ABSTRACT
W Completeness Theorems fr Special Classes of Trigonometric Polynomials
by
% Robert P, Feinerman

In this paper, we consider the completeness of some special
classes of trigonometric polynomials. These classes are special in
| that some conditions are placed on the ratio of the coefficient of
sin nx to the coefficient of cos nx. To compensate for this

restriction, we have to shorten the interval of completeness and

restrict the space of functions in which we have completeness,
The main theorems proven in this paper are:
1) Let A be a non-zero real number and let p > 1. Then

‘ 0B — : 0]
{cos nx + X\ sin nx}n=l is complete in L [0,m] iff p < g

where B - g_a'.z‘_c_.r—i_tﬂ-.}. . m“'_

2) Let A be a real number. Then {cos nx + A sin nx}:wo is

complete in C[O,m].

3) {cos nx + A sin nx}iz is complete in Le[O,ﬂ] it llnl > U

it
L) There exist {A_} such that |A\_| <1 and {cos nx + A_ sin nx}
n n n n=1
is incomplete in L2[O;n].
' )[ 4 % 3 }“’ . sa . <
5 cos nx + A_ sin nx} _o is complete in glo,nl 42 lhn] s
0 > 3 m
6) There exist {ln} such that |Kn| 1 and {cos nx + A sin nx}n=0

is incomplete in C[0,m].
7) Tet P(z) and Q(z) be algebraic polynomials and let PE(z)
be the even part of P(z) and Po(z) the odd part. Then, if
2 4 ; ®
PE(z)QE(z) Po(z)Qo(z) £ 0, {P(n)cos nx + Q(n) sin nx]n=0 is

complete in C[-a,a] for all a <,




8) 1Ir PE(Z)Q,E(Z) - Po(z)Q,o(z) = 0, then
{P(n)cos nx + Q(n)sin nx}z;o is incamplete in Li[-e,e] for any € > o.

9) For eachn =0, 1, 2,... let fn(x) be either e™™* or

=-inx ® ; 3 T T
e . Then {fn(x)}n=0 is complete in C[-3, §]'

10) {el(“l)nnx]:;o is incomplete in Lg[-g -c, g + ¢] for any

e > 0,
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I - INTRODUCTION AND HBACKGROUND

The classic theorem in trigonometric polynomial approximation is
that of Weierstrass: Any continuous function with period 2m can be
uniformly approximated by trigonometric polynomials. Since both the
trigonometric polynomials and the functions have period 2m, all that
we really have to consider is approximation on [-m,m]. In this paper,
we will restrict the interval to have length less than 2m and we will
see whether, by not demanding approximation on as large an interval, we
can demand some restriction on the form of the trigonometric polynomials.
As an example, in chapter two, we consider the interval [0,m] and restrict
the polynomials to be linear combinations of {eos n x + )\ sin ni}:zo where
A is a fixed real number. As might be expected, Fourier analysis plays
a big role in some of the proofs. What is surprising, is the great
amount of complex variables used, especially HP spaces and growth
theorems for entire functions. Some of the other subfields of analysis
used are functional analysis and differential equations.

DEFINITION A set {Vn]::o of vectors in a normed vector space N is said
to be complete in N if any vector X ¢ N can be approximated to any
degree of accuracy by linear combinations of the Vn (where, of course,
accuracy of approximation is measured by the norm of N).

One way to prove completeness is to find an approximating linear
combination for an arbitrary vector X ¢ N. The next theorem, while not
showing how the approximating linear combination vectors can be chosen,
proves the existence of such vectors.

THEOREM 1.1 : A set of vectors [Vn}:=0 in a normed vector space N is

complete N iff the only bounded linear functional L(x) on N for which

L(Vq) =0 mn=20,1,2,... is the identically zero linear functional.




Proof : See [ 1, P.U49].

In this paper, the normed vector spaces we deal with will be
Banach spaces of functions and because of the Riesz Representation
Theorem, the bounded linear functionals have a special form.
NOTATION: 1) By LP[a,b], where 1 < P < o, we mean all measurable
functions f(x) on [a,b] such that

Iblf(x)lp dx < o, If f(x) e LP [a,b] then
a

b
by ”f”P we mean (I |f(x)|P dx)l/P
a

2) By Lm[a,b] we mean all bounded measurable functions
on [a,b]. We, of course, identify functions which are equal almost
everywhere.

3) By C[a,b] we mean all continuous functions on [a,b].

If f(x) ¢ C [a,b] then by [/ f|| we mean max 5f(x)|.
xeLa,b

It is well known [ 5,P.6], that LP[a.h], 1 SP<wand CLa,b]
are Banach spaces with the described norms.

The Riesz Representation Theorem provides a convenient means of
characterizing the bounded linear functionals on LP[a,b]. 1 SP <=
and on C[a,b].

RIESZ REPRESENTATION THEOREM:

1) L(f) is a bounded linear functional on C[a,b] iff there exists

a finite measure du(x) such that Ibf(x)du(x) = L(f) for all f ¢ C[a,b].
a
(If we are dealing with the space of functions in ¢[-m,m] with period

2m, then du(x) must be periodic also: i.e., if u(x) has a point mass
at -m and nm these masses must be the same.)
2) Let 1 <P <o, Then L(f) is a bounded linear functional on
i

LP[a,b] iff there exists a function g(x) e L q[a,b] where % + ke 1



such that L(f) = jbf(x)g(x) dx for all £ ¢ L. [a,b]
a

3) L(f) is a bounded linear functional on‘Ll[a,b] iff there

exists a function g(x) e L [a,b] such that L(f)=fbf(x)g(x) dx for
a

all T ¢ Ll[a,b].

Proof: See [5]
b b

NOTATION: If j fr (x)eg(x)dx = 0 (or j flx)du(x) = 0) u = 0,1;85404
a a

then we say that g(x) (or du(x) ) is orthogonal to {Ql}m;=o on [a,b].

It is written as g ;, T (du , fn) R 5 e

Weierstrass' theorem can now be stated in two equivalent forms.

l) {ei n x}

o or {cos nx, sin nx]: - o is complete among the

n =-o

periodic functions in ¢ [-w,m].

2) 1f jf“ ™ au(x) =0 n=0, +£1, +2,

1

or fﬂ cos nx du(x) = fﬁ gin nx du(x) = 0 for n = 0,1,2,... and
-1

=TT

i

du(x) is a periodic measure then du(x) = O.

One of the most useful tools in analysis is the following [ 5,P.3].

Holder's Inequality: If f e B [a,b] & g ¢ LY [a,b] where % + % =1

then f g ¢ Ll [a,b] and 1 1

Plee) | ax < (Plex [P an® (Pla(x)]? ax)?

Letting g(x) = 1 we get the well-known result that if f e i [a,b] Pl> 1

then £ ¢ L T8 [a.b]; 1 < B, % Py

In the completeness theory, there is a certain "hierarchy" among
the various LP [(a,b] spaces and C [a,b].

w©
THEOREM 1.2: Let [;5(§l}n=0 be a sequence of continuous functions on [a,b].

Then

1)y I {fh&gl]:go is complete in C[a,b], it is complete in

IPla,b] 1sP<aw




2) If jfnggl]zzo is complete in 1 (a8} X& P, <=, it is

complete in 1 2 [a,b] 1P, SP,
® S , P
3). 1t ¢ L}El]n=0 is incomplete in L 1 a,b] 12P <=
it is incomplete in rF2 [a,b] P, SP, <= andC [a,b].

® i & . P
Proof: 1) Assume [fh(x)}n=0 is incomplete in I” [a,b] for some P such
that 1 < P < ». Then there exists a g(x) such that

jb fo(x)g(x)dx = 0 oom O liBeiie
a

where g(x) ¢ I [a,b] if P =1 and g(x) ¢ 1Y [a,b]

where i + l = F 1If L< P& &,
£ g

In either case let du(x) = g(x) dx.

I

Then du(x) is a finite measure on [a,b] and

Ibfn(x) du(x) = 0 n w0, 8.4,
a

Since {fn(x)]::O is complete in C [a,b], du(x) = 0.
Hence g(x) = 0 a.e. and we have completeness in LP[a,b] I £ F<in,
2) Assume [fn(x)}:;o is incomplete in 12 [a,b] for some P,

such that 1 = P2 < Pl' Then there exists a g(x) such that

[° £ (x)e(x)ax

a

]
o

no20,1l2sqs

- q
and g(x) e L [a,b] if Py & 1 or g(x) e L £ [a,b]

where & + P = 1 if P> U
P2 a4 2
In either case g(x) e LI [a,b] where & ooy &y
09

B
Since {fn(x)]:=0 is complete in L . [a,b] and

since fb fo(x)g(x) dx =0 n =0,1,2,...
a

P

g(x) =0, a.e,. Hence we have completeness in L E[a,b] for 1 < P2 < Pl



3) This is just the converse of parts 1) and 2).

We are now ready to prove some of the completeness theorems which
are gimilar to or based on the Weierstrass theorem.

THEOREM 1.3: f{e X}

e o lorfcos n x, sinn x}:=o) is complete in

LPAL-gln] 1l <P<o,

Proof: This is Jjust a simple corollary to the theorem that the Cesaro
average of the Fourier series of an LP [-m,m] function, 1 <P < =

converges to the function in the i [-m,m] norm, (see [5, P.17]).

THEOREM 1.hk: f{e® " x}:“_w is complete in € [-a,a] if 0 S a < m.
Proof': Take any f(x) ¢ C [-a,a]. Extend f(x) to [-m,m] such

that f(x) is continuous on [-m,m] and f(-m) = f(m). This can
obviously be done. Then, by the Weierstrass theorem, f(x) can be
uniformly approximated by trigonometric polynomials on [-m,m] and
hence surely on [-a,a].

is complete in C[0,m](and hence in

THEOREM 1.5: {cos n x]::O

Flon] 1sP<w).

Proof: Let f(x) be continuous on [0,m]. Extend f(x) evenly to

[-m,0]. i.e., f(-x) = £f(x). Then f(x) is periodic (since f(-m)=f(m) )
and continuous. By the Weierstrass theorem, given € > 0, there exists
a linear combination of cosines and sines within e of f(x) on [-m,m].
i.e., there exists C(x) and S(x) such that |F(x) - C(x) -8(x)| < e

for x ¢ [-m,m] where C(x) =%, ®n €os n x and S(x) =2, b, sinnx

For x ¢ [-m,0] we can write -x where x ¢ [0,m]. Therefore

|£(-x) - ¢(-x) - s(-x)| < e for x ¢ [0,m]. However, since f(x) and C(x)
are even while S(x) is odd we have that |f(x) - C(x) + s(x)| < e

for x ¢ [0,m]. Combining this with |f(x) - ¢(x) - S(x)| < e

for x ¢ [0,n] gives us that |S(x)| < e¢ for x ¢ [0,m]. Hence, when



approximating f(x), we can forget about S(x) and get an arbitrarily

small error.
1ogey [F(x) - clx)] € 2¢ x 2. [0oyml.

Since f(x) and ¢ were arbitrary we have completeness.

© . N .
THEOREM 1.6: {cos n x}n=l is incomplete in L'[0,m] (and hence in

i [0,m], 1 £ P < ® and in C[o,m])

Proof: To prove incompleteness in Ll[O,n] it suffices to find a

non-trivial function f(x) e 1" [0,m] such that fg cos n x f(x) dx = 0

n=1,2,... Let f(x) = 1 and we are done.
4 © . ; P ;
THEOREM 1.7: {sin n x]n=l is 1) complete in L [0,m] and 2) incomplete
in c[0,m]. ‘
Proof: 2) The incompleteness in C[0,m] comes from the fact that, sin nx i

vanishes at x = 0 and x = M and any linear combination of them does also. !
Therefore we cannot approximate any function which does not vanish at O {
and T.

