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ABSTRACT 

Intuitionistic Logic Model Theory and Forcing 

Melvin Chris Fitting 

The independence proofs of Cohen for the axiom of 

choice, the continuum hypothesis, and the axiom of construct­

ability are re-formulated using s. Kripke's intuitionistic 

logic model theory·. We define transfinite sequences of 

intuitionistic.models with a 'class' model limit in a manner 

exactly analogous to the definition of Godel in the 

classical case of a transfinite sequence of (domains of) 

classical models, M� , with a �class' model limit, L. 

Classical independence results are established by working 

with the intuitionistic models themselves; no classical 

models are constructed, no countable classical models are 

required (though the definition of intuitionistic model is 

essentially the same as that of forcing.) 

An intuitionistic (or forcing) generalization of the Ro.: 

sequence (sets with rank) is defined and some connections 

between it and Scott and Solovay's boolean valued models for 

set theory are established. 

For completeness sake, the first six chapters provide a 

complete treatment of s. Krlpke's intuitionistic logic model 

theory. Completeness proofs are given for tableau and 

axiomatic systems, compactness and Skolem-Lowenheim theorems 

·are established, and relations with classical logic are 

shown. The connection between Kripke rrodel theory and 

algebraic model theory is shown in the propositional case. 
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Introduction 

In 1963 P. Cohen established various fundamental 

independence results in set theory using a new technique 

which he called forcing. Since then there has been a 

deluge of new results of various kinds in set theory, 

proved using forcing techniques. It is a powerful method. 

It is, however, a method which is not as easy to interpret 

intuitively as the corresponding method of Godel which 

establishes consistency results. 

Godel defines an intuitively meaningful transfinite 

sequence of (domains of) classical models, M , a defines 

xii 

the class L- to be the union of the M over all ordinals a 
a, and shows L is a classical model for set theory 

[3; see also 2]. He then shows the axiom of constructability, 

the generalized continuum hypothesis, and the axiom of choice 

are true over L, establishing consistency. 

In this dissertation we define transfinite sequences 

of s. Kripke's intuitionistic models [12] in a manner 

exactly analogous to that of Godel in the classical case 

(in fact, the M a sequence is a particular example). In 

a reasonable way we define a "class" model for each 

sequ�nce, which is to be a limit model over all ordinals. 



xiii 

W� sh6w all the axioms of set theory are intuitionistically 

valid in the class models. Finally we show there are 

particular such sequences which provide: a class model 

in which the negation of the axiom of choice is 

intuitionistically valid; a class model in which the 

axiom of choice and the negation of the continuum hypothesis 

are intuitionistically valid; a class model in which the 

axiom of choice, the generalized continuum hypothesis, 

and the negation of the axiom of constructabi�ity are 

intuitionistically valid. From this, the classical 

independence results are shown to follow. 

The definition of the sequences of intuitionistic 

models will be seen to be essentially the same as the 

definition of forcing in [2]. The difference is in the 

point .of view. In Cohen's method one begins with a set 

M which is a ·c·ot1ntahle model for set theory and, using 

forcing, one constructs a second countable model N "on 

top of" M. 

even though 

Forcing enables one to "discuss" N in M 

N is not a sub-model of M. Various such 

N are constructed for the different independence results. 

In this dissertation no countable models are required and 

no classical models are constructed. It is the forcing 

relation itself that is the center of attention � [see 2, 

page 147], though.now it has an intuitive interpretation. 

I 



A similar program has been carried out by Vopenka 

and others. [See the series of papers: 20, 21, 2 2, 25, 

xiv 

5, 2 3, 6, 7, 24, 26]. The primary difference is that 

these use topological intuitionistic model theory while we 

use Kripke's, which is much closer in form to forcing. 
. .., Also, the Vopenka series uses Godel-Bernays set theory 

and generalizes the F a sequence, while we use Zermelo-

Fraenkel set theory and generalize the M 
a sequence. 

.., 
Vopenka treatment involves substantial topological con-

siderations which we replace by more "logical" ones. 

The 

The dissertation is divided into two parts. In 

Part I we present a thorough treatment of the Kripke 

intuitionistic model theory. Part II consists of the set 

theory work discussed above. 

Most of the material in Part I is not original but 

it is collected together and unified for the first time. 

The treatment is self-contained. Kripke models are 

defined (in notation different from that of Kripke). 

Tableau proof systems are defined using signed formulas 

(due to R. Smullyan), a device which simplifies the 

treatment. Three completeness proofs are presented (one 

for an axiom system, two for tableau systems), one due to 

Kripke [12], one due independently to R. Thomason [19] 

and the author, and one due to the author. We present 

proofs of compactness and· Lowenheim-Skolem theorems. 

I 



Adapting a method of Cohen, we establish a few connections 

between classical and intuitionistic logic. In the 

propositional case we give the relationship between Kripke 

models and algebraic ones [15] (which provides a fourth 

completeness proof in the propositional case). Finally we 

present Schutte's proof of the intuitionistic Craig 

interpolation lemma [16], adapted to Kleene's tableau 

system G3 as modified by the use of signed formulas. No 

attempt is made to use methods of proof acceptable to 

intuitionists. 

xv 

Chapter 7 begins Part II. In it we define the notion 

of an intuiti6nistic Zermelo-Fraenkel (Z-F) model, and the 

intuitionistic generalization of the Godel Ma sequence. 

Most of the chapter is devoted to. showing the class models 

resulting from the sequences of intuitionistic models are 

intuitionisti� ·z-F models. This result is demonstrated in 

rather complete detail, especially section 8 through 1 3, 

not because the work �s particularly difficult, but because 

such models are comparatively unfamiliar. 

In Chapter 8 the independence of the axiom of 

choice is shown. 

In Chapter 9 we show how ordinals and cardinals may 

be represented in the intuitionistic models, and establish 

when svch representatives exist. 



Chapter 10 establishes the independence of the 

continuum hypothesis. 

In Chapter 11 we. give a way to represent constuct­

able sets in the intuitionistic models, and establish when 

such representatives exist. 

Chapter 1 2  establishes the independence of the 

axiom of constructability. 

xvi 

Chapter 13  is a collection of various results. We 

establish. a connection between the sequences of intuitionistic 

models an� the classical M sequence. We give some a 
conditions under which the axiom of choice and the general-

ized continuum hypothesis will be valid in the intuition­

istic class models (thus completing chapters 10 and 12). 

Finally we present Vopenka's method for pro�ucing classical 

non-standard set theory models from the intuitionistic class 

models without countability requirements [24]. 

The set theory work to this point is self-contained, 

given a knowledge of the Godel consistency proof [3; in 

more detail, 2]. 

In Chapter 14 we present Sqott.and Solovay's notion 

ofboolean valued models for set· theory [17]. We define 

an intuitionistic (or forcing) generalization of the Ra 
sequence (sets with rank) analogous to the Cohen generalization 



of the· Ma sequence, and we establish some connections 

between intuitionistic and boolean valued models for 

set theory. 

xvii 



PART I 

LOGIC 

Chapter 1 

Propos·iti·o"n·a-i- ·In·tu·i t·ionistic Logic - Semantics 

Section 1 

Formulas 

We begin with a denumberable set of propositional 

variables A, B, C, · · · , three binary connectives, /\, V, ::, , 

and one unary connective,~, together with left and right 

parantheses, (,). We shall informally use square and 

curly brackets, [,], {,}, for parentheses to make reading 

simpler. 

The notion of well formed formula, or simply 

formula, is given recursively by.the following rules: 

FO: If A is a propositional variable, 

A ;1._s a formula. 

Fl: If X is a formula, so is -X. 

F2,3,4: If X and Y are formulas, so are (X A Y) 

(Xv Y) 

.(X::>Y) 

Remark: a propositional variable will sometimes be called 

an atomic formula. 
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It can be shown that the formation of a formula is 

unique. That��, for any given formula X, one and only 

one of the following can hold: 

1) X is A for some propositional variable A. 

2) There is a unique formula Y such that X is 

~Y. 

3) There is a unique pair of formulas Y and Z and 

a unique binary connective b [ I\ , Y, or ::>] 

such that X_is (YbZ). 

We make use of this uniqueness of decomposition but 

do not prove it here. 

We shall omit writing outer parentheses in a formula 

when no confusion can result. 

Until otherwise stated, we shall use A, B, and C 

for propositional variables, and X, Y, and Z to represent 

any formula. 

The notion of immediate subformula is given by the 

followi!lg rules: 

IO: A has no immediate subformula. 

Il: -X has exactly one immediate subformula, X. 

12, 3, 4: ·(XI\Y), (XV Y) , (X::>Y), each has exactly 

two immediate :3ubformulas, X and Y. 



The notion of subformula is defined as follows: 

SO: X is a subformula of X .  

Sl: If X _is an immediate subformula of Y, 

then X is a subformula of Y .  

S2: If X is a subformula of Y, and Y is a sub­

formula of Z, .then X is a sub formula of Z. 

By the degree of a formula is meant the number of 

occurences of logical connectives [~ , A ,  V ,  ::> J in the 

formula . 

se·ction 2 

Mdd�l�' �nd Validity 

By a (propositional intuitionistic) model we mean 

an ordered triple <a, R, I=) , where G is a non-empty 

3 

set, R is a  transitive, reflexive relation on G, and F 

(conveniently read "forces") is a relation between elements 

of G and formulas, satisfying the following conditions: 

For any r e: G ,  

PO: if any r J= A and r Rb then b t= A 

[recall A is atomic] 

Pl: .r I= (X A Y) iff r I= X and rt= Y 

P2: r I= (X VY) iff r F X or fl=Y 

P3: rt=--x iff for all b e: G such that 

r R b , bfo X. 



P4: r I= (X ::) Y) 

such that 

iff 

r R ll, 

for all t,. e: G 

if 

Remark: For re:G, by r* we shall mean any 

such that rR/l. Thus "for all r *  
, lf (r*)" 

mean "for all lle:G such that rR!l, 'f (t,.)" and 

"there is a r* such that 'f(r*)" shall mean 

t,. e:G 

shall 

"there 

is a lle:G such that rR!l and Thus P3 and 

P4 can be written more simply as 

P3: rt= -X iff 

P4: rt= (X:>Y) 

r *I= x then 

for all 

iff for all 

r* t= Y. 

r*ffi X 

if 

4 

A particular formula X - is called valid in the model 

< G,  R, I=) if for all re:a, r r-x. 
X is called valid if X is valid in all models. 

We will show later that the collection of all valid 

formulas coincides with the usual collection of 

propositional intuitionistic logic theorems. 

When it is necessary to distinguish between validity 

in this sense and the more usual notion, we shall refer 

to the validity defined above as intuitionistic validity, 

and the usual notion as classical validity. 

This notion of an intuitionistic model is due to 

Saul Kripke, and is presented, in different notation, 

in [12]. 



Examples of models will be found in section 5, 

chapter 2. 

· Section 3 

Motivation 

Let (G, R, F) be a model. G is intended to be 

5 

a collection of possible universes, or more properly, 

states of knowledge. Thus a particular r in · G may be 

considered as a collection of (physical) facts known at a 

particular time. The relation R represents (possible) 

time succession. That is, given two states of knowledge, 

r and 6 of G, to say r R 6 is to say, if we now know 

r·, it is possible that later we will know 6. Finally, to 

say r I== X is to say, knowing r, we know X, or, from the 

collection of facts r, we may deduce the truth of X. 

Under this interpretation condition P3 of the last 

section, for example, may be interpreted as follows: 

from the facts r we may conclude ~ X if and_ only if 

from no possible additional facts can we conclude X. 

We might remark that under this interpretation it 

would seem reasonable that if r F X and r R 6 then 

6�X, that is, if from a certain amount of information we 

can deduce X,_given addition information, we still can 

deduce X, or if at some time we know X is true, at 

any later time we still know X is true. We have 

required that this hold only for the case that X is 



atomic, but the other cases follow. 

For other interpretations of this modeling, see 

the original paper [12]. 

6 

For a different but closely ·related model theory in 

terms of forcing, see [4]. 

Sect·ion 4 

· -s-o·m·e· p·ro·perties of models 

Lemma 1: Let (G, R, r-) and < G, R, r- ... ) be two 

models such that for any atomic formula A, and any 

r l=·A iff r I= ... A. Then r- and t= ... are identical. 

We must show that for any formula X, 

<==> r � --x. This is done by induction on 

the degree of X and is straightforward� 

one case as an example. 

We present 

Suppose X is ~y and the result is known for 

all formulas of degree less than that of X [in 

particular, for Y] We show it for X. 

r I=- -Y r t= X <=-> 

(by definition) 

<==> ( V r * ) ( r *� 
(by hypothesis) 

y 

<-==> ( V r * ) ( r *� ... y 
. (by definition) 

<=> r J= -- ~ Y 

<==> X 

) 

) 

Q. E. D. 
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Lemma 2: Let G be a non-empty set and R be a trans-

itive, reflexive relation on G. Suppose � is a relation 

between elements of G and atomic formulas. Then r- can be 

extended to a relation F' between elements of G and all 

formulas in such a way that < G, R, t=') is a model. 

Proof: We define p' as follows: 

0) if r I= A then f* f= 'A 

1) rl='(X/\Y) if r I== 'X and r J: 'y 

2) r l='(XV Y) if r l='x or r J='y 

3) rt='~X. if for all r* , r* .-16 'X 

4) r t= '(X::> Y) if for all f* , if f* r- 'x , 
r* I= 'y 

This is an inductive definition, the induction being 

on the degree of the formula. 

It is straightforward to show that <a, R, F'> 

is a model. 

Q. E. D. 

From lemmas 1 and 2 we immediately have 

· ·The·o·r·em: Let G be a non.;...empty set and R be a transitive, 

reflexive relation on G. Suppose � is a relation between 

elements of G and atomic formulas. Then F can be extended 

in one and only one way to a relation, also denoted by I= 

between elements of G and formulas, such that <a, R, F) 

, 



is a model. 

Theorem: Let (G, R, t=) be a model, X a formula, 

and r, bEG .  If r F X and I'Rb, then b I= X. 

8 

Proof: A straightforward induction on the degree of X 

(it is known already for X atomic). For example, suppose 

the result is known for X, and r F ~x. By definition, for 

all f*, I'*..¥::X. But. I'Rb so any R-successor of� is an 

R-successor of r . Hence for all b*� X, so � F ~X. 

The other cases are similar. 

Q. E. D. 

Section 5 

Alg·eb·raic models 

In addition to the Kripke intuitionistic semantics 

presented above, there is an older algebraic semantics, that 

of pseudo-boolean algebras . In this section we state the 

algebraic semantics, and in the next we prove its equivalence 

with Kripke's semantics. A thorough treatment of pseudo­

boolean algebras may be f�und in [15]. 

Def: A psuedo-boolean algebra (PBA) is a pair 

where· B is a non-empty set and 2 is a partial ordering 

relation on B such that for any two elements a and b of B, 



1) the least upper bound (av b) exists. 

2) the greatest lower bound (a� b) exists. 

3) the pseudo compliment of a relative to 

b (a=-> b), defined to be the largest 

x e: B such that a/\ x � b, exists. 

4) a least element A exists. 

Remark: In the context=> is a mathematical symbol, 

not a metamathematical one. 

Def: h 

formulas 

1) 

2) 

3) 

4) 

Let -a be a => /\ 

and V be -/\ 

is called a homomorphism (from the 

to the PBA (B, 2)) if h: W-> B 

h (XAY) = h (  X) n h (Y) 

h (XYY) = h (X) V h (Y) 

h (~X) = -h (X) 

h (X:=>Y) . = h (X) s=> h (Y) 

set w of 

and 

If ( B, 2)is a PBA and h is a homomorphism, 

the triple (B, 2, h) is called a (algebraic) model 

for. W, the set of formulas. 

If· X is a formula, X is called (algebraically) 

valid in the model ( B, i , h) if h (X) -V - . 
X is called (algebraically) valid if X is valid 

in every model. 

9 
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A proof may be found in [15] that the collection 

of all algebraically valid formulas coincides with the 

usual collection of intuitionistic theorems. 

· Section 6 

"Equiva·1e·nc·e· ·o"r algehraic and Kripke validity 

First, let us suppose we have a Kripke model 

[we will not use the name "Kripke model" 

beyond this section. ]  We ·will define an algebraic model 

<B, 2-, h) such that for any formula X, 

h(X) = V iff for all re:G, rt== x. 

Remark: This proof is based on exercise LXXXVI of [l] . 

If b � G, we call b R-closed if whenever re:b 

and I'R6 , 6e:b. 

We take for B the collection of all R-closed 

subsets of ' G .  

set inclusion. 

h(X) 

For the ordering relation < , we take f; , 
Finally, we define h by 

= ·{re:G r I= X} 

It is fairly straightforward to show that < B, < ) 

·i·s a . PBA . Of the four required properties, the first two 

are left to the reader. We now show: 
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if a, be: B, there is a largest x e: B such that 

an x<b. We first note that· the operations u and n are 

just the ordinary union and intersection. 

Now, let p be the largest R-closed subset of 

(G.!. a) Vb [where by we mean ordinary set 

complimentation]. We w111 · show that for all x e: B, 

iff anx�b, 

which suffices. 

Suppose x �p Then 

X c;; ( G .:.. a) U b 

a(' x� an[ (a.:.a) u b J 

a n x c af'\b 

a n x � b 

. a f\ X < ·b 

Converseley, suppose an x < b. Then 

but 

(atix) U (x.!.a} � b V (x.!.a) 

x �bu (x .!.a) 

x £ b V (G .!.a) 

X e: B, 

X � p 

X � p 

so X 1s -R-closed. Hence 

The reader may verify that 

element. 

<P e: B and is a least 



Next·we remark that h is a homomorphism. We 

demonstrate only one of the four cases, case 4 .  Thus 

we must show that h(X.::>Y) is the largest xEB such 

that 

h(X) () x < h (Y) 

First we show 

h (X) /) h (X::> Y) < h (Y) 

That is, 

{rjrt==x} n {rlrt=x�Y} G · {rjrt=Y} 

But it is clear from the definition that 

if r t= X and- r r- X;::, Y, then r t== Y. 

Next, suppose there is some bsB such that 

12 

h (X) ,\ b < h (Y) but h (X::>Y) < b. Then there 

must be some rsG such that rsb but r ih (X:::> Y) , 

i. e. r� X :>. Y. Since r-f- X ::> Y, there must be some 

r* such that r* I= X but r*Y.. Y. Since b is R-closed, 

r*sb. But also, r*Eh (X)., so r*sh (X)I) b ,  and so by 

assumption, r*sh (Y), that is, r* I= Y, a contradiciton. 

Thus h (X::>Y) . is largest. 

Thus <B, 2, h > is an algebraic model. We leave 

it to the reader to verify that the unit element V of 

B is G itself. 
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Hence h(X) = V iff for all rsG, rt::x. 

Conversely, suppose we have an algebraic model 

( B, 2, h> . We will define a Kripke model <a, R, I=) 

so that for any formula X, 

h(X) = V iff for all fsG, r r- X. 

Lemma . 1: Let F be a filter in B and suppose 

(a�b) t F. Then the filter generated by F and a 

does not contain b. 

Proof: If the filter generated. by F and a contained 

b, then [15, pg. 4 6-8.2] for some c e: F, 

So C < (a=> b) and hence (a ==->b) e: F by 

8 .2] again. 

Lemma 2 : Let F be a proper filter in B 

-a t F. Then the filter generated by F 

also proper. 

Proof: By lemma 1, since -a = (a -=>A). 

CI) a 

[15, 

and 

and 

Lemma 3: Let F be a filter in B and suppose 

< b. 

pg. 4 6, 

Q. E. D. 

suppose 

a is 

Q. E.D. 

.a i F. Then F can be extended to a prime filter P 

such that a i P. 
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Proof: (This �s a slight modification of [15 , pg. 49, 

9. 2] ,  included for completeness). 

Let O be the collection of all filters in B not 

containing a. O is partially ordered by G . 

0 is non-empty since F e: 0. 

Any chain in O has an upper bound since the union 

of any chain of filters is a filter. 

By Zorn's lemma , O contains a maximal element P. 

Of course , at P. We need only show P is prime. 

Suppose P is not prime. 

Let .. S 1 be the filter generated by P and a1 , 

and S 2 be the filter generated by P and a 2 . 

Suppose a e: S 1 and a e: S2. 

for some c1 , c2 e: P ,  a 1 nc1 2 a 

and 

hence 

But C e: p and (a 1 V a2) ·e: p 

-SO a e: P. But a t. P ,  so 

either a t S 1 or a i S 2. 

Then [15, pg. 4 6, 8. 2] 

and 

Suppose a i S 1 . By definition, S 1 e: 0. But 

S 1 is the filter generated by p and a.1 , hence 

, so P is not maximal , a contradiction. 

Similarly if a i S 2 . 

Thus P is prime 

Q. E.D. 



Now we proceed with the main result. 

we have <B, �, h) . . 

Recall, 

Let G be the collection of all proper prime 

filters in B. 

Let R be , set inclusion. 

For any r e: G and any formula X, let r I= X 

if h (X) e:r.  
To show the resulting structure <a, R, F) is 

15 

a model, we note property PO 

Pl: 

is immediate. To show 

r1= (X /\ Y) iff h (X /\ Y) e: r 
iff h (X) /"\ h (Y) e: r 
iff h (X) e: r and h (Y) e: r 
iff fFX and r t= Y 

[using the facts that h is a homomorphism and r is 

a filter]. 

Similarly we show P2 

prime. 

using the f�ct that r is 

To show P3 

Suppose fl=~X. Then h (~X) e:r, 
so ( V tie: G) (r � b implies 

( V be: G) (f c; b implies 

( V be:G) (r Rb implies 

i .e .  · for all f* , f*ffiX. 

h (~X) e: b  [using the fact that and 

h (~X) e:b) 

h.(X) ¢ b) 

b � X) 

h (X) e: b 

imply : -h (X) A h (X) e: b , 

proper] . . 

so /\e:b and b is not 



Suppose r� ~x. Then h(~X) t I', or 

-h (X) t I'. By lemma 2, the filter generated by r 
and h(X) is proper. By lemma 3, this filter can 

be extended to a proper prime filter b Then 

r � b and 

b F X) 

h(X) e:, b • So (3 b e: G ) ( I' R b and 

i.e . .  for some r* , I'* I= X. 

· P4 isshown in the same way, but using lemma 1 

instead of lemma 2. 

Thus (G, R, I=) is a model. 

Finally, to establish the desired equivalence, 

suppose first, h (X) = V . Since V is an 

element of every filter, for all re: G ,  r F X. 

Converseley, suppose h (X) -I v .  But . {V} is 

a filter and h (X) t {V} . By lemma 3, we can 

extend {V} to a proper prime filter r such that 

h(X) t r. Thus r e: G and r,¥:x. 

Thus we have shown 

Theorem: X is Kripke valid if and only if X is 

algebraically valid. 
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CHAPTER 2 

Propositional Intuitionistic Logic - Pr66f The��y 

Section 1 

Beth tableaus 

In this section we present a modified version of 

a proof system due originally to Beth. It is based on 

[l, section 145], but at the suggestion of R .  Smullyan, 

we have introduced signed formulas and single trees in 

place of the unsigned formulas and dual trees of Beth. 

By a signed formula we mean TX or FX where X 

is a formula. 

I£ S is a set of signed formulas and H is a 

single signed formula, we will write S V {H} �imply as 

{S, H} or sometimes, S, H. 

First we state the reducti:on rules, then we describe 

their use. S is any set (possibly empty) of signed 

formulas, and X and Y are any formulas. 

Tl\ S, TX I\ Y 
S, TX, TY 

Fl\ S . FXAY 
s, FX I s, FY. 



TV 

T~ 

S2 TXV Y 
s, TX, Is, TY 

s, T~X 
s, FX 

S, TX:::::> Y 
S, FXjS, TY 

In rules FN and F ::> 

{TX I TXe:S} •. 

FV 

F~ 

F .:::> 

s, FXVY 
s, FX, FY 

s, F~X 
ST, TX 

S, FX ::> Y 
ST, TX, FY 

above, ST means 

Remark: S is a set, and hence {S, TX} is the same 
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as {s, TX, TX}. 

are not necessary. 

Thus duplication and elimination rules 

If 'U is a set of signed formulas, we say one 

of the above rules, call it rule R, applies to U if 

by appropriate choice of S, X, and Y, the collection 

of signed for�ulas above the line in rule R becomes '"\..l .  

By an application of rule R to the set '"U we 

mean the· replacement of U by U 1 ( or by U 1 and 

'U 2 if R is FI\ , T v , or T ::> ) where --U is the 

set of formulas above the line in rule R (after suitable 

substition for S, X, and Y) and -U 1 (or -u. 1, · U2) 

is the set of formulas below. This assumes R applies 

to u. Otherwise, the result is again --u. For 

example, by· applying rule F::, to the set . 
·{TX, FY ., FZ::>W} 

we may get the set {TX, 'i'Z, FW}. By applying rule TV 

to the set {TX, FY, TZVW} ·we may get the two sets 

{TX, FY, TZ} and {TX, FY, TW}. 



By a configuration we mean a finite collection 

·{s1, s2, ... , Sn} of sets of signed formulas. 

By an application of the rule R to the con-
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we mean the replacement of 

this configuration with a new one which is like the first 

except for containing, instead of some Si, the result 

(or results) of applying rule R to Si. 

By a tableau we mean a finite sequence of con­

figurations el' C.2, ... , C.n in \'{hich each configuration 

except the first is the result of applying one of the 

above rules to· the preceeding configuration. 

A set S of signed formulas is closed if it 

contains both TX and FX for some formula X. 

A configurat"ion {Sl' S2' . . .  , Sn} is closed 

each s. in it is closed. 

A tableau el, C2, . . . , en is closed if some 

in it is closed. 

if 

ei 

By a tableau for a set S of signed formulas, 

we mean a tableau e.1, C.2, ... , Cn in which C.1 is fs}. 

A finite set of signed formulas S, is inconsistent 

if-some tableau fo� S is closed. Otherwise S is consistent. 

X is a theorem if· { FX} · is �onsis tent, and a closed 

tableau for. {FX} is called a proof or· ·x; If X is a 

theorem, we write 

We will show in the next few sections the correctness 

and completeness of the· above system relative to the 

·semantics of Chapter 1. 



Examples of proofs in this system may be found in 

Section 5 .  

2 0  

We have presented this system in a very formal 

fashion because it makes talking about it easier. In 

practice there are many simplifications which will become 

obvious in any attempt to use the method . Also, proofs 

may be written in a tree form. We find the resulting 

simplified system the easiest to use of all the intuition­

istic proof systems, except in some cases, the system 

re·sulting by the same Simplifications from the closely 

related one presented in Section 4 of Chapter 6 .  A 

full treatment of the corresponding classical tableau 

system � with practical simplifications, may be found in 

[ 1 8 ] . 

Def: 

S'e c·t f oti 2 

Correctness of Beth Tahlea·us 

We call a se� of signed formulas, 

{TX1, . . .  , TXn, FY1, . . .  , FYm}, 

realizable if there is some model (G, R, I=> and some 

r e: a such that r J= x 1 , . . . , r r- xn , r :f-: Y 1 , . . . , r � Y m . 

We say that r realizes the set . . 

If {s1, s2, · · � , Sn} is a configuration, we call it 

realizable if some Si in it is realizable. 
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Theorem: Let C, 
l ' e_ 2, .. . , C,. n be a tableau . 

If e_i is realizable, so is e_ 1 
+ 1. 

Proof: We have eight cases, depending on the rule whose 

appli cation produced <:.. i + 1 from C., i. 

Case 1 :  e_. i is . { ... , { S , TX V Y} , • •  ·• } and 

� i + l is { ... , {S,TX } , { S , TY }, ... }. Since ei 

is realizable, some element of it is realizable. If 

that element is not {S,TX V Y }, the same element of 

e i + l is realizable. If that element is { S, TX v Y }, 

then for some model ( G ,  R , I==) and some r e: G ,  r realizes 

{ S , TX V Y }. That is, r realizes s and r l= ( x v Y) . 

Then r t== X or r r-= Y , so either r realizes {S , TX }  

{ S, TY }  . In either case, {:_, i + l is realizable. 

Case 2 : e i  is { . . . , { S, F~X},  . . .  } and 

or 

Ei + 1 is· { . . . , {ST, TX }, . . .  } . e.i is realizable, 

and it suffices to consider the case that . { S, F ~X }  is the 

realizable element. Then, there is a model <a, R ,  t= )  

and a f e:G such that r realizes s and r� -X. 

Since r ti!=. ~X, for some f * e:G , f* P X. But clearly, 

if r realizes s, f* realizes ST [by the second 

theorem of' Chapter 1, section 4], hence f * realizes 

{ sT, TX } . and e_ i + l is :realizable. 

The other six cases are similar. 

Q.E.D. 
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Corollary : The system of Beth tableaus is correct ; 

that is, if � IX, X is valid. 

Proof : We show the contrapositive. Suppose X is 

not valid. Then there is a model <a , R, l= )  and a 

rEG such that r,f-:x. In other words, · {F X} is 

realizable. But a proof of X is a closed tableau 

. . . , {{F X}} .  in which e._l is 

is realizable, hence each e__,i is realizable . 

But obviously a realizable configuration cannot be closed. 

Hence AL-
1
x .  

Section 3 

Hintikka collections 

In classical logic, a set S of signed formulas is 

sometimes called downward saturated, or _a Hintikka set, 

if 

TX I\ Y e: S -= > 

FX V Y  e: S -= > 

TX V T  e: s = > 

FX/\ Y e: S -= > 

TX e: S 

FX E S  

TX e:S 

FX e: S 

and 

and 

or 

or 

TY e: S 

FY £ S 

TY e: S 

FY £ S 

Q. E. D. 



T-..Xe:S 

TX::> Ye:S 

F~Xe:S 

FX ::> YES 

== > FXe:S 

= > FXES 

= > TXe:S 

= > TXES 

or TYe: S 

and FYES 

Rerr.ark: The names Hintikka set and downward saturated 

set were given by Smullyan [18]. 

originator, c�lled them model sets. 

Hintikka, their 
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Hintikka showed that any consistent downward saturated 

set could be included in a set for which the above 

properties hold with => replaced by <=> . From this 

follows the 'completeness of certain classical tableau 

systems. This approach is thoroughly developed by  

Smullyan in [18] . 

We now introduce a corresponding notion in intuition­

istic logic, which we call a Hintikka collection. While 

its intuitive appeal may not be as immediate as in 

the classical case, its usefulness is as great. 

Def: Let G . be a collection of consistent sets of 

signed formulas. We call G a Hintikka collection if , 

for any rea , 

TX/\ Y e: r  

FX V Y e r  

and 

and 

TY e: f  

FY e: r . 



Def : 

TX V Ye: r  

FX I\ Y e: r  

F~X e: r 

" 

FX ::> Y e: r  

==> 

= >  

==> 

� 

==> 

TXe: r  

FXe: r  

FXe: r  

FXe: r  

or 

or 

or 

for some 

I'T t;;: A and 

for some 

r T <;A ., TXe:A, 

TY e: r  

FYe: r 

TYe: r  

A e:G, 

TXe:A  

A e:G, 

FYe:ti 

Let G be a Hintikka collection. We call 

2 4  

(a, R , t=) a model for G if 

1 )  <a ,  R, � )  is a model 

2) rT £ A  ==> I'RA 

3) TXe: r  ==> I' l== X 

FXe:r  ==> r� x 

Theorem : There is a model for any Hintikka collection . 

Proof : Let G be a Hintikka collection . Define R by : 

I'RA if If A is atomic, let r t= A if TA e: r, 

and extend F to produce a model < G, R, I=) Showing 

property 3) is a straightforward induction on the degree 

of X .  We give one case as illustration . 

-Y and the result is known for Y .  

Suppose X is 
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Then T~XEf c=> ( V 6EG) (rT s 6 => T~X£6) 

-=> ( \I 6 EG) (rT £ 6 => FXe:6) 

=> ( \J 6e:G) (fR6 => 6f; X) 

=> fp ~X 

F~X£ f => ( 3 lle:G) (rT�6 and TXEf) 

-==> ( 3 6e:G) (fRll and fl):=X) 

r �  ~x 

Q . E. D . 

It follows from this theorem that to show the 

completenes s  of Beth tableaus we need only s how the following: 

If ,IL.
I

X, _ then there is a Hintikka collection G s uch that 

for some fEG, FXEf. 

Secti·on 4 

Completenes s  of "Beth ·t·abTe·a:us 

Let S be a set of s igned formulas.  By '3- (S )  

we mean the collection of all s igned subformulas of formulas 

in S. If S is finite, :f (S) is finite. 

Let S be a finite, consistent set of s igned formulas . 

We define a reduction sequence for S (there may be many) 

as follows: 

Let S
0 

be S. 

·Having defined Sn, a finite cons istent set of 
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signed formulas, suppose one of the following Beth reduction 

rules applies to s : n T A , F A ,  

Choose one which applies, say F /\ . 

T V , F V , T~ 

Then S is n 

, or T ::> • 

. {u, FXA y}. This is consistent, so clearly, either 

{ U , FX /\ Y , FX} or { U, FX /\ Y, FY } is consistent. Let 

{U , FX /\ Y, FX} if consistent, otherwise, 

be {U , FX A Y, FY} . 
I 

applies and was chosen, then is 

Similarly, if 

{U ,  TX A Y } . 

Since this is consistent, {U , TX/\ Y, TX, TY} is 

TA 

consistent. Let this be Sn +  1. In this �ay we define 

so , s1 , s2 , 
Sn C 

Sn + 1. 

This sequence has the 

Further, each Sn is finite, and 

a sequence 

property 

consistent. Since each Sn � 1- (s), there are only a 

f:inite number of different possible Sn. Consequently, 

there must be a member of the sequence, say S ,  such that 
n 

the application of any one of the rules (except F- or 

F ::,  ) produces Sn again. Call such an S a reduced n 
set of S, and denote it by S ' .  Clearly any finite, 

consistent set of signed formulas has a finite, consistent 

reduced set. Moreover, if S '  is a reduced set, it has 

the following suggestive properties: 

TX /\ Ye:S ' -==> TXES ' and TYe:S' 

FX v Ye:S ' c:::i> FXe: S '  and FYe:S' 

TX V Ye: s·r -=> TXE:S ' or TYe:S' 

FX A Ye:S ' -=> FXe:S ' or FYe:S' 

T~Xe:S.' -=> FXe:S ' 

TX:> Ye:S ' -=> FXe:S ' or TYe:S ' 



S' i s  consistent. 

2 7  

Now , given any finite , consistent set of signed 

formulas , S ,  we form the collection of assoc iated sets 

as follows : 

If F~X e: S ,  

associated set. 

is an 

If FX => Y e:S , · { sT , TX , FY } is an 

associated set. 

Let a.(s) be the collection of all assoc iated sets 

of s .  Cl(S) is finite _, since Ue: a( S) implies 

and 1 < s )  is finite. 

0.(S) has the· following properti es : if s 

consistent , any assoc iated set is consistent , and 

F~xe:s 

FX .:, Y e:S ==> 

for some Ue:a.( S) 

sT c u ,  TXe:U 

for some ue: a(s) 

U f;  'j(S) 

is 

Now we proceed with the proof of completeness. 

Suppose Then · {Fi } is consistent. Extend 

it to its reduced set , s0. 

Form U(s0). Let the elements of Ct( S0) be 

Ul , U2 , ... , Un. Let s1 be the - reduced set of u1 , . . .  , 

Sn be the reduced set of Un . 

• . . , . ·s . . n 

Thus , we have the sequenc e 
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Next form CL( s1). Call its elements 

Un + 2' . . .  , u m . Let s n + 1 be the reduced set of 

u + 1 and so on. Thus, we have the sequence n 
so ,  Sl, . . . , s n' s + n l' . . . , s m . Now we repeat the 

process with s2 , and so on. 

In this way we form a sequence s0, s1, s2, . . .  

Since each Si f; )t! (S), there are only finitely many 

possible different Si. Thus we must reach a point 

Sk of the sequence such that any continuation repeats 

cUi earlier member. 

Let G be the collection {s0, s1, . . .  , Sk} 

It is easy to see that G is a Hintikka collection. But 

FX£S0 £G.  Thus we have shown: 

Theo�em: Beth tableaus are complete. 

Remark: This proof also establishes that propositional 

intuitionistic logic is decidable. For, if we follow 

the above procedure beginning with FX, after a finite 

number of steps we will have either · a closed tableau for 

· {fX} , or a counter-model for X. Moreover , the number of 

steps may be  bounded in terms of the degree of X. 

The completeness proof presented here is, in essence, 

the or�ginal proof of Kripke [ 12].  For a different 

tableau completeness . proof, see section 6, chapter 5, where 

it is given for first order logic. For a completeness 

proof or· an axiom system, see section 10 ,  chapter 5, where 
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it also is given for a first order system. The work in 

section 6, chapter 1 provides an algebraic completeness 

proof, since the Lindenbaum algebra of intuitionistic 

logic is easily shown to be a pseudo-boolean algebra . 

See [15]. 

In this section, so that the reader may _ gain familiarity 

with the foregoing, we present a few theorems and non­

theorems of intuitionistic propositional logic, together 

with their proofs or counter-models. 

We show 

1) -¥-r A V  ~A 

2) rr  ~ ~ ( A v - A ) 

3) � I  ~ ~A � A 

4) l-r  ( A v B )  ::) ---: ( :--A /\ ~B) 

5) "'° r  ~ ~ ( A v B) :::> ( ~ ~A V ~ ~B) 

For the general principle connecting 1) and 2) 

see section 8, chapter 4 .  

1) 

A counter example for this is the following: 

G = 



A F  A is the l= relation for atomic formulas, 

and l== is extended to all formulas as usual. 

We may schematically represent this model by 

r 

We claim rY-= A v - A .  

either r t= A or r \= ..., A .  

A FA 

Suppose not . 

But r � A .  

then since rRA, 6..¥= A ,  but A I== A .  Hence r .r-=  Av ,.,A . 

2) 
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A tableau proof for this is the followi�g, where the 

reasons for the steps are obvious . 

r F ~ ~A 

{ {F ~ ~ ( A v  ~A) } }  

{ {T~ ( A v ~A) } } 

{ {T ~ (A v ~A) , F ( A v -A) } } 

. { {T - (A v ~ A ) , FA , 

. { {T- (A v ~A) , TA } }  

. { {F ( A v -A) , TA } }  

{ {FA , F~A , TA } }  

3 )  ..141 ~ ~A =>  A .  
. . 

F~A } } 

The model of example 1) has the prope�ty that 

but r � A. 
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The following is a proof: 

. { { · F ( ( A v B) .:::> ~ (~A /\ ~B) ) } } 
. { { T ( A V B ) , F ~ ( ~A A  ~B)}} 

' { {  T (A V B), T ( ~A /\  ~B)}} 
· t { T ( A V B), T~A T~B } }  , 
' { { T {A V B), FA , T~B } }  

' { { T ( A V B ) ,  FA, F B } }  

. { {TA, FA, FB}, 1TB,  FA, FB}} 

5 )  Y.I ~ ~ ( A V B ) :::, ( ~ ~A V ~ ~B )  

A counter example is the following: 

n R n 

ti. I=  A ,  n F B is the . l= relation for 

atomic formulas, and F is extended as usual. 

We may schematically represent this model by 

Now , 6 I= A, so 6 I= A V  B. 

Likewise, n f::: A v  B. It follows that r l== ~~(A V B) 

But if rt=:~~A v  ~~B ' , either or ff:= ~~B 

If . r �  ~~A ,· it would fol low that n FA If fF~~B 

it would follow that � F B . Thus r� ~ ~A V  ~~B. 
, 



. CHAPTER 3 

Related Systems of Logic 

· _ section 1 

p�i�itive intuitionistic logic - semantics 

This is an alternative formulation of intuitionistic 

logic in which a symbol f is taken as primitive, instead 

of , which is then re-introduced as a formal abbreviation, 

~X for X .::> f. For presentations of this type, see [ 14] 

or [16]. 

Specifically, we change the definition of formula 

by adding f to our list of propositional variables and 

removing from the set of connectives. is re-

introduced as a matamathematical symbol as above. Our 

definition of subformula is also changed accordingly. 

The definition of model is changed as follows: 

replace F3 [section 2, .chapter l] by P3 ' : r Jb- f. 

This leads to a new definition of validity, which 

we may call f-validity. 

�heorem: Let X be a formula (in the usual sense) and 

let X '  be the corresponding formula with written in 

terms of f. Then X is valid if and only if X '  if 

f-valid. 



·pr·oo.f: We show that in any model (a, R, t= > , 

r I= X iff r t-=  X '  (where we use two different senses 

of 1= ). The proof is by induction on the degree of 

3 3  

X · (which is the same as the degree of X'). Actually, 

all c ases are easy except that of � itself. So, suppose 

the result is known for all formulas of degree less than 

that of X, and X is ~Y . Then 

r l= X 

<=> 

<=> 

r I= ~y 

V r* 
v r* 

but clearly this is equivalent to r r- Y'� .f 

r* .¥= f. Hence equivalently, r F X' . 

Section 2 

f-primitive intuitionistic logic-proof theory 

since 

Q. E. D. 

In this section we still retain the altered definition 

of .formula in the last section, with f primitive. We give 

a tableau system for this. The new system is the same 

as that of section 1·, chapter 2 -in all but two respects. 

First, the rules · T~ and F~ are removed. Second, a 

set S of signed formulas is called ciosed if it contains 

TX and FX for some formula X, or if it contains Tf. 
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This leads to a new definition of theorem , which we 

may call f-theorem . 

Theo�em: Let X be a formula (in the usual sense )  and 

let X' be -the corresponding formula with written 

in terms of f. Then X is a theorem if and only if 

X' is an f-theorem. 

This follows immediately from the following. 

Lemma: Let S be a set of signed formulas (in the 

usual sense) and let S' be the corresponding set of 

signed formulas with replaced in terms of f. Then 

S is inconsistent if and only if S' is f-inconsistent . 

Proof: We s how this in two halves. First,  suppose S 

is inconsistent. We show the result by induction on the 

length of the closed tableau for S. There are only two 

significant cases. Suppose first that the tableau for 

S is (:. l' {:__2 , . . .  , (: n , C: 1 is { {U ,  F~X}} and 

L. 2 
is ' { {UT , TX}}. Then by induction hypothesis , 

{UT' , TX' } is f-inconsis tent. Hence , so is 

. {U ' , FX ' ;:;, f } , i . e • s ' . 
is · { {U, T~x}} and C:. 2 
the induction hypothesis , 

hence so is . {U' , TX' :, f }  

The other case is if (: 1 
is . { {U, FX}}. 

{U ' FX' }  . , 
, i. e. 

is 

s ' . 

Then by 

f-inconsistent 



The converse is shown by induction on the length 

of the closed · f-tableau for S'. If this f-tableau 

is of length 1, either S' contains TX and FX 

for some formula X, and we are done, or S' contains 

Tf, which is not possible since we supposed S' arose 

from standard set S. 

The induction steps are similar to those above. 

3 5  

Q. E. D. 

The results of this and the last sections, together 

with our earlier results give : X' is f-valid if 

and only if X' is an f-theorem. This is not the 

complete generality one would like since it holds only for 

those formulas X' which correspond to standard formulas 

X. The more complete result is, however, true, as the 

reader may show by methods similar to those of the last 

chapter. 

