for, if $N=0$, and $\rho_{i}, \sigma_{i}=1$ then $\left.P \equiv 0\right]$.
We will argue by induction on k. The case $k=2$ is sufficiently interesting and instructive to warrant a separate exposition. If $k=1$, the hypothesis says $P\left(x_{1}\right)$ vanishes on $N+2$ points, yet is of degree $\leq \mathbb{N}$, hence $P \equiv O$ by the Haar condition.

In order to establish the proposition in case $k=2$ we first make some general observations.
Definition: A function f has an odd zero at ξ if $f(\xi)=0$ and f changes sign at $\bar{\zeta}$.
A function f has an even zero at $\overline{5}$ if $f(\bar{\zeta})=0$ and f does not change sign at $\$$.

Sublemra 2.I: Given 3 distinct points A, B, C in the real line such that $A<B<C$ and two functions f and g continuous on
$[A, C]$; suppose that $f(A)=g(B)=f(C)=0$, but that neither f nor g has a zero at any other point of $[A, C]$. Then, if B is an odd zero of $g, f-g$ has at least one zero in (A, C); but, if E is an even zero of $g, f-g$ may have two or no zeros in (A, C).

Proof:

(I)

(II)

(III)

(IV)

$\mathrm{f}-$ $\mathrm{g} \ldots-$

W.I.O. G. We may suppose that $f(x)>0$ for all $A<x<C$. There are four cases, illustrated above:
(I) g changes from negative to positive at B, $\therefore g(x)<0$ in $[A, B)$ and $g(x)>0$ in $(B, C]$. $\therefore(f-g)(B)>0$ and $(f-g)(C)<0$ hence $f-g$ has a zero in $(B, C) \subseteq(A, C)$.
(II) g changes from positive to negative at B : same as (I) mutatis mutandis.
(III) $g(x)>0$ all $x \in[A, B) \cup(B, C]$.
$(f-g)(A)<0$ and $\left(f^{\prime}-g\right)(C)<0$, but $(f-g)(B)>a_{0}$
$\therefore f-g$ has a zero in (A, B) and a zero in (B, C).
(IV) $g(x)<0$ all $x \in[A, B) \cup(B, C]$. Then $(f-g)(x)>0$
all $x \in[A, C]$, so $f-g$ has no zeroes in (A, C).

Next, given $A_{1}<B_{1}<A_{2}<\ldots<A_{t-1}<B_{t-1}<B_{t}$ and functions f and g continuous on $\left[A_{1}, A_{t}\right]$; suppose f has zeroes precisely at the A_{j} and g has zeroes precisely at the B_{j}. From Iemma 2.7 it is eeny to se that the number oi' zeroes of $f-g$ in $\left[A_{1}, A_{t}\right]$ is $\geq(t-1)$-m where m is the number of even zeroes of g among B_{1}, \ldots, B_{t-1}. On the other hand, suppose f has zeroes at the A_{j}
and possioly at sure of the B_{y} fout rownere elre in $A_{1}, A_{i} 1$, and g has zeroes at b.c B, an fos sioly ar some of tie A_{j}. (out nowhere
 (A, A_{j+1}) $\mathfrak{j = 1}, \ldots \ldots, 1, f-g h a s$ at least $m e$, of poss ibsy no or two zeroes, accoraing as g has an on even zero at E_{3}. Therefore the number of zeroes of $f-g$ in $\left[A_{1}, A_{t}\right]$ is stili $\geq(t-1)$-m as before. Observe finally that if $\bar{\delta}$ has more than one zero between A_{j} andi A_{j+1}, then $\bar{i}-g$ can have no zeross in $\left(A_{j}, \Lambda_{j+1}\right)$ only if g has an even niumer of such zeroes. That is, in the foregoing, we can replace "g has man oda zero in (A_{j}, A_{j+1})" by "g has an oá number of zeroes in (A_{j}, A_{j+1})" and " g has an even zero in $\left(A_{j}, A_{j+1}\right)$ " by " g has an even nurmer of zeroes in $\left(A_{j}, A_{j+1}\right)$." Moreover, if $A_{1}^{\prime} \leq A_{1}<B_{1}<A_{2}^{\prime}<A_{2}<B_{2} \ldots$ $<A_{t-I}^{\prime} \leq A_{t-1}<B_{t-1}<A_{t}^{\prime} \leq A_{t}$, and if I and g are contimious on [$\left.A_{I}^{\prime}, A_{\frac{1}{4}}^{\prime}\right]$ and if g has no zeroes in any $\left(A_{j}^{\prime}, A_{j}\right)$, then the nurioer of zerocs of $f-g$ in $\left[A_{1}^{\prime}, A_{t}\right]$ is \geq number o $0 \vec{i}$ zeroes of $f-g$ in
 aiter the ear-lier irequality.

From Siblemma 2.7 and the corollary remarks, we conclude
Iemia 2.8: Let Σ_{x}^{+}and Σ_{X}^{-}be sets of pointo wisich separate each other, entirely contained in some closed bounded real interval X. Let F^{+}de a function continuous on X , vanishing on Σ^{+}
F^{-}" " " " " " " Σ^{-}
(I) If card $\left(\Sigma_{x}^{+}\right)=\operatorname{cara}\left(\Sigma_{X}^{-}\right)=\tau$, anā F^{+}has precisely $T+x$ zerees and F^{-}has $\leq T+x$ zeroes [counting an ever zero as two zexoes and an oda as one] then $\mathrm{F}^{+}-\mathrm{F}^{-}$has $>(T-I)-x$ zeroes.
 $T+x$ zeroes an $d I^{+}$las $\leq \tau+x$ zerces, then $F^{+}-\vec{F}^{-}$has $>(15+1)-1)-n=i-i$ zerces.
(III) Lecard $\left(\Sigma_{x}^{+}\right)=T+1$, card $\left(\Sigma_{x}^{-}\right)=\tau, F^{+}$has precisely

$$
\begin{aligned}
& T+x \text { zeroes and } F^{-} \text {has }<T+x \text { zeroes, i.e., } T+M \text { where } \\
& M \leq x-I \text {, then } F^{+}-F^{-} \text {has } \geq((T+I)-I)-M \text { which is } \\
& \geq((T+I)-I)-(n-I)=T-x+I>\tau-x \text { zeroes. (In (II) and } \\
& \text { (III), } \sum_{x}^{+} \text {plays the role of the } A^{\prime} s \text {, and } t=T+1 \text {; in }(I), \Sigma_{x}^{-} \\
& \text {plays the role of the } \left.A^{\prime} s, \text { ard } t=T \cdot\right)
\end{aligned}
$$

