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Section l 

In [ 3], Newman and Shapiro are concerned primarily with uniqueness 
., ., questions arising from Cebysev approximation on Cartesian product spaces 

by ordinary polynomials in x
1

, ... ,x
k 

to functions of form E F.(x.). 
i=l 1 1 

1 

Definition: A family [cpu(x))
u=

O,l, ..• of continuous real-valued functions 

on some 

for any 

compact set Xis a Haar sequence* or satisfies the Haar condition if: 

J > o, any linear combination E c q>u(x) with c real and not all - u-0 u u 

zero, has at most J zeroes in X. 
J u 1 2 J+l Equivalently: 1:: c cp (x );;;;Q for x� ,s , . . .  ,I; distinct points of X implies 

u-0 u 

C = 0 all U ;; 0, ... ,J. u 

Approximation by linear combinations of such �u (x) are of special interest 

because it is well known (cf. J.R. Rice [5], p.87 ff) that the Haar condition 

is necessary for the uniqueness of the best approximation even for functions 

of' one variable. 

Definition: If [cpu(x)} is a Haar sequence, a Haar polynomial (abbrev. H.p) is 
u=O, .• J 

any expression of the f'orm E _ c cpu (x), 
u-0 u 

largest u for which c / 0. u 

J u The degree of I: c cp (x) is the 
u=O u 

Tbus, a H.p. of degreed has at most d distinct zeroes; and if two H.p. 

of degree-:, d agree at d+l points, they are identical, 

is a Haar sequence on X. The proofs of the following 

Lemmas are immediate, by standard theorems on existence and uniqueness of 

solutions to systems of linear equations. (Cf. Aitken [1], ch. II). 

* Cf. Akhiezer [2] p.67 et seq, in which such a �amily is called a Tchebycheff 

system with respect to X. 
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Lemma l.l 

Lemma 1.2 

Lemma l.3 

Lemma l.4 

If �
1

, ... ,S
J+l 

are distinct values of x, then 

c.po(s1) 

(f o (sJ+1) 

1 J+l If S , . . . s 

ci,\s
l

) r.p
J

(s
l

) 

r o 

cp\s
J+l

), cp J (�J+l) 

are distinct values of x 

and A1, ... ,AJ+l are real numbers (not necessarily distinct) 

Then there exists one and only one H.p. of' degree� J whose 
. 0 . 

value at each S J is A.cp (s J ), j = l, ••• ,J+l, 
J 

1 J+l If S , ..• ,s are distinct values of x 

Then there is a unique monic H.p. in x, of degree J, 

vanishing at s j, j=l, ... ,J. 
J u . Proof: The system I: c� (s J )=O, j=l, .. . ,J is really 

u=O u 

which has a unique solution by lemma l.l. 

If s1 , ... ,S .r a.re distinct values of x, and d > J, 
d 

Then there is a unique H. p. I: c c.p u(x) vanishing at 
u=O u 

1 J S ,•••,S, such that c =l, cd-l =, •• =c3
=0 

Proof : Same as for I.emna l. 3. 

Related results about the matrices associated with � Haar sequence 

can be found in Akhiezer [2] p.67 ff. 

Suppose now x1 , ... ,� are closed intervals, and that for each 

i=l, .•• ,k, {q>�(x.)}._0 1 is a Baar sequence on X .. 
1 1 J- , J, , ,  l 

Definitions A Haar polynomial (H.p.) in x
l

' ... ,x
k 

is any finite sum 

of the form 
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di ul( ) �(�) L et cp x • · •cp where the a' s are real 
u.=O 1)_,···,� l l k 

i numbers. i=l, . .. ,k 

The x.-degree of the H.p. is the largest u. such that 
l. l. 

Ci - .1 u.. u. u. u. u. , o, -ror some u1, . .. ,ui, ... ,u._ • 
.t, ... , 1.-l, 1., 1.+l, .•• , k K 

The (tot�) degree of the H.p. is max ( '½_ + ••• + �}. 
a Io 

ul, . . . ''\:_ 

The H.p. in x
1

, ... ,x
k 

of x1-degree � di form a veotor space of dimension 

� 
TI (d. +1); moreover the product �1(:x.... )·•-�k(xk), where each �.(x.) is a 
. ..l l. 

L l. l. 
1.== 

M m m 
H.p. in x., is defined as usual so that any finite sum I: t1(x1) ... �k(�) 

1. • m-=1 
is a H.p. in x1, .. . ,�. (Note that the product cp�(x1)cp;(xi) is not 

defined. ) Moreover, 

Lemma 1.5 

Lemma 1.6 

where i is any of the i=l, ••• ,k; d. = x.-degree of of P; 
0 

1.0 1.0 

A o . H i 
" 

1.s a .p. n x1, ... ,x , ... ,x._. 
U 10 

K 

Proof obvious; same as for ordinary polynomials. 

For each i=l, ... ,k 1 di+l 
et s., ... ,�. be distinct values 

1. l. 

Then the determinant of order ff (d. +1) whose 
i=l 1 

* arranged lexicographically cf. Aitken [1], p.90 

3 

,. 

Any H.p. ?(x1�·•·,�) can be written in the form 

di 0 l. 
I: o( ,. 

)u( ) A x1, •• ,,x. , ... ,x. cp. x. 
u=O u lo K lo Lo 

i 



Proof: lemma. 1.1 and the construction of L.H. Rice [4]. 

0 
Throughout the preceding there is no requirement that cp (x) be a 

constant function, but only that it have no zeroes. Thus, in the case of 

ordinary polynomials, Lemma 1. 2 sa:ys a polynomial of degree d > 1 cannot 

take on the value.A d+l ti.mes. 

u Clearly, if {cp (x)}u=O, ... is a Haar sequence on X, so also is 

{g>
u

(x) } . 
and conversely. 

cp
0

(x) u=O, ••• 

( 0 l 2 } Suppose :for each i=l, ..• ,k l=tp. (x.) ,cp. (x.) ,cp. (x.) • . . is a Haar 
l. l. l. l. l. l. 

sequence on X., andcp.(x.) is a continuous, real-valued function on X. 
1 1 l. l. 

having no zeroes. 
di 

P(xl, ••• , xk) =u�=O 

Let P(xl, ... ,�) be a H.p. so 

Ul Uk 
a . · cpl (xl)' .. cpk (xk). ul, ... , '\: 

l < i < 

�(x.) = cp:1(x.) ·f. (x.). l. l. l. 1 l. 1 

Then P(x1, ... , xk) = P(½_, ••. ,�) · n i{\ (x, ) . For any subset S of 
i=l 1 

Xix ••• �, P(x1, ••• ,�) vanishes on S if and only if P(x1, ••• ,�) 

vanishes on S. 

It follows that w ith no loss in generality it can be assumed that 

��(x. )=l, each i=l, .•• ,k, and that assumption will be made from here on. 
l. ). 

The following are direct consequences of Lemma 1.6: 

4 
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• 
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di u
l '\_ Define P(x1, ... ,xk

) - E � cp (x )· ··qrk (
x. ) 

where 
u. ;:Q � ; ••• , � l l K 

I ·- ,,_ 

,,.. ___ 
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Lemma 1.7 

Lemma 1.8 

Lemma 1.9 

Lemma 1.10 

J. d. + l 
For each i=l, .•• ,k let s. > • • •  ,s. 1. be distinct values 

l. J. 

k 
I.et C0 � (1 � o1 ::_ d.+l) be IT (d.+l) numbers 

1'•••,vk 1 i=l i 

not necessarily distinct. Then there exists a unlque H.p. 

In particular, if all C� 6 in l.elllm9. 1. 7 are zero, 
vl, ... , k 

P(½, •.• ,:isc) vanishes term-by-term: 

If two H.p. in x1, ••• ,x
k

, each of which has 

k 
x.-degree < d. (i=l, .•• ,k), agree on the IT (d.+l) 

l - � i=l 1 

k-tuples of l.etnIIB 1.7, then they are identical. 