Section 3 

Minimal logic 

Minimal logic is a sublogic of intuitionistic logic 

in which a false statement need not imply everything. The 

original paper on minimal logic is Johannson's [8]. 

Prawitz establishes several results 9oncerning it in [14], 



and it is treated algebraically by Rasiowa and Sikorski 

[ 15]. 
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Semantically, we use the f-models defined in 

section 1, with the change that we no longer require P3 1 , 

that is, that rA6 f. 

Proof theoretically, we use the f-tableaus 

defined in_ section 2, with the change that we no longer have 

closure of a set because it contains Tf. 

We leave it to the reader to show that S is 

provable in this tableau system if and only if X is valid 

in this_ model sense, using the methods of chapter 2. 

Certainly every mini mal logic theorem is an 

intuitionistic logic theorem, but the converse is not true. 

For example, (A A ~A )  :::> B is a theorem of intuitionistic 

logic, but the following is a minimal counter-model for 

it, or rather, for ( A /\ ( A ::> f)) ::::, B :  

G 

rRr 

= {r}  

rt::A , r F f  
and J= is extended as usual. 

r t= A A  (A ::> f) ,  but r� B . 

It is easily seen that 
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Section 4 

Classical l"ogic 

Beginning with this section, we return to the usual 

notions of formula, tableau, and model, that is, with /V 

and not f as primitive. 

Some authors call a set -:1- of unsigned formulas 

a (classical) truth set if 

X /\ Ye: 'j­

X v  Ye: f <==> 

<=> 

<==> 

Xe: ":1-

Xe: :f 

X i f  

x t. 1-

and 

or 

or 

Y e: ":/­

y f. 1-

Y e:  r 

It is a standard result of classical logic that X 

is a classical theorem if and only if X is in every truth 

set. There is a proof of this in [15]. 

Theorem: Any intuitionistic theorem is a classical theorem. 

Proof : Suppose X is not a classical theorem. Then 

there. is a truth set :J such that Xi -:1-. We define a 

very simple irituitionistic counter-model for X, 

as follows: 

(a ,  R , F) , 



<=> 

extended as usual. 

for A atomic , and I= is 

It is easily shown by induction on 

the degree of Y that 

j- l= y <=> y E j-
Hence -, 'J-%-= X 

theorem. 

and X is not an intuitionistic 
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Q . E. D  

That the converse is not true follows since we showed 

in section 5 ,  chapter 2 that Thus we have 

minimal logic is a proper sub-logic of intuitionistic 

logic which is a proper sub-logic of classical logic. 

Section 5 

Modal logic , S4 -· semantics 

In this section we define the set of (propositional) 

S4 theorems semantically using a model due to.Kripke [11]. 

S4  was originated by Lewis [13] , and an algebraic treat-

ment may be found in [15]. 

is in [14]. 

A natural deduction treatment 

The definition of formula is changed by adding a 

to the set of unary connectives. Thus , for example 

~ O ~ ( A v Cl ~A) is a formula. □ is read "necessarily". 



◊ is sometimes taken as an abbreviation for ;,./ □ -

3 9  

and is read "possibly ".  [In [13], ◊ was primitive]. 

The S4 model is defined as follows: It is an 

ordered triple (G, R, I= )  where G is a non-empty set, 

R is a transitive, reflexive relation . on G, and p 

is a relation between elements of G and formulas, 

satisfy,1ng the following conditions. 

Ml: r r XA Y iff r I=- X and r r- Y 

M2: r t=  X v  Y iff r r- X or r 1=  Y 

M3 : r t=~ X iff r,f-: X 

M4: r t= x :, y iff rJ=x or r J:= Y 

M5: r t, Cl X iff for all r*, r* t= X.  

X is s4 valid in (G, R , I=) if for all r e::G , 

r r- X. X is S4 valid if X is s4 valid in all 

S4 models. 

The intuitive idea behind this modeling is the 

following: · a  is the collection of all possible worlds. 

I'R6 means 6 is a world possible relative to r . 
rt= X means X is true in the world I' . Thus M5 may 

be interpreted: X is necessarily true in r if and 

only if X is true in any - world possible relative to r .  
This interpretation is given in [11]. 
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Section 6 

Modal logic, S4 - proof theory 

We define a tableau system for S4 as follows. 

Everything �n the definition of Beth tableaus in section 1, 

chapter 2 rerr.ains the same except the reduction rules 

themselves. These are replaced by 

MTA s, TX A Y MFA s, FX /\ Y 
s ,  TX , TY S , FXj S , FY 

MTV s, TX V Y - MF V s, FX V Y 
s ,  TX j S , TY s ,  FX , FY 

MT~ s, T~X MF� s,  F'."X 
s,  FX s, TX 

MT:::> S, TX:::> Y MF::> s, FX .::, Y 
s,  Fxl s ,  TY s ,  TX , FY 

MT□ s, T o x  MF□ s ,  F O  X 
s ,  TX So , FX 

where, in rule MF □ , is 

. {T CJ X I T □ X e: s} 

Again, the methods of chapter 2 can be adapted to 

S4 to establish the identity of the set of s4 theorems 

and the aet of S4 valid formulas. This is left to the 

reader. The original proof is in [1 1]. · we are more 

interested in the relation between S4 and intuitionistic 

logic � 



Section 7 

· -s-4· ·a·nd 'fntui tionistic logic 

A map from the set of intuitionistic formulas to ·the 

set of S4 formulas is defined by 

M(A ) = 

M(X V Y) = 

M(X /\ Y) = 

M (  ~x ) = 

M(X =>  Y) = 

We wish to show 

0 A for A atomic 

M(X) V M(Y) 

M(X) /\ M(Y) 

D ~M(X) 

O (M ( X) ::> M ( Y) ) 

Theorem: If X is an intuitionistic formula, X is 

intuitionistically valid if and only if M ( X) is S4-valid. 

This follows from the next three lemmas·. 

Lemma 1: Let < a , R, l= r) be an intuitionistic 

model, and < a ,  R, t=
84

) be an s 4  model, such  that 

for any rEG and any atomic A ,  

· Then for any formula X, . 

r p X I 

r F
s4  M ( A) 

r t==
84  M (X) 

_ Proof ;  A straightforward induction on the degree of X. 

Q . E . D. 
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Lemma 2 Given an intuitionistic counter-model for X, 

there is an S4 counter-model for M (X). 

Proof: We have <G, R, I== r> , an intui tionistic model 

such that for some rEG, r #=1x. We take for our s 4 

model < G, R, P 84 ) where p 84 is defined by -

if 

for A �tomic and any 
extended to all formulas . 

If A is atomic, 

fl f= 8 4  M ( A) <=> 

<=> 

<=> 

<==> 

fl in G, and I= 84 

fl f==-s4 P A  

( Y  ll * ) ll * r-= s4 A 

( V  fl* ) ll * Fr A 

fl F A r 

and the result follows by lemma 1. 

is 

Q . E.D. 

· Le·m:ma· 3: Given an s4 counter-model for M (X), there is 

an intuitionistic counter-model for X. 

an s4 model such that 

for some rEG, r ,f- 84M (X). · We take for our intui tionistic 

model <G, R, Fr) _ where Fr is defined by 

fl t==-8 4  M (A) 



for A atomic and any � 

extended to all formulas. 

Lemma 1. 

in G, and is 

Now the result follows by 

Q. E.D. 

I 

= 

. ,  



CHAPTER 4 

First Order Intuitionistic Logic - Semantics 

Section 1 

Formulas 

We begin with the following: 

1) denumerably many individual variables 

x, y, z, w, . . .  

2) denumerably many individual parameters 

a, b, c ,  d, 

3) for each positive integer n, a 

denumerable list of n-ary predicates, 
n D , • • •  

4) connectives, quantifiers, parantheses, 

A , V, "::), ~, 3 , V , (, ) . 

An atomic formula is an n-ary predicate symbol 

An followed by an n-tuple of individual symbols (variable s  

or parameters ) thus , An ( d. 1 , • • • , <:}... n ) .  
A formula is anything resulting from the following 

recursive rules : 



l------------------------- � 
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FO: any atomic formula is a formula 

Fl: If X is a formula, so is ~X  

F2, 3 .. 4: If X and y are formulas, so are 

( X t\ Y ) , ( X V Y ) ,  ( X :::> Y )  

F5,6: If X is a formula and X is a variable, 

( V  x ) X  and (3 x)X are formulas 

Subformulas are defined as usual, and the degree of a 

formula. The property of uniqueness of composition of a 

formula still holds. We note the usual properties of 

substitution, and we use the following notation: If X 

is a formula and a and S are individual symbols, by 

X ( a
) we mean the result of substituting S for every 

occurrence of a in x .  [every free occurrence in case 

a is a variable].  We usually denote this informally as 

follows: we write X as x ( a )  as X(S). It 

will be clear from context what is meant. 

We again use parentheses is an informal manner and 

we omit superscripts on predicates. 

Although the definition of formula as stated, allows 

unbound occurrences of variables in formulas, we shall 

assume, unless otherwise stated, that all variables in a 

formula are bound . Notation like X ( x )  however, indicates 

x may have free occurrences in X. 
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Mo"deTs' 'arid ValTdi'ty 

In this section we define the notion of a first order 

intuitionistic model, and first order intuitionistic validity, 

referred to respe ctively as model and validity. This 

modeling structure is due to Kripke and may be found, in 

different notion, in [ 12] .  The notions of chapter one, 

if needed , will be referred to as propositional notions to 

distinguish them . 

A 
If tP is a map to sets of parameters, by <? ( r ) 

we mean the set of all formulas which may be constructed 

using only parameters of 6' (r ) . 

By a (first order intuitionistic) model we mean an 
. . . 

ordered quadruple ( G, R, t=, fr >  where G is a non-

empty set, R is a transitive, reflexive relation on G, 

\= is a relation between elements of G and. formulas, 

and f is a map from G to non- empty sets of parameters, 

satisfying the following conditions : 

QO : 

Ql � 

Q2 :  

Q3 � 

Q4 : 

for any r EG , 

(P Cr ) C -
r J:: A .==> 

r t= A -=> 

r F (X /\ Y )  

f I= (X V Y )  

d"J C r * )  

AE f> (I') 

f * \:= A 

<==:=> r J= X 

<=� ( X y Y )  

r F X 

for A atomic 

for A atomic 

and r t== Y 

E p < r ) . and 

or r t-== Y  
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Q5: r t=  ~X <=> 

Q6: f F (X::> Y) <=> 

Q7: fp(3 x ) X ( x )  <=> 

Q 8: f I=( \I X ) X ( X ) <=> 

~Xs <P (r) and 

r* , r*f= X 

( X ::> Y ) E f ( f )  

r*, if . f * F X 

for all 

and for 

, r* t== y 

for some aE � ( r) , 

r t== x (a) 

for every I' *  and for 

aE f (f* ) ,  f* p X(a) 

We call a particular formula X valid in the model 
. ,.. 

if for all fEG such that Xs·tP ( r), 

X is called v.alid if X is valid in all models. 

all 

every 

The intuitive interpretation given in section 3, 

chapter 1 for the propositional case may be extended to this 

first order situation. 

In one ' s  usual mathematical work, parameters may . be 

introduced as one proceeds, but having introduced a 

parameter, of course, it remains introduced. This is what 

the map 5> is intended to represent. That is, for 

.... 



re:G, r is a state of knowledge, and (f ( r )  is the 

set of all parameters introduced to reach r .  [Or, in 

a stricter intuitive sense, lP (r) is the set of all 

mathematical entities constructed by time r]. 

4 8  

Since parameters, once introduced, do not disappear, 

we have QO. Q2-6 are as in the propositional case . 

Q7 should be obvious. Q8 may be explained: to know 

(V  x) X (x) at r ,  it is not enough merely to know X(a) 

for every parameter a introduced so far [i . e. for all 

a E  r(r) ].  Rather, one must know X (a) for all parameters 

which can ever be introduced [i. e. for all ae: f' ( r*), 

r*  I= X(a) J.  

The restrictions Ql, and in Q4, QS, and Q6 

are simply to the effect that it makes no sense to say we 

know the truth of a formula X if X uses parameters 

we have not yet introduced. It would, of course, make 

sense to add corresponding restrictions to Q3, Q7, and 

Q8, but it is not necessary. 

The or�ginal explanation of Kripke may be found in 

[ 1 2 ] . 

For a different but related· model theory in terms of 

forci�g see [4]. 



Section 4 

Some properties of models 

Theorem : In any model < G, R, F, IP >  , for any 

re:a, if r 1= x, xe: r (r) . 

· Proof : A straightforward induction on the degree of X. 
Q. E.D. 

Theorem : In any model (G, R ,  t= , (?) , for any 

formula X, if r I= X , T* F X. 

Proof : Also a straightforward induction on the degree 

of X. Q.E.D. 

·The·o·rem : Let G be a non-empty set, R be a transitive 

reflexive relation on G ,  and f be a map from G to 

non�empty sets of parameters such that 

for all re:G. Suppose I= is a relation between elements 

of G and atomic formulas such that r P A  -=> Ae: r ( r). 

Then I= can be extended in one and only one way to a 

relation, also denoted by F , between G and formulas, 

such that is a model. 

Proof : A straightforward extension of the corresponding 

propositional proof. 

Q.E.D 

Def : Let ... <a, R, P , f>> be a model and suppose a is 

some parameter such that a¢ u p < r). By fe:G 

<a, R , F ,  6> ) (b) we mean the model (a , R, t= ' , p ') a .. 

defined as follows : (P' ( r )  is the same as fl C r )  



except for containing a in place o� b if � e r) 

contains b . For A atomic, r I= A => 

l=- ' is extended to all formulas. 

· Le·mma : Let 

< G, 

any 

R I= ' , , 
formula 

< G, R, f= , 6') be a model, 

(P r ) be (G, R, r- , P> ( b). a 
X not containing a, 

r t=  X <=> r I== 'X e b) a 

at, 

· ·pr·o·o-r : By an easy induction on the degree of 

u <P e r)� re:G 
Then for 

X. 
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· --

Q.E.D. 

Def: Let < G, R, I= , f) 

some parameter such that 

be a model and suppose a is 

al re:a <P e r). By 

defined as follows: 

we mean the model < G, R, t=', f' '> 
· ·  <J> ' e r) is the same as cP ( r ) 

except for containing a as well as b whenever f' ( I') 

contains b. For A atomic, r \:: A => rt=' A '  where 

A '  is like A except for containing a at zero or 

more places where A - ·-contains b, and \:= ' is extended t'cr 

all formul9,s. 

· Lemma: 

and let 

Then if 

-is like 

L.et 

( G ,  

X is 

<a, R, ·1= ; P> 
R f= ' . , , P ' )  
any formula 

be .. 

not 

be a model 

<a, R, p ,  
containing 

at 
u 
r e:G t? < r )_ , 

f> ) b = a ·  
a, and if 

X except for containing a at zero or more 

X ' 
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places where X contains b, 

f t=  X <=> r F ' X' 

Proof: Again an easy induction on the degree of X .  

Q . E . D. 

Section 5 

Examples 

We show that two theorems of classical logic are not 

intuitionistically valid . . 

( V  x) 

but the following is an intuitionistic counter-model for it. 

We take the natural numbers as parameters. 

Let G 

r 1Rr J iff 

(P(ri) = · { 1, 2, 

i = o ,  1, 2, . . .  } 

. . . , i, i + 1 } 

rn t= A(i) iff i< n and F is extended to all form-

· ulas. We may give this model schematically. 

r
l F A(l) 

r2 F A(l), A (2 )  

r
3 1 , 2 , 3 , 4 F A(l), A (2 ) ,  A (3 )

° 

, r 



We Claim no r i (= ~ ~ ('V X) ( A ( X) V ~ A ( X) ) • 

Suppose instead that 

r i F ~ ~(v x) (A(x) v ~A(x) ) . 

Then for some j � i ,  

But j + 1 £ (1' ( r j), so 

rJ f= A(j + 1) y ,.,  A(j 

but r .¥= 
j 

A(j +l) since 

r r- ~ A(j 
j 

+ 1), then 

+l) 

j + 1 > 

since 

j , and 

r 
j 

Rf 
j + 

r
j + 1 ,t-= A (j + 1), a contradiction . 

� ( V X ) ( A V B ( X ) ) :, ( A V( V X ) B ( X ) ) 
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if 

l ' 

but an intuitionistic counter-model is the following, where 

again parameters are integers . 

r1Rr2 , r1Rr1 , r2Rr2 
c? ( r.1) = · { 1 } , &> < r 2 ) = . {1 , 2 }  

r t= A 2 

and t= is extended to all formulas. 

Schematically, this is 

r1 w=1 t= B (l) 

r2 � FB ( l) ,  A 



■------------· 

To show this is a counter-model, first we claim ; 

This follows because r1F B (l) so 

r
1

t= A V  B(l), 

r2 t==- A v B ( l ) 

. But r 1� A. 

since r 2,¥; B (2). 

Truth 

and 

and 

r 2 F A  so 

r 2 r- A v B ( 2 )  

Moreover, ry¥= ( V  x)  B ( x) 

Thus, r 1 � A v  ( V x) B ( x) . 

Section 6 

and almost-truth sets 
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In classical first order logic, a set f of formulas 

is sometimes called a truth set if 

1 )  X/\ Ye: � <=> -Xe: "'j- . and Ye: 1 
2 )  X V Y e: J- <=> Xe: 1- or Ye: ';/ 

3) ~Xe: 1 <-==> Xt ':1-

4) X ::J Ye: -:J- <.=> Xt 1- or Ye: 1-

5) ( 3 x) X (x)e: J- <-==> X (a) e: 1 for some parameter a 

6) ( V x) X (x)e: j- <=> X (a)e: :f for every parameter a 

where there is some fixed set of parameters, X and Y 

are formulas involving only these paramet�rs, and 5) 

and 6) refer to this set of parameters . 

, 

' ·  



We now call � an almost�truth set if it 

satisfies 1) - 5) above and 6a) 

( V X ) X ( x ) E: j => X (a) e: 1 for every parameter a .  

It is one form of the classical completeness 

theorem that for any pure (i. e. with no parameters) 

formula X, X is a classical theorem if and only 

if X is in every truth set . 

We leave the reader to show : 

Theorem: If X is pure and contains no occurrence of 

the universal quantifier, X is in every . truth set 

if and only if X is in every almost-truth set . 

Section 7 

Complete sequences 

The method used in this section was adapted from 

· forci�g techniques, and is due to Cohen [2] . 

· De'f: In the model (G, R, F , �) , we ca ll e an 

R-chain if 

2 )  fR 6 or 6 R r  

If e is an R-chain, by e we mean 

{ X I for some re:e, rt=  X } 
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I fl , 

, 
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I f  e is an R-chain , e is called complete if, 

for every formula X . with parameters from C. , X v  ~Xe: C:. • 

Lemma 1: Let C. 

( G ,  R , t-= , P> . 

be a complete R-chain in the model 

Then e . is an almost-truth set. 

This is a straightforward verification of the 

cases. We give case 4) as an illustration. 

Suppose (X :::> Y) e: e .  Then for some re: c. , 

r f= X ::> Y. Now either Xi e or Xe: E If Xe: e. , 
then for some 6£  e , 6 t= X. Let n be the R-last 

of r and 6. Then n F X and n 1= X .::J y, so -
Xi e Ye: e_ .  n �y and ye: e. . Thus or 

Conversely, suppose (X :::> Y)i (:. Then ~Xi e , 
since is closed under modus ponens, and contains 

~X :::> (X :::> Y) as is easily shown. But X V  ~xe: e. , 
hence Xe: e. . Further, since again , Y=>(X => Y) e: C.. 

Q. E. D. 

Lemma 2 :  Let be a model, r e: G, and 
� Xe: 5l ( r) • · There is some r*e:G such that r* \:. x v ~x. 

Proof ·: Either some r* t= X and we are done, or no 

r* F X in which case rt=  ~X and we are done. 

I I I  
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Theorem : Let be a model and r E G .  

Then r can be �ncluded in some complete R-chain e 

such that is an almost-truth set. 

'Proof : There are only countably many formulas, 

x1 , x2 , x3 , . . .  . 

{ro, r1, r2, . . .  } 

Let ro be 

We define a countable R-chain 

as follows. 

r . 

Having defined r n ' if X n + 1 i p e r* ) n for 

any r * let r be r . If X e: d' (r *) n , n + 1 n n + 1 n 
for some r * then rn * by lemma 2 has an n , , , 

R-suc cessor r * *  such that r * *  f= X V ~ X n n n + 1 n + 1 .  

Let r be this r * *  
n + 1 n . 

Let e be {r
o, r

l, r2, . . .  } . Clearly, C. 

is complete, and by lemma 1, e. is an almost-truth set. 

Q. E. D. 

Section 8 

A c6nnection with classical logic 

The first theorem of this section is essentially 

theorem 59(b), pg. 492 [9], but there it is proven proof­

theoretically, and here semantically. 
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Theorem 1: Let X be a pure formula. If X is in 

every classical almost-truth set, 

valid. 

~~X is intuitionistically 

Proof: Suppose ~~X is not valid . Then there is a 

model < G, R, I= , f > and a f£G such that r.r-= ~~X. 

Then for some f*EG , f* F ~X. Now r *  can, by the 

theorem of section 7 , be included in an R-chain e 

that e. is an almost-truth set. 

that Xi C: .  

But ~X e:  e , 
such 

so 

Q. E. D. 

If X is intuitionistically valid, then X 

is classically valid (for X pure). 

As before, if X is not classically valid, there 

is a truth set :f not containing X. But it is easily 

shown that if G = { � } ,  

iff YE J , and is the set of all 

parameters occurring in 1- , the resulting 

is a model in which X is not valid. 

Q. E.D. 

If X is a pure formula with no occurrence 

of the universal quantifier, then X is classically valid 

if and only if ~~X is intuitionistically valid . 



--

Proof: ~ ~·x intuitionistically  valid => 

~ ~X classical ly valid => 

X classically valid. 

Conversel y, X classically  valid => 

X is in every truth set => 

X is in every almost-truth set => 

~ ~X is intuitionistically  valid . 

· "Re·ma:r·k : This result will  be of fundamental importance 

. in part 2.  

Q. E.D. 

Corol lary:  First order intuitionist logic is undecidable. 

· P�dof: Classical first order logic is undecidable , and 

every classical formula is classical ly equivalent to a 

· formula with no universal quantifiers. 

That theorem 3 cannot be extended to all  

formulas is shown by the first example in section 5 .  

Q .·E. D .  



CHAPTER 5 

First Order Intuitionistic Logic - Proof Theory 

Section 1 

Beth tableaus 

The following is an extension of the system of 

section 1 , chapter -2 ,  to the first order case . See [l]. 

Everything is as it was there, except that four reduction 

rules are added to the list. these are 

T 3  

F 3  

"T V 

F V  

S ,  T ( -3  x )  X ( x )  
S ,  TX (a) 

S, F ( 3 x ) X ( x )  
S ,  FX (a) 

S, T (  V x )  X ( x )  
S ,  TX ( a ) 

S ,  F ( 'v' x )  X ( x )  
ST , FX ( a) 

provided a is new 

provided a is new 

[Note the ST in rule F V ] 

In rules 

whatsoever . 

F 3  

In rules 

and 

T :.I 

T V  , a may be any parameter 

and F V , the parameter 

a introduc ed must not oc cur in any formula of S, or 

in the formula X ( x ) .  
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As in t h e  prop o s i t i onal cas e , we proceed to show 

corr e c t n e s s  and c ompletene s s  ( i n  two way s ) of thi s sy s t em .  

The f o l l owing two examp les i l lustrate proofs i n  the 

s y s t em . 

f-
1 

( V  x )  X (x) :, ~ ( 3  x )  ~X ( x )  

The proof i s  

. { {F ( V x )  X (x) :::, ~ ( 3  x )  ~X ( x ) } }  

. { {T ( V x )  X (x) , F ~ ( 3 x ) -x· ( x ) } }  

. { {T ( V  x )  X ( X ) , T ( 3 x )  ~X( x ) } }  

{ { T ( V x )  X ( x ) , T ~X ( a ) } }  

. { { T  X ( a ) , T ~X ( a ) } }  

. { {T X ( a ) , F X ( a ) } }  

and f- I ~ ( 3 x )  ~ [_X ( x )  ::> Y ( x )  J :::> ( '<I x )  [ ~ Y ( x ) :::;)  ~ X ( x )  J 

The proof i s  

· { {F~ ( 3  x ) ~ [X(x ) ::, Y ( x ) ]  ::J ( V  x )  [ ~ Y ( x ) :::>  ~X( x ) ] } }  

· { { T~ ( 3  x ) ~ [X( x )  ::, y ( x ) ] ,  F ( V x ) [ ~Y ( x )  ::> ~X( x ) J } }  

. { {T~ ( 3  x ) ~ [X( x )  :::> Y ( x ) ] ,  F [ ~Y ( a )  :::> ~X( a ) ] } } 

. { {T~ ( 3  x ) ~ [X( x ) .::) Y ( x ) ] ,  T ~Y ( a ) , F~X( a ) } }  

. { {T~ ( 3  x ) ~ [X( x ) .::> Y ( x ) ] ,  T~Y ( a ) , TX( a ) } }  

. { {F  ( ;3 X )  ~ [X ( X )  => y ( X )  J , T ~  y ( a )  , TX ( a ) } }  

. { {F~ [ X ( a )  ::, Y ( a ) ] ,  T~ Y ( a )  , TX ( a ) } }  

. . { { T [ X ( a ) .:::> Y ( a ) ] , T ~ Y ( a ) TX ( a ) } } 

" { {FX( a ) , T~Y ( a ) , TX( a ) } , {TY ( a ) , T ~Y ( a ) , TX( a ) } }  

. { {FX( a ) , T~Y ( a ) , TX( a ) } , { TY ( a ) , FY ( a ) , TX( a ) } }  
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Section 2 

Correctness of Beth tableaus 

Def: Let . {TX1 , '  . . . , TX n ' FY1 . . . , FY } be a set of m 
signed formulas, <a , R, F ,  f > a model, and . rEG. " 
We say r realizes the set if xi E IP ( r), Yj E OJ ( r ) , 

and r I= x1, . . . , r F X , f%-= Y1, . . . , r� Y n m 

A set S is realizable if something realizes it. 

A configuration e. is realizable if one of 1 ts 

elements is realizable. 

Lemma ·1: 

sign F .  

Let Q stand for either the sign T or the 

If S, QX(b) is realizable and if a is a 

parameter which does not occur in S or in X [so aib] 

then S, QX(a) is realizable. 

·Pro·of : Suppose in the model <a, R, I= , f) , r realizes 

S, QX (b). Choose a new parameter ct f EG f ( r) 

[we can always construct a new parameter]. Let 

<a, R, l= ', p ') be < a , R, 1=, f> > (a) [see section 4, 
C 

chapter 4]. Since a does not occur in S or X, 

by . an earlier lemma, in this new model, r realizes 

u �, QX(b ) .  But now, at f e:G P ' (r), so we may define a 

third model < G, R, t== ' ' , f' ' '> . as < a ,  R, t= ' , P ') 
b·= a 

By another lemma, in this third model, r realizes S, QX(a ) .  

Q •. E .  D. 
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Lemma 2 :  If S ,  T( 3 x ) X(x ) is realizable , and if 

a ·  does not occur in S or X(x ) , then S ,  TX(a ) is 

realizable . 

Proof : Suppose 1n the model <a , R ,  F ,  o-> )  , r realizes 

S , T( 3 x)X(x) . Then r l=(3 x ) X(x ) , so for some 

be: f> (r) , r f= X(b ) . Thus r realizes S , TX(b ) . If 

a=b we are done . If not , by lemma 1 ,  we are done . 

Q. E. D . 

If S ,  F( 3 x)X(x ) is realizable and if a is 

any parameter , S , FX(a ) is realizable . 

· ·pr·o·o-r: Suppose in the model <a , R ,  l== , f )  , r realizes 

S , F ( 3 x ) X ( x ) . Then , r ffi ( 3 x ) X ( x ) . If a e: f' ( r ) , 

rfo X (a) and we are done . If' a.i f (r) , a cannot occur 

in S or X by the definition of realizability . But 

o-' (r) :/ cp so there is a be: (f' (r ) ,  b:/a , and rAs X(b ) . 

Thus S , FX(b ) is realizable . Now use lemma 1 .  

Q. E . D .  

Lemma· 4 :  If 

any parameter , 

S , T( V x)X(x) is realizable and if a is 

S , TX(a) is realizable . 

· ·Proo'f :  Similar to th�t of lemma 3 .  
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Lemma· 5: If S, F(\7' x)X(x) is realizable and if a is 

any parameter which does not occur in S or X(x), then 

ST, FX(a) is realizable. 

Suppose in the model ( G, R, r-- , f )  , r realizes 

S, F( V x)X(x). Then r R ( \I x ) X ( x ) , 

So there is a r* such that r* »- X (b) 

Of course, r *  realizes 

but X( x ) E  f' ( r ) . 

for some 

If b=a 

we. are done. If not, since is realizable, by 

lemma 1 we are done. 

. Theorem: Let <:
1

, e 2, • • •  , �n be a tableau. 

realizable, so is e1 + l � 

Q. E. D . 

If C .  is 
J. 

We pass from ei to ei + l by the application 

of some reduction rule. All the propositional rules were 

dealt with in chapter 2. The four new (first order) 

rules are handled by lemmas 2-5 above. 

Corollary: If X is provable, X is valid. 

Proof : Exactly as in the propositional situation. 

Q. E. D. 
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Hintikka collections 

. This generalizes to the first order setting the 
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definit ion of section 3, chapter 2. Recall, a finite set 

of signed formulas is consistent if no tableau for it closes. 

We say an infinite set is consistent if every finite subset 

is . 

If 

Let G be a collection of sets of signed formulas . 

fe:G, by f ( r ) we mean the collection of all 

parameters occurring in formulas in r. If f, 6 e:G, by 

we mean · f ( r) G; f> ( 6) and 

We cal l  G a (first order) Hintikka collection if, 

for any r e: G, r is cons is tent and 

TX/\ Y e: r  

FXV Ye: r  

TX V Ye: r 

FX /\ Y e: r  

T~Xe: r  

TX :::> Y e: r  

F~X e: r  

FX ::, Y e:  r 

-=-> 

-=> 

-=> 

==> 

c::=> 

=> 

TXe:r  

FXe: r  

TXe: r  

FXe: r  

FXe: r  

FXe:r  

for some 

and 

and 

or 

or 

or 

6e:G 

TYe: r  

FYe: r  

TYe: f  

FYe: r  

TYe: r  

fR6 and TXe:L\ 

for some 6 e:G ;  fR6 

and TXe:6., FY e:L\ 
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T( V x)X(x)e: r -=> TX(a)e:r  for all ae: 6) (r) 

F(3 x)X(x)e:r => FX(a)e: r  for all ae: 4'(r) 

T ( 3 X ) X ( x ) e: I'. => TX(a)e: r  for some ae: f (r) 

F( \f x)X(x)e:r  => for some 6e:G, I'RL\ , and 

for some ae: P (L\), TX(a)e:L\. 

If G is a Hintikka collection, we call (G, R, t= , f) 

a model for · G if 

1) <a ,  R, I=,  f>) is a model 

2) f' and R are as above 

3 )  TXe: r  -=> I' J:: X  
for all re:G 

FX e: r -=> r,f-x 

· Theo·rem: There is a model for any Hintikka collection. 

· ·pr·oof: We have a Hintikka collection G. � and R 

are as defined. If A is atomic, let f l== A if TAe: r  , 
and extend I=: to  all formulas. The result <a, R,· F ,  f )  

is a model. We claim it is a model for G. We show 

property 3 )  by induction on the degree of X .  

The propositiona; cases were done in section 3, 

chapter 2. Of the four new cases, we only do two as 

illustration. 
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Suppose the result know for all subformulas of the 

formula in question . 

T(� x)X(x)E f  c::> 

('v 6 eG)(fRti ==> 

[since r Tc;;;: ti 

-=> ( V 6 £G) ( fR6 ==> 

=> ( V b eG) ( fRti ==> 

-=> rt= ( V  x)X(x) 

Conversely, F('v' x)X(x)E f  

( 3  6 EG) ( fRti 

-=> ( 3 h e:G) ( fRti 

-=> r %= < v x ) x ( x ) . 

and 

and 

T(V x)X(x)eti) 

if fRti]  

( ( 'r/ ae f (ti)) TX(a)eti)) 

( ( V  ae  f (ti))h t= X(a))) 

==> 

( 3 a£ f (ti) ) ( FX (a) £ ti ) ) 

( '3 ae: f (ti) ) ( 6,f-: X (a) ) ) 

Q. E . D. 

Thus, as in the propositional case, to establish the 

completeness of Beth tableaus we need only show that if 

X is not provable, there is a Hintikka collection G 

and a f eG such that FXe: r. 

Section 4 

Hintikka elements 

Def: . Let r be a set of signed- formulas and · P a 

set of parameters. We call r a Hintikka element with 

respect to P if r is consistent and 
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TX A Ytf'  => TX£i'  and TY£ i' 

FX V Ytf'  => FXti' and FY£f  

TX V Ye:f'  ===> TXt r  or TY£i'  

FX A Ysf'  => FX tr er FY£f. 

T--- Xtt => FXe:r 

TX ::> Ye: f' ==> FXe: i'  or TYtt  

T(V x ) X(x)E i'  => TX(a)e: r for each a£P 

F ( i1 x)X(x)Ei' => FX ( a) E r  f0r each ati? 

T ( JJ x ) X(x)E t  ==> TX(a)E i' for some a£ P 

Let f' be an at most countabie, consistent set 

of signed formulas. Let S be the set of ail parameters 

Gcctirring ih formulas in t. Let 

G Gunt ab ie  list of parameters not in 

al ;  a 2 , a.3 , 

s . tet P 

be a 

Tnen f' can be extended to a 

Mint ikka eiement with respect to P. 

Order the (countable) set of aii subformulas of 

formuias in r ;  using oniy parameters of 

We define a (doubie) sequence of sets of signed 

fGrfrruias. 

Let t 

--� 
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Suppose we have defined r , which is a consistent n 
extension of r o, using only 

al, 

!i 2 

n '  
as 

the 

6k 
n 

a2, a3, . . . 

. . .  , �n+l 
n 

follows: 

Suppose we 

formula X
k

. 

(since it is 

Let 6 1 
n 

and let rn+l 

have defined 

At most one 

consistent). 

finitely many of 

= We define 

= We do this 

6k 
n (l2_ k<n). Consider 

of TX
k
, FXk can be in 

If neither is, let 

6k+l = 6k If one is in 6k 
n ' we have several cases. n 

Case la) 

Then one of 6k 
n 

Let 6k+l be n 

Case lb) 

is consistent. 

Case 2a) 

Case 2b) 

Case 3·) 

·Case 4) 
are all treated 

Case 5a) 

Since 6 k 
n uses 

let ai be the 

6k+l . be 6 k 
n n ' 

be consistent. 

is y v z and 

, TY or 6k , TZ is consistent. 

6k 
n ' TY 

X
k 

is 

Let this 

. - . .  
TX A Y  

FX I\ Y 

T~X 

TX ::, •y. 

n 

if consistent� othe�W,ise 

Y V Z  

be 

and 

6k+l 
n . 

k FX
k

e:6n. Then 

in a $imilar manner. 
(3 x)X(x) 

k 
- X is and TX

k e:6 n k 

k 
n '  

6k 
n ' 

TZ. 

FY, 

only finitely many of al, a2, a3, . . . , 

first one unused. Let 

TX( a1). Since ai is new, this must also 

FZ 
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Case 5b) X
k 

is ( 3 x ) X(x ) and FX
k

e:ti� . 
Let 6 k+l 

n be L\ k 

n together with FX(a. ) for each a.e:S, 

and each a. = a 
i 

which has been used so far . Then 

L\k+l 
n is again consistent. 

Case 6 )  T(V x ) X (x ), treated as we did case 5b ) .  

Case 7 )  If the signed formula does not come under 

one of the above cases let L\k+ l = tik . n n 

Thus we have defined a sequence, r0, r1, r2, · · · . 

Let n = u r n We . claim n is a Hintikka col lection 

with respect to p .  The verification of the properties 

is straightforward. 

Q . E. D. 

Section 5 

Completeness of Beth ·tableaus 

Supposing X to be not provable, we give a procedure 

ror constructing a sequence of Hintikka elements. 

First, we order our countable collection of 

parameters as fol lows : · 



► 
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Sl: al 
l ' 

S2: 2 a
l, 

S3: 3 a
l, 

. 

. . . 

al . 2, 

2 a
2, 

3 a2, 

. 
• 

al 
3 ' 

2 cl3 , 

3 a3, 

. . . 

. . .  

. . . 

where we have placed all the parameters of X in s1, 

and let = 

For this section only, by an F-formula we mean a 

signed formula of the form F~X, FX ::, Y, or F( v x)X . 

We may assume once and for all an ordering of all formulas. 

Now we proceed . 

Step 0) X is not provable, so · {FX } is consistent . 

Extend it to a Hintikka element with respect to 

the result r1. 

Call 

Step 1) Take the first F-formula of r1 . 
If this 

is F~X , consider rlT, TX . This is consistent . Extend 

it to a Hintikka element with respect to P2 , . call it 

extend If the first F-formula is FX.::> Y, 

rlT ' TX, FY to a Hintikka element with respect to 

If the first F-formula is F( V x) X (x), extend 

. r lT ' FX(a i )  to a Hintikka element with respect to 

P2 ,
. 

r2. In any event, r2 is a consistent Hintikka 

element with respect to p 2. Now call the first 



F-element of r1 "used". 

· {r1, r2 } ·  

7 1  

The result of step 1 is 

Suppose at the end of step n we have the sequence 

. {rl ., r2, r3 , . . . , r ·n } where each ri is a Hintikka 

element with respect to Pi. 

Step n + 1) Take the first "unused" F-formula 

of r1, proceed as in step 1 depending on whether the 

formula is F~X , FX .::>Y
., 

· F ( V  x ) X .  Produce from 

or or 

a Hintikka element with respect to call it 

And call the formula in question "used". Repeat the 

same procedure and the first "unused" F-formula of 

producing a Hintikka element with respect to 

call it r 
2n+2 

Continue to r n ' producing a Hintikka 
2 

element with respect to P n+l ' call it r n+i · 
2 � - 2 

The 

result of the n + 1st step is thus · {r1, r2, • • • , r n+ i l · 
2 

Let G be the collection of all rn generated in the 

above process . We claim G is a Hintikka collection. 

Each rnEG is a Hintikka element with respect to 

f ( r ) is n - Since r is a Hintikka element ·n 
with respect to f (rn), to show G is a Hintikka collection 



we have only three properties to show. 

Suppose for some r e:G ., n F( V x ) X(x ) e: r  . . n 

7 2  

By the 

above construction there must be some rke:G such that 

rnT
c rk ., f> (rn ) f; �(rk ) ., and FX(a) e:rk for some 

parameter a. and FX(a ) e: r k 
for some ae: F (rk ). 

The cases F~ and are similar. 

Thus G is a Hintikka collection and FXe: r1e:G ., 

so our completeness theorem is established. 

We note that in the Hintikka collection G 

resulting ., every formula is a subformula of X. 

We remark also that the construction of section 4 

and of this section could be combined into a single 

sequence of steps. 

This proof is a modification of the original proof 

of Kripke [12]. 

1he following is a Henkin type proof and serves as 

a transition to the completeness of the axiom system present­

ed in the · next few sections. A proof along the same lines 

but using unsigned formulas was discovered independently 



by Thomason [19]. The similarity to the algebraic 

work of section 6, chapter 1, is also noted. 
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Recall that a finite set of signed formulas r is 

consistent if no tableau for it is closed. An infinite 

set is consistent if every finite subset is. 

Def : Let P be a set of parameters and r a set of 

signed formulas. We call r maximal consistent with 

respect to P if 

i) every signed formula in r uses only 

parameters of P. 

2) r is consistent 

3) for every formula X with all its parameters 

from P, either TX£ f, or FX£ f, or both 

r,TX and r, FX are inconsistent. 

Lemma 1 :  Let r be a consistent set of signed formulas, 

and P be a non-empty set of parameters containing at least 

every parameter used in r. Then r can be extended to a 

set 6 which is maximal consistent with respect to P. 

Proof : P is countable, so we may enumerate all formulas 

with parameters from P :  x1, x2, x3, . . . . 

Let = r 

Having define_d 6n, consider Xn+l. If 6n, TXn+l 

is consistent, 

is consistent, 

6 n+l be 6 n 

Let 6 

let 

let 

= 

it be 

it be 

U 6n 

6n+1 · 
6n+1 · 

If not, but if �n ' FXn+l 
If neither holds, let 

II i 
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The conclusion of the lemma is now obvious. 

Q. E. D. 

Let r be a set of signed formulas and P a set 

of parameters. We call r . good with respect to P 

1) r is a maximal consistent with respect to P 

2 )  T ( 3  x ) X ( x ) E f TX (a)Ef 

for some aE p 

if 

Lemma · 2: Let r be a consistent set of signed formulas, 

and S be the set of parameters occurring in r. Let 

{ a1, a2, a3, . . .  } · be a countable set of distinct parameters 

not in S, and let 

can be extended to a set A which is good with respect 

to P • 

p is countable, order the set of formulas with 

parameters from . . .  We proceed. 

2)  extend A0 to a set A1 maximal consistent 

with respect to S. 

3) take the first x1 (in the above .ordering ) or 

the form T ( 3  x ) X ( x )  such that 

but - for no is 

Let Since 

r 

.J 
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a1 is "new" , A2 is consistent. 

4) extend A 2 to a set 6 3 maximal consistent 

with respect to 

5 )  take the first Xi of the form T(3 x)X(x) 

such that T(3 x)X(x)EA3 but for no 

etES U {al } is TX(a)EA3 · Let 64 = 6
3 , TX(a2). 

Again, A4 is consistent. 

6 )  extend A4 to a set 65 maximal consistent 

with respect to S v {a1 , a2 } and so on. 

Let 

to P. 

We claim A is good with respect 

First A is consistent since each An is consistent. 

If X has all its parameters in 

n ,  all the parameters of X are in 

p , then for some 

But in step 2n we extend A2n to A2n+l ' a set maximal 

consistent with respect to S V {a1, a2 , • • •  , an } • Thus 

TX or FX is in A2n+l 

he added consistently. 

with respect to p . 

Finally , suppose 

and hence in A ,  or neither can 

Thus A is maximal consistent 

T(3 x )X ( x ) EA .  We note that 

the formula dealt with in step 5 is different than the one 

dealt with in step 3 ,  and the one dealt with in step 7 is 
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different again. Thus we must eventually reach 

T ( 3  x ) X (x ) ,  and so, for some aeP , TX( cx) EL\ . 

Thus 6 is good with respect to P. 

Q. E. D. 

Now let us order our countably many parameters as 

follows: 

sl � 
al, 1 a2, 1 a3, 

S2: 2 al, 2 a2, 2 a3, 

s3 
3 al, 3 3 a2, a3 . . . . 

. . . 

and let P n = 

Let G be the collection of all sets of signed 

formulas which are good with respect to some 

claim G is a Hintikka collection . 

P • We n 

some 

Suppose fEG . 

