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ABSTRACT
Intuitionistic Logic Model Theory and Forcing
Melvin Chris Fitting

The independence proofs of Cohen for the axiom of
choice, the continuum hypothesis, and the axiom of construct-
ability are re-formulated using S. Kripke's intuitionistic
logic model theory. We define transfinite sequences of
intuitionistic models with a 'class' model 1limit in a manner
exactly analogous to the definition of Godel in the
classical case of a transfinite sequence of (domains of)
classical models, M, , with a %class' model 1limit, L.
Classical independence results are establisned by working
with the intuitionistic models themselves; no classical
models are constructed, no countable classical models are
required (though the definition of intuitionistic model is
essentially the same as that of forcing.)

An intuitionistic (or forcing) generalization of the R
sequence (sets with rank) is defined and some connections
between it and Scotf and Solovay's boolean valued rodels for
set theory are established.

For completeness sake, the first six chapters provide a
complete treatment of S. Kripke's intuitionistic lozic model
theory. Completeness proofs are given for tableau and

axiomatic systems, compactness and Skolem-Lowenhelim theorems

‘are established, and relations with classical logic are

shown. The connection between Kripke rodel theory and

algebfaic riodel theory is shown in the propositional case.
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Introduction

In 1963 P. Cohen established various fundamental
independence results in set theory using a new technique
which he called forcing. Since then there has been a
deluge of new results of various kinds in set theory,
proved using forcing techniques. It is a powerful method.
It is, however, a method which is not as easy to interbret
intuitively as the corresponding method of G&del which

establishes consistency results.

G6del defines an intuitively meaningful transfinite
sequence of (domains of) classical models, Ma’ defines
the class L to be the union of the Ma over all ordinals
o, and shows L 1is a classical ﬁodel for set theory
[3; see also 2]. He then shows the éxiom of constructability,
the generalized continuum hypothesis, and the axiom of choice

are true over L, establishing consistency.

In this dissertation we define transfinite sequences
of S. Kripke's intuitionistic models [12] in a manner
exactly analogous to that of G6del in the classical case
(in fact, the M, sequence is a particular example). 1In
a reasonable way we define a '"class'" model for each

sequence, which is to be a 1limit model over all ordinals.
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We show all the axioms of set theory are intuitionistically
valid in the class models. Finally we show there are
particular such sequences which provide: a class model

in which the negation of the axiom of choice is
intuitionistically valid; a class model in which the

axiom of choice and the negation of the continuum hypothesis
are intuitionistically valid; a class model in which the
axiom of choice, the generalized continuum hypothesis,

and the negation of the axiom of constructability are

intuitionistically valid. From this, the classical I

independence results are shown to follow.

The definition of the sequences of intuitionistic
models will be seen to be essentially the same as the
definition of forcing in [2]. The difference is in the
point of view. 1In Cohen's method one begins with a set

M which is a countable model for set theory and, using

forcing, one constructs a second countable model N '"on
top of" M. Forcing enables one to "discuss" N 1in M
even though N 1is not a sub-model of M. Various such

N are constructed for the different independence results.
In this dissertation no countable models are_required and
no classical models are constructed. It is the forcing
relation itself that is the center of attention [see 2;

page 1U47], though now it has an intuitive iﬁterpretation.
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A similar program has been carried out by Vopénka
and others. [See the series of papers: 20, 21, 22, 25,
5, 23, 6, 7, 24, 26]. The primary difference is that
these usé topoiogical intuitionistic model theory while we
use Kripke's, which is much closer in form to forcing.
Also, the Vopénka series uses Gddel-Bernays set theory
and generalizes the Fa sequence, while we use Zermelo-
Fraenkel set theory and general;ze the Ma sequence. The
Vopénka treatment involves substantial topological con-

siderations which we replace by more "logical" ones.

. The dissertation is divided into two parts. 1In
Part I we present a thorough treatment of the Kripke
intuitionistic model theory. Part II consists of the set

theory work discussed above.

Most of the material in Part I is not original but
it is collected together and unified for the first time.
The treatment is self-contained. Kripke models are
defined (in notation different from that of Kripke).
Tableau proof systems are defined using signed formulas
(due to R. Smullyan), a device which simplifies the
treatment. Three completeness proofs are presented (one
for an axiom system, two for tableau systems), one due to
Kripke [12], one due independently to R. Thomason [19]
and the author, and one due to the author. We present

proofs of compactness and Lowenheim-Skolem theorems.

L e e e e e  p—
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Adapting a method of Cohen, we establish a few connections
between classical and intuitionistic logic. 1In the
propositional case we give the relationship between Kripke
models and algebraic ones [15] (which provides a fourth
completeness proof in the propositional case). Finally we
present Schutte's proof of the intuitionistic Craig
interpolation lemma [16], adapted to Kleene's tableau
system G3 as modified by the use of signed formulas. No
attempt is made to use methdds of proof acceptable to

intuitionists.

Chapter 7 begins Part II. In it we define the notion

of an intuitionistic Zermelo-Fraenkel (Z-F) model, and the

intuitionistic generalization of the Godel Ma sequence.
Most of the chapter is devoted to showing the class models
resulting from the sequences of intuitionistic models are
intuitionistic‘g:g_models. This result is demonstrated in
rather complete detail, especially section 8 through 13,
not because the work 1s particularly difficult, but because

such models are comparatively unfamiliar.

In Chapter 8 the independence of the axiom of

chéice is shown.

In Chapter 9 we show how ordinals and cardinals may
be represented in the intuitionistic models, and establish

when such represéntatives exist.
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Chapter 10 establishes the independence of the

continuum hypothesis.

In Chapter 11 we give a way to represent constuct-
able sets in the intuitionistic models, and establish when

such representatives exist.

Chapter 12 establishes the independence of the

axiom of constructability.

Chapter 13 is a collection of various results. We
establish a connection between the sequences of intuitionistic
models gnd the classical Ma sequence. We éive some
conditions under which the axiom of choicé and the general-
ized continuum hypothesis will be valid in the intuition-
istic class models (thus completing chapters 10 and 12).
Finally we present Vopénka's method for producing classical
non-standard set theory models from the intuitionistic class

models without countability réquirements [(24].

The set theory work to this point is self-contained,
given a knowledge of the Gddel consistency proof [3; in

more detail, 2].

In Chapter 14 we present Scott and Solovay's notion
ofboolean valued models for set theory [17]. We define
an intuitionistic (or forcing) generalization of the Ra

sequence (sets with rank) analogous to the Cohen generalization
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of the M, sequence, and we establish some connections
between intuitionistiec and boolean valued models for

set theory.

.



PART I

LOGIC

Chapter 1

Propositiogal'Intuitionistic Logic - Semantics

Section 1

Formulas

We begin with a denumberable set of propositional
variables A, B, C, *** , three binary connectives, A, V, D,
and one unary connective,~, together with left and right
parantheses, (,). We shall informally use square and
curly brackéts, [,], {;}, for parentheses to make reading
simpler.

The notion of well formed formula, or simply

formula, is given recursively by the following rules:

FO: If A is a propositional variable,
A is a formula.
Fl: If X is a formula, so is -X.
F2,3,4: If X and Y are formulas, so are (XA Y)
(XvY)
(XoY)

Remark: a propositional variable will sometimes be called

an atomic formula.
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It can be shown that the formation of a formula is
unique. That is, for any given formula X, one and only

one of the following can hold:

1) X is A for some propositional‘variable A.
2) There is a unique formula Y such that X is
~ Y.
3) There is a unique pair of formulas Y and Z and
a unique binary connective b [A ,V, or 2]
"such that X is (YbZ).
We make use of this uniquenéss of decomposition but
do not prove it here.
We shall omit writing outer parentheses in a formula
when no confusion can result.
Until otherwise stated, we shall use A, B, and C
for propositional variables, aﬁd X, Y, and Z to represent
any formula.
The notion of immediate subformula is given by the

following rules:

I0: A has no immediate subformula.
I1: -.X has exactly one immediate subformula, X.
| -~ I2,3,4: (XAY), (XvY), (X>Y), each has exactly

two immediate isubformulas, X and Y.



The notion of subformula is defined as follows:

SO0: X is a subformula of X.
Sl: If X is an immediate subformula of Y,
then X is a subformula of Y.
S2: If X is a subformula of Y, and Y is a sub-

formula of Z, then X is a subformula of 2.
By the degree of a formula is meant the number of
occurences of logical connectives [~,A,V,2] 1n the

formula.

Section 2

Models and Validity

By a (propositional intuitionistic) model we mean
an ordered triple <G, R, > , where G is a non-empty
set, R 1s a transitive, reflexive relation on G, and k
(conveniently read "forces") is a relation between elements

of G and formulas, satisfying the following conditions:

For any ' eG,

PO: if any T'kFA and T RA then A F A
[recall A is atomic]

Pl: r & (XAY) iff rXx and rkF Yy

P2: ' £ (XVvY) iff rkFX or 'y

P3: rk~ X iff for all A eG such that
TRA, AKX, |



Pl: TR (X2Y) 1£F for all AeG

such that T R A, if AF X, AEY.

Remark: For TeG, by T'¥* we shall mean any AeG
such that TRA. Thus "for all T¥, Y (r#)" shall
‘mean "for all AeG such that TRA, Y(A)" and
"there is a T#¥ such that Y(I'*)" shall mean "there
is a AeG such that TRA and Yaym., Thus P3 and

P4 can be written more simply as

P3: Tk X i OF for all T¥, T¥J) X
P4i: TE (XDY) iff for all T¥, if

'*¥F X then Tr¥F Y.

) A_particulgr formula X is called valid in the.model
<G, R, E> if for all TeG, T EX.

X is called valid if X 1is wvalid in all models.

We will show later that the collection of all valid
formulas coincides with the usual collection of
propositional intuitionistic logic theorems.

When it is necessary to distinguish between validity
in this sense and the more usual notion, we shall refer
to the validity defihed above as intuitionistic validity,
Iand the usual notion as classical validity.

This notion of an intuitionistic model is due to
Saul Kripke, and is presented, in different notation,

in [12].



Examples of models will be found in section 5,

chapter 2.

~ Section 3

'Motization

Let £G, R, k> be a model. G is intended to be
a collection of possible universes, or more properly,'
states of knowledge. Thus a particular T in G may be
considered as a collection of (physical) facts known at a
particular time. The relation R represents (possible)
time succession. That is, given two states of knowledge,
I''and A of G, to say T'RA 1is to say, if we now know
I'y it is possible that later we will know A. Finally, to
say T'EX 1is to say, knowing T, we know X, or, from the
collection of facts I', we may deduce the truth of X.

Under this interpretation condition P3 of the 1last
section, for example, may be interpreted as follows:
from the facts I'' we may conclude ~“X if and only if
from no possible additional facts can we conclude X.

We might remark that under this interpretation it
would seem reasonable thaf if TFX and TRA then
ARX, that 1is, if from a certain émount of information we
can deduce X, given addition information, we still can
deduce X, or if-at some time we know X 1is true, at
any later time we still know X 1s true. We have

required that this hold only for the case that X is



atomic, but the other cases follow.
For other interpretations of this modeling, see
the original paper [12].
For a different but closely related model theory in

terms of forcing, see [U4].

Section 4

- Some properties of models

Lemma 1: Let <G, R,F> and <G, R, E“D> be two
models such that for any atomic formula A, and any Teag

. TEA iff r ~° A. Then F and F~ are identical.

Proof: We must show that for any formula X,

' £ X <—> T FB“X. This is done by induction'on
the degree of X and is straightforward. We present
one case as an example.

Suppose X 1is ~Y and the result is known for
all formulas of degree less than that of X [in
particﬁlar, for Y] We show it for X.

' e X <= F'=-~-Y

‘ (by definition)
<—> (VT ¥ ) (T *EY)
(by hypothesis)
—> (YT *®) (T *e-Y)
(by definition)
<=> r k- ~ Y

2> T X Q.E.D.



Lemma 2: Let G be a non—emptylset and R be a trans-
itive, reflexive relation on G. Suppose E is a relation
between elements of G and atomic formulas. Then  can be
extended to a relation I~ between elements of‘G and all

formulas in such a way that <G, R, F*> is a model.

Proof: We define F~ as follows:

0) if TEA then T¥f{~7A

1) TE“(XAY) if TFX and TIF7Y

2) TE“(XvY) if TE°X or T E°Y

3) TE’~X if for all T¥, T/ X

4) T E-(XDY) if for all T¥, if T¥ [ °x,

r'*s F°y

This is an inductive definition, the induction being
on the degree of the formula.
It is straightforward to show that <G, R, E"D>

is a model.

From lemmas 1 and 2 we immediately have

Theorem: Let G be a non-empty set and R be a transitive,
reflexive relation on G. Suppose E is a relation between
elements of G and atomic formulas. Then kE can be extended
in one and only one way to a relation, also denoted by F ,

between elements of G and formulas, such that <G, R,l=>



is a model.

Theorem: Let <G, R,F) . be a model, X a formula,

and T,AeG. If TFEX and TRA, then AEX.

Proof: A straightforward induction on the degree of X
(it is known already for X atomic). For example, suppose
the result is known for X, and T k~X. By definition, for
all T'*, T¥}X. But TRA so any R-successor of A is an
R-successor of I' . Hence for all A*, A¥J=X, so A F ~X.

IThe other cases are similar.

Section 5

Algebraic models

In addition to the Kripke intuitionistic semantics
presentgd above, there is an older algebraic semantics, that
of pseudo-boolean algebras. In this section we state the
algebraic semantics, and in the next we prove its equivalence
with Kripke's semantics. A thorough treatment of pseudo-

boolean algebras may be found in [15].

Def: A psuedo-boolean algebra (PBA) is a pair (B, _‘5)-
where B is a non-empty set and < is a parfial ordering

relation on B such that for any two elements a and b of B,



1) the least upper bound (aVvb) exists.
2) the greatest lower bound (anb) exists.
3) the pseudo compliment of a relative to
b (a=> b), defined to be the largest
xe B such that anx4£b, exists,

4y a least element A exists.

Remark: In the context => is a mathematical symbol,

not a metamathematical one.

Let -a be a=>A
and \VV be -\

Def: h is called a homomorphism (from the set W of

formulas to the PBA B, <») if h: W B and

1) h(XAY) = h(x) n h(Y)
2) h(xvy) = h(X) VYV h(Y)
3) h(~X) =  -h(X)

4) n(X=2y) = h(X) => h(Y)

If B, <yis a PBA and h 1is a homomorphism,
the triple {B, <, h) is called a (algebraic) model
for W, the set of formulas.

If - X 1is a formula, X is called (algebraically)
valid in the model <B, & , h> if h(x) =V.

X 1is called (algebraically) valid if X is valid

in every model.
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A proof may be found in [15] that the collection
of all algebraically valid formulas coincides with the

usual collection of intuitionistic theorems.

" Section 6

Equivalence of algebraic and Kripke validity

First, let us suppose we have a Kripke model
<G, R, |=> [we will not use the name "Kripke model"
beyond this.section.] We will define an algebraic model
{B, <, h> such that for any formula X,

h(x) =V iff for all TreG, T'E X.
Remark: This proof is based on exercise LXXXVI of [1].
If beG, we call b R-closed 1if whenever rTgb

and TRA , Aeb.
We take for B the collection of all R-closed

subsets of ' G. For the ordering relation < , we take <,
set inclusion. Finally, we define h by

h(X) = {reaG | TEX}

It is fairly straightforward to show that <B, <D
i1s a PBA . Cf the four required properties, the first two

are left to the reader. We now show:
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if a, be B, there is a largest xeB such that
an x<b. We first note that the operations U and N are
Just the ordinary union and intersection.

