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Section 1

In [3], Newman and Shapiro are concerned primarily with uniqueness

v .
questions arising from Cebygev approximation on Carteslan product spaces

k
by ordinary polynomials in x;,...,X, to functions of form z Fi(xi)'

i=1
Definition: A Tamily [@u(x)}ufo 1 of continucus real-valued functions
s =0 vy

on some compact set X is a Haar sequence¥* or satisfies the Haar conditien if':

J
for any J > O, any linear combination EO cdvu(x) with . real and not all
& i
zero, has at most J zeroes in X.
J+1

II
Equivalently: EOCJPu(X)=0 for x=§1,§2,-..,§ distinct points of X implies
u=

e = QNI 0 e MO U ¢ IR 18
Approximation by linear combinations of such mu(x) are of special interest
because it is well known (ef. J.R. Rice [5), p.87 ff) that the Haar condition

is necessary for the uniqueness of the best approximation even for functions

of one variable.

Definition: If {¢u(x)] is a Haar sequence, a Haar polynomial (aberev. H.p) is

u=0,..
: MR u L T )
any expression of the form 20 c® (x). The degree of Eoc&P (x) is the
u= ne

largest u for which cuf 0.

Thus, a H.p. of degree d has at most d distinct zeroces; and if two H.p.

of degree < d agree at d+l points, they are identical.

Assume {wu(x\ is a Haar sequence on X. The proofs of the following
u

Ny e

Lemmas are immediate, by standard theorems on existence and uniqueness of

solutions to systems of linear equations. (Cf. Aitken [1], ch. II).

» Cf. Akhiezer (2] p.67 et seq, in which such a family is called a Tchebycheff

system with respect to X.
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Lemma 1.1 : IF §l,...,§J " are distinet Values of x, then
0) 0| Lpdl I
¢ (B7) 67(E€) ues 9(5)
- - %0
S, Y DR i X1 I g+l
® (8" ) ¢7(E )y e @(ET )
X
Lemma 1.2 : If € ,...§J+1 are distinct values of x
and A;,...,A . are real numbers (not necessarily distinct)

Then there exists one and only one H.p. of degree < J whose

s T
value at each Y is AjP A Tl gy ol

4 +
If § ,...,§J " are distinct values of x

Lemma 1.3 :
Then there is a unique monic H.p. in x, of degree J,
vanishing at §j, Sl
J :
Proof : The system EO cd@u(§3)=0, J=liss s oyd io really
u=
J=1. ‘ .
Jigd
Z c9(ed)= %" @&Y)
5 egte))= 47,
which has a unique solution by Lemma 1.1.
Lemma 1.4 : I §1,...,§J are distinct values of x, and 4 > J,
a
Then there is a unique H.p. 20 cgpu(x) vanishing at
u=

1 J
E ,ool,g ) such that Cd=l) Cd-l =¢..=CJ=O

Proof : Same as for Lemma 1.3.
Related results about the matrices associated with a Haar sequence

can be found in Akhiezer [2] p.67 ff.

Suppose now X "’Xk are closed intervsls, and that for each

152
o R 7 [mg(xi>}j=0,l,... is a Baar sequence on X..

Definitions A Haar polynomial (H.p.) in Xype-,% 18 any finite sum

of the form

2 B ey

= S8

AW =Pl - B ——



2 kol Yk
P o £ ml (xl)"'¢k (xk) where the «'s are real

g et
nubers.

The xi-degree of the H.p. is the largest ﬁi such that

-~

o =
w u. ul an. Oy, 'TOr A0ONE (Mls 3 bieis 570k 3 1les sl o
TP T T L, (PR # 0, it w0 g s 3ot

sX, of x.-degree < di form a vegtor space of dimension

The H.p. in xl,... 1

K
2=l(di+l); moreover the product Ql(xl)---ﬁk(xk), where each @i(xi) is a

. x . . g M m ) m( )
K.p. in ;5 is defined as usual so that any fiqlte sum g§1°1(x1 ...@k 3

. . u v .
is a Hope in X 5. 00,% (Note that the product wi(xi)mi(xi) is not

defined.) Moreover,

Lemma 1.5 : Any H.p. P(xl,...,xk) can be written in the form

di "
B R, o (x, )
2 " B LS AR IA TR M Al
u=0 Ul ‘o xk 1 Yo
where io is any of the i=l,...,k; di = xi—degree of of P;
o) o]

i
gk A
Au is a H.p. in xl,...,xio,...,xk.

Proof obvious; same as for ordinary polynomials.
Lemma 1.6 : For each i=l,...,k let §i,...,§i be distinct values

of x;. Then the determinant of order ﬁ l(di+l) whose
=

(Cupseeeswy)s(6y50058,)) -entry* is

* arranged lexicographically : cf. Aitken [1], p.90



w1 (812 e82), | ok (efk <

@l@ Mzﬁgﬁu%(%)wMM05ui_%am
1<b, % di + 1, i=l,...,k, is non-zero.

Proof: Lemma 1.1 and the construction of L.H. Rice [4].

0
Throughout the preceding there is no reguirement that ¢ (x) be a
constant function, but only that it have no zeroes. Thus, in the case of
ordinary polynomials, Lemma 1.2 says a polynomial of degree d 2 1 cannot

take on the value A d+l times.

Clearly, if {(Pu(x)}u;o is a Haar sequence on X, so also is

yr e

u
{%L}—Q } and conversely.
® (x) "u=0,...

(0]
Suppose for each i=l,...,k {lipi(xi),tpi‘(xi),(pi(xi),...] is a Haar

sequence on X;, and 51()(5_) is a continuous, real-valued function on X,

having no zeroces. Let P(xl,...,xk) be a H.p. so
( ) ozt R PR
Bl s rs 2k - a | (] Xz ) e P X )s
1 k' Tu.=0 g e ast Tk k Sk
1<i<k
d. w
i F i = 1 ) J' aww uj‘ o
Define P(x ,...,xk) =I o ,...,uk(pl (xl) 7 (xk) where
u,=0 1
1<ti<k

‘F‘il(xi) = ‘P;(xi) "?i(xi).

k
Then P(xl""’xk) = P(xl,...,xk)- iE .;pl(xi). For any subset S of
K Ko %K, P(xl,...,xk) vanishes on 5 if and only if ?(.xl,...,xk)
vanisheg onn S.

It follows that with no loss in generality it can be assumed that

tp'(;_ (x‘i }=1, each i=l,...,k, and that assumption will be made from here on.

The tollowing are direct conosequences of Lemma 1,6:




d.+ 1
1 o
Lemma 1.7 @ For each i=l,...,k let §i,..-,§il be distinet values

k
of x.. let C (1 <6, <d,+1) ve I (d.+1) numbers
i Oppeee,d =71 =1 = i

not necessarily distinct. Then there exists a unigue H.p.