Pi, say p . n 
parameters of r ) is 

Then r is good with respect to 

Then f' ( r )  ( the collection of all 

p . n 

Suppose TX /\ YEf  but TX.if. I f  r , TX /\ Y 

· is 'consistent, so is r ,TX /\  Y ,TX, and so r is not 
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maximal. Thus TXc r. Similarly, TY e:r. Hence 

TXA Y e: r  -=> TXe: r and TYe: r  

Similarly we may show 

FX V Y e: r  -=> FXe: r  and FYe:r  

TX V YEI'  -> TXe:f  or TY £ I'  

FX A Y e: r  -=> FXe: r or FYe: r  

T~ Xe: r -=> FXe: f  

TX ::> Ye: r  => FX£f or TYe: r  

T (\f X ) X ( X ) e: r - -=> TX(a)e:r  for every ae: (P ( r) 

F(3 x)X(x)e: r  -=> FX(a)e:r  for every ae: f C r) 

Moreover, 

T(:3 x)X(x)e: r  -=> TX(a)e: r  for some ae: �(r) 

since r is good with respect to p n ·  

Suppose F~x e: r. Sine� r is consistent, 

is consistent . Extend it to a set 6 which is 

. good with respect to Pn+i · Then 

and TXe:6. 

and 

s o  

Similarly, if FX .::> Ye: f, there is a 6e:G  such 

that fR6 and TXe:6, FYe:6. 

Finally, if F( V x)X(x)e: r, since n+l al does 

not occur in r, rT, FX(a�+l) is consistent . Extend it 

to a set 6 which is· good with respect to Pn+1  · 
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Again, I'Rll and for 

Thus G is a Hintikka collection. 

To complete the proof , suppose X is not provable. 

Then { F X } is consistent. Since it has only finitely 

many parameters, they must all lie in some 

to a set r good with respect to p n 

p • n Extend 

Then . {FX } 

r EG and FXE r. This establishes completeness. 

Remark : The model_ resulting from this Hintikka collection 

is a "universal" model in that it is a counter-model for 

every non-theorem. 

of section 5. 

This is not the case for the model 

We will show later that , in a sense , this Hintikka 

collection is the analog of a classical truth set. 

Section 7 

The following system was chosen to give a fairly quick 

completeness proof. It is very close to the system of 

[9,  pg. 82]. 
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Axiom s·chemas : 

1 .  X ::> ( Y :::> X ) 

2 • ( X ::> Y )  :, ( ( X :::> ( Y -?  Z- ) ) ;:> (X ::> Z )  ) 

3 .  ( ( X ::> Z ) A ( Y ::> Z ) ) :;, ( ( X '-' Y ) ::> Z )  

4 .  ( X A Y )  =:> X 

5 .  ( X I\ Y ) :::, Y 

6 .  X :::> ( Y ::> ( X A Y ) ) 

7 .  X ::> ( X V Y ) 

8 .  Y :> ( X V Y ) 

9 . ( X A ~X ) ::> Y  

1 0 . ( X .:::> ~ X ) ::::> ~X 

1 1 . X ( a ) ::>  ( :3 x ) X ( x )  

12 . ( V  x ) X ( x )  .::> X ( a )  

· 'RuTes : 

13 . 
( 3 x)X(x)::> Y 

14  . . Y ::> X ('a ) ·  · · · 

15. 

Y :::> ( \/ x )X(x) 

X -x ::, y  , 
y ·  

7 9  

in Y .  

In rules 13 and 14, the p arameter a must not occ ur 

In a deduction from premises , the parameter a 

must not oc cur in the premises either . We use the usual 

notati6n ,  if X c an be deduced from a finite subset of S ,  

we write S \- X . We use 1- X  for ct> r x. 
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In the next three sections we establish the 

correctness and completeness of A1 • We introduce a 

second system A2, equivalent to A1 to aid in showing 

correctness. For use in showing completeness we need 

the following three lemmas. 

Lemma 1: The deduction theorem ho lds for A1. 

Proof: Th� standard one. e. g. [9 , section 21-22]. 

Lemma 2: f- ( W A Y ) ::> X ,  r ( W /\ Z ) => X, 1- w :,(y v z) 

Proof: 

1 )  ( W A Y ) � X 

2 )  ( v.i' .l\ Z )  ::> X  

f- W .J X  

by hypothesis, theorem 

by hypothesis, theorem 

3 )  W ::,  ( Y  v Z )  by hypothesis, theorem 

4) W premise 

5) Y v Z 3 ,  4 ,  rule 15 

6 ) W :::> ( Y � ( w /\ Y ) ) ax 6 

7) Y ::> (W /\ Y )  4, 6 ,  rule 15 

8 )  W :::> ( z ::> ( W  /\ Z )  ) ax 6 

9) Z :>(W A Z) 4, 8, rule 15 

10) y :, X via 1, 7 

1 1 )  z .::, X via 2 , 9 

1 2 )  (Y " z) .::, X via 1 0 , 11 , ax 3 

1 3 )  X 

1 4 )  W ::,  X 

5, 1 2 , rule 15 

deduction theorem cancelling 
premise 4 Q . E. D. 
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Lemma 3 : 

Proof: 

1) 

2)  

3) 

4) 

5) 

6) 

7) 

8) 

9) 

1 0 ) 

We 

and prove 

A2 
and 14. 

8 1-

If a does not occur in W, Y(x), or X, 

\- ( W /\ Y ( a )) .::> X , f- W => ( 3 X ) Y ( X ) 
t- W ==> X  

( W A Y ( a) ) :, X 
{

by hypothesis , 

W :,  ( 3 x ) Y (x) theorems 

w premise 

(3  x ) Y(x ) 2,  3 ,  rule 15 

W :::> (Y(a ) :::> (W ::> Y(a } ) ) ax 6 

Y (a )  :::> (W /\ Y(a ) ) 3, 5 ,  rule 15 

Y(a ) :::> X  via 1 ,  6 

( 3 x ) Y(x) ::> X 7 ,  rule 13 

X 4 ,  8 ,  rule 15  

w :;:)x deduction theorem cancel ling 

premise 3 

Section 8 

A second axiom system A2 

introduce a second, very similar, axiom system, 

equivalence . 

has the same axioms as Al, as well  as rules 13 

It does not have ·rule 15 . It has rules 

-: 

• I 



14a) X(a ) 
( 'v  x)X(x) 

( 3 x  ) · · · ( 3 x ) X =>Y 1 n 
y 

provided all parameters of ( V x1) • • • ( V xn )X 

in Y. [n may be O J  

are also 

To show the two systems are equiva lent, it suffices 

to show 1 4a) and 15a) are derived rules of A1, and 15) 

is a derived rule of A2 . 

To show 14a) is a derived rule of A1 , suppose in 

Let T be any theorem of A1 _ with 

no parameters. By axiom 1), X(a ) :::> (T ::> X(a ) ), so by rule 

15), T :::> X ( a). 

T =, ( V  x)X(x). 

Since a is not in T, by rule 14) ,  

But also T, so by rule 15), ( V  x ) X(x). 

To show 15a) is a derived rule of A1, suppose in 

A1 we have (V x1
) · · · (Y x

n
)X (x

1
, • • • ,x

n
) and 

and all parameters of 

( V  x1) · · • ( '-t xn)X(x1, • •· •,xn) are in Y .  From 

( V  x1) • · • ( V xn ) X(x1, · · ·,xh1 by axiom 1 2), X(a1, · · • , an) .  
' 

' 

so by rule 15) , ' ( "3 X ) • • •  (:3 X ) X ( X • • •  , X ) and by 
1 n l ' n 

rule 15) again, Y. 



• 

Final ly to show rule 15) is a derived rule of 

A2, suppose we have X and X =>  Y in A2. Let 

be those parameters of X not in Y .  

Similarly, since 

8 3  

do not occur in Y, 

by rule 16a), Y. 

Thus, A1 and A2 are equivalent. For use in 

the next section we state the straightforward. 

Letnma: If in A2 we can prove X( a ) ., there is a 

proof of the same length of X (b) for any parameter 

[note : a does not occur in X (b) = X (a) (
a) b J . 

. .  C.or.r.e.c.t.nes.s. · .or.· .s.y.s.t.em· ·.A2 

b .  

By induction on the length of the proof for X .  

If the proof is of length 1 ,  X is an axiom and we leave 

the reader to show validity of the axioms. 



8 4  

Suppose the result is known for all formulas with 

proo fs o f  length less than · n steps, and X is 

provable in n steps. We investigate the steps involved 

it i the proo f  of  X. Axioms have been treated. 

Rule · 13), X(a) -:::J Y  is provable in less than 

n steps where a is not in Y. Then X (a) :::> Y is 

valid. Then ( 3  x)X(x)::> Y is provable. We wish to show 

it is valid. Take any model (G, R, F , f > , and any 
" 

and supp o s e ( ( :3 x ) X ( x ) ::> Y ) e: f ( r ) . . supp o s e 

r * t=z ( 3  x ) X( x ) . Then r* F X(b) for some b. But 

X(a ) :::> Y  · is provable, so by the lemma of section 8, 

is provable with a proof of the same 

length, hence by hypothesis, valid. Since a is not in 

Y, 

hence 

this is X(b):::> Y. 

Thus 

By validity, r * l= X(b)::::> Y, 

r t=- ( 3  x)X(x):::> Y. 

Rules 14) and 14a) are similar. 

Rule 15a) Suppose (V x1 ) . . .  ( 'v  xn )X and 

are both provable and valid. Then 

·y is provable. 

<a, R, t== , P) 

We wish to show Y is valid. 

be any model and re:G. Suppose 

and 

,.. 
are both in � (r), and since they are valid, 

and 

Let 

By 

the lat ter, either rt-= ( :3 x1) . . .  (.3 xn)X or r t= Y. If 

r.Y-= (3 x1) . . .  (3 xn)X, for some a1, . . .  , ane: f (r), 

I 



contradicting 

Hen ce r \= Y .  

Sect ion 10  

Completeness of sys tem A1 

The following Henkin type proof was dis covered 

independently by Thomason [ 1 9 ]  and the author . 

8 5  

Q . E. D. 

We work i n  the system A1 . Let r be a set of 

uns igned formulas and P a collection of parameters . 

Suppose all . the parameters of r are among those in p 

By the deductive complet ion of r with respect to 

P we mean the smalles t set of formulas , � ,  involving 

only p arameters of P, such that for any X over p 

r f- X Xe:L\ . 

We c all r deductively complete with respect to p 

i f  i t  i s  i t s  own deduct ive completion with respect to p 

We s ay r has the or - property if  

X V  Y e: f  => Xe:f or Ye:  r 

We s ay r has the :3 -property if  

( 3 x ) X ( x ) e: r => X ( a ) e: r  for some parameter a .  
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We cal l  r nice with respect to p if 

1) r is deductively complete with respect t o  P 

2 )  r has the Or-property 

3) r has the 3 -property 

4) r is consis tent 

Remark : cons is ten_cy here has its usual meaning . 

Lemma 1 :  Let r be a set of formula and X a single 

formula. Let P be the set of all parameters of r 

or X. be a countable co llection 

of dis tinct parameters not in P, and let 

If r 1-- x ,  then r can be Q = P V  {a1 ,a2,a3 . . . } . 

extended t o  a set 6 

s uch t hat Xi.I). . 

which is nice with respect to  

Proof : Let zl , z2 , z 3 . . .  be an enumeration of al l 

formulas with parameters from Q of the form 

Y V  Z or (3 x)Y(x) . 

Since r,f X ,  r is consistent . 

sequence { rn } . 

We define a 

Let r0 be the deductive completion of r with 

respect t o  P .  Then r0 is consistent and r0..t'- X .  

Suppose we have defined rn s o  that rn is 

Q 
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dedu c t i ve ly complete with respect to 

and Let = 

Suppose we have defined t:,.j ( j <n)  · so that it  is n 

· consi s t ent , If 

If z
j 

= yv z j and Z
j

E /J. n, , . 
t:,.j +l = l:,.j . I f  zJ (::3 x ) Y ( x ) , = n n 

Y ( a ) E /J. J 
n for some a , let 

leaves the two key cases . 

let 

y E !:,. j 
n or 

j Z
j

E /J. n' 

t:,.j +l = 
l:,.j . n n 

Z E !:,. j let n ' 

and 

Thi s  

Suppose Z E !:,. j 
j n and is  Y V  Z but Y¢t) 

n , 

We c laim we can add one of y or 

so  t hat t he result still does not yield 

otherwi se ,  1:,.J n ' 
y t- X 

l:,.j 
n '  Z t- X 

l:,.j 
n 

t- y v Z 

z 

x . 

to 

For 

[ s ince Y V Z E !:,.� ] • But then by lemma 2 ,  sect ion 7 ,  

a contradiction . So , add to 

or Z so  that t he result does not yield X .  

result t:,.j +l . n 

one of Y 

Call the 

Suppose Z E /J.j 
j n and zJ is ( 3 x ) Y ( x ) , but 

Y ( a ) ¢ t:,.j for any a . Take n the first  unused ai of 

{�l '
a2 '  . . .  } . We c laim we can add Y ( ai ) to l:,.j 

n 
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r . . 

' r 

and the result will not yield X .  This is as above 

but by lemma 3 ,  section 7 . Thus ti� , Y ( ai) ,f X .  

Let tij +l 
n be ti� , Y ( ai) .  

Thu s , in any case , tij +l 
n is consisten� , and 

X¢tij +l 
n 

Let r 
n+l be the _deductive completion of 

h.n 
n 

with respect to p {al ,a2 , . . .  , ak } where ak 

is the last p arameter used in tin . 
n 

Y V  Z 

m >.n .  

is in 

Let = 

h. uses exactly the parameters of Q . 

since Xtr n for any n . 

h. is deductively complete with respect to Q . 

= 

h. has the 0 -property, 
r 

z n ' then Y V Ze:tim 

Then y v  

6n+l � 6 . m 

z = 
n z e:ti , n m 

for if Y V  Ze:ti , 

for some m .  

so either y 

Similar ly, ti has the 3 -property. 

say 

We can 

or z 

88 

take 

Q . E . D .  



Lemma 2 : I f  r is nice with respect to p , 

1 )  X A  Y e: f  <=> Xe:r  and Ye:r 

2 )  X V  Y e: r  <=> Xe:r or Ye:r  

3 )  ~ X  => xtr 
4 )  X => Ye: r  => xtr or Ye:r  

5 )  ( 3 x )X ( x ) e: r <=> X ( a ) e:r for some ae:P 

6 )  ( Y  x ) X ( x ) e: r => X ( a ) e:r for every ae:P 

Proof : 1 )  is by axioms 4 ,  5 and 6 , since r is 

deductively complete with respect to P .  

X V  Y e: r  => X e: r  or Ye:r  since r has the 

Or-property . The converse holds by axioms 7 and 8 .  

I f  ~ X e: f ,  

( using axiom 9 ) . 

I f  x ::, Y e: r , 

Xir s·ince r 

either xtr 

is consistent 

or Ye:f  since 

r is deductively complete with respect to P .  

I f  ( 3  x ) X ( x ) e: r ,  X ( a ) e:r for some ae:P 

since r has the 3 -property. The converse is by 

axiom 1 1 . 

Property 6 is by axiom 12 . 

Q . E . D  

Lemma: 3 :  Suppose r is nice with respect to P ,  and 

is a s�t of distinct parameters not in P 
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Let Q = Then 

1 )  If  X has all it s p arameters in P but 

~xtr , r c an be extended to a set 6 nice with 

res pect  to Q such that Xe6 . 

2 )  I f  has all it s parameters in p 

but r can be extended to a set 6 nice with 

respect  t o  Q such that and Y/.6 . 

but 

3 )  I f  X ( x )  

( V  x ) X ( x ) ir ,  

has all its parameters in 

r can be extended to a set 6 

nice  with. respect to Q such that for some aeQ , 

X ( a ) i� .  

Proof : 

p 

1 )  since ~Xt.r , r , x is consistent , for otherwise ,  

r , :x t- -x so by the deduc tion theorem , r t- X => ~ X  

by axiom 1 0 , r t- ~ x ,  so 

consist ent , there is some 

use lemma 1 .  

~xe r . . -Since r , x  

Y such that r , X..f- Y .  

2 )  r , X.f Y 

r t- X => Y 

for otherwise ,  by· the. c;i._educt�on 

theorem , 

use lemma 1 .  

3 ) 

so 

We claim 

SinQ.e . r , X-1'- Y ,  

Suppose 

and 

is 

Now 

For the conj unction, call it W ,  of some 

finite subset of r , I- W ::> X ( a1 ) .  But a1 does not 

occ ur in W .  By rule 1 4 , 1- W => ( \/ x ) X ( x ) , so 



r J- ( V x ) X ( x ) , 

use  lemma.  1 .  

( V  x ) X (x ) e: r .  Since 

Now we proceed to show completenes s .  

the p arameters as  follows : 

Sl : 
l al , 1 a2 , 1 a3 , 

S2 : 
2 al , 2 a2 , 2 a3 , 

S3 : 3 al , 3 a2 , 3 a3 , 

and let p = s1 u s2 u • • •  V S n 

Let G be the 

respect to any p i .  

I f  r e: G , r 

Let IP C r )  = 

and r £: fl . 

p . n 

collection 

is nice with 

Let fR!l 

. . .  

n 

of all nice 

respect to, 

if 

For any X ,  let r F X iff Xe: r .  

91 · 

Q. E. D 

We arrange 

sets with 

say, p • n 

By iemmas 2 and 3 ,  

Finally, s uppose ,\"' X .  

is a model . 

All the parameters are in , 

P · Since n· . ��X ,  by lemma 1 we can extend � to s ay,  

a set r ,  nice with respect to p n such that xtr . 

Thus r e:G , Xe: 6' ( r ) and r..¥= X .  

C 



. Remark : This is  a 11universa l "  -model in the sense 

of sec t ion 6 .  

In sect ion 4 ,  chapter 6 ,  we will show that the 

set of a l l  theorems using only parameters of P is n 

itself  a nice set with respect to p • n This would 

make the f inal use of lemma 1 above unneces sary . 

92 
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Sec t ion 1 

Compac tnes s 

Chapter 6 

Addit ional First Order Result s 

We c all an infinite set , S ,  of signed formulas 

rea l i z able i f  there i s  a model , <a , R , l= , 6-') and a 

s uch t hat  for any formula X ,  

TXe: S  => Xe: f ( r )  and r F X 
,.. 

rt¥= X FX e: S  => Xe: 6' ( r )  and . 

re:G 

There i s  a similar concept for set s of unsigned 

formulas , U . We say U is  satisfiable if  there i s  a 

model .  <G , R ,  I= , f > and a re:G such that for any formula X ,  

X e: U => X e:  f ( r )  and r F X .  

Lemma 1 :  . Let U be a set of unsigned formulas and define a 

set S of s igned formulas to be · {TX I Xe: U } . Then 

1 )  U i s  s at i sfiable if and only if S i s  realiz able 

2 ) U i s  con s istent if and only if  S is  cons i stent . 

Proof : Part 1 ) i s  obvious .  

To show part 2 ) ,  suppose u i s  not consi stent . Then 

some finite s ubset , { u1 , . . .  , un } i s  not consi stent , so 

from it  we c an deduce any formula . Let A be an atomic 

formula having no predicate symbols or parameters in common 

with { u1 , . . .  , un } .  Then · 

1-r ( ul " . . .  A Un ) .:::> A 

<. .  



hence there is a closed tableau for 

{ F  ( u 1 /\ . • . /\ un ) :::, A }  

so t here is a closed tableau for 

{ T ( u l A • • • /\ u
n 

) , � A } 

By t he way we have chosen A ,  there must be a closed tableau 

for 

{ T ( ul I\ • • •  /\ Un ) } 

and hence, for 

{Tu1, . . .  , Tun} . 

Thus S is not c onsistent. 

The converse is trivial . 

Q. E. D .  

Because we have this lemma, we will only discuss 

realizability and consistency of sets of signed formulas. 

Lemma 2 :  Let S be a set of signed formulas . If S is 

realizable, ·s is consistent. 

Proof : If S is not consistent, some finite subset, Q, 

is not consistent. That is, there is a closed tableau, 

C.1, C. 2, . . . , en in which e, 1 • is { Q }. If Q were 

realizable, by the theorem of section 2 chapter 5, every 

e,i would be , but a closed configuration is.not realizable . 

Q. E. D. 
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Lemma 3 :  Let S be a finite set of signed formulas. If 

S i s consi stent, S is realizable. 

Proof : Let S be {TX1, . . .  , TXn, F Y 1, . . .  , F Y m} .  

S i s  consi st ent if and only if 

{ F(X
1 

A • •  , A  Xn ) :, ( Y1 v . . .  v Ym) }  is cons istent . 

If t hi s  i s  consistent, (X1 " . .  , A  Xn ) :::, ( y1 v . . .  v y m ) i s  

a non-the orem, s o  by the completeness theorem, there i s  a 

model < G, R, \:= , 6' > and a re:G such that X 
1 

e: f ( r ), 
. " 

y 
J 

e: 6' ( r ) , and r 1-= ( x 1 A • • • /\ xn ) :::, ( Y 1 v . . .  v Y m) . 

t hen for s ome r*  , 

s o  

r * p x 1 " . . .  /\ xn 
r *  realizes  S. 

, r*t-= y
l 

V • • •  VY m 

But 

Q . E . D ;  

Thi s  met hod doe s not work if S is infinite, but t he 

lemma remains true, at least for sets wit h no parameters . 

The re sult can
. be extended to  sets with some parameters, 

but we  wil l  not do so. 

Lemma 4 :  Let s be an infinite set of signed formulas 

wit h no parameters. If S is consist ent, S is reali zable . 

Proof : The proof can be based on either of the two tableau 



comp leteness proofs . 

If  we use the first proof ,  that of section 5 chapter 

5 ,  change step O to II S is consistent·. Extend it t o  a 

Hintikka element with respect to  P1 . Call the result r1 11 • 

Continue t he proof as written . The lemma is then obvious .  

I f  we use t he proof of section 6 chapter 5 ,  the result 

is even easier . · S is consistent , so by lemma 2 of that 

sectio n ,  we c an extend S t o  a set r which is good wit h 

respect  t o  P1 . The result follows immediately . 

Theorem : If S is any set of signed formulas with no 

p arameters , S is consistent if and only if S is 

realizab le . 

Q . E . D .  

Corollary- :  If  every finite subset of S is realizable , 

s o  is S .  

Corollary:  If U. is any set of unsigned formulas wit h no 

parameters , U is consistent if and only if U is satis fiable . 

Remark : The last corollary could have been estab lished 

direct ly b y  adopting the comp leteness proof of section 1 0  

chapter 5 .  
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Sect ion 2 

Con cerning the excluded middle law 

If S is  a set of uns igned formulas , by S le X 

and S 1-j_ X we mean clas sical and intuitionist ic 

derivabili t y  respect ively . 

L�t X ( a1 , . . .  , an ) be a formula having exactly 

t he p arameters al , . . .  ' an 

mean t he formula ( V X ) 
. i l  

. . .  
[where x .  

J.j
. does not occur in 

Let ?n be  the collect ion 

By the 

( V X •. 
ln 

) 

X (a l' 

of the 

closure of X we 

X ( x . ' i1 
. . . , x_. ) 1· ' 

. . .  ' an )] 
n . 

closures of all 

formulas of the form X v ~X . We wish to show 

Theorem : If X has no parameters , 

Lemma : 

� X <=> 

We first show 

11t t-t. X . 

Let <a ,  R ,  F , f> be a model, re:G , and suppose 

y £ill. => r t= Y . Then r can be included in a · complete R--
[see sect ion 6 chai n � s uch that <:. is a truth set . 

chapt er 4] 

Proof : Enumerate all formulas beginning with a universal 

Let ro 
= r . 

Having defined rn ' consider xn+1 · If  Xn+l t 

(P ( rn* )  for any rn * let rn+l 
= rn . Otherwise there ' 



is  some r * such that Xn+l e: 6' ( rn* ) .  Say Xn+l is  n 

(V x )  X ( X ) . We have two cases . If  r * J== n (\I x ) X ( X )  , let 

rn+l = r * If r * � (V x )  X (x ) ,  there is a r * *  and n . n n 
-an 

this 

a e: P ( r  * * )  n 
r * *  n . 

such that r * *  n ,¥= x ( a ) .  Let rn+l be 

Let the R-chain e_ be { f O , fl ' f 2 , , , , } , · 
S ince Y e:  1Jl => r I= Y and r = r O , e is a complete 

R-chain ,  by definit ion of m , and so  e.. is an almost -

·truth set . Thus we have only one more fact to  show : 

Y ( a ) e: C.  for every parameter a of t => (Vx ) Y ( x )  e: E . 

. . . � 

Suppose 

anare all 

( \I X )  y ( x , a 1 , . . . , 
the parameters o f  

an) t E. [where al , 

y 1 .  If some Cti is 

not a p arameter of e , we are done .  So , suppose each Ct .  

oc c urs  in e. . 
and r n 

,¥= 
(v x )  

Then for 

y ( x , a 1 , 

some r n e: e.. , all 

. .  · . . , , an) . But by 

of e.. , there is a rm m � n, such t t:at 

. . . , an ) for some be: (P ( rm ) . But , 

r l= (>q x 1 ) . . . 
and rRr , so m 

(\I xn) (V x )  [Y ( x , x 1 , . . .  , xn ) V ~ 

r � f= Y ( b ,  ;al , . . .  , az.i )  v ~ Y ( b ,  a, . . .  , ''\} ) , 

thus r fu t= ~ Y ( b ,� 1 , . . . , a
n ) . 

a . e:  tP ( r  ) 
J. n 

J. 

the constructi on 

rm .r-, 
y (b ,  al , 

Y ( x , x1 , . . .  , xn) ] 

~ Y ( b , ·
°'.i_

, . . .  , :�0
) e: e. , so Y (b , .a, . . .  , a

11
) t C.. for a para­

meter b of C. • · 

Q . E . D .  

c.: 
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Now to prove the theorem itself . 

If 7!1- 'i X then for some finite subset {m1 , . . .  ,mn } 

of 1"11.., 

t-I ( m /\ . . . /\ mn ) ::> X . 

By t heorem 2 ,  sect ion 8 chapter 4 [and the completeness 

t heorems] 

But 
� 

m A . . .  I\ m n hence 
� 

X .  fonversly , 

i f  17L(
I 

X , let s be the set of signed formulas 

{FX } u {TY I Ye:7Jt} . 
Since  7n. � X , S is consistent . Then by the results of 

the last se ction , S is realizable . Thus there is a model 

<a , R ,  l= ,  () )  and a re:G such that 

Y£1Jl => rt=Y 

Xe: cf> C r )  and I' Y-' X 

But , X has no parameters, so X V  ~ X E. 1Jt. Thus rl=X Y ~ 

So , r F ~ X .  Now by the lemma , there is a trut h set 

containing ~ X .  Hence ,fc X .  

Section 3 

Skolem - L8wenheim 

the domain of a model (G , R ,  F , 6") we mean 

X .  

By 

U f ( r )- . So far we have only considered models in which the 
r e:G  
domain was at most countable . Suppose now we have an un-

countable number of parameters and we change the definit i ons 
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of  formul a ,  model , and validity ac cordingly, but not the 

definit ion of proof . 

Theorem : X i s valid in all models if and only i f  X is  

valid  i n  all  models with countable domains . 

Proof : Half is trivial . 

Suppos e there is  a model <G , R ,  F ,  f) with an uncount­

able domain in which X is not valid . The correctness 

p roof of sect ion 2 or sect ion 9 ,  chapter 5 ,  is still appli­

c ab le .  Thus X is  not provable . Since X is not provable ,  

if  we reduce the collection of parameters to a countable 

number , [inc luding those of x] X still will not be 

provable . Then any of the comp leteness proofs wi ll furnish 

a counter-model for X with a countable domain . 

Q . E . D .  

Thi s method may be combined with that of sect ion 1 

to show 

Theorem : I f  S is any count able set of signed formulas 

with no parameters , S is consistent if and only if S 

i s  realizab le in a model with a countable domain . 
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Theorem : If  U. is any countab le set of unsigned formulas 

with no p arameters , U. is consistent if and only if U is 

s atis fiabl e  in a model with a countable domain . 

Remark : I n  part II , we will be using models with domains 

of  arbit rarily hi gh cardinality. 

Section 4 

Kleene tab leaus 

The system o f  thi s sect ion is based on the intuition­

istic sys t em G3 of [9] . The modifications are due to 

Smul lyan . The result ing system is like that of Beth 

except  that  set s of signed formulas never contain more than 

one F-signed formula . Exp licitely, everything is as it was 

in section  1 chapt er 2 and section 1 chaptet 5 except that 

t he reduction rules are rep laced by the following , where 

S is a set o f  signed formulas with at most one F-signed 

formula .  

KT V 

KT/\ 

s, TXVY 
S ,  TX j s , 

S, TX!\ Y 
S ,  TX , TY 

TY 
KF V ST , FXvY 

ST FX 

ST , FXVY 

ST , FY 

KFJ\ 



KT-

KT => 

KT 3 

k-T'v 

S, T - X  
ST , FX 

S, TX ::::> Y 

S, T ( :3 x )X ( x )  
S ,  TX(a) 

S, T ( V x ) X ( x ) . 
S ,  TX(a) 

KF-

KF ::, 

KF 3 

KF V 

1 0 2  

ST , F ( 3 x ) X ( x ) 
ST FX ( a )  

ST , F ('9' x ) X ( x ) 
ST , FX(a ) 

where , in KT :ZI 

in S or X ( x ) .  

and KFV , the parameter a does not occur 

There are several ways of showing this is actually a 

p roof sys t em for intuitionistic logic . We choose to show 

it is dir e c t ly equivalent to the Beth tableau system,  that 

is , we give a proof translation proce edure . 

We leave it to the reader to show the almost obvious 

fac t  that anything provab le by Kleene tab leaus is provab le 

by Beth t ab leaus . To show the converse , we need 

Lemma : I f  a Beth tableau for {TX1 , . . .  , TXn, FY1 , . . . , FYm } 

c loses , then there is a close.a Kleene tab leau for 
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Proof : The proof is by induction on the length of the 

clos e d  Beth  t ableau . If the tableau is of length 1 ,  the 

result is obvious . Now suppose we know the result for all 

clos e d  Beth  t ableaus of length less than n, and a closed 

t able au for the  set in quest ion is of length n . We have 

seve ral cases  depending on the first step of the tableau . 

I f  t h e  first step is an applicat ion of rule FA , the 

Beth t able au b e gins 

{ { ST , FX1 , • • • , FXn , F Y /\ Z } }  

and proceeas to closure . Now by the induction hypothesis , 

there are closed  Kleene tableaus for 

We have 

{ ST , 

{ ST , 

F ( x.v . . .  v xn v Y ) } 

F ( x
1
y . . .  v xn v z ) } 

t wo possibilities . If 

and 

y is not "used " in the 

first tableau , or if Z is not "used" in the second t ableau ,  

a Kleene t ableau beginning 

{ { ST , F ( x,v . . . V xn " ( y A z ) ) } } 

{ { ST , F ( X l v . . .  v X n ) } } 

must close .  If  both Y and Z are "used " �  a Kleene tableau 

beginning · 

. 

{ { ST·, F ( Y A Z )  } } 

{ { ST � FY }  , { ST , FZ } } 

must clos e .  



The other cases are similar and are left to the 

reader . 

Q . E . D .  

Thus the two tableau systems are equivalent . Now we 

verify a remark made at the end of section 10 chapter 5 .  

Lemma : ( G .Qdel , McKinsey and Tarski) 

1-
1 

XvY iff or 

Proof : Immediate from the Kleene tableau formulation . 

Lemma : ( Rasiowa and Sikor� ki)  

are all  the parameter s of  X ,  then 

Q . E . D .  

where b is one of the a . . If X has no parameters ,  b is 
l 

arbitrary and t- 1 ( V x ) X (x ) . 

Pro o f : A Kleene tableau proof of  ( 3  x )  X ( x , a1 , . . .  , an ) 

begins 

{ {F ( 3  x )  _X ( x , a1 , . .  · . , an ) } } 

{ {  FX ( b , a1 , . . . � an ) } }  

and proceeds to closure . 

If  b is s ome a1 , we are done . If not , we actually 



have a p roof , except for a different first line ,  of 

· ( V x )  X ( x ,  a1 , . . .  , an) . 

Section 5 

Craig interpolat ion lemma 

1 0 5  

Q. E . D. 

Theorem : I f  �IX �  Y and X and Y have a predi cate symbol 

in common , t hen there is  a formula Z involving only 

predicates  and parameters common to X and Y such that 

·I- I X :::> Z and J- I Z ::> Y ; if X and Y have no common 

p arameters ,  either r1 ~ X or rI Y ,  

The c la s s ical version of this theorem was first proved 

by  Crai g ,  hence the name . The intuitionistic ver sion i s  due 

to Sc hut t e  [16] . Essentially the same proof was given for 

a nat ural deduct ion system by. Prawit z [1 4] . We give basic­

ally t he same proof in the Kleene tableau system .  For 

another p roof in this  system see [1 0] 

We find it convenient to temporarily int roduce two 

symbols , t and f ,  into our collect ion of logical symbols , 

let t ing t hem be  atomic formulas , and letting them combine 

according to t he following rules . 
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Xvt = tvX = t 

Xvf = fvX = X 

X11t = tAX = X 

X11f  = fAX = f 

-t = f ~ f = t , 
X ::5 t = f ::J X = t 

t .::> X = X X :::> f  = -X 

( 3  x )  t = ( V x )  t = t 

( 3  x )  f = ( V x )  f = f 

By a block we mean a finite set of signed formulas 

c ontaining at most one F-signed formula . When we call a 

block  i ncons istent ,  we mean there is a closed Kleene 

tableau for it . By an initial oart of a block we mean 

any s ubs et of the T-s igned formulas . We make the conven­

tion that if S is the finite set of unsigned formulas 

{ X1 , . . .  , Xn } then TS is the set {TX1 , . . .  ,TXn} .  We 

furthe r  make the convention that for a set S of formulas , 

s1 and s2 represent subsets such that S1f"\ S2 = $ and 

s1 U s 2 = S .  By [s] we mean the set of predicates and 

parameters of formulas of S ,  together with t and f .  

Now we de fine an interpolation formula X for the 

block  {TS , FY } [where S is a set of uns igned formulas 

and Y is a formula] with respect to the initial part 

TS 1 , whi ch  we de�ote by {TS , FY } / {TS1 } ,  as follows . 



1 07 

[}c may be t or f but we assume t and f are not 

p art of S or Y] 

X i s an {TS , FY } / {TS1 } if 

· 1 )  [xJ � [s1J n [s2 , Y] 

2 )  {Ts1 , FX } is inconsistent 

3 )  { TX ,  TS2 , FY } is inconsistent 

[we have temporarily added to the closure rules : closure of 

a set i f  it cont ains Tf or Ft] . 

Lemma : An inconsistent block has an interpolat ion formula 

with  respect to every initial part . 

Proof : We show this by induction on the length of the 

c losed t ableau for the block . If this is of lengt h 1 ,  

t he block must be of the form 

{TS , TX , FX } 

We have two cases . 

case 1 )  The initial part is {Ts
1

, TX } .  Then X i s an i nter­

polat ion formula . 

case 2 )  The init ial part is {TS1 } . Then {TS2 , TX , PX } is  

inconsistent and t is  an interpolation formula . 

Now suppose we have an inconsistent bloc k ,  and the 

result is known for all inconsistent blocks with shorter 

c losed t ableaus . We have several cases depending on the 
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first reduct ion rule used . 

KTV : The block is {TS , TXvY ,  FZ} and {TS , TX , FZ } and 

{TS , TY , F Z } are both inconsistent . 

case  1 )  The initial part is {Ts1 , TXvY } . Then by 

induct i on hypothesis  there are formulas U 1 and U 2 such 

that 

u
1 

i s  an {TS , TX , FZ } / {TS1 , TX } 

U 2 i s  an 

Then U l V U 2 

{TS , TY , FZ } / {JS1 , TY } 

i s  an . {TS , TXvY , FZ } ./  

c ase  2 The init ial part is {TS1 } . Again , by hypothesis , 

there are U l '  u 2 ' 
U l i s  an {TS , TX , FZ } / {TS1 } 

u 2 i s  an {TS , TY , FZ } I {TS
1

} 

Then U l A U 2 is  an {TS , TXvY , FZ } I {TS1 } 

KFV : The block is  {TS , FXv Y }  and {TS , FX } or {TS , F Y }  

i s  inc ons i st ent. 

Suppose  the first . Let the initial part be {Ts1 } By 

hypothesis  there i s  a U such that 

U i s  an {TS , FX } / {TS1 } . 

Then U i s  an {TS , FXVY } / {TS1 } . 

KTA :  The block is {TS , TXAY ,  FZ } and {TS , TX , TY , FZ } 

i s  inconsi st ent . 

· case  1 )  the init ial part is {Ts1 , TXAY }  . By hypothesis  

there i s  a U such that 



u is an {TS , TX , TY , FZ } I {TS1 , TX , TY } 

Then u is an {TS , TX/\Y , FZ } I {TS1 , TXAY } 

c ase 2 ) The initial part is {TS1 } 

By hypothesis there is a U such that 

· u is an {TS ,  TX , TY , FZ } I {TS1 } 

Then U is an {TS , TXAY , FZ } I {TS1 } 

KFJ\ : The block is {TS,  FXAY } and {TS , FX } and 

1 0 9. 

· {TS , FY } are both inc onsistent . Suppose the initial part 

is {TS1 } By hypothesis there are U l ' u 2 such that 

U l is an {TS , FX } / {TS1 } 

JJ 2 is an {TS , FY}  I { TS1 } 

Then U 1A u
2 is an {TS , FXAY }  / {TS1 } 

KF- ; The block is {TS , F ~ X }  and {TS , TX } is incon-

sistent . Suppose the initial part is {TS1 } 

t hesis t here is a U such that 

By hypo .... 

U is an {TS ,  TX } / {TS1 } 

Then U is an {TS , F-X }  / {TS1 } 

KT- :  The block is {TS ,  T-X , FY } and {TS , FX } is 

inconsist ent . 

case 1 )  The initial part is {TS1 } 

is a U such that 

By hypothesis t here 

U is an {TS ,  FX } / {TS1 } 

Then U is an {TS , T-X , FY } / {TS1 } 

I I l l  ■ mrn 
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case  2 )  The initial part is  {Ts1 , T-X } 

there i s  a U s uch that 

By hypothes is . 

u · i s  an {TS , FX } / {TS2 } 

We claim 

-U is an {TS ,  T-X , FY } / {TS1 } 

First  we verify its predicates and parameters are 

correct . 

By hypothes is , [ U ] C [s2] n [s1 , X] so 

immediately, [ ~ U] C [s1 , -X] /") [s2 , Y] 

We have that the following two blocks are inconsistent ,  

{TS2 , F U } 

{T�l, T U , FX } 

It follows that the following two blocks are also incon­

s i s tent , 

{ TS1 , T-X , F- U } . 

{TS2 , T- U , FY } 

and we are done . 

KF ::> : The block is {TS , FX :::, Y }  and {TS , TX , FY } i s  

incons i stent . Suppose the initial part is  {Ts1 } .  By 

hypothes i s  there is  a U such that 

U i s  an {TS , TX , FY } / {TS1 } 

Then U i s  an {TS , FX :::> Y }  / {TS1 } 

KT ::J :  The block is {TS , TX ::) Y ,  FZ } and {TS , FX } and 

{TS , TY , FZ } are both incons istent 



c as e  

are 

Then 

c ase 

t here 

1 1 1  

1 )  The initial part is {TS
1

} 
_ 

By hypothesis there 

U l ' U 2 such that 

U l is {TS , FX } I �TS
1

} 

u 2 is an {TX , TY , FZ } I {TS1 } 

u 1 
/\ 

u 2 is an {TS , TX :::, Y ,  FZ } I {TS1 } 

2 )  The initial part is 

are U l ' u 2 such that 

U l is an { TS , FX } I 
u 2 is an {TS , TY , FZ } 

{TS l , TX .::, Y } 

{TS2 } 

I {TS1 , TY } 

. By hypothesis 

We c l aim U � U is an 1 2 
{ TS , TX :::> Y , FZ } / {TS1 , TX .::> Y } . 

By hypothesis , 

[ u 1J 
c.. [s2] n [s1 , X] 

[ u 2J c [s 1 , YJ n [s2 , z] 

s o  [U 
l ::> U 2J C [sl , X ::> Y] n [s2 , z] 

We have that the following four blocks are inconsis tent . 

1 )  { Ts2 , F U
1

} 

2 )  { T  u
1

, TS
1

, FX } 

3 )  {TS1 , TY , F U 2 } 

4 )  { T  U 2 , TS2 , FZ } 

and we must show the following two blocks are inconsis tent . 

{ TS1 , TX � Y , F u
1:::J U 2 } 

{ T  u l :::> u 2 , TS2 , FZ } 

The first follows from 2 )  and 3 ) i and the se6ond from 1 )  

and 4 ) .  
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KF .3 : The block is {TS , F ( 3 x )  X ( x ) } and {TS , FX ( a ) } 

is inconsis tent . Suppose the initial part is {TS1 } 

By hypothesis there is a u such that 

U is an {TS , FX ( a ) } / {TS1 } .  

Then [ u J C [s 1] /l [s
2

, X ( a )J 

eas e l )  a¢ tu ] .  
Then u is an { TS , F (3 x )  

c as e  2 )  ae:  [u J , ae: [s2J 
Again u is an { TS , F (3 x )  

X ( x ) } 

X ( x ) } 

I {TS1 } 

/ {TS1 } 

c ase 3 )  ae: [u ] , a¢ [s
2
] . Then ( 3 x )  U {!) is an 

{TS , F ( 3 x )  X ( x ) } I {TS1 } 

KT 3 : The block is {TS , T ( :.=J x )  X ( x ) ,  FZ } and {TS , TX ( a ) ,FZ } 

is inconsistent , where a¢ [s ,  X (x ) ,  z] . 

c ase 1 )  The initial part is {Ts1 , T ( 3  x ) . X ( x ) } . By hypothesis 

there is a U such that 

U is an { TS , TX ( a ) , FZ } I {TS1 , TX ( a ) } 

Then u is an {TS , T ( 3  x )  X ( x ) , FZ } I {TS1 , T ( ::3  x )  X ( x ) }  

c ase 2 )  The initial part is {TS1 } By hypothesis there 

is a u such t hat 

u is an {TS , TX ( a ) , FZ } ; ·  {TS1 } 

Then u is an {TS , T ( 3  x )  X (x ) ,  FZ } I {TS1 } 

K F"·V : · The block is {TS , F ( V  x )  X ( x ) } and {TS , FX ( a ) } 

is inconsis tent where a¢ [s , X ( x )J . Suppose the initial 

part is { Ts1 } .· By hypothesis there is a U such that 

'" 



U i s  an { TS ,  FX ( a ) } / {TS1 } 

Then U i s  an { TS , F ( V x ) X ( x ) } / {TS l } 

KT \;/ : The b lock  i s  { TS , T ( V  x )  X ( x ) , FZ } • and 

{TS , ·TX ( a ) , FZ } i s  inconsistent . 
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c a s e  1 :  The init ial  part is {Ts1 , T ( V x ) X ( x ) }  • By 

hyp o t h es i s  t here i s  a U such that 

U i s  an {TS , TX ( a ) , FZ } / {TS1 , TX ( a ) } . 

case  l a : at [ UJ . Then U is  an 

{ TS , T ( \I x )  X ( x ) , FZ } / {TS1 , T ( V  x )  X ( x ) } . 

c a s e  lb : a e:  [ u ] , ae: [s1 , X ( x )] Again 

U i s  an {TS ,  T ( V x ) X ( x ) , FZ } / {TS1 , T ( V x ) X ( x ) } .  

c a s e  le : a e:  [ u] , a¢ [s1 , X ( x )] 

( V x ) .  U (�) Then i s  an 

{ TS ,  T (V x )  X ( x ) ,  FZ } I { TS1 , T ( 'v' x )  X ( x ) } 

c a s e  2 :  The init ial part is {TS1 } . 
By hyp o t he s i s  there i s  a U such that 

U i s  an { TS , TX ( a )  , F Z } / {TS l } 

c a s e  2a : at [ u] . Then U is  an 

{ TS , T ( V  x )  X ( x ) ,  F Z } / {TS1 } 

c a s e  2b : ae:  [ u ] , ae: [s2 , X ( x ) , z] . Again 

U i s  an {TS , T ( V  x )  X ( x ) , FZ } / { TS1 } 

c a s e  2 c : ae: [ u] , at [s2 , X ( x ) , z] 

Then ( 3 x ) . u (!) i s an 

{ TS , T ( V x )  X ( x ) ,  FZ } / { TS1 } . 