Now, let p be the largest R-closed subset of
(G=a) Ub [where by <= we mean ordinary set

complimentation]. We will show that for all xe B,
x<p iff  anx<b,
which suffices.

Suppose Xx <p Then

x €¢ (G=a) U b

—

an [ (G-laj U b ]

in

anNn Xx
anNnxecanho
anxgch»>b

angx i‘b

Converseley, suppose anx<b. Then

(anx) U (x=a)c bV (x_ia)

in

ple b U (x ~a)
x € bV (G=>a)
but x eB, SO X is R-closed. Hence

X

n

p
X <£p
The reader may verify that ¢ eB - and is a least

element.
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Next we remark that h 1is a homomorphism. We
demonstrate only one of the four cases, case 4. Thus
we must show that h(X>Y) is the largest xeB such

that

h(X) N x < h(Y)
First we show

h(X) N  h(X>Y) < h(Y)
That is,

{rlrex} N {rjrex>sy} < A{r|rEy}

But it is clear from the definition that

if TFX and T'FEFXD2Y, then TFY.

Next, suppose there is some beB such that
h(X) M b < h(Y) but h(X>2Y) < b. Then there
must be some TeG such that Teb but ' 7h(X2Y),
i.e. r¥XxXovy. Since 4 X>Y, there must be some
I'* such that T¥F X but T¥¥ Y. Since b 1is R-closed,
F'¥eb. But also, .P*sh(X)J so T¥eh(X)Nb, and so by
assumption, T¥eh(Y), that is, -P*tiY, a contradiciton.

Thus h(X>Y) 1is largest.

Thus < B, <, h > 1s an algebraic model. We leave

it to the reader to verify that the unit element V of

B dis G itself.
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Hence h(X) = V 3 £ for all TeG, TEX.
Conversely, suppose we have an algebraic model
(B, <, h) . We will define a Kripke model <G, R, D

so that for any formula X,

h(x) = V iff for all TeG, T FX.

Lemma 1: Let F be a filter in B and suppose
(a=>Db) £ F. Then the filter generated by F and a

does not contain b.

Proof: If the filter generated by F and a contained

b, then [15, pg. 46-8.2] for somece F, cn a <b.
So ¢ < (a=>b) and hence (a =b) ¢ F by [15, pg. 46,

8.2] again.
Q:zE:D:

Lemma 2: Let F be a proper filter in B and suppose

-a £ F. Then the filter generated by F and a is

also proper,
Proof: By lemma 1, since -a = (a =>A).

Lemma 3: Let F be a filter in B and suppose

.a £ F. Then F can be extended to a prime filter P

such that a #£ P.
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Proof: (This .is a slight modification of [15, pg. 49,
9.2], 4included for completeness).

Let O Dbe the collection of all filters in B not
containing a. O 1is partially ordered by <

O 1is non-empty since F e€O.

Any chain in O has an upper bound since the union
| of any chain of filters is a filter.
By Zorn's lemma, O contains a maximal element P.
- Of course, a g P. We need only show P 1is prime.
Suppose P 1s not prime. Then for some a;, az € B,

ayvaz € P, 8y £ P s £ Pu

Let . S; be the filter generated by P and a; ,
and S, be the filter generated by P and a,.

Suppose a€S; and ae€S:. Then [15, pg. 46, 8.2]
for some c1, c2¢€P, ajneciy < a and azncz < a.

So, for ¢ = e¢1N c2 ,

aincec < a and aNec < a.
hence (a; WV az) N c < a.

But ¢ € P and (a; V az) € P

¥ -Ye) aeP. But a £ P, so
either a £ S, or a £ 8S,.
Suppose a £ S;. By definition, S; € O. But

S is the filter genefated by P and a,; , hence
P c S; , S0 P 1is not maximal, a contradiction.
Similarly if a £ Saz.

Thus P 1is prime
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Now we proceed with the main result. Recall,
we have B, <, h). |

Let G be the collection of all proper prime
filters in B.

Let R be & , sef inclusion.

For any T e€G and any formula X, 1let TEX
if h(X) eT. |

To show the resulting structure <G, R,E> 1is

a model, we note property PO is immediate. To show
Pl:
' (XAY) ifE h(XAY) €T
iff h(x) N h(Yy) € T
iff h(X) eI and h(Y) €T

iff 'eX and TEY
[using the facts that h is a homomorphism and T is

a filter].

Similarly we show P2 using the fact that T 1is
prime.
To show P3
Suppose TF ~X. Then h(~X) €T,
Ye) (VAeG) (e A 1mplies h(~X) €4)
(VAeG) ('€ A implies h(Xx) & A)

(VAeG) (TRA implies A X X)

i.e. 'for all T¥, F¥) X,
[using the fact that h(~X) eA and h(X) €A
imply . -h (X) N h(X) e & , sofAeA and A is not

proper].

"
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Suppose T4 ~X. Then h(-~X) £ T, or
-h(X) £ T. By lemma 2, the filter generated by T
and h(X) 4is proper. By lemma 3, this filter can

be extended to a proper prime filter A4 . Then

r e A and h(X) g A . So 3A € g) (I RA and
AEX) |
i.e. .for some T¥, T¥FX,

P4 isshown in the same way, but using lemma 1

instead of 1lemma 2.

Thus <G, R, k> is a model.

Finally, to establish the desired equivalence,
suppose first, h(X) = V . Since WV is an
elemeﬁt of every filter, for all TeG, rFX.
Converseley, suppose h(X) # V . But {(V1} is
a filter and h(X) £ {V}. By lemma 3, we can

extend {V} to a proper prime filter T such that
h(X) £T. Thus T € G and THFX.

Thus we have shown

Theorem: X is Kripke valid if and only if X is

algebraically valid.



CHAPTER 2

Propositional Intuitionistic Logic - Proof Theory

Section 1

Beth tableaus

In_this section we present a modified version of
a proof system due originally to Beth. It is based on
[1, section 145], but at the suggestion of R. Smullyan,
we have introduced signed formulas and single trees in
place of the unsigned formulas and dual trees of Beth.

By a signed fbrmula we mean TX or FX where X

is a formula.

If S 1is a set of signed formulas and H 1is a
single signed formula, we will write SU{H} <imply as
{S, H} or sometimes, S, H.

First we state the reduction rules, then we describe

their use. S 1is any set (possibly empty) of signed

formulas, and X and Y are any formulas.

TA S, TXAY FA S, FXAY"
S, TX, TY S, FX| s, FY’
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TV S, TXVY FV S, FXVY
S, TX,|S, TY S, FX, FY
T~ S, T~X F~ S, F~X
S, FX Sp» TX
T3 5, TX>Y F> s, FX2>Y
S, FX|S, TY Sp» TX, FY

In rules F~ and F> above, ST means

{TX | TXeS}.
Remark: S is a set, and hence {S, TX} is the same
as {s, TX, TX}. Thus duplication and elimination rules

are not necessary.

If U is a set of signed formulas, we say one
of the above rules, call it rule R, applies to L if
by appropriate choice of S, X, and Y, the collection
of signed formulas above the line in rule R becomes UL
By an application of rule R to the set A we
mean the replacement of W by 111 (or by 111 and
WU, if R is FA, TV, or TD>) where "L 1is the
-set of formulas above the line in rule R (after suitable
suﬁstition for S, X, and Y) and Uy (or Wy, 112)
is the set of formulas below. This assumes R applies
to WU, Otherwise, fhe result is again M. For
example, by applying rule F> to the set {TX, FY, FZ> W}
we may get the set {TX, TZ, FW}. By applying rule TV
to the set {TX, FY, TZVW} we may get the two sets

{rx, FY, T2} and {TX, FY, TW}.
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By a configuration we mean a finite collection

’{sl, S,

By an application of the rule R to the con-

.y, S} of sets of signed formulas.
n

figuration {Sl, 82, W B W Sn} we mean the replacement of
this configuration with a new one which is like the first
except for containing, instead of some Si’ the result
(or results) of applying rule R to Si‘

By a tableau we mean a finite sequence of con-
figurations (31, 62, .-+» C_ in which each configuration
except the first is the result of applying one of the
above rules to the preceeding configuration.

A set S of signed formulas is closed if it
contains both TX and FX for some formula X.

A configuration {Sl, Sy, --+5 S} 1is closed if
each Si in it is closed.

A tableau 61,62, ..., C._ is closed if some Gi

n
in it is closed.

By a tableau for a set S of signed formulas,
we mean a tableau C,, C,, ...,(3n in which Gl is {s}.

A finite set of signed formulas S, is inconsistent
if some tableau for S is closed. Otherwise S is consistent.

X 1is a theorem if {FX} isﬁzonsistent, and a closed
tableau for {FX} is called a proof of X. If X is a
theorem, we write PIX.

We will show in the next few sections the correctness

and'completeness of the above system relative to the

‘semantics of Chapter 1.
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Examples of proofs in this system'may be found in

Section 5.

We have presented this system in a very formal
fashion because it makes talking about it easier. In
practice there are many simplifications which will become
obvious in any attempt to use the method. Also, proofs
may be written in a tree form. We find the resulting
simplified system the easiest to use of all the intuition-
istic proof systems, except in some cases, the system
resulting by the same Simplifications from the closely
related one presented in Section 4 of Chapter 6. A
full treatment of the corresponding classical tableau

system, with practical simplifications, may be found in

[18].
" S8ection 2
Correctness of Beth Tableaus
Def: We call a set of signed formulas,

{TXy 50 0ons TH o PLyy wo.y FE B,

realizable 1if there is some model {G, R,F=>' and some

F'eG such that T F Xi5 «oes TEX , F%’Yl, e PAéYh.
We say that T realizes the set.

15 S (- - S

realizable if some S; in it is realizable.

Sn} is a configuration, we call it
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Theorem: Let C,, c,, ..., C, be a tableau.

IfCD,i is realizable, so is CLi 41"

Proof: We have eight cases, depending on the rule whoée
application produced C_i 4 1 from C‘i'
case 1: (C . 1s {..., {s,T™xvyY} , ...} and

Gy 4 B Tooo, (S,EX), §S,@%F, :.}-  Simee €
is reaiizable, some element of it 1is realizable. If

that element is not {S,TXVY}, the same element of

C, , ; is realizable. If that element is {S,TXV Y},
then for some model {G, R,F> and some TeG, T realizes
{S,TXVY}. That is, T realizes S and TE(XVY).
Then TEX or TtEY, so either T realizes {S,TX} or

{s,TY} . In either case, Cli + 1 1s realizable.

Case 2: Cli is {..., {s, ©F~X}, ...} and
C,+1 is {oooy {8g 7x}, ...} . € is realizable,
and it suffices to consider the case that {S, F~X} 1is the
realizable element. Then, there is a model <G, R, F>
and a TeG such that T realizes S and T/#-X.
Since rE~X, for some T¥eG, T*FX. But clearly,
if T realizes S, T¥ realizes ST [b& the second
theorem of Chapter 1, section 4], hence T#¥ realizes

{s;,7x} . anda €, | | is realizable.

The other six cases are similar.
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Corollary: The system of Beth tableaus is correct;

that is, if I-Ix, X is valid.

Prood’: We show the contrapositive. Suppose X is
not valid. Then there is a model <G, R, F> and a
FeG such that TfX. In other words, {F X} 1is
realizable. But a proof of X 1is a closed tableau
€, C, .. &

But Cll. is realizable, hence each éLi is realizable.

in which éll is {{F Xx}}.

But obviously a realizable configuration cannot be closed.

Eence JAiX.

Section 3

Hintikka collections

In classical logic, a set S of signed formulas is

sometimes called downward saturated, or a Hintikka set,

i 4

TXAY €S => TX e S and TYe S

FXVY €S => FX €S and FYeS

TXVT €S => TX €S or TY €S

FXAY €S => FX €S or FY €S
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T~XeS => FXeS

TXDYeS => FXeS or TYES

F~XeS => TXeS

FXDYES => TXeS and FYeS
Rerark:  The names Hintikka set and downward saturated
set were given by Smullyan [18]. Hintikka, their

originator, called them model sets.

Hintikka showed that any consistent downward saturated
set could be included in a set for which the above
properties hold with => replaced by <=>. From this
follows the completeness of cerfain classical tableau
- systems. This approach is thoroughly developed by

Smullyan in [18].

We now introduce a corresponding notion in intuition-
istic logic, which we call a Hintikka collection. While
its intuitive appeal may not be as immediate as in

the classical case, its usefulness is as great.

Def: Let G .be a collection of consistent sets of

signed formulas. We call G a Hintikka collection if,

for any TeG,

TXAYel - TXel © and TYeT

FXVYel => FXer and FYer.
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TXV YeT => TXeT or TY.eT

FXA YeT => FXeT or FYeT
ToXel =>  FXeT
TXDOYel => FXeT or TYeTl
F~XeT = for some AeG,
. I‘T cA and TXel
FXDOYer => for some AeG,

PTGA, TXedA, FYeh

Def: Let G Dbe a Hintikka collection. We call

<a, R,I=> a model for G if
1) <G, R, EF> 1is a model

2) T,EA => I'RA

T
3) TXeT => reX
FXeTl => TAX
Theorem: There is a model for any Hintikka collection.
Proof: Let G be a Hintikka collection. Define R Dby:
TRA if I‘Tﬁ_.iﬁ. If A is atomic, let T FA if TAeT,

and extend E to produce a model <G, R,E> . Showing
property 3) 1is a straightforward induction on the degree

of X. We give one case as illustration. Suppose X 1is

~Y and the result is known for Y.
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Then ;I‘~Xel‘ => (V AeG) (I‘TQ A = T~Xed) -
=> (V AeG) (I‘T.C_ A = FXed)
=> (¥ AeG) (TRA => AJX)
- TEX

F~XeI  => (3 AeG) (I €4 and TXel)
=> (3 AeG) (TRA and AEX)
r# ~X

It follows from this theorem that to show the
completeness of Beth tableaus we need only show the following:

3 en ere is a Hintikka collection suc a
If /FiX th th i Hintikk llecti G h that

for some TeG, FXel.

Section 4

Completeness of Beth tableaus

Let S be a set of signed formulas. By 3#(8)
we mean the collection of all signed subformulas of formulas
in S. If S is finite, F(S) is finite.
Let S be a finite, consistent set of signed formulas.
We define a reduction sequence for S (there may be many)
as follows: |

"Let S_ be S.
o

Having defined Sn’ a finite consistent set of
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signed fdrmulas, suppose one of the following Beth reduction
rules applies to S : TA, FA, TV, FV, T~, or TS,
Choose one which applies, say FA. Then Sn is

'{U, FXAY!}. This is consistent, so clearly, either

{u, FXAY, FX} or { U, FXAY, FY} 1is consistent. Let

S be {U, FXAY, FX} if consistent, otherwise,

n + 1
let S be {U, FXA Y, FY}. Similarly, if TA

n + 1
applies and was chosen, t%en Sn is {U, TXAY}.
Since this is consistent, {U, TXA Y, TX, TY} is
consistent. Let this be Sn + 1" In this way we define
a sequence SO’ Sl’ S2, i This sequence has the
property Sné;Sn + 1" Fu?ther, each Sg is finite, and
consistent. Since each Sng_ F¥(s), there are only a
flnite number of different possible Sn' Consequently,
there must be a member of the sequence, say Sn, such that
the application of any one of the rules (except F~ or
F> ) produces S~ again. Call such an S a reduced
set of S, and denote it by S'. Clearly any finite,
consistent set of signed formulas has a finite, consistent

reduced set. Moreover, if S' 1is a reduced set, it has

the following suggestive properties:

TXAYeS' => TXeS' and TYeS'
FXVYeS'  => FXeS' and FYeS'.
TXV YeS'  =>  TXES' or TYeS!
FXA YeS'! => FXeS! or FYeS'
T~XeS! =>  FXeS'

TX> YeS'!' => FXeS' - or TYeS'
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S' 1is consistent.