P(xl,...,xk) of x,-degree d, such that

6 5
1
e T L S
l, LI k
Lemma 1.8 : In particular, if all Cﬁ 5 in Lemma 1.7 are zero,
l" a s , k
s i -by- 4 = 0.
P(xl, ,xk) vanishes term-by-term: all aul""’uk
Lemma 1.9 : If two H.p. in xl,...,xk, each of which has
k
x,-degree < d, (i=1,...,k), agree on the I (d +1)
d: o 1  h=1H 1
k~-tuples of Lemma 1.7, then they are identical.
Lemma 1.10 : Let P(xl,...,xk) be a H.p. and suppose P to have been

represented as in Lemma 1.5, for some fixed io. Then P = O

if and only if A;o (xl,...,ﬁ .x, ) = 0 each u=0,...,4, .

’-t
iO k Q

Proof Induction on k, using Lemma 1.8.

Definition . A continuous real-valued function F(xl,...,xk) on X,x...xX, is

separated if it can be written Fl(xl)+...+Fk(xk) where each Fi(xi) is

continuous on X,. The function Fi(xi) is the (ith) separate component of F.

Qoserve that if P(xl,...,xk) is a separated H.p. on X;X...xX, , then the

:'Lth separate component of P is a H.p. also.
Let N be any non-negative integer. TFor each 1 < 1 < k let there
+
be given a closed interwval Xi and two sets of points Zi and

and ZE in X,, which separate each other, such that the total




+ e
number of points in Zi and Ei together is N+2. Thus, if N is even,
N+2:2ri, 50 Z; and E; each contain r, points; whereas, if N is odd,

N+2=25i+l 50 one set contains si points and the other si+l.

Since each family [I,CPi(xi),.. .,tpl;]-(x, )} satisfies the Haar condition
i
on X,, it follovs (cf. Akhiezer [1] p.T4 £f) that for any function Fi(xi)
real-valued and continuous on Xi there exists a unigue H.p. of degree < N
~
of least Cebygev deviation from Fi (xi) on Xi' The (strong) extremal

signatures for [l,tp]i‘,...,cplg} are precisely of the form }ZI U 2;.

+
k

X The construction of [3], 82

Let 2+=ZI X5tx Bos 5 . Zz K pieil 12

applies here, so we have

Theorem 1 : For each 1< i < k, let X, be a closed interval, let Fi(xi)
be a continuous real-valued function on X., let P';.L‘(xi) be the H.p. of
‘degree < N of least Beybgev deviation from Fi (xi) on Xi' Then among ail
V v € e
H.p. P(xl,...,xk) of degree < N there is none whose Cebysev deviation
k

from F(xl,...,xk)= §21Fi(x].») on X;x...xX is less than that of
éi:lp]!f(xi>. 4 =

That is, if I, U Z; is an extremal signature for [1;@1,...;p§} then

YU Z7 is an extremal signature for the set {w;_ll(xl). : .tpzk(x )3
2,

u; 2 05 ugteeatu < N}.

Section 2

We shall now prove

Theorem 2 : If P(xl,...,xk) is a H.p. of degree < N which vanishes

on £ and on £~ then P = 0.

There will then follow immediately
k
Theorem 3 : The H.p.igl P".;(xi) oi Theorem 1 is the unigue H.p. of
degree < N of least deviation fromiglFi(xi) on X;x...xX;. That is,

+ -
L' U ZI" is a strong extremal signature.




(The terminology of the preceding follews [3l).

The proof of Theorem 2 is based upon several lemmas.

Suppose first that for each i=l,...,k a non-empty set of points

g
S. is given, call them §1,,;':, ..,§ : (all distinct).
4

Tets. = {all H.p. in X, vanishing on §,}. Observe that no non-trivial
1 L g 8

(i.e., non-zero) H.p. in X of degree < r, belongs toggi.

Lemma 2.1 : Let P(xl,...,x ) be a H.p. and suppose that for any choice

of §l,. 35

Kk-1° P(”l’ "gk-l’xk) vanishes at each point

of Sk' Then there exists a finite collection

= 2 t :
ék(xk)’ ‘bk()ﬁ:),....., ﬁ’k(xk) of H.p. mé’ , and also H.p.
1 - 2 t
B (xl,...,xk), B (xl,...,xk),...,B (xl,...,xk) of x, ~degree

& 4 ¢ E
zero, such that Z§l B (xl,.--,xk) ék(xk) o P(xl""’xk)'

Proof : (By induction on k.) If k=1, statement is obvious,
because we assﬁmed ¢2(xi)=l. Assume it {s true for H.p. in
k-1 variables; we will show it is true for k. Let P(xl,...,xk)
be a H.p. satisfying the hypothesis.' Let dl be the

i, +
xl-degree of P; let €l,.. .,Eldl x be distinct values of ] -

P(éi,xz,...,xk) vanishes at each point of §,, for every
choice of Xy e 009X, pevery ! S ] dl+l. By the inductive
hypothesis,
L
B (xa,...,xk) P(El’x2""’xk Z'. Bz(xz,...,xk). Qk,j(xk)
£
where §k 3 € xg and B has X, degree zero.

Next, let QJ(x ) be the H.p. of degree d; which is 1 at §J

and O at Ei (G #3) 3=1,...,4%1 (Lemma 1.7); Q l obviously
(1 +1

= 34 .
has x -degree zero. Let Q(xl,.. »X, ) = =% L PJ(x ¢ .,xk) Ql(xl),

Q has x,-degree < dl' Q agrees with P fer all values of




Ego 20 3%, in each of the d1+l values of X1 hence P = Q by

Lemma 1.9.

.

< P(x .,xk) has a representation of the desired form.

120
4y
Let I, be the set of all H.p. of the form, E (§ B (x ..,xk) Qi (xi) )

vwhere every Q (x ) e;jl z\

i=1,. x
L.
and xi-degree of Bi1 is zero

By Lemmas 1.5 and 2.1 every H.p. in Ik can be written
M m m m m
mzl Bl (xl)62 (xz)...ak(xk),where Gi(xi) is a H.p.,
and, for each m3 i_ 3 67 (x. ) e . .
I ln inm im

Clearly, every H.p. in Ik vanishes on Sl Kt 26 Sk'

Lemma 2.2 : The set of all Haar polynomials vanishing on .Cix...xsk is

precisely the set I

k
Proof : 1In view of the immediately preceding remarks,
it will suffice to show:

P(xl,...,xk) vanishes on S, x...x S, implies Pel .

For k=1, assertion is obviously true; assume it is true

for (k-1) variables. Let P(x .,xk) vanish on S X.. 08,3

3 i 1

b B2 B2 o e B 1he wre we g 4 “Fon dnl r
WKATRO TSR x° yiwaaPys

P(xl,...,xk_l,§i) vanishes on S_x...xS hence, applying

L] k-1’

the inductive hypothesis,

: a8 d
Pj(xl,...,xk_l)-P(xl,...,.ck l,gk) el
and has a representation of form

L. :
z (z d B Lad s eensme g )e 730xy))
4y, 3=1 i,J

e A ANAETS

C
- e e o o A —

. €~ &



Lemma 2.

