ASYMPTOTIC RELATIONS BETWEEN DIFFERENTIAL AND DIFFERENCE EQUATIONS by

LEON E. GERBER
(C) Leon E. Gerber 1969

ALL RIGHTS RESERVED

The committee for this doctoral dissertation consisted of:
Donald J. Newman, Ph.D., Chairman
Leopold Flatto, Ph.D.
Joseph Lewittes, Ph.D.

Contents
Chapter I. Introduction 1
Chapter II. Asymptotic Preserving Operations 3
Chapter III. Difference Equations and Differential
Equations 16
Chapter IV. Some Higher Order Non-Linear Difference
Equations 43

Acknowledgement

I would like to express my appreciation to Professor Donald. J. Newman who suggested many of the problems in this thesis and whose enlightening lectures on estimation theory contained the germ of their solution.

I would like to thank Yeshiva University and the National Science Foundation for their generous financial support during the course of research which led to this paper and to NSF Grant GP-7504 which paid for its typing.

Special thanks are due to Myron Pollack whose advice and encouragement led me to do graduate work in mathematics.

This work is dedicated to my wife Shulamith who makes my efforts seem worthwhile.

Chapter 1. Introduction
Over the past two hundred years there have been many theorems relating sums to integrals. Perhaps the simplest of these is the following:

Theorem 1.1. Let $f(x)$ be of bounded variation on the interval [$0, n$]. Then

$$
\left|\int_{0}^{n} f(x) d x-\sum_{1}^{n} f(k)\right| \leq \operatorname{var}[0, n] f(x)
$$

The theorem that is perhaps the most generally used is the following one due to Maclaurin (published first by Euler who waived claim to priority):

Theorem 1.2. Let $f(x)$ be $2 k+1$ times continuously differentiable in $[1, n]$. Then

$$
\begin{aligned}
& \Sigma_{1}^{n} f(\nu)=\int_{1}^{n} f(x) d x+\frac{1}{2}(f(1)+f(n))+\frac{B_{2}}{2!}\left(f^{\prime}(n)-f^{\prime}(1)\right) \\
& k+\frac{B_{4}}{4!}\left(f^{\prime \prime \prime}(n)-f^{\prime \prime \prime}(1)\right)+\ldots+\frac{B_{2 k}}{(2 k)!}\left(f^{(2 k-1)}(n)-f^{(2 k-1)}(1)\right) \\
& \quad+\int_{1}^{n} P_{2 k+1}(k) f^{(2 k+1)}(x) d x
\end{aligned}
$$

where the B_{n} are Bernoulli numbers and

$$
P_{1}(x)=x-[x]-\frac{1}{2}, P_{r+1}^{\prime}(x)=P_{r}(x), \int_{0}^{1} P_{k}(x)=0 \text { for any } k
$$

Thus it is possible to find a complete asymptotic expansion for $\sum_{1}^{n} f(\nu)$ if a satisfactory esimtate of the error term can be found.

We shall concern ourselves here largely with the first term of such an expansion, the validity of $\Sigma_{l}^{n} f(k) \sim \int_{l}^{n} f(t) d t$ and generalizations thereof.

In the first part of the paper we deal with the following type of question: if $\Sigma_{1}^{n} f(k) \sim f(n)$ what can we say about $\Sigma_{1}^{n} G(f(k))$? More generally, if $f(x) \sim k(x)$, what can we say about $G(f(x))$?

The second part of the paper considers the formula $x_{n}=\Sigma_{l}^{n} f(k) \sim \int f(t) d t$ from the point of view of the calculus of finite difference. The given relation is equivalent to the following statement:

If x_{n} is a solution to the difference equation $x_{n+1}-x_{n}=f(n)$ and $\mu(n)$ is a solution to the differential equation $\frac{d \mu}{d n}=f(n)$ (where n is assumed to be continuous) then $X_{n} \sim \mu_{n}$. This leads naturally to the question: when are the solutions of $x_{n+1}-x_{n}=f\left(x_{n}, n\right)$ asymptotic to those of $\frac{d \mu}{d n}=f(\mu, n)$?

In the third part we consider briefly some higher order non-linear difference equations.