Now, given any finite, consistent set of signed

formulas, S, we form the collection of associated sets

as follows:

If F-~XeS, {S TX} is an

T’
associated set.
If FXDOYeS, {ST, TX, FY} 1is an

associated set.

Let Q(S) be the collection of all associated sets
of S. (O(S) is finite, since UeQ(S) dimplies Ug F(S)
and F(S) is finite. |

Q(S) has the following properties: if S is

consistent, any associated set is consistent, and

F~XeS => for some UeQ(S)
STQ U, TXeU
FXDYes = for some Uea(S)

SpE U, TXeU, FYeU

Now we proceed with the proof of completeness.

Suppose .FEX. Then {FX} 1is consistent. Extend

it to its reduced set, So.

Form a(SO). Let the elements of G_(SO) be
Ul’ U2, 5y Un' Let S1 be the reduced set of Ul’
Sn be the reduced set of Un' Thus, we have the sequence

°s

Sgs 815 855 .., 8 .
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Next form axsl). Call its elements U . .,

Un $ 22 e Um' Let Sn + 1 be the reduced set of

Un + 1 and so on. Thus, we have the sequence

Bosl 80 e S

process with 82’ and so on.

S S . Now we repeat the

n+1, 0 0 g4 m

In this way we form a sequence SO’ Sl’ S2, e
Since each Sig;S#(S), there are only finitely many
possible different Si' Thus we must reach a point

Sk of the sequence such that any continuation repeats

an earlier member.

Let G Dbe the collection {SO, Sys +vvs Sk}
It is easy to see that G 1is a Hintikka collection. But

FXeSOEG. Thus we have shown:
Theorem: Beth tableaus are complete.

Remark: This proof also establishes that propositional
intuitionistic logic is decidable. For, if we follow

the above procedure beginning with FX, after a finite
number of steps we will have either a closed tableau for
"{FX}, or a counter-model for X. Moreover, the number of

Steps may be bounded in terms of the degree of X.

Thé complétenéss proof presented here is, in essence,
fhe original proof of Krilpke [12]. For a different
tableau completeness proof, see section 6, chapter 5, where
it is givén flor first order logic. _For a completeness

proof of an axiom system, see section 10, chapter 5, where
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it also is given for a first order system. The work in
section 6, chapter 1 provides an algebraic completeness
proof, since the Lindenbaum algebra of intuitionistiq
logic is easily shown to be a pseudo-boolean algebra.

See [15].

" 'Section 5

" Examples

In this section, so that the reader may gain familiarity
with the foregoing, we present a few theorems and non-
theorems of intuitionistic propositional logic, together

with their proofs or counter-models.

We show
1) ,F—I AV ~A
2) by ~~(Av~A)

3) *‘I ~~AD A
4)  Fp (AvB) 2 ~(~AA-~B)
5) A‘I ~~(AvB) D (~~AV ~~B)

For the general principle connecting 1) and 2)

see section 8, chapter U.

1) &£ Av-A |

A counter example for this 1is the féllowing:
G = {r, a}

IR , TRA4, ARA
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AFA 1is the ¥ relation for atomic formulas,

and F is extended to all formulas as usual.

We may schematically represent this model by

r

A FA

We claim TIEAV~A. Suppose not. If TEAV~A,
either T EA or TE~A. But T F¥#A. If TE~A

then since TRA, A#A, but AFA. Hence T AvV~A,

2) | kp==(Ev=i)

A tableau proof for this is the following, where the

reasons for the steps are obvious.

{{F~~(Av ~A)}}

{{T~ (AV-~A)}}

{{T~ (Av ~pa), F (Av-~A)}}

{({T~ (AV-A), FA, F~A}}

{{T~ (AVv ~A), TA}}

{{F (Av-~A), TA}}

{{FA, F~A, TA}}

3) J‘I ~~AD A.

The model of examplé 1) has the property that
F''k=~~A but T 4t A.
b)

;.(AvB) D~ (~An ~B)
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The following is a proof:
{{ F((AVB) D ~ (~AA-B) )}}
{{ T (AVB), F~ (~AA-B)}}
{{ T(AvB), T (~AA-~B)}}
{{ T (AvB), T~A, T~B }}
{{ T (AvB), FA, T~B }}
{{ T (AvVB), FA, FB }}
{{TA, FA, FB}, ({TB, FA, FB}}
5) ¥ ~~(AVB) > (~~AV~-B)
A counter example is the following:
l
¢ = {r, 4 @ } \
T'RI'; ARA, QR Q
T'RA, TRQ
AFEA, QFEB 1is the. = relation for
atomic formulas, and F is extended as usual.
We may schematically represent this model by
/P\
A FA . Q2 FB
Now, AFKFA, so AEAVB.
Likewise, Q AV B. It follows that I'l_=~~(Av B)
But if FE~~AV~~B, either T'e~~A or l'E ~~B
If Tk ~~A , it would follow that @ =5 - If -TEe~B,

it would follow that A E B . Thus I'd4 ~~A V ~~B,




- CHAPTER 3

- Related Systems of Logic

Section 1

" f - primitive intuitionistic logic - semantics

This is an alternative formulation of intuitionistic
logic in whiéh a symbol f 1is taken as primitive, instead
of ~, which is then re-introduced as a formal abbreviation,
~X for XOfF. For presentations of this type, see [14]
or [16].

Specifically, we change the definition of formula
by adding f to our list of propositional variables and
removing ~ from the set of connectives. ~ 1s re-
introduced as a matamathematical symfol as above. Our
definition of subformula is also changed accordingly.

The definition of model is changed as follows:
repiace P3 [section 2, .chapter 1] by P3': TET.

This leads to a new definition of validity, which

we may call f-validity.

Theorem: Let X be a formula (in the usual sense) and
let X' Dbe the corresponding formula with ~ written in
terms of f. Then X 1is valid if and only if X' if

f-valiqd.



" Proof: We show that in any model <G, R, F)>,

I EX iff rFX’ (where we use two different senses

of = ). The proof is by induction on the degree of

X - (which is the same as the degrée of X'). Actually,
all cases are easy except that of ~ 1itself. So, suppose

the result is known for all formulas of degree less than

that of X, and X 1is ~Y,. Then

r'eX <=> I'e-~Y
<=> V I¥ Tr¥xey

<=> - V¥ T¥jey!

but clearly this is equivalent to TEY'DSf since

T¥45 F. Hence equivalently, TEX'.

Section 2

f-primitive intuitionistic logic-proof theory

In this section we still retain the altered definition
of formula in the last section, with f primitive. We give
a tableau system for this. The new system is the same
as that of section 1, chapter 2 .in all but two respects.
First, the rules T~ and F~ are removed. Second, a
set S of signed formulas is cailed closed if it contains

TX and FX for some formula X, or if it contains Tf.
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This leads to a new definition of theorem, which we

may call f-theorem.

Theorem: Let X be a formula (in the usual sense) and
let X' ©be the corresponding formula with ~ written
in terms of f. Then X 1s a theorem if and only if

X' 1is an f-theorem.
This follows immediately from the following.

Lemma: Let S be a set of signed formulas (in the
usual sense) and let S' be the corresponding set of
signed formulas with ~ replaced in terms of f. Then

S 1is inconsistent if and only if S' 1is f-inconsistent.

Proof: We show this in two halves. First, suppose S
is inconsistent. We show the result by induction on the
length of the closed tableau for S. There are only two
significant cases. Suppose first that the tableau for

S ds Cgs Coo e € €, is {{U, F~X}} and
(22 is ‘{{UT, TX}}. Then by induction hypothesis,
{UT', TX'} is f-inconsistent. Hence, so 1é

{u', FX'>f} , i.e. S'. The other case is if C,

is  {{U, T~x}} anda C, is {{U, FX}}. Then by
the induction hypothesis, {U', FX'} is f-inconsistent

hence so is {u', TX'>f} , 1i.e. S'.
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The converse is shown by induction on the length
of the closed f-tableau for 3S'. If this f-tableau
is of length 1, either S' contains TX and FX
for some formula X, and we are done, or S' contains
Tf, which is not possible since we supposed S' arose

from standard set S.

The induction steps are similar to those above.

The results of this and the last sections, together
with our earlier results give: X' 1is f-valid 1if
and only if X' 4is an f-theorem. This is not the
complete generality one would like since it holds only for
those formulas X' which correspond to standard formulas
X. The more complete result is, however, true, as the
reader may show by methods similar to those of the last

chapter.

Section 3

Minimal logic

Minimal logic is a sublogic of intuitionistic logic
in which a false statement need not imply everything. The
original paper on minimal logic is Johannson's [8].

Prawitz establishes several results concerning it in (14],
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and it is treated algebraically by Rasiowa and Sikorski

[15].

Semantically, we use the f-models defined in
section 1, with the change that we no longer require P31,

that is, that TKTf.

Proof theoretically, we use the f-tableaus
defined in section 2, with the change that we no longer have

closure of a set because it contains Tf.

X
We leave it to the reader to show that & 1is

provable in this tableau system if and only if X 1is valid

in this model sense, usihg the methods of chapter 2.

Certainly every minimal logic theorem is an
intuitionistic logic theorem, but the converse is not true.
For example, (AA~A) DB is a theorem of intuitionistic
logic, but the following is a minimal counter-model for

it, or rather, for (AA(ADFf))>B:

G = {r}
I'RT
TEA, Tref

and F 1s extended as usual. It is easily seen that

TEAA(ADF), but T4B.
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Section 4

Classical logic

Beginning with this section, we return to the usual
notions of formula, tableau, and model, that is, with ~

and not f as primitive.

Some authors call a set F of unsigned formulas
a (classical) truth set if
XAYe F <= Xe ¥ and YeX¥
XvYe ¥ <=> Xe T or Ye ¥
e <=> x ¢ ¥ |
Xo¥e F <=> X g « or Ye .

It is a standard result of classical logic that X
is a classical theorem if and only if X 1is in every truth
set. There is a proof of this in [15].
Theorem: Any intuitionistic theorem is a classical theorem.
Proof: Suppose X 1s not a classical theorem. Then
there is a truth set 3 such that Xg£>F. We define a

very simple intuitionistic counter-model for X, <a, R,E> ,

as follows:
¢ = (>}
FRF




38

FEA <> pAeF, for A atomic, and E is
extended as usual. It is easily shown by induction on
the degree of Y that

FEY <= Ye¥
Hence, FAX and X 1is not an intuitionistic

theorem.

That the converse is not true follows since we showed
in section 5, chapter 2 that JLIAV'~A. Thus we have
minimal logic is a proper sub-logic of intuitionistic {

logic which is a proper sub-logic of classical logic.

Section 5

Modal logic, S4 -’ semantics

. In this section we define the set of (propositional)
S4 theorems semantically using a model due to Kripke [11].
S4 was originated by Lewis [13], and an algebraic treat-

ment may be found in [15]. A natural deduction treatment

is in [14].

The definition of formula is changed by adding o

to the set of unary connectives. Thus, for example

~O~(Av O~p) is a formula. 0O is read "necessarily".
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& 1s sometimes taken as an abbreviation for ~ 0O~

and is read "possibly". [In [13], <& was primitive].

The S4 model is defined as follows: It is an
ordered triple <G, R, E> where G 1is a non-empty set,
R 1s a transitive, reflexive relation on G, and P

is a relation between elements of G and farmulas,

satisfying the following conditions.

M1: TEXAY iff TEX and TEY

M2: F'EXvyY it Tl X or Tk=Y

M3: TE~ X iff T X l
M4 : TEX2Y iff T X or TEY

M5 : - O X iff for all T¥, T¥|X.

X is sS4 valid in <G, R,E> if for all TeG,

r=x. X 4is S4 wvalid if X is S84 wvalid in all

S4 models.

The intuitive idea behind this modeling is the

following: G 1is the collection of all possible worlds.

TRA means A 1s a world possible relative to T.
I'EX means X is true in the world I'. Thus M5 may

be interpreted: X 1s necessarily true in TI' 1if and

only if X 1is true in any world possible relative to T.

r—

This interpretation is given in [11].
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Section 6

Modal logic, S4 - proof theory

We define a tableau system for S4 as follows.
Everything in the definition of Beth tableaus in section 1,

chapter 2 rerains the same except the reduction rules

themselves. These are replaced by
MTA S, TXAY MFA S, FXAY
S5 LXy; TY S,FX|S,FY
MTvV S, TXVY. MFV S, FXVvY
S, TX|S, TY S, FX, FY
MT~ S, T~X MF~ S, F~X
S, FX S, TX
MT>S S, TX>Y MF > S, FX>Y
S, FXIS, TY S, TX, FY
MTO S, TOX MF O S, FO X
S, TX Sp » FX
where, in rule MFDO , Sg is

{rox | TOXe s}

Again, the methods of chapter 2 can be adapted to
S4 to establish the identity of the set of S4 theorems
and the set of SU valid formulas. This is left to the
reader. The original proof is in [11]. - We are more

interested in the relation between S4 and intuitionistic

logic.
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Section 7

" 'S4 and intuitionistic logic

A map from the set of intuitionistic formulas to -the

set of SU4 formulas is defined by

M(A) = O A for A atomic
M(XVY) = M(X) Vv M(Y)

M(XAY) = M(X) AN M(Y)

M(~X) = D ~M(X)

M(X2Y) = OM(X) 2 M(Y) )

We wish to show |

Theorem: If X 1is an intuitionistic formula, X is

intuitionistically valid if and only if M(X) 1is Sl-valid.

This follows from the next three lemmas.

Lemma 1: Let <G, R, F;> be an intuitionistic
model, and <G, R, |=SN> be an S4 model, such that
for any TeG and any atomic A,

T pIA <=> T Fsu M(A)

Then for any formula X, .

I FoX | <=> I Fqy M(X)

Proof: A straightforward lnduction on the degree of X.

Q.E.D.
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Lemma 2 Given an intuitionistic counter-model for X,
there is an S4 counter-model for M(X).
Proof: We have <G, R i=I> , an intuitionistic model

such that for some TeG, rxélx. We take for our S,

model <G, R, F:Sll> where |=g, is defined by

A Psuﬂ if A FIA
for A atomic and any A in G, and F=SM is
extended to all formulas.

If A 1is atomic,

AI’—Su M(R) <=> A, OA
<=> (VY A¥) A* . A

<=> AF&A

and the result follows by lemma 1.

Q.E.D.

" Lemma 3: Given an S84 counter-model for M(X), there is

an intuitionistic counter-model for X.

Proof: We have <{a, R, l=54> , an S4 model such that

for some TeG, PJﬁsuM(X). We take for our intuitionistic

model <G, R, ;> where [, is defined by

A B LA Af Bfgy, M(A)




for A atomic and any A
extended to all formulas.

Lemma 1.

in G, and }=I is

Now the result follows by
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P —————



CHAPTER 4

First Order Intuitionistic Logic - Semantics

Section 1

Formulas

We begin with the following:

1)

2)

3)

4)

denumerably many individual variables

X, ¥y 2, W,
denumerably many individual parameters
a, b, ¢, d, ...

for each positive integer n, a

denumerable list of n-ary predicates,

A", 8", ¢, D",

connectives, quantifiers, parantheses,

A:V:D, ~,3,V, (, )-

-

An atomic formula is an n-ary predicate symbol

A" followed by an n-tuple of individual symbols (variables

or parameters) thus, An(d 19 o o o 5 %1).