Let P(x1, .•. ,x
k

) be a H.p. and suppose P to have been 

represented as in Lemma l. 5, for some fixed i . Then P = 0 
0 

if' and only if Aio (x1, .•• ,x. , .. ·¾) = 0 each u=O, .•• ,d .. u 
1.0 1.0 

Proof Induction on k, using Lemma 1.8. 

5 

Definition. A continuous real-valued function F(x1, .•• ,�) on x
1
x ... xx:k is 

separated if it can be written F1(x1)+ ... +Fk(�) where each Fi(xi) is 

continuous on X .. The function F.(x.) is the (ith ) separate component of F. 
1. 1. 1. 

Observe that if P(�, •.• ,�) is a separated H.p. on x
1
x ... �, then the 

ith separate component of Pis a H,p. also. 

Let be any non-negative integer. For each l < i < k let there 
+ 

be given a closed interval X. and two sets of points�. and 
1 1 

and�� in X., which separate each other, such that the total 

Of X. • l. 

P(x1, 
••. ,�) of xi-degree di such that 

61 61 P(sl , •.. .,(;kc)= C8 s: • 
1'' '. v k 

all et. = O. u1,···,11c 



+ 
number of points in E. and E� togetber is N+2. Thus, if N is even, 

l. l. 
+ - . N . dd N+2,,,2r., so E. and 'E. each contain r. points; whereas, ..,f .1s o , 

J. l. l. l 

N+2=2s.+l so one set contains s. points and the other s.+l. 
l. l. l. 

Since each family [1,cp�(x_), ... ,��(x. )} satisfies the Haar condition 
l. l. 1. l. 

on X., it follows (cf. Akhiezer [l] p.74 ff) that for any function F.(x.) 
1 1. 1 

real-valued and continuous on X.  there exists a unique H.p. of degree� N 
l. "' � 

of least Cebysev dev.i.ation from F. (x.) on X .• 
l. l. l. 

The (strong) extremal 
+ 

signatures for ( l,cp�, ••• ,cl} are prec · seJ_y of 
l l 

the form :E. U 'E�. 
l. l. 

+ +  + -
[]§ Let 'E ::r:1 x . .. x Ek, r:-= r:� x ••. x Ek. The construction of 3 , 2 

applies here, so we have 

Theorem 1: For each l < i < k, let X. be a closed interval, let F. (x.) - - l. l l 

be a continuous real-valued function on X., let �(x.) be the H.p. of 
l l. l. 

·degree <_ N of least Ceybtev deviation from E. (x.) on X.. Then among all 
1. l l. 

H.p. P(x1, ••• ,�) of degr�e � N there is none �hose Ceby�ev deviation 
k 

from F(x1, ... ,x. )= E F. (x.) on x1x ..• xX. is less than that of 
k i=l l. J. ·-ir 

I: P!!-(x.). 
i=l l l. 

That is, ifE
+

1 u E� is an extremal signature .for (1.,cp�, .. . ,cp
1.} - l i i 

then 

E+ 
U r:- is an extremal signature for the set [cp�l.(x1) ••• cp�k(x ) ; ' 

u. > o, u..+ ••• +iL < N}. 
l.- .l. -1c-

Section 2 

We shall now prove 

Theorem 2: If P(x1, . . .  ,xk) is a H.p. of degree� N which vanishes 

+ -
on E and on t then P = 0. 

There will then follow immediately 
k 

Theorem 3 : The H.p.i�l P;(xi) of Theorem 1 is the unique R.p. of 

degree� N of least deviation fromi�lFi(x1) on x
1
x .. .  xx:

k
. That is, 

y:+ U z::- is a strong extremal signature. 

6 
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(The terminology of the preceding follows [3]). 

The proof of Theorem. 2 is based upon several lemmas. 

Suppose first that for each i�l, • •. ,k a non-empty set of points 

8 0 is given, call them 1;�,$�, ... ,s�i (all distinct) • 
.1. l. 1 l. 

Let;!. = (all H.p. in x. vanishing on s.). Observe that no non-triviaJ. 
l. l. 1 

(i.e. , non-zero) H. p. in x. of <l.egree < r. belongs to;§ .. 
1 l. 1 

Lemma 2.1: Let P(x1, ..• ,xk) be a H.p. and suppose that for !!5l. choice 

ofi;1, ... ,l;k-l' P(s1, .. . ,sk-l'xk) vanishes at each_point 

of Sk. Then there exists a finite collection 

��(¾:), j!(�), ..... , �:(xk) of H . p. in,Jk, and also H.p. 

B
1

(x1,.:.,xk), E
2

(x1, ... ,xk), ... ,Bt (x1, . . .  ,xk) of xk-degree 

zero, . t t i such that 1,�l B (x1,., •• ,y
'k

) �k(�) = P(x1, ... ,�). 

7 

Proof: (By induction on k.) If k=l, statement is obvious, 

because we assumed rl (x. );;=-1.  Assume it is true for H.p. in 
l. 1 

k-1 variables; 'We will show it is true for k. Let P(x1, ... ,xk) 

be a H. p. satisfying the hypothesis. Let <fl be the 

1 d1+l x1-degree of P; let s 1 , . .• ,s 1 be distinct vaJ.ues of x1. 

P{l;f,x2, ... ,xk) vanishes at each point of Sk, for every 

choice of �, •.. ,xk_fevery 1 S, j S, d1+1. "f!;y the inductive 

hypotb.esis, 

and O at �I {j 'f j) 

has �-degree zero. 

Q. has Xi -degree � �. 

j=l, . .• ,d1 +l (Lemma l. 7); of obviously 
d1+l 

Let Q(x1, . .. ,xk) =};�l P/x2, .. .  ,xk)·Of(x1); 

Q agrees witn P for all val1,1es of 



x
2

, . . .  ,� in each of the �+l values of x
1

, hence P = Q by 

Lemma 1 . 9 ,  

:. P(x1 , . . .  ,xk) has a representat ion o f  the de sired form . 

k ti  .t i .t i  
Let Ik be the set of all H .p . of the f'orn\E

1 (f _ :::lBi (x1 , . . .  , xk ) � i ( xi ) )  
J. 

J, .  JJ where every if1 .  1 (x . ) €,,f!J_. l. :l. l 

' i""l, . . •  , k  

and 

By Lemmas 1 . 5  and 2 . 1 every H . p . in I
k 

can be  written 

M m m m m ·) 
m�l e1 (x1 ) e2 (x2 ) • • .  8k (�), where B

i 
(x

1 
is  a H.p . } 

and , for each m S: i 3 e1'.1 (x .  ) E: L . m ¾i 1in -m 

Clearly , every H . p. in Ik vanishes on s1 x . . .  x S
k

. 

Lemma 2. 2 The set of  all Haar polynomials van ishing on �x . • .  x S k i s  

precisely the set I
k

. 

Proof : In view of the llllIIledi ately preceding remarks , 

it  will suffi ce to show : 

For k=l j as sertion is  obviously true ; as sume it i s  true 

for ( k- 1 ) variables . Let P (x1 , . . .  , xk ) vanish on s
1

x • • •  xSk; 
1 2 rk Let S k ,S k , . . .  ,S k be the pts . of' Sk . For j""l , . . . , rk , 

P{ x1 , . . .  , xk_1 ,s � )  vanishes  on s
1

x . . .  xSk-l ' hence , applying 

the inductive hypothesis , 

p j (xl, 0 ' .  } :is
<.-1 ) =P ( xl ' • 0 ' '�-1, {� ) e¾:-1 

8 



J, .  . 
where ea ch � i

1
'. J (x . )  

' J  J. 

. { i=l , • • • ,k-1 is zero . 1 . 
J ==  , • • •  , rk 

Now, let n� (� ) be th� �-Haar polynomial of degree rk whi ch 

is  1 at· !;� and _ O a l;� (J f j ) ,  j = l, . • • , rk (as in Lemma 2 . 1 ) .  