Chapter II. Asymptotic Preserving Operations
Let us begin by defining four relations between functions.
i) $f(x)=o(g(x))(f$ is little 0 of $g)(x \rightarrow a)$ if
$\lim (x \rightarrow a) f(x) / g(x)=0$.
ii) $f(x)=O(g(x))(f$ is big 0 of $g)(x \rightarrow$ a) if $f(x) / g(x)$ remains bounded as $x \rightarrow$ a.
iii) $f(x) \approx g(x)$ (f is of the same order as g) ($x \rightarrow$ a) if
$f(x)=O(g(x))(x \rightarrow a)$ and $g(x)=O(f(x))(x \rightarrow a)$.
iv) $f(x) \sim g(x)$ (f is asymptotic to g) $\left(x \rightarrow\right.$ a) if $\lim _{x \rightarrow a} f(x) / g(x)=1$.

When " $x \rightarrow a$ " is understood from context, it may be omitted.

It is obvious that all four relations are transitive; that the last three are reflexive and that the first is irreflexive the last two are symmetric and that the first is asymmetric. Further, $f \sim g$ implies $f \approx g$ which in turn implies that $f=O(g)$ and that $f=O(g)$ is false.

These relations are all well-defined with respect to multiplication e.g. $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right)$ imply $f_{1} f_{2}=O\left(g_{1} g_{2}\right)$.

The last two are well-defined with respect to division as well as if: we adopt the conventive that $0 / 0=1$ (or just ignore the points at which the denominator vanishes).

With respect to addition, the situation is not so good. We have $x+I \sim x(x \rightarrow \infty)$ and $-x \sim-x(x \rightarrow \infty)$ but $I \sim 0(x \rightarrow \infty)$ is obviously false. If we restrict ourselves to positive functions, these by virtue of the inequality

$$
\max \left(\frac{a}{b}, \frac{c}{d}\right) \geq \frac{a+c}{b+d} \geq \min \left(\frac{a}{b}, \frac{c}{d}\right)
$$

all four
relations are well-defined for addition. Henceforth, all fundtions will be assumed positive unless the contrary is stated. When we consider limits, most of these properties fail. For example, if $f_{n}(x)=\sum_{0}^{n} \frac{x^{k}}{k!}$ and $g(x)=e^{x / 2}$ then $f_{n}(x)=o(g(x))(x \rightarrow \infty)$ for each n and $f(x)=\lim (n \rightarrow \infty) f_{n}(x)$ exists $\left(=e^{x}\right)$ and $f(x) \neq \circ(g(x))$. In fact $g(x)=o(f(x))$.

Let $h(\vec{y})=h\left(y_{1}, \ldots, y_{n}\right)$ be a function of n variables defined for $y_{i}>0, i=l, \ldots, n$. We shall say that h is asymptotic preserving if whenever

$$
f_{i}(x) \rightarrow \infty, f_{i}(x) \sim g_{i}(x) \quad(x \rightarrow \infty) \quad i=1, \ldots, n
$$

we have $h\left(f_{1}(x), \ldots, f_{n}(x)\right) \sim h\left(g_{1}(x), \ldots, g_{n}(x)\right)$. We say that h is order preserving if in the above definition we replace " \sim " by " \approx ". One class of functions with both properties is represented by $h(\vec{y})=y_{1}{ }^{\alpha_{1}}{ }_{y_{2}}{ }^{\alpha_{2}} \ldots y_{n}{ }^{\alpha_{n}}$. We observe that

$$
\begin{aligned}
\frac{\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\nabla \mathrm{~V}}(\overrightarrow{\mathrm{y}})}{\mathrm{h}(\overrightarrow{\mathrm{y}})} & =\frac{\left(y_{1}, \ldots, y_{n}\right) \cdot\left(\alpha_{1} y_{1}{ }_{1}^{\alpha_{1}-1}{ }_{y_{2}} \alpha_{2} \ldots y_{n}{ }_{n}^{\alpha_{n}}, \ldots, \alpha_{n} y_{1}{ }_{1}^{\left.\alpha_{1}{ }_{y_{2}} \alpha_{2} \ldots y_{n}{ }_{n}^{\alpha_{n}-1}\right)}\right.}{y_{1}{ }_{1}{ }_{y_{2}}^{\alpha_{2}} \ldots{y_{n}}_{n}} \\
& =\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}
\end{aligned}
$$

is bounded and prove our first theorem which extends and refines a result by R.C. Entringer [2].