A formula is anything resulting from the following

recursive rules:

-

T o ———
i e
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FO: any atomic formula is a formula
F1: If X 1is a formula, so is ~X
F2,3.4: If X and Y are formulas; so are
(XAY), (XvYyY), ((X>2Y)
F5,6: If X 1is a formula and x 1is a variable,

(Vx)X and (3 x)X are formulas

Subformulas are defined as usual, and the degree of a
formula. The property of uniqueness of composition of a
férmula still holds. We note the usual properties of
substitution, and we use the following notation: If X
is a formula and o and B are individual symbols, by
X(g) wé mean the result of substituting B8 for every
occurrencé-of a in X. [every free occurrence in case
a is a variablé]. We usually denote this informally as

follows: we write X as X(%) and X(g) as X(B). It

will be cleér from contéxt what is meant.

We again use parentheses is an informal manner and

we omit supérscripts on predicates.

Although the definition of formula as stated, allows
unbound occurrences of variables in formulas, we shall
assume; unless othérwise stated, that all variables in a
formula are bound. Notation 1like X(x) however, indicates

x may have free occurrences in X.
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" Section 2

' Mddels'and'ValiditX

In this séction we define the notion of a first order
intuitionistic model; and first order intuitionistic validity,
referréd to respéctivély as model and validity. This
modéling structure 1is dﬁé to Kripke and may be found, in
different notion: in [12]. The notions of chapter one,
if needed, will be réferréd to as propositional notions to

distinguish them.

If & is a map to sets of parameters, by 7 (T)
we mean thé set of all formulas which may be constructed

using only paramétérs of @ (r).

By a (first ordér intuitionistic) model we mean an
ordered quadruple <G, R',- F;:P> where G 1is a non-
empty sét; R 1is a transitive, reflexive relation on G,
F Iis a relation between elements of G and formulas,

and ¢ is a map from G to non-empty sets of parameters,

satisfying the following conditions:

for any TeG,
Q: (P(r) & @P(r¥)
Ql: rkA => Ae @ (T) rfor A atomic
Q2: TFa => T¥F 3 for A atomic
Q3: TE(XAY) <> TFX- and TFY
Q4: TE(XVY) <=* (XVY) e ﬁ (p). and
 TEX or TkY

e




47
Q5: rE-~X <= ~Xeé\°(I‘) and for all
T¥*, T*¥)EX
Q6: T E(XDY) <=> (XoY)ef(r) and for all

r#, if T#EX, T¥py
Q7: F'E(3 x)X(x) <=> for some ac@®(T),
I'EX(a)

=> for every TI'* and for every

ae P(T*), T*EX(a)

Q8: TE(V x)X(x)

A

We call a particular formula X valid in the model
OH.
{G, R,F,P> if for all TeG such that Xe{ (I),

rFX.

X 1is called valid if X 1is valid in all models.

" Section 3

* Motivation

The intuitive interpretation given in section 3,
chapter 1 for the propositional case may be extended to this

first order situation.

In one's usual mathematical work, parameters may .be

introduced as one proceeds, but having introduced a
parameter, of course, it remains introduced. This is what

the map ( is intended to represent. That is, for

e —
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'eG, TI' 41is a state of knowledge, and P(r) is the
set of all parameters introduced to reach T. [Or, in
a stricter intuitive sense, @ (I') is the set of all

mathematical entities constructed by time T]J.

Since parameters, once introduced, do not disappear,
we havé Q0. Q2-6 are as in the propositional case.
Q7 should be obvious. Q8 may be explained: to know
(Vx) X (x) at T, it is not enough merely to know X(a)
for every parameter a introduced so far [i.e. for all
ae C(r) 7. Rather, one must know X(a) for all parameters
which can éver be introduced [i.e. for all aelf (T¥),

r*F x(a) J.

The restrictions Ql, and in Q4, Q5, and Q6
are simply to the effect that it makes no sense to say we
know thé truth of a formula X if X uses parameters
we have not yet introduced. It would, of course, make
sense to add corresponding restrictions to Q3, Q7, and

Q8, but it is not necessary.

The original explanation of Kripke may be found in

[12].

For a different but related model theory in terms of

forcing see [4].
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Section 4

Some properties of models

Theorem: In any model {G, R,F,P> , for any

reG, if TEX, Xe (T).

- Proof: A straightforward induction on the degree of X.
Q.EuD.

Theorem: In any model <G, R,F,f> , for any

formula X, 4if TEX, T¥EX.

Proof:  Also a straightforward induction on the degree

S Q.E.D.

Theorem: Let G be a non-empty set, R be a transitive

reflexive relation on G, and # be a map from G to

non-empty sets of parameters such that P(r)c P(r*)

for all TeG. Suppose F 1is a relation between elements

of G and atomic formulas such that TkEA => Aef (T).

Then F can be extended in one and only one way to a
relation, also denoted by E , between G and formulas,

such that LG, R,F ,£> 1is a model.

Proof: A straightforward extension of the corresponding

propositional proof.

Q.E.D
Def: Let ~ <G, R,P ,f> be a model and suppose a 1is
some parameter such that af IL'i} € (r). By
<G, R, F,P D> (g) we mean the model <G, R, F', #'>

defined as follows: @' (I') 1is the same as @ (T)
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except for containing a 1in place of b if @ (T)
contains b, For A atomic, rkA => I'f——-'A(Z), and

|:=' is extended to all formulas.

"Lemma: Let <G, R,F,P> be a model, ag I‘Léé P(r),

<G, R,E', ' be <G, R, F, P> (Z). Then for

any formula X not containing a, -

TEX <>  TE'X (D)

~Proof: By an easy induction on the degree of X.

Def: Let <G, R,E,f> Dbe a model and suppose a is

some parameter such that af ILQ:JG ®(r). By
<G, R,F,P>, _, we mean the model <G, R,F=',£'> .
defined as follows: (@'(T) is the same as (T) R

except for containing a as well as b whenever (1)
contains b. For A atomic, TFA => TE'A" where
A' 1is like A excépt for containing a at zero or —-
more places where A '-"ébntains b, and k' 1is extended to
all formulas.

Lemma: Let <G, R,F,f> Dbe a model ag I% (T,
and let <G, R,F', P’> ve <G, R, kF, p>b=a'

Then if X 1s any formula not containing a, and if X'

is 1like X except for containing a at zero or more
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places where X contains b,

F'EX <= 7DE'x

Proof: Again an easy induction on the degree of X.

Section 5

Examples

We show that two theorems of classical logic are not f

intuitionistically valid..
e ~~ (V x) eA(x) V ~A(x) )

but the following is an intuitionistic counter-model for it.

We take the natural numbers as parameters.

P

Let 6 = (T, | 1i=0,1,2, ...}
ryRTy  iff 15
Pry) = {1,2, ..., 1,1 +1}

I FA(L) iff i< n and F is extended to all form-

ulas. We may give this model schematically.

FO 3
r
1 11,2 EA(L)
-~
r, 1,2,3 FA(1), A(2)
r . 1,2,3,4 Fa(1), A(2), A(3)
[ ; .
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We claim no ril= ~~ (V¥ x) (A(x) v ~A(X) ).

Suppose instead that
Piiz ~~(V x) (A(x)V ~A(x) ).

Then for some jg>1i,

I‘JF (Vx) (A(x)V~A(x) ).
But J + 1 € G’(I‘J), so
1‘J F A + 1)V~A(d +1)
but FJJE A(J +1) since J + 1 > j, and if

', F ~a(j + 1), then since T

3 383+ 1o

FJ 7 14& A(j + 1), a contradiction.

R (Vx) (AvB(x) ) > (AW(Vx) B(x) )

but an intuitionistic counter-model is the following, where

again parameters are integers.

G = {Pl, Pe}
ryRI,, TRl , P2RF2
f(r)) = {1}, d°(r2) = {1,2}

I‘IFB(l), 1"2I=‘B(l), I‘2t=A

and F is extended to all formulas.

Schematically, this is

r 1 FB(1)

1
r, EB(1), A
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To show this is a counter-model, first we claim;

IJEF (vx) (AVB(x) )

This follows because PlF B(1) so
r{FEAvB(1), and I, FA - so
T,EAV B(1) and T, FAV B(2)
'But FIF=A. Moreover, PI#=(V x) B (x)
since I'2,¥= B(2). Thus, I‘lzlé'AV (VW x) B (x).

Section 6

Truth and almost-truth sets

In classical first order logic, a set F of formulas

1s sometimes called a truth set if

1)
2)
3)
)
5)
6)

where there is some fixed set

XAYe F <=>
XVYe ¥ <=>
~Xe F <=>
X>oYe F <=>

(3x) X (x)e F <=>
(Vx) X (x)e F <=

Xe ¥ and Ye F

Xe ¥ or Ye ¥

Xg ¥
Xg F or Ye F
X {a)e ¥ for some parameter a

X (a)e F for every parameter a

of parameters, X and Y

are formulas involving only these parameters, and 5)

and 6)

refer to this set of parameters.
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We now call 3 an almost-truth set if it
satisfies 1) - 5) above and 6a)
(V x)X(x)eF = X(a)eF for every parameter a.

"It is one form of the classical completeness
theorem that for any pure (i.e. with no parameters)
formula X, X 1is a classicalltheorem if and only
if X 1is in every truth set.

We leave the reader to show:
Theorem: If X 1is pure and contains no occurrence of

the universal quantifier, X 1s in every truth set

if and only if X 1is in every almost-truth set.

Section 7

Complete sequences

The method used in this section was adapted from

forcing techniques, and is due to Cohen [2].

"Def: In the model <G, R,k ,P> , we call € an
R-chain if

1) CcaG

2) T, Aee => TRA or ART

If € 1is an R-chain, by &€ we mean

(x| for some Te€, TkFX}
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If ¢ is an R-chain, (¢ 1is called complete if,

for every formula X with parameters from E , XV-~Xe E .

Lemma 1: Let C ©be a complete R-chain in the model
{G, R,F,P> . Then C is an almost-truth set.
Proof : This is a straightforward verification of the

cases. We give case U4) as an illustration.

Suppose (X=2Y)e €. Then for some TeC,
rEX>Y. Now either X£ & or XeC. If Xe€,
then for some Ae C AFX. Let Q be the R-last
of T and A. Then Q FX and Q FXxXov, SO

—

o FY and Ye @ . Thus X¢ € or YeC .

Conversely, suppose (X2Y)£ C. Then ~X¢g C
since & is closed under modus ponens, and contains

~X2D(XDY) as is easily shown. But XV ~Xe -C:,

hence b -4 A Further, YE c since again, YO(X>Y)e c.

QR.E.D.
Lemma 2: Let <G, R,F, > be a model, TeG, and
Xe £(T). There is some T'*eG such that F¥fE= XV ~X.

Proof: Either some T¥*E X and we are done, Or no

I* X in which case Tk -~X and we are done.
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Let {G, R, l=,f> ©be a model and T gG.
can be included in some complete R-chain C

é: is an almost-truth set.

There are only countably many formulas,

3> We define a countable R-chain
F2, s oo as follows.
PO be T
i fi P (o
ing defined T, if X . ;£ (P(rn) for
A
#
let Pn + 1 be Pn. If Xn + 1 ed’(Pn )
r ¥, then T ¥, Dby lemma 2, has an

* ¥ * ¥ — V ~
or I‘n such that rn = xn + 1 xn + 1.

' %%
+ 1 be this noe

C vbe {I‘O, Tos B ...}. Clearly, C
te, and by lemma 1, E is an almost-truth set.

Section 8

A connection with classical logic

first theorem of this section is essentially
59(b), pg. 492 [9])], but there it is proven proof-

ally, and here semantically.
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Theorem 1: Let X Dbe a pure formula. If X 41is in

every classical almost-truth set, ==X is intuitionistically

valid.

Proof: Suppose ~~X is not valid. Then there is a
model G, R,F,f> and a TeG . such that T4 ~~X.
Then for some I'¥eG, ['*¥F ~X. Now I'*¥ can, by the
theorem of section 7, be included in an R-chain C such
that € 1is an almost-truth set. But ~XeC, so

that X¢ C.

" Theorem 2: If X 1is intuitionistically valid, then X

is classically valid (for X pure).

" 'Proof: As before, if X 1is not classically valid, there
is a truth set F not containing X. But it is easily
shown that if @ = (¥}, FR¥,

FFY iff Ye* , and () is the set of all
parameters occurring in F , the resulting <G, R,F=,f>>

is a model in whiech X 1is not wvalid.

Theorem 3: If X 1s a pure formula with no occurrence

of the universal quantifier, then X is classically valid

if and only if ~~X 1is intuitionistically valid.



Convérsely,

intuitionistically valid =>
classically valid =>

classically valid.

X classically valid =>
X is in every truth set =>

X is in every almost-truth set

~~X is intuitionistically valid.

=>
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" Remark: This result will be of fundamental importance'

-.in part 2.

Corollary: First order intuitionist logic is undecidable.

" Proof: Classical first order logic is undecidable, and

every classical formula is classically equivalent to a

-formula with no universal quantifiers.

* Remark: That theorem 3 cannot be extended to all

formulas is shown by the first example in section 5.




CHAPTER 5

First Order Intuitionistic Logic - Proof Theory

Section 1

Beth tableaus

The following is an extension of the system of
section 1, chapter 2, to the first order case. See [1].
Everything is as it was there, except that four reduction

rules are added to the list. these are

T3 S, T(2 x) X(x)
S, TX (a) provided a 1is new
F3 S, F (3x) X(x)
S, FX (a)
TV S, T(V x) X(x)
S, TX (a)
FVv S, F(V x) X(x)
Sp, FX (a) provided a 1is new
[Note the Sy in rule FV ]
In rules F3 and TV, a may be any parameter
whatsoever. In rules T3 and FV , the parameter

a 1introduced must not occur in any formula of S, or

in the formula X (x).
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As in the propositional case, we proceed to show

correctness and completeness (in two ways) of this system.

The following two examples illustrate proofs in the

system.

f"I (Vx) X (x) D ~(Fx) ~X (x)

The proof is

{{F (¥vx) X (x) D ~(3x) ~X (x)}}
{{T (Vx) X (x), F~(3x) -~X (x)}}
{{T (Vv x) X (x), T (3x) ~X(x)}}
{{T (vx) X (x), T ~X (a)}}

T X (a), T ~X (a)}}

{{T X (a), F X (a)}}

anpd I'-I ~(3x)~[X(x)DY(x)]> (¥ x) [~Y(x)D2~X(x)]

The proof is

{{F~(3 x)~[X(x)2Y(x)]D(Vv x) [~¥(x)D~X(x)]}}
T~ (3 x)~[X(x)D2Y(x)], F(¥ x)[~¥(x)D~X(x)]}}
{H{T~ (3 x)~[X(x) DY(x)], F[~Y(a) 2~X(a)]l}}
{H{T~(3 x)~[X(x)D¥(x)], T~¥(a), F~X(a)}}

H{T~(3 x)~[X(x)2¥(x)], T~¥Y(a), TX(a)}}
{{F(3x)~[X(x)DY(x)], T~Y(a), TX(a)l}}
{{F~[X(2)2Y(a)], T~Y(a), TX(a)}}
"{{T[X(a)>Y(a)], T~Y(a) TX(a)}}

"{{FX(a), T~Y(a), TX(a)}, {TY¥(a), T~Y(a), TX(a)l}}
{{FX(a), T~Y(a), TX(a)}, {TY(a), F¥(a), TX(a)}}
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Section 2

Correctness of Beth tableaus

Def: Let {TX

15> --» TX , FY, ..., FYm} be a set of
signed formulas, ‘(G, R,E,f£> a model, and TeG.

A A
We say T realizes the set if X,ef (T), Yye F(r),

and TEX s TRX , THY,, ..., TEY .

1’

A set S 1s realizable if something realizes 1it.

A configuration (€ 1is realizable if one of its

elements is realizable.

Lemma 1: Let Q stand for either the sign T or the
sign F. If S, QX(b) 1is realizable and if a 1is a
parameter which does not occur in S or in X [so a#b]

then S, QX(a) 1s realizable.