1) In approximating a function in ol [0,m] the value of the
function at any point does not matter and the above proof does not go
through. By the hierarchy theorem it will suffice to prove complete-

z 15 " ® Fo b
ness in I’ [o,mM] 1 < P < », Assume {sin n x]n=l is incomplete in '
L [0,m] for some P. Then, there exists a function f(x) ¢ L% [0,m]
Whisie = + < = ) &k thak fﬂ f(x) sinnxde=0 n=1,2,3:¢

P g o
Extend f(x) to (-m,0) by defining it to be odd. i.e., f(-x) = -f(x).

Then £(x) ¢ LY [-m,m] and

. L . .
ITﬂ f{x) sinn x dx = 2 fo f{z) sinnaxdx =0 n=01,8,.::
As f(x) is an odd function, jﬁn f(x) cosnxdx =0 n=0,1,2,...
Hence all the Fourier coefficients of f(x) as well as its Cesaro

average are identically zero. As the Cesaro average of f(x) converges

to f(x) in the LY[-m,m] nornm, ffﬂ lf(x)lq dx = 0. Therefore f(x)= 0 a.e.




By comparing Theorem 1.5 with Theorem 1.6, we see that the

addition of the constant can change an Ll[O,n] incomplete sequence

into a C[0,m] complete sequence. One might be tempted to say that
. . ®© N P

since {sin n x]n=l is L” [0,m] complete for 1 < P < ®» , then

fde wip n x]z=l is ¢[0,m] complete. However, this is not the case.

is incomplete in Cc[O,m].

THEOREM 1.8: {1, sin n x]:

=1
Proof: The constant function and all the sines, individually, have
the same value at x = 0 and x = m. Hence any linear combination of

them would have the same property and we could not approximate any
function f(x) such that f(m) # £(0).

In Theorem 1.5 we saw that {cos n x]§=o is complete in ¢[0,m].
The next theorem will prove that if the interval is shifted ever so
slightly, we end up with an Ll[—e,e] incomplete (and certainly C[-e,e]
incomplete) sequence.

THEOREM1.9: Let ¢ > 0. Then {cos n x}z=0 is incomplete in Ll[-e,e].

Proof: Let f(x) be any odd function in C[-e,e]. Then f(x) is
certainly in L_ [-e,e]. As f(x) is odd and cos n x is even,
jfe cos nx f(x) d&x =0 n = 0,1,2,...
NOTE: To prove {sin n x]z=1 is incomplete in Ll[—e,e] we could
take f(x) to be even. If we wanted to prove that {1, sin n x}:=l is
L'[-e,e] incomplete we would take any even continuous f(x) with the
additional property that IE f(x) ax = 0.

Thus, we see that the completeness of {cos n x}:=0 is not merely
dependent upon the length of the interval, but also on its location.
However, with "pure" exponentials, this is not the case, as seeh in

the following theorem.



8

oo

THEOREM 1.10: If {e' &g ] is complete in C[a,b] (or LP[a,b]) it's

n=0
complete in C[a-L, b-L] (or LP[a-L, b-L]) for any real L.
Proof': Aseume [P7F othnX du(x) =0 n=0,1,25...

a=1L
Make a change variable t = x + L and let d&ﬂx) = du(x - L).

I A W ) =i AL b 4 Apt
Then,0 = I&{,e n du(t = L) = e n Ia e dul(t)
As e ! tiyll # 0, we have that

A ~ _
ja e n dul(t) =% BRSO

By the completeness of {e l“x}::o in c[a,b] dul(x) = 0 and hence du(x)=0.
(For LP[a,b] we have instead of du,f(x)dx).
The next theorem, while proving an important result, also demon-

strates a frequently used and valuable technique.

THEOREM 1.11: f{e' " X]Z=O is complete in c[a,b] if b-a < 2m |
Proof: By the previous theorem, it suffices to prove completeness

on [-L,L] where 2L = b-a (and hence L < m).

Assume there exists du such that fL g =" aulx) = 0, n= 0,1,8,.44

Let F(z) = IL g X dp(x) i

F(z) is an entire function and vanishes at all the non-negative integers.

|F(z)]| = IL Iei ° x] lau(x)| s v eLlZl where V is the total variation

-

of du on [-L,L].
We will now use the following theorem. [©, P.186 ]

THEOREM: If F(z) is entire, vanishes at all the non-negative integers
and satisfies F(z) = 0 e(n E G)lzlfor some € > 0, then F(z) = 0.
igx

Therefore IL e
-L

du(x) = 0.

inx

By setting z =n we get that dp e’ o O - R 2l

n X}'-"’

i
Since {e oL

» 18 complete in C[-L,L], du(x) = 0.




II. Completeness of {cos n x + A sin n x} on [0,m].

In this chapter we discuss the completeness of the sequence of
functions fn(x) = cos nx + A sin nx where A is a real number # 0. We
consider the two sequences [fn(x)} n=1,2,,.. and {fn(x)] 11=0,1;s ¢4
and prove results concerning their completeness in various LP[O,ﬁ]
spaces and in C[O,m].

In our discussion we can always exclude the case of A=0 since
we've already proven that {cos nx} n=1,2,... is incomplete in Ll[O,n]
(and hence in LP[O,W], P> 1) and we've proven that {cos nx} n=0,1,2...
is complete in c[0,m].

In the discussion we use some theorems about HP spaces. For
completeness we define HP spaces and state the theorems used.

NOTATION: 1) Let F(z) be defined in the open unit disc. Then by Fr(B)
ie)

we mean F(re 0<r<1

2) By Pr(G) we mean the Poisson kerne]haﬁirlnleine =
2 ==
l-r

1-2 r cos O + r2

3) Let £(6) and g(®) be in Ll[-rr,rr]. Then by (£*g)(8)
we mean the convolution of f and g; i.e., (f*g)(8)= %; jﬂ f(6-t)g(t)dt.
By use of Fubini's theorem, we get the well-known result that
f*g € Ll[-ﬂ,ﬂ] if f and g are,
DEFINITION: A function F(z), defined for z in the open unit disc,
is said to be in the class HP, P> 0, if F(z) is analytic and

M = .rfﬂ|Fr(9)|Pd9 is bounded for all r such that O < r < 1.

THEOREM 2.1 Let F(z) be in HP where P2 1. Then, for almost all 6,

the radial limit, lim F (8), exists. Moreover, if lim gr(e) is called T(8),

¥(0) e 1L [-m,m], and F(8) = (F*P) (o)

Proof: See [5,PP. 38 and 51]




THEOREM 2.2 Let Hz) be in HP where P 2 1. Then

"R "%ae=0 n=1,23,
=TT

Proof': See [5, PP. 38 and 51]

THEOREM 2.3 Let F(z) be in H where P = 1. Then F(8) is neither

real nor pure imaginary a.e. unless F(z) is constant.

Proof': By Theorem 2.1 F(rele) = (ﬁ*Pr)(e). Since Pr(e) is real,

F(rele) is real or pure imaginary as F(8) is. As F(rele) is analytic,
. i : . i0, |

either case is clearly impossible unless F(re ) is constant.

THEOREM 2.4 Let £(8) and g(8) be in L'[-m,m]. Then the n-th

Fourier coefficient of (fxg)(®) is equal to the product of the n-th

Fourier coefficient of f(6) and the n-th Fourier coefficient of g(8).

Proof': See [5, P.21].

THEOREM 2.5  Let £(8) be in L [-m,n] where P = 1. Then

lim o (f*Pr)(e) = f(8) a.e. in [-m,m].

Proof: See [5, P.38]

THEOREM 2.6  Let £(8) be in L.[-m,m] where P 2 1. Then there exists

a number M such that Hf*PrH <M for r in [0,1) where || || is the LP[-n,n]

norm.

Proof': See [5, P.32]

THEOREM 2.7 ~ Let F(2) be in i where P > 1. Then F(z) is in H'.

Proof': Since F(z) is in el F(z) is analytic. To prove F(z) is

in Hl we must show that fn IFr(9)|de is bounded for all r in [0,1)..
=TT

f 3 :
By Holder's inequality 1 Pl

I IF(8)]as < Qf”lFr(e)lP a6)F (2n)  which is bounded for all
-1 =TT

P
r in [0,1] since F(z) ¢ H .



ILEMMA 1 - Let P be > 1 and let A be real and non-zero.

¥
Then fcos n x + A sin n x}: is incomplete in L P-I [0,n] if and

=1

only if there exists a non-trivial function F(z) in HP such that the

Taylor series of F(z) about O has real coefficients and

Re 7(6) = - & In F(6) a.e. on (0,m).

Proof': a) Assume there exists such an F(z) in 2, P> 1.
Let F(z) = U(z) + i v(z) and let F(8) = U(8) + i V(9)vhere,
of course,ﬁ(e) = 1lim, Ur(e) a.e. and V(9) = im vr(e) a.e.
Using Theorem 2.2 we get that
2.1) [T F(6)(cos n O +isinnd)de=0 u=1,2,3,...
Since F(z)-gas real coefficients, F(z) = F(z), or

u.(-8) +1iv(-8) =v/(e)-1iv, (e)
Hence Ur is an even function of 6 and Vr is odd. Taking limits as
r » 1 gives us that G(B) = U(-6) and V(8) = -G(—B). a.e. in (-m,m).
Expressing 2.1) in terms of U and V, we get

2.2) [T [U(8) cos n 6 - ¥(6) sinn 6] a e+ i 7 [i(6) sinn 6 +
-7 =T

+ G(Q) cosnbB]de=0 n=1,2,3,... By the evenness
of U(6) and the oddness of V(8), 2.2) becomes
2.3) " [U(8) cos n 8 - V(6) sinn 6] d 6=0 n=1,2,....
But now, since we are given that V(8) = - A U(8) a.e. on (0,n), 2.3)
becomes
2.4) j: U(B)(cos n 6+ A sinn @) a6 =0 n=1,2,3,...
Hence, once we've proven that G(e) is a non-trivial function in
LP[O,ﬁ], we will have the result that {cos n 8 + A sin n 9]z=l is
incomplete in LY[0,n], % + é =lorgqse 5§i. As F(z) is in H',
F(0) is in LF[-m,m] by theorem 2.1.

Since j" |ue)|Fa o < j"lu(e) +1v(e)|%a o = j"|F(e d 8, we
get that U(6)is in L [-n 7] and certainly in LP[O n]. Thus all we



have to prove is that U(6) # 0 on (0,m). If it were, then since

G(8) = U(-6) a.e. we would have that F() is pure imaginary a.e.
on (-m,m) which by Theorem 2.3 implies that F(z) = C where C is
pure imaginary or zero. As F(z) has real coefficients we get that
F(z) = O which contradicts the hypothesis that F(z) is non-trivial.
p b) Assume {cos n 6 + A sin n 9}z=1 is incomplete in
LP-l[O,n] where P > 1: i.e., there exists a non-trivial function (@)
such that £(6) is in LF[0,n] and j:f‘(e)(cos n6 + A sin no)de = 0O
n=1,2,3,... Since Re f(8) has these two properties, we can assume
that f(8)is real. Now define f(8) to be 0 on [-m,0). Then f(8) is
in LP[—n,n] and

2.5) [7£(8)(cos u6 + A sin n8)ds = 0 n=1,2,3,...

As P > l,fzg)is integrable and has a corresponding Fourier series :
i.e., £(0) ~h§O &, €os n6 + b sin nf. From equation 2.5) a, + Ab_=0.
n=12,... Therefore

@
2.6) f(e)nhgo a_ (cos no - % sin no)

We will now define a function F(z) =nigah z" and prove that this function

has all the properties of our required function: i.e., F(z) is in HP,

.3
A

trivial. Since f(8) is non-trivial, at least one of the a_  is not

has real coefficients, Re %(8) = Im F(6) a.e. on (0,m) and is non-
zero, and therefore F(z) is non-trivial. As £(0) is real all the a_
are real and hence F(z) has real coefficients. The a > as Fourier
coefficients, are bounded. Therefore ngo an zn converges absolutely
for |z| < 1 and hence F(z) is defined for all z in the open unit disc.