Q . E . D .  

• 

'; 
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Now  to prove the original theorem . 

Suppose rr x � y .  Then {TX ,  FY } is inconsistent . 

By the lemma , there is a u such that 

u is an {TX ,  FY } I {TX } 

We h ave three cases . 

1 )  U = t .  Then since {Tt,  FY} is inconsistent , 

1- r  Y .  

. 2 )  U = f . Then since {TX ,  Ff } is inconsistent , 

{ F  ~ X }  is  also inconsistent [f is not in x] Thus 

J- I ~ X 

3 )  U t- t ,  U t- f .  Then U is a formula not 

involving t or - f ,  all the parameters and predicates 

o f  U are in X and Y ,  and since {TX ,  F U } and 

{T  u, FY } are both inconsistent , t-I X =>  U and t-I U ::::,y _ 

Section 6 

Models with constant @ function 

In Part II we will be concerned with finding counter­

models for  formul as with no univers al quanti fiers , and we , 

will  confine ourselves to models with a constant f' function . 

To j usti fy this restriction , we show in this section 

Theorem : If  X is a formula with no universal quanti fiers 

and �1x ,  then there is a counter-model <a , R ,  t= , �) for X 
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in whic h  o' is a constant function . 

Def : For this section only, let a1 , a2 , a3 , . . .  be an enu:..., 

meration of all parameters . We call a set r of signed 

formulas a Hintikka element if r is a Hint ikka element with 

res pect to some init ial segment of a1 , a2 , a3 , ( See 

section 4 chapter 5 ) . 

Lemma : I f  S is a finite,  consistent set of signed formulas 

with no universal quantifiers , S can be extended to a finite 

Hintikka  element . 

Proof : Suppose S is the set {X1 , x2 , . . .  , Xn } where each 

Xi i s  a signed formula . We define the two sequences {Pk } ,  

{ Qk } as follows : 

Let Pa = cp 

. Q o = Xl , . . . , n 
S up pose we have defined pk and Qk where 

pk = Yl , . . . , r 

Qk = Wl , . . . , w s 
and Pk U Qk ( considered as a set ) is cons-istent . 

To define Pk+l and Qk+l we have several cases 

depending on w1 . 

case atomi c :  I f  w1 is a signed atomic formula,  let 

pk+l = _ Yl , . . .  , Yr ,· wl 



.... 

c ase T V  : If  Wl is TX V Y , 

with pk V Qk , say TX . Let 

pk+l 
= Yl , . . . , y 

Qk+l 
= w2 , . . . , w 

either TX or TY 

r ' TXV Y 

s , TX . 

1 1 6  

is consistent 

c as e  F V  . If  W1is FX V Y then FX , FY is consistent with . 
pk u Qk . Let 

pk+l 
= Yl, y FX V Y . . . , r '  

Qk+l 
= w2 , . . .  , w s ' FX , FY 

c ases Tl\ , Fl\ , . T~ , T ::>  are similar . 

case T 3 : If  W 1 i 
_
s T ( 3 x ) X ( x ) , 1 et a be the first in 

the sequence a1 , a2 , . . .  not oc curing in Pk or Qk . Then 

TX ( a )  is  

case F 3  : 

consistent with Pk V Qk . Let 

pk+l = Yl, y T (  3 x )  X ( x )  . . . , r ' 

Qk+l = w2 , . . . , w s , TX ( a ) . 

If w1 is F ( 3  x )  X (x ) ,  let {a . , 
11 

t he· set of parameters occuring in pk L) Qk 
Then {FX ( a1 ) ,  

1 

pk+l 
= pk 

Qk+l 
= W2 , . . . , 

Let 

W , FX ( a .  ) , 
S 11 

F ( 3  x )  X ( :x. )  

. . .  , 

• • .  , a .  } be 
it 

such that no 

. . . , 

FX ( a .  ) , 
it 

After finitely many steps there will be no T-s igned 

formulas left in the Q-sequence because each rule , T V  , T A  , 
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T ::::> , T:3 reduces degree , and no rule , F V , FA  , F 3  

introduces new T-signed formulas . 

When no T-signed formulas are left in the Q-sequence , 

n o  new parameters can be introduced since rule. T 3 no longer 

app lies . 

After finitely many more steps we must reach an empty 

Q-sequence . The corres ponding P-sequence is finite , consi s­

tent , and clearly a Hintikka element . 

Q . E . D .  

Remark : The ab ove proof also shows the following whi ch we 

wi ll  need later . Let R be a finite Hint ikka element . 

Suppose  we add ( consistent ly ) a finite set of F-signed 

formulas t o  R and extend the result to  a finite Hint ikka 

element S by the above method .  Then 

RT
= ST . 

Since R C S ,  cert ainly RT C ST . That ST C RT als o  

holds fol lows b y  an inspection o f  the above proof;  no new 

T- s igned formulas will be added . 

Now we turn to  the proof of  the theorem it self . We 

have no  univers al quantifiers to consider , so  we may use  

t he definition of as sociated set s  in  section 4 chapter 2 .  

Suppose X is a formula with no universal quantifiers , 

· and ,.fl- 1x .  . Then {FX }  is cons is tent . Extend it to  a 

finite Hintikka element , s0 . 



Let . . .  , T n be the as sociated sets of 

Extend each to a finite Hintikka element , 

res pectively.  Thus we have 
0 0 s o Sa , Sl , . . .  , n · 

1 18 

For each parameter a of  some sf and each formula 

o f  the form F ( 3  x )  X ( x )  0 in  s0 , adj oin FX ( a )  to and 

extend the result to a Hintikka element Do the same 

for 0 s o producing 1 sl respectively. Sl , . . .  , Sl , . . . , n ' n 
Thus we have 

1 s
o

, 

Let 

0 . . .  , s 
1 s o , 

now 
1 Sl . Sl , . . .  , n 

be the associated sets of 

Extend each to a Hintikka element , 

respectively. Thus we have now 
1 1 0 s o . sl , · · · , Sn , 8n+l ' · · · , m 

For each parameter a used so far , and for each formula 

of the form F ( 3  x )  X ( x )  in S� , adj oin FX ( � )  to S� and 

extend the result to a finite Hintikka element s 0 • Do the 

s ame for each . Thus we have now 

. . .  , 
Again take the associated sets , .and extend to finite 

Hintikka elements , producing now 
2 2 2 1 S
o

, S
l

, . . .  , Sn , Sn+l ' . . .  , 

Continue in this manner . 

00 

' k= O  k= O 

Sl 
m '  

etc . 

. . .  , s o . p 

F 



By the remark above , for each n, 

SnT 
Thus if 

= S O = Sl = 
nT nT • • • 

Sn has as an asso ciated set 

1 1 9  

S T C S n - m 
It now fo llows that { s

0
, s1 , . . .  } is a Hintikka 

· c ol lection . For example , suppose F ~ YES
j

. Let k be the 
k least integer such that F ~ YES . . By the above construc-

tion , there is some set s 0 such that s0 is an associated r r 
s et o f  s� and TYES O � But then s�T C s0 , so by the 

J r J - r 

· above , s
j T C Sr , and TYES r . The other properties are 

shown similarly. 

Moreover , � ( Sn) = � ( S  ) m for all m and n, as 

i s  e�sily seen. ( Recall , If (S ) is the collection of all  

p arameters used in S . ) Now as in section 3 chapter 5 ,  

there is a model for this Hintikka collection, and this 

model will  have a constant � map , so the theorem is shown. 

·- -

� J 
. I 
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Part II  SET THEORY 

CHAPTER 7 

Intuitionistic  Ma Generalizations 

S e c tion 1 

Introdu c t i on 

Here am. in the rest of part II we restrict our 

conside rat ions t o  the following language : a countable 

· collect ion of bound variables , x ,  y,  z ,  . . .  , a collection 

of p aramet ers ( or cons tants ) of arbi trarily high cardinality 

f ,  g ,  h ,  . . .  , one two-place predi cat e symbol , E 

[we wri t e  e: ( x , y ) . as ( xEy) ] ,  and the usual connect-
\ 

ives , quant ifiers , and pa�antheses . 

In all  the mode ls <a , R , F , f) which we will 

c ons ider in part II , the map f will be constant , and s o  

we will  simp ly write the domain S of f' instead of fJ , 
thus , < G � R ,  p , S > where {f( r ) = s for all f EG .  

We c all ·  a model <a ,  R,  l== ,  s> an intuitionistic  

ZF mod e l  i f  classical equivalents  of all the· axioms of ,. 
Zermello-Fraenkel set theory, expressed without the use 

of the univ·e·rsal quantifier , are valid in it ·. 

As  a special case , suppose <a , R,  t= , s> i.s. an 

intuit ionistic  ZF model ?nd G has only one element , r .  

Then this i s  ( is omorphi cally) a classical mode l for ZF . 



; 
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� 
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I f  we define a truth function on all formulas over S by 

v ( x )  

v ( x ) 

= 

= 

T 

F 

if 

if 

r t== x  
r�x 

v wil l be a c las sical truth function , and all the 

axioms . o f  ZF map to T .  Thus the notion of 

intuitionistic ZF model is a generalization of the 

classical  n otion . 

Suppo s e  <a , R , f:= ,  s>  were an intuitionistic 

was valid in it , where A . C .  ZF model such  that ~A . C .  

is s ome c las sically equivalent form of the axiom of choice 

exp res s ed without use of the universal quantifier . It 

fo llows  that the axiom of choice is clas sically unprovab le 

from the axioms of ZF . For otherwise ,  

so  for  s ome finite subset A1 , . . .  ,An of  ZF , 

We may suppose A1 , . . .  ,An 
quantifier .  

stated without the universal 

. · ,- ( A ., .... · · " A ) :::> A . C .  
C 1 . n 

So by the results · of section 8 ,  chapter 4 ,  

equivalently, 



But < G , R , t::: , S) i s  an intuitionistic model in 

whi c h  A1 , . . .  , An , ~A . C .  are valid , a contradict ion . 
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Thus , t o  show the classical independence of the 

axiom of choice  it suffices to  cons truct an intuitionistic  

ZF mod e l  in whi ch ~A . C .  is valid . Simi lar results 

hold for the independence of the cont inuum hypothesis 

and of the  ax iom of cons tructability . 

In t h i s  chapter we will define intuitionis tic  

general i zat ions  of  the clas sical M sequence of Godel a 
[ 3 ] , wh ich  provide intuitioni stic generali zations of L ,  

t h e  c las s - o f  c onstruc table sets . We will show these 

gener�lizations are intuitionistic ZF models . In lat er 

chap t ers  we will  give specific intuitionistic generali zations 

o f  L e s t ablish ing the indep endence of the axiom of 

choi c e , the continuum hypothesis , and the axiom of 

constructabi lity . 

The specific  models cons tructed , and most --of the 

general me thods will be those of forc ing , due to Cohen [ 2 ] .  

It i s  the  p oint of view that is di fferent . No classical 

models  are c on s t ructed , complete � equences are not used , 

and couptab le ZF models are not required . .  

In  [ 4 ] ,  Gregorzyk noted the foundations of a 

conne c t ion b e tween forc ing and intuitionistic logic . In 

( 1 2 ] Kripke dis cussed the relat ionship between for cing 

and his  models . 

.. .  

1 

1 . ..  
\111 
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Remark : For the rest of part II  we shall distinguish 

informally between cons tants , bound variables , and free 

variables . We shall use 

bound and free variables . 

x , y , z ,  . . .  for both 

This is an informal 

dist i n c t ion . Formally , free variables and constants 

are both p aramet ers in the sens e of part I since free 

variables are simp ly place holders for arbitrary constants . 

Sect ion 2 

The classical M sequence 
Cl 

Let V be a clas sical ZF - model . In [ 3 ]  Godel 

defined over V the sequence M of sets as follows . ex 

= cf> 

M
a+l 

subs ets  of M .  

is the collection of all definable 

= 

Let the  c lass 

L was a c l assi cal 

u Mot for a< A 

L be u 
CXEV 

ZF model . 

limit ordinals , A .....  

M Godel showed that 

As an introduct ion to the intuitionistic generaliza­

tion , we re-state the Gode l construct ion us ing character-

istic funct ions instead of sets . Now , of cours e ,  " E " 

is to be considered as a formal predicate symbol , not as 

s et membership . 

I, • 

•• 

·-



I . 

12 4  

Let M be some collection and let v be a truth 

function on the set of formulas with constants from M .  

We s ay a ( charact eristic ) function ., f ., is definable 

over  <M ., v> -if domain ( f )  = M., range 

( f ) C { T
.,

F }
., 

and for some formula X ( x )  with one 

free  variable and all constant s from M ., for all ae:M., 

f ( a ) = v ( X ( a )  ) 

Let M '  be the element s of M together with all 

functions d efinable over (M-., v> . 

We define a truth function., v '  ., on the set of 

formulas with const ants from M '  by defining it for 

atomic formulas . If  f , ge:M '  we have three cases . 

1 )  · . f ,  g EM .  Let v '  ( f e:g ) = v ( f e:g )  

2 ) fe:M., ge:M ' -M . Let v '  ( f e:g ) = g ( f ) 

3 )  fe:M ' -M Let X ( x )  be the formula 

define s · f 

that 

and 

let  

over (M, v) 

v (  ( V x )  ( x  e:h 

v ' (he:g ) 

v ' ( fe:g ) 

= 

= 

If there 

- X ( x )  

T ., 

T 

Otherwis e ., let  v ' ( fe:g ) = F .  

is an he:M 

) ) = T 

[ case  3 reduces  the situation to cas e 1 or case 2 ]  

which 

such 

We call  the pair <M ' .,  v ') the derived model of 



.. 

Now , let MO 
= cf> and 

obvious truth function . Thus , 

Let <Mcx+l ' V a.+ l> be 

<Ma , Va
> 

let 

we 

the 

VQ 

have 

be the 

< M , V > 0 0 

derived model of 

If  A is a limit ordinal , let MA = 
a< A Ma.

. 

Let ( f£ g )  T if for some 
-

<l< A Va. ( fEg )  VA 
= = , 

Otherwis e let VA ( f £g) = F .  Thus , we have 

< MA , vA
) 

. 
Let L = u M . . Let v ( fEg )  = T if for o.£V a. 

some a£V , V ( f £g ) = T .  Otherwise let 

1 25 

T .  

v ( f£ g )  = F .  Thus , we have the " class " model <L,  v > 

The reader may convince hims elf that this construction 

is essentially equivalent to  G6del ' s , so that if A is 

any axiom of ZF , v ( A )  = T .  Thus , <L , v) 

is a clas sical ZF model , though not a standard one . 

For a boolean. generalization of this type of 

sequence  s e e  se ction 7 , chapter 14 .  

.. 



Section 3 

The intuit ionis tic Ma sequence 

Supp o s e  we have a. model (a , R ,  F ,  s> . 

[recal l , S i s  a set , the domain of the f map , and 
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there is  only  one  predicate symbol , £ . ] For convenience , 

l e t  P b e  the collection o f  all R- closed subsets  of 

G .  

We s ay a fun ct ion f is  de finable over (a , R ,  t= , s> 

i f  domai n  ( f )  = s ,  range ( f )  c P , and for some 

· formul a  X ( x )  with one fre e variab le , all constants from 

s ,  and no universal quant ifi ers , for any 

f ( a )  = · { r  I r l= X ( a ) } 

Let S ' b e  the e lement s of S together with all 

fun c t i ons  definable over <a , R ,  1= , s> . 

We d e fine a p'  relation by giving it for atomi c 

formulas  over S 1
• If f , g£S 1 we have three cas es . 

1 )  f ,gES . Then let T f:::: ' ( fEg ) if  T f= ( fEg ) 

2 )  f ES ,  g e:S ' -S .  Let r F ' ( f Eg ) if r e:g ( f) . 

3 ) fES ' -S .  Let X ( x )  be the formula which defines 

f over < a ,  
h ES �uch  that 

and 

R ,  f: ' s> Let 

r F ~ ( 3 x )  ~ (x Eh 

T I= 1 ( h Eg ) . 

f f= ' ( f Eg ) if there 

X (  X )  ) 

[this reduces  the si tuat ion to cas� 1 or case 2 ]  

is  an 

' 



127 

We c all the model <a ,  R ,  p ' , S 1 ) the derived 

model of (G , R ,  !== , S )  

Now let V be a clas sical (first order ) model for 

ZF. We define a sequence of intuitionis tic models in 

as follows . 

Let <a , R ,  !==0 , s0) be any intuitionis tic model 

s atis fying the following five conditions . 

2 )  s 0 is a collection of functions such that , if 

domain ( f ) <;. s0 and range ( f ) � p . 

3 )  for f ,  g£S0 , 

� )  ( extensionality) 

r l:=
0

~ ( 3  x ) ~ ( x £f  

r l= o ~ ( g Eh ) , 

X £g ) and then 

5 )  ( regularity) s0 is well-founded with respect to 

the relation X £ domain (y) . 

Remark : I f  we consider the symbols V ,  /\ , ~ , ::> , \q ,  3 ,  ( , ) , E, 

to be suitable "code"  sets , formulas are 

sequences of sets , and hence sets . It is in this sense that 

1) is meant . See also section 14 . 

Next , let · <a , R, l== cx+l' S a+l > be the derived model 

of <a , R ,  t=z a, s a > .  

Let 

have 

If  is a limit ordinal, let 

r I= A ( f Eg ) if for some 

<a , R ,  F >. ' s " ) .  

= u 
a< >. s a ·  
Thus , we 

. .  



Finally, let s = Uvs,.., . 
CH: . "" 

if for some O.EV , f f=
a.

( fEg ) . 

" c las s "  model , <a , R , r- , S > .  

Let r t= ( fsg ) 

Thus we have the 

We wil l  spend the rest of this chapter showing 

12 8  

Theorem : <a , R , \= , s>  is an intuitionistic ZF model._. 

Remark : I f  as a special case �e let s0 be empty, and 

let G = { r } ,  and we identify T with { r }  and 

F with cp ,  the result is the characteristic function 

version of the M sequence in section 2 .  
C(. 

[The truth functions become va ( X )  = { r l rFaX } ]  

Thus as a special case of the above theorem , L is a 

c lassical ZF model . 

Notation : Sometimes we will write gx e: Sa+l - Sa 

where by the s ubscript X we mean g is thi function 

defined over the model < G ,  R ,  I= a ' Sa ) by the formula 

X ( x ) . Then part 2 of the definition of p '  for the 

derived model may be restated . 

I f  then r t= ' ( f e:g
:,<) if f F X (f )  
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Section 4 

Dominance 

Def : Let be a formula with no constants 

and with all  its free variables among 

call  X dominant if J for any 

c
1

, . . .  , c  E S  , n a. 

Def : Let 

1 )  ( f �  g )  

2 )  ( f  = g )  

stand for 

stand for 

r e:G ,  and any 

<=> 

~ ( :3  x ) ~ (x e:f ::> xe:g)  

( f <;;: g)l\ (g � f )  

We 

Theorem : ( x e:y) , · ( x -;;;  y. ) , and ( x  = y) are dominant . 

Proof : That ( x e:y) is dominant is obvious . 

( x c; y )  is  dominant , so  is ( x = y ) . That 

is dominant follows from the next three lemmas . 

Lemma 1 :  I f  f , g ,  e:S a. and 

Proof : Suppose for some 

r t=  ( f c;;  g ) , 

and some 

By dominan ce of (xe:y) , r* l= (he:f ) . But 

then 

If 

( x �  y ) 

r * t-=- ~ ( 3  x ) ~ ( xe:f :::> xe:g ) so by intuitionistic logic , 

r*  t= ~ ~  ( h e:g ) . . By dominance again , r* Fa ~~ (he:g ) . 

Thus f (:s ( 't/ X )  ( X e:  f ;::> ~ ~ X e:g ) , which is equivalent to 

r t=  ~ ( 3  x ) ~ ( xe:f ::> xe:g)  . . a. 
Q . E . D . 

. -. 
.,-

• 
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Remark : The reader may show the two simple facts used 

above , and often later : X is  dominant implies -X 

i s  dominant and 1- I ( V  x ) ( X (x ) ::>  ~~Y (x )  ) 

~ ( 3 x ) ~ (X ( x ) ::> Y ( x )  ) 

If 

r t= a+ 1 ( f t;; g ) . 

Proof : 

r F 0( f  <;; g )  · then 

Suppose for some r*  and 

some he: S
atl '  r * l=

CL +l (he:f ) . If he:S a, by 

dominance ,  r *J= a(he: f ) . But r *Fa (f� g) so as 

above r *Fa ~~ (he:g)  and by dominance , r* t= cx+l~~ (he:g) . 

I f  he:S a.+l- S a' s ince fe:S a and r * I= a+l (he:f ) , 

it  mus t  be the case that h is for some formula 

X over s , 
Ct 

and there is some ke:S such that a 
f* F cr.+l ( ke: f ) 

Since both 

r * (:=:- ~ ~ ( k e: g ) a. 
i s  .for any 

and 

k , fe:S , a 

r* r= ~ ( ::t x ) ~ (xe:k •a. 
by dominance , 

X ( x )  ) . 

f *F (ke:f ) . a 
and by dominance , r * 1,:: a+ 1 ~ ~ ( le e:g ) . 

r ** , there is  some r ** * such that 

Thus 

That 

f * * * p cx+l ( ke:g ) . But also f * * * j=- ~ ( 3 X )  ~ ( X Ek = . X ( X )  ) , a 
so by definit ion, r * * *t= · (h e:g) . a+l x 

Hence , f l= ( V x ) (xe:f ::> ~~xe:g)  a.+l so 

Thus 

Q . E . D  



Lemma 3 :  

f r-- ( f G g )  

Proof : 

If f ,  ge:S 
a 

and then 

Firs t ,  by transfinite induction , for any 
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The successor ordinal step is given 

by lemma 2 .  Suppose A is a limit ordinal , A >a , 

and t he result is known for all a such that a< S <A 

. I f  r t-= A ( he: f ) , then for some B<A  , r I= P ( he: f )  . 

But r \=
13

( r c g )  s o  r \= 8 - - (he: g) . By dominance , 

r I== 
A 

~ ~ ( he: g )  . So r J== A ( f c;; g ) . 

Finally, that r t= ( fG g )  follows j ust as in 

t he limit ordinal case . 

Theorem : I f  

f f= ~ ( 3 X ) ~ ( Xe: f a 

Q . E:. D .  

Section 5 

A little about equality 

f e:S and 

X ( x )  ) 

gxe: S
a+l - S 0 then 

if and only if f ra+1 ( f  = gx ) 

This fol l ows from the next two lemmas . 

· Letnm:a: 1 : If  g e:s - s x ex+l ex '  
f F. ,-. ( 3  x ) ~ ( xe: f a 

and 

X.( x )  ) 

tf. 

'l 

\<JI -­.. 



Pro0 f : Suppose for some r* and some he:S a, 

Then f * p  o+l (he:f ) , so 

1 32 

r* I= (he: f ) . a 

any there is a f * * *  such that r ***  F (he:g ) 
et+l. X 

But hES ,  
Ct 

g x e: S a+ 1 - S a, so r * * * e: g x ( h ) , that is , 

r * * * (::: X ( h ) • a. Thus , f * l::1 a~~X (h) , so fF" a ( V x ) ( xe:f ;:) ~~X ( x ) )  

or r f= ~ ( 3 x ) ~ ( x e:f .:::>X ( x ) ) a. 
Similarly, 

r J= ~ (3x ) - ( x ( x ) :, xgf ) . a. The result follows since 

~ ( 3 X ) ~X1 ( x ) A  ~ ( 3 x ) ~X2 ( x )  

Lemma 2 :  and 

Q . E . D .  

r I=- ~ ( 3 x ) ~ ( x e:f  a. X ( x )  ) then r t= a+l ( f = gx ) .  

Proof : r t= . ~ ( 3  x ) ~ ( x e:f a. X ( x ) ) .  Suppose for some 

f *  and some he:S o:+l ' f * (== a+l (he:f ) . 

If hES a' trivially f*p  ~ ~  (he:g ) 
r�Q+ 1 X 

I f  he:S a+l - S a' 
h must be h y f'or 

there is some ke:S a. 
f *  I= ~ (  3 x ) ~ ( xe:k -a 

then since fe:S a 

some formula y over s Ct' 

such that f* I= �1 (ke:f)  

By dominance , 

and 

and 

r* I= ( k e:f ) , 
Ct so 

Y ( x )  ). 

r* F ~~X ( k ) . a. So , for every r ** 
there is a f * * *  

f* * *  t= (k e:g ) . a,+l X 

so by definition , 

such that _ f * * * l=  X ( k ) . a· • 
But also f* * * I=  ~ ( 3  x ) ~ ( x e:k a. 
_r ***  P a+l (hye:gx ) .  Thus , 

Thus , 

Y ( x ) ) 



In a similar manner it can be shown that 

r t
= 

a+ l ( gx �  f ) . 
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Q . E . D. 

For later use we show the following mos t useful corollary. 

Theorem 2 :  

domain ( g )  

I f  r r- a ( fe:g ) , then there is an 

s u Ch that r p a· ( f = h ) /\ (he:  g ) . 

Proo f : By induction on a . If a = o , and 

he: 

r != 0 ( .r-e:g ) ,  by definition f must  be in the domain of g .  

Suppose the result is known for a ,  · and 

r I= a + 1 ( f e:g ) We have three cases . 

1 )  

hypothesis . 

If f , ge:S a the result is by induction 

2 ) If fe:S , ge:S +l - S the result is trivial 

since 
. a a a 

fe: domain ( g ) . 

3 )  If fe:Sa+l - S� ,  by definition and theorem 1 ,  · 

for some ke:Scx , .  rt=a+l (ke:g )A (k = f )  . .  Since 

r I= a+ 1 ( ke:g ) , 

he: domain ( g )  

by case 1 )  or case 2 )  there is some 

such that r t-= a+l (he:g )l\(h  = k ) . 

trivially if f l= a+l (h= k ) A ( k  = f ) , 

But 

• 



The limit ordinal step is  simple 

Remark : By dominance of ( x eg ) and ( x  = g ) , 

r e s ult follows . also  for the class model . 

Section 6 

Weak sub s t·i tut i vi ty oT ·eq·ual·i ty 

1 3 4  

Q. E. D. 

the 

The orem : Let X ( x ) be a formula with one free variable 

and no  universal quantifiers . 

r I= ~x ( f )  then 
ex 

r t= ( f  = g )  and 

f \= ~X (g ) . 
CL 

r t=  ~ X ( f )  

If 

Similarly if 

then r t= ~X( g ) . 

Proo f : Supp ose  the result is known in the model 
. . 

and 

[ or in (G ., R ., l= ., s) J for all 

at omi c formulas X ( x ) . It then follows for all formulas 

X ( x )  by the following intuitionistic theorems : 

~x - -y 
\- I ~ (X I\ Z )  - ~ ( Y, A  Z )  

~ ( X V Z )  - ~ ( Y V  Z )  

~ ( ~X ' ,., ( :..,y ) I -
~ ( X ::>  Z )  - ~ ( Y ::>  Z )  

~ ( Z => X ) - ~ ( Z => Y ) 

( V  x )  [ ~ X ( x )  ~Y ( x )  ] .}- 1 ~ ( 3  x ) X ( x )  ~ ( 3 x ) Y ( x )  



.,,. 
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Thus we must show the result for atomic formulas . 

Over an atomic formula must be 

either ( ae:x ) , ( x e:a ) , or ( ae:b ) , for .a ,  be:S0 . The 

c ase ( ae:b )  is trivial .  For the case ( ae:x ) , we are 

given : r (= ~ ( 3 x ) ~ ( xe:f 0 xe:g) , and r 1= 0
- ( ae:f ) . 

The result , r I= 0 ~ ( a e:g )  follows by intuitionistic logic . 

For the c ase ( x e:a ) , the result is condition 4 ,  on 

s a . 

in section 3 .  

Suppose the result is known for all formulas over 

We show it  for atomic formulas of <a , R ,  l= a+l' Sa+l) 

Again , an atomic formula must be either ( ae:x ) , ( x e:a) , or 

( ae:b ) for a ,  be:Sa+l · As above , ( x e:a)  is the only 

diffi cult case . Thus , we are given r I== a+ 1 ( f = g )  ' 
and f F a+l;- ( fe:a ) . We have eight subcases : 

1 )  a ,  f ,  ge:Sa 

2 )  a �  fESa , ge:Sa+l - Sa 

3 )  a ,  ge:Sa , fe:Sa+l -Sa 

4 )  

5 )  

ae:S , a 

6 )  a ,  ge:Sa+l 
7 )  a ,  fe:Sa+l - Sa , ge:Sa 

8 )  a ,  f ,  _ge:Sa+l - Sa . 

We treat these cases separately . .  

Case 1 )  The result follows by dominance of ( x e:y) 

and (x = y) , and the induct ion hypothes is . 

.. 

t-
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Case 2 )  Suppose r/= a+l 
~ (ge:a ) . Then for some 

r * , r * l== a+ l ( ge:a ) . By theorem 2 ,  section 5 ,  there is an 

he:S  a such that r* l=  (g  = h ) A (he:a)  a+l . But 

r * l= a+l ( r =-g ) , · hence 

r* I= ( r = h )  A (he:a ) . 

r* t= (f = h )  a+l By dominance 

a 
By induction hypothesis , 

r * t=  ~ ~ ( r e:a ) . a By dominance, f* i=  ~~ ( fe:a ) a+l ' 

Case 3 ) Suppose 

r * I= a+l ( ge:a ) . 

r� a+l~ ( ge:a ) . Then for some 

But r* l= a+l (f  =g ) . Now by 

so 

theorem 1 section 5 ,  and the definitions ,  r* F a+l ( fe:a) � 

Case 4 )  an elaboration of 2 )  and 3 ) . 

Case 5 )  a is 

Then f'or some 

a e:S +l - S . x a a 

so by dominance , 

• Suppose 

so 

r,f-: a+l ~ (ge:ax ) 

r* F X(g ) . But a 

r* l= a+1 <r = g )  

hypothesis , r * f:= ~~X ( f )  
Ct 

so it follows that 

r * t= . ~ ~ ( f'e:a ) . 
a+l X 

Case 6 )  Suppose 

r * , f * l-=- a+l (ge:a ) . 

he:Sa , r * f= a�l ( g  = 

Hence 

rt-, a+l ~ ( ge:a ) . For some 

By theorem 2 section 5 ,  for some 

h )  A (h e:a) . 

.r * �a+i < r = h ) . By dominance, 

But f* F a+l ( f  = g )  so 

f* Fa ( f = h ) . Moreover ,  

a must be Since . f* /= a+l (he:a ) . 

• I I •  II 1 ■I ■ I 
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f* I= X ( h ) . a By hypothesis , 

f*  t= ~ ~ c r e:a ) . a+l x · Thus , 

Case  7 ) Suppose 

r* I= ~~X ( f )  and so  ex 

Then for some 

r * , f *  I= a+l ( g e:a ) . But f* j:::::. cx+l ( f  = g ) , so  by 
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t heorem 1 s e c t ion 5 ,  and the definit ions , f* F a+l ( fe:a ) . 

Thus , r .¥= cx+1- ( r e:a) . 

Case  8 ) an e laboration of 6 )  and 7 ) , Thus , we have 

the res ult  for succes sor models . 

The result  for atomi c formulas i� limit models , and 

in the  class  model is straightforward . 

Q .E. D .  

Section 7 

More �h do�inance 

De f :  A formula X is called s table i f  ~ ~x 

Def : A formula X (with no univers al quant ifi ers ) is  

s ai d  t o  have i t s  quantifiers bounded if every subformu la 

beginning · with a quantifier is of the form 

( 3  x )  ( ( x e:v ) A Y ( x )  ) 

:f 



-
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where v is  a variable or a constant . Moreover , if 

Y is s t able we say X has strongly bounded quantifiers .  

Theorem : Let X be any formula with no constants , no 

univers al quantifiers and all its quantifiers strongly 

b ounded . Then , X is dominant . 

Pro o f : By induction on the degree of X .  If X is 

atomic the result is j us t the dominance of (xe:y) . 

Supp ose X is not atomic and the result is known 

for all formulas of lesser degree . The four cases 

X is ( Y  V Z ) , ( Y A Z ) ,  ~Y , or ( Y => Z ) are simple .  

Supp ose X (y,  z ,  . . .  ) is 

where y is  s t able ,  and by 

Supp ose a ,  b ,  . . .  e:S a 

If r t= �X ( a ,  b ,  . . .  ) 

( 3  x )  [ ( X £y ) .I\ Y ( X , y , 

hypothesis , dominant . 

then 

r t= a ( :3 x )  [ ( x e:a ) A Y ( x ,  a ,  b ,  . . .  ) J . For some 

z ,  

r t= a ( fe:a ) /\ Y ( f ,  a ,  b ,  . . .  ) .  By hypothes is , both of  

these are dominant , so f F (f e:a ) A Y ( f ,  ·a ,  b ,  . . .  ) .  

r t= ( 3 x ) [ ( x e:a ) A Y ( x ,  a ,  b ,  . . .  ) ] ,  r t= X ( a ,  b ,  . . .  ) .  

Conversely,  suppose r \= X ( a ,  b ,  . . .  ) .  

. . .  ) 

.r )=:: ( .3 X )  [ ( X e:a ) A y ( X ,  a ,  b ,  . . .  ) J . 

r t= ( f e:a ) I\ Y ( r ,  a ,  b ,  • • .  ) . .ae:S . a 

Then for some fe:S , 

so  by theorem 2 

section  5 ,  there is a such that 

r t:- ( r = g ) " ( g e:a ) . By weak substitutivity of equality, 

J 

lb 

ll • • • 



-

r t= ~ ~Y ( g ,  a ,  b ,  . . .  ) .  But Y is stable so 

Now by dominance , r r-- Y ( g ,  a ,  b ,  . . .  ) .  

r i==  ( g e:a ) /\ Y ( g ,  a ,  b ,  . . .  ) ct 
r F ( 3 x )  [ ( x e:a ) A  Y ( x ,  a ,  b ,  . . .  ) J ct 
r � X ( a , b ,  . • .  ) ct 

We define the following formula cbbreviations . 

y = <P 

<P e:y 

Y = x ' 

X '  e:y 

X = {y, z }  

X = U y  

for 

for 

for 

for 

for 

for 

for 

~ (3 X )  ( X EY ) 

( 3 X )  ( Xe:y i\ X = q> ) 

~ ( 3  w ) ~ [we:y - (we:x v w = x ) J  

( 3 .W ) . ( WEY A W = X t )  

~ ~ ( q, e:y) /\ ( :3 x ) ~ [ xe:y::> x ' e:y] 

~ ( 3 w) ~ [we:x _ (w = yv w = z ) J  

~ ( 3  z ) ~ t ze:x _ ( :3  w ) (we:yA ze:w ) ] 

The above formulas are dominant . 

·pr·ooT : .y = 4> and 4> E y are dire ctly by the above 

theorem . 

y = x '  is equivalent to  the conj unction of the 

followin·g two formulas , 

~ ( 3 w )  [we:y /\ ~ (we:x "  w = x )  J 
~ ( 3 w ) ~  [ (we:x v w = x )  ::> We:y] 
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Q . E . D .  

Ill 

Ji 



The dominance of the first is by the above theorem . 

That of  the  second is  simple to  show . 

1 4 0  

I n  a s imi lar fashion the rest follows , making use 

of 

t-I ~ ( 3  x ) ~ [ X ( x )  ::> Y ( x ) J  ~ ( 3 x )  [X (x ) /\ ~Y ( x ) ] 

a:nd 

\-I ~ ( 3  x ) ~ [X ( x )  Y ( x ) J ~ ( 3 x ) ~ [ X ( x ) :::> Y ( x ) ] A 

~ (  3 x ) ~ [Y ( x )  ::> X ( x ) ] 

Q . E . D .  

Sect ion 8 

Axiom of extensionality 

Theorem : The following is valid in <a ,  R ,  t= , S ) 

~ ( 3 x )  ( 3 y )  ~ { ~ ( 3 w )  ~ [ we:x we:y ] ::, 

In addi t ion , it  is valid in every model 

<a ,_ R ,  � , S ) . a. a. . 

Proof : · For any re:G and any f ,ge:S , if r F ( f = g ) , 

by  weak s ub s t i t utivity of equality , 

But this  holds for every de:s , so  

r r- ~ ( f e:d ) ~ ( g e:d ) . 

r l= ( V z )  [ ~ ( fe: z )  = - (ge:z ) ] ,  and by intuitionisti.c logic , 

r t=  ~ ( 3  z ) ~ [ fe: z  ge:z J .  Thus the result follows . 

proof also  works for every �  J 

[The s ame 

Q . E . D .  

r.; 

i i 
I I 
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Sec"t"fon· 9 

Nu'll' set axiom 

Theorem : The following is valid in (a , R, F ,  s )  , 
( ::3 x)~( 3 y)(y £x). In addit ion , it  is valid in any model 

<a, R, l=a, Sa) for a> o  

Proof: Suppose we show the formula is valid in 

so for some 

If r £G , r l=> 1 ( .:3 x) ~ ( 3 y )  ( y £X ) 

r t= 1~( 3 y)(ye:f) _ 
i. e. r i==1 f = 4>. 

The result then follows by dominance of 

Let X(x )  be the formula ~(x = x) . There is an 

f e. S  - s 0 • 
X 1 

Suppose otherwise, 

By t heorem 2 sect ion 5, 

For some 

there is 

Then for some 

an ee:S0 such that 

f* F 1(d = e) A (ee:fx). Since r* Jo 1 (ee:fx), by definit ion, 

r* t=: 0x(e), i. e .  r* F ~~  ( 3 x )-(x e:e 0 
not possible by intuit ionistic logi c. 

- xe:e) whi ch is  

Q. E. D .  

� ,. 

• •  
I 

t 

I 

. 1  
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1 4 2  

Section 10 

Unordered pairs axiom 

Theorem : The following is valid in the class model and in 

any limit model : 

~ ( 3  x ) ( 3  y) ~ ( 3  z )~ ( 3  w ) ~ [w e: z ( w = x v w = y ) ] 

Proo f : If  we show that for any f ,  g e:s� there is an 

he: S a+ 1 
- Sa such t_hat h = : { f ,g }  is valid in 

( G ,  R , l= cx.+l ' s
cx.+1 >  , the result will follow by 

dominance o f  X = . {y, Z } . 

Let f ,  g e:S . . a Let X ( x )  be the formula 

( x  = f )  V ( x  = g ) . There is an h x e:S�+l - s . We show 

h = . { f ,  g }  is 

r cG .  

b cS a 

Suppose  

such that 

valid in (a, R, F �+l ' s�+1> 

Then there is s ome 

Since 

r*  F 
cx.

X ( b ) . r *  l= cx.+l ( be:hx ) ,  

r * t= ( b  = f )  V ( b  a = g ) . By dominance 

r*  I= ( b  a+ 1 = 

s o  by 

r* � ( a = . a+ l 

f )  V ( b  = g )  . 

intuitionistic 

f.) V ( a . = g )  . 

r_ t= a+ l ( 'r/ x )  ( x e:hx ::, ( x = .f V 

c onvers ly, suppose 

r* F ( a = a+l f )  V ( a  = g ) . 

But 

logic 

Thus , 

X = g )  

Then 

f* F (a  a+ 1 

) . 

either 

= b )  

Let 

l 
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f * l= cx+l ( a  = f )  or 

Say It is trivial to show 

f * F ( f e:h ) cx+l X 
so by weak substitutivity of equality, 

Thus , 

r I= 
cx+ l ( V  x )  ( ( x  = f v x = g ) ::> "" ~xe:hx ) 

The result follows easily. 

Q. E. D .  

Section 11 

Union Axiom 

Theorem : The following is valid in the class model and 

in any limit model : 

Proof : 

ge:S
a.+ l 

~ ( 3 X )  ~ ( 3 y) ~ ( 3 Z )  [ Z £Y 

If  we show that for any 

- set such that g = U r  

( 3  w ) ( Z£W A we:x ) ]  

fe:Sa there is a 

is valid in 

<a , R ' t= a+l ' sa.+1 >  , the result will follow by 

dominance of 

Let 

X = 

fe:S  . a. 
( 3 w )  ( x e:w /\ w e:.f ) . 

Uy. 

Let X ( x )  

There is -a 

be  the formula 

g £S +l - S • 
X Ct · Ct 

We claim 

Let 

!li'.l 



Suppose  

'rnen ;for  s ome 

f *  F cx+l ( 3 w )  ( he:w A we:f ) 

ke:Sa+l 

r* I= ( h e:k )  A ( k e:f ) . Since - cx.+l 
r * f= �+ l ( ke:;f ) , · there ;t s  s ome 

14 4  

such that 

r * F �+ l ( k ;:: t )  /\ ( t e: f )  • By weak subs ti  tuti vi ty of  equality , 

r* I= . .., .,.,  ( h e:t ) . Thus , f. or every r**  there is a - e;x+l 

�ucn t hat r * * *  � ( h e:t ) ,- CL+ 1 • But so  

such that r*** f= ( s  = h ) A ( s e:t ) . - a+l 
But 

f * * * l= �+l ( s :.;: h ) A ( k ;:: t )  

r * * * I= a+ 1 
"" ~ [ C s e: t ) A c t � f ) J . 

s o  

Now , s ,  t ,  fe:Sa s o  by 

o.ominanc e ,  f* * *  F ~~ [ ( s e:t ) A ( t e:f ) ] a 
r * * * F ( :3 w ) "' ~ [ ( s e:w ) /\ (we:f ) ] .  By intuitioni stic logi c ,  . a 
f * * *  f:: �~ - ( 3 w )  [ s e:w " we:f ]  That is 

r* * *  f= ~ ~x ( s ) ,  s o  r ** * Fa+l~ ~ ( s e:gx ) .  But 

r * * * I== ( s.=  h )  so - a+l ' r* * * I= 
a+ 1

"'""( h e:gx ) · Thus for every 

Then r* 1=-a+l- ( h e:gx ) . _ 
We have shown 

r �a+l ( V x ) [ ( ;1 w ) ( x e:w_ A we:f ) :::, "'.~xe:gx ] . 

r * **  I== ~~  (h e:g ) . a+l · X 

Convers e ly �  s uppo se r* F a+l (h e:gx ) .  There is  

s ome k�Scx such that · r* F a+i ( h  = k )  A ( ke:gx ) .  So 

or T * F ( :3 w ) ( k E: W  /\ W f; f ) . 
Ct 

For some t e:S , 
Ct 

By dominance , 

f* r- a.+i ( k e:t ) I\ ( t £f ) . f* f== o.+l ( 3 w )  ( ke:w A w e; f ) . 
r* r- ~ ~  ( 3 w )  · ( h e:w A wE:f) . . a+ l 



We have shown 

f Fa+l ( V x )  [x£gx :::> ~ ...; ( 3 w )  (xEW A WEf ) " ] 

The result follows easi ly. 
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. .  