4,
1,3
where each @1 g (xi) eﬁgl, and x -degree B (xl,...,xk 1

is zerot :g:'_""’l:_"l i
, - e 9 , k
Now, let Qi(xk) be the x, -Haar polynomial of degree r, which

is 1 at §1Jc and O at §I‘1(3f o B 1yeeesTy (as in Lemma 2.1).

Form
; }I:;k :

Q‘(xl""’xk) = §o1 Pj(xl’."’xk-l) o Qk(xk)'
P(gllga"".igk_l:xk) & Q(gl,§2;---,§k_l,xk) vanishes at each
point of S, for every choice x; = §l,x2 ol SYRREPE gk-l’
because it is P(gl""’gk-l’xk)- Z P(§l,...,§ l,§ )'Q‘J(xk),
so if X, = gi, the expression becomes

J 8L 4
P(E ,0ens8 1oBL) = B(E 5e00s8 1,Ep) 1 =0,
Thus, by Lemma 2.1

J 2 tk ]ll’

P(xl,...,xk) Q(xl""’xk) "i e % ( ,...,xk)'ék'(xk) where

(xk) € ,@? and xk-degree of Bk is zero.
L. !’k(

Since B, 13‘3 has x,-degree zerg i=1,...,k-1, and Q. xk) has
¥ Li,g . oM
x-degree zero, so does B, "’V - Qk ¢

1,4d

3 P(xl,...,xk) has & representation of the desired form.
let Ik be the set defined in Lemma 2.2.
1f P(xl,...,xk) ¢ I, and the x, -degree of P is < r, for

each i=l,...,K, then P = O.




Iemma 2.4

Proof: By induction on k.

r
- i? L el 1
If k=1, we already know P(xl)-O for X = §l,...,§l

mn

implies deg P > rq or P= Q.
Assume true ;E“or k-1. Suppose P(xl,...,xk) e I.
1 k ; :
Let §k,...,§k be the points of Sk'
Then it can readily be secen, from Lemma 1.5, that for each
oLy eensTyr By(xseeeix ) = P(xl,...,xk_l,gi) has
xi-degree which is < xi—degree P(Xl""’xk) < r. for each
i=l,...,k=1. . By the inductive assumption,
Pj(xl,oc.,xk_l) = 0, j=l,cnn,rk- By IemIIB 2.1,
L y 4
P(xl,...,xk) -!,El B!'(xl,...,xk_l) -@k(xk) where @k elgk,
BI' is a H.p. in
xl,...’xk-l
hich, by Le % A Doy (x, )
which, by Ilemma 1.5, ot i XyreeesXy 4 (pk *
where Au is a H.p.
in xl;---,xk_l and
d < xk-degree of P
< rk
Suppose P# 0. Then by Lemma 1.10 there exlsts some Uy and

some xl=§l,...,xk_l= S 2 Auc(’gl,---ék_l) 7‘ 0.

"' P<§l’ h ")gk_l)ﬁ) =u§0 Au(gl) N ‘)gk_l) CP;(XR) is a Haar

polynomial in X s not all of whose coefficients are zero, ef

degree < rk, vanishing on S This contradicts the Haar

k.
condition. . P# 0

Iet I, be the set of Lemma 2.2. Iet P(xl,...,xK)Ie L.
Then there exist, for each i=l,...,k, Haar polynomials
)

@ii(xi) e;gi, £;=1l,...,t,, and Haar polynomials

2
JB:Ll (xl, 3% .,xk) of x,-degree zero

1v

a

& 2x T =



k&g skivhs
such that P(xy,...,%.) =%, (§i=1 B, & ) and
Ei Ly
deg B]._ §i 5 deg P fOI' a:l_.]- i=l’-l-,k’ a..-L-L Lj_:l".."ti.

Proof : Let Tk be the subset of Ik consisting of Haar

polynomials P which admit such a representation; suppose

Ik - Ik is not empty.

Let d be the minimal degree of all H.p. in Ik - Tk' Since

every riz 1, we conclude from Lemms 2.3 that 4 > 1.

Ameng the H.p. ef degree 4 in T. - Ik choose those with a

k
ninimal number of terms in the leading form; among these,
choose those with a minimal number of terms in the next

leading form, etc. Call the H.p. so chosen Q(xl,...,xk).

Q # 0. Therefore, by Lemma 2.3, there is an index i, and

a term c @ ul(x ) @ u2(x Y o wuk(x ) for which u., > r
1 b 2 2 k Ak iO s~ iO
Yy
v +oc0-+' < = . F 1 3 .
Note u; u, < d=deg Q. Let Tio (xio) be the monlc:f.p
1
of degree u. whose zerces include the points 51 ceas85 ©
0 c o
of Si ,» and whose T ogeeesU, - 1 degree terms are absent;
o} e} o
(Lerma 1.4); if u, =r, ,I. is the wnique H.p. of Lemma 1.3.
o o] a}
Congider 4
u u *
1 20 o Y
Q(xl,...,xk)—c¢l (xl)mg (hg)...Tio (xio)...¢k (xk)
7= R(le"':xk)-

R is certainly in Ik; it differs
from Q in having one less term of degree ul+...+uk, but it

has the same number of terms of higher degree.

Moreover, R is in I, - Tk : Suppose R has a representation

B, 4 L. 4,
PIRE > Bil @il with deg Bil @ilg deg R< deg Q all i, all 4..

r

=]

L (o""“u

ALV

N
-
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u,
i u
Since ¢ @ 1 = o S h
Since ¢ Qg (xl)...l"io (xio) .cpk (xk) clearly has such a

representation (secause w *e .*uk <d

that Q has a representation and so is in 'ik. This

= deg Q), it follows

cofitradicts the earlier assumptions for Q.

ve Ik - Ik is empty.

w,
Lemma 2.5 :  Forany 1S i<k : LetW>r; let{l “(x)}, _

be any set of Haar polynomials in xi,' such that
@4
12 (xi) is monic, of degree precisely w,, and vanishes

on Si' Let Qi(xi) be any Haar polynomial vanishing on Si’
of degree < N (and > ri). Then there is a unigue

(N-ri-l)-tuple of real numbers (Br. 5ol .,BN) .

o)
N wi
Qi(xa.) " g Bw. Fl (XJ.)

SR S

Proot : The unigueness follows, as usual, from Lemms 1.2,
N
m [ u
To estaplish the existence, observe ¥, (x )'%—O Cy cpi(xi)
where c_ ,¢ seswyC @re not all zero.
s T o n
i i+l
Proceed by induction on N—riz ‘
r

2 - ,=O =1r. i "
If N-r,=0, Ner, and c # 0 (x )= )3 . Cu (pl(xl)

25
and <Pi(xi) - crif ill[xi) is a Haar polynomial of

degree < ri—l which vanishes on Si" hence is {denically zero.

r.
. l
Qi(xi)':c‘,(__ Ti (xi). Next, assume proven for N-r; < n-1,

and suppose N=r (T




r.
1

Then @ i<xi )'cri-m i

(xi) is a Haar polynomial of

degree < ri+(n-l)=N-l, hence by the inductive assumption

N-1 Y

i
nas a representation E_=r_aw_ri (xi).