We now consider the function (f*Pr)(e) We can write the Fourier series

of £(9) asng°° c, s BB where, by equation 2.6)



a
-n 1
-, <0
- (1 +5% "

= In in®g
As Pr(e) = G ¥ i , by Theorem 2.4
@ [n] ineg
(%P )(8) ~ 2 ¢ r''le
Writing the Fourier series of (f*Pr)(B) in terms of sines and cosines

gives us that

L . . i
(£xp_)(0) ~h§O a r" (cos n 9 - T §in n 8) which is = Re(1 + X)Fr(e)

By the uniqueness of Fourier series and continuity in 6 of both func-
tions for all r, 0 s r < 1, we get
(£%P)(8) = Re (1 + %) F(8) for all @ and all r, 0 < r < 1.
By Theorem 2.5 Lim (f*Pr)(e) = f(8) a.e.
. i " .
Therefore lim Re(l + X) F.(0) = £(8) a.e. or, if Fr(e) =U_(8) + iv_(e)

we have that

2.7) Aimy (U (8) - £V (0)) = £(0) a.e.

Since F(z) has real coefficients, F(re’ 8) = F(re™™ 9) or
U, (8) - in(e) = Ur(—e) + in(-B). Therefore, Ur(e) = Ur(-e)
and V_(6) = ¥ L=a).
Equation 2,7) can therefore be written as
: i3
2.8) Ldm (U}(S) i Vr(e)) = f(-0)a.e.
Adding equations 2.7) and 2.8), we get
2.9) 2 Lim, Ur(e) = £(8) + £(-98) a.e.
Subtracting equation 2.7) from equation 2.8),we get

2.10) LAdm vo(8) = £(-8)-£(6)

>Iro

Since £(8) = O for -m < § < 0, we have



) _ £(8)
Lim Ur(e) = a.e. on (0,m) and

lig v (8) = - % £(8) a.e. on (0,m).

Thus F(z) has the right boundary values.

We just have to check that F(z) is in i,

By Theorem 2.6 Hf*Pr” =M for O < r 1 where the norm is the

LP[-n,n] norm.

Therefore, since (f*Pr)(e) = Ur(e)- % Vr(8)=Ur(-6) + % vr(-e)
we have that ([ |Ur(e)--% vr(e)lpde)l/P :(j”]ur@@)+-% vr@e)lPde)Ps M
-TT i1 |

. 1 1
L&er—valsM amﬂmr+XvA

<M

By the triangle inequality, }UrH sM and v || s [A] M.
Hence [P/l = Jlu, + 5 v[l < Jlull + v Il <Mz + |A])

Therefore F(z) is in i, |

LEMMA 2:  Let P be a real number and let F(z) = (%ég) where 7(0) is

-~ . A

defined as 1. Then F(z) ¢ HY, q > 0 iff q |P] <1

Proof: Without loss o{ ?enerality we can assume P > 0 (otherwise
P

we are considering (%ig) and the proofs are similar).
Assume q¢ P < 1. F(z) is obviously analytic for |z} < 1.

T 1L+ re 6 Pa
To show that F(z) ¢ H' we have to show that M_ = [ l——————-j—g— d e

r o l-re

is bounded for all r ¢ [0,1). As F(z) is continuous on the compact

get S = {z : |z| =3}, M, is obviously bounded for O < r s L. We,

therefore, just have to consider M, for r ¢ (3,1)

Pq pm 1
M <2 < de
r Iﬂ | I = » ¢ B]Pq
Pq i
=2 d o
J: (1 + r2 - 2 r cos 9)Pq/2
s In/z d 9 5 oPe fn d e

o (1 + ¥ = @ cos G)PQ75 n/2 (1 + r°-2r cos B)pq/2

Pqg + 1 pm/2 d 8 Pq m




Pq+l Pg/2 __1 1 (mfe)Te P g

=2 +

2Pq/§ qu/2 1-Pq (1 + r2)Pq/2
< »2Pa nl-Pq/g + oFd
1-Pq

2
In the inequality of line 2.11) we used (1 + r2 - 2r cos 6) z-gg—z

for |8| = g and r < 1 which is proven in the appendix. Hence,

'M_, is bounded for r ¢ (3, 1) and therefore for r ¢ [0,1).

Now assume F(z) ¢ HY where q P 2 1, i.e., there exists M such that
Iﬁ ll + I e1

IPq <M for all r ¢ [0,1).
l1-r e

-T7

Let G(z) = (%{% . Since F(z) ¢ HY, G(z) ¢ HPq As Pg 2 1, by

i
Theorem 2.1, G(8) e ek [-mr,m] i.e., jﬂ l}igz—g 1Pq Ad0<mw
-7 'l-e
ip Fa Pq
T lte _ T ojcos 6/2 cos 6/2|Pq
But [ l—-—7;-§|de - l a8 ‘ |7 as
- l1-e - lsin g/2 -n/e sin 8/2
ﬂ/g | % ‘Pq g = = since Pq =2 1
-m1/2
In the last inequality we use lcos 9/21 gk for ]8] < n/2
sin §/2 ISI

which is proven in the appendix. Thus F(z) £ " for q P = 1.
In the next lemma, we will use the following theorems.

Study's Theorem: If the function F(z) transforms conformally the

open unit disc |z| < 1 into a convex region, then every circle |z|=r
r €(0,1) is transformed into a convex region by F(z).
Proof': See [7, P.224].

Carlson's Theorem: If C is a closed convex curve, lying in |z| s 1 and

F(z) is analytic in lzl < 1, then

JIF(2)| [az| <3f|r(2)]| |az]

c |z| =

Proof: See [3]



(1+2)° - 1(1-2)°

Let =
= B (142)2 + i(1-2)°

w(z) takes the upper half of the open unit disc schlichtly onto the
open unit disc and takes the boundary into the boundary. As a schlicht
function, it has an inverse function, z(w).
f +W i
Ji (5— + +
” l—w) -1 where ,/i Ef%) Iw=0= i

v/ (l+w /2

z(w) maps the open unit disc conformally onto the upper half of the open

z(w) =

unit disc.

LEMMA 3) Let F(z) be in H'. Then e H

Proof: The function is obviously analytic (since /1 - w” can be

defined to be analytic in open unit disc). We must prove that

IJ—Z—@D l |d w| is bounded for all r ¢ [0,1).

v 1-w

Let G, be the image of |w| = r under z(w), r ¢ [0,1)

k le

Since z(w) takes the open unit disc onto a convex domain, Gr is convex

by Study's theorem. By transforming the domain of integration from

|w| = r to z on G we get that

M ‘fiéﬁﬂl_ ‘ la w] =4 £ IF(Z) 5 5 | |az|
l -w i (14z)° + i(1l-z)

By the continuity of z(w) and the compactness of {w: |w| = r} there

exists a disc of radius p which completely contains Gr and such that

1< p<1. Letting g(z) = F(z g) 5~ » we get that
(L+2zp)" + i(1-2zp)
M_=1U4p [ |e(g)ag| where r is G_ multiplied by .
r - p & i p
)
%r is still convex and z on gﬁ implies |z] < 1

g(z) is analytic in |z| < 1 and, by Carlson's theorem,



M, = b pG{ le(g)ag| =< b pl"gl 2 le(g)| |ag]
=kop F(€ p) |ag|
|£1 i l(1+§p)2+i(1-§p)2|
- F(z) "
|(l+z +i(1-z)2|Idl
< 16j' |F(z)| |az| (since |(1 + 2)® + i (1 - 2)° | 24 for 3 < |2z| <1

which is proven in the appendix).

Thus M, < 16 I |F(z)| |dz| which is bounded since F(z) e ut
z

=P

LEMMA 4) Let F(z) be in Hl and have real coefficients. Let y be such

that |y|< m/2 and e™* Y F(8)is real a.c. for 0 < 0 <m. Then

F(z) = C (%;%)QY/ﬂ where C is real.
Proof': Let z(w) be as before, let 8, = {z] ]z] =1, im 2> 0}
and let S, {z] |z| = im z < 0}. z(w) maps 8, onto itself and

8, onto the real axis. Therefore e * Y P(z(w)) is real a.e. on 5,

and F(z(w)) is real a.e. on 8,, since F(z) has real coefficients

Let g(w) = (l+w)Y/n' Then
-y/2 w S
arg g(w) = { :;2 52 5!
Therefore e - Y/2 g(w) F(z(w)) is real a.e. on |w| =

However e‘i Y/ g (LU) F(z(u))) & e'l Y/a (l_w)Y/TT'l' /2

( +w>%“”/ " B(a(u))

A= o?

. B i _
Since |y| <m/2 (1 - w)Y/ﬂ T2 ()2 L

is continuous for |w| % .1

and hence its absolute value is bounded there. Combining this with

F(z(w) being in H gives us that e-llv/2 g(w) F(z(w)) is in He.
1-w

we have shown it to be real a.e. on the boundary, by Theorem 2.3

Since




e v/2 g(w) F(z(w)) = C where C is real.

ie. P(z(w) = ¢ &L ¥/2 (ifﬁ)

Setting w = w(z) which was defined before, gives us

Flz) = ¢ (5=

l+z

THEOREM 2.8 Let A be a non-zero real number and let P > 1. Then

[==]

{cos n x + A sin n x} is complete in LP[O,ﬁ],

n=1
. i 2 arc tan A
iff P = ———T—T where p = ————————
—_— 1-|B| —— ™
Proof': a) Assume {cos n x + A sin n x}:=l is incomplete in

P
LP[O,H]. By lemma 1, there exists a non-trivial F(z) ¢ H P-1 with

real coefficients and such that Re F(6) = - % Im F(8) a.e. for 0 < @ <.

~Sare e F(9) is real a.e. for 0 < § <m. Since - 1,

Therefore e P-1

F(z) e H by Theorem 2.7. Observing that F(z) now satisfies the

hypothesis of lemma L4 with A arc tan A, gives us that

By lemma 1, it will suffice to show that there exists a non-trivial
B

F(z) e HE-1

hﬂ 2 arc tan A lm P i

F(z) = ¢ (5 m =C ( Since F(z) ¢ H T-1, by lemma 2 i
|

we get that a
|

—EL-|B] < 1 or that P > 1 Therefore P < i implies 1

P-1 1-[B| - 1-[B] i
completeness. ‘
b) Now take P > l} 3T and we'll prove incompleteness. 1

J

with real coefficients and such that Re F(8)= - % Im F(8)

a.e. on (0,m).
)B

Let F(z) = and such that F(0) =

(l+z
F(z) is obviously analytic for |z| < 1 and F(z) has real coefficients

since, by continuity, it's real on the real axis. Take any 6, 0 < 6 < .




)

i y
(E:S*—)B = (-i tan g)ﬁ = efﬂgl_ﬁ (tan g)B

By continuity, ligp Fr(e) TS
1+e

]

[cos (arctan A) - i sin (arctan A)] (tan

1-A1 6y B
(v&+x2 ) (tan 3)

Therefore Re F(8) = - % Im F(8) on (0,m)
P

848
3

By lemma 2, to prove that F(z) ¢ H P—l, it is only necessary to prove

P|B[ N p L " " .
< .d, > .
P-1 l. However, this is equivalent to P TTT§| which is given

Hence, we have incompleteness in LP [o,m] for P > E%TEI.

IEMMA 5) Let f(x) be continuous on [0,7] and let ¢ > O be given.

Then there exists a polygonal function L(x), such that |f(x)-L(x)] < ¢

for all x ¢ [0,m]

Proof: Since f(x) is continuous on a compact set, it is uniformly
continuous there. Let § correspond to g ice. |f(x)-f(y) < % for

X, ¥y ¢ [0,n] and |x - y|< 6. As any smaller § would also work we
may assume § = % for some integer n.

Let X, =K6 K =0,1,2,...,n.

