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INTRODUCTION

The main theorem of approximation theory is that of
Weierstrass, [T7], which states that the closure of the
monomials {l,x,xe,...], on a compact set, X , is the set of
all continuous function on X, C (X). There are many
generalizations of this theorem, and two, in particular, are
of concern in this paper.

The first is Muntz' theo;em, [3], whi;h states that the

1

. A
closure of the monomials, {1,x ~,x 2,...}, is ¢( X ) if and

z —l— = R
and only if .Ai
i=1

. Here {\{} is an arbitrary

sequence of positive numbers.

The theorems of Weierstrass and Muntz are quantitative
in nature, in that they deal only ﬁith the possibility of '
approximation; i.e., given f(x)e C [0,1], and given €> 0,
there exists a finite linear combination of {i,x,xa,...] or

A

‘ A
ol % l,x 2,...}, say p(x), such that | £(x)-p(x) | <€ for

all x € [O,l]. No information is furnished as to the degree
of p(x), considered as a function of €. The answer to this
problem is given in Jackson's theorem, [2], which forms the
basis of quantitative approximation theory. To be explicit, -
let f£(x)e C[0,1], let P be the space of polynomials of degree

less than or equél to n, and let



&) = s >
B B o AR REALY i

be the modulus of continuity of £(x). Jackson's theorem states

that there exists p(x) e P, such that

' 1
and there exists £(x) ¢ C [0,1] such that

| 2(x) = p(x) | 2coW, ()

for all p(x) € B,. Here ¢, and ¢, are constants independent of
£(x) and n.

The above three theorems hold in the space p* {0,1], with
the appropriate modifications.

D.J. Newman, [4], found a quantitative version of Muntz'
theorem in L2 [0,1], Specifically, he proved the following:

let 1 = )‘0 < )‘l £ g5 € kn be a finite set of integers

n "t 1/2
satisfying xi"‘l- Xi _>_ 2. Let G '—X-i—-;_—3—72 &
1'1

Then for £(x) e L2 [0,1], there exist'constants ci o e o e ot

such that
n
A 2
” £(x) - z 91 =" I <3 er (eA):
i=0 . L2

and there exists £{x) e 1= [0,1] sueh that
- X L2
I £(x) -Z c, X I 52 1/h W (e,) for any choice of c,.
22T ey 1
i=0



The results of this paper stem from attempts to generalize
Newman 's theorem. The first is a "Muntz~- Jackson" theorem in
n-dimensions. Here, however, a qualificaﬁion is in order, since
the corresponding Muntz theorem is not known in n-dimensions;

i.e., there are no known necessary and sufficient conditions for
Xos'e A
l;x 21

X ...an“i} , 1 =0,1,2,..., to be

a set of functioné {xl

8 functions

dense in either the continuous functions or the L
on the n-dimensional unit cube. Sufficient conditions are
.known, and this paper treats one such case, namely that of a
product set.

The second result came from an attempt to prove the
Mantz~Jackson theorem in the uniform norm. The method used

was unsuccessful, but yielded an elementary proof of Jackson's

theorem.

viii



I. The Muntz~Jackson Theorem

In this section we prove the main theorem, preceded; by the
Mantz theorem in n-dimensions. '

Let { lik} i=1,2,¢4.,n; k=0,1,2,..+ be sequences of real
numbers, satisfying ":u: D> - 1/2.

Let T, = {xi ik k=0,1,2; 04

and T=T,. x T

1 2x...xTn .

Denote by U.C. the n-dimensional unit cube, o <x, <1, i=1,2,...,n

i
For a function of n variables, f(xl,...,xn), ve write £(x),
whenever no confusion will result. We also write

[ £(X)dX instead of [f +o¢ [ 20Xy s 000sx ) dx)oend, .

Theorem: A necessary and sufficient condition that T be dense

in 5 (u.c.] is that
[--]
. 2 1 . 3
¥ T""' )H\ Lo l,2,...,n .
k=0 ik

Proof':
Sufficiency: Suppose ¢ (x) is orthogonal to T, Q€ ¥ (v.c.].
Fix Az‘, ksk, ceoy )‘nk and let

)

. i n X
3 = l [ N ] l ik 4
gy (%) = [ e [ 122 Xg T Py eeenx)) Axpeeiax,

Then g, (x,) & [0,1], and

X
1
o n Mgt =0 k=012,



and, hence, gl(xl) = 0 by the l-dimensional Muntz theorem.