N-1 wi
o T Fgbi

B 1 LT
e A | "cri+ni x5

B.=c we have the desired form.
o\ SN o
i+n
wb
In particular, we could suppose the I'il(xi) to be the Haar polynomials of

Temma 1.4.

Combining Lemmas 2.2, 2.4 and 2.5 we have

Corollary 2.6 : Given P(xl,...,xk) of degree < N, vanishing on 8,%. .. xS,
there is a representation
gt BN O3
z ~
i;—-l(wi=riAi (xl, PRFL PR .xk) r (xi) )
w, ®

such that deg Aii Tii <N -
; w,
deg I‘i =W,
w,
X -deg Ail = 0,

Proof : With the notation of Lemmas 2.4 and 2.5,
w, Las wr e wihl s .
al.gipgigil {1=l,...,k
d S e Slag r.<w, <N S
1 1 gy &5 L S=

4+ - + = -
Now, suppose 'Ei and 'L"i, r, and 5 > L and £ are as specified in

Section 1. lLet P(xi, ...,}g‘{) be a Haar polynomial of degree < N which

+ =
vanishes on & and £ . Applying Corollary 2.6, we can write

Tt *
P(xl, e ’xk)=ri=l(§i=piAi (xl, 5 ,xk)@i (xi))

k N Wy ),wi )
=i§l (Ei’-ciBi (xl,...,xK % (xi )

13

- § 8453

ﬂ!\ N
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where

+ -
fpi = cardinality of Zi, o, = cardinality of Ei\

i
W, SR .
8,1(x,) vanishes on ., Y “(x,) vanishes on &
SR R T i

w.
{ degree & & = degree Y.! = w, precisely \
LN I 1
(*l (Ui wi
xi-degree Ai = xi-degree B1 = 0
Wy Oy G
kdegree A, ¢i < N, degree B, ‘l’i <N /

fer each 1 < i € K;

each w, »
1

There are two cases, according to the parity of N: For N even,

+0= = i ies - = = T.=ce
N22ri, Py=0 =5 and r, fu}iﬁl‘llmplle 0<N wif_N ry rl2
W W
.. degree Ail, degree Bil < ri-2. For N odd, N+2=2si+l, either
p.=8, and 0 _=s_+1, or Vvice versa. s. < w. < N implies
g, i it o8l "

0 < N-w. < N-s
- 1—wi

v 1
= - j — = - < -
s;-1, and 6. +1 < N-w, <N (si+l) 5,-2 .\ degree A, < s -1
and degree Bil < si-2, or vice versa.
[Lemma 2.3 implies we may suppose N > O: for, if N = O, and

py» 9, =1 then P = 0].

~

We will argue by induction on k. The case k=2 is sufficiently
interesting and instructive to warrant a separate exposition.
If k=1, the hypothesis says P(xl) vanishes on N+2 points, yet is
of degree < N, hence P = O by the Haar condition.

In order to establish the’prop%ition in case k=2 we first make
some general observations.

Definition; A function f has an odd zero at € if £(€)=0 and f

changes sign at g.

A function f has an even zero at & if £(€)=0 and ¢

does not change sign at E.

Sublemma 2.7: Given 3 distinct points A,B,C in the real line such

that A < B < C and two functions f and g centinuous on
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[A,C]; suppose that £(A)=g(B)=r(C)=0, but that neither
f nor g has & zero at any other point of [A,C]. Then,
if B is an odd zero of g, f-g has at least one zero in

(A,C); but, if B is an even zero of g, f-g may have two or
no zeros in (A,C).

Proof:
TN )<:\\ P o o, Lt
A44B IC A TPRT Ag B A /BN C
,’ ~ ',’ ~ G
(1) (17) (1I1) (Iv)

W.L.0.G. we may suppose that f(x) > O for all A< x< C.

There are four cases, illustrated above:
(I) g changes from negative to positive at B,
Sog(x) < 0 in [A4,B) and g(x) > 0 in (B,C].
S (f-2)(B) > 0 and (f-g)(C) < O hence f-g has

a zero in (B,C) < (A,C).

(II) g changes from positive to negative at B:
same as (I) mutatis mutandis.

(III) g(x) > 0 all xe [A,B) U (B,c].

(f-g)(A) < 0 and (r-g)(C) < 0, but (f-g)(B) > G

.. f-g has a zero in (A,B) and a zero in (B,C).

(Iv) e(x) < 0 a1l xe [A,B) U (B,C]. Then (f-g)(x)> 0

all xe [A,C], so f-g has no zeroes in (A,C). ‘{:4(

Next, given Al < BJ_< A2 S SIS At-l < Bt—l < Bt and functions f and g

continuous on [Al,AtJ; suppose f has zeroes precisely at the Aj and g has

zeroes precisely at the B:]. From Iemma 2.7 it is easy to ®e that the number ol

zeroes of f-g in [Al,At] B> (t-1)-m where m is the number of even zeroes

of g among Bl""’Bt 1 On the other hand, suppose f has zeroces at the Aj




and possivly et sirvwe of meau (bus r.owmere ebrein E&l,Ahj,, and

g has zeroes at w.c B': 3w D% 5ioly & some of we ﬁ:j.(but nowvhere
else inﬁhi,At]); then the argument o Lermma 2.7 siows ¥.&% 8 any
(AJ-,A j*‘l) J37l,evesu -1, f-gAas at least @ e, or pos$ ibly no or two
zeroes, according as g has @i odd or even zero at B;j‘ Therefore the
nurber of zeroes of f-g in [A ’At] is still > (t-1)-m as before.
Observe finally that if g has more than one zero between A. and A"il’
tien f~-g can have ro zeross in (AJ. ’A,}"rl) only if g has an even f@Der
of such zeroes. That is, in the Toregoing, we can replace "g has an
odd zero in (AJ_,AJ+ )" by "g has an odd number of zeroes in (Aj’Ajdl)"

ond g has an even zero in (A A +3.)" by "g bas an even number of

. S - . : " A n V < < L %
Zeroes in (AJ,AJ+1) Moreover, if A <A B1<A2<A2 B,

1]
< A < Ac o < B <A <A, and if T and g are contiliuous on
U" = [Pt g "
1
,[Al,AL] and if g has no zeroces in any (A.,A.), then the nuwber of
v b
]
zeroes of f=g in [A SA ] is > number oi zeroes of f-g in
[j'l (A,,A, .]. Hence the number of zeroes of f in U (A A .) does not
ST J7d+d e il
alter the earlier inequality.