We now proceed with the proof of Theorem 2 for $k=2$. By (*) p. we have $P(x, y)=S_{x}^{+}+S_{y}^{+}=S_{x}^{-}+S_{y}^{-}$, where
Assume not all of these summands
vanish icientically. $\quad\left\{\begin{array}{lll}S_{x}^{+} & \text {vanishes on } \Sigma_{x}^{+} \\ S_{y}^{+} & " & " \\ \Sigma_{y}^{+} \\ S_{x}^{-} & \text {vanishes on } \Sigma_{x}^{-} \\ S_{y}^{-} & 11 & " \\ \Sigma^{-}\end{array}\right.$ Suppose N even, $N=2 r-2$:

For S_{x}^{+}and S_{x}^{-}the x-degree $\geq r$ and hence the y-degree $\leq r-2$.
For $S_{y}^{\dot{+}}$ and S_{y}^{-}the y-degree $\geq r$ and hence the x-degree $\leq r-2$.
But $S_{X}^{+}-S_{X}^{-}=S_{Y}^{-}-S_{y}^{+}$therefore has x-degree $\leq r-2$, and so, by
Lemma 2.8 (I) at least one of S_{x}^{+}, S_{x}^{\sim} has x-degree $\geq r+1$.
Observe that x-depree of $P=x$-degree of $S_{x}^{+}=x$-degree of S_{x}^{-} [similarly for y], because no cancellation of terms of degree $\geq r$ can be effected by S_{y}^{+}or $S_{y}^{-} . \therefore$ Botn S_{x}^{+}and S_{x}^{-}have x-degree $\geq r+1$.
Iri precisely similar fashion, both S_{y}^{+}and s_{y}^{-}have y-degree $\geq r+1$, hence x-aegree $\leq r-3$, so $S_{x}^{+}-S_{x}^{-}$has x-degree $\leq r-3$.
Suppose it has already been shown that S_{x}^{+}and S_{x}^{-}have x-degree $\geq r^{+m}$
[resp.y]. Then S_{y}^{+}, b_{y}^{-}and $S_{y}^{-}-S_{y}^{+}=S_{x}^{+}-S_{x}^{-}$have $x-d e g r e e \leq r-m-2$, so by
Lemma $2.8 \mathrm{~S}_{\mathrm{X}}^{+}$and $\mathrm{S}_{\mathrm{X}}^{-}$both have x -legree $\geq r^{+m+1}$ [resp. y]. Since this
is true for $m \geq 0$, Let $m=r-2$ so S_{x}^{+}and S_{x}^{-}have x-degree $\geq r+(r-1)>\mathbb{N}$.
But this contradicts Lemma 2.6. $\therefore S_{x}^{+}=S_{x}^{-} \equiv 0, S_{y}^{+}=S_{y}^{-} \equiv 0$. Suppose \mathbb{N} is odi, so $N=2 s-1$:

One of S_{x}^{+}, S_{x}^{-}has x-degree $\geq s+1$, y-degree $\leq s-2$; the other has x-degree $\geq s, y$-degree $\leq s-1$: as before, both have x-degree $\geq s+1, y$-degree $\leq s-2$. Likewise, one of S_{y}^{+}, S_{y}^{-} has y-degree $\geq s+1$, x-degree $\leq s-2$; the other has y-degree $\geq \mathrm{s}, \mathrm{x}$-degree $\leq \mathrm{s}-1: \therefore$ both have y -degree $\geq \mathrm{s}+1$, x-degree $\leq s-2$. Using Lemma 2.8 (II) or (III) exactly as in the case for N even, we now conclude $S_{x}^{+}=S_{y}^{+}=S_{x}^{*}=S_{y}^{-} \equiv 0$. This concludes the special case $k=2$.

Let $k>2$. Assume Theorem 2 has been proved for all Haar polynomials in $\leq(k-1)$ variables. Given $P\left(x_{1}, \ldots, x_{k}\right)$ written in form (*). Then

$$
\begin{aligned}
& \sum_{\omega_{k}^{N}=\rho_{k}}^{N} A_{k}^{\omega_{k}} \Phi_{k}^{\omega_{k}}\left(x_{k}\right)-\sum_{\omega_{i}=\sigma_{k}}^{N} B_{k}{ }_{Y}^{W_{k}} \\
& \quad=\sum_{i=1}^{k-1}\left(\sum_{\omega_{i}}^{N}=\sigma_{i} B_{i}^{\omega_{i}}{ }_{i}^{\omega_{i}}\left(x_{I}\right)\right)-\sum_{i=1}^{k-1}\left(\sum_{i}^{N}=_{i}^{N} A_{i}^{\omega_{i}}{ }_{i}^{\omega_{i}}\left(x_{i}\right)\right) .
\end{aligned}
$$