1 n.. = Ak
Let ga(xa) ==f° Io n X

— (p(xl,...,xn) dx3...dxn.

Then 82(x2) L2 (0,11, and

A
l a‘ = =
IO x2 sa(xa)dxa 0 k = 0,1,2, o000
and, hence, ge(xa) = 0,
Repetition of this process yields

k .
1 nk
o xn ‘p (ﬁ,'.',xn)dxn el 0 k = 0,1,2,0.:

.

go that ©(x) = O,

Therefore T is dense in L° (u.c.].

==}

Necessity: Suppose z <y

1
A
k=o:|'k

Then there exists @(x) e e [0,1], such that

; A
I x®ox)ax =0  k=0,1,2,...

(o]
and ©(x) ¥ 0. )
n 1 n A
since o(x)e L° (u.c.], [ - [ T x, iktp(xl)dxl...dxn

=1
exists, and, by Fubini's theorem, is equal to
1 0 v e RESPY -
o0 2 s lk = ] ’ o
Io J‘c 1132 e [ Io el tp(xl-)ﬂxl 4 '.ixa"'dxn

= Q.



Thus ¢ is orthogonal to T, and @ # o.
Therefore T is not dense. ’
Q.E.D.
We turn now to the corresponding Muntz-Jackson theorem.
Let £(x) € 12 [U.C.]. We contime £ so that

f(xl,...,xi-l- l,.-o,xn) = f(xl,...,xi,...,xn) i = 1,2,'....,11 .

The 1'..2 modulus of continuity of £ is defined by

~

2
w1 (6) = o™P e + &) - 2(x) IIL2 .

§ . 2
) h, =<6

i=1

2
i 2
If W, (6) <&, we say that f is an L° - shrinker, and
denote the class of L2-Bhrinkers by S.

Lemma 1: If £(X) €S, then £, (x) exists almost everywhere,
i

and satisfies || £ ]] . <1, 1 =1,...,n.
xi L2-—

Proof: Since f£(x) es,

”f(xl i t)xax'“:xn) = f(xl’x2""xn) ”Lz-s T

and, hence, the set of functions

ft(n_c) = f(xl+ ¥ xa,...,xn) - f(xl,xe,...,xn)

t

has L2 norm uniformly bounded by one. We may extract a subsequence

{ft } which converges weakly to @ (X) as %, = 0.
k



By weak convergence

X
[ Pp——
1im Ib Ib f (u) du = Ib Ib ¢(u)du ,
k™ 0
*n *2
But t1im Ib‘ Jb f (u)du jb i jb [f(xl,ue,...,un)-
k" 0 :

f(?;u2:1'~;“h)1du‘ for almost all X,

x x _
Thus Io n." ‘ro 2 [f(xl,ua,-on,un) = f(o,ue,ono,un)]du' =

X
joxn-.- Jo e @an .

Differentiating successively with respect to xn,...,xa, we obtain

x
1
f(xl,xa,...,xn) = f(o,xa,...,xn) + jb ¢(u,x2,...,xn)du

and hence

fxl(?c) = o(x).
Since Hft (x) |l 5 <1, and ¢(x) is the weak limit of
K 5

£, &), ve vave [l 0 ) Il <3, 0 Il £, () 1] <.

Similarly for f_ (x).
#{

QuEaDi
We now prove a result of independent interest.

Lemma 2: ILet {aij(t)} be a complete orthonormal set in s {o0,1],



5,...n; ~®<3j< @ . Leto () e1?[u.c.], and

A n
I 1 I
»fo "'.fo 1131 aidi(ti) ¢©(t)dt = 0 whenever the Jy

similtaneously, O < Jis Ni'
there exist «,ol('E), <p2(?;f),..., <pn(E) e 1= (u.c.], such
B0, + P, teet @y

(0,05 =0 143

lodl <llell 1=12..00m

ln E

:)1 (1 #Xx).

© has a Fourier series,

B, __(1—.1)...9.ni (tn)

Al n

<1, SN k=1,2,...n.

bose the P, in the following way:

n
e 0 e ()
il,-oa,in.gl kik k

.-‘.-l "',in:-m



. for those indices for which
il, 80 ,in

il

>N,, and d 0 otherwise .