Form 

point of Sk for every choi ce x1 = s1 , x2 = s2 , • • •  , �_1
= 

�k-l' 
rk . . 

be cause i t  is  P ( !;1, • • . , l;k-l' � ) - �=l 
P (s1, • • • , l;k-l ' l;� ) •O� (� ) ,  

- j so  if � - l;k, the expression be comes 

Thus , by Le11lllla. 2 . 1 , 

x-degree 

bas x1-degree zerq i =l, . • • , k-l, 
,R, .  . .tk zero, so  does B l , J  • 0 • 
i 1 j k 

. ' .  P(x
1

, . . .  , � )  bas a representat ion of the 

lemma 2 . 3 :  I.e t  Ik be the set de fined in lemma 2 . 2 .  

where 

des ired form . 

I:f P(x1, • • •  ,�)  e Ik and the xi -degree of P i s <  ri for 

each i=l, • • • ,k ,  then P = 0 .  

9 

__i f.i, j ( ) e .,f!J1., and x. -degree E. . xl, ••. ,x l 
l 1,J �-



Lemma 2 . 4 : 

Proof : By induct ion on k .  

If k=l, we al.ready know P(x1 ) -0 for � 

.implies deg P � r1 or P = O. 

Assume true for k-1 . Suppose P (x1 , • • • ,�)  e �-

1 rlc I.et Sk , . . .  , �k  be bhe points of Sk. 

Then it can readily be seen, from lemma 1 . 5 , that for each 

j =l,  • • •  , rk, Pj (�, • • • , �-l ) = P (x1, . . •  , �_1 , s� )  bas 

x. -degree which i s < x . -degree P (x1 , • • •  , x.. ) < r.  for each 
1. - J. K l 

i=l, . . • , k=l . ' By the inductive asswnpt ion , 

d 
whi ch, by lemma 1 . 5 , -u�OAu (x1, • • •  ,�_ )�� (� ) 

where A s a H . p . u 

in x1, . . • , �-l and 

d S. �-degree of P 

< rk 

Suppose P 'f  O. Then by Lemma 1.10 there exi sts some u and 
0 

some x1=�1, · · · , �-1
= sk-1 3 Au (s1 , · · • , Sk-l ) I o . 

:. P (t;l, . • •  , t;k-l'�)  =u�O Au (sl, . . .  , sk-1 )  q,� (� ) is  a Haar 

polynomial in �, not all of whose coef£icients are zero , of 

degrece < rk, vanishing on S
k

. Thi s contradi cts the Haar 

cond " tion . · P 1 0 

Let \: be the set of Lemma 2.2 . Let P (x1 , . . . ,�)  : ,e \ ·  , 

..LU 

, 

0 



Proof : Let Ik be the subset of Ik consisting of Haar 

polynomials P which admit such a represent at ion ; suppose 

Ik - � is  not empty . 

Let d be the m inimal degree of all H .p . in Ik - Ik. Since 

every r . > l ,  we conclude from Lemma 2 .  3 that d > l .  
l. -

Among the .H .p . of degree d in 1k - Ik choose those with a 

min imal number of terms in the leading form; among these , 

choose those with a minimal number of terms in the next 

leading form , et c. Call the H. p . so  chosen Q(x1 , . . .  ,� ) . 

Q 'f o . Therefore , by Lemma 2. 3 ,  there is an index i and 
0 

> r . . 
1 

u .  

Let f . 0 (x . 
1 l. 

0 0 

) be  the manic H . p . 

of degree u . whose zeroes 
1. 

include the points 

or S .  , and whose r. , • • • , u . - - 1 degree tenns 
1 t 

0 0 0 

(Lemma l. 4 ) _; if u1 =ri ,r i i s  the un · que H . p . 
0 0 0 

Cons .der 

R i certainly in \; it differs 

l ri  
� - 0 
� ... • · · , S i  

l. o o 

are absent; 

9f Lemma 1. 3 , 

from Q in having one less term of degree u1+ . . .  ,, but it 

has the same number of terms of higher degree . 

Moreover , R is in Ik - 1k : Suppose R has 

I, _  J. .  i, _  J, _  
I: 'I: B : 1 

� . 
1 with �g B . 1 op • 1. < deg R < . deg 

• l. l. 1 i - -

l. J, i 

a representation 

Q all i,  all t  . .  
1 

ll 

, 

J. 

0 

= R (x1 J ••• , �) • 



Lemma 2 . 5  

ui u 
Since c cplul (x

1
) . . . r i 

0 (xi 
) . . . cpk k ( �) clearly has such a 

0 0 

representat ion (because u1+ . . .  +uk � d = deg Q) , it follows 

that Q has a representat ion and so  is in 1k . This 

contradi cts the earli er assumpti ons for Q.  

Ul .  
For any 1 � i < k : Let > r . ; let [f  . 1 ( x . ) }  - l 1. l. W . =r . , . . .  , l. l. 
be any set of Haar polynomials n x . ; such that 1 

w . 
f . 1 (x . ) is  moni c ,  of degree pre c i sely w . , and van · shes l J. l. 

on S . . Let � .  (x . ) be any Haar polynomial vani shing on S1. ,  l. l. l. 

of degree < N (and > r . ) .  Then there i s  a uni que 
- -

l 

(N-r . -1 ) -tuple of real number s (!3 , • • •  , j3N ) 3 i r .  
w .  

4i .  ( x . ) = E_ j3 r .  1 ( x . ) .  1. 1 w . -r . w .  i a. J. l. 1. 

Proof : The un iquen e s s  follows , as usual , fr om I.emrm l . 2  • 
N u To e st ab li sh the ex i stence , ob s erve cl> .  (x . )� 0 c cp .  ( x . ) 1. i u= u i 1 

where c , c , . . .  , c are not all zero . 
r i ri +l n 

Pro c e ed by induct i on on N- r . : l. 

Ii' N- r . =0 , l. N=r . and C f o . l. r .  

r .  

r .  ]. u '11 . ( x . ) = !: c cp . ( x . ) ,  
1. 1. u =O u 1 1 

and 4> .  ( x . ) - c r . 1 ( x . ) i s  a Haar polynomi al of l. l. r .  i l. l. 

12 

degree < r . - l whi ch van ishe s on S . , he nce is · aenically zer o .  - 1 l. r .  
:. i .  ( x . )=c r . 1 ( x . ) . ext , assUine proven for N- r . < n - 1 , l. l. r .  l. l l. -l. 
a.nd s uppose N=r . +n . 

l. 

-,- ,. -· 

,, 

;- - -�-- -

I. 

i 

r-

I. 

·' 
·' 

. ' 

r 

I ' 

1. 

. -• 

,-----

- I ' I ' 



r . + 
Then 4> . (x . ) c + r .  J. n (x . ) is a Haar polynomial of' J. J. r .  n 1. 1. 

degree < r . + (n-l )=N-l , hence by the induct ive assumption - J.. 
N-1 w i  

· as a representation E S r .  (x. ) . w . =r . w . J. J. 

• 4> . ( x . ) 
J. l. 

l. l J. 

j3 =c  we have the des ired form. 
N ri+n 

w 
In particular , w 

Lemma l . 4 . 

could suppose the r .  i ( .x . ) to  be the Haar :polynomials of 
l. J. 

Combining Lemmas 2. 2 , 2 . 4  and 2. 5 we have 

Corollary 2. 6 Given P( xl , . . .  ,xk ) of degree � N , vanishing on Slx . . .  xSk, 

there is  a representation 
k W . w , 

i�l (� _ =r _ A
/ (xl,  . . . , :xi , . . . xk ) r J. (xi ) ) 

J. J. 
w (l) 

such that deg A .  i f . i < N 1. l. - . 
w .  

deg r .  1 = w . . J. J. 

wi  x . -deg A . � 0 . l. 1 

Proof : With the notation of I.,emmas 
w .  t .  J, , J, , 

A . i = E 1 B . 1. S 1 
1. J., .=l l. W , l. l. 