" Proof: Suppose in the model <G, R,E,f> , I' realizes
S, QX(b). Choose a new parameter cg }Eé £ (r)

[we can always construct a new parametef]. Let

<G, R, k"', P> be <G, R, =, € > (2) [see section 4,

chapter 4]. Since a does not occur in S or X,

by an earlier lemma, in this new model, T realizes

S, QX(b). But now, afg %Eé Pr(r), so we may define a
third model <G, R, E"', (P">, as <G, R, ', P '>b'
=a

By another lemma, in this third model, T realizes S,QX(a).

Q.E.D.
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Lemma 2: If S,T(3x)X(x) is realizable, and if

a- does not occur in S or X(x), then S, TX(a) is

realizable.
Proof: Suppose in the model <G, R,E,f> , T realizes
S, T(3x)X(x). Then TIF(3 x)X(x), so for some
be £ (T), ' =X(b). Thus T realizes S,TX(b). If
a=b we are done. If not, by leﬁma 1, we are done.
Q.E.D
" Lemma 3: If S, F(3x)X(x) 1is realizable and if a 1is

any parameter, S,FX(a) is realizable.

"_Pr'bo‘f: Suppose in the model <G, R, !-'—',0°> s I' realizes
S,F(3x)X(x). Then, T (2 x)X(x). If aef(T),

Tk X(a) and we are done. If ag £ (I'), a cannot occur
in S or X by the definition of realizability. But
F£(r) # ¢ so there is a be P(I'), b#a, and TAeX(b).

Thus S,FX(b) 1is realizable. Now use lemma 1.

Q.E.D.

Lemma 4: If S,T(¥x)X(x) 1is realizable and if a is

any parameter, S,TX(a) 1is realizable.

" Proof: Similar to that of lemma 3.
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" Lemma 5: If S,F(V x)X(x) is realizable and if a 1is
any parameter which does not occur in S or X(x), then

S.,FX(a) is realizable.

7o
" Proof: Suppose in the model (G, R,b,fP> , T realizes
S,F(V x)X(x). Then T4 (V¥ x)X(x), but X(x)e ?(I‘).

So there is a T¥ such that T¥XX(b) for some

be € (T*). Of course, I'* realizes Sm- If b=a

we are done. If not, since ST,X(b) is realizable, by

lemma 1 we are done.

" Theorem: Let Cl’ Cos +vvs Cn be a tableau. If C, is

realizable, so is Gi + 1"

Proof: We pass from Gi to Gi " i by the application

of some reduction rule. All the propositional rules were
dealt with in chapter 2. The four new (first order)

rules are handled by lemmas 2-5 above.

Corollary: If X 1is provable, X 1is valid.

Proof: Exactly as in the propositional situation.
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Section 3

Hintikka collections

This generalizes to the first order setting the
definition of section 3, chapter 2. Recall, a finite set
of signed formulas is consistent if no tableau for it closes.

We say an infinite set is consistent if every finite subset

is.

Let G be a collection of sets of signed formulas.
If TeG, by (°(I') we mean the collection of all
parametérs occurring in formulas in T. If T,AeG, by

TRA we mean f(r)c £(a) and Tp€A.

We call G a (first order) Hintikka collection if,

for any T eG, T is consistent and

TXA YeT = TXeTl and TYerT

FXwvYer =3 FXeT and FYerl

TXV YeT => TXeT or TYeT
FXAYeT => FXeTl or FYeTl
T~XeT => FXeTl

TX>YeT => FXel or TYeT
F~Xel => for some AeG

T’'RA and TXeA

FX>YerT => for some AeG, T'RA
and TXe4, FYeA
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T(V x)X(x)el' = TX(a)el' for all ae £P(T)

F(3 x)X(x)el' => FX(a)el' for all ae £(T)
T(3 x)X(x)el' => TX(a)el for some ae @ (T)

F(V x)X(x)el' = for some AeG, TRA, and

for some aef (A), TX(a)eh.

If G 1is a Hintikka collection, we call <G, R, ¥F ,f>

a model for- G 1if

1) <G, R, F, P> 1is a model
2) € and R are as above
3) TXeT => reX

for all TeG
FXel' => TkX

" Theorem: There is a model for any Hintikka collection.

'Proofi We have a Hintikka collection G. # and R
are as defined. If A 1is atomic, let TEFA if TAel ,
and extend |k to all formulas. The result <G, R,AF‘-, £>
is a model. We claim it is a model for G. We show

property 3) by induction on the degree of X.

~ The propositional cases were done in section 3,
chapter 2. Of the four new cases, we only do two as

illustration.
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Suppose the result know for all subformulas of the
formula in question.
T(V x)X(x)el' =>
(V AeG) (TRA => T(V x)X(x)eA)
[since RTG A if I'RA]
=> (V AeG)(TRA = ((V aef (A)) TX(a)ehr))
=> (V AeG)(TRA = ((V ae P(A))AEX(a)))
=> Tk (VY x)X(x)
Conversely, F(V x)X(x)el' =>
(3 4eG) (TRA  and (3 ae P (4)) (FX(a)ed ))
=> (3 AeG) (TRA and (2 aef (4)) (A¥EX(a)))
=> T/ (V x)X(x).
Q.E.D.
Thus, as in the propositional case, to establish the
completeness of Beth tableaus we need only show that if

X 1is not provable, there is a Hintikka collection G

and a TeG such that FXerl.

Section 4

Hintikka elements

Def:. Let T be a set of signed formulas and P a

set of parameters. We call T a Hintikka element with

respeet to P if T' 1is consistent and




TXA YeT =5
FXv Yel =>
TX v Yel =5
FXA Yel =5
P~Xel =>
TX D YeT =>

T(V¥ X)X(X)_ei‘

F(a3 x)X(x)er

T(A x)X(x)eTl

e
©

e

hedrem: Let T
6f signed formulas.

6¢céurring in formul

eountable list o6f parameters not in

SV {a-l, ays ag,

EXET and

FXxel and

TXET or

FXeT or

FXel

FXeT or
=> TX(a)eT
=> FX(a)eTl
=> TX(a)erl

be an at most countable, consistent set

TYeT

FYerl

TYel

FYerl.

BYET,

for each

for each

for some

aeP

aeP

acP
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3

Let S ©be the set of all parameters

as in T.

- ¥ 2 Then

Let

r

Hintikka element with respect to

formulas in T,
We

formulas.

[}
.ﬂ.

Let T

15 G &

Let

3

L

be a

-
gy

. oo

¢éan be extended to a

P.

using only parameters of P:

X

l:’

definé a (double) sequence of sets of signed

2:’ XB:

Ordetr the (countable) set of all subformulas of
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Suppose we have defined Pn, which is a consistent

extension of PO, using only finitely many of

a1, s, a3, “e Let An = Pn 5 We define
.2 n+1 _ n+1l
An, o8z An and let Pn+1 = An . We do this

as follows:

Suppose we have defined Ag (1<k<n). Consider
the formula Xk' At most one of TXk, FXk can be in
Ag (since it is consistent). If neither is, let
A§+1 = Aﬁ . If one is in Aﬁ, we have several cases.
Case 1a) X, 1is YVZ and TX eAX |
k k™ n

Then one of Aﬁ o DX or Ag 5 12 is consistent.

Let aX*1 pe K, Ty  ir consistent, othemmise AX, 1z.

Case 1lb) Xk is YVZ and FXk

k k
EAn. Then An’ FY, FZ
is consistent. Let this be A§+1. '

Case 2a) TXAY

Case 2b) FXAY
Case 3) T~X
Case 4) - TX27Y

*

are all treated in a simiiar manner. .
Case 5a) - X is (3 x)X(x) and TxkeA n

k
Since A ﬁ uses only finitely many of a)s as, a3, cee,
let ai be the first one unused. Let
k+1 k | ust also
An ‘be A, TX(ay). Since a; 1is new, thi; m

be consistent.
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Case 5b) Xk is (3 x)X(x) and FXkeAn

k+1 k
Let An be An together with FX(a) for each a&S,
and each a = a which has been used so far. Then
A§+1 is again consistent.

Case 6) T(V x)X(x), treated as we did case 5b).

Case 7) If the signed formula does not come under
one of the above cases let Ag+l = Aﬁ

Thus we have defined a sequence, PO, Fl, P2,
Let n = L}Fn " We claim I is a Hintikka collection

with respect to P. The verification of the properties

is straightforward. .

Section 5

Completeness of Beth tableéus

Supposing X to be not provable, we give a procedure

for constructing a sequence of Hintikka elements.

First, we order our countable collection of

parameters as follows:
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1 1 1
Sl als a2: 3°

2 2 2
S, al, as, a3, .
S3 a2, a3, &,

where we have placed all the parameters of X 1in Sl’

gnd let Pn = SllJ 82\J ...LJSn.

For this section only, by an F-formula we mean a
signed formula of the form F~X, FX2Y, or F(V¥ x)X.

We may assume once and for all an ordering of all formulas.

Now we proceed.

Step 0) X 1is not provable, so {FX} is consistent.
Extend it to a Hintikka element with respect to Py Call

the result Pl.

Step 1) Take the first PF-formula of Pl. If this

is F~X, consider rlT Lo g This is consistent. Extend
s ;

it to a Hintikka element with respect to P2, - call it

iy If the first F-formula is FXo Y, extend

2.
rlT’ TX, FY to a Hintikka element with respect to Py P2.

If the first F-formula is F(V x) X (x), extend

r FX(ai) to é Hintikka element with respect to

RS
P2,. P2. in any event; P2 is a consistent Hintikka

element with respect to P,. Now call the first
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F-element of Ty "used". The result of step 1 is
{rl, P2}'

Suppose at the end of step n we have the sequence

{Pl, s r3, e, r.n} where each Iy is a Hintikka

2
element with respect to Pi'

Step n + 1) Take the first "unused" F-formula

of T proceed as in step 1 depending on whether the

1,
formula is F~X, FXDY, "F(V x)X. Produce from

n
T'yms A, Or Tymps TX, F¥, or PlT, FX (ai +1)
a Hintikka element with respect to P call it 71 n -
2%4+1 2l
And call the formula in question "used". Repeat the

same procedure and the first "unused" F-formula of Tos

producing a Hintikka element with respect to P y
2 7+2

call it r i Continue to 1 ., producing a Hintikka
2142 2N
element with respect to P2nf1’ call it P2n+1‘ The

result of the n + 1lst step is thus '{rl, Tos =++>5 T n+l}.
2

Let G be the collection of all Pn generated in the

above process. We claim G 1is a Hintikka collection.

Each PneG is a Hintikka element with respect to
%1:.

so 6’(Pn) is P, - ~Since In is a Hintikka element
with respect to GD(Pn), to show G is a Hintikka collection
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we have only three properties to show.

Suppose for some PneG, _F(V’x)X(x)ePn. By the

above construction there must be some PkeG such that

& c
nTﬂ_Pkf 63(Pn)__6°(rk), and FX(a)el, for some

parameter a. Thus (3 PkeG) r Rf,,  and FX(a)er

for some as&’(rk).

r

k

The cases P~ and FDO are similar.

Thus G 1s a Hintikka collection and FXerl.eG,

1

so our completeness theorem is established.

We note that in the Hintikka collection G

resulting, every formula is a subformula of X.

We remark also that the construction of section 4
and of this section could be combined into a single

sequence of steps.

This proof is a modification of the original proof

of Kripke [12].

Section 6

- Second completeness proof for Beth tableaus

The foellowing is a Henkin type proof and serves as
a transition to the completeness bf the axiom system present-
ed in the next few secﬁions. A proof along the same lines

but using unsigned formulas was discovered independently
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by Thomason [19]. The similarity to the algebraic
work of section 6, chapter 1, is also noted.

Recall that a finite set of signed formulas I' 1is
consistent if no tableau for it is closed. An infinite
set is consistent if every finite subset is.

Def: Let P be a set of parameters and T a set of

signed formulas. We call T maximal consistent with
fespect to P 1if
1) every signed formula in I' uses only
parameters of P.
2) T 1is consistent
3) for every formula X with all its parameters
from P, either TXel'y, or FXel', or both
r,7X and ' yFX are inconsistent.
Lemma 1: Let T ©be a consistent set of signed formulas,
and P be a non-empty set of parameters containing at least
every parameter used in T'. Then T can be extended to a
set A which is maximal consistent with respect to P.
Proof: P 1is countable, so we may enumerate all formulas
with parameters from P: Xl, X2, X3,
Let A = r

0

Having defined An, consider X s £L&8 "B

n+1l TX

n? n+l
is consistent, let it be A .- If not, bhE iF A s FXn+1
is consistent, let it be An+1‘ If neither holds, let

An+l be An;
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The conclusion of the lemma is now obvious.

Def': Let T be a set of signed formulas and P a set

of parameters. We call T good with respect to P if

1) T 4is a maximal consistent with respect to P
2) T(3 x)X(x)eT => TX(a)erl

for some aep

Lemma 2: Let 1 Dbe a consistent set of signed formulas,

and S be the set of parameters occurring in T. Let

{a,, a5, g, ...} be a countable set of distinct parameters

not in S, and let P = sui{al, a5, as, cands Dhen T
can be extended to a set A which is good with respect

to P .

Proof's P is countable, order the set of formulas with

parameters from Fe Xl, Xg, XB, ‘v We proceed.

1) let Ay =T

2) extend A, to a set A, maximal consistent
witﬁ respect to S.

3) take the first Xy (in the above ordering) of
the form  T(3 x)X(x) such that
T(3 x)X(x)gﬁl but for no oeS is

TX(a)ed;- Let A, = a,,TX(2;). Since
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is "new", A is consistent.

. 2

1

4) extend A2 to a set A3 maximal consistent

with respect to SLJ{al}.

5) take the first Xi of the form T(3 x)X(x)

such that T(3 x)X(x)€A3 but for no
i = A_.

aeSLJ{al} is TX(a)eA3. Let A, 35 TX(a2).

Again, AM is consistent.

6) extend AM to a set A5 maximal consistent

with respect to S\J{al, a2} and so on.

Let A = k)ﬁn. We claim A 1is good with respect

First A 1is consistent since each An is consistent.

If X has all its parameters in P, then for some

all the parameters of X are in SLJ{al, B sens an}.

But in step 2n we extend A2n to A2n+l’ a set maximal

consistent with respect to SLJ{al, a2, 500 ¢ an}. Thus

X

or FX 1is in A2n+1 and hence in A, or neither can

be added consistently. Thus A 1is maximal consistent

with respect to P .

Finally, suppose T(3 x)X(x)eA. We note that

the formula dealt with in step 5 is different than the one

dealt with in step 3, and the one dealt with in step 7 is
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different again. Thus we must eventually reach

T(3 x)X(x), and so, for some aeP , TX(a)eA.

Thus A 1is good with réspect to )

Now let us order our countably many parameters as

follows:
1 1 1
Sl al’ 8.2, 8.3,
. 2 2 2
82. ajs 855 a3,
3 3 3
S3 ajs ass a3
and let Prl = SlU82U o USn.

Let G be the collection of all sets of signed
formulas which are good with respect to some Pn‘ We

claim G 1is a Hintikka collection.

Suppose TeG. Then T 1s good with respect to
some Pi’ say P Then &£ (I') (the collection of all
parameters of T ) 1is P .
Suppose  TXA Yel' but  TXET. If TI',TXAY

'is ‘consistent, so is T,TXAY,TX, and so T 1s not
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maximal. Thus TXer. Similarly, TY¥els Hence

TXA YeT => TXeT and TYerT

Similarly we may show

FXV Yel' => FXel' @ and  FYeT
TXV YeI' = TXel or  TYeT
FXAYel  => FXeT or  FYeTl
T~XeT => FXeT

TXDYeTl => FXer or TY efls

T(V x)X(x)el' -=> TX(a)el'  for every ae® (T)

F(3 x)X(x)el' = FX(a)el for every ae £ (T)

Moreover,

T(3 x)X(x).eI‘ => TX(a)el  for some ae £(T)

since T 1is good with respect to Pn‘

Suppose F~XeTl. Since T 1is consistent,
PT,.TX is consistent. Extend it to a set A which is
good with respect to P _,,. Then P(rye £(A), and

rnS4, so TRA, and TXeh.