For any fixed values $x_{1}=\overline{5}_{1}, x_{2}=\overline{5}_{2}, \ldots, x_{k-1}=\bar{\xi}_{k-1}$ the left-hand side is a difference of Haar polynomials in x_{k}, vanishing on Σ_{k}^{+}, Σ_{k}^{-}resp.; the right-hand side has x_{k}-aegree $\leq r_{k}-2^{\prime}\left[s_{k}-2\right]$ if N is even [odd], hence by Lemma 2.8, each sum on the left has x_{k}-degree $\geq r_{k}+1\left[s_{k}+2\right]$. Hence x_{i}-degree of A_{k}^{w} is $\equiv N-\left(r_{k}+1\right)-r_{k}-3\left[\mathbb{N}-\left(s_{k}+2\right)=s_{k}-3\right]$ each $i=1, \ldots, k-1$. But now, by a. symmetrical argunent, it is clear that x_{k}-degree of $A_{i}^{\omega_{i}} \leq r_{i}-3\left[s_{k}-3\right]$, and likewise for x_{k}-degree of B_{i}. Proceeding as for $\mathrm{k}=2$, we have
 for every $x_{1}=\xi_{1}, \ldots, x_{k-1}=\xi_{k-1}$. Hence $A_{k}^{\omega_{k}} \equiv 0, \mathcal{B}_{k}^{\omega_{k}} \equiv 0$ and the two sums on the right-han side above are identically equal. Fix
$x_{k}=\xi_{k}$ arbitrarily, and apply the inductive assumption: then the sums with $x_{k}=E_{k}$ vanish identically. But \tilde{s}_{k} was aisitrary. \therefore The (original) sums on tine right-hand side vanish identically. $\therefore P \equiv 0$.

QED Theorem 2

Section 3

Theorem 2 can be regarded as a result about the rank of certain matrices, as Follows:

Consider the configuration $\Sigma=\Sigma^{+} \cup \Sigma^{-}=\left(\Sigma_{I}^{+} \times \ldots \Sigma_{k}^{+}\right) U\left(\Sigma_{2}^{-} \times \ldots \Sigma_{k}^{-}\right)$, as previously defined. We denote by $Y_{N, k}$ the number of (lattice)-points in Σ. If N is even, $N+2=2 r ; \operatorname{card}\left(\Sigma_{i}^{+}\right)=\operatorname{card}\left(\Sigma_{i}^{-}\right)=r$, each $i=1, \ldots, k$, so $Y_{N, k}=2 r^{k}$. On the other hond, if N is odd, $N+2=2 s+1$; curd $\left(\Sigma_{i}^{+}\right)$and card $\left(\Sigma_{i}^{-}\right)$differ by l, for each $i=1, \ldots, k$, hence one is s and the other $s+1$. Let $u=$ number of $i, 1 \leq i \leq k$, for which card $\left(\Sigma_{i}^{+}\right)=s$. Then Σ^{+}consists of $s^{u}(s+1)^{k-u}$ points, and Σ^{-}of $(s+1)^{u} s^{k-u}$ points so $\gamma_{\mathbb{N}, k}=s^{u}(s+1)^{k-u^{n}}+(s+1)^{u} s^{k-u}$. It is easy to see that each choice $u=0,1, \ldots,[k / 2]$ produces an essentially different configuration Σ.

Next, a Haar polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ of degree N in the k variables x_{1}, \ldots, x_{k} is of form

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{k}\right)=\sum_{u_{1}}^{N}+\ldots+u_{k}=0 \quad \alpha_{u_{1}, \ldots, u_{k}} \varphi_{I}^{u_{I}}\left(x_{I}\right) \ldots \varphi_{k}^{u_{k}}\left(x_{k}\right) . \\
u_{i} \geq 0
\end{gathered}
$$

Lemma 3.1 : P contains as mary "monomials" as there are ways to choose non-negative integers $u_{1}, \ldots, u_{k} \ni u_{1}+\ldots+u_{k} \leq N$. In fact, there are $\binom{N+k}{k}$ such k-tuples $\left(u_{1}, \ldots, u_{k}\right)$. Proof: Ooserve first $\sum_{m=0}^{M}\binom{K+m-I}{m}=\binom{M+K}{K}=\binom{M+K}{K}$, any $M \geq 1$, any $K \geq 1$. If $M=0$, sum on left reduces to $\binom{K-1}{0}=1$, which is equal to
$\binom{K}{K}$ on the right. Assume true for $\mathrm{M}-1$, so $\sum_{m=0}^{M-1}\binom{K+m-I}{m}=\left(-\frac{M-1}{K}+K\right)$; but then
$\binom{K+M-1}{M}+\left(\frac{M-1}{K}+K\right)=\frac{\lfloor K+M-1}{M M-1}+\frac{1 M-I+K}{M!M-1}=\frac{K+M}{M K}=\binom{M+K}{K}$. Next, there are $\left(\frac{k+n-1}{n}\right)$ ways to choose nonnegative integers $u_{1}, \ldots, u_{k} \ni u_{1}+\ldots+u_{k}=n$. For, if $k=1$, there is evidently only one way to choose u_{1}, and indeed $\left({ }^{1+n-1}\right)=1$. Assume $k>1$ and that for any v, there are $\left(\frac{k-I+\nu-l}{v}\right)$ ways to choose $u_{1}, \ldots, u_{k-1} \ni u_{1}+\ldots+u_{k-1} \nu$. But for each $0 \leq \nu \leq n$, the choice $u_{k}=n-v$ produces a set $u_{1}, \ldots, u_{k} \ni u_{1}+\ldots+u_{k}=n$. Hence, there are in all $\sum_{v=0}^{n}\left(\frac{1-1+v-1}{\nu}\right)=\left(\frac{k-1+n}{n}\right.$. $)$ ways to choose $u_{1}, \ldots, u_{k} \ni u_{1}+\ldots+u_{k}=n$. A second use of the initial observation gives the desired result, as $\sum_{n=0}^{N N}\left(k-\frac{1}{n}+n\right)=\left(k_{k}^{+N}\right)$.
(Another, "nifty", proof is due to D. Berkowitz: choosing nonnegative integers $u_{1}, \ldots, v_{k} \ni u_{2}+\ldots u_{k} \leq N$, is equivalent to filling k places out of $I T+k$, in such a manner that between the $(i-1)^{s t}$ filled place and the fth filled place [or to the left of the last filled place], u_{i} empty places should intervene. Clearly there are $\left({ }^{-\mathrm{T}^{+}+\mathrm{k}}\right)$ ways to do this.)