{ i=l, . . . , k 
r .  < w .  < 1. - 1. -

2. 4 ahd 2 . 5 ,  

• 

�+ �- �+ -Now ,  suppose  L, .  and L, , r .  and sl.. , L, and E are as specii'ied in 1. i 1. 

Section l . I.et P (x . , • • . ,x, ) be a Haar polynomial of degree :S, N which l. K 
+ - 6 vani shes on E and E • Applyi ng Corollary 2 .  , we can write 

k w .  w . 
P(xl ,  . . .  ,xk)i=l (fu _ :p .Ai

1
(xl , . . .  , xk)� i

1
(xi ) ) 

l. l. 

k N w i  wi =.E (E B. (x.. , • • • , x. )'f . (x . ) )  
1.-l Wi.:O"i l � K 1 1. 
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r.+ N-l w. 
= c + f. 1. n(x. )+�- 13,,, f. l.(x.), and letting r1 n 1. i �-r. w. i 1. 

]. ]. l. 



(*) 

where 
+ 

p i = cardinality of E i, 
w . 

) 
-

t . 1 {x . vanishes on r: . ,  l l l 

o . = cardinality 
l. 
w1 'i' (x . ) vanishes 
i l 

w i w -
degree 2 = degree l . 1 = w . pre c isely 

l 

x.-degree 
l. 

wi degree A .  

wi  (.ll i  Ai = x1-degree B1 = 0 
W ,  W. W . 

" l d l w l. < � . < • , egree :S .  • 1 - i -

of r:� 

for each 1 S, i S k; 

each w . • 

There are two cases , according to he par l ty of .r-: For N e ven, 

N+2=2r . , p . =IJ . =:r .  , and r .  < w .  < N implies O < N - w .  < [ - r.  = r .  -2 . 
l. l. l l. l - l. - - l - l. l. 

tll i  w .  
degree A .  , degree B.1 < r . -2 . For odd, N+2a2s . +l ,  e ither l 1. - 1  l. 

p 1-s1 and o =s1+lJ or vi ce versa . s1 S w1 S N  implies 
w .  

14 

0 < N--w . < N-s . =s . -1, 
- l. - l 1 

and s . +l < N-w . < N- (s . +l ) •s . -2 :. ]. 1. - ]. ]. 
l degree A . < s . -1 

l. - l w .  
and degree B .  < s . -2 ,  or - ]. 

vice versa . 

[ I.enum  2 . 3  implies we may suppose N > 0 :  for , if N = O,  and 

p i  , a 1 = 1 then P = 0 J . 

We wHJ. argue by induction on k . The case k,.,2 is suffi c iently 

· nterest ing and instructive to vta.rrant a separate expos ition . 

If k=l, the hypothesis says P (x1 ) vanishes on N+2 po ints , yet L s  

o f  degree S N, hence P s O by the lfaar con i tion. 

In order to establi sh the proposition in case k=2 we first make 

some general observati ons . 

Definition :  A function f 'has an odd zero at s if f (s ) =O and f 

changes sign at $ · 

A function f has an even zero at � if f (� ) =O and f 

doe s not change s ign at � -

Sublemna 2 .7: Given 3. di stinct points A,B, C in the real line such 

that A <  B < C and two functi ons f and g conti nuous on 

J.. 
l. 

t 

J. 



l5 

A, C] ; suppose that f (A ) �g (B) =f (C ) =O, but tbat neither 

� nor g bas a zero at any other point of [A , C] . Then, 

if  B is an• odd zero of g , f-g bas at least one zero in 

(A , C ) ;  but, if B is an even zero of g, f-g may have two or 

no zeros in (A,C ) . 

Proof:  -... 
� 

A /'B C A B' , C , " , ... 

(I )  ( II ) 

', .,,, .,,  
� 
A B C 

( III ) 

� 
A / B', , C 
, ,, ... 

( IY) 

W . L . O . G . we may suppose that f ( x )  > O for all A <  x < C .  

There are four cases , illustrat ed above : 

( I )  g changes from ne0at ivc to posit ive at B , 

g ( x ) < 0 in [A , B) and g ( x )  > 0 in ( B , C] . 

( f-g ) (B ) > O and ( f- g ) ( c )  < O hence f-g has 

a zero in ( B , C )  <::, (A , C ) .  

( II )  g changes from positive to negative at B: 

same as ( I )  mu'tatis mutandis . 

( Ill)  g (x )  > 0 all x� [A , B )  U ( B , c] . 

( f-g ) (A )  < 0 and ( f'-g ) ( C )  < O ,  but ( f'-g )  ( B )  > 0. 

.'. f-g has a zero in (A _B ) and a zero in (B , C ) .  

(IV)  g.(x ) < 0 all xe [ A , B )  U (B , C] . Then (f-g ) ( x )  > 0 

all x� [A , c] , so f- g bas no z eroe s in (A , C ) . 

Next , given � <  B1 < A2 < . . . < At -l < Bt-l < Bt and functions f and g 

cont inuous on [Ai ,At] ; suppose f has zeroes precisely at the Aj and g has 

zeroes precisely at the B . . From lemn:a 2 . 7 it is easy to � that the number of 

zeroes of f-g in [Al,At] is ::::_ (t -1 ) -m where m is the number of even zeroes 

On the other hand ,  suppose f has zeroe s at the A .  
J 

f -

g -.. --

J 



o.nd pos s i·oly at s J l e of t e (but .ow ere el-e n [ 1'A L = ' :,  a.nd 

g has zer oe s  at -.; e B ,  a 1 . :io s "" bly a.- some Of -.;' A . (but nowbere 

else in - � )A r,= ) ;  then t e arG w::ient o_ Iemrr.a 2 . 7 s· ows t· .at i any 

(A
j 

j +l )  ' =l , . • •  ; -1, f-g ' as at least o e ,  or pas �b · y no or two 

zeroe s , according as g has a, odd or even zero at Bj . The re fore the 

number of zeroes of f-g in [A1 ,At ] is st ill ::_ ( t-1 ) -m as before . 

Ob se�c ve finally that if g bas more than one zero between Aj and A j+l' 

t' en f-g can have no zeroe s  in (A . ,A . .,.1 ) only if g has an even n er 

of s uch zeroe s . T'oat i s ,  in t· e foregoing , we can rep ce "g bas an 

odd zero in (A . , A  j +  ) u by "g has a.n od.d number of zeroes in (A j ,A j + ) 1 1 

nd "g has an even zero in (A . ,A j +  ) " by "g has an e ve n  number of 
I I 

zer oe s  in (Aj ,Aj+l ) . "  More over , L A1;;.A <Bi'�A2<A2<B2 . . .  

< At - � �  At- .. , and i f and � a e conti, uous on 

. [A . ,A... a d i 
.L .... 

g has no ze oes in any (A 0 , � ) , then the number of 
J J 

zeroe s of f-g in A ,A
t

] i � :... numbe of zer oe s  of f-g in  
t I 1 I 

- [A . ,A . 1 • Renee t e number o · zeroe of 
j =l J J 

in U (A . ,A . )  
j =l J J 

doe s not 

al,;er e ea:r· lier i . e quality . 

From S ·blemrra 2 . 7 and t� e cor ollary remarks , �e concl1 de 

I.emi a 2 . 8 : 
+ 

I.et � and E e sets o 
X X 

o · t s  wh · c 1 se·oarate eac ot her , 

entirely c o  ta · e '  in s ome closed · oun 'ed real interval X.  

Le t  -oe a function con-t i  uous o ,  X, va i shi 

If ca 
+ 

(E ) = card X 

I I  I I  1 1  

+ = -r ,  and F 

I I  

+ 
o E 

I I  E 

'T ;,t. zeroe s  and F - has � -r + l'I. zeroes [ c ounti ng a even 
+ -

zero as �wo zeroe s and an od as one t en F -F has 

> (-r - 1 ) -K zer oes . 