Theorem : The followi!lg is  valid in < G ,  R ,  t== ,  s) 

and in <a, R ,  I= , S > for c> w :  - a ex 

( :3 x ) [ cp e:x A ~ ( 3 y) ~ (y EX => y I e:x ) ] 

· ·Proo f : I f  we show there is  an such that 

i s  valid in < G ,  R ," r- w+l '  Sw+l ) the result 

wil l  follow by dominance of 

Let X ( x )  be the formula 

~ ( :3 y)  ~ { [ ~ ( 3 z )  ~ ( z EY  ::> z ' EY ) A <t> £ y J ::> x EY } 

There i s  an f ES +l - S 
X W W • 

We claim w t;; f 
X 

valid in <a ,  R ,  f== w+l ' 8w+l )  This follows 

next four lemmas . 

· is · 

from the 

I f  r l= f = g . 
CL 

logic 

r �~ ( 3  x ) (xEf ) I\ - ( � x ) ( x £g )_ so  by intuitionistic  

r F ~ ( .3  x ) ~ ( x £f ex XEg )
) r t=  r = g 

CL Q . E . D .  

� 

• 

I • • 



Lemma 2 :  

Proof : By the results of section 9 ,  for some 

r t==- g = cp .  w Suppose for . some r* , 
r * t=- ~ C 3 z ) ~ c z e:k ::) z ' e:k ) A cp e:k w 
Then r * r- <f>e:k that is r *r- w( 3  w ) ( w  = <j)Awe:k ) w , 
so for some 

r*  i== s = g ,  w 

s e:S w, r*F 
00
s = q>As e:k . By lemma 1 

so r* J==  w ~ ~ ( ge:k ) . We have shown. 

f F  ( V  x )  { [ ~ (.3 z ) ~ ( z e:x ::> z ' e:x )  A <f>e:x ] ::, ~~ (ge:x ) } w 
or equivalently, 

r t=  ~ ( 3 x )  ~ { [ ~ ( 3 z )  ~ ( z e: x .::> z ' e:x ) A <I> E:X J :::> g e:x } w 
f F  00X ( g )  

r I== w+l ge:f  
X 

But f l-= w+l g = <I> so _by definition , 

Lemma 3 :  I f  

that h = g '  

ge:S
0

, there is an he:Sa+l - S
0 

is valid in / G R � S ) '-.: ' ' 'a+l ' a+l 

14 6  

Q . E . D . 

such 

Proof : Let Y ( x )  be the formula ( x e:g) v ( x  = g ) . 

There is an hye: Sa+l 
- s . a We will show 

r l==a+l ~ ( 3  w � ~ [we:hy - ( we:g v w = g)  J 

Suppose for some r* ,  

Then for some 

1 



r * I= ( s a+l 

r * t== 0 Y ( t )  

r * 1= ( t Eg )  v ( t = g )  · a 

r * F a+l ( t Eg )  v ( t  = g )  

r * F a+l~ ~ ( ( s Eg ) v ( s  = g ) ) 

Conversely, s uppose 

r *  t-= a+l ( s Eg )  v (s = g )  

We have two cases . 

I f  f * F a+l ( s Eg ) , since 

t ES such that a 

r * l= 0+{ ( s  = t ) A ( t Eg) 

f * j= ( t Eg )  a 

f *  j= ( t Eg )  V ( t  = g )  a 

r * r- Y ( t )  a 

r * I= a+l G t Ehy ) 

r *  t==- a+l ~ ~  ( S Ehy ) 

gES a 

If  r * l- a+l ( s = g) , 

f * l=" a+l (gEhy ) , 

since trivially 

. r * t= a+ 1 ~ ~ ( s Ehy ) 

Thus we have 

1 4 7  

there is some 

Q . E . D .  

,-

. t  
( ' . 
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Lemma 4 :  If 

· Proof : r t= w+l ( ge:f x ) so  there is an h.e:S such 

r l== w+l ( g  = h )  A (he:f  ) . 
X 

Since he:S w ' for some 

cx.<w , h e:S . By lemma 3 , there is some ke:Sa+l - s 
s u c h  t hat r �+lk = h ' ,  so by dominance 

r t= .k = h ' . But als o ,  r r- ·+l (h e:f ) ,  rt-= X ( h ) , 
W W X W · 

r r- w-~ C ::i y )  ~ { [ ~ ( 3 z )  ~ C z e:y ::, z ' e:y )  A cp e:y J ::, h e:y } 

By i nt u i t i oni s t i c  logi c it follows that 

t p . ~ ( 3 y ) ~ { [ ~ ( :3 z ) ~ ( z e:y ::> z ' e:y ) A cp e:y ] => k EY } w 

that i s  r t=  X ( k )  w 

r r- w+ l ( k e:fx ) 

b ut r F w-+ 1 k = h '  

s o  b y  definiti on , r l= w +l h ' Efx 

(X. 

so  

Q . E . D .  

Section 13 

Axiom of regulari ty 

The orem : The fol lowing is valid in all mode ls : 

--- ( 3 � ) - { ( 3  y ) ( y Ex ) ::> ( � y )  [yEX /\ --- ( :3 z ) ( Z EX I\ Z Ey ) ] }  

Proof : A l l  the elements of the clas s S are funct ions . 

We have as sumed s0 is well-founded by the relation 

x e:  d omain ( y ) . It then follows that S is also well-

founded by  x e:  domain (y ) .  

that 

,.. 



• 

--

The formula 

~ { ( 3 y) (ye:x ) ::, (3 y) [ye:x /\ ~ ( 3 z ) ( z e:x A ze:y) ] }  is 

equivalent to 

~~ { ( :3 y) (ye:x ) A ~ ( .3 y) [ye:x /\ ~ (;3 z ) ( z e:x A ze:y) ] }  

which is  obviously dominant . 

Suppose and 

for some ge:S  , rt== (ge:f ) . Cl Cl 

We claim 

Then 

149  

f F Cl~ ~  ( 3 Y )  [ y e:  f /\ ~ ( .3 Z )  ( Z e: f A Z e:y ) ] . Suppose otherwise . 

Then there is some r*  such that 

r* l= a ~ ( 3 y) [ye:f /\ ~ ( 3  z ) ( ze:f /\ ze:y) ] .  

We define a .set W to be 

{ x i x  e: S · and for some 
Cl r** , r * * l� ( x e:f ) } Cl 

w i s  not empty since ge:W .  The relation xe: domain (y) 

well-founds 

That is , 

Since 

We claim 

s e:W 

w .  Let s be a "smallest" element of 

but for no 

s e:W ,  for some 

te:W is 

r ** , 

te: domain (s ) . 

r * * I= ( s e:f ) . 
Cl 

w .  

f * *  l== a~ ( 3 z )  ( z e:f /\ ze:s ) . Suppose not . Then for some 
. f * * *  . , r * * * t=- ( 3  z ) ( ze:f /\  ze:s )  . 

Cl 

r * * * r-= ( re: f )  A ( re: s ) . 
Cl 

Thus , for some 

Since 

r * * * �a ( r�s ) , there is some te: domain (s ) 

f * * * l=a ( r  = t ) /\ (te: s ) .  But then 

so for some 

such that 

r * * *  t=a ~~  ( te: f ) , 

f * * * * , f * * * *  t=a (te: f ) , so te:W ,  a contradiction . 



-

--

Thus , r * * I== ~ ( 3 z ) ( z e:f A z e:s )
° 

Cl 
• 

r* * l=a < s e:f )  so 

r * *  t= ( 3 y) [ye: f A  ~ ( ::i  z )  ( z e:f A ze:y) J 
Cl 

and thi s  contradicts  

r * t=a~ ( 3 y)  [ye:f A ~ ( 3 z ) ( z e:f A z e:y) J 

Thus 

1 50 

But 

But r was arbitrary.  We have shown that for each 

f' e: S  
Cl 

t he following is valid in <a , R , F , s ) 
Cl Cl 

.< 3 y) (ye: f )  .=, ~ ~ ( :3 y) [ye:f A ~ ( :3  z )  ( z e:fA ze:y) J 

The theorem now follows by the dominance of the 

formula mentioned earlier . 

Q . E . D .  

Section 14 

Definability of the models 

One of our initial as sumptions was that 

The definition of the sequence 

was an inductive definition . It should be clear that the 

definition can be carried out in V itself .  

not . only is 

but moreover 

< G ,  R ,  F . , s > £ V· 
Cl Cl 

for each 

That is , 

a EV 

\;◄ 

� 

If 
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Theorem : There is a formula F ( x , y )  over V 

which defines the s equence of <G , _R , I= , s > ·  That a 
is , for x ., y E V ,  F ( x ,  y )  is true over V if and - -

only if X is some ordinal ,  a ., and y is 

(a ., R ., f= , sa )  . [in fact ., F ( x ., y -) can be absolute ,  ex 
as should b e  obvious ] 

Of course ,  <a , R ,  I= ., S > 

in particu lar ., S is not a set . 

is not in V since , 

But we do have 

Theorem : Let be  any formula with no 

cons tan ts and no universal quantifiers· .---= _ _ · There is a 

( c lassical ) formula RX( z ,  x 1 , . . .  ., i 5 -n - - with cons tants 

from ·v such that for any f EG and .:.:
.
� l '  . . . , CnES , 

if and only if RX( r ,  · c1 , . . .  ., en) 

is true over v .  

Proof : By induction on the degree of- X . - Suppose X 

is atomic ., ( X EY ) .  Let R
X 

( z ,  x ,  y )  . be the formula 

ZEG /\ ( 3 a) ( ordinal ( a ) /\ X E.Sa /\ y ES a/\ � l==a (_xEy ) )  

[Where we have used the obvious abbreviations allowed by 

the above theorem]  

Suppos e  X is not atomic but the result is known 

for a l l  formulas of lesser degree � _ 

If  X ( x 1 , . . .  , xn) is 

by hypothesis there are formulas 

Y ( x 1 ., . . .  , xn) v Z ( x 1 ., . . .  , xn) 

Ry ( w ,  x1 , . . .  , xn) and 

1-
a 



-

Rz (w ,  x 1 , • . • , 

the formula  

X ) • n 

Ry ( w ,  

Let Rx ( w ,  x1 , . . .  , 

xn ) v R2 ( w ,  x1 , 

X ) 
n 

. . .  , 
The case X is Y A  Z is similar . 

Suppose X ( x1 , . . . , X ) n is ~Y ( x1 , . . . , 

By hypothesis there is a formula Ry ( z ,  xl , . . .  , 
Let RX ( z ,  xl , . . .  , xn) be the formula 

~ ( 3 w )  (we:G  /\ cz Rw A Ry ( w ,  xl '  . . . , xn) ) 

The c ase X is y ::)  z is similar . 

Suppose is 

be 

X ) • n 
xn) .  

By hypothesis there is a 

formula X ) • n Let 

Rx ( w ,  x 1 , . . .  , xn) be the formula 

( 3 y)  ( 3 ex )  [ord inal _( ex ) I\ yEScxA Ry ( w, y, x1 , . . .  , xn) J • 

Q . E . D .  

Section 15 

Power· set axiom 

152 

We wish to show in this section that th,e power set 

axiom is valid in <a �  R ,  F' , s > . 

Let· co be a fixed element of s . Then for 

some smal lest ordinal cxO , C O ES . cxO 
Thus cxO is also 

fixed . 
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We first want to show that for a fixed r e:G 

there is a eo such that for any ce:S
., 

if 

r I= ( c <:=  c 0 ) ., there is some de:S 6 such that 
0 

r t-= ( c = d ) . After showing this we will show that in 

fact there is one which will do for all re:G . 

For the above fixed and r ., for 

such that 

r I= ( c 1 c. c 0 ) A ( c 2 c;; c 0 ) ., 

te:S . ., 

if for all r *  and for all 

aa 
. r *  J=(( t e: c1 ) 

then r I= ( c = c ) 1 2 

The proof is as follows . 

Suppose for some r* and some 

there is a r***  

he:S 

such that 

r *  I= ( h e: c1 ) .  

Then for any 

r * * *  t== ( h e: c0 ) .  

r * *  

But so  there is some 

since 

Thus ., 

such that 

r * * *I=  ~~  (te:c1 ) .  

Since 

Now by hypothesis ., 

tiscx ., r * * * I= ~~  (te:c2 ) ,  so  
0 

r *  F ~~  (he:c2 ) .  We have shown 

r t==  ( V x )  ( x e:c 1=> ~~x e: c2 ) or 

Simi larly, r t=  ( c 2 c;;; c1 ) .  

Q . E . D .  



Thus , ( speaking intuitive ly ) to  decide if two 

subsets of co are equal at r we can confine ourselves 

t o  e l ements of s provided we look at all r* . cxO 

Now , let ff' be the colle ction of all elements 

c e:S such that r !='  ( c � c0 ) .  We define ( intuitively ) 

a fun ct ion u on 6> by 

U ( c )  = { < r* , t > I t e:S 
a.o 

and r* F ( te: c )  } 

By the above result ,  for c l , c2 e: IP, if 

U. ( cl ) = U. ( c2 ) ,  I' \= ( cl = c2 ) 

Let B be the range of Ll on P . 

U : � -> B is a function but one-to-one . So , we 

cut  down its domain to  a new domain � '  on which U 

is one-t o-one. Thus , for for 

choose some single element 

u e:B ,  

X from the class of all 

such that U (y ) = u. Let 

lJ. I be u restricted  

y e: @ 

tP ' = 

t o  Then 

B .  

U '  is an isomorphism between 

and 

Suppose we could show for some 

Then i f  c e:S 

some . de:  P '  

and r F ( c G c O ) , c e: f' 

such that U ( c )  = U ( d ) , 

f ' � S
a 0 

so there is 

so 

I' t,:; ( c = d )  , and 

desired result . 

de:Sa 0 
. Thus , we would have the 

We now show .o '  C S  V - a . 0 
for some 

C 
) 



Lemma 1 :  

such that 

There is a formula . F ( x )  over 

X E !> . iff F ( x )  is true over 

V 

v .  
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Proof : Let be the formula defining 

Z j=( X <;;; y ) as given in the last section. Let F ( x )  

Q . E . D .  

Lemma ·2 :  There is a formula G ( x .,y) over V 

such that ye: U ( x )  i ff G (x .,y) is true over v .  

Proof : Let R ( Z ,  x ., y) 
. e: be the formula defining 

Z J= ( x e:y) . 

F ( x )  A ( 3  

R
e: 

( r ,  s _., 

Lemma 3 :  

Let G ( x ,  y) be 

r ,  s )  [y = ( r ,  s) A re:G " s e:S /\ 
(XO 

x )  J 

For any c e:S ,  U( c )  e: P ( Gx s  ) e:V 
Ct O 

[ p ( x )  is the power set of x in VJ  

Proof : U ( c )  

[and is defined by 

is a subset of 

G ( c ,  x )  ] 

G x S  · e:V 
Ct 0 

fRr /\ 

Q . E . D .  

Q . E . D .  

c .  
) 

I 

( 



-

Lemma 4 :  B EV 

Proof : By lemma 3 ,  { U. ( x )  I XES }  i s  a subset of 

P ( GxS ) E. V .  [ It i s  a definable subset , defined by aO 
( 3 a )  ( ordinal a /\ ( :3 c )  ( c ES A G ( c ,  x )  ) ) J a 

Lemma 5 :  There i s  · a formula H ( x ,  y )  such that 

for y a subset of s ,  if �nd only if 

Q . E . D .  

X Ey,  

H ( x ,  y )  i s  true over v .  [that is , a choice function] 

Proof : That S can be well ordered in V is 

s t raight forward . 

Theorem.: 

Proof : 

U -l ( u )  

.0 '  C: s u - a 0 

The function 

i s  that X 

J 

U-l ( u )  can be defined by ; 

such that H ( x ,  y )  where 

U ( z )  = U. ( u ) } , 

is  the range of 

which can be formali zed . 

Now 

the axiom of sub s titution in 

f> ' � S S for some 

i s  a c las s . . 

V ,  

since 

on B .  By 

Hence , 

and s 

Q . E . D .  

II 
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Thus we have our firs t assertion. We have written 

i t  out fairly comp letely as illus tration . From now on 

we w i l l  only indi cate tne steps . 

Above , for fixed r we produced an appropriate 

But the procedure can it self be defined over V .  

S ince G e:V ,  by the axiom of substitution again,  

there is a maximum whi ch works for all 

r e:G . Thus , we have shown : 

There is a a0 e:V such that for any c e:S and 

any r e: G , if  r t== ( c G c0 ) then for some 

d e:S  J3 , r F ( c  = d )  
0 

Now we can show the fol lowing, from whi ch the 

power set axiom fol lows , since was arbitrary.  

Theorem : The following is valid in <a ,  R, F , s ) . 

( 3 y ) ~ ( 3 z ) ~ [(z e:y) 

Proof : Let 

[ c 0 e: s  J .  ClQ 

y = max ( a0 , 

fx e:S  +l -S . . y y 
is  valid . 

Let 

Sa ) . We 

Let re:G 

X ( x )  be the formula ( x  � c0 ) 

So · be as above, and let 

Then ye:V . Consider 

claim ~ (3 z ) ~ [ ( z e:f ) - ( z  c;; c0 ) J X 

and suppose r*� ~ (he:f  ) . 
X 

. ... -.. , 
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Then for some r * *  J r**  F- (he:f x ) ,  so there is some 

t ES y such  that By dominance , 

r * * f= C t e:f ) y+l X J r**  I= x ( t )  y J so 

r * *  l= y ( t � c 0 ) ,  by permanence ,  f** \:::- ( t c;; c0) .  Thus 

r * *  I= ~ ~  ( h  c;;;; c 0 ) .  so r*J=- ~ (h Gc 0 ) .  We have shown 

r I= ( V  x )  [ ~ (h � c 0 ) ::,  ~ (he:fx ) J or equivalently, 

r r=  ~ ( 3 x ) ~ [ (he:fx ) ::> (h e;; c0 ) J .  

Conversely, suppose 

Then for some r * *  
J 

such that 

. r * * i= (h G c0 ) .  

f * * F (h = t ) . So 

There is some 

f * * F ( t c;;  C ) • 
0 

f * *  l=- y ( t  c;:; c 0 ) .  

f * *  t= ( t e: fx ) .  

We have shown 

[x � Y is stable] By dominance , 

r * * r- X ( t ) . . y 
f * *  != ~~  (he:f ) . 

X 

r * * I= 

y+ 1 c t  e: f x ) . 

Thus , f *f-- ~ (he:f x ) .  

or equivalently ft= ( V x )  [~ (he:f  x ) :::,,.,(h c;; c0 ) ] 

r t= ~ (.3 h ) ~ [ ( h c;; c0 ) => (he:fx ) J and the theorem follows . 

Q . E . D .  

· 'Remark :  Above we obt ained 

the axiom of subs titution . 

by two applications of 

These could have been combined 

into one step as in Cohen [2] . This proof was based on 

that one , which followed a sugges tion of Solovay. We 

find this two step approach more intuitive, but the 

treatment in Cohen is more elegant . 

C ·• 
; , 

r l  

. l ' .  
( : 
.l 

. 

< . I 

ill 

t 



Section 16 

X - equivalence 

Def : Let X be a formula with no universal 

quantifiers , and all constants in s ex . We call 

<a ,  R , l== , Cl 
s > a. X - equivalent to  (G , R ,  I= ,  s )  

if for every y which is an instance of a 

s ub f ormula  o f  X with all cons tants in s ex , for 

f EG ,  

r I= Y ex <=> r I= Y .  

Theorem : Let X be  as above , with all its 

constants in s . There is an ordinal BEV, ex2_f3 , ex 
such that <a ,  R ,  F f3 , s s > 

is x · - equivalent to 

<a ,  R , \= ,  s > .  

We spend the res t of the section proving thi s . 

Def : Let Se:V and X 

c onst ant s in' We call 

be a formula with all its 

[ for this se ction only] 

r e:G ,  X $-dominant if for any 

f p X 

1 59 

any 

Lemma 1 :  

If X and 

Any atomic formula over is 

y are 8-dominant , so  are 

8-dominant . . 

-x , ( X V Y ) , · 

( X  A Y )  J and ( X  ::, y ) . 



Proof : 

Lemma 2 :  

straight forward . 

Suppos e for every aES
13 

X ( a )  is 

16 0  

13-dominant . Then if r t::::
13

( 3 x ) X ( x ) ,  r ):= ( 3  x ) X ( x ) . 

Proof : I' I= 13 ( 3  x ) X ( x )  implies 

s ome aES
13

• By hypothes is , 

r l=  ( 3  x ) X ( x ) . 

for 

r t== X ( a ) , so  

Q . E . D .  

Now for the proof of the theorem . Re call X 

i s  a formula over s . ex There are only a finite number 

of f ormulas , with free variables but 

n o  cons t ant s , s uch that every subformula of X is  an 

ins t ance  of s ome Yi . By the theorem of section 1 4 , 

there  are formulas , Ry , Ry , . . . , Ry over V such  
1 2 n 

that r t= Yi ( c1 , . . . , ck ) <=> Ry . ( r , cl '  . . . , ck ) 

i s  true over v .  

We define informally a s equence in v .  Us ing 

the  ab ove 

over V .  

Ry , the sequence can be  formally defined 
1 

We note again that there is a formula over 

V whi c h  well-orders the clas s s . 

Let = 

C: 

'J I 

' 
( 

'll 
!I 
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Suppose we have defined Dm , which is some 

for Se:V . V, 

s ub formul as of X 

can be well-ordered in 

with cons tants from 

so all 

and of 

the form ( 3 x ) Z ( x )  can be well-ordered (isomorphically) 

in v .  If ( 3  x ) Z ( x )  is a subformu1a· of X and 

has a l l  its const ants from D , 
m 

re:G  s u ch that r t= ( 3 x ) Z ( x ) , 

and if there is a 

for some ce:S , r I= Z ( c ) . 

Choose t he smalles t c in the well-ordering of s such 

that r r- z ( c ) . Let be together with all 

such c .  can be defined as the range of a 

function , definable over 

collection of ordered pairs 

V, whose domain is the 

where XEG 

and y is a formula of the form ( 3  x ) Z ( x ) , a 

subformul a  of X 

hence K m+l is 

is a least y e:v 

0m+l = s 
y 

over 

a set . 

such that 

D m 

But 

This domain is a set , 

Km+l G S .  Thus , there 

Km�l i;; Sy . Let 

In t his way, we define the sequence D0 , D1 , D2 , . . .  

But this sequence can be defined formally over V. Thus 

Von is an element of V ,  But by the definition , U Dn mus t 

be some SS for f3e:V .  [Dk � Dk+l J • 

We have produced an a. < 13 .  We claim 

That is , for 

from · 

y 

is x-equivalent to <.a , R , t= , s >  . 

any subformula of X with constants 

<=> f p Y .  The proof is by induction 

'J' , .. 
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on t h e  degree of Y .  All the cases but one are 

immediate by the above lemmas . The only non-trivial 

c as e  is the fol lowing . Suppose (.3 x ) Z (x )  is a sub-

formul a  of X , has all its constants in Sa , and 

r l= ( 3 x ) Z ( x ) . All  the constants of ( 3 x ) Z ( x )  lie 

in U Dn , but there are only finitely many, so for some 

_ integer 

in Dk . 

such  that 

k ,  all  the constants of ( .:3 x ) Z ( x )  

By definition, there is a c £ Dk+l C S e  

r f= Z ( c ) . By induction hypothesis ., 

so f !=6 (3 x ) Z (x ) . 

lie 

As we did for the power set axiom , we wish to show 

the axiom of subs titution is valid over 

The proof is es sentially that of [ 2 J .  

Let X (x ,  y) be a formula with no universal 

quantifiers , and constants from which defines a 

func tion at r ., that is , such that 

r \==- ~ ( 3 x } ~ ( :3  !y) X ( x ,  y) 

where ( 3  !y) Z (y) abbreviates . 

( :3 y) [ Z (y) l\ ~ (  3 w )  ( Z (w )  A ~ (w = y) ) J .  

. . 



-

Let be a fixed element of s .  

be the smallest ordinal such that 

want t o  show there is some fe:S such that 

r F ~ ( :3  x ) ~ [ xe: f ­

That is , r oughly, 

( .3 w ) (we:c0 A X (w , x ) ) ] .  

f is the range of X 

at r. 

By section 1 4 , there is a formula 

over V 

is t rue over 

such that 

V. 

l d= ~~X ( x ,  y) iff 

on 

Let 

We 
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Let 

that for s ome 

such , and 0 

be the smallest ordinal f3 such 

6 F ~ ~X ( (? , c ' )  if there is 

otherwise , g is definable over V 

Since 

s ubs t itution in 

is a set in  V .  

Gx.S e:V . aO 
By the axiom of 

V, the range of g 

Thus , also U ( range g 

on G x S  aO 
on G><.S ) e: V .  a 0 

Let be this union . Then is an 

ordinal , 

Lemma : Suppose 

there is s ome 

Proof- : 

r *  J= ( .:::i x ) ( xe:c
0

A X ( x ,  d ) ) .  Then 

C I e:S . f3 0 
such that r* t= ( c '  = d ) . 

s o  for some ce:S , 



so there is some such that 

r *  t=- ( t e: c 0LI\ ( t = C )  • Hence r* t= ~~X ( t , d ) . 

Now < r * , t )  e: domain g ,  so by definition , 

g ( r * , t )  2s0 • Thus , there is some C I e: S  
Sa 

such that 

f * r ~ ~X ( t , c ' )  But 

r * J=  ~ ~X ( t ., d )  and r * t=  ~ (::3 x ) ~ (  3 ly) X( x , y) 

so  by intuitionis tic logic , 

r * r- ( c '  = d )  [(x = y) is stable] 

Let lf ( x )  be the formula 

There are only a finite number of constants in 

Q . E . D .  

[ recall , X may have constants ] ,  hence all lie in some 

s ( t ake y�So ) . By the theorem of section 1 6 ,  there 

i s  some o e:V ., Y2, o such that <a , R , f=0, s 0 > 
is lf -equivalent to < G , R , I= ,  s >  

Since lf 

a formula over 

is a formula over s ., 
y lf is also 

r
"' 

e: so�1 -s o . 

r t=  ~ (3 x ) ~ [xe:.f
'f 

s cS • 

We claim 

which is what we wanted . 

Thus , it defines a function 

We now proceed with the proof . 



I 
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Suppose r *f-= ~(  ce:f  'f ) • Then for some 

f * *  , r * * I= ( ce: r 'f ) . Since f
'( 

e:s · &+l - s 0 , there 

is  some de:S0 such that r * * p ( c  = d )  A ( de f f ) . 

By dominance , r * * p ( de: f '( o+l ) r * *  I= 0 tf( d )  

But <a ,  R ,  I= 0 ' so > · is <f -equivalent 

hence 

r * * (==- 4' ( d ) 

f * *  t= ~~ lf ( c ) 

f * � ~ <f ( c ) 

f *� ~ ( 3  w ) ('We: C
O

/\ X ( w ,  c )  ) 

Thus we have shown 

r t= ( v x ) [ ~ ( 3 w ) ( w e:c O A x ( w , x ) ) ::> ~ ( x e:f 'i ) J 

Conversely, suppose 

f *%-= ~ (3 w )  (we:c0 A X ( w ,  c ) ) 

Then for some r**  

to 

By the .above lemma , there is some c ' e:S 
f3o 

such that 

f * * l= ( c ' 

that is , 

= c ) . Hence r * * F ~ ~ C:3 w ) (we:c0 A X ( w , - c ' ) ) 

I' ** I= ~~ lf ( c ' ) .  

But c ' e:S a C. S <;;; S O , 
. 0 . y . 

and 

(a , R , F 0 s o > is lf -equivalent to 

<a ,  R, F , s >  ' hence 



r * *  I== ~ ~  lf ( c ' ) 0 
r * *  p ~ ~ ( c ' E f ) 

o+l '-f 

r * * p ~ ~ ( c ' e:f � ) 

but r * * l= ( c '  = - c ) so 

r * * F ~ ~ ( c e: f 'f
) 

f *� ~ ( C e:f  lf ) 

We have shown 

The as sertion now follows . 
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Chapter 8 

Independence of the Axiom of Choi ce 

S e c t i on 1 

The spe c i f i c  model 

The model gi ven here is adapted from the one of 

Cohen [2J . We have changed it from showing directly 

t hat t h e re is  an infinit e sub s et with no countable  subset  

to  s howing directly that there is a set with no  choice 

funct i on .  The change was made because the notion of 

c o un t ab i lity  require s much more machinery in thes e  models . 

S e e  [2 , Pg . 136] for a brief introduction to the model . 

Following sect ion 3 chapter 7 ,  a sequence of models 

and a c lass  model are defined if  the 0th model is fixed . 

We now d e fine a spec ific <a , R,  1=0 , s0 ) . All the work i s  

re l at i  v-e t o  a c l as si cal model V 

Let e b e  s ome formal symbol . By a forc ing c ondition 

we mean a finit e cons istent set  r of stat ement s o f  the  

form ( n e m ) and ~ ( n e m )  [n � O , m . > 1] [(n e m )  can b e  

s ome ordere d triple in v , say <n , O ., m )  . Anything 

c onvenient . Simi larly ~ (n e m} can be some other t riple ., 

s ay · < n , 1 ., m> . We have written it like this for reading 

ease  J 

Let  G b e  the collect ion o f  all forc ing c onditions , 

and let  R be  � ., set inc lusion : 

'l 



Be fore defining s 6 , we de fine the fo llowi ng 

p art i t i on o f  the int e gers . 

I = 
Q l  

I l 
= 

12 
= 

{ l , 

{ 2 , 

{ 4 ,  

etc : 

3 , 5 , 7 , . . .  } 

6 ,  10 , 14 , . . .  } 

1 2 , 20 , 2 8 , . . .  } 

in gen e ral , 

I
n 

= { 2n ( 1+2k ) · I k = O ,  1 , 2 , . . .  } 

168  

Thi s  partition has  the  properties that each I is  n 
infi ni t e  and i f  nEim , n > m . 

Now we define so . 
It consists  of the functions 

"' "' 
o ,  1 , 2 , . . . , s l , s 2 , s 3 , . . . , t a , tl , t2 , . . .  , T , 
who s e  d'e fini tions are the following . 

,., 
For  each integer n , the function n has domain 

" ,., 
� 

" 
{ O ,  1 , n-1} and for k < n , n ( k )  = G . . .  , , 

,., ,., 
Each s 

n 
has as domain { O ,  1 , 2 , . . .  } and 

s
n

( m )  = { f EG ( m e n ) 

Each t 
n 

has as domain { sl , 

f: 
if mEI n 
otherwi se 

T has as domai n 

. . . 

Ef } 

s2 , s3 , - . . .  } . and 

and 

� 

,. 
11 
� 
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From this technical definition , ,==0 for atomic 

formulas be comes 

r F 0 

r t=  0 

r F 0 

r t=  0 

" " 
(me:n ) 

" 
cm·e:sn ) 

( s  e:t ) m n 

( t e:T)  n 

iff m < n 

iff (m e n )  e:r  

iff me:I n 

We now examine the five properties of section 3 

chapter 7 .  1 ,  2 , 3 and 5 are trivial . 4 is satis fied 

i n  the very strong sense that , for any re:G and any 

( .3  x )  ~ [ xe:a - xe:b] 
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then  a and b are the same function . This is  proved 

by examining the various possible choi ces for a and b .  

We show only the most di fficult case and leave the rest 

to the reader . 

Theorem : 

Proof : We show , for any re:G , . r � 0 ( sm = sn ) .  Suppos e 

s ) , for some n re:G . Since r is a forcing 

condition , it is finite , so we may choose an integer k 

- such - that neither ( k e m ) ,  ~ (k e m ) ,  (k e n ) , ~ ( k e n ) 

be long to r .  Let 6 be r u  { ( k e m ) ,  ~ (k e n ) }.  

r a 
' 
l 
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Then ll e:G and r Rll . By definition , L d= 0 ( ke:s ) .  m 
Since fl r= 0 ~ ( 3 x )  ~ ( x e: sm - xe:sn ) ,  by intuitionist ic  

"' * * logic , ld== ~ ~  ( ke:sn ) .  Then for some b. b. I=- 0 ( ke:s  ) ,  0 ' n 
( k e n )  * * which means e: b. . But ~ (k e n )  e:b  � b  ' a 

contradi ction . 

Q . E . D .  

Thus al l five conditions are met so the resulting 

c las s model <a , R ,  l= , s) is an intuitionistic ZF 

model . 

Section 2 

Symmetries 

Let .h be the collect ion of all ·permutations , II , 

of integers such that II permutes the elements of one In 
and is  the identity on all Im for m i n . 

We may extend any IIe: h to S as follows . 
"' "' 

II ( n )  = n 

IT ( Sn ) = s 
1T (n )  

n < tn ) = tn 

TI ( T )  = T 

Let X be the formula X ( x , e1 , . . .  , en ) where II 

has been defined for c1 , . . .  _, en . Let II ( X )  be 

X ( x ,  rr . ( e 1 ) ,  . . .  , II ( en ) ) .  

I 
I 
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I :f :fx e: S
a.+l - S

a. ' let TI ( :f ) be f ( x )  X 1T 

Thus TI is ext ended to s .  

We also extend TI to G by 

( n  e m )  E f <=> (n  e TI (m ) ) e: TI C r )  

~ ( n- e m )  e: r <=> · ~  ( n  e TI (m ) ) e: TI C r )  

We note that f e:G implies TI ( r )  e:G . 

Theorem : For any formula X with all constants in S
a. ' 

with no universal quantifiers , any re:G , and any 

r \:=: x <=> a. 
. and r F X  <=> 

TI ( r )  F a II (X ) 

rr ( r )  F rr (x ) . 

Proof : A straightforward induction on ex and the degree 

of X .  

De f :  Let N be  some collection of integers . By 1:1N we 

mean the sub s et of 1J leaving N · invar·ient . 

Lemma : Let fe:S . There · is a finite set N of integers 

such that if • rr e:bN , II ( f )  = f . 

Proof : If  fe:S 0 , we have two cases . If f is not 

some sn , let If f is · s , let n N = { n }  • 

Suppos e the result is known for all ge:S . Let a 
fe:S

a.+l - Sa. . Then f is fx for some X ( x , c 1 , . . . , c� ) 

19 
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where c 1 , . . .  , c £ S .  By hypothesis , there are finite n ex 

set s , N1 , . . .  , Nn of integers such that if 

II £ lJN , II ( c i ) = c i . Let N = N l U • . . U N n . Then i f  
i 

IT ( f ) = f ( ) = f 
X 1T X X 

Se ction 3 

Functions 

Q . E . D. 

We introduce the following formula abbreViations . 

x = <Y , z) for (3 w ) [w£x /\ 

. .  

( x , y) £ Z for ( 3 w )  [w £ Z /\ w = ( x , y) J 

ordpr ( x )  for - ( 3  y) ~ [yEx ::> 

( 3 Z )  (3 w )  ( y = < Z ,  w) ) ] 

relation ( x )  for ~ ( 3 y )  ~ [yEx ::, ordpr (y )] 

function ( x )  for relation ( x )  /\ 

~ ( 3 y) ( .3 Z ) ( 3 u ) ( 3 v ) ~ [( <y, Z) E  x /\ 

<u , v) E x A y  = u)  .::> Z = v ]  

.. 



-

1 7 3  

domain ( x )  = y for ~ ( 3  Z )  ( 3  w )  ~ [ <z ,w> e: x  .::, 

Ze:y ] /\ ~ ( 3 Z )  ~ [ Ze:y .:::> 

( 3 w )  ( <z ,  w > e:x )] 

Theorem : All  the above_ formulas are dominant . 

Section Lt 

Axiom of choice 

Let A . C . ( T )  be the formula 

( 3  x )  { funct ion ( x )  A domain ( x )  = T /\ 

- ( 3 y) [ye:T :::> ( 3 Z )  ( Z e:y" ( y, Z) e: x )] } 

That is , A .  C .  ( T )  says that T has a choice function. 

In this section we show that A . C .  ( T )  is val id in 

( a , R ,  F ., S )  

for every ex . , 

In fact , it is valid in (G ,  R ,  F 
ex ' S

ex
) 

the same proof holds for each case . 

We firs t show a preliminary 

Lemma : I f  fe:S  and then for some me:In , 

r t==  ( f = s  ) .  ex m 

· Proof : 

such that 

r f:= ( fe:tn) so there is sorr.e b e:  domain ( tn ) 

. Q . E . D .  



Now , suppose there is some re:G such that f I= A . C .  ( T ) . 

Then for s ome Fe:S , 

r t= funct ion ( F )  I\ domain ( F )  = T A 

~ ( 3 y) ~ [ye:T -.:, ( :3 z ) ( Z e:y I\ <y, Z) e: F )] 

There is  a finite set N of integers such that 

II e:.hN , II ( F )  = F .  

Let n = 1 + max N .  

f p ~ ( 3 y )  ~ [ye:T :::> (3 Z )  ( Z e:yl\  <y, Z )  e:F)] and 

r � ( t  · e: T )  hence n 
r r  ~ ~  ( 3 Z )  ( Ze:t  A < t  , z )  e:F ) n n 
Then for s ome r*  , 

For s ome a.e:S 

r * t= ( a.e:tn) A <.tn, a )  e:F 

By t he abo ve lemma , for some mE in, 

( a.  - s ) Hence - m , 

( < t n , sm ") e:F ) 

so  for some f * * , 

f * *  \= <tn
.
' sm) � F .  

Now me: In s o  m > n = 1 + max N ,  hence mtN . 

if 

Choose an integer k > n such that k i m and neither 

( p e k ) nor ( ) t r * * ,,..., p ek belongs _ o for any integer p ,  

I 
"'.! 



17 5  

b ut k E in . 

pos s �b le] . 

[r * *  i s  finite but In is  infinit e ,  so this  i s  

Let JI b e  the permut at ion JI ( m )  = k ,  

on a l l  other  int egers II i s  the identity . 

Since  m ,  k¢N , JI e:� . Now 

II ( f * * ) p 
n ( r * * ) t== 

n ( (tn , sm ) e:F )  

< JI ( tn ) ,  JI ( sm ) )  e: IT ( F )  

· JI ( k )  = m ,  

But I::,. = r * *  U TI ( r * *  ) is itself a forcing condi­

t i o n . It is finite ,  and since f * *  and JI ( r * * )  must be 

t h e  s ame except for statement s invo lving m and k ,  and m 

i s  not  ( a  s e c ond element of any st at ement ) in JI ( r * * ) and 

k i s  not  in TI ( f * * ) and f * *  are compat ib le . 

Thus 6 EG and r * * Rt. and JI ( r * *  ) Rt. . So 

I::,. f= function F 

ti r Ztn , sm > . e:F 

I::,. t-=- <tn , sk ) e:F 

( s ince r f= function F )  

It then fol lows by intuit ioni stic logic that 

I::,. f=- ~ ~ ( S
m 

= S k ) 

o r  s ince ( x=y ) is stab le , 

ij 



But m t  k ,  c ont radict ing the the orem of  sect ion 1 .  

Thu s , for all  rEG 

r ,.f- A . C . ( T )  

s o  r t= ~ A .  C . (T ) .  

176 

A s  we showed in sect ion 1 chapter 7 ,  the  axiom of  

cho i c e  is  now class ically independent . 

t 



Se c t i on 1 

De fini t io n s  

CHAPTER 9 

Ordinals and Cardina ls 

Cont inuing s e c t i on 3 chapt er 8 ,  we introduce the 

fol lowing formula abbreviati ons . 

range ( x )  = y 

1 - l ( x )  

t rans ( x )  

ordered ( x )  

we l ord ( x )  · 

ordinal ( x )  

'for ~ ( 3 z ) ( 3 w ) ~ [ < z ,  w > e:x 

:::> w e:y ] I\  ~ ( 3 w ) ~ [we:y .::> ( 3 z )  

( z ,  w )  e:x ] 

for ~ ( 3  y ) ( .:3 z ) ( 3  u ) ( .3  v )  

~ [ ( < y ,  z > e:x I\ <u , v > e:x /\ z = v )  

.::> Y = u ] 

for ~ ( 3  y ) ( .3 z ) ~ [ ( y e:x " z e:y ) 

:::, z e: x  J 

for ~ ( 3 y )  ( :3 z )  ~ [ ( y e:x A z e: x )  ::, 

( y = Z V y E: Z V Z e:y ) ] 

for · ord ered x I\ ~ ( 3 y ) ~ { [ y l;;  x A 

( 3 z ) ( z e:y ) J ::> ( .:3 w ) [we:y A ~ ( ==.i  u ) ~ ( u e:y :::> 

( w e:u v w = u ) ) ] } 

for trans ( x } A welord ( x )  



Theorem : All of the above formulas are dominant . 

The proof is again primarily an application of 

section 7 chapter 7 ,  

In  this sect ion we es tablish some useful analogs 

17 8  

of cla ssical theorems . We use a method of proof which we 

call  a c las sical-intui tionistic argument . Rather than 

st ating it generally , we illus trate its use by writing 

out in  full  the fi.rst proof be low . 

Theorem 1 :  

is valid over 

~ ( .:3 x )  ~ ( ordered ( x )  ;:: we lord ( x )  ) 

< a , R ., t= ., s> [and by dominance , over 

Proof : It is a -s tandard classical result that 

ZF , axiom of regularity re 
~ ( :3 x ) ~ (ordered ( x )  _ welord ( x )  ) 

So for some finite subset of Z F ,  with no ·univers al 

quantifiers , fc ( A1 A • • •  " An /\ axiom of regularity) 

=> -( :::i  x )~ ( ordered ( x )  ::: welord ( x )  ) 

By the results  of sect ion 8 chapter 4 ,  together with 

r ~ ~ ( X => Y )  I 
r1 ~ ~ ~ X _ ~X 

I 
• 

IA 
I 



We h ave 

J-I ( A1 A • . .  /\ An /\ axiom of regularity) :::> 

~ ( 3 x ) ~ ( ordered ( x )  _ welord ( x )  ) . 

<a , R , r- , s >  is an intuitionis tic · ZF 

179 

Since 

model , ~ ( 3 x )  ~ ( ordered ( x )  _ we lord ( x )  ) is valid . 

Theorem 2 :  If r l= ordinal ( f )  and r I= ge:f. 

t hen r l= ordinal ( g )  . 

Q . E . D .  

Proof :  By a classical-intuitionistic argument we have 

~ ( '.3 x )  ( 3 y) - [ ( ordinal ( x ) A  ye:x ) ::::> ordinal (y) ] is 

valid in <a , R ,  I= , s > . The result now follows 

by s tability o f  ordinal (y) . 

Q . E . D .  