To say P vanishes on Σ is to say

By Theorem 2, this implies every $\alpha_{u_{1}, \ldots, u_{k}}=0$. That is, the system of $\gamma_{\mathbb{N}, k}$ homogeneous equations in the $(\underset{k}{N+k})$ "unknowns" $\alpha_{u_{1}}, \ldots, u_{k}$ has only the solution ($0, \ldots, 0$).

Derma 3.2: $\quad\left(N_{k}^{+k}\right) \leq \gamma_{N, k}$ for all $k \geq 2$, all $N \geq 0$.
Proof : If $N=0$, assertion is clearly trivial.
If $N=1$, then $s=1$, and we must show $(1+k k)=1+k \leq 2^{u}+2^{k-u}$, any $0 \leq u \leq k$, any $k \geq 2$. It would suffice, by the elementary calculus, to show $1+k \leq 2^{\frac{i}{2} k+1}$, for $k \geq 2$. However, the function $2^{x+1}-(2 x+1)$ is ron-negative and has a non-negative first derivative for $x \geq 1$, so we are done. Suppose now that $\mathbb{N}>I$ and proceed by induction on k. If $k=2$, and N is even, $\left(N^{N+2}\right)=\left(2^{2 r}\right)=r(2 r-1)<2 r^{2}=\gamma_{N, 2}$; but, if N is odd, $\left(\mathbb{N}^{2} 2\right)=\left(2 s \sum^{1}\right)=s(2 s+1)<\gamma_{N, 2}$ which is $s^{2}+(s+1)^{2}$ or $2 s(s+1)$.

Assume $k>2$ and that the result has been established for $k-1$. $\binom{N+k}{k} \div\binom{ N+k-1}{k-1}=\frac{N+k}{K} \leq[N / 2]+1$, because $N \leq k \cdot[N / 2]$ as soon as $\mathbb{N}>1, k>2 . r$ and s are each $[N / 2]+1$. For \mathbb{N} even; then, $\binom{N+k}{k} \leq r \cdot\binom{N+k-1}{k-1} \leq r \cdot \gamma_{N}, k-1 \leq r \cdot 2 r^{k-1}=2 r^{k}$. For N odd, $\binom{N+k}{k} \leq s \cdot\binom{N+k-1}{k-1} \leq s \cdot \gamma_{N, k-1}$,
 which is clearly $\leq \min _{0 \leq u \leq k}^{\left\{s^{u}(s+1)^{k-u}+s^{k-u}(s+1)^{u}\right\}, ~}$ thus $\binom{N+k}{k} \leq \gamma_{N, k}$.

Hence the assertion is valid for all k .

From this it follows, since the system must have maximal possible rank, that its rank is $\binom{\mathbb{N}+k}{\mathbb{K}}$. Moreover, there must exist a sub-lattice $\tilde{\Sigma}$ of $\binom{\mathbb{N}+k}{k}$ points, such that the equations $P\left(\bar{s}_{1}, \ldots, \xi_{k}\right)=0,\left(\bar{s}_{1}, \ldots, \bar{s}_{k}\right) \varepsilon \tilde{\Sigma}$, form an $\binom{N+k}{k}$-square system with non-zero determinant.

Section 4
 $0 \hat{1}$ degree $\leq \mathbb{N}$ to a separated function in 2 variables is the separated Haar polynomial which is the sum of the respective best approximations of degree SN to the separate components. Theorem 3 says: this Haar polymomial is the unique best approximation of degree <N.

Certain other attempts to generalize the results of the original paper have leã to counterexamples, even when $k=2$.

Consider approximation on $[0,1]$ by (ordinary) polynomisis in the L^{p} norm, where $\|f\|=\left\{\int_{0}^{1}|f(x)|^{p} d x\right\}^{1 / B}$. To say $f(x)$ is unimprovable in the I^{P} norm by any polynomial of degree $\leq \mathbb{N}$, is to say $\left\|f-\lambda x^{u}\right\| \geq\|f\|$ all real λ, all $u=0, \ldots$, in. That is, 0 is the best approximation of degree $\leq \mathbb{N}$. Similarly, the I^{p} norm on the Cartesian product $[0,1] \times[0,1]$ is given by

$$
\| F \mid=\left\{\iint_{[0,1] x[0, I]}|F(x, y)|^{p_{d x}} d y\right\}^{1 / p}
$$

and it is easy to see that to say \vec{F} is unimprovable by a polynomial of degree $\mathbb{I N}$, means $\left\|F-\lambda \cdot x^{u} y\right\| \geq \|$ Fil ald real λ, all $u \geq 0, v \geq 0 \ni u+v \leq N$.

We will show Theorem 1 does not hold for $p=4, k=2, N=0$.
 Assert $f \perp g$ in L^{4} if and only if $\int f^{3} g=0$:
$\|f-\lambda g\|^{4}=\int(f-\lambda g)^{4}=\int f^{4}-4 \lambda \int f^{3} g+\int\left(\sigma \lambda^{2} f^{2} g^{2}-4 \lambda^{3} f g^{3}+\lambda^{4} g^{4}\right)$,
$\therefore \int(\tilde{f}-\lambda g)^{4}-\int f^{4}=-4 \lambda \int f^{3} g+\lambda^{2} \int\left[2(f g)^{2}+f^{2}(2 \hat{i}-\lambda g)^{2}\right]$.
The secon integral on the right is aiways non-negative; so in $\int_{i}{ }^{3} \neq 0, \lambda$ can be so chosen that the whole right-kand side is negative, whereas if $\int f_{i}^{3} g=0$, the $r i g h t$ side is non-negative.

The assertion follows from the fact that $\|a\| \geq\|b\|$ if and only i $\overrightarrow{1}$ $\|a\|^{4} \geq\|b\|^{4}$.