From Syblemma 2.7 and the corollary remarks, we conclilde

+ - .
Lema 2.8: Let T, and I be sets of poimts whilch sedarate each other,

entirely coptaired in some closed bounted real interval X.
+ . & . 3 o niA e T
lLet ® ve & funciion contimous ox X, valishing ot X
ol " 1" 1 0}, Aol " " 2-
T | - o, sty ik
() If card kE_{) = .cands (Ex) =7, and P hLas precisely
T +x zerees and F has < 7 + u zeroes [counting a @ even
] s + =
zero as wwo zeroes and an odédas one | tlen P -F las
> (7-1)-n zeroes.
- - * § - o = ~ = 1
(II) If carw (}Zx) =T T L, card (Zx) =7, T las pRcie ¥
O = .
T v x 2zeroes ands  l@s < T + u zeroes, then F - & has
> (g +i)-1)- u=t-u zeroes.

(III) peard () = T+ 1, card (£7) =1, F' has precisely
x X

16
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T + y zeroes and F has <T + uzeroes, i.e., T + M where
+ -

M< -1, then F - F has> ( (f + 1)-1) - M which is

> ((t + 1)-1) - (4-1) = T-u*1 > T-n zeroes. (In (II) and

% " -
(111), T plays the role of the A's,and ©=T+l; in (1), T,
plays the role of the A's, and t=T.)

We now proceed with the proof of Theorem 2 fer k=2. By (¥) p. we have
+ + = - + +
= + = -+ 93
P(x,y) 8, sy S, sy, where S, vanishes on ):x
s+ 1t " E+
¥ N
Assume not all of these summands S, vanishes on 2;
vanish identically.
S“ | | z“
Y ¥

Suppose N even, N = 2r - 2:

Tor s: and S; the x-degree > r and hence the y-degree < r - 2.

For S;r and S; the y-degree > r and hence the x-degree < r - 2.

ol

= -+
But SX-S:’c = Sy—Sy therefore has x-degree < r - 2, and so, by

= 5\_;%

=3

Lemna 2.8 (I) at least one of S:;, S;( has x-degree > r + 1.

—

+ -
Observe that x-degree of P = x-degree of S = x~degree of S5y

[similarly for y], wecause no cancellation of terms of degree > r

+ il By + -
can be effected by Sy or Sy' .+ Both Sx and Sx have x-degree 2 r + 1. " |
+ - i
In precisely similar fashion, both Sy and Sy nave y-degree > r + 1, hence '_,'
+ =
= < p - - = < r - ,
x-degree S r - 3, 80 Sx Sx has x-degree < r =~ 3. e
Suppose it has already been shown that S;: and S; have x-degree > r+m (:"

& o il I
resp.yl. Then S ,8_ and S-S =5 - . M- )
[resp.y] n 8,8, and 8 ny S have x-degree < r-m-2, s0 by !

- : 3
Lemma 2.8 S, and S _both have x-degree > r+m+l (resp.y]. Since this

is true for m > 0, let m=r-2 so S; and S have x-degree > r+(r-1) > N.

x
But this contradicts Lemma 2.6. S =8 =0, 5 =8 0.

Suppose N is odd, so N=2s-1: H

-



One of S;, S;'has x-degree > s+1, y-degree < s~2; the other
bas x-degree > s, y-degree < s-1: as before, both have
x-degree > s+l, y-degree < s-2. Likewise, one of S;, S;
has y-degree 2 s+1, x-dGegree < s-2; the other has
y~degree =2 5, x-degree < s-1: .. both bave y-degree > s+l,
x-degree < s-2. Using Lemma 2.8 (II) or (III) exactly as
in the case for N even, we now ccnclude S;=S;=S;=Sy = 0.
This concludes the special case k=2.

Iet ¥ > 2. Assume Theorem 2 has been proved for all Haar poly-

nomials in f.(k-l) variables. Given P(xl,...,xk) written in form

(*¥). Then
ot By N ,
ﬁ Ak %, k () - wjz::ck:ak g~
k-1 N w.:w. 1 N w, @,
: 151(}5;0_311‘%1("1” %-l gt
B

For any fixed values x1=€l,x2=§2,...,xk_l=§k_l the left-hand side
s
i3 a difference of Haar polynomials in xk, vanishing on Ek,
i
I, resp.; the right-hand side has x -degree < r, -2 [sk-2] if N is

even [odd], hence by Lenmma 2.8, each sun on the left has
w
k
x, ~degree > r, +1 [sk+2]. Hence x,-degree of Ak
is % N-(rk'fl):rk-3 [N-—(sk+2)=sk-3] each i=1,...,k-1. But now,

by a symmetrical argument, it is clear that x, -degree of
W W,
" 4 g 1 8
A < ;-3 [ﬁ;ﬁ, and likewise for xk-degree of B, . Proceeding
as for k=2, we have

I Wy e

k “'k i} 3 Tk A
_p (gl." pu'e ’gk l) k <Xl{,)=w$=° I (E:LS ol ,glﬁ-l)YK (x}.{) =0
k< e e
for every xl=§l,...,xk_l = §k 1° Hence A o, Bk 0 and the

sums on the right-hand side above are identieally equal. Tix

18
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X, = E’k arbitrarily, and apply the inductive assumption: then the sums

with x, = € vanish identically. But § was a:ditrary. S, The original)

suns on the right-hand side vanish identically. .\ P

Hi
()

QED Theorem 2
Section 2
Theorem 2 can be regarded as a result about the rank of certain
matrices, as follows:

Consider the configuration £ = BT - (E{ x...xz;) U (E{x...xﬁfg-as
' E al £

previously defined. We dencte by YN K the number of (lattice)-points in Z.
f )

: A .
If N is even, N+2=2r; card (Ei) = card ('Zi) = r, each i=1l,...,k, so Y k=2rk.
2>

+ -
On the other hand, if K is odd, N+2=235+l; card ('z:i) and card (Zi) differ by 1,

for each i=l,...,k, hence one is S and the other S+l. 1et u = number of

=+ 7 P
i, 1< 1<k, for which card (I;) = s. Then I consists of a0 g1 )50

k-u *‘l)usk-u

pOin‘tS, and 2_ of (S+l)us poin»t’s s0 .YN k’_‘su(s""l)l{-u‘*‘(
2

It is easy to see tThat each choice u=0,l,...,[k/2] produces an essentially

different configuration L.

Next, a Haar polynomial P(xl,...,xk) of degree N in the k variables

XqpemesXy, is of form

( % ) K
P(x, 5000 ,% 2 o P. (2t Jaadp, (36, ) 0
27" T T =0 1 %% k “k
% R ery ke
u.
1
Lemma 3.1 @ P contains as many "monomials" as there are ways to choose
non-negative integers u_ ,.. L 3 ..ot < < N. In fact,
+1
there are (N ‘{) such k-tuples (u ,uk)

¢ T+
rroof: Observe first i‘ (K-vm l) = (M+K) = (y ‘{),

M> lany K> 1.