(II ) If car - (E
T

) : T ,.  1, card (E- ) = T ,  
X X 

as p eci e y 
+ + 

T .,. x zeroes an E a s  < 'T + x zeroes , then F - F- has 

> ( '• j_ ) -1 ) - .1,=1" -K zeroe s . 
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( III ) � card (E:) = T + 1, card (E� ) = T ,  F
+ 

has pre c isely 

.; 

J 

.,_ 

l 

,J 

l
< Bt-1 < At < 

J 

..... l" 

a + J 

t � 

'I, 

11 .l. 

,, ,, 

(I) 

+ 

r 



'f + i-t zeroes and F has < T + K zeroes , i . e . , T + M where 
+ 

M < x. - 1 ., then F - F has > ( (T + l ) -l )  - M whi ch is  

:::_ ( T + 1 ) -1 ) - (,.,,- 1 ) = T -ia;+l > T -i,t zeroes . ( In ( II )  and 

( III ) ., E + plays the role of the A ' s, and t=r+l; i n  ( I ) ,  E-
x X 

plays the role of the A ' s , and t='T .) 

l:( 

We now proceed with the proof of Theorem 2 for k=2 . By ( * )  p .  we have 

P( x , y )  
+ + 

Sx vanishes on Ex w ere 
y '  

1 1  

As sume not a.U of these summands 

va i sh iaentically . 

s; vanishes on Ex 

Suppose N even , N = 2r - 2 :  

s 
y 

I I  I I  E 
y 

For S
+ 

and S the x-degree � r and ence the y- degree ::, r - 2 . 
X X 

+ 
For S and S- the y-degree > r and hence the x- degree <_ r - 2. 

y y -

But S
+

-S- = S- - S
+ 

therefore has x- degree < r - 2 ,  and so ,  by 
X. X y y -

lemma 2 . 8 ( I )  at least one of S ,  S as x-degree >_ r + l .  X X 

+ 
Observe that x-de{il;I'ee of P = x- degree of S = x-degree O<f' Sx 

X 

[ s imilarly for y] J be cause no  cancellat i on of terms or degree :::, r 

can be effected by S + or S - . 
y y 

. + -. . Both S and S have x-degree > r + l .  
X X -

In precisely similar fashion , both S
+ 

and S nave y- degree :::_ r + 1 ,  hence 
y y 

+ -
x-degree � r - 3 ,  so S - S has x-degree < r - 3. 

X X -

S 
+ -uppose it bas already been shown that Sx and Sx have x-degree ::: r+m 

[ J 
+ - - + + -resp. y . Then S .,.S and S -s =S -s have x-aegree < r-m-2 , so  by y y  y y x x  -

Lemma 2.8 S
+ 

and S- both have x-degree > r-tm+l resp.y] . S ince �his  X X -

i s  true for m :::,  o, let m::=r-2 s o  S
+ 

and S have x-degree >_ r+ (r-1 ) > N. 
X X 

But this  contradi cts I.emnn 2 .6. 

Suppose N is odd, so  N=2s -l : 

+ s X 

+ 

II �+ 
y 

= s o s+ = s o 
X - , y y - • 



+ 
One of Sx, S� ·has x-degree :::_ s+l, y-degree ::: s-2 ;  the other 

bas x-degree :::_ s ,  y-degree S s -1 :  as before , both have 

x-degree :::_ s+l,  y-degree S s-2 . 
+ 

Likewi se , one of S ,  S
y y 

has y-degree :::_ s-rl,  x-degree S s -2;  the other has 

y-degree :::_ s ,  x-degree ::: s-1 :  :. both have y-degree :::_ s+l , 

x-degree S, s-2 . Using lemma 2 . 8 ( II)  or ( III ) exactly as 
+ + - -

in the case for N even ., we now conclude S =S ;;;:S :=S = O . 
X y X Y 

This concludes the spe c ial case k=2. 

I.et k > 2 . Assume Theorem 2 bas been proved for all Haar poly

nomials in < (k-1 ) variables . Given P (
Xi

, · · · ,xk )  written in form 

(*) . Then 
W Ul f A_ k � k 

w =p - K  k 
k k 

k-1 Ul .  (J,) . k 1 i-T CJ.) • U) .  l...., l.t - .. � 1 l == � (I: B . ? .  v,J) - E ( E A .  t .  (x . ) ) .  
i =l W =cr 1 l L i=l W . =p .  l l l 

i i l l 

For any fixed values �=s1, x2
=s2 , • • •  ,�_1

=sk-l the left-hand .s i de 

+ 
i s  a differe nce of Haar polynomials in � ,  vani shing on ;, 

� resp . ; the r ight-hand s ide .bas � -ciegree ::_ rk-2 [ sk -2] if  N is 

even [ odd] , hence by I.enm:a 2 . 8 ,  each sum on the left bas 
w 

�-degree :::_ rk+l [ sk+2] . Hence xi -degree of Akk 

is  :S: l - (rk+l) =rk-3 [N- ( sk+2 ) =sk-3] each i=l, •• • _, k-1 . But now, 

by a symmetrical argument , it i s  clear tba.t �-degree of 

w1 w .  
A . < r .  -3 [s1 -}] � and likewise for x.. -degree of B . : Proceeding 1 - 1.  :C K l. 

wk wk for every �1;;1, • •  • , �-l ; sk_1 • Hence Ak = o,  � = 0 and the two 

S1.UilS on the right-band side above are identically equal . Fix 

N w, 
(x. ) - I:: R 'l.' iC 

k w =a -k k 

as f'crr k=2, -we have 

k k 

N wk Wi-c N wk ,.. wk -
>:: A, ($l, • •. ,Sk l)�k (x. )= >:: R (sl, • •. ,Sl l)'t'. (x. 

) 
= O 

W =p K - K. W =a -le c- .\.C K 
k k k k 



x. = � arbitrarily, and apply the ' nductive assumpt ion : then the slll'IlS 
le k 

with xk = sk van · s h ident ::. call� . But sk was a1 b itrary . 

sl.Dns on the r ight-hand s i de .vani sh ident · cally , :. P = 0 . 

Sect ion 3 

The (or · ginal ) 

QJID Theorem 2 

Theorem 2 can be regarded as a result about the rank of certain 

matrices , as follows : 

l9 

previously defined. We denote by Y N , k  the number of (lattice ) -points in E .  

If is  even , +2=2r ; ca.rd (E: ) = card (E� )  = r ,  each i=l , . . . , k , so YN , k=2r
k

. 

On the other hand , if I is  odd , +2=2 s +l ;  card (E:" ) and card (E � )  differ by l ,  
J. l. 

f'or each i=l , . . .  ,k ,  hence one is s and the other s +l .  Let u = number of 

i , 1 � i � k , for whi ch card (r: ) = 

- ( )u k-u . points , and E of s+l s points 

s .  Then E
+ 

cons i sts of su (s+l ) k-u 

u( )k-u ( )u k-u 
s o  YN,k=s s+l + s+J,. s • 

rt is easy to see that ea�h choice u-0 , l ,  . • •  , [ �/2] produce.s an ess entially 

di fferent configuration E . 

Next , a Haar polynomial P(x1 , . . .  ,xk ) of degree N in the k variables 

x1, . . •  ,� is of form 

Lemma 3.1 

P(xl , .. . , x
k ) = � +  + =0 

� . . .  � 
u .  > 0 

l. -

P contains as many 1 1 monomials " as there are ways to choose 

non -negat ive integers � ' . . .  ,¾ 3 u1+ . .  - � :, N .  

, N+k t ere are ( k )  such k-tuple s  (u1 , . . .  ,1\_) . 

Proof:  Ob serve first � (K+m-l ) = (
M+K) = (

M+K
) ,  

m=O m K K 

In fact , 

any 

K l) If M=O , sum on left reduces to ( 0 
= l, vthich i s  equal to 

,_.. 't"'+ 't"'- -- ('t"l+l x ••• --�k+) U ( s:i
1
-x . . •.. s:i -k) as Cons ider th e co nfigur a tion u = u u u NJ u )<JJ 

M :::_ l
, 

an
y 

K :::_ l. 