It will suffice to exhibit a function $F(x)$, umimprovable by a constant, such that $F(x)+F(y)$ can be improved by a constant, ie. the best approximation of degree 0 in $[0,1] \times[0,1]$ is not the sum $0+0$ of the best approximations to each separate component. That is, $\int_{0}^{1}(F(x))^{3} d x=\int_{0}^{1}(F(y))^{3} d y=0$, but $\int[0,1] x[0, I]\left[\int_{[0}[x)+F(y)\right]^{3} d x d y \neq 0$.
Observe

$$
\begin{aligned}
& \iint[F(x)+F(y)]^{3} d y d y=\iint\left[(F(x))^{3}+3(F(x))^{2} F(y)+3 F(x)(F(y))^{2}+(F(y))^{3}\right] d x d y \\
&=\int_{0}^{1}\left[(F(x))^{3}+3(F(x))^{2} \cdot \int_{0}^{\frac{1}{F}}(y) d y+3 \cdot F(x) \cdot \int_{0}^{1}(F(y))^{2} d y+\int_{0}^{1}(F(y))^{3} d y\right] d x \\
&=2\left\{\int_{0}^{1}(F(x))^{3} d x+3 \cdot \int_{0}^{1}(F(x))^{2} d x \cdot \int_{0}^{1} F(y) d y\right\} .
\end{aligned}
$$

\therefore Suffices to exhibit $F(x) \ni \int_{0}^{1}(F(x))^{3} \bar{d} x=0$ but
$\int_{0}^{1} F(x) d x \neq 0, \int_{0}^{1}(F(x))^{2} d x \neq 0$. Namely, $F(x)=x\left[1-\frac{3}{2} x^{2}\right]^{1 / 3}$:
$\int_{0}^{1} x\left[1-\frac{3}{2} x^{2}\right]^{1 / 3} a x=-\left.\frac{1}{3} \cdot \frac{4}{3}\left[1-\frac{3}{2} x^{2}\right]^{4 / 3}\right|_{0} ^{1}=-\frac{1}{4}\left\{\left[1-\frac{3}{2}\right]-1\right\} \neq 0$;
$\int_{0}^{1} x^{2}\left[1-\frac{3}{2} x^{2}\right]^{2 / 3} d x \neq 0$ because the integrand is positive except at $x=0$ or $x=\sqrt{2} \frac{2}{3} ; \int_{0}^{1} x^{3}\left(1-\frac{3}{2} x^{2}\right) d x=\frac{x^{4}}{4}-\left.\frac{3}{2} \frac{x^{6}}{6}\right|_{0} ^{1}=0$.

A more striking counterexample to Theorem I is provided by the following: We claim that there exists $F(x) \in L^{4}[-1,1]$ such that $F(x)+F(y)$ is unimprovaile by any quadratic of the form $P(x)+Q(y)$, but is improvable by a multiple of $x y$. This means $F(x)+F(y)$ is orthogonal to l, x, x^{2}, y, y^{2} nut rot to $x y$.

Consider $\int_{-1}^{1}\left[\int_{-1}^{1}(F(x)+F(y))^{3}\left\{\begin{array}{ll}1 & y_{2} \\ x & y \\ x^{2} & x y\end{array}\right\}\right.$ dy]dx: we seek $F(x) \in L^{4}[-1, I]$ such that

$$
\left\{\begin{array}{l}
2 \int_{-1}^{1} F^{3}(x) d x+3 \int_{-1}^{1} F^{2}(x) d x \cdot \int_{-1}^{1} F(x) d x=0 \\
2 \int_{-1}^{1} x F^{3}(x) d x+3 \int_{-1}^{1} x F^{2}(x) d x \cdot \int_{-1}^{1} F(x) d x+3 \int_{-1}^{1} x \cdot F(x) d x \cdot \int_{-1}^{1} F^{2}(x) d x=0 \\
2 \int_{-1}^{1} x^{2} F^{3}(x) d x+3 \int_{-1}^{1} F(x) d x \cdot \int_{-1}^{1} F(x) d x+3 \int_{-1}^{1} x^{2} F(x) d x \cdot \int_{-1}^{1} F^{2}(x) d x+\frac{2}{3} \int_{-1}^{1} F^{3}(x) d x=0 \\
3 \int_{-1}^{1} x F^{2}(x) d x \cdot \int_{-1}^{1} x F(x) d x \neq 0 .
\end{array}\right.
$$

It would certainly suffice to show that there exists $F(x) \in L^{4}[-1,1]$ such that

$$
\left\{\begin{array}{l}
F(x)=0 \text { on }[-1,0] \\
\int_{0}^{1} F(x) d x=0 \\
\int_{0}^{1} F^{2}(x) d x=1 \\
\int_{0}^{1}\left(2 F^{3}(x)+3 F(x)\right)\left\{\begin{array}{l}
1 \\
x_{2} \\
x^{2}
\end{array}\right\} d x=0 \\
\text { but } \int_{0}^{1} x F(x) d x \neq 0
\end{array}\right.
$$

Suppose no such $F(x)$ exists. Then we would have
(*) $\left\{\begin{array}{l}F(x) \in L^{4}[0,1] \\ \int_{0}^{1} F(x) d x=0 \\ \int_{0}^{1} F^{2}(x) d x=1 \\ \int_{0}^{I}\left(2 F^{3}(x) \div 3 F(x)\right)\left\{\begin{array}{l}1 \\ \vdots \\ x\end{array}\right\}=x=0\end{array}\right\} \Rightarrow \int_{0}^{1} x F(x) d x=0$.
Let $F(x)$ be a function satisfying conditions (*). Then for any $G(x) \in L^{4}[0,1]$ and any δ

$$
\left.\left\{\begin{array}{l}
\int_{0}^{1}[F(x)+\delta G(x)] d x=0 \\
\int_{0}^{1}[F(x)+\delta G(x)]^{2} d x=1 \\
\int_{0}^{1}\{2[F(x)+\delta G(x)] 3+3[F(x)+\delta G(x)]\}
\end{array}\right\}\left\{\begin{array}{l}
1 \\
x, \\
x^{2}
\end{array}\right\}, d x=0\right)
$$

Since δ can be chosen arbitrarily small, this means (N.A.S.C.)