If M=0, sum on left reduces to (Kal) = 1, which is equal to




(E) on the right. Assume true for M-1, so
-1 K+m-1 M-1+K
R = (K
ULy, Ml (ol Ml | oM | EK

EEL KT EE

kKn=-1 ; :
Next, there are (—;1—-) ways to choose non-negative integers

but then

CRERRTPLN 3 Uy Tee e =0 For, if k=1, there is evidently

1*n- l) =1, Assume

only one way to choose W, and indeed (
k > 1 and that for any v, there are (k l\,v l) ways o

=) -aa ..I+ - ¥ < <
choose Uy wY g ul+ Wy But for eacn 0 < v < n,
the choice wy =n-v produces a set Upjeees W 3 uy +. +uk-n.

&-l+v l) = (k- %) ways to choose

Hence, there are in all E (
Uyyeeesty S ul+...+uk=n. A second use of the initial

observation gives the desired resuwlt, as

lz\::o (k—%tn) » (ki;N).

(Another, "nifty", proof is due to D. Berkowitz: choosing non-

negative integers ul,...,uk 3 ul+...uk < N, is equivalent to filling

8t

k places out of N+k, in such a manner that between the (i-1)
filled place and the ith filled place [or to the left of the lst
filled place], u, empty places sheuld intervene. Clearly there are
(MX) ways to do this.)

Te say P vanishes on £ is ©0 say

) g1 ”k@
u‘?’-z—. y ‘+uk-0 W ukcpl (gl) Cee k)=O for every (§l, dai ,§k)e X
uk>0 eI
By Thecorem 2, this implies every @, = G. That is, the systenm
-
of vy, , homogeneous equations in the (m;f() "mknowns " o
3

Ml e

has only the solution (0,...,0)}.

20
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Temma

.2

2l

(") < vy, forall k> 2, all ¥> o,
3

Proof : If N=0, assertion is clearly trivial.

+1 k-
If N=1, then s=1, and we must show (l‘k’{) = 1+k < o=

any 0< u< k, any X2 2. Tt would suffice, by the

dirl
elementary calculus, to show l+k < 272

, for k > 2.
. - x+1 p g
However, the function 2 -(2x+1) is non-negative and
nas a non-negative first derivative for x = 1, so we are done.

N

Suppose now that N > 1 and preceed by induction on k.

If k=2, and N is even, ( §2) = (gr) = r(or-1) < or *‘Yh Pt

but, if N is odd, ( §2) c (2551) = s(2s+l) < Yy o Which
3

is s"2+(s+l)2 or 2s(s+l).

Assume k » 2 and that the result nas been established for k-1.
(NESy = (VL) = BE < Tw/2] + 1, vecause N < k+[n/2] as

soon as N> 1, k> 2. r and s are each [N/2] + 1.

. N+k N+k-1 k-1 k
For N even, then () < r+("x1 )< r'YN,k—li r+2r = 2r .
For N odd, (Nf:k) < s'(Ni}fil) < sy p
= = 8y, k-1
1 k=1~ ol
50 (Nkk) < s-'min {s%(s+1)* - v‘-i-sk - u(s+l)u},
0< u< k-1
which is clearly < min {s" (s+.'L)k"u k—u(s-i‘l)u} s
—0<u<k
N+k
thus (T ) < YN,k'

Hence the assertion is valid tor 211 k.

From this it follows, since the system must have maximal possible rank,

. z N+k
that its rank is (x ). Moreover, there must exist a sub-lattice z of i

I\k

points, such that the equations P(§l & hiid §k) = K3 (§l,...,€k) eZ, form
2

N+& : x . o
an ( k )-square system with non-zero deferminant.
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Section 4

Trheorez 1 ozn be regarded as saying: = Best (Cetrsev) apbroxizstion
of degree <N to a separated function in 2 variables is the separated Haar
polynomial which is the sum of the respective best approximations of degree
<li to the separate components. Tneorem 3 says: this Haar polynomilal is the

unique best approximation of degree <T

Certain other attempts to generalize the results of the original paper :
have led to counterexamples, even when k=2.

Consider approximation on [O,l] by (ordinary) polynomisals in the Lp

norm, where || £l =1 ‘rl lf‘(x)lpdx}l/P. To say T(x) is unimprovable
o

in the L® rnowm by any polynomial of degree <N, is to say
Hf-)\xu“ > []fﬂ all real A, all u=O,...,N. That is, O is the best
approximation of degree < N.

Similarly, the IP norm on the Cartesian product [0,1] x [0,1] is given by

U8l = L[] |#(x,v)] Pax ayd?/®
[o,11x[0,1]

and it is easy to see that to say ¥ is unimprovable by a polynomial of degree <N,

means HF = )\‘xuyv“ z!lnl ell real A, all u> 0, v> 03 uty < N,

We will show Theorem 1 does not hold fo¥r p=k, k=2, N=0,

Definition: flg (£ orthgomal 10 g) in IF (X) if [|f-Ag] > |6 a1l real A. il

Assért fLgin Lh if and only if j'f3g < OF . ’
lz-nell* = [Ce-ng)* = i - [P+ [(6r2PEn3egda "), | r

_r(f-hg)” - J'-fl“ = -lmj‘f3g - xej[e(fg)2+f2 (27-2g)?]. I

The second igtegral on the right is always non=-negative; so

Pe3

if [T°g # 0, A can be s0 chosen that the whole right-rand side

3 - caa 2 .
is negutive, whereas if If g=0, the right side 1s non-negative. |

Al
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The assertion follows from tne fact that ||all > lp|l if and only ir
lall* > 1ol .

It will suffice to exnibitv a function F(x), umimprovable by a
constant, such that F(x) + F(y) can be improved by a constant, i.e.
the West approximtion of degree 0 in [0,1] x [0,1] is not the sum
0+0 of the best approximations to each separate component. That is,

[EE(x))3ax = [L(R(y)) ay = 0, but [ [F(x) + F(y)Pax &y # o.
[0,1]x[0,1]

Observe
IR Pay ay = [TTEE))33(R6)ITR(y)+3r () (F(y))+ (F(y) ) lax ay
Tl (F G 3(F(x))7 o7 (v)arv 3R ()5 (B ) Py [5 (P (y) ) aylax

2( [o(F(x))ax + 3.5 (F(x))Pax - [PR(y)ay}.

1 T Et g AL ) S jé (Flx))3dx = 0 but

yéF(x)dx # 0, Ié(F(x))adx # 0. Namely, F(*) = e [l-% x2]1/3:

]
fxdA1 e 2 503203 | - ndl - so;
. (0]
Ié xa[l-g-x2]2/3dx # O because the integrand is positive except at
x=0 or x=/2; le3(l-§ x2> dx = xh L2 x6 g =0
= 5’ 0 2 bl T S o = Wy

A more striking counterexample to Theorem 1 is provided by the
following: We claim that there exists F(x) ¢ Lh[-l,l] such that
F(x) + P(y) is unimproveole by any gquadratic of the form P(x) + q(y),
but is improvable by a multiple of xy. This means F(x) - F(y) is

orthogonal to l,x,xe,y,ye Wut not te xy.