Similarly, if FXOYel, there is a AeG such
that T'RA and TXel, FYeA.

Finally, if F(V x)X(x)el, since aj't does

not occur in T, I‘T, FX(aEHl) is consistent. Extend it

to a set A which is good with respect to P ...
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n+1l

1 Jed for n+leﬁ°(A).

Again, TRA and FX(a a;

Thus G 1s a Hintikka collection.

]

To complete the proof, suppose X 1is not provable.
Then {FX} is consistent. Since it has only finitely
many parameters, they must all lie in some Pn' Extend
- {FX} to a set T good with respect to P . Then

TeG and FXeT. This establishes completeness.

Remark: The model resulting from this Hintikka collection
is a "universal" model in that it is a counter-model for

every non-theorem. This is not the case for the model

of section 5.

We will show later that, in a sense, this Hintikka

collection is the analog of a classical truth set.

Section 7

An axiom system Al

The following system was chosen to give a fairly quick

completeness proof. It is very close to the system of

(9, pg. 82].
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Axiom schemas:

1. XD(Y>X)
2. (X2Y)>( (X2(¥Y>2Zz) )>(X=>22) )
( (X2Z)A(¥Y>22) )D( (XVY)>Z)

. (XAY) DX

(XAY) DY

3

4

5

6. XD(YD(XAY) )
T X_D(XVY)

8. Y2(XVvY)

9. (XA-~X)>Y

0 (X2 ~X)> ~X
11. X(a)> (3 x)X(x)

12.  (V x)X(x) 2X(a)
" Rules:

13.  X(a)oY -
(3 x)X(x)2Y

14, yoXx(a)
Yo (Vv x)X(x)

15, * X, X°Y
—’—Y.

In rules 13 and 14, the parameter a must not occur

in Y. In a deduction from premises, the parameter a

must not occur in the premises either. We use the usual

notation, if X can be deduced from a finite subset of S,

we write St X. We use FX for ¢ FX.
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In the next three sections we establish the
correctness and completeness of Al. We introduce a
second system A2, equivalent to Al to aid in showing
correctness. For use in showing completeness we need

the following three lemmas.
Lemma 1: The deduction theorem holds for Al.

Proof: The standard one. e.g. [9, section 21-22].

Lemma 2: F(WAY)DX, F(WAZ)DX, FWo(YV Z)
FWoX
Proof:
1) (WA Y)D X by hypothesis, theorem
2) (wWNhZ)>oX by hypothesis,theorem
3) WO(Yv2Z) by hybothesis, theorem
by w premise
5) YVZ 3, 4, rule 15

6) WO(YS(WAY) ) ax 6
7) Y2 (WAY) 4y, 6, rule 15

8) Wo(z>(WAZ) ) ax 6

9) Z>2(Wn2Z) 4, 8, rule 15

10) Y>X via 1, 7

11) G via 2, 9

12) (Yvz)oX via 10, 11, ax 3 °

13) X 5, 12, rule 15 '

14) woX deduction theorem cancelling

premise 4

“AF L)
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Lemma 3: If a does not occur in W, Y(x), or X,

FWwAaY(a)oX, FW2(3 x)Y(x)

FwoX
Proof :
1) (WAY(a) )oX by hypothesis,
2) WO (3 x)Y(x) { theorems
3) W premise
b)Y (3 x)Y(x) 2, 3, rule 15

5) Wo(Y(a)D(W2Y(a) ) ) ax 6
6) Y(a)D(WAaY(a) ) 3, 5, rule 15

7) Y(a)>X via 1, 6

8) (3 x)Y(x)>X 7, rule 13

9) X 4, 8, rule 15
10) WwW>oX deduction theorem cancelling

premise 3

Section 8

A second axiom system A2

We introduce a second, very similar, axiom system,

and prove equivalence.

A2 has the same axioms as Al, as well as rules 13

and 14. It does not have rule 15. It has rules
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14a) X(a)
(V x)X(x)

15a) (Vxl)'--(Vxn)X, (3x1)--°(3xn)XDY

provided all parameters of (V)ﬁ)---(\fxn)x are also

in Y. [n may be 0]

To show the two systems are equivalent, it suffices
to show 1ll4a) and 15a) are derived rules of Ay, and 15)

is a derived rule of A2.

To show 1l4a) is a derived rule of A,, suppose in

A we have X(a). Let .T be any theorem of Al with

1
'no parameters. By axiom 1), X(a)>(T>X(a) ), so by rule
15), TOX(a). Since a is not in T, by rule 14),
Tw(V x)X(x). But also T, so by rule 15), (V x)X(x).

To show 15a) is a derived rule of Al’ suppose in

A, we have (VW xl)---(\’xn)x(xl,---,xn) and

(lel)---(z!xn)X(xl,"',xn)an, and all parameters of

(¥ X3) e e (¥ x )X (x5
(V xl)“‘(V xn)x(xl’“
From axiom 11), X(al

so by rule 15), (2 xy):--(3 X )X(xg, 0 sXy)

rule 15) again, Y.

-,xn) are in Y. From

f’xhz by axiom 12), X(al,---,an)-

:"’an)D(g Xls".:xn)x(xls"‘,xn)

and by

¥
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Finally to show rule 15) is a derived rule of

A suppose we have X and X>DY in A2. Let

2’

al,az--o,an be those parameters of X not in Y.

Since we have X(al,...,an), by rule 1ha),

(V xl)...(v xn)X(xl,...,xn). Similarly, since !

X(al,...,an)taY and a ,a,  do not occur in Y,

R

by rule 13), (3 xl)...(ﬂ xn)X(xl,...,xn):)Y. Now

by rule 16a), Y.
Thus , Al and A2 are equivalent. For use in
the next section we state the straightforward.

Lemma: If in A, we can prove X(a), there is a

2
proof of the same length of X(b) for any parameter b.

[note: a does not occur in X(b) = X(a) (g) 4.

'Section'g

..Cornedtness]oﬂfSystémfAz

- Theorem: If X 1s provable in Ay, X 1s valid.

Proofs By induction on the length of the proof for X.
If the proof is of length 1, X 1is an axiom and we leave

the reader to show validity of the axioms.
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Suppose the result is known for all formulas with
proofs of length less than n steps, and X 1is
provable in n steps. We investigate the steps involved

in the proof of X. Axioms have been treated.

Rule - 13), X(a)>Y is provable in less than
n steps where a is not in Y. Then X(a)DY is
valid. Then (3 x)X(x)D>Y is provable. We wish to show
it is valid. Take any model <G, R,F ,#> - and any TeG
and suppose | ( (3 x)X(x):Y)ef’(I‘). .Suppose .
T*¥kE= (3 x)X(x). Then T*F X(b) for some b. But
X(a)>Y - is provable, so by the lemma of section 8,
(X(a)DY) (g) is provable with a proof of the same
length, hence by hypothesis, valid. Since a 1is not in
Y, this is X(b)>Y. By validity, T¥E X(b)DY,

hence r¥kF Y. Thus re (32 x)X(x)>DY.
Rules 14) and 1l4a) are similar.

Rule 15a) Suppose (V xl) e o (O xn)X and
(3 xl). | xn)XDY are both provable and valid. Then

Y 1is provable. We wish to show Y is valid. Let
<G, R, F , P> be any model and TeG. Suppose
~
Y (1) Then (V xl)...(\q’ xn-)X and (2 xl)...(ji'. x‘n)XDY

are both in E’(I‘), and since they are valid,

PF-(Vxlj...(vxn)x and FF(?xl)...(Hxn)XDY. By

the latter, either T4 (3 xl). ..(3 xn)X or TFY. If

r¥ (3 xl)...(j xn)X, for some al,...,aneP(I‘),

Lr i ) |
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I‘A’—"—X(al,...,an), contradicting T E(VY "1)-“(‘" xn)x.

Hence r\=Y.

Q.E.D.

Section 10

Completeness of system Al

The following Henkin type proof was discovered

independently by Thomason [19] and the author.

We work in the system Al. Let T be a set of
unsigned formulas and P a collection of parameters.

Suppose all . the parameters of T are among those in P

By the deductive completion of T with respect to
P we mean the smallest set of formulas, A , involving

only parameters of P, such that for any X over p ,

TEFX  =>  XeA.

We call T deductively complete with respect to P

if it is its own deductive completion with respect to P .

We say T has the Or - property if

XV Yerl => Xel or Yel' =«

!

We say T has the 3 -property if

- (3 x)X(x)er => X(a)ef for some parameter a.




We call T nice with respect to P if

1) T 1is deductively complete with respect to P
2) T has the O_-property
3) T has the 3 -property

4)y T 1is consistent
Remark: consistency here has its usual meaning.

Lemma 1: Let T Dbe a set of formula and X a single
formula. Let P be the set of all parameters of T

or X. Let {al,a2,a3,...} be a countable collection

of distinct parameters not in P, and let
Q = PU{al,a2,a3:..}. If TIX, then T can be
extended to a set A which is nice with respect to Q

such that X£A.

Proof: Let zl,22,z3... be an enumeration of all

formulas with parameters from Q of the form

YV Z or (Ax)Y(x).

Since T4 X, T 1s consistent. We define a

sequence {rn}.

Let T be the deductive completion of T with

0

respect to P. Then T, 1is consistent and Pof'X.

Suppose we have defined Pn so that Pn is
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deductively complete with respect to PU{al’ By +rs an}
: o _
and ‘I‘n*— > Let An = I'n.

Suppose we have defined Ag (J<n) -~ so that it is

| y | J J - -
consistent, Anaf“)(. it Z ngn, let :‘_\n = an

J
If Z, = YvZ Z,¢€ A‘j and YeAJ or ZeAJ let
J 3 J n, n n.’
J+1 _ _ J
An An. If Zj = (3 x)Y(x), ZJEAn’ and
J J+1 - b .
Y(a)e a- for some a, let A Ay . This

leaves the two key cases.

3] : J
Suppose ZJsAn and ZJ is YV Z but YtAn 5
Ztﬂf]. We claim we can add one of Y or Z to

A‘Ijl so that the result still does not yield X. For -
otherwise, A'rjl, YFX

8, ZFX

A b yvy

n
[since YV ZeA‘rjl]. But then by lemma 2, section 7,
afll-x, a contradiction. So, add to 1'_\.‘31 one of Y
or Z so that the result does not yield X. Call the

result Aﬂ*l.

Suppose ZJe:A‘rj1 and ZJ is (ax)Y(x), but

Y(a))efAl‘!l for any a. Take the first unused a, of

. J
. {al,a2,...}. We claim we can add  Y(a;) to Ay




88

and the result will not yield X. This is as above

but by lemma 3, section 7. Thus Aﬂl,y(ai)%x.

J+1 J
Let Ay be  Av,¥(a;).

. +1 ; .
Thus, in any case, Aﬂ is consistent, and

xgadt1 o,
n

Let r be the deductive completion of

n+l
n .
An with respect to P {al,az,...,ak} where a,

is the last pafameter used in AQ

Let A = LJFn

A uses exactly the parameters of Q.

X£A since x¢rn for any n.

A 1is deductively complete with respect to Q.

A has the Or—property, for if YV ZeA, say

YVZi = Z, > then YV ZeA ~ for some m. We can take
m>n.  Then Yviz = zneag, so either Y or Z
is in  aAM*lgy

Similarly, A has the 3 -property.




Lemma 2: If T 1is nice with respect to P ,

1) XAYel <= XelI' and  Yer

2) XVYel <=> XeI'  or  Yerl

3) ~X =>  X£T

4) XDYer =>  X{£T or  Yel

5) (3 x)X(x)el' <=> X(a)eTl for some acP

6) (V x)X(x)el' => X(a)el for every acP

Proof: 1) is by axioms 4, 5 and 6, since T is
deductively complete with respect to P

XV Yerl => XeT or YeTl since T has the

Or—property. The converse holds by axioms 7 and 8.

If ~XeT, X£T since T is consistent

(using axiom 9).

If X>DYerl, either X¢TI' or  Yel since

r is deductively complete with respect to P .

If (3 x)X(x)el, X(a)el for some acP

since T has the 3 -property. The converse is by

axiom 11.
Property 6 is by axiom 12.

Q.E.D

Lemma 3: Suppose TI' 1is nice with respect to P, and

{al,a2,a3...} is a set of distinct parameters not in P




90

= V)
Let Q P {al’a2'a3"'}' Then

1) If X has all its parameters in P but
~X£T, I' can be extended to a set A nice with

respect to Q such that Xed.

2) If XDY has all its parameters in P
but  XDYZr, T can be extended to a set A nice with

respect to Q such that Xeh and Y£A.

3) If X(x) has all its parameters in P
but (V x)X(x)£T, I' can be extended to a set A
nice with respect to Q such that for some aeq,

X(a)fa.

Proof:

1) since ~Xfr, r,X 1s consistent, for otherwise,
r,Xt-~Xx so by the deduction theorem, rr X=>~X and
by éxiom 10, I 7 EX, so ~Xel'. Since T,X is
consistent, there is some Y such that T,X¥7Y. Now

use lemma 1.

2) I,X#Y for otherwise, by the deduction
theorem, TFX>Y so X>Yel. Since T,X¥Y,

use lemma 1.

3) a,f P . We claim Ff’X(al). Suppose

FPﬂX(al). For the conjunction, call it W, of some

finite subset of T, FwoX(a;). But a; does not

occur in W. By rule 14, Fwo (VY x)X(x), Ye)
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r(v x)X(x), (V x)X(x)el'.  Since reX(a)),

use lemma. 1.

Now we proceed to show completeness. We arrange

the parameters as follows:

. 1 1 1
Sl‘ aj, ass a3,
2 2 2
82 a, as, as,
. 3 3 3
83. aj, as, a3, .
= U
and let Pn Sl Szu...uSn

respect to any P_.

say,
a set

Thus

Let G be the collection of all nice sets with

1

If TeG, I'is nice with respect to, say, Pn'

@(r)y = P . Let ’RA if P (r) € P(A)

For any X, let TEFX iff XeT.

By lemmas 2 and 3, <G, R,F,fP> is a model.

Finally, suppose &£ X. All the parameters are in,
Pn' Since ¢#X, by lemma 1 we can extend ¢ to
'y nice with respect to Pn such that XET.

reG, Xef (r). and T X.

-
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.Remark: This is a "universal" model in the sense

of section 6.

In section 4, chapter 6, we will show that the

set of all theorems using only parameters of Pn is
itself a nice set with respect to Pn' This would

make the final use of lemma 1 above unnecessary.



Chapter 6

Additional First Order Results

Section_l

Compactness

We call an infinite set, S, of signed formulas
realizable if there is a model, <G,R,EF,f> and a TeG
such that for any formula X,

TXeS => Xe $ (I') and TFX
FXeS => Xe P (r) and TEX .

There is a similar concept for sets of unsigned
formulas, W . We say W 1is satisfiable if there is a
model. <G,R,F ,P> and a TeG such that for any formula X,

XeW => Xe @(T) and T E X.

Lemma 1: Let . be a set of unsigned formulas and define a
set S of signed formulas to be {TX|XeW}. Then
1) WL 1is satisfiable if and only if S 1is realizable

2) W 1is consistent if and oniy if S 1is consistent.

Proof: Part 1) is obvious.