$$
(* *) \quad\left\{\begin{array}{ll}
G(x) \in I^{4}[0, I] \\
\int_{0}^{I} G(x) d x=0 & \\
\int_{0}^{\frac{1}{F}}(x) G(x) d x=0 & \\
\int_{0}^{1}\left(6 F^{2}(x)+3\right) \cdot G(x) \frac{1}{x_{2}} d x=0
\end{array}\right\} \Rightarrow \int_{0}^{1} x G(x) d x=0
$$

This set of equations says: whenever $\sqrt[3]{G}$ is orthogonal to I, F, $2 F^{2}+1, x\left(2 F^{2}+1\right), x^{2}\left(2 F^{2}+1\right)$, then $\sqrt[3]{G}$ is orthogonal to x also. 1.e. $F(x)$ is such that x is in the linear subspace of $L^{4}[0,1]$ spanned by these 5 functions. But this implies $F(x)$ satisfies an equation $A(x) F^{2}+B(x) \cdot F+C(x)=0$, where A, B, C are polynomials in x of degree ≤ 2. $\therefore F(x)$ is continuous on $[0,1]$, except possibly at 2 points (because it is a quadratic surd function of x). Likewise, $F+\delta G$ must be a quadratic surd function of x, and hence continuous, except possibly at 2 pts. for every G satisfying conditions (**). However, given any $F(x)$ satisfying $(*)$, there exist functions $G(x)$ satisfying (**) which fail to be continuous at 5 points, namely

where

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=0 \\
\sum_{i=1}^{6} a_{i} \int_{\frac{i-1}{6}}^{\frac{i}{6}} F(x) d x=0 \\
\sum_{i=1}^{6} a_{i} \int_{\frac{i-1}{6}}^{\frac{i}{6}}\left(2 F^{2}+1\right) a x=0 \\
\sum_{i=1}^{6} a_{i} \int_{\frac{i-1}{6}}^{\frac{i}{6}}\left(2 F^{2}+1\right) d x=0 \\
\sum_{i=1}^{6} a_{i} \int_{i-1}^{\frac{i}{6}}\left(2 F^{2}+1\right) a x=0
\end{array}\right.
$$

There are 5 homogeneous linear equations in the δ unknowas a,\ldots, ab, so there always exist solutions not all zero. But then $F+\delta G$ i.s not continuor, or rather, fails of corinuity at more than 2 points. Tnis contradiction shows that the implication following (*) is not valid.

Consider now weighted Čeby'sev norms.
If $f(x)$ is continuous on $[0,1]$ and $\rho(x) \geq 0$ is continuous on $[0,1]$, define $\|f\|_{\rho}=\sup _{x \in[0,1]} \rho(x)|f(x)|$; likewise; $\|E\|_{\sigma}$ for functions g(y) with weight $\sigma(y)$. Then the "product norm" can be defined by $\|F\|_{\rho, \sigma}=\operatorname{sum}_{x, y \in[0,1]}^{\rho(x) \sigma(y)|F(x, y)| .}$

We will show that Treorem I fails even for $N=0$, namely, we shall exhibit functions $f(x)$ and $g(y)$, unimprovable
by a constant with weights x and y respectively, such that $f(x)+g(y)$ is improvable by a constant, with weight $x y$. Ooserve that to say $f(x)$ is unimprovable by a constant, with weight x, is to say $\max _{x \in 0,1} x|f(x)-c| \geq \max _{x \in[0,1]}|f(x)|$ for any c. It follows that $\{\alpha \mid \times f(x)=\alpha\}$ is an interval $[-\lambda, \lambda]$, i.e. the range of $x f(x)$ is symmetric. Otherwise, suppose W.L.O.G. $\max _{x \in[0,1]} x f(x)>-\min _{x \in[0,1]} x f(x) ;$ let $c_{0}=\frac{1}{2}[\max +m i n]$, then $\max _{x \in[0,1]}\left|x f(x)-c_{0} x\right|<\max _{x \in[0, I]}|x f(x)|$. (It is easy to see that this is also a sufficient condition.) Likewise, in order that $f(x)+g(y)$ be unimprovable by a constant, with weight $x y$, it is necessary that $x y(f(x)+g(y))$ have symmetric rarge.

So now, doose $\hat{I}(x)=x-a$ and $g(y)=y-a$ with $a=2 \sqrt{2}-2$, then $x(x-a)$ and $y(y-a)$ have symmetric range as x, y run through $[0,1]$. However, $x y(x-a)+x y(y-a)$ does not have symmetric range: by elementary calculus this function achieves its max or min at points for
which $x=y=t$, so $\max _{x, y \in[0,1]} x y(x-a)+x y(y-a)=\max _{t \in[0,1]} 2 t^{2}(t-a)$, and likewise for min. But $2 t^{2}(t-a)$ has maximum value $2=2 a$ at $t=1$, and minimum value $-\frac{8}{27} a^{3}$ at $t=2 / 3 a . \quad 2-2 a \neq \frac{8}{27} a^{3}$ for $a=2 \sqrt{2}-2$. Thus range is not symutric.
$\therefore f(x)+g(y)$ is not unimprovable, so the best approximation is not the sum of the separate best approximat io is.

In the even simpler case in which only the weight x is involved, consider the function $x\left((x-a)+\left(y-\frac{1}{2}\right)\right)$ with $a=2 \sqrt{2-2}$. By the usual elementary calculations, range $x(x-a)=[2 \sqrt{2}-3,3-2 \sqrt{2}]$, $x \in[0,1]$
range $\left(y-\frac{1}{2}\right)=\left[-\frac{1}{2}, \frac{1}{2}\right]$, but $x\left((x-a) \div\left(y-\frac{1}{2}\right)\right)$ has maximum value -ir the unit $y \in[0,1]$ square--on $\frac{3}{2}$-a at $x=1, y=1$ and minimum value of $-\frac{1}{4}\left(a+\frac{1}{2}\right)^{2}$ at $x=\frac{1}{2}\left(a+\frac{1}{2}\right), y=0$. However, $\frac{1}{4}\left(a+\frac{1}{2}\right)^{2} \neq \frac{3}{2}-a$, so the function is improvable.