K (K) on the right . Assume true i'or M-l, so  

M-l (K+m-1 ) (M-l+K) 
� m = K j but then 
m=O 
(K+�-l)  + 

Next ) there 

_ )K+M _ (M+K ) - - K . 
lli lli..  

non-negative integers 

. (l+n-1 ) only one way to choose 1½_, and indeed n =l . Assume 

(k-l�v-l ) k > l and that for any v ,  there are v ways to 

choose u1, . • • , 1\__1 3 1½_+ • • • +1\._1v . But £or eacn O < v :::_ n,  

the choice 1\=n-v produces a set u1, • • • , '1c ? u1+ • • •  +l\:.=n. 

n (k-l+v -1) (k-l+n) Hence , there are in a 1 v�O v 
= n . ways to choose 

�, · · · ,1\ 3 u1+ • • •  �c=n . A second use of the initial 

observation gives the des ired result ,  as 

r (k-i1-n) = (�N) . 
n=O 

(Another , "nifty",  proof is  due to D.  Berkowitz : choos ing non-

negative integers 1½_, · · · ,1\ 3 �+ • · · '\_ :::_ N, is equivalent to filling 

k places out of N+k, in such a manner that between the ( i-l ) s t 

filled place and the ith filled p:lace [ or to the left of the 1st 

filled place] , u .  empty places should inter vene, Clearly there are 
N.+k (-1c ) ways to do thi s . ) 

To say P vanishe s on t is  to say 

By Theorem 2 ,  this implies evexy a = O. Tnat 
ul J . ·- · ; ")c 

of Y.i: , k homogeneous equat · ons in the (.!:;K)  "unknowns " 

has only the solut ion (o, � . .  , O ) . 

i s ,  the system 
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to choose 



Lemma 3 . 2  N+k ( ) 2 Y . k for all k ::_ 2 ,  all N > O. ' 
Proof : Ii' N=O, assertion is clearly trivial. 

any O 2 u 2 k ,  any k > 2 . It would suffice , by the 

elementary calculus 
1k+l to show l+k < 2 2 , for k �  2 .  

owever , the :function 2x+l - ( 2x+l ) i s  non-negat ive and 

21 

bas a non-negative first derivat ive for x � l , so we are done . 

Suppos e  now that > 1 and proceed by induction on k . 

If k=2 ., and N i s  even , ( �2 ) = ( �r ) = r ( 2r- 1 ) < 2r2='Y
.r
- , 2 ; 

but , if  is  odd, ( t2 ) = ( 2s�l ) = s ( 2s+l ) < y ,
2 

which 

is  s2+ ( s+1 )2 or 2s ( s+l ) . 

Assume k >  2 and that the result has been establi shed for k-1 . 

s oon as N > l ,  k > 2 . r and s n.re each [ N/2] + l. .  

(N+k ) ( +k-l ) -k-1 k For N even , the k 2 r • k-1 2 r •y t , k-l :'.:. r · 2r = 2r • 

For odd, 

So (Nk+k ) � s • min 
0 < u < k-1 

Hence the as s ert ion is  valid f'or alJ. k .  

From this  it follows , since the system must ave maximal poss ible rank, 

that its rank is ( �k ) .  
- +k oreover , there m st exist a sub-lattice t o! ( k )  

point s ,  such that the eq,uations P(s l . . . , S k) = O ,  ($ 1 , . • •  ,s
k

) e;'E , :form ' 
+k -

a.'1 ( ) -square system with non- zero determinant . 

l�k u k-u 
If i=l, then s=l, and we must show (K) = l+kS, 2 +2 , 

N+k . N+k-1 N+k [ J �7 ( k) 7 ( k-l) = -y- S, /2 + 1, because N ·� k·[N/c.J as 

N 



Section 4 

..., 
e·:�·se-: 
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of degree '.:,f to a separated function in 2 variables �s the separated aar 

polynomial which is  the sum of the respective best a�proximat ions of degree 

< to the separate component s .  Tneorem 3 says : this Haar polynomial is the 

unique best approximation of degree S. .c . 

Certain other att empt s to generaJ..ize the results of the originaJ.. paper 

have led to counterexamples , even when k=2 . 

Cons ider approximat ion on O , l.] by ( ordinary) polynomials in the LP 

norm, where I I  f I I  = ( 1 \ f ( x )  P ax} l/P. To say f (x)  i s  unimprovable 

in the LP nortll by any polynomial of degree :::N, · s  to say 

11 -Axul \ � l .rl \  all real "A. ,  all u;;:;Q, • • •  , N. That is , 0 is the be st 

approximation of degree ::: • 

Similarly , the riP norm on the Cart e s ian product [ o,1.] x [ O , l] i s  given by 

I I I-i i = ( sf \ F ( x , y) \ Pax a.y} l/p 
[ 0, l] x[ 0, l] 

and it i s  easy to  see that to say "" is unimprovable by a polynomial of degree �, 

means I I  - A • xuy"]\ � I I  • ' I  all real A ,  all u :::_ O ,  v :::_ 0 3 u+v < N ,  

We will show Theorem l does not hold :for p=4 , k=2 , N -:0 . 

Definit ion :  f .L g  ( orthcgo&:l� t o  g )  in LP (X ) if' I I  f-A 1 1 � I I � tll real A .  
' 

4 Assert f ...L g in  L if and only i.f f3g = 0 : 

l l r-)...g\ 1
4

;;:; J (f-)...g )
4 

= Jr
4 

- 4,._ f
3

g +  (6"-2r
2

i�-4il. 3rg3+11.
!1-g4 ), 

:. J (f-11.g )4 - J:r4 ;;:; -411. f3g + 11. 2 [2 (fg )2+f2 (2f-Ag )2 ] . 

"" e  seco d integral on the right i s always non-negative ; so 

i � :r3g r O,  "'i-. can be so chosen that the whole right-band_ _si e 

· .o negat ive , whereas ' f  t
3

g::;0 ,  the r ight side i s  non -negati ve . 

0 

s 

" 
... 

,. 



The assertion follows from tne fact that l \al l ::_ l lb l \ if  and only if 

! l a l l
4 

:: \ lb\ 1
4 

• 

It will s uffi ce to e ibit a function F (x ) , umimprovable by a 

constant,  s uch that F (x)  + F (y)  � be improved by a constant , i . e . 

the best approxinat i on of degree O in  [0, 1] x 0 , 1] is � the sum 

o+ o  of tl e best approxirriat i ons to each separate component . Tnat is , 

Observe 

JJ [F (x )  + F (y ) J 3ax dy ,f o . 
[ 0 ,  l]x[O ., 1] 
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[F (x )+F (y ) ] 3ay dy = [ (F (x ) ) 3+3 (F (x ) )�(y)+3F (x ) (F (y ) )
2

+ (F(y- ) ' ) 3J ax  dy 

= �[ (F (x ) ) 3 3 (F (x )  )
2 . � (y )dy+3 •F (x ) o � (F(y)  )

2
dy+ J; (F (y) ) 3dy] dx 

= 2{ ; (F(x ) )3a.x + 3 •  ; (F (x) )2dx • � ( y) dy} . 

:. Suf'fices to exhibit F (x)  3 � (F'(x)  )3a.x = O but 

� (x )dx f O,  � (F (x ) )2dx f O . r amely, F (x )  = x [l -� x2J 1/3 : 

1 x [ 1-l x2] 1/3dx = 1:: · � [1-l x2J 4/3 = -t [ [ 1 .. l] -1} � O ·  O 2 3_ 3 2 0 2 r • 

l 2 3 2 2/3 . . - -
0 x [ 1

2 
x ]  d.x f O beca se the integrand 1 s  pos it ive except at 

l 3 3 2 x 4 3 x6 \ 1 · 
X=O or x=/g_; 0x (l-2 x ) dx = r- - 2 b = o . 