1
Consider J:_Ll [J‘J_"l(F(x) + F(y))3 %;2 ye} dyldx: we seek
XYy
P(x) ¢ L“[-l,l] such that

i




(2,[1 Px)ax + 3 F(axe L F(x)ax = 0

o 13

o txr3(x)ax + lrlee(x)dx-Ji_F(x)def_le-F(x)dx-IllFa(x)dx=O
e al )

lx2F3 x <> lF x . 1F X + IXEF b'd - F2 = lF3 x)dx=
2{1 (x)ax 3:['1 (x)ax ‘[1 (x ) 3__fl ( )-ch‘Jl~ (x)ixl'g-'i‘l (x)ax=0

il 2 1
Kajjl F°(x)dx ‘I‘le(x)dx # 0.

It would certainly suffice to show that there exists F(x) e Lu[-l,l] such that

F(x) = 0 on [-1,0]

IéF(x)dx =0

J";Tf"(x)ax -1

lfﬁﬂ3 P 4 1
I {(eF(x) + jF\x)) Xp dx = 0
Q

x
L
but J;)xF(x)dx £
Suppose no such F(x) exists. Then we would have
F(x)e Ll*[o,ll

IgF(x)dx = = IixF(x)dx 1.

Let F(x) be a function satisfyirg conditions (%). Then for any
G(x)elﬁ[o,l] and any &

I;L[F(x) + 86(x)]ax = 0

J'J(;[F(}:) + 86(x)1%x = 1 “jé‘x[F(}:)+6G(x)]cu=O.

f1
J'C;L{QEF(x) + 60(x)]3+3[1?(x)+5(}(x)]] {x§ dx = 0

X
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a5

Since § can be chosen arbitrarily small, this means (W.A.S.C.)
G(x) ¢ Ll*[o,ll A

g**) IéG(x)dx =0 ? =féxG(x)dx=O

‘f?(x)c(x)dx =0

i 8
WL S A .
J56r°(x)+3) -+ G(x) ;cg ax = 0 |

This set of equations says: whenever ?/G is orthogoral to 1,F,

IBF2 +1, x(2172+1), x2(2F2+1), then s/G is orthogonal to x also. 1i.e.
F(x) is such that x is in the linear subspace of Lh[o,l] spanned by
these 5 Tunctions. But this implies F(x) satisfies an equation
A(x)F2+B(x)-F+C(x)=O, where A,B,C are polynomials in x of

degree < 2. .. F(x) is continuous on [0,1], except possibly at 2 points
(because it is a quadratic surd function of x). Likewise, F+8G must
be a quadratic surd function of x, and hence continuous, except
possibly at 2 pts. for every G satisfying conditions (#*). However,
given any F(x) satisfying (%), there exist functions G(x) satisfying
(¥%) which fail to be continuous at S points, namely

— e

W Y Tk 8y %’]—'gx<%i=l,...,6
1 L3 L 237 5

Pm— v 8.6 at x=1

where (al+a2+a.3+a)++ia5+3.6=0

6 i
Z. & F(x)dx = O
SO yo1
6
6§ & o
VI Y 2F +1)dx = @
(
G
g 2
za,.[B < (2F°+1)ax = O
=L M.
75
& >
& 2
\i laiji_l(a +1)dx = 0
6




Trere are 5 homogeneous linear equations in the & unknowns Gpaerendgs
s0 there always exist solutions not all zero. But then F+6G is not
continuos, or rather, fails of cortkinuity at more than 2 points. This
contradiction shows that the implication following (¥*) is not wvalid.
P 2 bR

Cons ller now weighted Ceby ®V norms.

IT T(x) is continuous on [0,1] and p(x) > O is coptinuous on
[0,1], define ||f]| = su p(x)|£(x)]; likewise; Hgﬂc for functions

P erO,l}

g(y) with weight o(y). Then tle "product norm" can be defined by

Il o= s ]p(X)G(y)lF(x,y)l-

SO e A N

We will show that Theorem 1 fails even for N = 0, namely,

we shall exhibit functions f(x) and g(y), unimprovable

by a constant with weights x and y respectively, such that f{x)+g(y) is
improvable by a constant, with weight xy. Observe that to say f(x) is
unimprovable by a constant, with weight x, is to say

may x| #(x)-cl > xﬁf(x)l for any c. It follows that {o|xf(x)=«} is

xee 0, . Txel0,1
an interval L-A,A], i.e. the range of xf(x) is symmetric. Otherwise,

suppose W.L.0.G. max xf(x) > - min _ xf(x); let co=% (max + min],
xe[0,1] xe[ 0,1]
then max le(x)-cox\ < max |x£(x)] . (It is easy to see that this
xe[0,1] xel 0,

is also a sufficient condition.) Likewise, in order that f(x) + g(y) be
unimprovable by a constant, with weight xy, it is necessary that
xy(f(x) + g(y)) have symmetric range.

So now, dioose 1 (x) = x-a agd g(y) = y-a with a=2,2 -2, then
x(x-a) and y(y-a) have symmeirlc range as x,y run through [0,1]. How-
ever, xy(x-a) i xy(y—a) does not have symmetric range: Dby elementary

calculus this Function achieves its max or min at points for
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2 2.2 .
which x=y=t, sO0 max 5 xy(x—a)+xy(y-a)= max 2t (t—a), and likewise
x,yel0,1] te[0,1]

for min. 3But 2t2(t—a) has maximum value 2=2a at t=1, and minimum value

8 _a at t=2/3a. 2-2a # 2?—a3 for a=2/2-2. Thus range is not symmetric.
27

S f(x)+g(y) is not unimprovable, so the best approximation is not the
sum of tne separate best approximat is.

In the even simpler case in which only the weight x is involved,
consider the function x((x-a)+(y-3)) with & = 2/2-2. By the usual

elementary calculations, range x(x-a)=L2/2-3, 3-2/2],
xe( 0,

range _(y-3) = [-3,3], vut x((x-a)+(y-3)) has marimum value --in tne unit
vel0,1
-a at x=1, y=1 and minimum value of -%(a+%)2 at

r 2Ly . . -
. However, t(at3)” # % -a, 50 the function is improvable.

ok

square- --of

(o}

x:%(a'*-é-) 2 Y=

Further ifvestigations into the weighted norms are continuing.