Theorem 3 :  If r I= ordinal ( f )  A ordinal ( g )  then 

r t=  ~ ~ ( fe:g v f = g v ge: f ) . 

Section 3 

General ordinal representatives : 

We define inductively represent atives for the . c las sical 

ordinals . Later we dis cus s their exis tence and uniquenes s .  



Sup pose we have defined general representatives 

i n  S for all ordinals We call 

general  representative of the ordinal a if  

1 )  

2 )  

i f  g represents an ordinal <a , 

( ge: f )  

i f  

is  valid in (G , R , l= , S ) 

r f= ( he:f ) , there is some 

and some ge:S 

r * ,  
which 

a 

some 

represents such that r * i== ( g = h ) . 

1 8 0  

Theorem 1 :  If fe:S is a general representative of 

some ordinal , ordinal ( f )  is valid · in <a , R ,  1= , s ) .  

Proof : Suppose f represents the ordinal a and the 

result is knon for all representatives of ordinals 

S <a . We have three facts to show . 

I .  trans ( f )  

Suppose 

is valid in ( a ,  R,  F ,  s ) 

r I= ( ae:f )  A (be:a ) . Then for any r *  , 
r * r- ( a e: f )  A ( b e: a ) . By property 2 )  there is some a ' e:S 

whi ch represents 

r * * t= ( a = a ' ) .  Thus , 

and some 

r** I= ~~ (be:a ' ) . · 

such that 

There i::.  some 

s uch that 

there is some 

r * * *  F (be:a ' ) .  Again by property 2 )  

- b ' e:S whi ch represents y < S  and some 

f* * * *  such that r * * * * F (b = b ' ) .  By property 1 )  

r * * * * t= ( b ' e: f ) , hence r* * * * i='  ~~ ( be:f.) .  Thus , for any 

r *  · there is some such that and 

ld"" ~ ~ ( b e: f ) . Thus , r p ~~ (be:f )  . . Since r was arb itrary , 

trans ( f )  is valid . 

i 
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I I . ordered (f ) is valid ;in <o , R ,, f:= 1 S ) . 

S uppose r � (ae: f )  A (be: f ) . For any r * ,, 
r * i= ( ae: f ) A (be: f ) . By property 2 ) , there is some 
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r * * and s ome a '  b ' e:S , such that a '  represents 

f3 and b '  represents 

r * * I=- ( a = a ' ) I\ ( b = b ' ) • 

y where f3 < a. ,  y<a. . and 

By hypothesis , r * *  f::= 
ordinal  ( a ' ) A ordinal (b ' ) .  By theorem 3 section 2 ,  

r * * l::,. ~ ~ ( a ' e: b ' v a ' = b ' v b ' e: a ' ) • so 

Thus as ab ove , I'* * 1= ~ ~ ( ae:b v a = b v be:a ) . 

r r- ..-- ( ae:b v a =b ·v be:a) . 

ordered ( f )  is valid . 

Again r is arbitrary, s o  

I I I . ordinal ( f )  is valid in <a , R ,  I= , S > . 
By the above , trans ( f )  /\ ordered (f)  is valid . 

Then welord (f )  is also valid by theorem 1 section 2 

[welord (x ) is stable ] Thus , ordinal ( f )  is valid . 

Q . E . D .  

Theor·em 2 :  If  f ,  ge:S are both general represent atives 

of the s ame ord�nal , (f = g )  is valid in <a � R ,  t= , s) 

· ·Proo f ; Suppose f and g · both represent a .  

I f  I' I= ( h e: f ) , for any r * l= (he: f ) . By 

property 2 ,  there ·1 s  some 

r * , 

r * * ,  some S<a. , and some 

k 

g 

representing 

represent s a 

e ,  
and 

such that · r * * f= (h = k ) . 

k represents S and 

Since 

$<a ' 

I 
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by p roperty 1 ,  r * * F (ke:g ) . Thus , 

s o  r r-: ~~ (he:g ) . Similarly if 

r t=- ( h e:g ) , r r-" ~ ~  (he: f ) . But r is  arbitrary, 

s o  the r e s ult follows . 

Q . E . D .  

Section 4 

Cannoni·cal ordinal represe·ntat·i ves 

Again we postpone a discus sion of existence . 

We call fe:S a cannonical representative of the 

ordinal 

1 )  

2 )  

3 )  

Theoretn : 

a. if  

f i s  a general representative of 

for no ge: domain ( f )  and for no 

does  r 1= (f  = g )  

i f  r l= ~ ~ _(ge f ) , r r- ( g e f )  

for ge:  domain ( f ) . 

Suppose  

a. 

re:G 

repre s en t ative of some ordinal . Then f is fx where 

X (x ) i s  the formula ordinal ( x). . 

• 



Proof : We must  show for any ae:S , a 
r f= 

a+l ( a e: f )  . iff r I=- ordinal ( a ) . a 
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Suppose f l=a+l ( ae: f ) . By theorem 1 section 3 , 

r I= ordinal ( f ) , so by theorem 2 section 2 , ( and 

dominan ce ) , 

Suppos e 

s e ct ion 3 ,  

r J= · ordinal ( a ) . a 

r .f= ordinal ( a )  . 
(l 

r I= ordinal ( f.)  . 

s e c t ion 2 ( and dominance ) ,  

By by theorem 1 

So by theorem 3 

r t= ~~ ( ae: f v a  = f v fe:a ) . Thus , for every r* there 

i s  some r * *  such that 

r * * I= ( a e: f ) v ( a = f ) v ( f e: a ) . If  r * *  F ( fe:a ) , since 

there is  some ge:S 
(l 

such that r* * l= C r = g )  

Similarly, contradict ing part 2 of the above defint ion . 

r * *f-= f  = a .  

r l==  ~ ~ ( ae: f ) , 

by dominance , 

Thus , r * * I= ( a e: r ) . 

and by part 3 above , 

r I= a+l ( ae:f ) . 

So , 

r i==- ( a£ f ) , now 

Q . E . D .  



I 
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Section 5 

Ordinali z ed mode ls  

We give a condi tion on our model [ actually on 

< G ,  R ,  I= 
0 , s 0 ) ] which will ins ure existence and 

uniquen e s s  of cannonical repres entatives for the ordinals . 

We call  <a , R ,  I= , S > ordinal ized if  

1 )  no  ordinal has more than one cannonical 

repres ent ative in s0 • 

2 )  i f  f e: S0 and r t= ordinal f for s ome 

re:G , then there is  some r* and s ome 

h e: S0 whi ch i s  a cannonical repres entat ive 

of an ordinal , such that r*  J= ( f = h ) . 

Remark : By dominance , whether < G , R ,  I= . ,  S )  i s  

ordinal ized  can be decided by considering only 

Theorem 1 :  If  <a , R ,  t= , S )  is ordinalized and 

f ,  ge: S are both cannoni cal repres entatives for the 

s ame ordinal , f and g are ident ic al . 

Suppo s e  first that 

By theorem 2 sect ion 3 ,  ( f  = g )  is valid , c ontradict ing 

part 2 )  o f  the definition of cannonic al representative . 

There i s  a similar contradiction , if  fe:S a and 



• 

185 

Thus , either or for some 

by part 1 )  of the 

above d�finition they are identical .  

they are i dent i c al by the theorem o f  section 4 . 

Q.E. D. 

Thus , if an ordinal has any cannonical represent­

atives , i t  has only one . From now on, by representat ive 

we will mean cannoni cal representative , and we will denote 

the represent ative of a , if it exists , by __ a . 

We give the fol�owing temporary definition. We 

s ay aev has the· ·re·p·r·e·s·e·nta:t·ive· ·p·r·o·pe·r·ty provided : 

if  a is  the smalles t ordinal not representable by an 

element of a is  representable by an element of 

8 a+1 · In other words , a 
property provided : if for all 
A �¢ S a , then a isa+l -Sa . 

has the representat ive 

y<a , but 

Lemma : I.f  <a , R , I= , s> is ordinalized and if all 

ordinals < a · 

does a . 

have the representative property, s o  

Proof : Let (l be the smalles:; ordinal not represent able 

in s a . We must show 

Let X(x ) be the 

f 
X €S a+l -S B . We claim 

aes B+l-S B . 

.formula ordinal 

fx is  a .  
x, and let 

--· a Il l  

·• 

I 

J 



Suppose r r (he:fx ) .  Then there is some 

g e: s 8 
such th.at r J= ( g = h)/\ ( ge:fx ) .  But then 

186  

r t= 8x ( g.) , , r F" S ordinal ( g ) . We now have three cases . 

Suppose f3 = 0 .  Since <G , R , 1= ,  S )  is 

ordinali zed , there is some r *  and some 

whi ch is  an ordinal representative ( and by hypothesis , 

of' an ordinal 

r * p ( k = h ) . 

<a )  such that r * l= ( k = g ) . Thus , 

Suppose f3 is a successor ordinal . By hypothesis , 

8-1 has the representative property. 

smalles t ordinal not representable in 

1 e: S
f3

. Now ( theorem 1 section 3 )  

r )= ordinal ( '? )  /\ ordinal ( g )  

s o  by theorem 3 sect ion 2 ,  

f F "'""( ge:"9  V g = 1 " '(e:g) . 

Then for some r* , 

r *  F ( g e:'( ) V ( g = '( ) v ( '( e:g ) . 

Let y be the 

Then 

I f  r * t= (ge:1 ) ,  by definit ion of '?. , there is 
,,. 

some r * *  and some o <y such that r**  F ( o = _g) 
"' 

and so r * * I= ( o = h ) . . 

If  r* l= ( g = '? ) 

Finally, we can 

g e: S
f3 

there is some 

But . '? e:S 
f3 
... S 

f3-l and 

then r* t= (h = '9 )  

not have r* t= ( '?e:g )  for , 

ke:S f3-l such that r * 1= < 1  
this contradicts ·part 2 of 

definit ion in section 4 .  

since 

= k )  I\ ( k e:g ) . 

the 

Ii 
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Suppos e  e is a limit ordinal . Since geS 8 , 

for some n < a , gESn+l-sn . 

ordinal not representable in 

Now p roce ed as above . 

Thus , in any case there 

Let y 

Sn . 

is an 

be 

Then 

the smallest 

'9e:S +l-S . . n n 

ordinal <a , a 

repres entative t of it , and a 6 such that 

fR� and � t= ( h  = t )  

Thus , fx is a general representative of a . 

Next , suppos e  for some ge:Sa , r I= ( g  = f X ) 

Sinc e f 
X 

is a general representative of a , by 

r t= ordinal ( f  ) . 
X 

Thus , 

187  

theorem 1 s e ction 3 ,  

r t- ordinal ( g ) , so by dominance ,  r · r- ordinal ( g )  a 

r F X ( g ) . a Thus , Hence , 

r t= ~ ~ (ge:g ) , 

of the axiom of regularity. 

contradicting the validity 

Final ly, if 

r Fa+l~ ~ ( ge fx ) .  

r I= ~ ~ (ge:f ) 
X 

for some ge:S , then a 

r * *  such that 

For every r*  there is some 

r * *  t= a+l (ge:fx ) · 
r * * t= ordinal ( g ) . a 

Or , . 

Thus , 

r I= ~ ~  ord inal ( g ) . a But ordinal ( x )  is stable so 

r F a ordinal ( g ) , 

Thus is a cannonical representative of a . 

Q . E . D . 

,. ,  
• i  
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Theorem : Suppose <a , R , P' , s> is ordinali zed . 

Then every ordinal in V is uniquely representable by an 

element. of S . 

Proof : immediate by the above lemma . 

Q. E. D 

Remark : Although it seems unlikely, it is conceivable 

that some ordinal not in V might be representable by an 

element of S . In fact , this can not happen . Suppose 

The for some For some 

class of elements of S which are ordinal representatives 

is definable over V. The intersection of this class 

with 

relation 

is in 

Hence 

V . , 

is a set ,  i . e .  an element of V. But the 

r I=: ( x e:y) 
Cl 

well-orders this set ,  the relation 

and the order type must be y , (or greater ) .  

Thus , exactly the ordinals of V are representable 

in ordinalized < G ,  R ,  t=- , S ) 

J 
" .  



Section 6 

Properties of ordinal representatives 

Theorem : If  is ordinalized and 

a , 8 e:V then if for some 

and if a = 8 , ( � " "" = 8 )  

"' "' 
re:a , r p ( cx = 13 ) , 

is valid . 

a = 13 , 

P roof : · . I f  a.< 8 , by part 1 of the definition in 
A A 

r P ae: 8 , but if r t=  (a = 8 ) , 
contradicting the axiom of regularity . 

section 3 ,  

f F "'"" ( ete:cx ) 

Similarly if 8 <a . Thus , if 
, A A r t='  ( a = 8 ) , Cl = 8 • 

The second half is by uniqueness of representatives . 

Q . E . D .  

Theor·em 2 :  If  < G , R ,  I= , S ) is ordinalized and 

a , 8e:V ,  then if for some re:G , r F C &e: a ) ,  

Cl £  8 , and if ae: 8 , c �e:a ) is valid . 

Proof : If  r F ( a e: S ) , · by part 2 of the definition 

in sec tion 3 ,  for some r* 
r * J= ( a = y ) .  By theorem 1 ,  

and some y< 8 ,  

Cl = y , and . y e:  8 . 

If  ae: 13 ,  by part 1 of the definition in section 3 ,  

is valid . 

1 89 

Q . E . D .  

I 

l I 

I I 

J I 

J I 
• 
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Theorem 3 :  Suppose <a , R ,  i= , s >  is ordinali zed , 

and f'.or some r e:G , r .  t= ordinal ( f )  Then there 

some r* and some ordinal ae:V such that 

r *  I= f' CX ,  

Proof' : so for some a ,  Let y 

be the smallest ordinal not representable in Sa 
[ S a e:V so there must be one] Then ye:S R-+-1

S 0 (.au... � s] r ·  µ 

�er soPle IS>$- , But r t= ordinal ( y ) . Hence 

r I= _~ ~ ( fe:y v f 

r* \=- ( f' e:y ) v ( f 

A A 

= Y V ye:f) , 

= y )  v ( ye:f ) . 

For some r* , 

If 
" 

r* t= fe:y , 

is 

we are done by part 2 of the definition in section 3 .  

r*,¥=- ( f = y) by part 2 of' the definition in section 4 .  

Finally,  

s ince 

f* \=- ( y  = g ) .  

is not possible , for otherwise , 

there is some such that 

But and this contradicts 

part 2 of the definition in section 4 .  

Q . E . D .  

Section 7 

Types of ordinals 

We introduce the following formula abbreviations . 

suc cessor ordinal ( x )  for ordinal ( x ) A ( :3 y) (ye:x A x  = y ' ) 

limit ordinal ( x )  for ordinal _( X ) I\ ~ (.3 y) ~ (ye:x =>y' e:x ) 



-

i nteger ( x )  for ordinal ( x )A ~  limit ordinal ( x )  

/\ ~ ( 3 y) ( y e:x A . limit ordinal ( y) ) . 

x i s  w for limit ordinal ( x )A ~ (  3 y) (ye:x I\ limit 

ordinal  ( y) ) 

Theorem : The above formulas are dominant . 

Theorem : I f  <a ,  R ,  F ,  s ) is ordinalized , 

� ,.. ' a + 1 = a 

Proof : We must 

� r i=  ~ ( 3  x ) ~ [x e:a+I 

r *  , 
Suppose 

� 
r *  F fe:a+l . 

is valid . 

show for all re:G ,  

- ( x e:a " X = a ) J 

r F re:(+) . Then for every 

There is some r * *  and some 

191  

A 

a <a+l , r* * t= f = a .  But a<a so  
� A A 

r** l=- ( ae:a ) v ( a  = a ) . 
= a ) . Thus , r I= ~~ ( fe:a " f = a ) .  r * * P ~ ~ ( fe:cx V f 

Simi lar ly, if  f f=== ( fe: a  V f = a ) , then r t= · ~ ~ ( fe:ci+'l. ) . 

The res u lt follows . 

Q . E . D . 

Coro l lary:  If  <a , R ,  F ,  · s> is ordinalized , 

suc ces s or ordinal ( �) is valid . 

1 1 
J ; 
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Theorem : If  (G , R , t= , S) is ordinalized and for 

some fE S  

then for some 

and some 

r *  

r EG ,  r F successor ordinal 

and some a+l ,  � t* f= ( f = a+l ) . 

f ,  

Proof : r l= successor ordinal 

r F ordinal g A g Efl\ r • g '  • 

f ,  

Since 

so for some gES , 

r t=  ordinal g ,  

ther e  is a 

Then r *  t= r  : (l
.,. 

I , 
and an ordinal 

......... 
r* F f  = a+l .  

a 

In - a s imilar manner we may show 

such that r*  F g 
A 

= a . 

Q . E . D .  

Theo·re·m : Suppose <a , R ,  F ,  s> is ordinalized . Then 

1 )  If A is a limit ordinal , limit ordinal 

( A )  is valid . 

2 )  If r t== limit ordinal ( f ), then for some 

r * and some limit ordinal A , r* ·� ( f  = A ) .  

3 )  If n is an integer , integer < n )  is valid . 

4 )  I f  r t== integer ( f ) , then for some r * 

and some integer n, r* ts ( r = n ) . 

5 )  
,. 

valid . w is w is 

6 ) If  r p f is w, then for some r * , 

r * p e r = 
,. 
w ) . 

I i  

, , 
l l 
ll 
,, 

l: 



Section 8 

Cardinalized models 

Let c ardinal  ( x )  be  an abbreviation for ordinal 

( x )  A ~ ( 3· y)  (.3 z )  [yex A function ( z )  A 1-lz A domain 

( z )  = y A range ( z )  = x ]  

We  remark that cardinal (x ) is  not dominant 

( probably)  but i t  is stable . 

Suppos e (G , R , l= , S ) is ordinalized . 

call  i t  c ardinalized if for every a. EV ,  if a 

i s  a cardinal of V ,  cardinal ( &) is  valid in 

< G ,  R ,  F , S ) . 

By the class ical-intuitionistic 

t echnique of section 2 ,  

and 

~ ( 3  x ) ~ [ integer. ( x )  � cardinal ( x )  J 

~ (  3 x ) ~ [x is w ::, cardinal ( x )  J 

We 
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are both valid in ( G ,  R,  I= , s> . · But then by s e ct ion 7 ,  

( n/\ )  for any int eger n ,  · cardinal 

c ardinal ( � )  is valid . 

is valid . 

Thus , the troublesome cardinals of V 

Also 

are the 

uncountable ones . In the next section we give a condit ion 

due to Cohen which will take care of such cardinals . 

I i  

It 



Remark : To say (a ,  R , t== ,  s)  is cardinali zed 

are among those of is  to s ay the c ardinals of V 

(a , R , t= ,  s ) .  In fact , we will show in chapter 13 

that the c ardinals of 

as the c ardinals of 

s ets or v �  
L ,  

are the same 

the class of constructable 

Section 9 

Countably incompatible G 

The 'f'ollowing argument is from [ 2 ]  

Def : Two elements r , 6.e:G are called compatible if 

they have a common R-extens ion, that is , if some 

is some 6. * , 

i ncomp atible . 

Otherwise r and I::,. are 

Ge:V is called countably incompatible if any 

subset of G of mutually incompatible r is at most 

cou ntable in V .  

Lemma : S uppose (a ," R , t== , . s) 

is countably incompatible, 

and � 0 < card 13 . in V .  

A A 

a , 13e:S , 

Then 

is ordinalized , 

card · a < card 

,. ,. 
f "  1-1 f I' domain f · = a " range f = 13 ]  

... ( 3 f )  [ function 

is valid in . 

<.a ,  R , i= , s ) . 

G 

I ·  
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Proof : Let f be some fixed element of S .  We 

remarked ear lier that the class of ordinal representatives 

was definable over v .  Let F ( x )  be the formula 

defining it . Let A ( x ,y, z )  be the formula 

[ x e:S A ye:S A F (y) A z. e:G A z f=- ( function ( f ) A 1-1 f A domain 

( f )  = � A  r ange f= S A  ( x ,y) e: f )  J 

,. ,. 
A ( c , � , A )  Suppose for y , o , A , A ' , c ,  that 

and A ( c , A 
/J. ' ) are both true v .  If A 0 , over 

and f,, ' are compatible , some i*  J:= (c ,y ) e:f " 

<c , g> 
,. 

e: f .  Hence A*  l= y  = 0 so y = 0 . 

Thus , if yi o , /J. and A '  are incompatible . 

Thus , for any f'ixed ce:S , and any Ae:G , there are 

orily countably many ordinals y such that A ( c , y , A )  

is true over 

hypothesis . 

Let 

V ,  by the countable incompatibility 

B ( x ,  y) be the formula 

Then ror fixed c e:S ,  the set defined by B ( c , y)  is 

at most countable . 

For an ordinal a , 
. { y j y <a } . for 

Finally, let C ( x )  

( ::3  c ) ( c e:a0 
A B ( c , x ) ) .  Let 

def'ined by C ( x ) , and let 

let 

a.e:V . 

be .the 

0 a be 

formula 

C ' _ be the clas s in 

C be {y ! ye:C ' } . 

Since C ' is a definalbe subset of 80
., Ce:V .  

.. ,· 

a bound on the cardinality of C we note that for 

V 

For 

any 

!� . . , ,  
I, 



II 

c e:a 0 , there are at most � o X such that 

B ( c , x ) . Thus , card C2. �o • card a < card 

so c ard C < card a 

Next we show that i f ,  for some 6e:G ,  

F ( function 
,. 

6 ( f )  I\ 1-1 f I\ domain ( f )  = a 

/\ < c , d ) e:f )  then there is some 6* 

c5 e: C such that 6* F ( d = o ) . For , since 

6 F <c , d > e:f ,  there must be some 

6 *  t= ( de: S )  and hence a and a o e: a 

a 

/\ range ( f )  

and some 

such that 

such 

that 6 * * F (d = 6 ) . Thus , 6** F (function ( f ) A l-l 

( f )  /\ domain ( f )  = a A range ( f )  = a A <c , 6 > e:f ) . 

So 

A ( c ,  � , 6 * * )  is true over V 

B ( c ,  5 )  is true over V 

C ( 6 ) is true over V 

c5 e: C 

Now , suppose there were some re:G such that 
,. 

r t= ( function ( f )  A 1-l ( f ) A domain ( f ) = a · A range ( f )  = 

Since card 

ye: a ,  yt,C .  

C< card a , .  but 

some Since ye: a ,  

r I= ( range ( f ) = a ) ' for some 

r * l= ( 3  c ) ( c e:ti /\ < c ,  r >  e:f )  

s o  for some c e:S , 

r *  F < c ,  y > e:f .  

That is , 
, 

r t= (y e: a ) .  

r• . 

there is 

Then s ince 

I I  a 

= a 

a ) . 
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r * F ( function ( f )  A 1-1 ( f )  A domain ( f )  a /\  

( f )  
4 

<c , r) e:r ) range = s I\ 

By the above , there is some r** and some 

r * * \:=- ( y  o e:C s u ch that = cS )  , but then y • 0 

so ye:C ,  a contradi ction . 

Since f is arbitrary, the result follows . 

Q. E. D. 

Theorem : Suppose <a , R , l= , s ) is ordinali zed , 

G 

v .  
i s  countably incompatible , and 

,. 
Then c ardinal ( S )  is valid in 

f3 is a cardinal of 

<a , R, t= ,  s )  

Proof : By the last section we need only cons ider 

S> ]'{ 0 = w. Suppose r fo cardinal ( $ ) . Then for some 

a. ,  f ,  r * , f * l= (a e: a  A function ( f )  /\ domain ( f )  = a /\  
A 

range ( f )  = S ) . 

Since r * t= < &e: a ) , a. e: f3 so 

c ard  a. < c ard  f3 [ f3 is a c.ardinal] . 

Now , by the above lemma we are done . 

Q_. E. D  

Remark :  A s imple corollary of this theorem (which should 

be obvious anyway) is  the following . · If L is the class 

of constructable sets of V, not only is L a classical 

,• 



ZF model , but if 

is  a cardinal of L .  

a is a cardinal of v,  a 

This follows by noting that in 

the i ntuitionistic formulation of the classical Ma 
G is 

19 8 

sequence [ remark - section 3 , chapter 7 ] 

trivia l ly countably incompatible, since G is finite , 

and s ince the model is  ordinalized . 



CHAPTER 10 

Independence of the Continuum Hypothesis 

Section 1 

The Spec ific  Mddel 

Again the model is adapted from Cohen [ 2 ] , with 

practi c a l ly no change . We define a particular 

( a ,  R ,  r-0 , s0) 

Recall  V was some classical ZF model . Let 

be that ordinal which is 

r emains fixed for rest of this chapter . 

in V .  8 

As in chapter 8, let e be some formal symbol . 

By a forcing condition we mean a finite , consistent set of 

statements of the form 

is  any i nteger and ' . (l 

( n  e a ) or 

is any ordinal 

~ ( n e a ) 

< 0 • 

where n 

Let G be the collection of all forcing conditions , 

and let R- be <;;;; , set inclusion. 

And 

s0 cons ists of functions which we write as 

w .  
and < S , a ) 

(l 
for each . a<o  

The definitions are the following . 



For each the domain of " is a< o (l 

{ a l a< a } and for 8<a, 
.,,. I\ 
(l ( 8) = G .  aa has domain 

... ... 
{ O, 1 ,  2 ,  . . . } and 

aa (n) = { Te:G I (m e n)e:r } . 

· { a }  has only "' a 

. { a , aa } has only 

. { a, aa } (a) = G, 

(a. , aa ) has only 

domain and 

in its domain, 
J\ and a aa 

{a ,  a } ( a ) = G .  
(l (l 

and . { a } C & )  = G. 

in its domain and 

{a }  and · {a, aa } in its 
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<& , aa) ( { &, aa }) = G. Finally w has as domain all 

<a , aa
) 

for a< o , and . W( <a , aa ) ) = G. 

From this, F o for atomic formulas becomes 

r J= 0 < & e: a) if ae: a  

r t= o (n e:a )  
(l 

if (n e a)e:r 

r t= o (a.e: { & }) 

r 1=- 0 
(& e: { a, a

(l'}) 

r J:s o (a
(l

e; {a, a
(l

}) 

r � o ( { & } e:  <a , aa> ) 

r ts 0 ( { &, aa } e:  < a , aa
)

) 

r t= o ( ( & , a a
. 
) e; W) 

Thus <a , R, 1=="0, so
> 

is determined. We 

examine the five properties of sect ion 3 chapter 1. 

1 ,  2 ,  3 and 5 are trivial. 4 is sat is fied in the same 

s ense as in the model of chapter 8 ,  that is, if'  

r t=-0 (a = b), a and b are identical. The proof is  



the s ame as in  chapter 8 .  

Thus , · 

ZF  model . 

<a ·, R , t= , s > is an intuitionistic 

. That <a , R ,  t== , s >  · is ordinalized is 

str ai ghtforward . For cx<o , is the 

ex , and i f , . for some rep resentative of 

r l=o ordinal a ,  a must be ..... a for some a<o  

F inally , in  the next section we show 

is cardinalized . 

Section 2 

Countable incompatibility of G 

Theorem : . [ Cohen] 

[and hence 

G is countably incompatible . 

is cardinalized] 

Proof : 

Re:V 

We give the argument informally , but 

so ·the argument can be formalized . 

We note that , for this model , to say 

are compatible is to say r U .1e:G . 

Ge:V 

r , 6e:G 

20 1 

Let [He:V] and suppose any two elements 

of H are incompatible . We show H is countable . 
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Suppose . H is not countable . For each 

n> O , · l et H n be { r e:H IT  contains <n statements } 

Sinc e  H = U H  , n some H n must be uncountable . 

Thus , let be uncountable .  

Let k be the largest integer such that for some 

r e:Hn , r h as k statements and uncol lntably many 

A e: H  n are such  that r S: A .  [k  must exist since 

«p e: H  n and there are uncountably many Ae:H n such that 

<P � A ,  and every fe:H has < n  statements , so there 
n 

is  a largest k ]  

Pi c k  some p arti cular 

has k statements and r 
such that r 

is a subset of uncountably 

many e lements of Hn . 

facts : 

Let K We have the fol lowing 

1 )  any two elements of K are incompatible . 

2 )  

3 )  

4 )  

K 

6. e: K  

r 

is uncountable . 

imp lies r t;  A 

has k elements . 

5 )  for any Qe:K with more than k elements , 

there are only countably many Ae:K such that 

Now choose some 

• • •  , X } • . m 

6.e:K , A�r .  Then 

Since is incompatible with 

all  other elements of K ,  by 3 ) ,  there must be uncountably 



-
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many element s of K containing xi for some 

xi [xi i s  ~(n e cx )  if xi is (n e cx ), and 

xi i s  (n e ex )  if xi is ~(n e cx )  J 

Let f2 = r u {xi }. Then fle:Hn since 

Xi.if. But there are uncountably many . ·  6e:Hn such 

that f2 � fl and n has k +l statement s, 

a c ontradi ction. 

Q. E. D. 

Section 3 

Cardinals and W 

We now have that is a 

cardinalized model. 

abbreviat ions : 

We introduce the following 

X i s  at l east N. 1 for cardinal X A 

( .3 y )  (ye:x l\  y is w )  

X i s  at leas4 7\l 2 for cardinal X I\ 

( .3  y ) ( y E X /\ Y  is at least ?< l ) 

Recall that in V ,  0 was i'<: 2 . We wis h  to show 

( 
" 
0 i s  at l east N. 2 ) is valid in <a , R, t= , s )  . 

We - showed in chapter 9, that < w  is  w) is  

yalid in <a ,  R ,  P ,  s> 
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Let y be the ordinal of V which is  ?-l l .  
Since y i s  a - cardinal , ( cardinal y )  is valid , and sinc e 

A A 

( y  we:y '  ( we:y ) is  valid . Thus i s  at least )('. 1 )  i s  

valid i n  (G , R , l= ,  s ) .  Finall_y, c5 is  a 

c ardi na l  of v , so . ( cardinal c5 ) is  valid , 

(y e: i )  and y e: c5 ' so is  valid . Thus , ( o is  

at least is  valid in ( G , R , P , S ) . 

Now we list a few properties of W .  

are s traightforward . 

The proofs 

Lemma : = <a , aa) is valid in 

(where the first of there expres sions is the function 

in  s0 , and the second is the express ion of section 3 

chapter 8 ]  

Theorem : ( function W A  1-1 W A  domain W = c5 ) 

i s  valid. in < G ,  R,  t= , s .> . 

Theorem : ~ ( .3 x ) ~ [x £ range (W ) ;j ~ ( :3 y ) ~ (y £ x  :=J integer 

y ) J i s  valid in (G , R , P" , S ) . 
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Section 4 

Continuum hypothesis 

Let be an abbreviation for 

(' 3 x )  { x  is at least 'AC 2 I\ ( 3 W )  [ function ( W )  A 

1-1 ( W ) .  /\ domain (W )  = x ,,._ ~ ( 3  y ) ~ (y £ range (W)  :::, 

~( 3 z ) ~ ( z e:y =:, integer ( z )  ) ) J } 

By the results of sec tion 3 ,  ( card 6> ( w) > � 2 ) 

is valid in  < G ,  R ,  \::= , S > .  Hence· 

~ ( c ont inuum hyp othesis ) is valid in 

Now , as we showed in section 1 ,  chapter 7 ,  the 

cont inuum hypothesis is classically independent of the 

axioms of' ZF . Of c ourse,  we would also like that it 

is i ndependent of ZF together with tile axiom of choice . 

That the axiom of  choice is valid in this model will be  

shown in  chapter 13 . 



CHAPTER 11 

Definab i lity and Constructability 

S e ction 1 

Definitions 

We introduce the following formula abbreviations . 

. . 
partfun ( :f) :for :function ( :f)A ( 3  n ) [integer ( n )  I\ domain 

( :f) G n] 

p artrel (R) :for ~ ( 3 x ) ( 3 y ) ~ [ (xER A yER ) ::> (partfun ( x) 

/\ partfun ( y) /\ domain ( x) = domain (y)J 

n e  Domain (R) :for - ( .3  x)~ [ (part fun (x ) A  XER )  => 
ne: domain ( x ) ]  

R is a t omic  ( 1) over X for ( 3  m )  ( 3 n )  integer (m) I\ 

int eger (h)/\ ~ ( 3 f ) ~ [ f'ER = (partfun ( f) /\ 

domain ( f )  = {m, n }  A f (m ) EX A  f (n ) EX A 

:f (m)e::f ( n )  )j } 

R is atomi c ( 2 )  over X · for ( 3  n) ( 3 a )  i nt eger n /\ 

--:- ~ a EX "  - ( 3 f) ~ [fER = (partfun f /\ domain 

f � - { n }  A. f (n)e:X A f ( n ) E a)J }  



R is atomic ( 3 )  over X for (.3 n)(3 a) {integer ( n ) A 

--ae:X /\ ~(3 f)~ [fe:R = (part fun (f) /\ domain 

(f) = {n } A f(n)e:X I\ ae:f(n))] } 

R is atomic ( 4 )  ovPr X for(3  a)( 3 b){ ~~ae:X /\ ~~be:X 

/\ - (  3 f) ~ [fe:R = (partfun (f) /\ domain 

( f )  = cf> A a e:b ) ] }  

R is at omi c over X for R is atomic ( 1 )  over X v  R 

is atomic ( 2) over X v  R is atomic ( 3) over X 

Y R  is atomic (4) over X 

R is not-S for partrel S A  ~ ( 3 x) ~ [  xe: Domain R _ xe: 

Domain S ] I\  ~(.3 f),... [fe:R .= ~fe:.8] 

(ft Domain S)e:S for (3 g) [ge:S A ~(.3 x)~ [xe: 

Domain S ::> f ( x ) = g ( x ) ] ] 

R is S-and-T for partrel S "  partrel T A  ~(3 x) 

-[xe: Domain R = (xe: Domain S v xe: Domain T)] A 

~(3 f)~ [ fe:R = ((f f Domain S)e:S A (f f Domain T) 

e:T) J 

R is S-or-T for partrel S /\ partrel T l\  ~(3 x)~ [xe: 

Domain R = (xe: Domain S v -xe: Domain T ) ] I\ 

~( 3 f)~ [fe:R = ((f t Domain S)e:S v(f t Domain T) 

e:T)] 

207 
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R i s  S - imp lies  - T for partrel S /\ partrel T A 

~ ( 3 x) ~ [ x e: Domain R ;= ( x £ Domain S v x e: Domain T) J 

/\ ~ (  3 f) ~[ f eR = ( ( f I Domain S) e:S ;;J (f  f Domain T) 

e:T) J 

f = g t Domain R for domain ( f) = Domain R A ~( 3 x) 

~ [ x e  Domain R ::J  f ( x) = g ( x)J 

R i s  ( 3 n) S over X for partrel S I\ integer n /\ 

~ ( 3 x) ~ [ x e:  Domain R = (xe:  Domain S I\ ~x = n)] 

I\ ~( 3 f)~[ f e:R = ( .3  g) (g e:S I\ f = g f Domain R /\ 

g ( n)EX) ] 

R i s  a de finable relation over X for ( 3 F) ( 3 n) 

{ fun c t i on ( F) /\ integer ( n) A domain (F) = n A 

~( 3 x)~[ x En => F ( x) i s  atomi c over X v ( 3  y) ( y EX 

/\ F ( x) i s  not - F (y)) v ( :l y) ( 3 z)(yEX A z e:x I\ 

F ( x) i s  F ( y)-and�F ( z)) 

" ( :3 y) ( 3  z) ( y e:x A z e:x " F ( x) is F (y)-or-F ( z)) 

v ( 3 y) ( 3 z) (y Ex " z e:x A F ( x) is F (y)-implies-F ( z)) 

V ( :3  y ) ( .:3  k)(y e:x I\ int eger (k) /'\ F ( x). is  ( 3 k) 

F ( y) over X)] /'\ ( :3  m) (me:n I\ F (m) = R)} 

X i s  definab l e  over Y for 

( 3 R) ( 3 n) i partrel R A int eger ( n) A R ·i s  a 

de£inab le relation over Y A  ~( 3  x)~ [ xE Domain R = 

x = n ] /\ ~ ( 3  x)~[xe:X = ( x e:Y /\ ( 3  f) ( fER I\ f ( n)=x))J } 
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Remark : In t he above we have used a few additional 

minor but obvious abbreviations. 

This approach to first order definability using 

partial relations is due t o  Smullyan. Intuitively, if we 

have t he formula which is true over the 

set Y for an instance x2 = a, x4 = b, x5 = c, we 

can consider instead of the instance the partial function 

f wit h  domain { 2, 4, 5 } such that f(2) = a, 

f(4) = b, f(5) = c. Instead of the formula X itself, 

we c an c onsider the collection of all partial functions 

with domain { 2, 4, 5 } which represent true instances 

o f  X as above. This collection is called a partial 

relation. 

We leave to  the reader the verification of the 

fac t  that classically (X is definable over Y )  does indeed 

represent first order definability. In the next sections 

we c onsider to  what extent it represents it in our 

intuitionistic models. We also leave to the reader such 

elementary facts as 

Z F r1 R is atomic over X :, partrel R 

Z F r1 partrel S A R  is not-S .::> partrel R 

Z F. rI partrel S I\ partrel T /\ R is S-and-T ::::> partrel R 

etc, 
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Section 2 . 

Adequacy of the definability formula 

I n  this s ection we state two theorems of considerable 

us e ,  whos e clas sical analogs are reasonably intuitive .  For 

the intuitionistic cas e  the theorems are less obvious . 

The p roofs are ted�ous and we releg�te them to an appendix . 

Theorem : 

:for som e  

ove r  g .  

:formula 

Let 

r e:G and some 

be ordinalized and suppos e 

g , :fe:S , r t= f  is definable 

Then there is some r* and some dominant 

X ( x ) · with no universal quantifiers such that 

1 )  every quantifier of X is bound to g 

2 )  i :f  a is a constant of X other than a 

quantifier bound , r *  p ( ae:g) . 

3 )  r * t== ~ ( 3  x ) ~ [x e:f = ( xe:g A X ( x ) ) J_ 

Theorem 2 :  Let <a ,  R ,  l=', s )  be ordinalized and 

f , ge:S : Suppos e X (x )  is a formula with no univers al 

quantifiers such that for some re:G , 

1 )  eve ry quantifier of X is bound to g .  

2 )  if a is a constant - of X other than a 

·quantifier bound r t= ~~ ( aE:g ) 

3 ) r :.. ( 3  x ) ~ [xe:f = ( x EgA .X ( x ) ) J  

Then r F ~ ~ ( f · is definable over g )  � 
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Corollary : (to theorem 1) Let < a , R , l= , s )  be 

ordinalized, 

Then for some 

ge:S , ex and r r- f is definable over g. 

r* , r * (== ( f = k ) • 

Proof : r I= f is definable over g, so there is a 

dom inant formula 

above. 

X ( x )  and a r* as in theorem 1 

Suppose the constants of X(x) other than g 

are 

for 

_ r* t= (a1 e:g) 

. . . 

so there is an 

Similarly we find 

Let X '  be 

By weak substitutivity of equality, 

f* F ~ ( 3  x ) ~ [ X ( x )  = X '  ( x ) ]  

such that 

Y ( X )  be X' ( X) /\ X e:g. Then all constants of Let 

Y are in Sex. Let ky e:Sa+l-S0 • We c laim 

We leave the verificat ion of this to the 

raider , - afte� nbting tbat by a classical-intuitionist i c  

argument we have· ft F. ·t' S f$  and g E Sex • 



Section 3 

w-dominance 

This definition of w-dominance is not to  be 

c onfu s ed with that of section 16 chapter 7 , which was 

u s e d  only that s ection. 

We consider only ordinalized models . We call a 

212  

formul a  with no constants �-dominant 

if for  any 

cons t ant s 

a £ V such that 

c· c £S · l '  · · · '  n a ' 

A. 'o.le:S , Ct and for any 

iff 

We wish t o  show all the formulas of sec tion 1 

are Lll-dominant . 

Lemma : If <a ,  R ,  t== ,  s ) is ordinalized , 

is valid . . ~ ( 3 x ) ~ [x e- �  _ int eger ( x ) ] 

Pro o f : Suppo s e  Then for any r * ,  
But r* F ordinal a so there is some 

r* * and s ome ordinal a such that 

Then it must  be that ete:. w, hence a 

s ome int eger n. 

f * *  F integer (t ) 

r t=z  ~ ~  integer ( a ) . 

Thus , · r * * f= ( a = n ) . 

so  r** F ~~  integer ( a ) . 

But 

Thus 

Then 

is 

r 
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Conversely, if r I= integer ( a ) , for any r * ,  

. r *  t-= integer ( a )  . Then there is some r*�  and s ome 

integer n such t hat r* * r- ( a = n ) . But ne:w so  

r** r- (ne:w ) . Thus r* *l==~~ (ae:� ) , r � ~ ~ ( ae:� ) . 

Since r is arbitrary, the result follows . 

Q. E. D. 

Now , replace in  all the formulas of sect ion 1 ,  

integer X b y xe:w . By the above lemma , the resulting 

formulas are weakly equivalent to  the originals ( i . e .  

t heir negati ons are equivalent ) which is sufficient for 

our purpos es . 

We call a formula with cons tants dominant if the 

corresp ondi�g formula with free variables replacing the 

constant s is d ominant . 

We leave it  to  the reader to show the formulas 

produced above are dominant . For example , partfun ( f )  

is' fun c t ion  ( f )  A ( :3 n )  ( intger ( n )  A domain ( f )  � n ) . 

This becomes funct ion ( f )  A . ( 3 n )  ( n e:� A domain ( f )  (; n ) , 

and the c orresponding formula with no constants is 

fun c t i o n  (y) /\ . ( .:3  n )  (ne:x /\ domain (y) � n ) , which is 

dominant . 

It then follows that the formula9 of sect ion 1 are 

w-dominant . 



Let  

ordinal  

Section 4 

The Mex sequence 

( f  is M(a ) )  be  an abbreviation for 

(cx ) l\ ~~( 3 F )  {function (F ) /\
.
domain (F ) = ex' 

/\ ~(3 x ) ~ [x e:cx '  ::> [(x = q>I\F(x ) = <t> )  Y (3 y )(x = y' /\ 

~ ( 3  z ) ~ [z e:F(x ) = z is definable over F(y ) ] )  v 

(limit ordinal (x ) /\  ~( 3 z ) ~ [ze:F(x) _ ( 3  w)  (we:x A 

z e:F ( w ) ) ] ) ] ] A F ( ex ) = f } 
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Remark : by a c lassical-intuitionistic argument we have 

ZF t- 1 -( ::J x )  (3 y )  (3 z ) ~ { [x is M(z) A ~( 3 w ) ~(we:y = w is 

definab le  over x )  J ::,  y is · M(z') }. 

Lemma 1 :  Suppose (G , R ,  F ,  s) 
,.. " M(a ) ) w, a ,  f'e:S  

f3
. and (f is 

is some 

is valid. 

Proof' : 

and let  

is valid. 

~ ~ ( g . X 
is 

. ge:S f3+2-S 
f3+1 such that 

Let X ( x )  be the f'ormula 

gxe: 8
f3+2-S f3_+1 .  

Since · ( x  

We claim 

is M(y ) ) 
,,,-.... 

M(a+l ) )  is valid. 

is ordinalized, 

is valid. Then there 

( g is · M ( &+l ) ) 

(x is definable over f' )  
_.,-.. 