3 O 

A more striking counterexample to Theorem 1 · s  provided by the 

following : We claim that there exi sts  F (x)  e L4[ -l ,l] such that 

F (x )  � F (y )  is unimprovaole by any guad.ratic of the form P (x )  + Q(y) , 

but i s  improvable by a multiple oT xy . This means F (x )  � F (y)  is 

2 2 orthogonal to l, x ,x  , Y J Y but £2!. to xy .  

1 l 3 (1 
Consider _1 [J_1 (F (x )  + F (y) ) 

� 4 F (x )  e L [ -l, l] such that 

�
2

} dy]dx: we seek 
xy 

+ 

l 



l 3 . rl 2 1 ) 2 F (x )dx + 3J F (X /dx • _1F (x d.x = 0 
-1 -1 

2J
1
xF3 ( x )dx + 3J\cF2 (x ) dx • �_F (x) cix+3 :1x •F (x )d.x 0f1 F2 (x) dx:c:Q 

- l  -1 -1 

2J
1
x2r-3( x )d.x+3 ½i (x )a.x ,  J½i (x ) d.x+3. 

1x2F ( x ) d.x · Y (x)a.x1J½i3 (x)dx=O 
-1 -1 -1 -1 -l -l 

, rl 2 
J

l 3J xF (x )dx• xF (x )dx f O .  
-1  -1 

24 

It would certainly suf'fice to show that there exi st s  F (x )  e 14[ -l,l] such that 

F (x )  = 0 on [ -1 , 0] 

l 
0F(x )dx = 0 

Suppose no such F ( x )  exists . 

F ( x )e  14[ 0 , 1] 

:,:? �= 
= 

x-

Then we would have 

� J 0xF (x ) d.x  = o • 

Let F ( x )  be a function sat isfying conditions 

G (x ) eL4[ o , l] and any 6 

( * ) . Then for any 

J1[ F(x ) + o G (x ) ]  dx = 0 
0 

J1[ F (x ) + 6 G( x )] 2a.x = 1 
0 

JJ2(x)dx = l 

1( 2F 3(x ) + 3F(x)) 

\.(x )dx "" 0 
0 

l 

�J�x[F(x )+6G(x)]dx=O. 

dx .- 0 



Since o can be chosen ar-o i tra.rily small, this me ans (N .A . s .  c . ) 

G (x )  e L4[ 0 , l] 

1G (x ) dx  = 0 0 

�(x)G (x )d.x � 0 

; (6F2 (x )+3 )  • G (x)  x2 dx -=  0 

1 ⇒ xG (x ) dx=O 0 

This set of e quations says : whenever VG is orthogonal to l , F , 

2F
2 

+l; x (�+l ) , x2 (�+1 ) , then ¥/G is  orthogonal to x also . i . e . 

F(x ) is  such that x i s in t e linear s ':.lbspace of L4 [ 0 , 1] spanned by 

these 5 IUnct ions . But this implies F (x)  satisfies an equati on 

A (x)�+B (x) •F+C ( x ) =O ,  where A , B, C  are polynomials in x of 

degree � 2 ,  :. F (x)  is cont inuous on [ 0 , 1] ,  except poss ibly at 2 points 

(because t is a quadratic surd funct ion of x) . Likewise , F+6G must 

be a quadratic surd function of x, and hence cont inuous , except 

possibly at 2 pts . for every G satisfying conditions ( •a) . However ,  

gi ven any F (x) satisfying (*) , there exist funct ions G (x )  satisfying 

(ff) whi ch fail to be continua s at 5 po · nts ,  namely 

where 

6 
E a . 

i=l 1. 
- (if+l) ci.x = 0 
i-1 

6 i 
. E a .Jb x (2F2+1 )d.x = O 

:1 1 :i.-1 

6
T 

E a . b (2F2+1)a.x = O 
=l 1. · -1 

i -l i . 6 
T ::. X < b 1.

::
l, • • • , 

at x=l 
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There are 5 homogeneous l inear equat ions in the 6 unknowns 81_ , · · · , a6 ' 

so there always exist solutions not all zero . But then F+6G j_ s not 

continuo·u, J or rather , fails of co tlnuity at more than 2 points . Tnis 

contradi ction shows that the impli cation following (*) is  not val.id • 

Cons 
.., .., er naw we ighted Ceby e v  norms. 

I (x }  is con tinuous cm [ 0, 1] and p (x )  :::_ 0 i s  co tinuous on 

[0 , 1] ,  def i ne ! I r\ \ = su:p p (x ) \ f (x ) \ ; likewi se ; l l g l0 for funct ions 
P xeL O , l] 

g (y )  with v1eight o (y ) . Then t, e 1 1product norm " can be defined by 

We will sbo� that Theorem l fa ils even for N � o ,  namely, 

we shall exhib it func t · ons f (x )  and g (y) , uni.mprovable 

by a constant with weight s x and y respectively , such that f (x )+g (y ) is  

improvable by a constant , with weight xy . Observe that to say f ( x )  is  

unimprovable by .a. constant , with weight x i s. to say 

mai> x i  f' (x ) - c  � max xl  f(x) ! -for any c . It -follows that [ et \ xf (x )=a} is  
xe O , l  xe O ,  J 
an interval -A ,A] , i . e. the range of xf'(x ) is  symmetric . otherwise , 

suppose W . L . O .G . max xf'(x)  > - min xf (x ) ;  let c =½ [max + .min] , 
xE: [ O ,  1] xe O , J.] 0 

then max \ xf(x ) - c  x \  < 
xE: [ O ,J.] 0 

max l xf(x )  . 
xe [ o ,l] 

( It is  easy to  see that thi s 

is  also a suf'ficient condition . ) Likev1ise , in order that f ( x )  + g (y )  be 

uni..mprovaole by a constant , with weight xy , it is neces sary t at 

xy( £(x ) + g (y ) ) have symmetric range .  

So now,  c oose -r (x )  = x-a and g (y)  .. y-a with a=2-./2 -2,  then 

x (x-a ) and y (y-a ) have syrnmet ic  range as  x ,y  run through [O , l] . How

ever, xy(x-a ) + xy (y-a )  does not have symrretr ic range : by elementary 

calculus this funct ion achieves  its  max or min at points for 

26 
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which x=y=t , so max 
x , ye [ o , l] 

xy(x-a )+xy(y-a )=  max 2t 2 ( t - a ) , and likewise 
te [ 0 ., 1] 

for min . But 2t2 ( t -a ) has maximum vaJ.ue 2=2a at t=l , and minimum value 

27 

3 8 3 / -8 a at t=2/3a . 2- 2a ,J 27 a for a= 2 2-2 • Thus range is not symmetric . 
27 

: . .f ( x )+g(y)  i s  not unimprovable , so the b&st approx i mati on is  not the 

sum of tne separate best approxima.t · o  s . 

In the even s impler case in which only the weight x is involved, 

cons ider the function x(  (x-a )+ (y-½) )  with a = 2 / 2-2 . By the usual 

elementary calculations , range x ( x- a )=[ 2 f2- 3 , 3-2 /2] , 
xe [ o , l] 

range (y-½ ) = [ -½ ,½] , but x ( (x- a )-i- (y-½) )  has maximum value - -in  t t1e uni t 
� [ 0 , 1] 

sq_uare- - - o:f i -a  at x=l ,  y=l and minimum value of -t:"( a➔) 2 at 

x-� (a+½) , y=O . Howeve r ,  ½ (a+�: ) 2 f- � -a , so  the funct i on i s  improvable . 

Further i ve stj gati ons  into the weighted norms are cont inuing . 

We turn now to a question which , although it does  not involve a 

direct generalization of Theorem l ,  is  nonetheles s  closely related in 

spirit . eorems l and 3 say that i f  a function is  of separated form 

then the (unique ) best approximation of degree is a1so of separated form . 