I'urther investigations into the weighted norms are continuing.
We turn now to a question which, although it does not involve a direct generalization of Theorem 1 , is nonetheless closely related in spirit. Theorems I and 3 say that if a function is of separated form then the (unique) best approximation of degree N is also of separated form. Consider flunctions on the unit square, of form $f_{0}(y)+x f_{1}(y)+x^{2} f_{2}(y)+\ldots+x^{n} f_{n}(y)$, where each $f_{i}(y)$ is continuous on $[0,1]$, and Cebyšev approximation by (ordinary) polynomials in x and y. We ask whether there is a best approximation of degree $N>n$ whose degree in x is $\leq n$, i.e of form $p_{0}(y)+x p_{1}(y)+x^{2} p_{2}(y)+\ldots+x^{r} p_{n}(y)$ where $p_{1}(y)$ is a polynomial ir y ofí degree $\leq N^{\prime}$. Ooserve first

$$
\max _{x, y}\left|h_{0}(y)+x h_{1}(y)\right|=\max \left\{\max _{y}\left|n_{0}(y)\right|, \max _{y}\left|h_{0}(y)+h_{1}(y)\right|\right\}
$$

Decal se $n_{0}+x h_{1}$ is linear in x for each fixed y.

If $n=0$, the given function is of form $f_{0}(y)$. Let $\rho_{0}(y)$ be the best Cebysev approximation to $f_{0}(y)$ of degree N. Let $q_{0}(y)+x q_{1}(y)+\ldots+x^{N} q_{N}(y)$ be a polymomial of degree N. Then $\max _{x, y}\left|\left(f_{0}-q_{0}\right)-x q_{1}-\ldots-x^{N} q_{N}\right| \geq \max \left\{\max _{y}\left|f_{0}(y)-q_{0}(y)\right|, \max _{y}\left|f_{0}(y)-q_{0}(y)-\ldots-q_{a N}(y)\right|\right\}$ $\geq \max _{y}\left|f_{0}(y)-p_{0}(y)\right|$,
because $q_{0}(y)$ and $q_{0}(y)+\ldots+q_{N}(y)$ were both among the candidates
form amongst which $p_{0}(y)$ was chosen.
Hence $q(y)+\ldots+x^{N} q_{N}(y)$ does not approximate $f_{0}(y)$ better than $p_{0}(y)$.
If $n=1$, the given function is of the form $f_{0}(y)+x f_{1}(y)$: call it $F(x, y)$. Let $p_{0}(y)$ and $p_{I}(y)$ be those polynomials of degree N and $N-1$ respectively, for which $\left.\max \left\{\max _{y}\left|f_{0}(y)-p_{0}(y)\right|, \max _{y} \mid f_{0}(y)+f_{1}(y)-p_{0}^{\prime}, y\right)-p_{1}(y) \mid\right\}$
is a minimum. We assert $P(x, y)=p_{0}(y)+x p_{1}(y)$ is the best approximation of degree N with this form. For, let $Q_{1}(x, y)=q_{0}(y)+x q_{1}(y)$ be of degree N or less, then

$$
\begin{gathered}
\max _{x, y}\left|\left(f_{0}(y)-q_{0}(y)\right)+x\left(f_{1}(y)-q_{1}(y)\right)\right|=\max \left\{\max _{y}\left|f_{0}-q_{0}\right|, \max _{y}\left|f_{0}+f_{1}-q-q_{1}\right|\right\} \\
\geq \max \left\{\max _{y}\left|f_{0}-p_{0}\right|, \max _{y}\left|f_{0}+f_{1}-p_{0}-p_{1}\right|\right\} . \\
\text { by construction } \\
\\
=\max _{x, y}\left|\left(f_{0}(y)-p_{0}(y)\right)+x\left(f_{1}(y)-p_{1}(y)\right)\right| .
\end{gathered}
$$

Moreover, let $Q_{N T}(x, y)=q_{0}(y)+x q_{1}(y)+\ldots+x^{N} q_{N N}(y)$ be any polynomial of 2egree N. We will show $\left\|F-Q_{N N}\right\| \geq\|P-I\|$, so that P is the best approximation to F, of degree \mathbb{N}. It surfices to show

$$
\begin{aligned}
& \max _{x, y}\left|f_{0}(y)-q_{0}(y)+x\left(f_{1}(y)-q_{1}(y)\right)-x^{2} q_{2}(y)-\ldots-x^{N} q_{10}(y)\right| \\
& \geq \max _{x, y}\left|\left(f_{0}(y)-p_{0}(y)\right)+x\left\{f_{1}(y)-p_{1}(y)\right)\right| \\
&=\max \left\{\max _{y}\left|s_{0}(y)-p_{0}(y)\right| \max _{y}\left|f_{0}(y)+f_{1}(y)-p_{0}(y)-p_{1}(y)\right|\right\} .
\end{aligned}
$$

The left-hand expression is $\geq \max \left\{\max _{y}\left|f_{0}-q_{0}\right|, \max _{y}\left|f_{0}+f_{1}-q_{0}-\left(q_{1}+\ldots+q_{\mathbb{N}}\right)\right|\right\}$, out q_{0} and $q_{1}+\ldots+q_{N}$ were among the candidates from amongst which p_{0} and p_{1} were chosen, hence the desired result follows.
Let $n=2, N=3$. We shall exhibit a function $F(x, y)=f_{0}(y)+x f_{1}(y)+x^{2} f_{2}(y)$, unimprovable by any polynomial $p_{0}(y)+x p_{1}(y)+x^{2} p_{2}(y)$ of degree 3 , but improvable a certain $a_{0}+a_{1} x+a^{2}+a_{3} x^{3}$, a_{i} constarts, $a_{3} \neq 0$.

By way of preliminary observation, recall from the elementary calculus that given $0<x_{0}<1$, there always exists a quadratic in x which attains Its maximum [or minimum] of 1 [or -1] at $x=x_{0}$, and its minimum [or maximum] of 0 at $x=0$ or $x=1$ according as $x_{0} \geq \frac{1}{2}$ or $x_{0} \leq \frac{1}{2}$.