For X ¢ fo, xK&l] define L(x) as

P, )xmx ], £(x) [xp,q-x]

) el T %

i.e. (x,L(x) ) is on the line joining (xK,f(xK)) and (xK+l,f(xK+l))

L(x)

Since L(xK) = f(xK) and L(xK+l) = f(xK+l), L(x) is continuous and
since it is piecewise linear, it is a polygonal function. Let x be
any point in [x., x ]

|£(x) = L(x)| = [£(x) - £(x )| + [f(x) - L(x)| + [L(x) - L(x)|

< +0 + 5 . ¢

nlm

where IL(xK) - L(x)| < § since by the way L(x) was defined

E

..—-'1




|L(x) = L] s |L0x) - Llx,,)]

€

= f0g) -t <3

H T - L <
ence . gufo,n] | £(x) (x)] < e

THEOREM 2.9 {cos n x + A sinn x}:=o where A is real, iscomplete in

CIOZH].

Proof': If A = 0 it has been proven in the introduction [Theorem 1.5].

ITAAO seta-= ‘%.

By Theorem 2.8 there exists a P> 1 such that

: ® 5 . P .
{cos n x +osin n x]n=l is complete in L [0,m]. Let f(x) be any continu-

ous function and let ¢ > O be given. By lemma 5, there exists a poly-

gonal function L(x) such that |[f(x) - L(x)| < ¢ for all x ¢ [0,m].

L'(x) exists except at a finite number of points and as a bounded step

function, L'(x) ¢ F [0,m]. By the completeness of {cos n x + @ sin n x];=

in LP[O,HJ we have

N
v 1 ; P P
Io |L*(x) ~E1 8 (cos nx+asinnx)| dx<e

for some [an] nw= 1,2,...,N
Therefore,

N
2.12) |jz [L'(t) - 3, a, (cos n t + & sin n t)] dt|

N
sg” [L'(t) - 2 a (cos nt+asinnt| dt
1

s(f“ |L'(t) -ngl a (cosnt+asinnt [P)ﬁ(jndx)
(o] O

< g T.

Evaluating the integral in line 2.12) we get

K2 N
2.13) |z(x) - n(0) - &y _E (sinn x - @ cos n x) “ 2

o a

P-1

P

n

< e



a a

_ 1 n S
Let b = L(0) T %1 n and B, = ~

Therefore, line 2.13 becomes

2.14) |o(x) - Lo Py (cos mx + A sinn x| <em

where the inequality holds for all x ¢ [0,m].
Therefore,

N
| £(x) “ 8o By (cos n x + A sin n x)|

< |£(x) - L(x)| + |n(x) 'ngo b (cos n x + A sin n x)|

<eg+em=c¢ (1+m)

Hence, {cos n x + A sin n x]:=o is complete in ¢ [0,m].

COROLLARY : ILet A be a non-zero real number and let P > 1.

there does not exist a non-trivial function F(z) e H' such that

F(z) has real coefficients, F(0) = O and Re F(§) =

-

a.e. on (0,m).

Proof': Assume for some non-zero real A and some P > 1 there exists

such a function F(z) ¢ B,

Let U(8) = Re F(8).

Then, as proven in lemma 1, U(8) is a non-trivial even function in

LP[-n,n] such that

Iﬂ U(8)(cos n 6 + A sinn 6)de = 0 g (.
o

Since F(z) ¢ HP, P > 1, by Theorem 2.1
2.15) P(rel®) = (F*2_) (8)
Setting r = 0 in equation 2.15, gives us that

0 = F(0) = (F*p_) (8) = 5 |7 F (0)ao

2.16) Therefore [ U(8)de = 0
=TT

However, since G(G) = ﬁ(-e), equation 2.16 becomes

T~
jo U(e)ae = 0

e



Hence, U(6) is a non-trivial function in LP[O,H] such that

1T~
I U(8)(cos n 8 + A sinn 8) @8 =0 n= 01,2500
o

- A
P-1

i.e, {cosn ®+ A sin n 6};;0 is incamlete in L (o,n].

But in Theorem 2.9 we proved that
{cosn 6+ X sinn 9}:=0 is complete in C[0,m] and, hence

p
certainly in 1LF1 [o0,m].

Therefore, there does not exist such a function F(z) e 0,

Of course, we could have proven this corollary by observing that
1+ ; 3

by Lemma 4, F(z) would have to be of the form C(T:S)B which is

not zero at z = 0 (without letting c be zero).



IIT - Completeness of {cos n x + A_sin n x} on [0,7].

In this chapter we consider the completeness of
[cos nx % Rn sin n x] and [Kn cos nx + sinn x] where the hn
are constants. If | AJ <1 for all n, then the dominant term in
cos n x + Kn sin n x is cos n x and we might expect the results
to be similar to the completeness of {cos n x}. If]hn] > 1 for
all n, then the dominant term is sin n x and we would expect the
results to be similar to the completeness of {sin n x}. 1In
general, this turns our to be true. The corollary to Theorem 3.1
proves that {cos nx + A, sin nx]::l is complete in L2[O,ﬂ] if
lhnl > 1. Theorem 3.2 proves the existence of ln such that lhnl <1
and {cos nx + ln sin nx]zzl is inomplete in Ll[O,n]. Theorem 3.3
proves that {cos nx + Kn sin nx};:O is complete in c[o,ﬂ] i
lknl < 1, Finally, Theorems 3.4 and 3.5 will prove the existence
of \_ such that | | > 1 and {cos nx + A sin nx} _  is incomplete

in c[o,m].

=1

j: f(x) cos nx dx

LEMMA: _Let £(x) be in L°[0,m) and let a_

1 .
and b == jg f(x) sin nx dx. Then

o 1eG ax = 4 lagl® + & 1o ° = & I [°

IQIH

Proof: Let g(x) be defined on [-m,7] by extending f(x) evenly.

Let h(x) be defined on [-m,m] by extending f(x) oddly. Then g(x)

and h(x) are both in L[-m,m].



1 pm 2 om

= Iﬂ g(x) cos n x dx = L Io f(x) cos n x dx = 28, ns0,1,2,.0.,

%j‘" g(x) sinn x dx = 0 T % L
-

s

= I: h(x) cos n x dx = 0 R T 5 1y N T

= h(x) sin n x dx = £ jﬂ f(x) sin n x dx = 2b I T

L. m o n e

Then, by using Parseval's identity [9, P.422] we have
1 2 2 2

™ :[: el ax = b T3 [a,|” +2) |oy|”]

1 pm %4 ® 2

P Iﬂ |h(X)| B hngl lbnl

1 2
However, since = I: |g(x)|? dx = % Ig If(x)l2 dx = % I: [h(x)]2 dx

we have the desired result.

THEOREM 3.1  TLet |\ | <1 form=1,2,... . Then

iln cos n X + sin n X}z=1 is complete in L2[0,n].
Proof': Assume there exists f(x) ¢ Le[O,n] such that

3.1) Iz f(x) (kx1cos nx+sinnx) dx =0 a=1,2,..

Let a and bn be as in the lemma. Then, equation 3.1 becomes

hn a + bn =0 o BECZN - N

2 2 2 2 2 :
s Ia0| +n§l [anl =ngl lbnI =ngl |An %n <ngl |anI W
is impossible unless

B 0] noE QLB

; 3k 2 2 o 2
Since —- I: |£(x)|° ax = & ]aol * B |an| = 0,

we have that f(x) = 0 a.e.

: @ : : 2
Hence {An cos n x + sin n x]n=l is complete in L°[0,m].



25

COROLLARY - Tet |A | >1 wn=1,2,... . Then{cosmx+ A sinn x}:___l

¥y

is complete in LE[O,ﬁ].

To compare with this corollary, we have the following.

THEOREM 3.2 - There exist Ay such that ]A“[ < lfern=1.2;.¢s

< - - 0
and {cos n x + A, sinn x}n=l is incomplete in L%EO,H].
Proof': Let An be defined as

T
f X cos n X dx
Kn':‘ o

TT .
I X sin n x dx
0

Integrating by parts, we get that

(-1)B-1 1o (-

n n nm
-!-l)nn
n
n
Since L:}%—E is never zero, our definition of hn makes sense. Also,
we have
n
d = (=L 2
In | =1 L= & w1
n nr nm
By the way hn was defined,
3.2) Iﬂ x (cos n x + A, sinn x) éx = O O g O

o]
Since f(x) = x is in L [0,m], equation 3.2 tells us that

is incomplete in.Ll[O,ﬂ].

P @
{cos n x + A, sin n X}n=l |

LEMMA : If {- A, cosnx+ sinmn x]:=l is complete in L2[O,n], then

{cos n x + A sinn x}z_o is complete in c[0,m].

Proof: Let f(x) be in C[0,m]. As in lemma 5 of chapter 2, we can
approximate f(x) uniformly by a polygonal function g(x)
3.3) i.e. |g(x) - £f(x) | < e for all x ¢ [0,m].

g'(x), as a step function, is in i [0,m].



Since {- A, cos n x + sin n X}z=1 is 1° [0,m] complete, there exist

a_ such that
n

T, N . 2 2
Io lg'(x) - %1 8y (= A\, €0s n x + sin n x)|“ax < e
N o By BIRRE o w . X n
3'l+) Ig(x) i g(O‘) =, [sl%-'-l a'n ( n = n )+n§l -1:1_:[ |

n

N
X Ll e .
| fo (g'(t) - £, a (-1 cosnt+sinnt)) dtf
N
- B .
= Io lg'(t) "2 2 (- A, cos n t + sinn t) | dt

T o, N .
B Io Ig (t) -ngl a (- ln cos nt+ sinn t)l dt

T : N ' 2.3
s Io le'(t) “oZ1 % (- A, COS m t + sinm t)|“at]2 /m

seTm
a
n -a

N.....— n
Let b =g(o) +X. n and letb = — n=1,...,N
o] n= n T

1
Hence, equation 3.4) becomes

N s
|e(x) ~.Zo Py (cos n x + A, sinn x)| £e¢m.

Combining this with equation 3.3), we get

N
£ (x) ~ Ty Dl (cos n x + A, sinn x)| se (m+1)

Since f(x) was arbitrary, we have that

{cos n x + A, sin X}Z— is complete in c[O0,m].

0

THEOREM 3.3  Let lxnl <1 forn=1,2,... . Then

{cos n x + A, sinn x]:= is complete in ¢[0,m].

0

Proof’: By Theorem 3.1, {- A\, €Os m x + sin n x]:=l is complete

in L2[O,n]. By the lemma,

{cos n x + Kn sin n x}z= is complete in C[O,m].

0
Comparing Theorem 3.2 with Theorem 3.3, we see that just the
addition of the constant term, can change an L2[O,n] incomplete

sequence into a ¢[0,n] complete sequence. One might be tempted to

conjecture that since {cos n x + A, sin n x};=l is La[o,n] complete



is ¢c[0,m] complete if

if |Anl > 1, then {cos n x + A, sinn x]:=

0

|1n[ > 1. This is not the case, as the following theorems demonstrate

b = -?\]4

THEOREM 3.4 - Let A_ be periodic with period 6, let A = -\_,
n —5 1—=2

. m - . .
and A\, = -3. Then {cos n x + A\, sinmn X}n=0 is incomplete in ¢[0,m].

NOTE : In this theorem, as well as in Theorem 3.5, we can choose
ln to satisfy ]Knl 21 a= By
Proof': Let gn(x) =cosnx+ ]} sinnx.

We will prove that we can find non-trivial Cl’ 02, 03 and Ch
such that
3.5) €8, (0) + Ce (3) + cog () + cue(m) =0 n=0,1,...

1*n 2°n‘'3 - 4=n A

Once this is done we will have proven incompleteness since any linear
combination of {gn(x)}:“O will also have this property and hence we
would be unable to approximate a function f(x) such that

c,£(0) + Cf(3) + C3f(-§—ﬂ) + ¢ f(m) £ 0

Since, obviously there are functions f(x) e¢ C[O,m] with this property
we will have proven incompleteness. In finding Cl,Cg,C3 and Ch we

A ; ; n 2
notice that since A has period 6, gn(O), gn(g), gn(g—) and gn(n) all
have period 6. Therefore, equation 3.5) has to be satisfied only for

n=0,1,... 5 and all other values of n follow by periodicity. We

therefore have the following 6 simultaneous equations to be satisfied

non-trivially.