Theorem 2.1. A function $h(\vec{y})$ is asymptotic preserving iff for each $\varepsilon>0, h$ can be expressed as a product $h(\vec{y})=h_{1}(\vec{y}) h_{2}(\vec{y})$ where $h_{1}(\vec{y})$ is continuously differentiable and

$$
\frac{\vec{y} \cdot \overrightarrow{\nabla h}_{1}(\vec{y})}{h_{1}(\vec{y})} \text { is bounded and }\left|h_{2}(\vec{y})-1\right|<\varepsilon \text { as } \vec{y} \rightarrow \infty
$$

where $\vec{y} \rightarrow \infty$ means $y_{i} \rightarrow \infty, i=l, \ldots, n$.
If we let $k\left(y_{1}, \ldots, y_{n}\right)=\log h\left(\exp y_{1}, \ldots, \exp y_{n}\right)$ and define k to be approximation preserving if whenever

$$
f_{i}^{\prime}(x) \rightarrow \infty, f_{i}(x)-g_{i}(x) \rightarrow 0(x \rightarrow \infty) i=1, \ldots, n
$$

we have $k\left(f_{1}(x), \ldots, f_{n}(x)\right)-k\left(g_{1}(x), \ldots, g_{n}(x)\right) \xrightarrow{1} 0$ as $x \rightarrow \infty$, Theorem 2.1 is equivalent to Theorem 2.2. A function $k(\vec{y})$ is approximation preserving iff for each $\varepsilon>0$, k can be expressed as a $\operatorname{sum} k(\vec{y})=k_{1}(\vec{y})+k_{2}(\vec{y})$ where $k_{l}(\vec{y})$ is continuously differentiable and $\left\|\overrightarrow{\nabla k_{l}}(\vec{y})\right\|$ is bounded and $\left|k_{2}(\vec{y})\right|<\epsilon$ for \vec{y} sufficiently large.

We prove this result by means of two lemmas.
Lemma 1. A function $k(\vec{y})$ is approximation preserving iff it can be expressed as a $\operatorname{sum} k(\vec{y})=k_{1}(\vec{y})+k_{2}(\vec{y})$ where $k_{1}(\vec{y})$ is uniformly continuous and $\mathrm{k}_{2}(\overrightarrow{\mathrm{y}}) \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$.

Proof. Suppose k is approximation preserving. Let $k_{1}\left(y_{1}, \ldots, y_{n}\right)=y_{1} \ldots y_{n} \int_{y_{1}}^{y_{1}+1 / y_{1} y_{n}+1 / y_{n}} \ldots \int_{y_{n}} k\left(u_{1}, \ldots, u_{n}\right) d u_{1} \ldots d u_{n}$. If $k_{2}(\vec{y})=k(\vec{y})-k_{1}(\vec{y})$,

$$
\begin{aligned}
\left|k_{2}(\vec{y})\right| & =y_{1} \ldots y_{n}\left|\int_{y_{1}}^{y_{1}+1 / y_{1}} \ldots \int_{y_{n}}^{y_{n}+1 / y_{n}} \stackrel{y}{y}(k(\vec{y})-k(\vec{u})) d u_{1} \ldots d u_{n}\right| \\
& \leq y_{1} \ldots y_{n} \int_{y_{1}}^{y_{1}+1 / y_{1}} \ldots \int_{y_{n}}^{y_{n}+1 / y_{n}}|k(\vec{y})-k(\vec{u})| d u_{1} \ldots d u_{n}
\end{aligned}
$$

Since $\left|y_{i}-u_{i}\right|<I / y_{i} i=l, \ldots, n$, it follows that for \vec{y} sufficiently large, the integrand, and hence the integral, is arbitrarily small. Hence $k_{2}(\vec{y}) \rightarrow 0$. Suppose $k_{1}(\vec{y})$ is not uniformly continuous. There are an $\varepsilon>0$ and sequences $\vec{y}_{m} \rightarrow \infty, \vec{\delta}_{m} \rightarrow 0$, such that $\left|k_{1}\left(\vec{y}_{m}+\vec{\delta}_{m}\right)-k_{1}\left(\vec{y}_{m}\right)\right|>\varepsilon$ for all m. But