Let $M \geq 4$ and $0=y_{1}<y_{2}<\ldots<y_{M}=1$ be fixed values of y, all to be determined later. Let $0 \leq x_{1}<x_{2}<x_{3}<x_{4} \leq 1$; consider the vertical Iines $I_{i}: x=x_{i} i=1,2 \cdot 3,4$. The points $\left(x_{1}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$, $\left(x_{i}, y_{5}\right), \ldots,\left(x_{i}, y_{4 k+i}\right), \ldots$ constitute a rinite set which meets any horizontal $y=y_{j}$ in exactly one point.

x
To each horizontal $y=y_{j}$ with $j \equiv 1$ moả 4 associate the prabola $\Pi_{j}(x)=\alpha_{j 0}{ }_{j}^{+\alpha}{ }_{j 1}{ }^{x+\alpha}{ }_{j 2} x^{2}$ which attains its minimim value of +1 at $x=x$, and its maximum value of 0 at $x=0$ or $x=1$. Likewise to each horizontal $y=y_{j}$ with $j \equiv 3 \bmod 4$ associate
the parabola $\pi_{j}(x)$ whose minitum is -1 at $x=x_{3}$, and minimum of 0 at $x=0$ or $x=1$. Ard, to each $y=y_{j}, j=2 \bmod 4$, the paradola $\pi_{j}(x)$ with $\max +1$ ait $x=x_{2}$ ard mininm 0 at $x=0$ or $x=1$, and likewise for $y=y_{j}, j \equiv 0$, mod 4. We can interpolate a surface $F(x, y)$ on the unit square, as follows:

$$
\left\{\begin{array}{l}
F\left(x, y_{j}\right)=\pi_{j}(x) \quad \text { any } x \\
F(x, y)=F\left(x, y_{j}\right)+\left(\frac{y-y_{j}}{y_{j+1}-y_{j}}\right)\left[F\left(x, y_{j+1}\right)-F\left(x, y_{j}\right)\right] \\
\text { for } y_{j} \leq y \leq y_{j+1}, j=1, \ldots, M-1 .
\end{array}\right.
$$

$F(x, y)$ is continuous, $|F(x, y)| \leq I$, and the $\max _{x, y}|F(x, y)|=1$ is taken or only at the distinguished peints. Also note $F\left(x, y_{j}\right) \leq 0, j \equiv 1,3$ mod 4; $F\left(x, y_{j}\right) \geq 0, j \equiv 0,2 \bmod 4$. Evidently $F(x, y)$ is of the form $f_{0}(y)+x f_{2}(y)+x^{2} f_{2}(y)$.

Let $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}$ be such that $x_{1}<\bar{x}_{1}<x_{2}<\bar{x}_{2}<x_{3}<\bar{x}_{3}<x_{4}$; let $G(x)=\left(x-\bar{x}_{1}\right)\left(x-\bar{x}_{2}\right)\left(x-\bar{x}_{3}\right) . G(x)$ is negative at x_{1} and x_{3}, positive at x_{2} and $x_{L_{r}}$. There exists $\delta>0$ sufficientily small that $\max _{x}|\delta G(x)|<\varepsilon<\frac{1}{2}$, so $\max _{x, y}|F(x, y)-\delta G(x)| \leq l-\varepsilon$, since $\delta G(x)$ and $F(x, y)$ agree in sign on the distingulshed vertical lines. $\therefore F(x, y)$ is indeed improvable by a cubic in x.

It remains to show that no $P(x, y)=p_{0}(y)+x p_{2}(y)+x^{2} p_{2}(y)$ of degree 3 improves $F(x, y)$. Suppose, on the contrary, $P(x, y)$ is such an improving polynomial. Then P must be regative at the aistirguished points on I_{1} and I_{3} and positive at those or L_{2} ard I_{4}. For any $x=\bar{x}, P(\bar{x}, y)$ is of degree ≤ 3, hence there are at most 2 intervals in which it is positive and at most 2 in which it is negative (otherwise there would be ≥ 4 zeros). We may suppose that M and y_{1}, \ldots, y_{M} are so chosen that $y_{j+4}-y_{j}<\zeta$ where $8 \zeta<1$; (it would suffice to choose $\left.y_{j+1}-y_{j}<\frac{1}{32}\right)$. Then $P\left(x_{1}, y\right)$ is positive on at
most a set of measure 26 in I_{I}, i.e. between 2 pairis of distinguished points; likewise, $P\left(x_{3}, y\right)$ is positive on at most a set of measure 25 in $L_{3}, P\left(x_{2}, y\right)$ is negative on at most a set of measure 26 in L_{2}, and $P\left(x_{4}, y\right)$ is negative on at most a set of measure 26 in I_{4}. Since $86<1$ there exists a value $y \equiv \bar{y}$ such that $P\left(x_{1}, \bar{y}\right)<0, P\left(x_{2}, \bar{y}\right)>0$, $P\left(x_{3}, \bar{y}\right)<0, P\left(x_{i \downarrow}, \bar{y}\right)>0$, but $P(x, \bar{y})$ is a parabolia so this is impossible.

We conclude F is unimprovable by any such $P(x, y)$.
[1] Aitken, A.C.
[2] Akhiezer, N.I.
[3] Newman, D.J. and Shapiro, H.S.
[4] Rice, Lepine Hall
[5] Rice, Johr R.

Determinants and Matrices Oliver and Boyd, Itd. Iondon 1958

Theory of Approximations
Some Theorems on Cebyšev Approximation Duise Maith. Jl., vol.30, No. 4 (Dec. 1963) p.673-684

Adjoint and Invarse Determinants and Matrices p. 55-64

The Approximation of Functions, voi. I Addison-Welsey 1963

[^0]: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Belfer Graduate School of Science Yeshiva University New York
 June 1966

[^1]: * Cf. Akhiezer [2] p. 67 et seq, in which such a family is called a Tchebycheff system with respect to X.