3.6) n=0 C) + Gy + Cg+ € =0

3.7) n=1 C, + Cz(% o f_g) + Cy (-% + M ‘[—g)-cLL =0
3.8) n=2 C, + ca(-é + An—/—g) + 03(-% X5 ‘Lg) +C, =0

3.9) n=3 : C, + C, (-1) + Cy + Ch(-l) = 0



o “k =
3.10) n=u C, + C, (-3 Ah ) + C (-3 + Ay, 2) #C =0
3.11) ne=5 c+c(a-x )+c( Sf--cu=o
By the conditions A; = - hs and A, = - A, equations 3.10) and 3.1l) are
the same as equations 3.8) and 3.7) respectively. If we set g, == C3

and 02 = - Ch then equations 3.6) and 3.9) are satisfied. Hence we

are just left with equations 3.7) and 3.8). After we substitute for

03 and Ch’ these two equations become
3 V3 3 3y -
3-12) Cp (-2 "3 +C (542 73) =0
3 /3 3 V3
3.13) Cp (G+A75) +C (-5 +2,75=0

Equations 3.12) and 3.13) can be solved non-trivially iff

""-?L = 4+ A =
—_0
= + A\ = - = 4+ )\ =

This reduces to the + 3 = 0 which is given. Thus we can solve non-

trivially for Cl, C2, C, and CL}'

3
THEOREM 3.5 - Let A have period 8, let AT = - kl’—ﬁ6 s Rpaudaa®in l3

d let A, + A\.) =2 /2. Then { + A 8 17 is i let
and let A, L_l h3 = . en {cos n x , sinn x} o is incomplete

in _c[0,m].

Proof': As in Theorem 3.4 let gn(x) = cos nx + A sinnx. This time

we wish to find non-trivial Cl, 02, 03, Ch and C5 such that

3.14) ¢, 8,(0) + ¢, g,(}) + Cg()+chg(—g)+c g,(m) =

for A = 0,1, 0.,

Once this is done we will have proven incompleteness since we couldn't
approximate an f(x) such that

¢, £(0) + ¢, f(n)+c f()+chf( )+c £(m) # 0.



m

Since A has period 8, gn(O), gn(E), gn(e), g, (QE) and gn(n) all

have period 8 and we only have to check equation 3.14) for n

o and 15 = - A3

n = 1 coincide as well as the equations for n = 6 and n = 2 and those

Since 17 = - hl’ l6 = = A the equations for n = 7 and

of n=5and n =3, We thus have to satisfy equation 3.14 for

n =0,1,2,3,4, We have the following five simultaneous equations.

3.15) n=0 C, + Oy + 03 +C), + 05 =0

3.16) n=1 Cy+ Gl Fp+ 2y 2 * C3h) * o %2 +2)
+ 05 (-1) =0

3.17) n=2 ¢, * €, (xe) + Cg (-1) + ¢, (-,) + C5 =0

3.18) n=3 Cy + C, (- %2 * ;%) * Cy (- A3) + Cp (%2 + ;%)+
+ Cg (-1 =0

3.19) n =1l Cp = Cp+Cy=0Cy+Cy=0

If we set C; + 03 + 05 = 0 and C, + C) = O then equations 3.15)

and 3.19) are satisfied. After we substitute for Ch and 05, equations

3.16), 3.17) and 3.18 become

3.20) c,(2) + ¢, (V2) + Cy (1 + 2q) =0

3.21) cl(o) + € (2 Az) + c3 (-2) =0

3.22 c,(2) + ¢, (-v/2) + Cy (1 - 13) =0

These equations can be solved non-trivially for Cl’ 02 and C3 iff
2 /2 1+
0 2 Ae -2 =0
O i

2 vE A3

This reduces to A, (xl + A,) + 2/2 = 0 which is given. Hence we can

3)

5 PP

PR ——




solve non-trivially for Cl’c2’03’ch and 05 and have established

incompleteness.

In Theorem 3.3 we saw that if lknl = 1 for n

{cos n x + A, sinn X}Z=O is c[0,m] complete.

delicateness of that theorem we have the following theorem.

THEOREM 3.6 - There exists {A }~_, such that [\ | <1 for n

As a proof of the

; B L : !
and {cos n x + A, Sin n x]n=0 is incomplete in L [0,m].

Proof': Define Kn as

A

_ Iﬂ (3 * - ne)cos n x dx
n (0]

I” (3 % m2) sin n x dx
(o]

Once we have shown that our definition of Rn makes

will have that

fz (3 X" ﬂ2) (cos n x + A, sinn x)x=0 n=0,1,2.

because of the way X\ was defined. Since f(x) = 3 X2 - e e L [0,m],

we will have proven that

a @
fcos nx + 1A sinn x} 0

Integration by parts gives us that

2
- n even
™
R =
& 6mn n odd
w2n2 - 12
i
Thus lk | =<1 for n even.
n i)

For n an odd integer =2 3 consider the function

P(x) = éﬁn—g————w where =2 3
m x - 12
0 < P(3)< 1,1im P(x) =0 and P'(x) < O for x 2 3.
b sl
Hence 0< P(x) <P(3) <1 for x 2 3,

Torefore 0 < A < P(3) < 1 for n an odd integer = 3.

B = LR

is incomplete in I{0,m].




Thus lxn| <lforn=2,3:

THEOREM 3.7 - For each n, let Kn =1 or - 1. Then,

{cos n x + A, sinn x}§=o is complete in c[0,m].

Proof': Assume there exists a finite measure dul(x) on [0,m] such that
fn (cos nx + A_ sinn x) du,(x) =0 0= i0,1Byuss
o n L

3.23) Then (Iﬂ cos n x dul(x) )2 = (fz sin n x dul(x) )2 ne0,1,2,...
o

Let U = g - X. Then

cos nU -2 sinnU n = LK
cos n x + An sinnx= ) sinn U+ A, cos nU n=Lu+1
-cosnU+ X sinnU n-= LKk + 2
- 8innU - Kn cos nU n=L4 + 3
0
Let au(U) = duy (5 - U)
Then, by letting U = g - x, equation 3.23) becomes
3.24) (j”/g cos u U au(u) )° = (j”/g sin n U du(u) )% n = 0,1,2,...
-n/2 -m/2

Actually equation 3.24) holds for -n also.

Now let F(z) = (fn/e cos z U du(U) )2 - (fn/g sin z U du(U) )2
-m/2 -mi/2

F(z) is an entire function, F(#n) = 0 and |F(z)| s M eTT|Z| for some M.

We will use the following theorem [2, P.156].

THEOREM: Let F(z) be entire, vanish at all the integers and satisfy
|z o :

|F(z)| sMe for some M. Then F(z) = C sin 7w z for some constant C.

Thus, in our case F(z) = C sin 7 z.

However, our F(z) is an even function of z while C sin @ z is odd.

Hence C must be 0.



Therefore

(jﬂ/g cos z U du(U) )2 = (I /2 sin z U du (U) )

-m/2 -m/2

Since both /2 cos z U du(U) and j /2 sin z U du (U) are entire
-m/2 -n/2

functions, we must have that

I /2 cos z U du (U)= ifﬁ/e sin z U du (U)
_1'1'/2 -'TT/E

where we have either + for all z or - for all z. In either case we
have even function equal an odd function which is impossible unless
both are identically zero.

Therefore

f /2 cos n U du(U) = f /2 sin n U du(U) = n=0,1,...

-m/2 -mi/2
Since {cos n x, sin n X}:=O is complete in c[-m/2, m/2] au(U) = 0
But du(U) = du, (x)
Hence dul(x) = 0 and we have completeness.

THEOREM 3.8 - Let An be real and such that

ilpl <1 0= 1,2505. 00 Thet {A cos n x + sin n x}

is complete in = (0.7,

Proof': Assume there exists an f(x) e [0,m] such that
IU f(x) (An cosnx+sinnx)dx=0 n=1,2,..
0

Let a, and bn be as in the lemma to Theorem 3.1.

Then h a +b =0 i R B
n n
2
— |a |2 T l Ia = §=l ihn| =ngl l)\n %n
Let 8 = {n :[hn] < 1} and let § = {n :|An[ =
2 2
| 2|

1 2 g -
Then. 3 Ia‘o| +n%:S ]anl +n§§ lanl _ngs IAn % +n§§ Ihn n

2 2
=n§S I)\n anI +n§3 Ianl

|2, 1% =

2
Therefore |ao[2 s % ]a Al <n§S|ah‘

neS

a




This is impossible unless a, = O and n ¢ 8 implies a = G

Since A_ a + b =0 we have b =0 for n e 9.
n n n n

Thus, j: f(x) (cos n x + Y, sinn x) dx = m (an s bn)

=0 forne S, n=0 and for any Y,

In particular let

1 nesd
Yy =
i s
X nes
n
Since hn is real and Iln[ = 1 for n ¢ § we have that Yy * * lor -1
for any n.

By the way Y, was defined

Iz f(x) (cos n x + Y, sin n x) dx =0 n=0,1,2,..,
Since in Theorem 3.7 we proved that

{cos n x + Y, sinn x}:=o is complete in c[O,m], it is
certainly complete in L2[O,W].
Hence f(x) =0 a.e.

COROLLARY: Let A be real and such that |A | 2 1.

. o . ; 2
Then {cos n x + A, sin n x}nzl is complete in L°[0,m].

NOTE: In this theorem and in the following one, we don't need all
the Kn to be real. All that is needed is that all those Kn such that
Ihn] = 1 should be real.

THEOREM 3.9 - Let A be real and such that |\ | < 1. Then

{cos n x + A, sin n x]:=o is complete in ¢[0,m].

Proof': By Theorem 3.8 {—xn cos n x + sin n X}Z=l is complete

in Lg[O,n]. By the lemma to Theorem 3.3

{cos n x + A, sin n x}:= is complete in c[0,m].

0



In Chapter II we proved that {cos n x + A sin n X}Z=O is

complete in C[O,m] if A is real. For A complex, if |l] < 1 we get

completeness by Theorem 3.3. The following theorems take care of

the case when [A| = 1.

THEOREM 3.10 - Let [A] = 1. Then {cos n x + A sin n x}:=l is

complete in Le[O,n].

Proof': Assume there exists f(x) ¢ LEEO,ﬂ] such that
3.25) [M#(x) (cos nx+Asinnx)dc=0 n=1,2,...
Yo

Let a, and bn be as in the lemma to Theorem 3.1. Then

& + A bn =0 n=1,2,...
2 2 = o 8,2 2
% Iao| +n§l IanI =ngl Ibn' =ngl IXEI =n§l lanl
Hence a =20

e}

Therefore equation 3.25) holds for n = 0 also. Let I be the L2[O,ﬁ]

closure of {cos n x + A sin n x]:=l and let L, be the L2[O,ﬂ] closure

- o
of {cos n x + A sin n X}n=0'

We have proven that Lt = Lll where, as

usual Lt is the closed subspace of annihilators of L. Since L2 =L ®Lt

= J‘ =
Ll_e)Ll we must have that L Ll

Hence g(x) =1 ¢ L

i.e. given ¢ > 0 there exist &y e ay such that

N
3.26) fz | 1 “ 3 an(cos nx+A\sinn x)[2 dx < 62
Letting || || ve the Le[o,ﬂ] norm, inequality 3.26) can be written as
| %= % a(cosmx+Asinnx)| <e
n=l m
N
Since |cos x| <1, I [1 -2y &, (cos mx + ) sinn x)] cos x| < ¢

However, (cos n x + A sin n x) cos x

= % [cos (n+l) x + A sin (n+l) x] + 3 [cos (n-1) x + A sin (n-1) x]

Therefore, letting bn = Gh+l ; Gn_l

(where Ay = Oppq = @y = Qo = 0)



we have

N+1
lcos x -Zo P, (cos nx + ) sinn x)|| < e

i.e. COs X € Ll =L
Since cos x + A sin x ¢ L we have that

sin x ¢ L.
Now, inductively, assume that 1, cos x, sin x, ..., cosM x, sinM x
are all in L and we'll prove that cos(M+l)x and sin(M+1) x are in L.
Again we have

N -
II 1 it an(cos nx+\sinnx) [ <e

N
3.27) Therefore || [1 - 2 an(cos nx + A sin n x)Jcos (M+l)x|| <
We will use the relationship
(cos n x + A sin n x) cos (M+l)x =

% [cos(n#M+1)x + A sin(n+M+1)x]+5[ cos(n-M-1)x+Asin(n-M-1)x]

an+M+l + an-M-l
Let bn = 2 where an = Q n>N orn =<0

Then inequality 3.27 becomes

|| cos(M+1) x -N§M+l b (cosnx+Asinnx)|[<e
n= -M n

Thus cos(M+1)x can be approximated by linear combinations of

i ] . M
{cosnx+ A sinn X}n=l and {cos n x, sin n X}n=0

Since, by induction, all of {cos n x, sin n x}ﬁ=o is céntained in L

we have that cos(M+l)x e L. Since cos(M+l)x + A sin(M+l)x is also

in L, we have that sin(M+l)x is in L.