11,". sl

. .. ,,11'1 LY akik(tk)

1

=c » forthe remairiing indlices for
11 rerits ’in

and 4 = 0 otherwise.

0 or 12 > N2, il:'.--:.in

e on wn-l in a similar fashion, and

3 :
w
! n
}: dil,-....,in i a'kik(tk)
Y 4 =0
see) n
= c, for the remaining indices, which
.'.'.'Min ll)"-:i

remaining indices for which in <0 or 1n > I‘In s

indices for which 0 <i, <N, for all J.

J—4

coeffiecients are, of course, all zero.

(a) and (b) are satisfied.

-9y Re ((P, ‘D)
iz;) B

n.q)l ]{2 teeat ” ‘Pn ']2 , since ( goi, qoj) =0 i 74 3 .

» e, li<lioll.



o s =[Eeefr N oag (5)e (B,
11""’3‘1'1 (o} L :Lk k

Q.E.D.

L't 0 =% <X

-'-_ = 1,2,...,11,

< 9y <xiN } ve a finite set of

il N

el R -
= ﬂi M
k=1 xik+ 3/2

sup inf || £(X) - ¢+ (%) || , e the approximation
teT ’ L



assume, without loss of generality, that all the

s in our space have mean-value zero. For suppose

= 2(x) - [0 e .
has mean~value zero. Suppose t(x) is an
ion to E(E)J

| gx) - t(x) || <e.

1t 1s sufficient to approximate g(x).
mean~-velue zero, then its Fourier series has no

The set of all such functions forms a Hilbert

i

Qe CT
n (zi- 1/2)

)= [rpd I+ @ (E)dt (1)

'-(Alkl +1/2, xa‘a i V| St .+1/2 ) =0

n

k ‘O,l,..‘.,N

at i

L =X, +iy, .
3 J J
1:  G(z) is said to be in the Paley-Weiner class, P,

is analytic for x > 0, and
- = 2 .
*iy) |Tay <u



uivalently, ( ~t )
u.z e e VA
a(z) = f_o., f(u)e i ™
S _—_—
'.I.u JE(@)]° au <= -
proof of the equivalence of (a) and (b), and for the

-Weiner theory, the reader is referred to [ 1 ]

show that F(z) e P.
Ly 2
. =e , (1) is trensformed into

(W 2, +.eotu_z ) 1/2 (u,+e.etu ) u u ] =
31 nn [6 1 n‘p(e\l,”.,en) an

2, there exist (pl,...,tpn such that

n s (zi- 1/2)

: 1--t 1 + g
Io 1131‘ i ‘pj(t) <%

3¢,)= 0, and ¢, is orthogonal to T, .

My 2Oy ¢ 1/2)
Z+(>‘ik ¥i/3) and let

lr'lf . (zj- 1/2)

o, () 4t 1=1,2,...,n
= 9 1
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n .
Bi(zi)gi(zl,za,o---zn) where gi(Z) eP .
1=1

p: @ €L? [U.C.]; ¢ 1s orthogonal to T.; | @ || <1 ]

’ » Sup g xi
P < Z (piecTi Iy, CHCIFPRRE L
L

By =mup inf || £ |

fes teT
=sup sup (£,0) (see[ 61])
- fes - <P€0T
I n
= sup sup (f,(P)
feS n [ igl . :]
ORAH
. i=1
S
) sup (f,(P ) .
Edu q-"iec; ¢
; i
- sup sup &% (f:‘Pi)
e ¢, <C,, '
Ll
1 —
sup J'O £(x) ‘Pi(x)dx (2)

;T* £es
sech.



11

>

1.t L 1 E
sy [l L tlegseenx ) 210 Gryennix dax, |

X, .
i
: (xl,...,xn) fo <Pi(xi""’xn)d¥i}d§i] dxl...dxi_ldxiﬂ...dxn

-

o 1 _pl -~
o PEax; 1" = [ 7 o(xlax, .
an-value zero, its Fourier seriles,

o 20 (mlxl+...+mnxn) .