To show part 2), suppose W is not consistent. Then
some finite subsét, {ul, aBls b un} is not consistent, so
from it we can deduce any formula. Lef A be an atomic
formula having no predicate symbols or parameters in common
with  {u;, ..., u }. Then '

Fr(u; a..o A un)D A



94

hence there is a closed tableau for
{F(ull\...z\ un) > A}
so there is a closed tableau for

{T(ullA...A u_) , FA}

n
By the way we have chosen A, there must be a closed tableau
for

{T(ul N un)}
and hence, for

{Tul, e Tun}

Thus S 1is not consistent.

The converse is trivial.

Because we have this lemma, we will only discuss

realizability and consistency of sets of signed formulas.

Lemma 2: Let S be a set of signed formulas. If S is

realizable, S 1is consistent.

Proof: If S 1is not consistent, some finite subset, Q,
is not consistent. That is, there is a closed tableau,
cl’ Cos on. ,Cn in which C; 1is {Q}. If Q were
realizable, by the theorem of section 2 chapter 5, every

€5 would be, but a closed configuration is not realizable.

Q.E.D.
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Lemma 3: Let S be a finite set of signed formulas. If

S is consistent, S 1is realizable.

FY }

Proof: Let S be ({TX TXn,IPYl, S sl m

15t
S 1is consistent if and only if
{F(Xi A...AaX ) D (Yl Viishe s va)} is consistent.
If this is consistent, (XIA e A Xn) - (Y1 V...V Ym) is
a non-theorem, so by the completeness theorem, there is a
model <G, R,k ,f> and a TeG such that xiezfa(r),
X A
yJ ef(r), and TA(X; A...A X)) D (Y v..¥ Ym)_. But
then for some T¥,
I‘*tr—xl/\.../\xn R r*,;-‘:yl VoY

so T'¥*¥ realizes 8S.

Q.E.D.

This method does not work if S is infinite, but the
lemma remains true, at least for sets with no parameters.
The result can be extended to sets with some parameters,

but we will not do so.

Lemma 4: Let S be an infinite set of signed formulas

with no parameters. If S 1is consistent, S 1is realizable.

Proof: The proof can be based on either of the two tableau
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completeness proofs.

If we use the first proof, that of section 5 chapter
5, change step O to : "™ S is consistent. Extend it to a
Hintikka element with respect to Pl' Call the result Fl".
Continue the proof as written. The lemma is then obvious.

If we use the proof of section 6 chapter 5, the result
is even easier. S 1is consistent, so by lemma 2 of that
section, we can extend S to a set I'' which is good with

respect to Pl' The result follows immediately.

Theorem: If S is any set of signed formulas with no
parameters, S 1is consistent if and only if S is

realizable.

Corallary: If every finite subset of S 1s realizable,

so is S.

Corollary: If U is any set of unsigned formulas with no

parameters, W is consistent if and only if W is satisfiable.

Remark: The last corollary could have been established
directly by adopting the completeness proof of section 10

chapter 5.
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Section 2

Concerning the excluded middle law

If S 1is a set of unsigned formulas, by S’E X

and S k X we mean classical and intuitionistic

1

derivability respectively.

Let X (al, ces ,an) be a formula having exactly
the parameters Ays eee 5 O By the closure of X we
mean the formula (Vx ) ... (Vx_. ) X (X, 5 eeey X;. )
[where x; does not occur in X(a ;, ... , an)] 2

J

Let "M be the collection of the closures of all

formulas of the form X v~X. We wish to show

Theorem: If X has no parameters,
kX < Mk X

We first show

Lemma: Let <G, R, =, be a model, I'eG, and suppose

YeM=> TEY. Then T can be included in a complete R-

chain € such that C. is a truth set. [see section 6

chapter U]

Proof: Enumerate all formulas beginning with a universal

quantifier, Xl,Xg,XB, S

Let Fo = T. |

Having defined T , consider Xn+1. If Xn+1 £
@’(Fn*) for any Fn* , let Tyl = Tpe Otherwise there
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Fal
* ¥ .
is some T ¥ such that X ., e (T *). Say X 4p 18
(Vx) X(x). We have two cases. If I‘n* = (¢vx)X(x) , let

= * ¥ )& s * ¥
T o+1 r *. 1If T, ¥~ (Vx) X(x), there is a r ** and

’ ¥ ¥ ¥ ¥
an ae P(r **) such that T ** f=x(a). Let T _,, be
¥ ¥
this Pn
Let the R-chain & be { Tg> Tys Tos vve }

Since Ye/W=> TFEY and T = Tgs € is a complete

R-chain, by definition of M, and so € is an almost -
‘truth set. Thus we have only one more fact to show:
Y (a) € C for every parameter o of C = (Vx) Y(x) e C.

Suppose (V x) Y(x,al, 23, an) g C [where Qs

is

» o are all the parameters of vy 1. If some oy

not a parameter of €, we are done. So, suppose each oy

occurs in C. Then for some r e C , all ay € f (I‘n)

and T _45 (vx) ¥ (x,0p, ...,,a ). But by the construction
of €, there is a I m > n, such trat T_¥ v (b, o,
cee an) for some be (P(I‘m) . But,

I‘F(Vxl) (Vxn)(\fx) [Y(x,xl,...,xn) v o~ Y(x,xl,...,xn)]
and TRI' _, so
m
Pm’: Y(b,ial,..., an) V ~ Y(b, Oy e ‘(In),
thus rn'l|= ~ Y (b,%, ..., an)
~ Y(b, o, ..., @) e € , so ¥(b,%...,%) £ C for a para-

meter b of C.
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Now to prove the theorem itself.
If, M E X then for some finite subset {ml, e ,mn}
of M, '
f-I(m,A o EA mn)DX.

By theorem 2, section 8 chapter U [and the completeness

theorems]
IE(m/\ oy mn)DX.
But b mA ...A m  hence I—E X. €onversly,

if ’)TM’-,J-:X , let S be the set of signed formulas
{Frx} U {TY | Yem}
Since ’M/Ié X , S is consistent. Then by the results of
the last section, S 1is realizable. Thus there is a model
<G,R,F,f > and a TeG such that
YeM => TkFY
Xe .d{’\(I‘) and T FX
But, X has no parameters, so X V ~ Xg€ P. Thus TFXv-. X.
So, T EF ~ X. Now by the lemma, there is a truth set

containing ~ X. Hence f X.

Section 3

Skolem - L&wenheim

By the domain of a model <G,R,F ,f> we mean

U # (r). So far we have only considered models in which the
TeG

domain was at most countable. Suppose now we have an un-

countable number of parameters and we change the definitions
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of formula, model, and validity accordingly, but not the

definition of proof.

Theorem: X 1is valid in all models if and only if X is

valid in all models with countable domains.

Proof: Half is trivial.

Suppose there is a model <G,R,f=,o°> with an uncount-
able domain in which X 1s not valid; The correctness
proof of section 2 or section 9, chapter 5, is still appli-
cable. Thus X 1s not provable. Since X 1is not provablé,
if we reduce the collection of parameters to a countable
number, [including those of X] X still will not be
provable. Then any of the completeness proofs will furnish

a counter-model for X with a countable domain.

This method may be combined with that of section 1

to show

Theorem: If S 1is any countable set of signed formulas
with no parameters, S 1is consistent if and only if S

is realizable in a model with a countable domain.
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Theorem: If WL is any countable set of unsigned formulas
with no parameters, (L 1is consistent if and only if W is

satisfiable in a model with a countable domain.

Remark: In part II, we will be using models with domains

of arbitrarily high cardinality.

Section U4

Kleene tableaus

The system of this section is based on the intuition-
istic system G3 of [Q]. The modifications are due to
Smullyan. The resulting system is like that of Beth
except that sets of signed formulas never contain more than
one F-signed formula. Explicitely, everything is as it was
in section 1 chapter 2 and section 1 chapter 5 except that
the reduction rules are replaced by the following, where

S 1is a set of signed formulas with at most one F-signed

formula.
KTV S, TXvY KF Vv Sps FXVY
S, TX| S, TY D Gl
T
Sps FXVY
Sps FY
KTA S, TXAY KFA ST, FXAY
S, TX, TY Sps FX[Sq, FY
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KT~ S5 BoX KF- Sps F-X
Sps FX ———
Sps TX
KT> S, TXDY KF > Sps FX2Y
Sps FX[ S,TY 5p, TX, 7Y
KT3 S, T(=2 x)X(x) KF 3 Sp» F(3 x)X(x)
S5 s a) | 5, FX(a)
KTV S, T(V x)X(x) KFV Sps Flvx)X(x)
S, TX(a) Sy, FX(a)

where, in KT3d and KFV , the parameter a does not occur

in S or X(x).

There are several ways of showing this is actually a
proof system for intuitionistic logic. We choose to show
it is directly equivalent to the Beth tableau system, that
is, we give a proof translation proceedure.

We leave it to the reader to show the almost obvious
fact that anything provable by Kleene tableaus is provable

by Beth tableaus. To show the converse, we need

Lemma: If a Beth tableau for {Txl,...,TXn,FYl,...,FYm}
closes, then there is a closed Kleene tableau for

{TX o> TX , F,(Ylv"'v Y )}

l,
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Proof: The proof is by induction on the length of the
closed Beth tableau. If the tableau is of length 1, the
result is obvious. Now suppose we know the result for all
closed Beth tableaus of length less than n, and a closed
tableau for the set in question is of length n. We have
several cases depending on the first step of the tableau.

If the first step 1is aﬁ application of rule FA , the

Beth tableau begins

{{Sp, FX .» FX_, F YAZ}}

l.’

{{s FXl,...,FXn,FY}, {Sp,FXy, ..., FX ,FZ}}

T’
and proceeds to closure. Now by the induction hyvothesis,
there are closed Kleene tableaus for

{8, F(Xy'...vXnVY)} and

{ST,F%Xy ”.v§¥2)}
We have two possibilities. If Y 1is not "used" in the
first tableau, or if Z is not "used" in the second tableau,
a Kleene tableau beginning

{{ST, F(Xy e VXV (YAZ))}}

{{Sp, F(Xyv...vX )}
must close. If both Y and Z are "used", a Kleene tableau
beginning

{{s F(le...vxn v (YA Z))))

TJ

{({Sg, F(YaZ)}}
{{ST; FY} , {Sp, FZ}}

must close.
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The other cases are similar and are left to the

reader.

Thus the two tableau systems are equivalent. Now we

verify a remark made at the end of section 10 chapter 5.

Lemma: (G&del, McKinsey and Tarski)

FI XvY iff FI X or Y

Proof: Immediate from the Kleene tableau formulation.

Lemma: (Rasiowa and Sikorski)

5% FI(:Bx) X(x,al,...,an) where aj,...,a,
are all the parameters of X, then FI X(b,al,...,an)
where b is one of the ay - If X has no parameters, b is

arbitrary and l'I(V’x) X(x).

Proof: A Kleene tableau proof of (3 x) X(x,al,...,an)
begins

{{F(= X),X(X,al,.f.,an)}}

! FX(b,al,...,an)}}

and proceeds to closure.

If b is some ays we are done. If not, we'actually
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have a proof, except for a different first line, of

- (V x) X(x,al,..., an).

Section 5

Cralg interpolation lemma

Theorem: If kIX DY and X and Y have a predicate symbol
in common, then there is a formula Z involving only
predipates and parameters common to X and Y such that
-‘l‘ X >Z and FIZDY ; if X and Y have no common

I I
parameters, either FI ~ X or FI Y

The classical version of this theorem was first proved
by Craig, hence the name. The intuitionistic version is due
to Schiitte [16] . Essentially the same proof was given for
a natural deduction system by Prawitz [14] . We give basic-
ally the same proof in the Kleene tableau system. For

another proof in this system see [10] .

We find it convenient to temporarily introduce two
symbols, t and f, into our collection of logical symbols,
lefting them be atomic formulas, and letting them combine

according to the following rules.
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Xvt = tvX = ¢t
Xvf = fvX = X
Xat = taAX = X
XAf = fAX = F

~t=f, f=t

XDt=foX =t

tOD>X =X XOof = X
(Ax) t = (Vx)t=t
(3x) f=(Vx) f=r+r

By a block we mean a finite set of signed formulas
containing at most one F-signed formula. When we call a
block inconsistent, we mean there is a closed Kleene

tableau for 1t. By an initial part of a block we mean

any subset of the T-signed forﬁulas. We make the conven-
tion that if S 1is the finite set of unsigned formulas
{Xl,...,Xn} then TS is the set {TXl,...,TXn}. We
further make the convention that for a set S of formulas,

Sl and 82

SltJ 82 = S. By [S] we mean the set of predicates and

parameters of formulas of S, together with t and f.

represent subsets such that Slr\S2 = ¢ and

Now we define an interpolation formula X for the
block {TS, FY} [hhere S 1s a set of unsigned formulas
and Y is a formula] with respect to the initial part

TS which we demote by {TS, FY} / {TSl}, as follows.

1’
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[X may be t or f but we assume t and f are not

part of S or YJ
X is an {TS, FY} / {TSI} if
1) 1€ (s, [55, ¥]

2) {Ts FX} is inconsistent

l)

3) {TX, TS.,, FY} is inconsistent

2,
EWe have temporarily added to the closure rules: closure of

a set if it contains Tf or Ft].

Lemma: An inconsistent block has an interpolation formula

with respect to every initial part.

Proof: We show this by induction on the length of the
closed tableau for the block. If this is of length 1,
the block must be of the rorm

{TS, TX, FX}
We have two cases.

case 1) The initial part is {TSl, TX}. Then X is an inter-
polation formula.
case 2) The initial part is {TSl} . Then {TS2,TX,FX} is

inconsistent and t 1is an interpolation formula.

Now suppose we have an inconsistent block, and the
result is known for all inconsistent blocks with shorter

closed tableaus. We have several cases depending on the
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first reduction'rule used.
KTV: The block is {TS, TXvY, FZz} and {TS, TX, FZ} and
{TsS, TY, FZ} are both inconsistent.
case 1) The initial part is {TS;, TXvY¥} . Then by
induction hypothesis there are formulas Ul and U2 such
that

U, is an {TS, TX, Fz} / (TS, ; X}

U, is an (TS, TY, Fz2} / ({TS;, TY}
"Then U, V U, is an (TS, TXvY, Fz}./ (TS, TXvy}
case 2 The initial part is {TSI} . Again, by hypothesis,

there are Uy, Uy

Ul is an {TS, TX, Fz} / {TSl}
U, is an (TS, TY, Fz} / {TS;}
Then Ul/\ U, 1is an {Ts, TXvY, Fz} / {Tsl}

KFv: The block is {TS, FXvY} and ({TS, FX} or {TS, FY}
ié inconsistent.
Suppose the first. Let the initial part be {TS;} . By
hypothesis there is a U such that

U is an (TS, FX} / ({(TS;}
Then U is.an {Ts, Fxvv} / ({Ts;}

KTA: The block is {TS, TXAY, Fz} and (TS, TX, TY, FZ}

is inconsistent.

case 1) the initial part is {TSl, TXAY} . By hypothesis

‘there is a U such that
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U is an {Ts, TX, TY, Fz} / {TS,, TX, TY}

1
Then U is an (TS, TXAY, FZ} / {TSl, TXAY }
case 2) The initial part is {TSI}
By hypothesis there is a U such that

‘U is an {TS, TX, TY, FZ} / {Tsi}

Then U is an {TS, TXAY, FZ} / {Tsl}

KFA : The block is {TS, FXAY} and {TS, FX} and

"{TS, FY} are both inconsistent. Suppose the initial part

is {TSl} . By hypothesis there are Ul’ U2 such that
U, is an {Ts, FX} /{Tsl}
U, is an {TS.,, FY} / {TSl}
Then Ull\ U2 is an {TS, FXAY} /{TSl}
KF~; The block is {TS, F ~ X} and {TS, TX} is incon-
sistent. Suppose the initial part is {TSI} . By hypo-~

thesis there is a U such that
U is an (TS, TX} / {TSl}
Then U is an (TS, F-X} / ({TS;}

KT~: The block is (TS, T-X, FY} and {TS, FX} is

inconsisteﬁt.
case 1) The initial part is {TSl} . By hypothesis there
is a U such that
U is an {TS, FX} / {TSl}
Then U is an {TS, T~-X, FY} / {Tsl}
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case 2) The initial part is {TS;, T-X} By hypothesis .
there is a U such that

U is an {TS, FX} / {TSZ}
We claim

-U is an {TS, T-X, FY} / {TS)}

First we verify its predicates and parameters are

correct.