Hence, by induction, all of {cos n x, sin n x}z=o is contained in L.

As L is closed it contains the L2[O,n] closure of {cos n x, sin n X}Z=O

which is L.°[0,n].

Since, obviously, L C L2[O,ﬁ] we have that I = L2[O,n]. Therefore



is complete in LE[O,ﬁ].

" feo)
{cosnx+ A sinn X]n=l

THEOREM 3.11 - Let |A| = 1. Then {cos n x + A sin n X}Z=O is

complete in C[0,m].

Proof: By Theorem 3.10 {cos n x - % sin n x}z=l is complete in

L2[O,ﬁ]. Hence, {~\A cos nx + sin nx}:;l is also complete in Lz[o,ﬁ].

Therefore, by the lemma to Theorem 3.3 {cos nx + A sin nx};L is

0
complete in C[O,m].

THEOREM 3.12 - {1, n cos nx + A sin nx}:;l is complete inC[0,m],

if A # 2ki, k a non-zero integer

Proof': If X = 0 it is trivially true. Therefore, we can assume
A # 0. Take any function f(x)e C[0,m]. We want to approximate by
N
something of the form T, an(n cos n X + \ sin n x) + a_\
N

Let P(x) =%. a_sinn x + a

n=l mn o
Then we want to approximate by P'(x) + A P(x). The idea of the proof
is to solve the differential equation Y' + AY = f and approximate the
solution by polynomials. The general solution of the differential

AR A Ix et f(t)dt where C is

e&uation is [k, P.75] ¥(x) = C e
some arbitrary constant. If Iz ¥'(x)dx = O then Y'(x) can be uniformly
approximated by linear combinations of {cos n x}z=l i.e. given g:> 0
there exist Bprees ay such that

|Y'(x) - an cos nx|<e for all x ¢[0,m].

n n

=1
N N
|¥(x) - ¥(0) - 2, & sinn x| = II:(Y'(t) —nél_anxlcosnt)dtl
N
< j'z |Y'(t) - ] &1 cos n tldt <ex <em

Let a = Y(0). Then, since Y'(x) + A Y(x) = f(x)
N
| £(x) -2 an(n cos n x + A sinn x) - A aol <e (1+ |A]m

Since f(x) was arbitrary, we would have that




{1, ncosnx+ A sinn X};;l is complete in C[0,m].

All we have to show is that O = fg Y'(x)ax = Y(m) - Y(0) or that
3.28) B o™ e g jz M p(t)at - c =0

Since A # 2ki, ™M # 1. Therefore, we can find C to satisfy
equation 3.28.

(o 2]
THEOREM 3.13 - {n cos nx + A sin n;}nzl, is_incomplete in L'[0,m].

e <]
Moreover, if A = 2ki, k a non-zero integer, then {1,n cos nx + A sin nx}qzl

1.
is incomplete in I {0,m],

Proof: [7 e i co8 ux * & BN BE) 0% o O o = 1,2,... (and if A = 2ki,
‘i & ; Ax © .
it is true for n = 0 also.) Since e € L [o,7], we have proven in-
1
completeness in L [0,m].

The motivation for the linear functional is the following. 1In
Theorem 3.12, the constant term is Y(0) which is C. If we don't
have a constant term to approximate with, we would want C = Y(0) to

. . AX
= 0. In equation 3.28 this leads to jz e""f(x) dx = 0. If we have
a constant term, but A = 2ki, then, in equation 3.28, we again have
Iz ehxf(x)dx = 0 which is not always true for f ¢ clfo,n]. However,

it does suggest to orthogonal function e)\X

THEOREM 3.14% - {\ cos n x + n sin n x};;o is incomplete in C[0,m].
Proof': As in Theorem 3.12 we consider a differential equation

¥' - A\Y = £ and want to approximate Y'(x) uniformly by ngl a sin nx.
However, this can only be done if Y'(0) = Y'(m) = 0. The general
solution of the differential equation is [4,p.75]

T(x) = C ™ + M = e Me(t)as

Hence,

O
1

=Y'(0) = AC + £(0) and

Y'(n) = Agei” jg e-th(t)dt + £(m)

o
]



Combining the two equations to eliminate C, we get

-£(0) &M + 2™ [T e £(t) at + £(m) = 0
o]

This suggests an orthogonal measure. Let

- (%) elﬂ AT =X

du(x) = + Ae" e + 6(x-1)

where §(x) is the usual delta measure. An easy calculation shows
this du(x) works:
i.e. Fﬁ (Acosnmx+usinnx)du(x) =0 n-= i 0
‘o
; @ ; P
THEOREM 3.15 - {A cos n x + n sin n X}n=0 is complete in L' [0,m]

for any P = 1.

Proof': If X = 0 it is trivial as we have {sin n x}:=l. We can
assume X\ # O. Take any f(x) e LP[O,n]. Let |
g(x) = ¢ o M fx Pl f(t) dt where C is a constant. Then,
o
g(x) is absolutely continuous on [0,m], differentiable a.e. on [0,m]
and g'(x) = Aglx) + £(x) a.e. Also,g'(x) e LP[O,n].
As {sin n x}:=l is complete in LP[O,n], there exist 815+ >8, such that
N
3.29) lle' (x) “Zp 8 nsinn x|| < € where || || is the LPEO,n] norm.
Since g(x) is absolutely continuous ji g'(t)dt = g(x) - g(0)
Therefore,
N N
|g(x) - g(0) *pZy 8, oS n X - B anl
- AP N .
= Ijo (g'(%) - Z; 8, nsinn t) dt
< Ix lg"{t) - § &% sin n t|dt
o n=l n
; ) .
< IZ le'(t) ngl & n sinn t|at

P-1
i N . T P — :
< |le' (t) ~1 8 " sinn t| (IO dt) (by Holder's inequality)

<erm

N
Let &, ® = g(0) - 21 a . Then '



N
3.30) |&(x) + Lya cosn x| <em for all x ¢[0,m].
1
Therefore ||g(x) +ngo a cos n x| <em Sl T .

Combining this with inequality 3.29) we get

lle'(x) - A g(x) _ngo a_ (A cos n x + n sinn x)|| < e (1+[A] ﬂ2)

Since g'(x) - X g(x) = £f(x) a.e. we have

|| £(x) "ngo &, (A cosnx+nsinnx)|<e (1+ |2 ne).

Since f(x) is an arbitrary LP[O,n] function, we have completeness

in LP[O,n].

. ® p ; P
THEOREM 3.16 - {\ cos n x + n sin n X}n=l is complete in L [0,m] for

all P > 1 iff A # 2Ki where K is a non-zero integer.

Proof: Assume A # 2Ki. Let f(x) be in LP[O,n].
In Theorem 3.15 we proved completeness if we are allowed to use the
constant function. In inequality 3.30 we had

|e(x) + g a cos m x+ a | < ¢ m for all x e[0,m].

II g(x)dx + a Wl II (e(x) + E a cosnX+a ) dx|
= j (x) + E a Cos nXx+a Idx
<e n2

Hence if fn g(x)dx = 0 then |a |<em
o o
i.e. we get an arbitrarily small error by forgetting about the constant

term. glx) = C gy X jx o AE f(t)dt, and we want to choose C so that
o

f: g(x)dx

0. IfA =0, j g(x) =cm+ j j f(t)dt dx and C can

obviously be chosen so that f g(x)dx 0. If A # O we have

fn g(x)dx = e = 1], e7LX j e "M r(t)at ax
(o] 0] (o]

since A # 2Ki, & - 1 # O and we can choose C so that fﬂ g(x)dx = 0.
O

]



On the other hand, assume A\ = 2Ki where K is a non-zero integer.

Since we want J'TT g(x)dx = 0 we get
0]

j-rr ehx j-x e—)\t
0 5 £(t) dt dx = 0.
This suggests the bounded linear functional

L(f) = J"; % j‘z e £(¢) at ax

IL{(Acos n x + n sin n x) =Iﬂe)\xj‘xe_7\t (A cosnt+nsinn t)dt ax
[e] (6]

[T ekx [-e-?\x

e}

cos n x + 1]dx

=Jﬂ(- cosnx+elx)d.x
o

e?m-l

=———X——=Osince?\=2Ki.

. © sl t o . P
Hence {A cos n x + n sin n X}nzl is incomplete in L [0,m].



IV: Completeness of {P(n)cos nx + g(n)sin nx} on [-a,a], 0<a<m

We now consider the completeness of

{P(n) cos nx + q(n) sin nx]zzo where P(x) and Q(x) are algebraic

polynomials. Whereas, in chapters two and three, we considered
completeness on [o,m], here we deal with [-a,a] where o < a < 7. The
results are very surprising when compared with the same sequences

on [o,m].
NOTATION: For an algebraic polynomial P(z), we let Pe(z) be the
even part of P(z) and Po(z) be the odd part of P(z).

We will use the following theorem [9, P. 186].

THEOREM A: Let F(z) be analytic and of the form o(e5|2|)
where K <m, for Re 2 > 0 and let F(z) = 0 for z = 0,1,2,

Then F(z) = 0.

THEOREM 4.1 - Let D(z) =‘Pe(z) Qe(z) - Po(z) QO(Z) and let g

be such that O < a <m. Then, if D(z) & o,

{P(n)cos nx + Q(n) sin nxﬁzo is complete in G[-a,a].

Proof: Assume there exists a measure du'x) such that

P(n) I%a cos nx du(x) + qQ(n) I?a sin nx du(x) = 0

N T

Let F(z) = P(z) J?a cos zx du(x) + q(z) I%a sin zx du(x)



Then F(z) is an entire function and F(z) = 0 for z = G L, B ..

et K=a+mT -a . Thena<ZKZ<r.
2

(ol {2l ), |

Also, |P(z)] < Me < and |Q(z)|<Me 2 for some M.

Thus |F(z)| < M, eKIZ\ for some M, .

By theorem A, F(z) = 0.

k.1) Pe(z) I?a cos zx du(x) + Qo(z) I?a sin zx du(x) = F(z) + F(-z) = 0
2

L.2) Po(z) I?a cos zx dp(x) + Qe(z) I?a sin zx du(x) = F(z) - F(-z) = 0
2

Multiplying equation 4.1) by Q_(z) and equation 4.2) by -q (z)
e 0

and adding, we get

0

[Pe(ZJ Q(z) - P (z) Q,(z)] f?é cos zx du(x)
or

D(z) I: cos zx dp(x) = 0

]
O

Since D(z) % 0, I?a cos zx di(x)

Similarly, multiplying equation 4.1) by Po(z) and equation 4.2) by

-Pe(z) and adding, we get
D(z) j_: sin zx du(x) = 0

Thus j?a sin zx du(x) = 0



I

Z sin nx du (x) = 0 for n = 0,1,2,... we

Since j_: cos nx du(x) = |

have that all the Fourier coefficients of aw(x) are zero. By the

completeness of

{cos nx, sin nx}z:O in C[-a,al, we must have that du(x) = O.