,pa-,mn

ﬁPi(;)dx =f1 Z o . el (mlxl+"'mnxn)
ST, P

term-by-term integration.

y x
* feg J‘ol'"fol [ fxi(x) Jo i o, (x)ax, ] ax

x .
- Sup 4 ” ‘rO & (pi(;) dxi” o)
"PiGCTi L

quelity is true because H:f H < 1l. The sup
Xy Le -



12

.
1 —
E:th I fxiu < would be equel to [If o, (x) dxi”La ,

a is proved. Returning to the proof of the main

R Y0, @ (3)
3= d : ’

n (iyj- 1/2)

. &1 —a =
) - Ll T )

+o.0 ¥y ) 1/2(u, *te. o+ uw ) u u

u
yeeese ) =0 for uje(o,w) T e,

1's identity yields, since | Bk(iyk)] =1,



13

.
L | i
“h 3/e) ‘rotyﬁpk('g)dtk}dtk:l j}:!l tj(lj ‘ 1/@) o
| Ik

0 12
s _-: \ < _J:’_ ceoe ,iyk_l,lﬂ‘!k, i?k+l, vee ,iyn) l
(2x)® (v2 +1/4 )

. ot
1% aF = ||, Ko, () at, “21.2 :



1k

)I !
i i L i -c-iy

: Y 9 yk, yk+ 3 n

% L]

( y Sl ) k

mk)gk 1 i Al 5-

e 4
Vi +,l/ .

- .]Yk)l x

7 1,/2)% )

W
: n du
g (ul+...+un)|%(e l,...,e )l
.2_'.[‘ 3
1%y = [




(iy) | ay
(E)dtkll’-
ay )P 1 [2 e @)% &
+1/4 (2n)®
=y 12
141y, )| Il o (@) |
+1/h
fi‘_x}fk)le since |lp (B)]| <1
2/
z - (lk,j + 1/2)
z + O‘kj = 1/2‘)
Ny
= 1

yk2+ 1/b J=o (

15

I (- 1/2)%+ 2

Ak,j"' 3/2)2+ Yy

2 b

i

-
b
e
' kk:j" 1/2)
e 5
L Oyt 3/2)2
N 1+ yk2 S
; [g: o‘kj" 1/2)2 1
I-. J“ . 5 ¥ ykz
1+ k - 10
| Oy(ga) 37203 Oy 302
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2r bound, we orthonormalize the sets Ti
|
te orthonormal set, <plk(xl),...,<p nk(xn). If

en £(X) has & Fourier series,

i _Gckl’ N .,kn‘plkl(xl) ﬂpaka(xa) 'y .q:nkn(xn) ’

). Then the Fourier series of £(X) is
5 and the best approximation to £ (X) is

! ; 1.e., the sum of the best approximations



17

:‘ ’.1 . o,fn(xn) L)

M

¢ ], has shown that for any set {x “}, 1=0...,k,
function which cannot be approximated better
or each of the sets T, let gi(xi) be the

U #lx = e
1" function, and let £(x) gl(xl) sn(xn).

n .
Gl > /4 z 5 A for all teT, and hence

=l -
., .
E A
the proof.
Q.E.D.
sorem is applicable only to shrinkers. To

ult to functions with arb.itrary modulus of

use the following construction.
¥ [m.c.],

= S eE T aT .

'1 ;-fxl‘(sz + T)at

i f(xl-he, X+ t2""’xn+ tn) =

. 1
boseeesX tn) ] dtye.dt .



18

.I: 2 3_%_ Ioe..-‘roe “ f(xl+ 61,“2%23"':xn+bn) —
€

e ,xn+ tn)“dtZ"' .dtn

i l+ tl,.-.,,xn"' tn)-g(xl,xa"' ta,...,xn"' tn)“

oF BpseenX b ) - g(xl,xz,x3+ tgseensk * tn)”

Batos .- ’xn-lxnﬂ-'n)-g(xl’ tee "xn)n

=l 2 [ °le(x + ) - 2(x)1aT |
= .