(gx is M(cx+l ) ) 

is stable, we must show 



Using the above remark, it suffices to show 

~( ;3 w) ~ [we:g = w is definable over f] is valid. X 

Suppose Since 

r I== (c = d) A (d e:gx), for some de Sp+ , · So 

r F S+ 2 ( d e:gx) 

r r- S+lX(d) 

r t= S+l (d. is definable over f) 

so - by w -dominance 

r f=. (d is definable over f) 

r F ~ ~(c is definable over f). 
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Conversely, if r p ( c is definable over f), by 

the corollary in section 2, for some 

r t= ( c  = d ) . So r t=  ~~(d is definable over f) . 

and by W-dominance, 

r I= S+l ~ ~(d is definable over f )  

r I== S+l ~ ~X(d) 

r F s+2~ ~(de:gx) 

r 

r 

Since 

F 

t= 

r 

~ ~(d£g ) X 

~ ~ ( c e:g ) X 

is arbitrary, the result follows. 

Q. E . D. 



Lemma 2 : Suppose 

Let a.EV ,  and let 

ordinal < a. .  Then 

n>O . There is an 

M ( & ) ) is valid in 
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<a ,  R ,  f= ,  s >  is ordinalized . 

0 be the largest non-successor 

a. - o+n 

f e:S o+w+2n+l 

for 

( G ,  R ,  t= , S )  . 

some integer 

such that ( f  is 

Proo'f : By induction on 

fe:S w+ l 

If a. = O, 

s uch that 

the result becomes : there- is an 
. A 

(f  is M( O ) )  is valid . But by a 

c l as sica l-i_ntuitionistic argument, 

~ ( 3 X )  ~ (,-v ( 3 y )  ( y  e:X ) � X 

O �S1 , we  have  
A A 

( 0  i s  M ( O ) ) .  

.... ~~ c o  

is M(x ) J  is - valid , and since 

is M ( 6 ) )  1s valid , or by stability 

Next , suppose  the result is known for a . The 

result for a.+1 follows by lemma 1 . 

- Final ly , suppose a is a limit ordinal and the 

result is known for all ordinals <ex . 

We must s how for some f 

[Here a -= o ] 

is 
A M ( a ) is 

valid . But it follows from the methods of chapter 9 that 
A A 
O.ES a.+l '  so ae:sa+w · 

( 3 y) (ye:� /\ ( 3  z ) ( z is 

Let X ( x )  

M ( y ) A  xe: z ) ) 

be the formula 

and let 

is valid . 

Since ( limit ordinal ( & ) ) is valid , we must show 

~ ( 3 x ) ~ [x e: f  = ( 3  y ) ( y e: a A ( 3  z ) ( z  i s  M ( y ) A x e: z ) ) ]  
. X 

is valid . But this. is w-dominant , so we must show it 



.. 
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is val.i d  i n  <a R L s · ) 
' ' � a+w+l ' at W+l ' but this follows 

from the validity of 

~(3 x ) ~ [X(x )  = ( 3  y) (ye:a. A ( :3 z ) ( z  is M (y) A xe:z ) ) J  

in  [This is valid trivially 

be c aus e i t  i s  an identity] . 

Q. E. D  

Theorem : Suppose < G , R , l= , S )  is ordinalized and 

a.iv .  There  is  some fe:S such that . ( f . is M ( a ) ) is 

valid i n  ( G , R , t= , S ) 

Section 5 

Representatives of constructable sets 

Somewhat as we did with ordinals in sec tion 3 chapt er 

9 ,  we  as sociat e with cons tructable sets elements of S 

whi ch will  repres ent them . We find it suffici ent to. 

work with general representatives , and do not single out 

cannon i c al ones . 

We make the following preliminary definit ions . 

We . c a l l  a formula with no universal quantifiers E-s t able  

if  every sub formula beginning with a quantifi er is of the 

form ( 3  x ) Y ( x )  where Y ( x ) is stable . 
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Clas s i c ally any formula is equivalent to many E-stable 

formulas . For a formula X ,  by xY we mean the 

formula X with all quantifiers bound to y. That is , 

i f  a s ubformula of X is of the form _ ( 3 x ) Y ( x ) , the 

corresponding s ubformula of x_Y has the form 

(3 x )  [ x e:y I\ yY ( x )  J .  Clearly if X is E-stable, xY 

has s trongly bounded quantifiers and so by section 7 chapter 

7 ,  xY is  dominant . 

Now s uppose < a ,  R , t= , s)  is ordinalized . 

Suppose we have defined representatives in S for all 

the element s of M
0 • Let 

a clas s i cally definable subs-et of 

any E-s table formula which defines 

M a 
C 

Then 

Let 

over 

C 

X ( x )  

M a 

is 

be 

Suppose t he cons tants of • • •  , C • These n 

Let be any are all i n  

representatives in S of c1 , . . .  , en respectively, 

and let be x(�1 · • ·Cn) . By the theorem 

Cl . . .  en/ 
of section· 4 ,  there is an fe:S such that ( f  is M ( a) ) 

is  valid i n  < a , · R, I== ,  s > . Choose one such 

Let Y ( x )  be the formula 
l\ f  [xe:f /\ X  ( x ) ] .  

only finitely mariy cons tants in Y (x ) . Let 

cont ain them all . Cons ider gyESa+1-Sa · 
gy a representative of the constructable set 

In this way we may associate representatives in 

f .  

There are 

S a 
We call 

C .  

s to 



every element of L ,  the clas s of constructab le sets 

in V . 

Representatives as defined are , of course , 

non-unique . They depend on the particular formula X 

c hosen, on which f ,  on which representatives for the 
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constants  of X ,  and on which a .  However , we will show 

later that if f and g both represent the same 

constructable set ,  ( f  = g )  is valid in <a, R , f= ,  s>  

We . shall u s e  the ambiguous notation that C 

is any one of the representatives of the constructab le set 

C .  Since an ordinal a is also a constructable set,  
,.. a is  doubly ambiguous , but it will be clear from context 

whether we mean the ordinal or the constructable set 

representative . Moreover , as we show later , these two 

notions are c l9sely connected . 

Section 6 

Properties of constructable set representatives 

Let ( x is constructable ) be an abbreviation for 

the .formula ( 3 z ) (.:3 y) (ordinal ( z ) A y is M( z )  A X e:y ) 

In this se c\ion ·we show : 



Theorem 1: Let (G, R, l=, s) be ordinalized and 

suppose for s ome fe:G, 

Then there i s  s ome r* , 
representing C such 

r l== (3 y)(y is M(&)A fe:y) . 

s ome 

that 

Ce:M , . a 

r* J= (f 

and some 

= C). 

C 

C orollary: If  <a , R , J= ,  s >  is ordinali zed and 

r F (f i s  constructable), then for some some 

c onstructable set c ,  and some representative, 

C of C ,  
A 

f * F (f = C ) . 

Theorem 2: I f  ( G , R , l= , S) is ordfnalized, 
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C e:M , ex and C is  any representative of c , then 

~ ~ ( 3 y )  (y i s  M ( a ) /\ Ce:y) is valid in < G ,  R ,  I"' , S )  

Corollary :  If  

C i s  a c onstructable set, and 

of c ,  
< a ,  R, I= 

.... ~ ~ ( c  

, s >. 

is  constructab le) 

is ordinalized, 

is any representative 

is valid in 

Prdof of theorem 1: By induction on a . 

. I f  ct =  o ,  . since it follows that 
" 

- ( 3  y )  ( y  i s  M (O )  A f e:y ) is valid so the result is trivial .  

Suppose the result is  known for a and 

r t=- (a y)(y is  M(�) /\ fe:y) . By a classical- intuitionistic 

argument, ZF t-
1

~.( 3 f)(3 a)(.3 y)~ [ suc ces sor ordinal (a ) 

A ·  y i s  M ( cx ) A fe:y) :=, ( 3 z)(::l 13)(ordinal ( f3 ) 1\ a = f3 '  A 
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z is M( S ) " A f is definable over z ) J  

Moreover, (successor ordinal � ( a+I )) is valid, so 

· r f=- ~~ (3 z ) ( 3  S ) (ordinal ( 8 ) A &+l = 8' A z is M(S ) /\ 
·, 

f is definable  over z ) . It then follows that for some 

r* I== g is M(a) A f is and some r* that 

definabl e  over g. 

he:S · such that 

r *  f= h is M(&) 

But we have shown there is an 

(h is M (a ) ) is valid. Thus 

and by a classical-intuitionistic 

argument ., 

ov.er h ) . 

r *  F (g = h ) . 

There is some 

Thus r* I= ~ ~ (f is definable 

r** such that 

r * *  r- (f is definable over h ) . Now by theorem 1 of 

section 2 ., there is some dominant formula X (x )  with 

only existential quantifiers ., with all quantifiers bound 

to  h ,  and some r*** such that if a 

constant of X(x )  other than a quantifier bound, 

is a 

r * * * I= (ae:h),  and r* * * f=  ~ ( :3  x ) ~ [xe:f = (xe:h A X(x ) ) J. 

There  are only a finite .number of constants, 

• • •  , a n in x. Consider a1. 

By induction hypothesis ," there is 

some r * * * *  and a Ce:M a 

r** *I==  (a1 e:h ) /\ (h is M ( d ) ) 

such that 

Consider 

and so on to 

a2 . similarly, starting 

with r*** * . , 
and some . . . , 

a . n 
C e:M n a 

Thu�, we get some 

such that 



Now let X' be 

weak substitutiv·ity of equality, 

� f::  ~ ( 3  x)~ [ x e:f - ( xe:h A X ' ( x))] . 

Then by 

Let Y(x) be the formula xe:h I\ X '  (x). Let 

.contain all the constants of Y ( x ) , and f, 

consider gYe: 8 a+1-8 a ·  
By definition, for some 

gy represents C. We claim 

gy ) . 

By dominance, we must show 

equivalently, 

. /J. )= f3 ~ ( 3 X )  ~ [Xe: f = · ( X e:h I\ X' ( X )  ) ] . 

d ominant so we must show 

( X e:h A X I ( X) ) J 

ti t= a+ 1 < f = gY ) , 

Y ( x ) J or 

_ But this is 

which we have. 

or 

2 2 2  

and 

If a is a limit ordinal, the result is trivial . 

Lemma for theorem 2 :  Suppose (a , R , ,.. , s) is 

Suppose that for any Ce:Ma, for any 

Q. E. D. 

ordinalized. 

representative 
A .I\ A 

C of C, . ~ ~ ( 3  y )  (y is M ( a· ) /\ C e:y )  is 

valid in · <a, R ., t= , s ). 

any representative C of. C, 
A 
C e:y ) is valid. 

. . 
Then for any Ce:Ma+l ' 

~.~ ( 3 y )  (y is M ( a+ l )  /\ 

for 



= 
Proof: Let and let C represent 

Since 

where 

" ,,. 
C represent s C, C 

Y( x )  is "'h ( x e:h I\ X ( X ) )  

is fye:Sy+l-Sy 
where X(x)  

E-s table, X (x) defines C clas sically over 

is 

and (h is M (a)) is valid in < a , R , t=-o , S) . 

... 
But ~ (:3 x)~ [xe:C is 

c .  

M , a 

valid [ remember, Xh (x) is dominant, and he:S ]. y 
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Moreover, suppose a is some constant of Xh ( x )  other 

than a quantifier bound. 

some element of . Ma, 

~ ~ (3 y ) ( y is M (&) A ae:y) 

By definition, a must  represent 

so by hypothesis, 

is valid . But 

again (h is M (&)) is valid, so by a clas sical-

intuitionis tic argument, ~ ~ (ae:h) is valid . 

theorem 2 section 2, 
" 

~~ (C is defina�le over h) 

Now by 

is 

valid and <i+l = a' 

intuitionis tic argument, 

valid. 

is valid so by another classical-
� A 

~ ~ (3 y)(y is M(a+l)" Ce:y) is 

Q. E. D. 

Now theorem 2 follows by a straightforward induction 

on a . . 
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Section 7 

The principal result 

This s ection is devoted to showing the following : 

The orem : Let <a , R , r- ,  S )  be ordinalized. 

Then 

· Letrinia : 

·1) If · C,D e:L, and 
,. ,. 
C, D are repres entatives 

2 )  

of  C, D 
,. ... 

~ ~(Ce:D) 
~ ,. A 

( C e:D) 

If f and 

respectively, then Ce:D iff 

is valid. and CiD iff 

is valid. 

g both represent the same 

constructable set, (f = g )  is valid. 

3) If f represents the ordinal a in an 

ordinal sense and g repres ents a in a 

constructable set sense, (f = g )  is valid. 

We proceed with the proof. 

Let be ordinalized. · Let 

X be an E-stable formula with no univers al quantifiers, 

with all  quantifiers bound to M , a and with all cons tant s 

other t han quantifier bounds elements of M a By X '  we 

mean (in ·t his lemma) any formula which .is like X except  
. " 

for having s ome representative, C, in place of C, for 

every n on-quantifier-bounding constant of X, and having 

all  its quantifiers bound to h instead of M , a where 



2 2 5  

heS  i s  such that (h is M ( a ) ) is  valid . Then for 

the following to hold for all such formulas X ,  it is 

sufficient that they hold for atomic X : 

X is t rue over M -=> a 
~ ~X ' is valid in <a ,  R, }= , s) 
X is falre over M => a 
~X ' is valid in <a ,  R, r- ,  s > 

Proof : By induction on the degree of X .  Suppose the 

res u l t  is known for all formulas of degree less than that 

of X .  We have five casei . 

Since (Y " Z ) '  = Y ' A Z ' 

(Y V z) I = Y 1 v z 1 

( ~Y) I = ~Y ' 

(Y ::> Z) '  = Y ' ::> Z ' 

the four p ropositional cases follow easily. 

Suppos e  X is ( 3 X ) ( X e:M A Y ( X )) a 
[where Y ( x )  is stable ] and the result is known for Y .  

X' is ( 3 x )  ( xe:h " Y '  ( x ) )  

X is true over Ma -=> 

for some Ce:Ma , Y (C )  is  true . But then by 
A 

induct ion hypothesis , .~ ~Y '  (C) is valid ( for any 
,., 

represent at ive C ) . Since 

_..; _ ( .:3  y )  (y is 
,.. 

~ ~ ( Ce:h) is 

" " 
M ( a ) I\ C e:y) 

valid . Thus 

is 

Ce:M a ' by theorem 2 section 

valid . · It follows that 
,.. " 

~ ~ ( Ce:h) i\ ~ ~Y ' ( C )  is valid , 

6 ,  



which implies 

i . e .  ~ ~X'. 

~~( 3 x )(X Eh l\ Y'(x )) is valid, 

Conversely, X is false o.ver M => for Cl 
every Ce:M Y(C ) is false over M . Suppose a Cl 
for some r, r ,¥= ~X I  . Then 

r* t= X' 

r * r= < 3 x )  < x Eh A y , ( x )  ) 

For some aES 

r* r- (ae:h " Y '  (a) ) 

for some r*, 

But r* I= h is M(a ) so by theorem 1 section 6 ,  

for some Ce:M and a some 

r** , r* * I= (a = c> 

r* * t=  ~~Y' (c) 

But b y  hypothesis, ~Y' (C) is valid. 

Thus ~X' is valid. 

Now we show part 1 of the theorem. The proof 

i s  by induction on the order of D [D is of order a 

Suppose D is of order a and the result is 

known for all constructable sets of lower order. 

so D is a definable subset of M Cl Let 
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Q . E. D .  

be some correspondi�g element where 

. . 



Y(x) is the  formula 

(h is M ( a )  ) - is valid, 

Ce:D iff X(C) 

. "h ( X e:h /\ X ( X )  ) , 

and X defines 

is true over 

where 

D over M a 

M By a 
induction hypothesis, the conclusion of the above lemma 

is known for all at omic formulas over M ,  and hence a 
for all  formulas. Thus 

C e:D -=> X( C )  is true over M a 
A .  

�> ~~X ' (C) is valid 

But Ce:M a. 
~~(Ce:h) 

and 

is valid. 

(h is M(a)) 

Thus 

is valid 

By dominance, 

so 
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.. " h "' 
~~ [Ce:h /\  X (C)] 

is valid . 

is valid in <a , R, J:= 8, s8 ) ,  that is 
A A A 

~~Y(C). Then ~~(Ce:D) is valid in 

( G, R, F S+l ' S S+ l >  and hence in (G, R, F , s) . 

The sec ond half is similar, and the result follows . 

Next we show part 2 • .  Suppose f and g both  

represent the  same ·constructable set 

r t= ( a e:f). Since De:Mcx+l ' by theore.m 2 section 6, 
� r t=  ~~(3 y)(y is M(a+l)A fe:y). By a classical-

intuitionistic argument, 

r r  ·~~( 3 y) (y is M ( a ) /\  ae:y). · Then for any 

f * f=- ~~(3 y)(y is M ( a)A ae:y). Now by theorem 1 

se ction 6, there is some 

But then 

C e:M and some 
- �  r * * F  ~ ~ ( C e:f )

., 

r**  such that 

so by part 1 



of the theorem, 

DJ  But since 

r *  * I= ~ ~ < c e:g) . 

Ce:D 

g 

So 

is true [since f represents 

also represents 

r * * F ~ ~ ( a e:g ) , 

D ,  

r � ~ ~ ( a e:g ) • 

Since r is arbitrary and the argument with f and 

g is symmetric, part 2 holds. 
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Finally, to show part 3, we proceed by induction 

on the ordinal - ·  a. 

Suppose the result is known for all Let 

O(a) 

C (a) 

be some ordinal representative of a, and 

be some constructable set representative. · 

If r t= ae:O(a), 

r * F ordinal o ( a) so 

for any r*, r* l== ae:O ( a) . But 

r* I== ordinal a. Now by the 

results of chapter 9, there is an ordinal a and a r**  

such that r * * F a • 0 ( S) . Thus r * * F O ( f3 ) e:O (a) 

so it must be the case that 

above, r * * F C(S)e:C(a), 

r * * l= O( S) = C(S). Thus 

f3 £ C L But then, by part 1 

and by induct ion hypothesis, 

r**F ~~(O(S)e:C(a)) 

r * * t=  ~ ~(ae:C(a)) so  r t==  ~~(ae:C(a)). Since r 

is arbitrary, O(a) � C(a) is valid. The converse 

inqlusion is similar . 

Q. E. D. 

, .  



CHAPTER 12 

Independence of the Axiom of co·ns t·ru·ct·abili ty 

Secti o n  1 

Once again the model presented is adapted from 

Cohen [ 2 ] . Let e and a be formal symbols . By 

a forc i ng c ondition we mean any finite consistent set of  

s t at ements o f  the form (nea ) or -(nea ) , for any integer 

n .  

Let be the collection of all forcing conditions , 

and let R 

G 

be , set inclusion . 

a .  
A n · , n 

rn<n ., 

c ons ists of the functions 
A A. ,_ 

o ,  1 ,  2 ,  . . . , and 

The definitions are as follows : For each integer 
. A ,. 

has as domain {O , 1 ,  . . .  , n-1 } , and if 

n C rn) 
A ,. 

= G .  a has as domain ' { 0 ,  1 ,  2 ,  . . ·. } � and 

a ( �) = . · { r I ( n ea ) e: r }_ . 

Then ·1=  for atomic formulas is s imply 

r F O (me:n ) if . me:n 

r t=: O ( n e: a )  if ( nea ) e: r . 



We leave to the reader the verification that 

satisfies the five properties of 

secti on 3 chapter 7 .  

chapter 8 or 10. 

Property 4 is shown j ust as in 

Thus, 

ZF model . 

(G , R ,  f= , S )  is an intuitionistic 

We also leave to the reader the straight-
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f orward veri fication that <a ,  R ,  r-, s >  is ordinalized. 

Theorem: ( 3 x )-[. x is constructab le J is valid in 

( G ,  R, I= , S ) .  

We · show in in particular that ,., (a is 

constructab le) is valid . 

Suppose for some fEG, r F (a i s  constructab le) . 

By the corol lary to theorem 1, section 6 chapter 11, 

for some constructab le set- and some r* , 

f* ( a = 
,.. 
C ) • We will show this is not possib le .  

Let T*+ be · {n I (nea ) E.f if } .  We . have two 

oases . 
. ·c as·e· ·1 : every integer of C is in r*+ . Choose 

some. integer n such that (nea ) is not in r *  . . 

[recal l  f*  is finite] . Let r * * be 



r *  v { ( nea) } . 

niC so 

Then and 

Since 

whi ch is not possible . 

Case 2 : some integer of C is not 

n be such an integer _. Let r**  

r* u {~(nea)}. Again f**  e:G and 

ne:C so * J\ .... r * ,� ~ ~(ne:C). Since 

i t  follows easily that r* *  I= ~  Cne:a) 

i mpossible. 

But 

(nea)e:t* * ' 

in r*+ . Let 

be 

f*Rf** . But 

~(nea)e:r** 

which is again 

Hence r � ( a is constructable) and since 

r is arbitrary, the theorem follows. 

Q . E . D .  

Now we have c lassical independence · by the results 

of sect i on 1 chapter 7 .  In chapter 13 we will show that 

the axiom of choi ce and the generalized continuum hypothesis 

are bot h  valid in this model, so .the full independence is 

established . 



CHAPTER 13 

Additional Re sults 

Secti .on 1 

Sa repre sentatives 

Def': · We say s e:S repres ents s if 

1) ge:S implie s .... .....  (ge:s) is valid a 
in < a, R, t=, s >  

2 )  if'  r t= (ge:s) then for s ome r* and 

some he:S
cx
, r* I= (g = h) 

Lemma 1: Suppos e is a formula with 

no universal quanti fiers, and with all cons tants from 

Sa . 
Then f'or any cl, . . . , c e:S 

n a and any r e:G, 

r F a~X ( cl, . . . , en ) iff 

r · I= ~Xs ( cl, . . .  , en) 

[Xs is X relativi zed to s ] 

Proof': A straightforward induction on the degree of X. 



Lemma 2: Suppose s represents S a. Then for any 

fe;S, 

1) If fe;Sa+l ' 

is valid 

~~(f is definable over s) 

2) If r I== (f is definable over s) then for 

some r* and some 
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Proof: Suppose If 

then 

We claim 

fe;Sa, the result is 

simpl·e. 

formula X · over Sa. 

~ ( :3 x)...: [xe:f 
X 

f is for some 

is valid in (G ,  R , f= , S ) . We leave this to the 

It then follows by · reader,  using the above lemma . 

t heorem 2 section 2 chapter 1 1 ,  that 

over s) is valid. 

Suppos e  conversely that 

r t-=  ( f  is definable over s) 

~~(f is definable 

By theorem 1 section 2 chapter 1 1 ,  there is some r*  

and a dominant formula X(x) with no universal quantifiers, 

bound to s ,  with every non-quantifier-bounding cons tant 

a such t hat •� f * f: (ae:s). such that 

r* t- ~ ( 3  x)~ [xe:f 

Now for any a of X(x), 

a ' e:S a and some r* * ,  

( X E: S /\ X ( x ) ) ]  

r* t= ( ae:s) so for some 

r** l=(a = a ' ) .  Similarly 

with all cons tants of X(x) ( other than s) . Thus we have 

� · = I'* * · • •.* · such that if b is any constant of X(x) 
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other than s, there is some b'e:S a such that 

f1 F (b = b' ) .  Now let X' be like X except for 

c ontaining 

f ollows that 

a' e:S a 

!1 1=  ~ ( 3  x ) ~ [x e:f 

for each a of X. Then it 

(xe:s A X' (x ) ) J 

Let X' ' be like X' except for having unbounded 
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quantifiers. Then X'' is a formula over s . a Let 

We claim f1 . J= ( f = hx_ , , ) • 

This follows immediately by lemma i. 

Lemma 3 : If  s represents Sa and t represents 

3a+l '  

is valid 

Pro o f : 

Lemma 4 :  

then 

~ ( :3 X )  ~ [ X e:t - X is definable 

i f  <a , R, F , s > .  

By lemma 2 and the definition. 

If s represents S and a 

over s] 

~ ( 3 X ) ~ [ X £ t . =. 

<a , R ,  f= , s > , 

x is definable over s ] · is valid in 

Proof': 

then t represents Sa+l 

Again straightforward, 

Q. E . D. 

Remark : Every s is, of course, representable. a 
Let 

X(x ) be the formula X = X 

(' 



Then fx represents Sa. 

Section 2 

Definition functions 

Let (F is a f3 length s function) be an 

abbreviation for function (F) /\ ordinal ( f3 )  A domain 

� = $ /\  ~( 3  y).:.. {y e: f3 :::, [(y = 4> /\ P(y) = s) v (3 o ) 

[ o- EY A Y  = 0' /\ ~(.3 x)~(xe:F(y) - x is definab le over 

F ( o ) ) ] V [limit ordinal ( y) A ~ ( 3 x ) ~ ( x e:_F fy) - ( 3 o ) 

( O E y  /\ X e:F ( o ) ) ) ] } 

The fol lowing is left to the reader. 

Lemma: If r t=  [ ( f3e:y) A F is a f3 length s function 

A · G is a y length s function] then 

r r- (F� G) .  

For the.rest of this section we assume our models 

are ordinalized. 

Lemma :  Let represent Then for 

any f3�0 there is an Fe:S f3+3-s� +2 such that 

[F  is · a 'E+} length s function ] is valid in 

<a ·, R, t= , s ), and for any y <f3, if 

·then h represents 

. . 



Proof: By induction on a. 

If 13 = O, let X ( x )  

x = (o , s )  and consider 

be the formula 

Suppose the result is known for a. Then 

is an Fe:S 8+3-S a+2 · satisfying the lemma. Let 
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there 

f e:S 8+2-S 8+1 represent 8 a+1 ·  Let X ( x )  be the 

formula xe:F V X = < '1, f > -and let Gx e:S S+4-S a+ 3 ·. 

If a is a limit ordinal and the result is known 

for al l l esser ordinals, let X ( x )  be the formula 
A ( 3 y) ( 3 F) (ye: S /\ F is a y length s function A x e:F) 

and let 

We l eave verifications to the reader. 

Theorem :  Let represent Then 

~ ( 3 x )  ~ ( 3 S) ( 3 F) [F is a S' length s func tion /\ 

xe:F( B)] is valid in ( G , R , t== , s > . 

Section 3 

Restric tion on ordinal� representable 

Q. E. D. 

We devote this section to a brief sketch of the 

proof of 
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Suppose (G , R , I= fl , S fl ) is itself' an 

ordinalized intuit ionist ic Z-F model, where O>O. 

Then exactly the ordinals are representable in Sa • 

Proof: Trivially must be a ljmit ordinal, so by 

the work of chapter 9, at least the ordinals <Q 

are representable in We s how now that 

Since S'l>O there is an se:S1-s0 (and 

hence s e:S n ) such that s represents �o (see 

sect ion 1) . By the work in section 2, the following 

val id in <a ,  R , F n , S n  > 

is 

~( ::J x)~( 3 S)( 3 F) [F is a S' length s function A xe:F(S)].  

Suppose It then follows that 

1) ~(.3 x)~(3 S e:  n ) ( 3 F) [F is a S '  length s function 

A x e:F( S)] is valid in 

Moreover, S-length s funct ions form a chain, that is, 

t he following is valid in <a , ·  R, F n , S S1 )  : 
,. . A . 

~ ( 3 a e: n ) ( 3 Se:  n ) ( 3 F) ( 3 G) ~ [ ( ae: f3 /\ F is an a length 

s function A G is a S length s funct ion) .::> F c:; G ]  

(see section 2) 

It then follows that the following is valid in 

(using obvious abbreviat ions) 

2) ~ ~ ( 3 y ) ( y = U {F I F is a S ' -length s function, 

for e e:n }) 



From 1) and 2) the validity of 

~ ~( 3 z)-( 3 x)~(xe:z) follows, which is not possible. 

Section 4 

A classical connection 
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Q. E. D. 

The result of section 7 chapter 11 may be extended 

to 

Theorem 1: Suppose <a , R, I;, S )  . is ordinalized. 

Let X be any formula with no universal quantifiers, no 

free variables, and all constants from L. Let X' 

be like X except for having constants C where X 

has c ,  and having all its quantifiers bound to the 

formula ( x  is constructable) . 

Then 

X is true over L iff . ~ ~X ' is valid in 

<a ,  R, t= , s > .  
X is false over L iff ~X '  is valid in 

<a , R, l= , s ) .  

Proof: By induction on the degree of X. If 

is atomic, the result is the theorem of section 7 

chapter 11 . 

X. 
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Suppose the result is known for all formulas of 

degree less than that of X. The four cases X is 

Y ::::,  Z, ~ Y, Y v Z, or Y A  Z are simple. 

Suppose X is ( 3 x)Y(x) . Then X' is 

( 3 x ) .( x is constructable A Y' ( x) ) . If X is true 

over L ,  for some CEL, Y(C) is true over 

induction 
. JOI 

hypothesis, ~~Y'(C) is valid. But 

L. 

by 

By 

corollary theorem 2 section 6 chapter 11, ~ ~(C is con-

structable) is also valid. Hence ( 3  x) C-- x  is 

constructable .I\ ~ ~Y' ( x ) ) is valid. But this implies 

· ~~ ( .3  x ) ( x  is constructable A y I (X ) )  is vlaid, 

i . e .  ~ ~X ' . 

Conversely, suppose X is false over L. Then 

Y(C) is false over L for every CEL. By induction 
A 

hypothesis, - Y ' (C) is vali�, for every CEL. Now 

suppose for some 

I' *  , r * J= x • 
For some 

or 

Then for some 

f * F ( :3 x) (x  is constructable /\ Y ' ( x) ) . 

f * f= ( a is constructable A Y '  (a)) . 

By corollary theorem 1 section 6 chapter 11, for some 

f * *  and some CEL, 

so r**F  ~~Y ' (o), a contradiction. 

Q. E. D. 



Remark: Suppose <a , R, t-= 
·n

, S n ) were itself 

an ordinalized intuitionistic ZF model. We showed 

in section 3 that exactly the ordinals are 

representable in s n . It then follows that for any 

Ce:M n , C e:S n and conversely . This may be shown by 

adapting the methods of chapter 11. Now the above 

theorem may be restricted to 

Theorem 2: Suppose is an 

ordinali zed intuitionistic ZF model. Let X and X '  

be as above, save that X has constants only from M
0 

Then 

X is true over Mn iff 

~ ~X' is valid in <a , R , r- n ,  S n > 
X is false over Mn iff 

is valid in <a ,  R , F 11 '  s n > 

Proof: This may be shown exactly as theorem 1 

was shown. It is simple to establish that the theorem of 

section .7 chapter 11, relativi�es to 

in the obvious manner. 

Q. E. D. 

\ 



Section 5 

Sets which are models 

Classically, certain of the 

be Z-F models. For example, M n , 
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themselves may 

where 

is the first inaccessible cardinal, is such a model. 

We now examine the intuititonistic count erpart. 

Theorem 1 :  Suppos_e is a classical Z-F model, 

and Then 

is an intuitionistic Z-F model. 

Proof : In  the proofs of chapter 7, · V was any arbitrary 

classical ZF model. If we take V to be Ma ,  all the 

_ results still hold. But now, the class model <a, R ,  t= ,  
with respect to Ma is actually <a, R ,  f=a , Sa ) . 

s) 

Q . E . D .  

Theorem 2 :  Suppose <a , R ,  t= , S ) a a 
intuitionistic ZF moqel. 

ZF model .  

Then M a 

is an ordinalized 

is a classical 

Proof : . Let X be any - ZF axiom stated with no universal 

quantifiers. Since X has no constants, X' as in 

theorem 2 section 4 ,  is simply X relativized to the 

constructable sets. It is shown in the course of the Godel 
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consistency proofs that ZF �cX' (for example, see [ 2]). 

Hence, as usual, ZF r1~~X ' .  

<a , R, (:: , s ) . Now i f  X a a 

by theorem 2 section 4 ,  ~X' 

Thus, ~ ~X' is valid in 

were not true over M ,  
(l 

would be valid in 

Hence X is true over M a 

Q. E. D. 

Section 6 

Restriction on cardinals representable 

In section 8 chapter 9, we called (G, R, I= , s)  
cardinalized if all the cardinals of V were cardinals 

· of s. We now want to verify the remark made there that 

the cardinals of S were the same as the cardinals of L. 

More precisely, 

Theorem : Suppose < G ,  R, t= ., . S )  is ordinalized 

and for some and some fEG, f F (cardinal ( a ) ) . 

·Then a is a cardinal of L, the class of constructable 

sets of V. 

Proof: Suppose a is not a cardinal of L .  Then 

for some and some FEL the following formula 

is true over L :  [function (F ) A 1- l(F) /\ domain (F) = B 

A range ( F )  = a ].  · But Se:a is valid in 

I 
i 

I 
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< G ,  R , I= , S > . By theorem 1 section 4 ,  ~ ~ [function (F) 

/\ 1-1 (F) A domain (F) = B J\  range ( F ) = a ] ' is valid 

in < G ,  R, F ,  s ) . But this is - - [functi�n L .(F) 
A A 

A L . A 1-1 (F) /\ domain L F = f3 A range L F = d] where 

the superscript L means the formula has been relatJvized 

to (x is constructable). But classically, 

ZF t- c~(3 x ) ~ [(x is constructable A func•tionL (x) ) 

::> function (x) J 

and similarly for 1-1 . , domain,and range. By corollary 

theorem 2 section 6 chapter 11, 
"' 

~ ~(F is constructable) 

/\ ~~(& is constructable)A ~ -(� is constructable) is 

valid. 
A A 

Hence _,., [function (F) /\ 1-1 (F) A domain 

(i) = § A  range (i) = ;J  is valid. · This contradicts 

r F ( cardinal ( & ) ) 

Q . E. D. 

Remark : In the above it does not matter whether 

and f3 are ordinal or constructable set representatives. 

See theorem section 7 chapter 11. 
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Section 7 

Axiom of choice 

By F(X ) we mean the collection of all 

classically definable subsets of the set X .  Suppose 

we can define classically a sequence of sets as follows: 

so = X 

3cx+l = F(Sc,.) 

SA 
= u s [limit ordinals ( A ) J CX<A ex 

and let  the c lass S = U. Scx. If X can be well  

o rdered by some relation R, then it is easy to  show there 

is a class which well orders . s, or, any set in S can 

be we ll  ordered. Formally, we have 

ZF l- c ~ ~( 3 X ) ~(3 x ) ~(.3 a )( 3 F) [(F is a a' length X function A 

xeF( a ) ) A ( 3 R )  (R well orders X ) ] :::> 

~( 3 y ) ~(3 t )(t well orders y )  

. Now by a classical-intuitionistic argument we have 

Theorem : 

then 

Let <a , R, t=a , S )  be ordinalized. Suppose 

Then if r F (3 R )(R well  orders s )  

r t== axiom o f  choice. 

Now we consider the specific models constructed 

earlier. 



In the model of chapter 12, if X(x ) is the 

We wish to show (3 R ) ( R  well orders s ) . is valid in 
. x 

Let Y(x ) be the .formula 

(3 y) (3 z )  { [integer y /\ integer (z ) A y ez A 

x = < y, z ) J V [integer (y) /\ z = a /\ x = < y,z ) ]} 

ahd let 

i s  valid. 

Then ( Ry well orders sx ) 

Thus the axiom of choice is valid in the 

model of chapter 12. 

In the model of chapter 10, as above, sx 
represents . s0. A reasonable well-ordering of s0 

,. I\ "' 
would be (schematically ) O, 1, 2, . . . , a0, a1, a2, . . .  , 

" {6 },
. 
{1}, · { 2}, ...  , " { o, ao }, · {1,�1 }, { 2, a2 } ' . . .  , 

We leave it to the reader to show that this well 

ordering can be expressed in the · model. The only non­

trivial part of the well-ordering is a0, a1, a2 , • • •  , 

since the subscripts are not part of the model. But W 

itself provides this ordering. 

Thus the axiom of choice is valid in the model of 

chapter 10. 
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In this section we show that the generalized 

continuum hypothesis is valid in_ the model of chapter 12. 

More general ly, we show the following. 

- Theorem: Suppose is ordinali zed, 

<a , R ., 1=0, s0> e:L ., and G and s0 are countable 

in L. Then the genera1J zed continuum hypothesis is 

valid in <a , R , t= ., s ) .  

We devote the rest of this section to the proof. 

We remarked in section 14 chapter 7 ,  that the 

definition of the sequence of intuitionistic models is 

absolute. If L is the class of constructable sets 

of V ., since < G, R, J=:
0
, s

0
) e:L, the construction of 

the sequence is the same over V or over L. Thus, in 

this case we may assume in all the preceeding work, V 

was L. [We use the continuum hypothesis in L].  

Trivially ., card 8a+l = 'J{_ • 
0 card s a in 

Since <a ,  R , r- , s >  is ordinali zed and so is 

countable in L, it follows by the work of chapter 

that for any ordinal a of L, if a�w, and if 

is the least ordinal such that A, ae:Sa, then 

L. 

9 ,  

6 
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card a = card Sa in L .  

We use 6' ( x )  to denote the power set operation 

both in L and in < G , . R, f::::: , S ) in an obvious way . 

Lemma: Under the conditions of the theorem, if 

a, Se: L  and card a> ?lo in L, and if, for some 

r I= (card d' C a )  = card 8 )  

then card o) (a)> card a in L .  

Proof: As we showed in section 15 of chapter 7, for 

.fixed a 

r t= ( f = g ) .  

there is some 

there is some 

such that if 

such that 

Assume r is fixed . 

f e:G, 

We have the axiom of choice in L so we 

can define a set Pe:L ·such that 

there is some 

P� Sy 
such that 

and if 

r t=  ( f = . g ) , 

and i.f .f,g e: P  and rx-= ( f = g ) . 

Now as in section 15 chapter 7, the fol lowing 

definable 

such that 

. { < r* , t )  

where ao 

(as a class) over L :  

.for ue:  P , 

t e:S /\ ao 

is the 

U( u) = 

r* I= (te:u) }  

least ordinal 

the function u 

such that " ae:S . ao 

is 

I 



In this case since 

1. e. Ue:L. 

.Pe:L, · U 

As we showed in chapter 7 , .for 

is a set in L, 

u,ve: P , 1.f 

u ( u) = U(v), then r l= (u = · v) and hence U = V 

here. Thus, U = V i.f and only if U( ti)  = U(v), 
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.for u,ve: P . Thus, if R is the range o.f u on p , 

since u is 1 -1, card p = card R in L. 

But R f;  (P (GXS ) so card R < card ao 

<P ( GXS ) . a 0 

Since card (GXSa ) = card G • car<;i Sa 
0 0 

= 
?{ 0 

. card a 

= card a 

then card R < card IP ( a) 

card p < card f (a) 

We have r I= (card f ( a ) .= card 8) 

so .for some Fe:S, 

r I= [ .function F A 1-1 F A domain F = f3 /\ range 

F = f ( a ) ] .  

We can thus de.fine a function 

domain . G = f3 and for 

e of _p such that 

o < f3, G ( o ) 
,. 

. r F (F  ( o ) = e ) 

to sat is.fy 

is that element 

[ there is 

,. 



only one such element e for each o J 

G is a function in L, range G C P , and 

it is easy _ to see 

card P in L .  

G is 1-1. 

so card f3<  

Thus, card f3<  

card o> (a ) in L. 

Now we show the theorem itself. 

Suppose for some I' EG, 

r � generalized continuum hypothesis . Then for some 

a, f3, y EL and some r* , r* F cardinal a /\cardinal 

/\ cardinal y /\ & e: s  /\ S e:yA(W e:a V w = ex )  I\ card f (a ) = 

card y 

Then by section 3, 

Moreover, ae: S, f3 e:y, 

a� .?<0 in L. 

By the above lemma, 

card f (a )� 

a, f3, 

W Ea 

card 

Thus f3 is a cardinal in 

contradicting the continuum 

and y are cardinals of L .  

or w = a, so card 

y in L. 

L between a and lf (a ) 

hypothesis in L. 
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Q. E.D. 

Q . E.D. 

I 
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Section 9 

Clas sical counter models 

In the foregoing we have obtained independence 

results in set -theory without constructing any classical 

models . In more traditional treatments of forcing , 

clas sical models are constructed by a method due to Cohen; 

for example , see [ 2 ], but countable clas sical ZF models 

are required . E�sentially this method was used in 

section 7 chapter 4 to prove the theorem· there . It is 

pos sible , using an ultralimi� construction, to construct 

s uitable non-standard clas sical models without countability 

requirements . The following method is from Vopenka [ 2 0 ]  

and is simply translated from the topological intuitionistic 

models used there to- the Kripke semantic models we use . 

It c an be applied in more general settings but we only give 

it in a form which applies directly to intuitionistic ZF 

models . 

Let <a, R , F ,  s ) be a clas s model over the 

classical model V and suppose the axiom of choice is 

true over V .  As  we showed in section 6 chapter 1 ,  if 

d' is the collection R-closed s ubsets of G ,  <a:>..1 c) 

is a p s eudo-boolean algebra .  Let F be any maximal 

filter in f • See [15 , pgs . 4 4 ,  66 ] . 

/ 



Define the class S to be the collection of all 

functi ons f such that domain f£F, range f � S. 

Define e: G sxs by: f£g is true if and only if 

· {I'£G j r £ dom f, re: dom g, 

r t:= ( f ( r )  £g ( r )  ) }" e: F 

We claim that for any formula X ( x 1, . . .  , xn) 
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with no universal quantifiers , 

over S if and only if 

is true 

· {re:a j re: dom f1 1"\ n dom fn , 

I' F X(fl(r), . . .  , fn(r))} £ F  

The pro of is by induction on the degree of X. We have 

the result for atomic formulas by definition . The 

propositi onal cases are straightforward, using the various 

properties of maximal filters. We show the existential 

quantifier case. Suppose X is . ( 3  x) Y (x, f1, . . . , fn) 

and the result ls known for formulas of lesser degree. 

Suppose ( .3  x)Y(x, fl, 

Then for some g £S, Y (g, fl, 

By inductive hypothesis, 

· {r j re: dom g I) dom t:'.1 () . . . (1 

r t'3 Y(g(r ), f1 ( r) ,  . . .  , 
But this set is contained in 

{r j r £ dom f1 n n dom fn, 

. . . , fn) 

. . . , fn) 

dom f n ' 

f (r))} £ F .n 

r t=- ( 3  x)Y(x, f1 ( r),  • . • , fn ( r))} 

so this is an element of F. 

is true over 

is true over 

s .  

s. 

/ 



Conversely, s uppose 

· { r  I r e:  dom f 1 .() . . .  n dom f n , 

f r  ( 3  x ) Y (x_,
f1 ( r ) ,  . . .  , fn ( f ) ) }  e: F  

Let this set be A .  We define � function g on Ae:F 

as follows . Suppose Then 

s o  for some ae:S , 

r f;=  Y ( a ,  f1 ( r } ,  . . . ., fn ( r ) ) .  

choose one s u ch a , and let g ( f )  = 

definition, for f e:A ,  

iff 

Thus 

f J=. ( :3 x ) Y ( x ,  f1 ( r ) , . . .  , fn ( f ) )  

f F Y ( g ( T ) , fl ( f ) ,  • . .  , fn( r ) ) .  