Consider functions on the unit square , of form r
0

(y)+xf
l

(y )+x2f2 (y)+  . • .  +xnfn ( y ) , 

wnere each f .  ( y )  is cont inuous on [ 0 ,  1] , and 'be by� ev approx::iJn.at ion by 
l 

( ordinary) polynomials in x and y.  We ask whether there is  a best approxi-

mat ion of degree . > n whose degree in x is -:,  n, i . e  of form 

p0 ( .y· )+x p1 (y)  + x2p2 (y) + . · • .  + xnpn (y) where p
i.

(y ) i s  a polynomial in y 

of degree S ·N- • Observe f " rst 

be ca se h0+xh1 i s  linear in x for each fixed y .  

n 

j 



If' n=O , the gi ven funct ion is  o �  :form f0(y) . Let p0 (y )  iJe  

the best Cebysev approximation to f0 (y ) of degree . Let 

q 0(y )+xq
l

( y ) +  . . .  +x
N

q ( y )  be a polynomial o e ee Then 

max I (f  -q ) -xq1- . • •  -xNqN \ � max[ max l r0( y ) - q0(y) l ,max.\ f'0(y ) -q 0( y ) - . . .  - a/y) j }  x , y  O O , y y "t 

be cause � (y )  and q 0(y  )+  . . .  +q  (y ) were both among the candidate s 

fl·om amongst w · ch p0 (y) was chosen . 

Hence q ( y ) +  . . . +xN

qN
(y)  does not approximate f 0(y ) better than p 0( y ) . 

If n=l , the given function is of t e form r0(y)  + xf
l

( y )  : call it F(x , y ) .  

Let p0( y )  a...'1.d p1 (y ) be thos e polynomials of degree N and N-l respectively, 

for whic max ( max  l :r
0

(y )  - p 0(y ) \ , max \ :r0( y )  + fl ( y )  - P 0� y )  - P1( y ) \ }  
y y 

is  a minimum . We assert P(x ;y )  = p 0( y )  + xp1 ( y )  is the best approximation 

of degree with this  form . For , let ( x , y)=q 0( y ) +xq1( y )  be of degree N 

or less , l, en 

by construction 

Moreover , let �(x ,y )=q 0(y )+xq1 (y )+  . . .  +x � ( y )  be any polynomial of 

degree . We will show I I F-%1 1 � ! I F- 1 1 , so  that P is the best 

approx · r.iati on to F,  of degree It s ffi ces to s ow 

2 1 -

ms.xl f o (y ) -� (y) +x(rl (y) -ql (y) ) -x � (y) - . . .  -x· qN (y ) x, y 

� �I (f0 (y) -p0 (y) )+x (f1 (y) -I\ (y) ) I 

= nax(mf' I io (y ) -po (y) \}TI;,-x I fo (y ) +i' 1 (y ) -:Po (y ) -:pl (y )  \ )  • 

Q 

u 

u 



q0 and q1 + . . . +q were among the candidates from amongst which p 
O and p

1 

were c osen , hence the desired res· t follows . 

Let n=2 , =3 . We shall exhibit a funct ion • ( x , y )=f0
(y)+xf1

( y ) +x2f2
(y ) , 

un improvable by any polynom · a1  p
0

(y )+x-p
1

( y )+x2p
2

(y ) of  degree 3 , but 

improvable by a certain a
0
+a x+a2+a

3
x3 , ai constant s , a

3 
,o . 

By way of -preliminary o· servation , recall from the elementary calcul'l;.s 

that given O < x0 < 1 , there always exists a quadratic in x which attains 

29 

its maxi.lllum [ or minim of 1 [ or -1] at x=x , and its minimum [ or maximumJ 
0 

1 
of O at x=O or x=l according as x > ½ or x0 :::. 2 · o -

Let 1 :::_ 4 and O=
y1 

< 
y2 < . . .  < yM=l be f'ixed value s of y, all to be 

determined later . I.et O :::, x1 < x2 < x
3 

< x4 :::, l; cons ider the vert · cal 

i� nes Li : x:xi i =l,2 , 3 , 4 � The points (x1, y1 ) , (x3 , y2 ) ,  (x3 , y3 ) ,  (x4 , y4 ) , 

(�,y
5

) , . . . ) (x� ,Y4k+i ) , . • • con�titute a finite set wh i ch rreets any 

horizontal y=-y . i exac ly · one po t. 
J 

y 

2 
To each horizontal y=y .  with j� mod 4 assoc · a  e the p:ua bola n [x)=O' . 0-ta .1x+a . 2x 

J J J J J 
Ylbic attains its minimum value of +l at x=x , and its maximum value of 

0 at x=O or x=l . Likewi se to each hori zontal y=y .  with j=3 mod 4 assoc iate 
J 

1 

X 



t· e para ola n j (x ) who se m.i nirJJ!..im i s  -1 at � ,  and min imum of' 0 at 

x=O or x=l . A d ,  to each r-Y j ,  j�2 mod 4 ,  t 11e parabola TT j (x ) with 

30 

max +l at x�x2 a d  minim , .m O at x=O or x=l,  and likewise for y,=yj , j;Q , mod 4 . 

We ca i terpolate a s ..irface F (x , y) on the unit s quare , as follows : 

F (x , y . ) = TT .  (x ) any x 
J J 

y-y .  
F ( x  y ) =F (x , y . ) ( ,J . ) [F (x , y .+l ) -F (x , y . ) ] 

J y , i -YJ J . J 

for y .  < y < y · +l '  j=l,  . • .  ,M-1 . 
J - - J 

F (x, y )  i s  co ti uous , ! F (x, y) I � l ,  and the 

on only at the dist inguished poi ts . Also 

rra.x \ F (x , y) \ =l is  take n 
x, y 
ote F (x , y . )  < O ,  j=l , 3  mod 4-;  

J -
F (x, yj ) � 0 j=0 , 2 mod 4 .  Evidently F (x , y) is of the form 

fo (y) + xfl (y ) , + x2f2 (y ) . 

Let xl,x
2

,x
3 

be s uch that x
1
<SS_<x

2
<x

2
<x

3
<x

3
<x4; let 

G (x ) = (x-x1 ) (x-x2 ) (x-x
3

) .  G (x )  is  negative at x
1 

and x
3

, pos it i ve at 

x2 and xi . There exists 6 > 0 suffi ciently small that ma.x l oG (x ) l <e<½ , 
� X 

so  rr�x l F (x 1 y)  - o G (x) \ . < 1-e , si ce o G (x )  and F (x, y) agree in  s ign on 
x , y 

-

the disti ng ..i · shed. verti cal lines . . " . F (x, y)  is indeed improvable by a 

cubic  i n  x .  

It remai ns t o  show that n o  P (x, y ) ==p0 (y) +}._"Jll (y ) +x2p2 (y )  of degree 3 

improves F (x ,y ) . S uppose ,  on the contrary, P (x , y) is s uch an improving 

polynom ·a1.  Then P must be negative at the dist irJ8uished' points on Ll 

and L
3 

and pos itive at those on L2 and L4 • For any x=x, P (x, y) is of 

degree � 3 ,  bence there are at most  2 intervals · n whi ch it is positive 

and at most 2 in wh · ch it is  negat · ve (otherwise there would be � 4 zeros). 

We may s uppose that M and y1, . • • , y  are so chosen that Y
j +4-y

j
<C where 8C<l;  

(it would s uffi ce to choose Y
j +l-yj<�2 ) . ' 

en  P (x , y) is pos itive on at 

n 

J 



most a set of measure 2C in 11 , i . e . be tween 2 pairs of is � i  � is' ed 

points ; likewis e ,  P(x
3

, y )  is posit ive on at  most a set of measure 

2C in 1
3

, P( x2 , y )  is negat ive on at most a set of measure 2' in L
2

, and 

P( x4 , y )  i s  negat ive on at most a set of measure 2C in 14 • Since 8C < 1 

there exi s ts a value y = y s uch that P(x1 , y) < O ,  P(x2 , y )  > O ,  

P( x
3
, y )  < o ,  P( x4 , y ) > O ,  but P(x , y ) i s  a parabola so this is imposs ible . 

We conclude F is unimprovable by any such P ( x , y) .  
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