By hypothesis, [U] < 5,1 N[5, X] so
immediately, [ ~U] & [S;, ~X] N [S,, Y]

We have that the following two blocks are inconsistent,

{Ts,, Ful}

2’

{Ts TU, FX}

5
It follows that the following two blocks are also incon-

sistent,

{Ts,, T-X, F~-U}

1’

{Ts.,, T-U, FY}

2’

and we are done.

KFD: The block is {TS, FX2Y} and ({TS, TX, FY} is
inconsistent. Suppose the initial part is {TSl}. By
hypothesis there is a U such that

U is an {TS, TX, FY} / {TSl}

Then U is an (TS, FX2Y} / ({Ts;}

KT D: The block is {TS, TXDY, FZ} and {TS, FX} and

{TS, TY, FZ} are both inconsistent
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case 1) The initial part is {Tsl} . By hypothesis there

are Ul’ U . such that

2
U, is {Ts, FX} / {TSl}
U, is an ({TX, TY, FZ} / {Tsl}
Then Ul/\ U2 is an {TS, TXDY, FZ} / {TSl}

case 2) The initial part is {TSl, TXDOY} . By hypothesis

there are Ul’ U2 such that

Ul is an (TS, FX} / {TS2}

U, is an (TS, TY, Fz} / {Ts;, TY}

We claim UlD U2 is an

{os, T*>Y, FZ} [/ {Tsl, TXD> Y}

By hypothesis,
[v,] & [5,1N 51, ¥
U] &[5y, Y1 N [5,,7]
so [U,20,] C [5), x2¥] N[5, 7
We have that the following four blocks are inconsistent.
1) {Tsz, FU,}
2) (T Ul’ TSl, FX}
3) {Ts,, TY, F U,}
4b) AT U2, TS2, FZ}
and we must show the following two blocks are inconsistent.

{Tsy,

The first follows from 2) and 3), and the second from 1)

TXDY, F U2 U2}
FZ}

and 4).
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KF3: The block is {TS, F(3Ax) X(x)} and {TS, FX(a)}
is inconsistent. Suppose the initial part is {TSI} .
By hyp.othesis there is a y such that
U is an {TS, FX(a)} / {TSl}.
Then [U] C [s,1 M [32, X(a)]
case 1) af¢ [U].
Then U is an {TS, F(3 x) X(x)} / {Tsl}
case 2) ae [U], ae [S;]
Again U is an {TS, F(3 x) X(x)} / {TS;}
case 3) ae [U] , af [__82]. Then (3 x) U(i) is an

{Ts, F(3 x) X(x)} / {Tsl}

KT3 : The block is {TS, T(ax) X(x), FZ} and (TS, TX(a),FZ}

is inconsistent, where ag [S, X(x), Z].
case 1) The initial part is {Tsl, T(3a x) X(x)} . By hypothesis
there is a Usuch that
Uis an {TS, TX(a), FZ2} / {TSl, TX(a)}

Then U is an (TS, T(3x) X(x), Fz} / {TS;, T(3 x) X(x)}
case 2) The initial part is {TSl} . By hypothesis there
is a U such that

U is an {TS, T™(a), F2} / (TS}

Then U is an {Ts, T(3 x) X(x), F2} / {T3;}

KFY : - The block is {TS, F(V x) X(x)} and (TS, FX(a)}
is inconsistent where ag [S, X(x)] . Suppose the initial

part is {TSl}.- By hypothesis there is a U such that
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U is an (TS, FX(a)} / {TSl}

Then U is an {TS,.F(\/x) X/exHl} 7 {TSl}

KTV : The block is {TS, T(V x) X(x), FZ} . and
{TS, TX(a), FZ} 1is inconsistent.
case 1l: The initial part is {TSl, T(V x) X(x)} . By
hypothesis there is a U such that

U is an {TS, TX(a), FZ} / {TSl, TX(a)}
case la: af [U] . Then U is an

{Ts, T(V x) X(x), Fz} / {TSl, T(V x) X(x)}

case 1b: ae [U] , ae [Sl, X(x)] . Again

U is an (TS, T(V x) X(x), Fz} / {TSl’ T(VY x) X(x)}.
case 1lc: ae [U] , ag ['Sl, X(x)]
Then (V¥ x)_ U@) is an
{Ts, T(vx) X(x), FZ} / {TS;, T(Y x) X(x)}
case 2: The initial part is ({TS;}
By hypothesis there is a U such that

U is an (TS, TX(a), FZ} / {‘I‘Sl} .
case 2a: af [U]. Then U is an

{Ts, T(VY x) X(x), Fz} / {TSI} ;

case 2b: ae [U] , ae [__82, X(x), 2] . Again

U is an (TS, T(V x) X(x), FZ} / {TSl}
case 2c: ae [u] , af [S,, X(x), Z]

a
Then (3 x) U(x) is an

{Ts, T(V x) X(x), FZ2} / {Ts;}
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Now to prove the original theorem.

Suppose FI XD2Y. Then {TX, FY} is inconsistent.
By the lemma, there is a U such that

U is an {TX, FY} / {TX}
We have three cases.

1) U = t. Then since {Tt, FY} is inconsistent,
. &

2) U= f . Then since {TX, Ff} is inconsistent,
{F ~ X} 1is also inconsistent [f is not in X] . Thus
Fo~ X

3) U#t, U # f. Then U is a formula not
involving t or- f, all the parameters and predicates
of U are in X and Y, and since {TX, Fu} and

{T U, FY} are both inconsistent, |y X>U and I U 2v.

Section 6

Models with constant ® function

In Part II we will be concerned with finding counter-
models for formulas with no universal quantifiers, and we -
will confine ourselves to models with a constant £ function.

To justify this restriction, we show in this section

Theorem: If X 1is a formula with no universal quantifiers

and J‘IX, then there is a counter-model <p,R, = ,6{>‘ for X
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in which  is a constant function.

Def: For this section only, let aqs aé, a3, ... be an enu=-
meration of all parameters. We call a set I' of signed
formulas a Hintikka element if T is a Hintikka element with
respect to some initial segment of al, a2, a3, Vs (See

section 4 chapter 5).

Lemma: If S is a finite, consistent set of signed formulas
with no universal quantifiers, S can be extended to a finite

Hintikka element.

Proof: Suppose S is the set {Xl, Xosenns Xn} where each

Xi is a signed formula. We define the two sequences {Pk}’

{Qk} as follows:

Let PO = ¢

»QO = Xl, P Xn
Suppose we have defined Pk and Qk where

Pk = Yl’

Q = Wy, «-.s Wy

and PkLJ Q, (considered as a set) is consistent.

)

To define P

K+1 and Qk+1 hwe have several cases

depending on wl.

case atomic: If wl is a signed atomic formula, let

Y W

20 S Al B o A
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W

=w2, l.', s-

Qk+l

case TV : 1If Wl is TXV Y, either TX or TY is consistent

with PkUQk’ say TX. Let
P =Y wasy Mo TEV'Y
i

Qk+l = 2, ° e 0y ws, TX-

case FV : If W,is FXV Y then FX, FY 1is consistent with

1

Pk V) Qk' Let

Pyp = Yo -evs Y, FXVY

Qepq = Wos +ves W, FX, FY

cases Tn , FA , T~ , TD> are similar.

case T3 : If w1

the sequence ays 85 -oo not occuring in Pk or Qk' Then

is T (3 x) X(x), let a be the first in

TX(a) is consistent with Pk | -Qk. Let

Prs1 = Yps S S T(3 x) X(x)

Quyp = Wo, -vvs W, TX(a)
case F3 : If W, is F(3 x) X(x), let {a, , «.., a, } be
S gl i, it

the set of parameters occuring in Pku Qk such that no

Fx(aij) occurs in P, U Q.. Then {FX (ail), 2hin 5 FX(ait)}
1s consistent with PkU Qk' Let

Pry1 = Py

Qypq = Wos +oes Wy, FX(ail), ol FX(ait),
F (3 x) X(x)
After finitely many steps there will be no T-signed

formulas left in the Q-sequence because each rule, TV , TA ,
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T~ , T>, T3 reduces degree, and no rule, FV, FA, F3
introduces new T-signed formulas.

When no T-signed formulas are left in the Q-sequence,
no new parameters can be introduced since rule T3 no longer
applies.

After finitely many more steps we must reach an empty
Q-sequence. The corresponding P-sequence is finite, consis-

tent, and clearly a Hintikka element.

Remark: The above proof also shows the following which we
will need later. Let R be a finite Hintikka element.
Suppose we add (coﬁsistently) a finite set of F-signed
formulas to R and extend the result to a finite Hintikka
element S by the above method. Then
Rp = Sp.

Since R € S, certainly RT QST. That ST gRT also
holds follows by an inspection of the above proof; no'new
T-signed formulas will be added.

Now we turn to the proof of the theorem itself. We
have no universal quantifiers to cdnsider, SO we may use
the definition of associated sets in section 4 chapter 2.

Suppose X is a formula with no universal quantifiers,

and 4F-IX. .Then {FX} is consistent. Extend it to a

finite Hintikka element, Sg.
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Let Tl’ = am 3 Tn be the associated sets of Sg.
Extend each to a finite Hintikka element, sg, PR Sﬁ
respectively. Thus we have

0 0 0
SO, Sl’ s e p Sn'

For each parameter a of some Sg and each formula
of the form F(3a x) X(x) in sg, adjoin FX(a) to SJ and
extend the result to a Hintikka element Sé. Do the same
for Sg, oEe b Sg, producing Si, A0 Si respectively.
Thus we have now

1 1 a1
SO, Sl’ 9 .5 Sn.
Let Tn+1’ - Tm be the associated sets of
Sl, Sl, ek Sl. Extend each to a Hintikka element,
0 il * TR
0 0
Sn+1’ O I Sm respectively. Thus we have now
1 1l = 1 0 0
SO, Sl’ et Sn’ Sn+l’ 5w Sm.

For each parameter a used so far, and for each formula
of the form F(3x) X(x) 1in Sg, adjoin FX(a) to S§ and
extend the result to a finite Hintikka element Sg. Do the

same for each. Thus we have now

2 2 2 1
O’ Sl, I.l, Sn, Sn+l’, .l., S

Again take the associated sets, and extend to finite

1

S o &

Hintikka elements, producing now

2 2 2 1 1 0 0
S0 815 +nas SEs) Sy s <38y Sps Biga mesly S
Continue in this manner. '
~ K _ X
Let._SO = ‘L_J S0 5 Sl = Sl , ete.
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By the remark above, for each n,

= g0 _ 1 _
Snr = Spp = Spp T
Thus if SX has as an associated set SJ, S m<C S .
n m nT = ™m
It now follows that ({8, S1s ...} is a Hintikka
collection. For example, suppose F « YeSJ. Let k be the
least integer such that F -~ YeS?. By the above construc-
tion, there is some set Sg such that SS is an associated

set of Sg and TYsSO . But then Sk CZSO, so by the
J r JT = "r

"above, SJT E;Sr’ and TYeSr. The other properties are
shown similarly.

Moreover, (S ) = f(Sm) for all m and n, as
1s easily seen. (Recall, P (S) 1s the collection of all
parameters used in S.) Now as in section 3 chapter 5,
there is a model for this Hintikka collection, and this

model will have a constant £ map, so the theorem is shown.



Part TII - SET THEORY

CHAPTER 7

Intuitionistic Ma Generalizations

Section 1

Introduction

Here amd in the rest of part II we restrict our
considerations to the following language: a countable

‘collection of bound variables, x, y, 2, ..., a collection

of parameters (or constants) of arbitrarily high cardinality

f, g, h, ..., one two-place predicate symbol, €
[we write e(x,y). as (xey)], and the usual connect-

ives; quantifiers, and parantheses.

In all the models <G, R,k ,f”  which we will
consider in part II, the map will be constant, and so

we will simply write the domain S of # instead of f’,

thus, <G, R,k , S» where (P(I) = S for all TeG.

We call a model <G, R,F, S> an intuitionistic

ZF model 1if classical equivalents of all the axioms of

Zermello-Fraenkel set theory, expressed without the use

of the universal quantifier, are valid in it.

As a special case, suppose <G, R, F, S> is an
intuitionistic ZF model and G has only one element, T.

Then this 1is (isomorphically) a classical model for ZF.
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If we define a truth function on all formulas over S by

v(Xx) T if TEX

F if TkX

v(X)

v will be a classical truth function, and all the
axioms of ZF map to T. Thus the notion of
intuitionistic ZF model is a generalization of the

classical notion.

Suppose <G, R,F, S> were an intuitionistic
ZF model such that ~A.C. was valid in it, where A.C.
is some classically equivalent form of the axiom of choice
expressed without use of the universal quantifier. It

follows that the axiom of choice is classically unprovable

from the axioms of ZF.  For otherwise,
ZF |- A.C.
so for some finite subset Al""’An of ZF,
Al,...,Anf-cA.C. 5
We may suppose Al,...,An stated without the universal
quantifier.

: I—C(AlA /\An)‘DA.C.
So by the results of section 8, chapter 4,

‘—' o ﬁ AA 3 . -
I ( ( ]A- . ) A C ,

P (a8 . Ahg) 22 ==k 8.
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But <G, R,I=, S> is an intuitionistic model in

which A ,An,~A.C. are valid, a contradiction.

15

Thus, to show the classicél independence of the

| axiom of choice it suffices to construct an intuitionistic
ZF model in which ~A.C. is valid. Similar results
hold for the independence of the continuum hypothesis

and of the axiom of constructability.

Iﬁ this chapter we will define intuitionistic
generalizations of thé classical Ma sequence of Godel
[3], which provide intuitionistic generalizations of L,
the class of constructable sets. We will show these
generalizations are intuitionistic ZF models. In later
chapters we will give specific intuitionistic generalizations
of L establishing the independence of the axiom of
choice, the continuum hypothesis, and the axiom of

tonstructability.

The specific models constructed, and most-of the
general.methods will be those of forcing, due to Cohen [2].
It is the point of view that is different. No classical
models are constructed, complete sequences are not used,

and countable ZF models are not required. .

In [4], Gregorzyk noted the foundations of a
connection between forcing and intuitionistic logic. 1In
[12] ‘Kripke discussed the relationship between forcing

and his médels.
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Remark: For the rest of part II we shall distinguish

informally between constants, bound variables, and free

variables. We shall use X,y,z,... for both
bound and free variables. This is an informal
distinction. Formally, free variables and constants

are both parameters in the sense of part I since free

variables are simply place holders for arbitrary constants.

Section 2

The classical Ma sequence

Let V be a classical ZF -model. In [3] Godel

defined over V the sequence M, of sets as follows.

M = ¢
Ma+l is the collection of all definable
subsets of Ma'

M = U M for limit ordinals, A~.

A as<A &%
Let the class L be EZi. Ma’ Godel showed that

L was a classical ZF model.

As an introduction to the intuitionistic generaliza-
tion, we re-state the Godel 