$$
\begin{aligned}
& \left|k_{1}\left(\vec{y}_{m}+\vec{\delta}_{m}\right)-k_{1}\left(\vec{y}_{m}\right)\right| \\
& \quad \leq\left|k_{1}\left(\vec{y}_{m}+\vec{\delta}_{m}\right)-k\left(\vec{y}_{m}+\vec{\delta}_{m}\right)\right|+\left|k\left(\vec{y}_{m}+\vec{\delta}_{m}\right)-k\left(\vec{y}_{m}\right)\right|+\left|k\left(\vec{y}_{m}\right)-k_{1}\left(\vec{y}_{m}\right)\right|,
\end{aligned}
$$

where the first and third terms are values of k_{2} and the second approaches zero by hypothesis. This contradiction proves that k_{1} is uniformly continuous.

Conversely, a uniformly continuous function is certainly approximation preserving, and the addition of a null function cannot affect this property.

Lemma 2. A function $k(\vec{y})$ is uniformly continuous iff for each $\varepsilon>0$ it can be expressed as a $\operatorname{sum} k(\vec{y})=k_{1}(\vec{y})+k_{2}(\vec{y})$ where $k_{l}(\vec{y})$ is continuously differentiable and its differential is bounded (in norm) and $\left|k_{2}(\vec{y})\right|<\epsilon$.

Proof. Suppose $k(\vec{y})$ is uniformly continuous. Then for any $\epsilon>0$ there is a $\delta>0$ such that for $\left|y_{i}-u_{1}\right|<\delta, i=1, \ldots, n$ we have $|k(\vec{y})-k(\vec{u})|<\epsilon$. Let

$$
\begin{aligned}
& \quad k_{1}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{\delta n} \int_{y_{1}}^{y_{1}+\delta} \ldots \int_{y_{n}}^{y_{n}+\delta} k\left(u_{1}, \ldots, u_{n}\right) d u_{1} \ldots d u_{n} \\
& \text { If } k_{2}(\vec{y})=k(\vec{y})-k_{1}(\vec{y}) \text {, then }\left|k_{2}(\vec{y})\right|<\varepsilon . \text { Also } \\
& \frac{\partial}{\partial y_{1}} k_{1}\left(y_{1}, \ldots, y_{n}\right)= \\
& =\frac{1}{\delta^{n}} \int_{y_{2}}^{y_{2}} \ldots \int_{y_{n}}^{y_{n}+\delta}\left(k\left(y_{1}+\delta, u_{2}, \ldots, u_{n}\right)-k\left(y_{1}, u_{2}, \ldots, u_{n}\right)\right) d u_{2} \ldots d u_{n}
\end{aligned}
$$

which is continuous and less in absolute value than

$$
\frac{1}{\delta^{n}} \int_{y_{2}}^{y_{2}+\delta} \cdots \int_{y_{n}}^{y_{n}+\delta} \varepsilon d u_{2} \ldots d u_{n}=\epsilon / \delta
$$

Similarly, the other partials are continuous and bounded. Conversely, suppose that for each $\varepsilon>0, k$ can be expressed as a sum $k(\vec{y})=k_{1}(\vec{y})+k_{2}(\vec{y})$ where $k_{1}(\vec{y})$ is uniformly continuous and $\left|k_{2}(\vec{y})\right|<\epsilon$. Let $\epsilon>0$ be given. Choose $k_{1}(\vec{y})$ and $k_{2}(\vec{y})$ to satisfy the hypotheses with $\varepsilon / 3$. We can find a $\delta>0$ such that for $\|\vec{y}-\vec{u}\|<\delta,\left|k_{1}(\vec{y})-k_{1}(\vec{u})\right|<\epsilon / 3$. Then for $\|\vec{y}-\vec{u}\|<\delta$,

$$
|k(\vec{y})-k(\vec{u})| \leq\left|k_{1}(\vec{y})-k_{1}(\vec{u})\right|+\left|k_{2}(\vec{y})-k_{2}(\vec{u})\right|<\varepsilon / 3+2 \varepsilon / 3=\varepsilon .
$$

Hence $k(\vec{y})$ is uniformly continuous.
Combining the two lemmas, we have the theorem. That we cannot strengthen the second lemma, and hence the theorem, to
have $k_{2}(\vec{y}) \rightarrow 0$ is obvious upon considering $k(y)=\sqrt{|\sin y|}$ where a function that approximates to within ϵ must have slopes of the order of $1 / \varepsilon$.