Theorem 4.1 proves that if D(z) O, then

@ ha}
{P(n) cos nx + Q(n) sin nx&zc is complete in C[-a,a] for all a such

that O < a < m. In a general sense, we have completeness in the
"argest" interval under the "strongest' norm. The next theorem
will prove that if D(z) = 0, then we get incompleteness in Ll[-e,s}
for any € > 0, which issort of the "smallest" interval under the
"weakest" norm. Not only is the sequence incomplete, but even the
addition of any finite number of integrable functions, still leaves
the sequence incomplete.
First we will prove the following lemma.

IEMMA 1). ILet P(z) and Q(z) be algebraic polynomials where P(z)

is even and Q(z) is odd. Let gj(x),...,gn(t) be any integrable

functions on [-a,a] where 0 < a < m. Then, there exists a con-

tinuous non-trivial function f(x) on [-a,a] such that

1) P(z) I%a £(x) cos zx dx + Q(z) I?a f(x) sin zx dx = O

2) J?a £ (x) gn(x) dx = 0 n=1,..., N.
2 2k
: -
Proof: Assume P(z) a, *a, z ces Fay 2 and
2k-1
Q(z) = BB osss ¥ B o B where any of the aj (including a2k)
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may be zero.
et M =N + K.
. 2@& s
Let g(x) be in €~ {-m,m], non trivial, odd and zero on [-m,-a] and
la,m].

Then g(+a) = g'(ta) = ... = g(EM)

(ta) = 0
Integration by parts, combined with the vanishing of g(x) and its
first 2M derivatives at +a, gives us that
- -1 2n-
4.3) Iﬁa g(En 1) (x) cos zx ax = (-1)° & el j?a g(x) sin zx dx

n<mM

and

hy) 2 B0 iy it i = T [ &(x) sin zx ax n <M.

By the fact that g(x) and all its even numbered derivatives are odd and

all its odd numbered derivatives are even, we have

4.5) ﬁa g(gn'l) (x) sin zxdx = O n<M

and

1.6) J* &) (x) coszx ax =0 n< M

Let fx) = cg(x) + cg'(x) *+ ..o + o 82 (x) vhere {c®L |

will be determined later.

Let F(z) = P(z) [* £(x) cos zxax + Q(z) [7, £x) sin 2x ax

By equations 4.3), 4.4), 4.5) and L.6),
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F(z) = P(z) (clz - c3z2 ool F (-l)M-l Copray zeN”l) X%a g(x) sin zx dx
M
+ Q(z) (c0 - & % S {-1) CEMZEM) I?a g(x) sin zx dx.
_ 3 \M-l EM-l "
Let R(z) = P(z) (clz - c3Z + oy + (-1, Cop.1 2 )
M
+ Q(z) (c0 # c222 * ane *+ (1) chZEM)

Then F(z) = R(z) I%a g(x) sin zx dx

R(z) is an odd polynomial of degree at most @M + 2K - 1. Its coefficients

are linear combinations of {C-}?M
i’i = 0. For R(z) to be identically zero,
all its coefficients would have to be zero. That gives us M + K linear

homogeneous equations in {ci}efz 0 since there are M + K odd

integers between 1 and 2M + 2K -1. If, in addition, we require that

2, ) g, (x) ax

I
o
B

I
'_.}
=

-

we get N more linear homogeneous equations in {ci}sz Altogether

o'
we get M + K+ N equations in 2M + 1 unknowns. However, since
K+ N =M, we have more unknowns than equations and can solve non-

trivially. Thus we hawve produced a continuous function f(x) on

[-a,a] such that

1) P(z) Iﬁa f(x) cos zx dx + Q(z) I%af(x) sin zx dx = O
2) jﬁa £(x) g_(x) ax = 0 n=1, ... , N

All that is left to prove is that f£(x) ¥ O.

If it were, then g(x) would be a non-trivial solution to the
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differential equation

c Y(EM) (x) + ¢

oM O

+ ...+ Y o(x) + c, ¥(x)

m

oM-1
satisfying the boundary conditions
M
o) = Tl = 2aies PG) =0

However, by [4, P.6T7], this can only be solved by the trivial function.
Hence, f(x) is non-trivial.

THEOREM 4.2 - Let P(z) and Q(z) be algebraic polynomials satis-

fying D(z) = Pe(z) Qe(z) - Po(z) QO(Z) = 0 and let a be such that

0 <a<m. Then {P(n) cos nx + Q(n) sin nx}zzo is incomplete in

1.
L [~a,da]. Moreover, if gl(x)jgg(x), 5% 3 gN(x) are any functions in

I1{-a,a], then {gl(x), — ,gN(x), P(n) cos nx + Q(n) sin nx}zzo is

incomplete in I}[wa,a]

0.

i

Proof: Case I: QE(Z) = Po(z)

Since P(z) is even and Q(z) is odd, lemma 1) applies. Therefore,

there exists a continous, non-trivial function f(x) such that

1) P(z) I?a f(x) cos zx dx + Q(z) f%a f(x) sin zx dx = O and

2) jféf(X) g, (x) dg = 0 n=1, ... , N

1)certainly implies that

P(n) I%a f(x) cos nx dx + Q(n) I?a f(x) sinnx dx =0 n = 0,1,2,

Since f(x) is continuous on [-a,a], £(x) ¢ L" [-a,a]



Hence {gl(x), sl 35 gi$x P(n) cos nx + Q(n) sin nx}: _

0
is incomplete in L'[-a,a].
Case II: P_ (z) 0
By lemma 1), since z Po(z) is even and zQe(z) is odd, there

exists a continuous non-trivial function f(x) such that

4.7) 1) z P (2) j?a £(x) cos zx dx + 2q_(z) jfa f(x) sin %X dx = 0O
2)‘]' £(x) x)dx 8l vy N

However, since h(z) = z is not identically zero, equation 4.7) gives:

us that

4.8) Po(z) I%a f(x) cos zx dx + Qe(z) T?a £(x) sin zx dx = 0

Multiplying equation 4.8) by Pe(z) gives us

4.9) Pe(z) Po(z) I?a f(x) cos zx dx + Pé(z) Qé(z) j%a f(x) sin zx dx = 0
However, since Pé(z) G%(z) - Po(z) Qb(z) = 0, equation 4.9) becomes
4.10) Pe(z) Po(z) J-Z f(x) cos zx dx + Po(z) Qo(z) Iia f(x) sin zx dx = 0

As we are assuming Po(z) £ 0, we can divide equation 4.10) by Po(z) and

get

L.11) Pe(z) j?a f(x) cos zx dx + Qo(z) j?a f(x) sin zx d&x = 0

Adding equations 4.8) and 4.11) we have



i
O

P(z) I%a f(x) cos zx dx + Q(z) I?a f(x) sin zx dx

Hence, P(n) I%a f(x) cos nx dx + Q(n) I?a f(x) sin nx dx = 0
n=20,1,2,...

o
Since f(x) ¢ L [-a,a] and since we already have proven

a
j’_a x) gn(x)d.x=0 n=1,000, N

we have the incompleteness of
. o . 1
[gl(x), S B gN(x), P(n) cos nx + Q(n) sin nx}n=o in L' [-a,a].
Case III: Qe(z) o0
As in case II, we can find a function fi(x) ¢ L [-a,a] such that

h.12) 1) B (2) [7, f(x) cos zx ax + q (z) [* #£(x) sin zx ax = 0
2) j*f‘a £(x) g,'x) dx = 0 n=1, «e. , N
Multiplying equation 4.12) by Q,O(z), we get
4.13) B (z) qy(z) [ 2 £(x) cos ax ax + q_(2) @ (z) [® £(x) sin zx ax =0
Since Pe(z) Qe(z) - Po(z) Qo(z) = 0, equation 4.13) becomes
L.1k) P (z) Q(2) [ 3 £(x) cos zx ax + @_(2) Q (z) [%  £(X) sin zx ax = 0

As we are assuming Qe(z) + 0, we can divide equation 4.14) Dby Qe(z) and

get

4.15) Pé(z) J_Z f(x) cos zx dx + QO(Z) I 2

g f(x) sin zx dx = 0

Adding equations 4.12) and 4.15) we have



P(z) ﬁa f(x) cos zx dx + Q(z) ﬁa f(x) sin zx dx = O

and have established incompleteness.

In theorem 4.1 we proved that if D(z) £ O, then we have complete-
ness in Cl-a,a] for any a such that 0 < a <m. A question which
arises is "Do we need all the terms fran n = 0,1... or can some be
eliminated without affecting completeness?" In the following
theorem we will prove that actually an infinite number of terms can
be omitted, proved the omitted set of integers is 'sparse" among the
set of posgitive integers.

THEOREM L4.3. Iet S be a set of non negative integers such that

there exists an @ < 1 such that

nES & < »
n=0 o .
n

Let S be the complement of S in the set of non-negative integers.

Let P(z) and Q(z) be algebraic polynomials and let a be such that
: = . : :

0 <a <m. Then if P‘.(Z) Qc(zl - Pu(z) Qu(z) + 0,

{P(n) cos nx + Q(n) sin nx} n € 5 is complete in -a,a].

Proof: Assume there exists a measure du(x) such that

P(n) (['E_La cos nx dix) + qQ(n) ﬁa sin nx @u(x) =0 Ne S
Let F(z) = P(z) ﬁa cos zxdu(x) + Q(z) j'a_'a sin zxdu (x)

Iet € = 1= Then

a
S

(a+e)]|z|

|F(z) <Me for some M.

Z

IetW(z)=Z_ﬂ‘£l—.Z_)en
ncsS
n{:O i



By a theorem [2, P.19], the order of W(z) is «. Therefore

[w(z)| < Na.ee B oo some M.

Let G(z) = F(z) W(z). G(z) is an entire function, vanishes at all the

e(a+2e)lzl. Since

non-negative integers and satisfies |G(z)|< MM
0 <a +2 <, by theorem A, G(z) = 0. As W(z) is obviously not

identically zero, we must have that F(z) = O. Therefore

P(n) j?a cos nx du(x) + q(n) I?a sin nx dp(x) =0 n =0,1,2...

By theorem k4.1,

(oo}

{P(n) cos nx + Q(n) sin nx}nzo is complete in C[-a,a]

Hence du(x) = 0 and { P(n) cos nx + Q(n) sin nx} nesS 1is complete in
cl-a,a].

It is interesting to take some particular P(z) and Q(z) and see
how the change of interval from [0,m] to [-a,a] affects completeness.

I -Iet P(z) = 1 and Q(z) = O.

We then have {cos nx&:@ which is complete in C[0,m] and incomplete

in Ll[-e,e].
II - Let P(z) = 1 and Q(z) = A where A is real. We then have

{cos nx + A sin nx}:: which is complete in C[O,m] and in C[-a,a]

0
for any a <m. The difference is, that when we discard the constant
function, we have incompleteness in some LP[O,ﬂ] spaces as well as in
clo,m], whereas we still have completeness in C[-a,a].

III - Let P(z) = z and Q(z) = A\, A # 2ki, k a non-zero integer. Then wehave
{n cos nx + A sin nx}z:l which is incomplete in both I}[O,n] and

1
L' [-e,e]. The difference is that if we add in the constant function



we get completeness in ClO,m] and still have incompleteness in

LJ[—G,e] for any ¢ > O.
IV - Let P(z) = A and Q(z) = z.

Then we have { A cos nx + n sin nX}Z=O which is complete in

LP[O,'IT] for any P> 1 and is incomplete in Ll[-e,e] for any ¢ > 0.



+ i nx}m
n=0

V. COMPLETENESS OF f{e

In this chapter we give some answers to the following question:
"If, for each non-negative integer n, we take either X op e-inx,
what is the length of the greatest interval of completeness?". Since
we are dealing with exponentials, we can consider the length of the
interval of completeness, since, as proven in the introduction, it
makes no difference where the interval is situated. Of course, the
length of an interval of completeness has to be strictly less than

21 since each of those exponentials not chosen is orthogonal to the

entire selected set over an interval of length 2m. However, if we

(o]
n=0’

Thus the least upper bound on the possible lengths of completeness

take {elnx} then we get completeness in C[2m-e] for any € > O.
is 2 (and it can never be achieved). Theorem 5.1 will prove that
T is a lower bound and theorem 5.2 will prove that it is actually
achieved (as a length of a greatest interval of completeness).