A = 

· { r j re: dom f 1 /1 . . . f\ dom f n /1 dom g ,  

a .  

f f= Y ( g ( T ) ,  f1 ( r ) , . . . ., f ( f ) ) } e: F  n 

So  by� hypothesis , Y ( g ,  . fl , . . . , fn ) is 

s o  ( 3 x ) Y ( x , fl , . . . ., fn ) is true over 

Thus , by 

-
true over s ,  

s .  

2 5 2  

As a special case we have : If  X has no univers al 

quantifiers and no constants , X is true over s iff 

{ r l r l= X } e: F . 

Since the unit element of <tP , C > is G ,  we 

have Ge:F . Thus , if X has no universal quantifiers 

and no cons t ants , and X is valid in <a , R , F ,  s ) , 
X is true over s .  



CHAPTER 1 4  

Addit ional Classi cal  Model Generalizations 

Section 1 

Introdu ct ion 

All  of' the preceeding work in part II has been 

wit h  intuitionis t i c  Ma generalizations , but other kinds 

of' generali zations are pos s ible � In this chapter we 

brief'ly examine some of' them . 

Clas s i c al ly two p arti cular models have proved of' 

great use;  the model of' constructable sets , and the model 

of' sets with rank . We have dis cus s ed an i ntuitionist i c  

generalizat ion of' the first . In a s imilar fashion, an  

int ui t ionistic  generalization of  the 

pos s ible . 

R a sequence is  

Scott and Solovay have developed what they call  

boolean valued models for s et · theory [ 1 7 ] . Thes e  are 

real ly boolean valued generalizations of the c lassi cal  Ra 

s equence , i n  a sense to be given later . A s imilar boolean 

valued generali zation of the M
0 sequence is possible . 
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· Boolean valued logics 

This section is intended as a preliminary to 

boolean valued models for set theory. The subject is treated 

completely in [1 5]. Als o �  see section 5 chapter 1. 

In  a pseudo boolean algebra, if -a, the pseudo-

compliment of a,- has the property a v -a = V, then 

-a is  c alled the compliment of a. A. pseudo boolean 

algebra in which every element has a compliment is called 

a boolean algebra. 

Let B be a boolean algebra and let v be a map 

from W, the set of formulas, to B. 

(pr opositional) homomorphism if 

v (X /\ Y) = v (X) n v (Y) 

v (X � Y) = v(X) V v (Y) 

v (~X) = -v (X) 

v is called a 

v (X '.J Y) = v(X) => v(Y) 

= -v (X) V v(Y) 

In addition, V is c·alled a ( Q ) homomorphism 

v ( (:3 x)X (x)) = u v (X (a)) . aET 

v ( (V x)X (x)) = n v(X (a)) aET 

if 
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where T is the collection of all parameters . The infinite 

sups and infs corresponding to quantifiers are assumed to 

exist.  

It  can be shown that for X a formula with no 

parameters, X is a theorem of classical logic if and 

only if v (X) = V for any Q homomorphism into any 

boolean algebra . 

One way of generating a theory- [a collection of 

formulas cal led true, closed under modus ponens, containing 

all valid formulas] is to give a boolean algehra B. and 

a Q homomorphism v, and to call a formula X true in 

t he t heory being described if v ( X )  = \l 

Section 3 

Boolean valued R
0 

generalizations 

This generalization is from [ 17], though the 

particular formulation of it is different . 

· . As usual, V is a classical ZF model . ·Let B 

be a· complete boolean algebra such that BEV [B is 

complete if all sups and infs exist. Any boolean algebra 

can be imbedded in a complete one . 

define a transfinite . sequence 

See [ 1 5] ] .  We 

as fol lows : 
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RB 

0 = q> 

B 
B 

RB Ra+l = 8Ra V a 

.RB = u RB for limit ordinals A a< A a 

and let 
RB = u RB 

a£V a 

Thus RB is a class of boolean valued functions. 

[ If B is the two element algebra {O, l } this sequence 

is homorphically the classical R a .sequence]. 

Simultaneously we define. a sequence of homomorphisms 

from to B where 

all  formulas with constants from 

homomorphism v from to B. 

is the collection of 

and a final 

Note that to define 

a homomorphism it is sufficient to define it for atomic 

formulas. This we do as follows. 

v0 is trivial, there are no atomic formulas. 

· Suppose V . a 

1 )  if B f,g€R
0 

va+l(fe:g) 

2 )  if f RB 
e: 0: 

va+l (fe:g) 

is known, and 

let 

= 

and 

= 

V c/ fe:g) 
B B g e:Ra+ 1-R

o: 

f,g B Ra+1 · 

let 



u {g (h) I) 

h e:  dom g 
� ( f (x) 

;
e:RB 

<=> 

Remark: If an equality symbol is defined in the 

usual way, c ondition 3 is the same as va +l (fe:g) = 

for all 

Let 

· u · {g (h) () va+l (f = 
he: dom g 

I.f ). is a limit ordinal 

a< 11. and if B , f ,ge:R
>.. 

B .f , ge:R . a 
= 

g )} 

and 

, 

I.f . 
B f,g R ,  for some a e:V, 

v (f e:g) = 

V is def1ned a 

then for some 

Let 
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Thus, we have a class, and a Q · homomorphism 

V from B · W to  B. As we remarked in the last section, 

all the classically valid formulas map to V .  In [17 ] 

moreover, it is shown that all the axioms of ZF [as well 

as t he axiom of choice, if true in VJ map t o  V. 

RB is called a boolean valued model for ZF. 

Thus 

Finally, in .[17 ], a specifi c model of this kind is 

produced in which the continuum hypothesis does not map 

to  V, whi ch establishes independence. Similarly for the 

axi om of constructability. 
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Sec·tion 4 

. Intuitionistic Ra generalizations 

Let V be a classical ZF model. We define a 

(class of) transfinite sequence of intuitionistic models 

< G, · R, l== , RG ) , a a and a class model 

as follows . 

Let G be some non-empty element of V, and let 

R be some arbitrary reflexive, transitive relation on G, 

also a member of V. 

Let f 

subsets of G. 

be the collection of all R-closed 

As we showed in section 6 chapter 1, P 

under the ordering s;; . is a pseudo-boolean algebra. 

An element · ae: f is called regular if --a = a .  

We call a function with range � 

of the range is regular. 

We define a sequence RG 
a 

RG = cp 0 

as 

G is RG together Ra+l a 

.functions from RG to f> 
(l 

= 

regular if every member 

follows: 

with all regular 

., 
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and let = 
a EV 

Remark : The res triction to regular functions . is not 

neces s ary,  but �o power is los t ,  and it simplifies matters . 

Similarly in chapt er 7, in defining from s a 
we could have confined ourselves to formulas X (x )  over 

Sa whi6h were s t able . 

then 

Next  we define the sequence of I= a relations . 

1=0 holds for no atomic formulas . 

If 

1 )  

2 )  

3 )  

is defined , f EG , 

if 

G f , ge:R
0 

and r t=
0

( f�g ) 

and G f , ge:Ra+l 

f RG RG -RG and fe:g ( f ) . E a '  gE  a+l a 

fe:RG -RG and for some . he: domain g ,  a+l a 
r e:g  ( h )  and re:  ( f ( x )  <=> · { t d  ll t=

a'( x e:h) } ) 

for every 

Remark : the expression in part 3 is an element of the 

pseudo-boolean algebra f , <=> is the operation of P 

The definition could have been stated without such a use of  

, but less . . conc isely. 
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I f  

r 1== 
A ( f e: g ) 

is a limit ordinal, G f , ge:R A , then 

if for some 

Finally, r r- ( fe:g ) 

r t=, a ( fe:g ) . 

r F ( f e:g ) . a 

if for some a e:V, 

Thus , we have a sequence of models 

and a class model determined by 

specifying G and R .  In the next section we show, by _ 

translation to a boolean valued Ra· sequence,  that 

is an intuitionistic ZF model . 

Section 5 

is an intuitionistic ZF model 

As we remarked in the last section, P , the 

collection of all R-closed subsets· of G ,  is a pseudo 

boolean algebra . Moreover , it is complete , i . e .  all 

sups and infs exist . This follows since , in this case 

a s up is an infinite union, and the union of R-closed 

� ubsets is . an R- closed subset ,  an4 similarly for infs . 

The results of section 6 chapter 1 ,  concerning the 

relationship of f and 

as : for any ·formulas X and Y ,  

may be stated 

j 



· { r j r t= x }  e: 
Ct p and 

· { r I r  t=- x }  u { r j r t=- aY }  = { r j r  J:= X v Y } Ct a 

· { r j r  f= x }  n · { r j r  r== Y }  = { r j r t==  X A Y }  Cl Ct Ct 

· { r j r t= x }  => { r l r t= aY }  = { r j r  t= aX => Y } 
Cl 

.:.. { r j r t=, x }  = { r l r t=  -x }  Ct Cl 

I n  this case,  the relationship extends to 

= 

= { r j r r- o. ( V  x )X ( x ) }  

Similar results hold between the class models . 

Now we cons truct a boolean valued R 
a 

as i n  sect ion 2 .  

ae: P is called dense i f  

sequence 

-a = J\ 

26 1 

An element 

or equivalently,  if  --a = V.  

of  all dense elements of f 

Let F be the collection 

F is a filter and 

[ 1 5 , pg . 132-5 . 8 ] f/F = B is a boolean algebra . 

Moreover , BEV. [ P/F is the collection of all 

equivalence classes of P where a and b are equivalent 

I I 
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if (a ==> b)e:F and (b ==> a) e:F. ]  In fact, 

denoting the equivalence class of ae: a> by f a / e:B we 

have 

l a l V l b I = l a v b l 

! a l /) l b I = l a 0 b j 

l a != > l b I = l a => b I 

- l a l = I -a l 

and the unit of B is ! V I  = I G I . 

Furthermore, B is complete and for any index set T, 

X E T 
l a 1 · = 

X 

Remark: This relation does not extend generally to n 

but since in a boolean algebra, n is equivalent to 

- u - , the above is sufficient for completeness. 

We include the_ proof of this last statement as it is 

so useful. 

Lemma 1: 

-- ( a 

Proof: By 

-- (a 

conversely, 

and a n .  

�- [  (a 

For a,be: f 

-==> b )  = 

, 

(a => 

[15, pg. 62, -37 ] 

-=> b )  < (a ic:=> 

-- (--c => c )  = 

--b < --b, so 

n --b) => b ]  = 

--b) 

--b) 

V [15 pg. 132-5. 7 ]  

V 

..... 



[15 pg . 60-14 ] - - [  ( a  n ( a  ==> --b)) ==> 

[15· pg . 60-18 ]  -- [  ( a  => --b) => (a ==> 

[15 pg. 60-37 ] ( a  ==> --b) ==> -- (a => b) 

( a  ==> --b ) < - -- (a ==> b) 

Lentrria 2: In f , for any index set T, 

Proof : 

= 
xe:T 

-- ( a  -=> b )  
X 

xe:T 

-- ( u 
xe:T 

xe:T 

xe:T 

( a -=> b )  = 
X 

= 

= 

( a  -=> --b ) = X 

n -- ( a- -=> b )  
X · xe:T 

xe:T 

[15 pg . 136-7 ] 

(lemma 1) 

[15 pg . 136-7 ]  

(lemma 1) 
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b] = ·V 

b)] = 

= 

Q. E.D. 

Q. E.D . 



Proof: 

so 

so 

In 

-- ( a -=> 
X 

(ax 

l a I < I X -

-=> 

LJ 
xe:T 

= 

for any xe:T, 

= V 
xe:T 

u ax) e: F 
xe:T 

a I X for all XfT 

Conversely, suppose for some be: f , 

l a I < X - l b  I for all xe:T 

Then --(a => b) = V 
. X 

and since P is complete, 

xe:T 
-- ( a  => b )  

X 

for all XfT  

= V 

= V 

[ 1 5  pg. 13 6-7 ] -- ( U ax -=> b ) = V 
xe:T 

264 
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s o  
x e:T 

Q. E . D .  

. Thus B = f/F is a comp lete boolean algebra . 

As s hown in section 2 ,  this determines the sequence 

the homomo�phisms V , ex and the class model 

and v . We now wish to investigate- the relationship 

between this and the intuitionistic model from which it 

arose . 

First, we c laim there is an isomorphism between 

[and between RG and R
8] of a rather and 

s ubstantial kind . We show this by induction on a . 

and are identical . 

Suppose we have a mapping between 

[ Pairing fe:R� with f ' e:R!J  

and 

Let Let g ' e:R 
B 

· - R
B · . be th,· e a+l a 

function whose value at f ' e:R
8 is a 

g '  ( f ' )  = l g  C f ) I 

G to B 
This map from R

cx+l R
cx+l 13 

for G - R
G distinct suppose g , h e: R

cx+l are ex 

I f  g and h are different , there must be 

one to one , 

functions . 

some 

\ 

E 

r I 
I 



fe:RG 
a such that g (f ) :/ h(f ).  If I g Cf )  I = /h(f ) / 

then by definition , 

g(f) -=> h(:f ) e:  Ii1 

or --(g(f) => h(f ) ) = V 
or by lemma 1 

(g(f) -=> ·--h(f ) )  = V 

but h is a regular function, so 

(g(f) => h(f ) ) = V 

g(f ) < h(f ) 

Similarly h(f ) < g(f ),  so 

g(f) = h ( :f) 

Secondly, this map from to 

i s  onto . For, let 

:function from to P 

Let s be any 

defined by : · 

for fe:RG, s(f)  is some particular element a 

of h ( f ' ) .  

Let g be the function defined oy g(x) = --s(x). 

Then g · is regular, with domain RG 
a '  so 

RG Moreover, for G g' (f') ge:Ra+l fe:R , = 
a · a 

l g < :r ) I - 1 --s < :r ) I = -- I s Cf )  I = I s < f) I = h( f ' ) 

and so h is g '  for G RG ge:R
cx+l a . 

Next we establish the essential identity of the 

two models . 
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t 

\ 
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Theorem : Let X be a formula over RG . with no a 
universal quantifiers . 

for 

where 

fl, . . . ., 
' B fie:R

ex 

f e:RG 
n ex · 
is the 

Vee ( X '  ) = 

Then 

Let X '  

image of 

[similarly for the class models] 

X = X(f1, . . . , fn) 
' = X(f 1 , . . . , fn )

. 

f i as above .• Then 

Corol lary 1 :  · If X is any formula with no universal 

.-quantifiers and no constants, 

model RB [that is, v,/ X ) = 
ex 

~ ~ X  is valid in <a , R \= . , 
ex
, 

for the class models] 

Proof : The unit 

V ( X )  = 
ex 

v
ex

(X) = 

I { r I r I= ax} I 

.... - { r I r t= X} a 
· { r l r F ~ ~x} , ex 

element of 

V iff 

l a !  iff 

= I G I 

= --G 

= 

B 

Corollary 2 :  <a ,  R , I= , RG ) 

X is 

V J 

RG > 
Cl 

is 

iff 

iff . 

is 

ZF model [and the axiom of choice is 

over · VJ 

valid in the boolean 

if and only if 

[and similarly 

1 ° 1 so 

Q . E . D. 

an intuitionistic 

valid if it is true 

1' 



Proof : By corollary 1 and the results reported in 

section 2. 

over 

We now turn to the proof of the theorem. 

Suppose the result is known for atomic formulas 
G R • In then follows for all formulas over a 

RG by induction on the degree. For example, suppose a 

X is . ~Y and the result is known for Y. Then 

V ( X ' )  = V ( ~y t ) 
a a 

= -v (Y' ) a 
= - l { r l r  l==aY} I 
- 1 - { r { r  l=aY} I 

= l { r l r r-a~Y} 

= I { r_ I r r-ax } I 
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Also, suppose the result is known for all formulas Y(f), 

and X is 

V (X ' ) a 

( 3 x)Y(x). Then 

= 

= 

= 

= 

= 

v (( 3 x)Y ' (x)) a 

LJ v (Y ' (f')) 
f'e:RB a 

u 

:

f ' RB 

e: a 

u 
f£ RG 

a 

I u
. 

f RG 
e: a 

a 

l { r j r1= Y (f)} I 
. a 

I { r I r Fa Y ( f) � I 

{ r I r , •.Y ( r) } I . a ,  

\ 



= 

= 

j {r j r 1==0(3 x)Y(x)} I 

j {r j r ):=0X } I  

The other cases are similar. 

Thus, we must show the result holds for atomic 

formulas. �uppose the result holds for all formulas 
G over 

Case 1: 

Case 2: 

Case 3: 

Let f,gERa+i · We have three cases. 

The result is then trivial. 

= g ' (f') 

= l g < r )  I 

Then 

= j { r j r l�+l fEg} j  

We first note that the following holds in any 

complete pseudo boolean algebra : . 

x ET 
( - a  

X 
-b ) X 

= 
xe:T 

- ( a  X 

Now, for any he: domain g, let 

· P
h 

= · {r I f Eg(h) and 

re: n (f(x) <=> {'1 j '1 1= 0 ·~ ~xe:b} }}  

. 
RG 

X E  Cl 
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Then U P h = { r I r f::. a+ 1 f e:g } 
he: dom g 

But also, 

g(h) It :Jo 
. ex 

so, · since f is regular, = 

Thus 

g ch ) n - lJ - c r c x ) <=> { ti I td= x e:h } ) 
x e:RG ex 

ex 

= 

2 7 0  

j g(h) I n - U G - _ c 1 r cx) I <=> I { ti I ti r- X e:h } I )  
xe:R ex 

ex 

- g' (h' ) I\ n B (f'(x') 
X '  e:R 

ex 

and so V ( f I e:g 1 ) 
ex+l = 

u 1 r h i 
h' E dom g' 

= I { r I r l= ex+l f €:i 1 

<=> 

= 

V ( X I e:h 1 ) ) 
ex . 

u 
he:dom g 

f>
h l 

The . case of limit ordinals, and of the class models, 

is straightforward . 

Q. E. D. 

· -

\ ) -
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Section 6 

Equivalence of the Ra generalizations 

In the last section we showed that for any 

intuitionistic R a generalization there is i correspond-

ing equivalent boolean valued Ra generalization. In 

this section we show , under restricted conditions , · a 

converse. 

Let B be a complete boolean algebra. A 

maximal (= prime) filter F is called a Q-filter if, 

whenever 
X ET 

a EF , 
X 

for some for 

any index set T. We say B has property (1) if every 

non- zero element of B belongs to some Q-filter. 

[15 pgs. 86-8 8]. 

Suppose we have a boolean valued Ra sequence as 

in section 3 ,  and suppose the algebra B has property (1). 

Let G be the collection of all Q-filters of B ,  

and let R be c [which is actually_ equality , since all 

Q�filters are maximal]. As we showed in section 3 ,  this 

determines an intuitionistic Ra sequence . We now 

proceed to show these two models are equivalent . 

\ 



t 

I ! 

= 

· 2 7 2  

Let s be the function from B to [R-closed] 

subsets of G defined by: s (a) is the collection of 

all Q-filters with a as an element. Since B has 

property _ (l), s is an isomorphism between B and the 

power set of G [any subset is R-closed], where the 

boolean operations in G are the ordinary set-theoretic 

ones [ 15 pg. 87 ] .  

We define a reasonable isomorphism between 

and 

and are identical.  

Suppose an isomorphism has been defined between 

RB and RG [pairing fe:R: with f'e:RG] 
CL CL CL 

Suppose B ge:Ra+l 
B - R . Let g' be that element 

of 

This 

G G Ra+l - Ra 

g ' (f') 

defined 

= 

by 

s ( g ( f )) 

defines an i�omorphism between 

Now we give the key theorem . 

B Ra+l 

B 
Theorem : Let X be a formula over Ra . 

X = X (f1 .,  . . . , fn) 
' 

X '  = X (fi » . . .  , fn) 

as above . Then 

for fl ., 
where 

. . . , B f e:R . n a 
' G fie:R

cx 
is the 

and Ra+1 · 

Then 

Let 

image of' fi 

l . 



= 

= 

[similarly for the class models] 

Proof: Suppose the result is known for all atomic 

formulas over R�. It then follows for all formulas 

X by induction on the degree of X .  Suppose the 
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result is known for all formulas of degree less than that 

of X. 

If X is 

. { r I r I=- a~ Y ' } 

~Y, · { r l r  I= X ' }  a 
= � { r  I r 1= Y }  ex 

= 

[where this the compliment in the boolean algebra of all 

subsets of G. Sipce implies r = /J. , it 

follows that either r F Y I Or a r F ~y •  so this follows] ex , 

= 

= 

-s(va(Y)) 

s(va(~Y)) 

= 

= 

s(-v
ex

(Y)) 

s(va(X)) 

Similarly, if X is (3 x)Y(x), 

· { r l r t= x • } · = 
a 

= 

= 

= 

. U 
G { r l r J=

"'
Y ' ( f ' ) } 

f I R .... 

s (  

a 

s(v ( Y ( f ) ) )  ex 

U v ( Y ( f ) ) )  
f RB a 

e: ex 

\ 

• t 



= 

= 

s(vc:/(3 x ) Y(x ) ) )  

s(va(x ) )  

The other cases are similar. 
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Thus, we must show the result for atomic formulas . 

Suppose the result hold� for all formulas over 

R:. Let f,g£R!+l · We have three cases . 

Case 1 :  Then the result is trivial. 

Case 2 :  Then 

Case 3 : f£R
cx+l 

s(v
cx+l(f£g ) ) = 

= 

= 

= 

g'(f' ) 

s(g(f ) )  

s(v
cx+l(ffg ) ) .  

Then 

s ( u ( g (h ) () (\ B  (f(x ) <==> 
h£ dom x£Ra g 

u (s(g(h ) )  n 
h£ dom g 

s(v (x£h) ) ) )  = 
ex 

n B (s(f(x ) )  
x£Ra 

V ( x £h ) ) )) = a 

< .... > 

-

• • r 

' I 



= 

u ( g' (h' ) I') 

h'e:dom g' 

{ r I r t= x , e:h • } ) ) a. 
· { r  I r �  a.+i f 't g , }  

( f ' ( x ' )  <=> 

The limit ordinal and class cases are straight­

forward. 
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· Q. E. D .  

From this theorem, the essential equivalence of 

the two models follows. 

As a special case, suppose V, the underlying 

classical ZF model, is countable. Then [15 pg 87-9 . 3 ]  

if  Be:V is a complete boolean algebra, B also has 

property (1 ) .  Thus, i f  we assume there is a countable 

ZF model, the two Ra. 
power. 

generalizations are equal in 

The following results would be interesting, but 

are, as yet, undone. 

1 )  A direct proof that 

is  an intuitionistic ZF model. 

2 )  A more general set of circumstances under 

. wh�ch a boolean valued Ra sequence has a corresponding 



equivalent intuitionistic Ra sequence. 

3) A direct proof that there are intuitionistic 

Ra generalization- providing counter models for the 

· continuum hypothesis, or the axiom of constructability. 

[preferably not using countability of VJ 

Section 7 

Boolean valued M generalizations a 
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Let V be a classical ZF model, " and let BcV 

be a complete boolean algebra. We define simultaneously 

a sequence M8 of boolean valued functions, and a a 

sequence V a of homomorphisms from to B .  

This is a direct generalization of the sequenc� of section 2 

chapter 7 . 

Let M� be some arbitrary collection of functions 

with domains subsets of M� and ranges subsets of B. We 

assume 

xc domain y. 

condition : 

is well-founded with respect to the relation . 

We assume B M0 cv . . v0 is defined by the 

for 

-

t 



We require that 

condition 

and satisfy the equality 

v0 ( ( V x)(x e:f 

B 
for any f, g, h8Mo ·  

Suppose we have defined M
B 
a and V a ·  

X(x ) is any formula over M
B 
a with one free 

by  f we mean the function whose domain is 
X 

whose  range is B, and which is defined by 

for all 

f (x)  
X 

B xe:M . a 

= V (X(x ) )  a 

Let B 
Ma+l be M

B 

a 
all formulas X(x) over 

together with all 

M
B 
a ·  We define 

If 

variable, 

M
B 

a' 

fx for 

va+l 

for atomic formulas as follo¥s.  If f, 
. B ge:Ma+l' 

1) if f, B let ge:M , a 
va+l (fe:g) = va (fe:g) 

2) if B B 
M

B let fe:M , ge:Ma+l a a 

va+l (fe:g) = g (f) 

3 )  if B - M
B let va+l (fe:g)_ fx e:Ma+l a' 

= 
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[where 

case 2] 

has been defined in case 1 or 

MB 
A = 

If' A is a limit ordinal, let 

u MB . If B f,ge:MA ex ex<A 
for some ex < ;. , f,ge:MB Let a ,  

V A(f'e:g) = v
o:
(fe:g) 

Finally, let MB 
= u 

exe:V 

B for some ex e:V, f,ge:M .  f,ge:M , a 
v(f' e:g) = V (fe:g). ex 

then 

MB If a 

Let 

Thus we have a boolean valued generalization of 

the M sequence, and of L. 
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Section 8 

Equivalence of the M generalizations 
a 

Let be any intuitionistic 

279 

M � generalization, satisfying the conditions of chapter 

1. We proceed almost as we did in section 5. 

If f, gESa+l-Sa c�ll f and g equivalent if 

(f = g) is valid in 

s a be some subset of Sa 

Let 

containing only one from 

each collection of equivalent elements. 

f is the collection of all R-closed subsets of 

G. under <:;; is a pseudo boolean algebra . If 

if the filter of all dense elements of � ,  B = if>/F 

F 

is a boolean algebra . Define MB 
0 from _ s0 by induction 

on the well-founded relation XE domain y, so that for 

f, gES0 the corresponding elements f',g'e:M� satisfy . 

g' (f') = j g (f) I 

Under this definition, are isomorphic, by 

induction on the . well founded relation xe: domain y .  For 

if g' = h', then for all f'E dom g' = dom h ', 

g' (f') = h' (f') so l g (f) I = j h (f) I . 

for all r e:G, 

r f= ~ ( :3 X) ~ ( X e:g 0 . . 
g, h are in 

r t= ~~ (ffg) 0 
X e:h), so 

s0, g is h .  

~~ (f€h) 

-It follows that 

and so 

Then if 
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Next we may show and are isomorphic , 

and the mapping still satisfies g '  (f') = jg (f) I 

Then following the procedure of section 5 ,  

· we .may show 

Theorem: If X is any formula with no universal 

quantifiers and no constants , X is valid in the boolean 

valued model if and only if ~~x is valid in 

Similarly , following the procedure of section 6 ,  

we may show 

Theorem: Let B be a complete boolean algebra 

satisfying property (1), ahd let M� and v0 satisfy 

the conditions in section 6. Then there is an intuition-

istic sequence such that if X is any formula with no 

constants , X is valid in MB if and only if X is 

valid in <a, R, t=-, s )  . . 

Again the following results would be interesting. 

1) A direct proof that MB is a boolean valued 

ZF model. 



2) A more general set of circumstances under 
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which a boolean valued sequence has a c9rresponding 

equivalent intuitionistic Ma sequence . 

3) A direct proof that there are boolean 

valued M sequences which establish the various set a 
theory independence results . 



APPENDIX 

[to section 2 chapter 11 ] 

Section 1 

C orresponding formulas 

Def: Suppose r I= partrel R .  We say R corresponds 

to the formula X over g with respect to r if 

there · is a r* and a finite set of integers 

{11, 

Lemma: 

. . . 1 } n such that 

1 )  X is dominant 

X is X(xi , . . . , x .  ) 
l. 1 n 

2) all the quantifiers (existential only) are 

bound to g. 

and 

3) for any constant a of X not a quantifer 

bound, r* F (aEg) 

4 ) r * I= ~ (3 x)~ [xe: Domain R 
,.. 

(x = il Y • • • V 

Suppose ( G, R, r- , S > is ordinalized. If 

r F (R is atomic over g) then R corresponds to an atomic 

formula over g with respect to r .  

.,.. 



Proof: There are four cases, all treated similarly . 

We show only one. Thus, suppose r F (R is atomic (2) 

over g). Then for some a,be:S, 

r I= [integer (b)/\ ~~ (ae:g)A ,., ( 3 f)- (fe:R 

A domain (f) = {b}  A f (b)e:a))] 

(partfun (f) 

Since r I= integer (b), there is some 
1 some integer n such that "" r* l= (b = n) . 

r* � ~~ (ae:g), there is some r * *  such that 

r ** I= (ae:g). Let h. = r* * ·  

Then 

r * 

Since 

and 

" 
h. I= [integer (n) A ae:g A ~( 3 f)-- (fe:R (partfun (f) 

A domain (f) = {�} A f (rt) e:a) ] 

Now we claim R corresponds to the formula 

over g .  If we take the set of integers to be 

2 8 3  

properties 1-4 are immediate . Property 5 becomes 

!J. f= ~ ( 3 X )~ [ X e: a  · n n 

. A 
( 3  f) (fe:R A f (n) 

We show this in two parts . 

= 

Suppose 
" !J.* f::= (3 f) (fe:R A f (n) = b). 

some fe:S, ti* !== (fe;R A f (n)- = b). 

Since 

6* 1= ~~f (n)e:a. 

by the above, 

But also 

6 * F  f (n) = .b A function (f), so 

6* f= ~~ (be:a). Thus 

6 t= ~ (3 x)-- [ (.3 f) (f.e;R A f (n) = x) => xe:a] 

Then for 



Z (x )  

Conversely, suppose 

be the formula x = 

A* F (be:a) . Let 

( n,b) and let w 
z 

in some suitable The reader may verify 

ti.* I= [partfun (w ) I\ z 
But A* F b e:a, so 

t:i.* l= C 3  r )  c~-fe:R A f(n) 

domain (w ) z 
/\ A = n A w  (n) z 

A* I= ~ ~ ( w z ER ) . Thus 

= b) . 

ti. * �  ~~ < 3  r) < re:R A f(n) = b) 

t:i. 1= ~(3 x)~ [x e:a :)(3 f)(fe:R A f(n) = x)J 

= b] 

Le·mma : Suppose (a, R, r= ,  s) is ordinalized. 
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be 

Q . E . D .  

If 

S corresponds to a formula X over g with respect to 

r ,  and r l= ( R is not - S )  then R corresponds to the 

formula ~ X  over g with respect to f ·  

Suppose without loss of_ generality that the finite 

s�t of integers for S is ' { l, 2, . . .  ·, �} . We keep the 

same set for R .  By hypothesis, X is dominant, hence 

so is ~ x , thus property 1 .  Prope�ties 2, 3, and 4 

are immediate . Property 5 becomes 

r * l= -(3 xl) . . .  (3 xn)- C-X(x1, · · · , xn) -

< 3 r) (fe: R A r c t )  = x1 A • • •  l\ f (n) 

But - we are given 

r * �:, ~ ( 3 x l ) . . . ( 3 x � ) ~ [ X ( x 1 , . . . , x n ) -

( 3 f) ( fe: S A f ( 1 ) = X l A •  • • I\ f ( n) 

= 

= 



and 

parts. 

r t=- ( R is not - S). 

Suppose f *Rb 
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We show property 5 in two 

If "' "" A J:= ( 3  f) (fe:R /\ f ( 1 ) = cl /\ • • •  I\ f (n) = en) 

then for some . f e:S, 
� 

f (n) b F (fe: R A f ( l ) = c1 A • • •  A = C ) But n 
r t:- - ( 3 f),., [fe:R = ~fe:SJ  so 

b f=: ~ (fe: S). We claim from this follows 

b F ~X ( c 1, . . .  , C ) , for otherwise, for some n 
b*, b* f= X ( c 1, . . . , 

b * t= ~ ~ ( 3  f) (fe:S A  f (  1 

for some ge:S, 

en). Then 

) = cl I\ • • •  I\ f (n) 

b* t=  ~ ~ _(ge:S) A g ( l ) = Cl /\ • • •  A_ g (n) = en 
But b * I= ~ ~ . ( g e: S) A ( f e: R ) and 

= 

b* �  ~ ( 3  x)~ [xe: Domain R _ x e: Domain SJ 

C ) · n so 

so it follows that A* F domain (f) = domain (g) 

b* t= domain ( f) 
"' � 

b* f= f ( J ) = g (  1 )  

{l, 

. . . 
. . .  , n }  

f (."n) (�) = g n 

And 

Thus 

b* F f = . g .  But A* F ~ (fe:S-) 1\ ~ ~ (ge:S) 

a contradiction. Hence b J=, ~X (c1, ... , en). Thus 

r* l== ~ (3 xl) ... ( 3  xn)- [ ( 3 f) (f e:_R A f (  1 )  = xl A • • •  A f(n) = xn) 

:::> -X (x1, ... , xn)] 

Then 

Suppose conversely, 

A F ~ ( 3 f) � f e:S A f ( 1 ) 

. . . ., C ) ". n 



Let Y (x) 

X = <1 ,  c1) 

be the formula 

V , , , V X = < �, C )  
n and consider 

in some suitable 

verify that 

The reader may 

6 I= [ partfun (gy) A domain (gy) = { l ,  ,,.. 
• • . , n} 

A 
A A gy (l) = c1 A · . • I\ gy (n) = en] 

It follows that � F  ~ (gye:S). 

That is 

Hence 

A 
A 6 r- ~ ~ ( gy e:R) A gy ( 1) = c 1 A • • •  A _gy ( n) = 

6 1= ~ --- (3 f)[fE:R A f (i) = c1 /\ . . . I\ f (n) = 

r r-= ~ (3 x1) . . . (3 x )~ [~X (x , . . .  , x ) :::, 
n 1 n 

C . ] 
n 

( 3 f) (fe:R " f (l) = xl A • • •  A f (n) = xn)J 

So 
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Q . E . D  

We may in a ·similar fashion show 

Lemma : Suppose <a ,  R ,  t= ,  S )  is ordinalized. 

Suppose S corresponds to a formula X over g and T 

corresponds to a formula Y over g w.i th respect to r . 
Then 

1 )  If r r- R is S-and-T, R corresponds to 

to · XA Y over g. 

2 )  If r t= R is S-or-T, R corresponds 

to x v  y over g. 

3) If r I= R is s�implies-T, R corresponds 

to X=> Y over g. 



Finally we show 

Lemma : Suppose <a, R, 1= , s> 

Suppose S corresponds t o  a formula 

over g with respect to r ,  and 

is  ordinali zed .  

X( x1, • . .  , xn ) 

r I= R is ( 3 j ) S  

over g. Then · _ R corresponds to the �armula 

( 3 xj ) [ ( xj e:g ) A 7 ~X ( x1, . . . , xn ) J  

over g with respect to r .  

The finite set of integers for . s is 

{ l, . . . , n } .  We may take j to be 1 . Then let 
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the set of integers for R be {2, . . .  , n } .  Now 

property 1 follows by the theorem of section 7 chapter 7 .  

Properties 2 and 3 are immediate, and 4 is straightforward . 

Property 5 becomes 

r* r- ~ ( 3  x2 ) . . .  ( 3  xn ) ~ [ ( 3  x1 ) (x1 e:gA --X( x1 , • • .  , xn ) )  

_ ( 3 f )  ( f e: R A f ( � )  = X 2 I\ • • •  A f ( n )  = Xn ) ] 

We are given 

We show property 5 in two parts 

Let r*R6 . 

Then for some fe:S,  
A 

f (n
A

) 6 e f e:R A f ( 2 )  = _c 2 /\ • . .  " = en 

X ) n 



' 

But h. f=- R i s ( .3 1 ) S over g , so 

t:. I= ~~ (3 h) (hES " f = 
,. 

h t Domain R " h ( 1) Eg) 

Then for any t:.* there is a t:. * *  such that 

6** I== he: S A f = h t Domain R "  h (l) Eg. 

For some aES, 6** f=: h (l) = a A aEg. 

It now follows that 
,.. .. 

t:.* *  f= h (l) = a "  h (2) = e2 /\ . . .  A h(n) = en. 

So 

6** 1= ~~X(a, e2, . . .  , e ) n 
6 * * f=: ( 3  X ) [~~X(x1, e2, . . . , 1 
6** F ~~(3 x ) [X(x1, c2, . . . , 1 

en)/\ x1 Eg] 

en)/\ x1 Eg] 

6 F ~~(3 x1) [X(x1, e2, • . .  , en)A x1Eg] 

This establishes half . 

Conversely suppose 

ti f=:  (� x1)[x1Eg A ~~X(x1, c2, • • •  , en)] 

then for some aE:S 

. 6  f= aE:g A ._~X(a, e2, . . .  , en). Thus 

6 t= ~~(3 f)(fe: S l\ f (l) = � /\ f (e) = e2 A . . .  A f(n) = 

so for any t:. * there is a such that 

. , 

e ) n 

A A ,_ ) Ii* *  l== ( ::=J f)(fES A f (l) = a A f (2) = e2 " ·  . .  A f (n) = en 

ii** F fE$ I\ f (i) = a A. f (2) = c2 A. • . I\  f (n) = Cn • 

Let Y (x) be the formula 
,. 

e2) 
< n , e ) X = < 2, V . . . V X = n 

and let h · y be in some 8a+1-8a · 

The reader may show 

ti** F partfun (hy)A hy = f ,.. Domain R 

f (l)Eg 

L 
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So 6** r- hy£R 

C ) n 
ti** F (hy £R A hy(2) = c2 /\ . . .  A hy(n) = 

ti** l=- ( 3 h }(h£R A h(�) = c2 A • • • A h(n) = C ) 
n 

ti �  ~ ~(:=J h) (h£RA h(2) = C ) n 
This establishes the second half. 

Suppose <a , R, t= ,  S > · is ordinalized 

and r � (R is a definable relation over . g ) . 

Then R corresponds to a dominant formula 

X over g with respect to r .  
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Q . E. D .  

Proof: r F (R is a definable relation over g) so 

for some Fe:S, some integer n, and some r * ,  
r*  � function (F) A integer (n ) /\ domain (F ) = � A 

.~ (  3 x ) ~ [x e:n ::> F(x) is atomic over g V 

o ,  1, 

(3 y)(y e:x A F(x) is not-F(y)) v . .  � v 

(3 y)(3 k)(ye:x A i�teger (k)A 

F(x) is ( 3 k)F(y) over X) ] A 

( 3 m)(me:n)A F(m) = R) 

Now n is some particular integer. We examine 

. . . , n-1 . That is 
A A r*  t= Oe:n, so 

· r *  fa ~ ~ [F(O) is atomic over g v 
4 .. 

( 3 y) (y e:O I\ F(O) is not F(y)) V · · • ] 

so for some · r * *  



r * *  A 

F(O) is atomic over g v . . .  

In fact, since 

r* *  I=- F ( 0) is atomi c over g .  

r * * *  

"' . " 
Ne.xt, r * * P lEn, so similarly there is a 

. .I\ 
such that T*** f:= F(l) is atomi c over g v 

A A 

(3 y)(yEl A F(l) is not-F(y)) v , ,  , 
A 

and also T * * *  � F(O) is atomic over g. 
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We proceed similarly for each m<n . Thus we have some 

such that for each 

b l= F(�) is atomi c over g V 

m<n, 

A A 

( 3 y ) ( y Em I\ F ( m ) is not-F ( y ) ) v , J 
1 

Now by the above lemmas, 
A 

F(O) corresponds 

to a dominant formula over g with respect to 6 (hence 

to r )  So 
I\ 

F(l) corresponds to a dominant formula 

over g with respect to and so on, to 
............. 

F(n-1). Finally, 
A 

6 I= ( .3  m) (mEn "' F(m) = R) so in some 

6 *, ll* l= mEn A F(m) = R) 

Q. E . D .  

& T 

· . .  
\. · ' 



291 

Sect.ion 2 

·con1pTet'e·n·es·s· ·or the definabili ty formula 

Theorem : Suppose 

f£G, 

<a , R, I= ,  S > 

f,g£S, 

is ordinalized and 

for some 

r F (f is definable over g) 

Then there is some r* and some dominant formula 

X(x) with one free variable, no universal quantifier, all 

quant ifiers bound to g, such that if a is a constant of 

X ( x )  not a quant ifier bound , r* t= (ae:g) and 

r*t=  ~(:3 x) ~ [x£f ( X £g A X ( X ) ) ] 

Proof : · r r- (f is definable over g) so for some 

r* , RES, integer n, r * t==- partrel R A  integer ti A 

R is a  definable relation over g A 

~ ( 3 x) ~ [x£  Domain R X = n]  A 

~( 3 x) ~ [x£f ( X e:g A ( :3 h) ( h e:R /\ h ( n) = X ) ) ] 

By t he theorem of section 1, R corresponds to a 

permanent formula X over g with respect to r .  X 

must be one-placed, X = X ( x  ) . n Moreover, X is 

dominant, has no universal quantifiers, and has all 

quant ifiers bound to g .  There is some 

ror any a of X not a quant ifier bound 

r * * t= a£g. And 

r * * P ~(:3 x ) ~ [X(x ) n n 

Now if . r * *R� and 

r**  such that 

then 

iii -# 

\ 



6 F ~ ~ ( c e:g I\ ( 3 h )  ( h e:R A h ( n) = c ) ) 

6 I= ~ ~ ( c e:g A X ( c )  ) . 

Conversely, if 6 f=ce:g A  X (c )  

6 F C e:g A ~ ~ ( 3 f )  ( fe:R A f ( n )  = C )  

6 l= ~~[ ce:g /\ (3 f ) (fe:R A f (n )  = c ) ]  so 

so 

then 

I::. t= --ce:f . 

Thus, r** I= - ( 3  x ) ~[xe:f (xe:g A X(x ) ) J  
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Q . E.D. 

Thus we have established theorem 1 of seetion 2 

chapter 11. 

Section 3 

· Ade·qua·cy of the definabili ty formula 

The proof of theorem 2 section 2 chapter 11 is rather 

like that of theorem 1, so we only sketch the general steps. 

Def: Suppose X(x .  , . . .  , xi ) is a formula with no 
11 n 

universal quantifiers, with all .quantifiers bound to 

g e: S, and such that if a . is a constant of X other 

than a quantifier bound, f F _~~ (ae:g). We say X 

corresponds to · the partial relation R with respect to 

r if 

■ F 
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1) r F ~(3 x)~[x e: Domain R 

2 )  

j\ • • •  I\ 
;\ 

f{i  ) = n 

3) r I= ~~ ( R is a definable relation over g) 

We wish to show 

Theorem : Suppose <a , R, I= ,  s >  is ordinalized and 

X is a formula with no universal quantifiers,  with all 

quantifiers bound to ge:S, and such that for re:G ,  for 

any constant a of X other than a quantifier bound 

r t= ~~(ae:g). Then X corresponds to some partial 

relation R with respect to r .  

To show this we must show a sequence of lemmas 

similar to those of section 1. For example. 

Lemma: If (a , R, F ,  s> is ordinalized , g, ae:S, 

and r I= ~~(ae:g). Then the formula X e:a n corresponds 

to a partial relation R with respect to r such that 

r t= R is atomic ( 2 )  over g. 

Proof: Let Y(x ) be the formula partfun ( x )  A 

domain (x) = · {n} /\ x(n )e:a . 

Then r F Ry 

and corresponds to 

Let Rye:Sa+l-Sa 
·is atomic (2) over g, 

Q. E. D .  

. .  \ 



-- -

Similarly ,  we may s�ow the analogs of the other 

l emmas of sect ion 1. 

Finally , to  show the theorem stated at the 

beginning of this section ,  in a sense we reverse the 

procedure of the proof in section 1. We proceed through 

s ubformulas of X ,  us ing the lemmas referred to above, 

concluding with X. 

Given this theorem , theorem 2 of section 2 

chap ter 1 1  i s  s traight forward. 
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