While it is not obvious from the definition that an asymptotic preserving function is order preserving, the following theorem shows this to be true.
Theorem 2.3. A function $h(\vec{y})$ is order preserving iff it can be expressed as a product $h(\vec{y})=h_{l}(\vec{y}) h_{2}(\vec{y})$ where $h_{1}(\vec{y})$ is continuously differentiable and $\frac{\vec{y} \cdot \overrightarrow{\nabla h_{1}} \overrightarrow{(\vec{y})}}{h_{1}(\vec{y})}$ is bounded and $h_{2}(\vec{y}) \approx 1$ as $\vec{y} \rightarrow \infty$.

If we define $k(\vec{y})$ as before and define k to be error preserving if whenever

$$
f_{i}(\vec{x}) \rightarrow \infty, f_{i}(x)-g_{i}(x) \text { is bounded as } x \rightarrow \infty \quad i=1, \ldots, n
$$

it follows that $k\left(f_{1}(x), \ldots, f_{n}(x)\right)-k\left(g_{1}(x), \ldots, g_{n}(x)\right)$ is bounded, then Theorem 2.3 is equivalent to Theorem 2.4. A function $k(\vec{y})$ is error preserving iff it can be expressed as a $\operatorname{sum} k(\vec{y})=k_{1}(\vec{y})+k_{2}(\vec{y})$, where $k_{1}(\vec{y})$ is continuously differentiable and $\left\|\vec{\nabla} \mathrm{k}_{1}(\overrightarrow{\mathrm{y}})\right\|$ and $\mathrm{k}_{2}(\overrightarrow{\mathrm{y}})$ are bounded.

Proof. Let
$k_{1}\left(y_{1}, \ldots, y_{n}\right)=\int_{y_{1}}^{y_{1}+1} \ldots \int_{y_{n}}^{y_{n}+1} k\left(u_{1}, \ldots, u_{n}\right) d u_{1} \ldots d u_{n}$ and $k_{2}(\vec{y})=k(\vec{y})-k_{1}(\vec{y})$.
The result follows by arguments similar to preceeding ones.
Functions which are asymptotic to themselves when their arguments are merely of the same order were investigated by

Karamata [4] who called them slowly increasing. He obtained the single variable version of the following theorem whose proof is similar to the previous ones. Theorem 2.5. A function $h(\vec{y})$ is slowly increasing iff it can be expressed as a produce $h(\vec{y})=h_{1}(\vec{y}) h_{2}(\vec{y})$ where $h_{1}(\vec{y})$ is continuously differentiable and

$$
\frac{\vec{y} \cdot \vec{\nabla} h_{1}(\vec{y})}{h_{1}(\vec{y})} \rightarrow 0 \text { and } h_{2}(\vec{y}) \rightarrow 1 \text { as } \vec{y} \rightarrow \infty
$$

Note that this class of functions is smaller than that of asymptotic preserving functions. On the other hand Theorem 2.6. Any function which is the same order as itself when its arguments are asymptotic is necessarily order preserving.

Proof. We make the usual transformation and show that if

$$
k\left(y_{1}+e_{1}\left(y_{1}\right), \ldots, y_{n}+e_{n}\left(y_{n}\right)\right)-k\left(y_{1}, \ldots, y_{n}\right)
$$

is bounded whenever $\vec{e}(\vec{y}) \rightarrow 0$, as $\vec{y} \rightarrow \infty$, then

$$
k\left(y_{1}+M_{1}\left(y_{1}\right), \ldots, y_{n}+M_{n}\left(y_{n}\right)\right)-k\left(y_{1}, \ldots, y_{n}\right)
$$

is bounded whenever $\vec{M}(\vec{y})$ is bounded as $\vec{y} \rightarrow \infty$.
Let $\vec{M}(\vec{y})$ be given with $\|\vec{M}(\vec{y})\|<M$ and suppose $k(\vec{y}+\vec{M}(\vec{y}))-k(\vec{y})$
is not bounded. Then for some sequence $\vec{y}_{m} \rightarrow \infty, y_{m+l, i}-y_{m, i}>2 M i=l, \ldots, n$ we have

$$
\left|k\left(\vec{y}_{m}+\overrightarrow{\mathrm{M}}\left(\overrightarrow{\mathrm{y}}_{\mathrm{m}}\right)\right)-\mathrm{k}\left(\overrightarrow{\mathrm{y}}_{\mathrm{m}}\right)\right|>\mathrm{m}^{2}, \mathrm{~m}=1,2, \ldots
$$