THEOREM 5.1 -'For each n = 0,1,2.,. let fr(x) be either e "% or e 17X,

Then {f gx!E:;O_is complete in C[-m/2,m/2].

Proof:  Assume there exist du(x) such that
/2
[ £ (x) au(x) = 0 n=0,1,2....
-m/2
/2 ;
Let F(z) = I e au(x)
-m/2

Then for each n = 0,1,2... either F(n) = 0 or F(-n) = 0. Also
|F(z)l'5 M en/g |2 for some M. Let G(z) = F(z) F(-z). Since

G(z) is an even function of z and since for each n = 0,1,2...



either F(n) or F(-n) is zero, we get that G(n) = O for n an

integer (positive, negative or zero). Also
l6(2)]| = |F(2)||F(-2)] <M® e”lzl. By the theorem quoted in
Theorem 3.8, G(z) = ¢ sin T z for some constant c. However, G(z)

is even and c¢ sin Tz is odd. Therefore ¢ = 0 and G(z) = 0.

]
(@]

As F(z) is entire and F(z) F(-z) £ 0, we must have that F(z) =

/2 i
. f / e ?* au(x) = o,
-m/2
Since .FU/E inx - - ) inx,e
. e du(x) = O for all integers n and since {e l
-m/2 it
is complete in C[-m/2, m/2], we have that duwx) = 0.
LEMMA: Let G(z) = 1 where I(2) is the gamma Ffunction.
2y (L - 2
Then G(z) is entire and satisfies (for some K)
1 HT—T*—
)lG(Z)‘ ..<.K‘COS gﬁl A Re Z.>_O
2) ‘G(Z)I <K ] sin EE]
2 lzl Re z < 0, Izli¢
Proof: G(z) is Obviously entire as 1 is entire. For the estimateson

I'(z)

G(z) we will use the following form of Stirling's formula for '@ )

(10, P.239]: For 0 < a <1 and |arg z +a| < -6 and larg zl <m -9,
log I'(z +a) = (z +a - 2) log z - z + % log 2m + o(1) where o(1)

refers to \zl ~ ®. We will also use the following well-known relation-

ships for I'(z) [10, P.239]:



1) I'(z) I'(1-z) _ m
sin Tz

2) T (1+ z) = 2z I'(2)

( & ( Z2+1 i
Consequently, I'(4 - 2) =T (1-( 2)) = z+ly Z+]
5 I'(%5=) sin m(=5=)
i
= z+lycos Tz
I ) 2
z
Msol (2) =2T(L+2)
z
Z nz
Therefore, G(z) = z I'(} +2) cos 2

Z
2T (l ¥ E) . T
For Re z > O we can apply Stirlings formula (with a = i in the numerator

and a = 1 in the denominator), and get

G(z) = z 8 T_glg,_ . (2/2)2'/2 e-Z/EJg e@(l)
- (z/2)2/2 % 2 2/2 gLt
-z COo8 g_z 7 . eo(l) (we can assume 3 % 0)
-kl e o

Tz
Therefore |G(z)| <k | °°*27| /Tz for Re z > 0

For Re 2z <0 let w= -z. Then Re w = 0.

G(z) = 6(-w) = —w

1 W which can be rewritten as
riz)rk+z)

G(-w) = sin{ w/2) I{l = %)

=T
T(3+3)

Since Re w > 0 we can use Stirling's formula and get

TV Wy w/2 + % e-w/E o(1)

G‘(-W) - sin ‘5_— VD ‘/-21-[ e
m (g) w/2 e—w/2 f2T eO(l)




Therefore |G(-w)| <k | 5% g—wl JTNT

Since w = -z

.. T2z
|G(z)| < k| 727 |/Tz[ for Re z <0, |z| >1

—i(—l)nnxm 2 'T—T-e E+€
THECREM 5.2 {e }‘1 ~_is incomplete in L [~2 3 ] for any

€ > 0.

T
Proof: For a given € > 0, take a positive integer n such that 2n <e.

1
et G(z) = z 1 Z
F(E) r(a ‘2)
Since 1 vanishes at z = 0,-1,-2,..., G(z) vanishes at z = 0,1,-2,3,-k...
I(z)
By the lemma, G(z) = 0 (/lzl ) on the real axis and elsewhere

G(z) =0 (/Tz[ e l’éﬂ')

zZ
Let F(z) = G(z) G 5n)
Z\Z + 2n

Then F(z) is an entire function in L2(—m,°°) and satisfies

F(z) = 0 (" (2 * )l

We will now use the Paley-Wiener theorem on Fourier transforms
which is [6, P.13],

THEOREM: Let F(z) be entire. Then F(z) = o(e‘&“lzl) and
2 : A dzx X ‘d'
F(z) € L°(-»,») iff F(z)=j_A e r(x) dx £ e L° [-A,A].

Hence our
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Flz) = I o dzx

A
&
}—b
(V]
e
-
NE!
]

o
\? b |
20] =]
+
l\)lzl
5
Red

Since F(z) £ 0 f(x) is non-trivial

As F(z) =0 for z = 0, (-1)®*n  we have that

; Mo & Wl . 2 LA 1 1l
[e—l(—l) nx&:o is incomplete in I° [- >~ 2,2 " oo ]
and certainly in e [- gm-% % + g].

-1(-1)"nx, "

Now that we know that {e ;:O is complete in an interval

of length m (and no greater), a natural question which arises is

"When can the constant term be dropped without affecting completeness?"
{e_i(—l)nnx} Z 5

THEOREM 5.3. is complete in g [-2 5l W1 PLR

n=1

Proof: ©Since we are dealing with pure exponentials, 1t will suffice

to prove completeness on [0,m]. Also, by the "hierarchy" thecrems,
it will suffice to prove completeness in Le[O,ﬂ]. Therefore, assume

there exists £'(x) EI?[O,H] such that
; n
J“; e~1(-1)"nx f(x) Gx = 0 n = 1,2,
m n o
Then fo cos nx f(x) dx - 1(-1) J"O sin nx f(x) d&x =0 n = 1,2, ...

Iet &, and bn be as in the lemma to theorem 3.1.

I
@)

A n
Then & _ - i(-1) b, = TR I T - TR

]

Therefore \anl = lbnl n=>712,...
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By the lemma to theorem 3.1,

2 o
\aol + X
n=1

[N

lanle. a nil lbn12

Therefore a_ = 0

i.e., jz £(x) dx = 0.

’ 1l
Thus [T e 1-100% g4y ax = o n=0,1,2,,..

-1(-1)"nx ®

Since {e }1=O is complete in Le[o,ﬁ], f(x) = 0 a.e.

- n. =2
THECREM 5.4, (e t("1) e

is incomplete in LP[ —1—;- 1-21]
i)

if 2 <P < o,

Proof: We will use the following Fourier transform formula [ 8, P.186].

I"/e (cos t)a-E ei*° gk = nl (a-1) a>1
-m/2 n TB X a X
22 IG+3)1GF -3

Le‘bs.=% and let x = z + 3. Then

/2 eit/e Jizt

) it = nl (3)/2
m/2 / cos t r (1+ E) T(% z)

2 g

which vanishes for z = 1,-2,3,-k4,...

i P
Since elt/2 e L [- g %] ifP<2
Jcos t

{e™¥, e-21x,e31x’_“} is incomplete in i (-n/2, n/2] if P> 2.
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ix -2ix 3ix bix -5ix
- e

THEOREM 5.5. {l,e " ,e ,e 3 ,e.+} is complete in

2m : on
- $ug, 8L .
cl™ 3 €3 ®] for any & > 0.

Proof: Assume there exists du{x) such that

: 2
‘JaL e ¥ guly) =0 Por g = 0,1,-2,3,4,5,... where 0 < L < =,

<, 3

Let F(z) = sin ‘ﬁ(Z_"'%) J-L eizx dp,(x).
-L

Then F(z) is an entire function, vanishes at all the non-negative

integers and satisfies

(% + L) |z
F(z) =-0(e )
Since % + L <m, by theorem A of chapter 4, F(z) = 0.

+
Since sin n(%) is obviously not identically zero,

J-L iz
e
I .dp.(x) =

il
o

] Obviously '-E‘L elnx du(x) = 0 no=0,% 1, 4+ 2,400

Since L < m and {e ™} is complete on C[-L,L] we get that

= =00

d}-b(x) = 0.

THECREM 5.6. {1, eifz g ieX Six ell-ix e-six,...Lis incomplete

= ] L] ]

in Ll[-%r-[ i —32:”— T

Proof: Iet F(z) = sin =2 sinr(5§§L4

8
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Then F(z) is entire, vanishes at 2z = 0,1,-2,+ 3,4, -5, + 6,
= lal

and satisfies F(z) = O(e3 )

Let G(z) = F(z)
(z+3) (2+6)

G(z) is an entire function which vanishes at z = 0,1,-2,3,4,-5,...,

is in Bl(-m,m) and satisfies
| 2n |z
a(z) =0 (3 ).

We will now use the following theorem on representation of entire
functions as Fourier transforms (2, P.10T].
THEOREM: If G(z) is an entire function, belonging to Ll(-m,m) and

satisfying G(z) = O(eAlzl)

; then
G(z) = I"i el?X § (x)ax  where { is continuous on [-A,A]

(and hence bounded there).

2m
.2 izx ©
Therefore, our G(z) = | 3 e b (x)ax where § (x) ¢ L [12% ,Q%j_
2
3
Since G(z) = 0 z =0,1,-2,3,4,-5,..., we have proven
{l,elx,.e_zlx, e3ix, eulx, e_slx,...} is incomplete in Lt [ - %E, 2% T




APPENDIX - 3 INEQUALITIES

1) |1+ 2)%+ 1(1-2)%] > & ror $<|z] <1

Fl=

Proof: Iet z = pe16

| (1 + z)F # i(l-z)gl

Ll

I(l +peie)2 4 i(l _ peie)e‘

|1 + p2) cos © +2p + (1 - p2) sin 8] +

if(1 + p2) cos 6 - 2p - (1 - p2) sin 8]

“V2(1 + p2)° cos % + 2(2p + (1-6°) sin 6)°
>/ 2 |2p + (1 - p%) sin 6

>VE (20 - (1 - p?))

=/Z ((p+1)?-2)

/2 (3+1%-2)=/F >1
T

.
e
2) |cos 4 for 0 < |g8| < s
2f > 1 - 2
sin 6 [6[ :
2
Proof. By a change of variable, it will suffice to show
cos B 1 il
< <
sin 0| = 6T Tor o< el = g

Since both functions are odd, it will suffice to prove for 0 < 8] < L

N

and since then everything is positive it will suffice to prove
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cos ©

1 m
sine - 28 for 0<@ = p

We will use the following well-known inequalities:

2
cos 8 > l—-eé— and sin 8. <06 for 8 > 0

2
Therefore cos 6, 1 - %
sin ©
0
2
! 0 1.
i < < o D
SlnceB_E_l X 5 ~ %
0
QI El D.
2 20°r m
3) 1+ 1 -2r cos © = p for IB[ = 5 and re(0,1].
Proof: This is equivalent to proving that
1« & - 02  + cos © for 6] < T and re (0,1]
2r t 2
ik r2
since the first inequality is obvious for r = 0, Let F(r) = St

82 ‘
and g(8) = — + cos 8

—(r2 - 1)2 < 0
2

F'(r) = —

Lr

.F(r) > F(1) = 1 for r¢ (0,1].

i

5 ] by a well-known inequality

g'(0) = 28 - sin © which is negative in [0,
i

Therefore g(6) < g(0) = 1 for &elo,n/2]

Since g(8) = g(-0) g(6) <1 for 8el[-m/2, w/2].

o 2
Therefore 1 + r~ s 8~ 4 s08 6 for ISI < m/2 andre (0,1].
Z = -
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