_rIoe!lf(;E +%) - £(x)|lat

ne) <W (ne) SnW(e) ;

g(x) €S, there exists t(x) € T such that

n
. t(x) | < E €
1=1 *
| o
ai(e) &) < v (e) z ,
A=)

G

&) - wig(e) &) |

€

@ + lleGx) - ni(e) () |
€

A BE) = mi(e) (),

W

€

n
<
1=1 1



ientary Proof of Jackson's Theorem

shapter we give an elementary proof of Jackson's

. convenience we prove the theorem on the interval
gh the proof carries over to an arbitrary inter-
few modifications.

the space of polynomials of degree less than

n
1,1], denote by Wf(S) the modulus of continuity
sup sup |f(x +t) - £(x) | .
-[-1,1] [|t|<3

f(x)e c[-1,1]. Then there exists p(x)ePn such that

- p(x)] <ec Wf(% ) where ¢ is an independent

the interval [-1,1] into 2n equal subintervals

h"ﬂSkSn-l.

in the following way.

T k !
=f ( E>’ and let L (x) be linear in the sub-



I n
. T X

-M&BA"'Z a.k[x-ﬁl. To see this,

k==n+l

EIL

. We will fing 8, 80 that L(x)=A+ M(x).

N r +
he slope of L(x) in L E 5 %-:-L-] '

n n
b ]
:51)‘“ Z “k(ﬁ"‘)
ksj+)
n
B ) - .
k341

: A .
3"1? in [;1‘ r -%L-] s> We obtain g s8ystem ‘
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and L(x) are piecewise linear functionms, having

n each subinterval. They can thus differ by at

= [} Ik - slag(e)] < ()
] a {x]-p(x)} | <3
[ 3 px-t) ag(s) | < (2et1) W, (5)

-A- [T @-t) ags) |
- 3 Ix=tlag(e) [+]] T {]x-t]- p(x-t)} ag(t) |

t]-p(x-t)} g(t) |1 - f_:lL g(t)a {x-t| -p(x-t)}]

= mex | z -
J k=-n+l ,
by W (=) 1
mixlsjls fln = o ¥l
n



23
Tms | £(x) - A - j'_JlL p(x-t) dg (t) |
Swf('%l— ) * 20, ( z%f +8
n
= (2 +1) W, (2)
Q.E.D.

Lemma 2:

There exists p(x) € P_ such that

[Blatix]-p60 |5

Proof: Since | x | - p(x) is absolutely continuous in [-2,2],
J21al ixleG) 3 1 =f5 600 -0 () lax

=1 -2 <x<0
L 0 <x<2

where s(x) =

We seek the best LY polynomial approximation to s(x); i.e.,
we wish to minimize

n-1

J‘_S | s(x)- 2 ckxk | ax ' (1)
k=0

1

over all possiblé Cp e

Considering (1) as a function of ¢ k=0, 1,..., n-l,

and differentiating with respect to ¢, in order to obtain the

J
best approximation, we find that

n-l
f_g sgn { s(x)- Z ckxk } xd ax =0 J =0,1,...,n-1 (2)

k=0 n-1

In order for (2) to hold, s(x) - Z‘ ckxk mist change sign
k=0



s

at least n times.
Let bo us 2 bn+l = 2, and let bl’bE""’bn be the points

‘n-1

where s(x) - 2 ckxk changes sign. Assume, initialiy, that
' k=0

n =Um+l, The b's are symmetrical about the origin. Thus
pn+l * 4
2
(2) yields,

b b b b b
Jo b e e - [ Badax o [ 3 xdax ouuie Fo B owdax - [ xdaxeo
0 1 2 n-l n

L b S R S L
or (~b,) + & 2, Teeut 2 b4 0

We thus have a system of equations,

k k .k k k-1 ' k
bl — b2 +b3 "'oco+bn - 2 [l < ’("’l’) ] k=l,2’-cn,n (3)

The solution to this system is bj=2 ‘cos (%_L) %, as will be

shown.

The equations with odd exponents are satisfied by cancellation.

.- Let k be even. We must show that

n
iy ok i -

2 (-l)J+'Lcos (-n—;%_i-’l)ﬂ=l-
J=z

k
Now cos x =

F 1
o
[




4 :
“ '“l'l;' [edix +( 1) o1 (k-2)x S b+ (

2

ll

ols =

) fouoot e L ]

2 5
n
LECap e { AR (4)
3= |
n
J'Z‘l (1) eos® (o o ) " )
| : l : k .
kl 2 (-1)9% 2 [()cos( 2R ) gu + 1/2 (g}]
p=1
k_
28 n Kk
k_l 7R Z(lﬁ“’l[()cos( )3”1/2( )]
p<l  J=l