Define $e_{i}\left(y_{i}\right)=M_{i}\left(y_{i}\right) / m$ for y_{i} between $y_{m, i}$ and $y_{m, i}+M_{i}\left(y_{m, i}\right)$ and zero otherwise, $i=1, \ldots, n$. Obviously, $\vec{e}(\vec{y}) \rightarrow 0$ as $\vec{y} \rightarrow \infty$. Then for each m, one of the m numbers

$$
\mid k\left(\vec{y}_{m}+j \vec{e}\left(\vec{y}_{m}\right)\right)-k\left(\vec{y}_{m}+(j-1) \vec{e}\left(\vec{y}_{m}\right) \mid j=1, \ldots, m\right.
$$

must exceed m, which is a contradiction.
Karamata's proof uses the weaker hypothesis that for each $\mathrm{b}>0, G(\mathrm{by}) \sim G(y)(y \rightarrow \infty)$ and he concludes that their relation holds uniformly for $0<b_{1} \leq x \leq b_{2}$ Korevaar L_{5} 」 proves the uniformity assuring measurability (and not integrability) and then proceeds as above.

Landau $[6]$ notes that if G is monotone and $G(2 x) \sim G(x)$, then $G(A x) \sim G(x)$ for every $A>0$. Another result of Karamata gives a. partial answer to our first question. Theorem: If $f(x)$ is slowly increasing, there exist numbers k and $a_{k}>0$ such that
(1) $\int_{0}^{x} f(t) t^{k} d t \sim a_{k} f(x) \int_{0}^{x} t^{k} d t$

Conversely, if there are such numbers k and a_{k} for which 1) holds
then $f(x)=x^{a} L(x)$ where $L(x)$ is slowly increasing and $a_{k}=\frac{a+k+1}{a+1}$. In particular, $f(x)$ is slowly increasing iff for some $k, \int_{0}^{x} f(t) t^{k} d t \sim f(x) \int_{0}^{x} t^{k} d t$. We prove the following generalization.
Theorem 2.7. If $f(x)$ is slowly increasing, $G(x)=\int_{0}^{\infty} g(t) d t \uparrow \infty$ and $G^{-1}(x)$ is order preserving, then

$$
\int_{0}^{x} f(t) g(t) d t \sim f(x) \int_{0}^{x} g(t) d t(x \rightarrow \infty)
$$

We first prove the following
Lemma. If $G(x)=\int_{0}^{x} g(t) d t \uparrow \infty$ and $f\left(G^{-1}(A(x) G(x))\right) \sim f(x)(x \rightarrow \infty)$ for every $A(x) \approx 1$, then $\int_{0}^{x} f(t) g(t) d t \sim f(x) \int_{0}^{x} g(t) d t$.
Proof.. By hypothesis, whenever $G(x)$ increases by a bounded factor, $f(x)$ increases by a factor approaching 1 . If $G(x)$ is bounded, $f(x)$ must be identically one and the result is trivial. Let $\epsilon>0$ be given and suppose for $t>x^{\prime},\left|\frac{f(x)}{f(t)}-1\right|<\varepsilon$ when $G(\dot{x}) \leq 2 G(t)$. Let $n=\max \left\{K: G(x) / 2^{k}>G\left(x^{\prime}\right)\right\}$. Let $x_{i}=G^{-1}\left(G(x) / 2^{n-i}\right)$

$$
\int_{0}^{x} f(t) g(t) d t=\int_{0}^{x_{0}} f(t) g(t) d t+\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(t) g(t) d t
$$

which lies between

$$
\begin{aligned}
K & +\sum_{1}^{n}\left(\frac{I \pm \epsilon}{2}\right)^{i} f(x) G(x) \\
& =K+\frac{I+\epsilon}{I \mp \varepsilon}\left(1-\left(\frac{1 \pm \epsilon}{2}\right)^{n}\right) f(x) G(x)
\end{aligned}
$$