We turn now to a question which, though it does not involve a
direct generalization of Theorem 1, is nonetheless closely related in
spirit. THeorems 1 and 3 say that if a function is of separated form
then the (unique) best approximation of degree N is also of separated form.
L It . 2 n
Consider functions on the unit square, of form fo(y)+xfl(y)+x fg(y)+...+x fn(y), |

" v
winere each fi(y) is continuous on [O,l], and Cebygev approximation by

(ordinary) polynomials in x and y. We ask whether there is a best approxi- ¥
mation of degree¥ > n whose degree in x is < n, i.e of form

P0(30+X Pl(y) + xepg(y) oot xnpn(y) where Pi(y) is a polynomial in y

of degree <'N4 . Ovserve f'rst

gex|ag (y)+my (v)| = max{n?xlno(y)l,m?ﬂno(y) + 1, (v)|]

becat se h.txh

ot xhy is linear in x for each fixed y.
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If n=0, the given function is of form fo(y). let po(y) be
the best Cebysev approximation to qj(y) of degree N. let

qo(y)ﬁrqu(b’)+...+quw(y) be a polynomial of degree N. Then

o l(fo-qo)-qu-:---quNl > max{m;}XIfO(y)-quyH,m;XIfO(y)-qo(y)-----qN(y)l}

> n%xl £5)=p, ()|,
because qo(y) and QO(Y)+---+QN(y) were both among the candidates

from amongst which po(y) was chosen.

Hence gq (y)+...+quN(Y) does not approximate fo(y) better than p.(y).

If n=1, the given function is of the form f(y) + xfl(y) : call it F(x,y)-

Let po(y) and pl(y) be those polynomials of degree N and N-1 respectively,

for watch max {mﬁx l£ () - s mex l£,(y) + £,(y) - pgly) - o, (W)}

is a minimum. We assert P(x,y) = po(y) id Xpl(y) is the best approximation
of dezree N with this form. For, let Ql(x,y)=qo(y)+qu(y) be of degree N

or less, then

e | (£ ()0 ,(r) 4x(2; (3)-a; ()| =max {m§xlfo-qo| ,m;XIfgfl-q -q |}

y
by construction 1

- max | (£ of3)-p o) (£, (v)-p, ()] - : i:

3
i)
Moreover, let QN(x,y)=qcﬂy)+qu(y)+...+xhqm(y) be any polynomial of '
degree N. We will show “F—QNH Z'HF—ﬁ], so that P 1s the best
approximation o F, of degree N. It sufiices to show

|
%l £, ()-qq () +x(£; (¥)-q, (¥) )-xeqe(y)- . --quN(y)l {

2 gex| (2, ()-p, () )x (2 () -2y ()]

= Hax{m%XI .45 (y)-Po(y)lﬁ€§:X| £, &)+, () -pg (v)-p; (N1
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The left-hand expression is > max{m;.xlfo-qol ,m;xlfo-iﬂfl-qo-(qlh : .-i-qN)l} , out

9 and ql+. - -7q, Were among the candidates from amongst which p 0 and P
were chosen, hence the desired result Tollows.

2 o 3 ¢ = 2
Let n=2, N=3. We shall exhibit a function r(x,y)=fo(y)+x;f‘l(y)+x fe(y),
unimprovable by sny polynomial po(y)+x’pl(y)+x2p2(y) of degree 3, but

3:-:3, &y constants, t.3 #0.

improvable ®y a certain a O+aIX+a.2+a
3y way of preliminary observation, recall from the elementary calcwlus
that given 0 < X, < 1, there always exists a guadratic in x which attains

its maximum [or minimun] of 1 [or -1] at x=x_, and its minimum [ or maximum]

1
of 0 at x=0 or x=1 according as X >3 or Xg =2

Let M> L and O=yy < ¥p S hel < Hrd be fixed values of y, all to be

determined later. ILet 0 < X, < X, < x3 < X, < 1; consider the vertical
lines Li: x.:xi i=1,2.3,4, Tue points (xl’yl)’ (x3,y2), (x3}:)’3>) (x)-{-’yh)’
(xl.,ys),. - 2 (xi,yhk_,ri),...consrtitute a Tinite set which meets any

horizontal y=yJ. in exaclly-one point.

M

&

& gt

#xxx
1 % T

To each horizontal y=yJ. with 7 mod 4 associate the pmmbola ﬁJ(x )wjowjlijzx
which attains its minimum value of +1 at x=x, and its maximum value of

0 at x=0 or x=1l. Likevise to each horizontal y‘=yj with j=3 mod 4 associate
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e p:-.ra"fola TIJ. (x) whose winimum is -1 at x=x3, and minimum of O at
x=0 or x=1. Am@d, to each Y=Y 5 =2 mod %, tne parabola ﬂj(x) with
mex +1 av X=%, at minimam O at x=0 or x=1, and likewise for y=yj,JEO,mod L,
We ca® ilterpolate a sarface F(x,y) on the unit square, as follows:

Flx,yy) = m,(x) any x
Y-
Fxy)=F (0,3, (4= F (x, v, )-F )]

JHL
for yJ E y s yj+l,j=l,.-.,M-l.
F(x,y) is centimwous, |F(x,y)| < 1, amd the max |F(x,y)|=1 is taken
ESh A
on only at the distinguished peimts. Also note F(x,yj) <0, j51,3 mod 4;

F(x,yj) > 0 j=0,2 mod 4. Evidently F(x,y) is of the form

ro(¥) + xr () + o0,

5.5 1 ' b x <% <x, <% _<x <T.<x, ; 1@
Iet Al,x2,13 be suach that X, <X, <%, }2 x3 3 xl*, let
G(x)=(x-§i)(x-§é)(x-i§). G(x) is negative at x, and Xgs positive at

x, and x), . There exists & > O sufficiently small thav mixléG(x)|<e<§,

2
s0 §;a§lF(x,y) - éG(x)l.i l-¢, since 8G(x) and F(x,y) agree in sign on
)
the distinguished vertical lines. .. F(x,y) is indeed improveable by a
cubiec 1n x.
It remains to show that no P(x,y)=po(y)+xpl(y)+x2p2(y) of degree 3
improves F(x,y). Suppose, on the contrary, P(x,y) is such an improving
polynomial. Then P must be regative at the distinguished points on L1 P
and L3 and positive at those on L2 ard Lh’ For any x=%X, P(x,y) is of .
degree < 3, hence there are at most 2 intervals in wnich it 1Is positive
and atl mest 2 in which it is negative (otherwise there would be > 4 zeros)

We may suppose that M and Yys++esYy &re so chosen that yJ+l+—yJ<g where 8(<l1;

(it would suffice to choose yj+l_yj<%§)' Tnen P(xl,y) is positive on at



most a set of measure 20 in Ll’ i.e. between 2 pairs of distingulsied
points; likewise, :P(x3?;y) is positive on at most a set of measure

20 in LB, P(xe,y) iz negative on at most a set of measure 20 in L., and
P(xh,y) is negative on at most a set of measwre 2 in L . 5ince & <1

vhere exists a value y = ¥ such that P(xl,?_) < 0, Pl:,xap}') > 0,

P(x3 ,y) < 0, P(xl‘&) > 0, but P(x,y) is a parabola so this is impossible,

We conclude F is unimprovable by any such P(x,y).

=55l

T
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