--l . ) = |
z Re Z (—l)'j-*-:L [ (lpt) e1 (ETJ'@ Ha +1/2 (g):}

1
2 - p=l J=l
) ‘ =
771 i(2n+ 1)(k-2p)n 1(k-2)x
(k) s 2(avi) +o 2(utl) k
ey RELE k-2p) r S
27 P La‘m S g
k
-—_l I
2~, (k) cos(2n+2) (k-2p)n + cos-(—g%)—{f Ly
== P Pl =
-1 Z’ 2 cos Lk=2p)w 5 (5)

p=l on+2

3

& e g K %
-em cos kx+| ') cos (k=2)x + ... +{ k - 1] cos 2c+ 1

k
k
2



k

'_-l y =

2_.._ (k) v cos [-(k-29) Al ﬁ-——-———k?mzﬁ%“ (\()
= 1 pj |1+ +1 (x
ol AR B=2pyn x \2
oK1 e i cos 5= o \2

k

'é-l

| A
=—.—.!‘_.. (p) [2—2_ +% { cos (k-ap)J'[ + sin (k-2p)1'( tan %‘%)_ﬂ} 1

k 3
[ ‘k e
Now >.. (p) B 2k )
p=l
g 3 K
K e
}E 4 T }E 'k
and o) 2 p) k
p=1 p=l 2
k
z -l
z Ky _ k-1 1 /&
Thus 'p) Ny 2 E) (6)
p= ' 2

and, hence, combining (5) and (6), we have

o : =il k i =
@ 3 Uy G -0

= 1 3

Thus all the equations are satisfied.




n-1 n=1
Thus (1) = J: “le 2 ckx Jax + J"ba[ wle z e, X ]dx

% k=0
"n-1 n-l o3 e
+000+I 2 "l- L c, X ]dx +J\ 2 [ l- Z
b K b
ntl k=0 ntl ]
2 ' oi
n+l 3 k }
+o eet fbn [l"‘ Z ckx ]dx
k=0
n-l
In [ -2,0 ) the integral is - x - z SL X k+l,
k=0 &7
n-l
and in[Oé] the integral is x - Z % g T
k=0 k =L
n-1 b n-1l
Thus (1) = [ - 2 i}_{_xkﬂ ],bo-i-[-x- z c_k_x
k=0 K# 1 k=0 Xt
b
n-1 9%1- n-l bn+3
& X+ —_—
£y B “Phn i B n+l
2 3 )
I
n-l b
+--.+ [ K= S-‘ .(_:.15._ X k+l]bn+l
: = k+l n

k=0



28

= [-p 2(bl-b2+... - 'bE:_J__) *Byn- Pagt 2 (bp_ﬁ—...-bn)+ LI
2 2 2 B ~
n=-1
K+l
* + +
o o 's -2(bk+l U Y il ]
k=0 k¥l “

and all terms but the first are zero, since the b's are
solutions to the system (3).

s ==b - - sk -
Thus (1) ==Pg + 2 (b=~ b *... bai bn_ti e ) + 0
2 2

n+l

i

L + 4 (b -b +...-b et ) by symmetry

2
n+3
= B ]
—l++l+(2cos( )rr-2cos( )n+...-2§osn+l >
: 7 2n ; n-1)n )
= - —— - + =
L 8<cos = cos == eeo= COS 2(a+L)
nel
2 1kx
3 ¥
=U-8Re ) (-1 W
k=1

nn

Al €S Bln+1)
2 b
2cos S(a

1]

nxn
cos
B on+2 - x
= 1l o = 4 tan D
an+2
hg
e ! y 3 31; [ 2 Secue"')q} ase 8 ‘ba-nze ]
8(n+1) ‘ -
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where 0 <0 < =« 4
an+2

Since n cen be as smell as 1, O may be as large as n/k.

Thus 2 seche +4 seceﬁ tan 2@ <16

Therefore (1) < 2“[1+“2]
reiore = "7wl —6—

61

= g o

If n = 4m+3, the above analysis yields the same result, (1)
6n
- n¥l °
Now let n be even, n = 2u. Then we can certainly approximate

to within (%:Tﬁ'—l__ = %nﬁ = énlr.

6xn

Therefore (1) < =, and the proof is complete.
]
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