Now as x increases, $\mathrm{G}(\mathrm{x})$ increases without bound and whenever it doubles, $f(x) G(x)$ is increased by a factor of at least $\frac{2}{1+\varepsilon}$ and n increases by 1. Then for x sufficiently large, the sum is between
(l$\pm 4 \varepsilon) f(x) G(x)$. Since ϵ is arbitrary, we have the result.
The converse is also true but we shall not prove it.
Now for the theorem. $G^{-1}(x)$ order preserving means that for each $A^{\prime}(y) \approx 1$ there is a $B^{\prime}(y) \approx 1$ such that
$G^{-1}\left(A^{\prime}(y) y\right)=B^{\prime}(y) G^{-1}(y)$. Let $y=G(x), A(x)=A^{\prime}(G(x))$, $B(x)=B^{\prime}(G(x))$ and we have $G^{-1}(A(x) G(x))=B(x) x$. Hence $f\left(G^{-1}(A(x) G(x))\right)=f(B(x) x) \sim f(x)$ and the result follows by the lemma.
We observe for $k>-1, G(x)=\int_{0}^{x} x^{\alpha} d t=\frac{x^{\alpha}+1}{\alpha+1}$,
$G^{-1}(x)=[(\alpha+1) x]^{\overline{\alpha+1}}$ is order preserving (in fact, asymptotic preserving) which implies part of Karamata's result. It is intuitively obvious that if $g(x)$ is growing faster, the class of functions that can be factored out is larger. A simple result of this kind is the following
Theorem 2.8. If $G(x)=\int_{0}^{X} g(t) d t \uparrow \infty$ and $G^{-1}(x)$ is slowly increasing, and $f(x)$ is asymptotic preserving, then
$\int_{0}^{x} f(t) g(t) \sim f(x) \int_{0}^{x} g(t) d t$. The proof is simple. For each $A^{\prime}(x) \approx 1$ we have $G^{-1}\left(A^{\prime}(y) y\right) \sim G^{-1}(y)$. Let
$y=G(x), A(x)=A^{\prime}(G(x))$. Hence $G^{-1}(A(x) G(x)) \leadsto x$ and $f\left(g^{-1}(a(x) G(x)) \sim f(x)\right.$.
Thus, for example $\int_{0}^{x} t^{\alpha} e^{t} d t \sim x^{\alpha} \int_{0}^{x} e^{t} d t \sim x^{\alpha} e^{x} \quad \alpha$ real.
Now let us examine what happens on the boundary of the conditions described in Theorem 4. It is certainly not true that $\int_{0}^{x} \frac{\log t}{t} d t \sim \log x \int_{1}^{x} \frac{d t}{t}=\log ^{2} x$. In fact the integral is equal to $\frac{\log ^{2} x}{2}$. Although $\log t$ is slow,
$H(x)=G^{-l}(x)=\left(\int_{0}^{x} \frac{d t}{t}\right)^{-l}=e^{x}$ and $\frac{d H(x)}{H(x)}=I \neq O\left(\frac{l}{x}\right)$. There are two things we can say: The first is that if $f\left(e^{x}\right)$ is slow, we can factor it out: $\int_{0}^{x} \frac{f(t)}{t} d t=\int_{0}^{\log x} f\left(e^{y}\right) d y$ $\sim f\left(e^{\log x}\right) \int_{0}^{\log x} d y=f(x) \log x$. The second is that if $f(x)$ is slow and if $g(x)=\int_{1}^{x} \frac{f(t)}{t} d t$ diverges, $g(x)$ is slow itself. Since $f(t)>0, g(x)$ is monotone and we need only show $g(2 x) \sim g(x)$ or $g(2 x)-g(x)=0(g(x))$. Let $\varepsilon>0$ be given. Choose x so large that for $y>x / 2^{n}$ (n to be chosen later), $\left|f\left(y_{I}\right) / f\left(y_{2}\right)-I\right|<\varepsilon$ when $\frac{1}{2} \leq y_{I} / y_{2} \leq 2$. Then $0 \leq g(2 x)-g(x)=\int_{x}^{2 x}(f(t) / t) d t \leq(1+\epsilon) f(x) \int_{x}^{2 x} \frac{d t}{t}=(1+\epsilon) f(x) \log 2$ $g(x) \geq \sum_{1}^{n} \int_{x / 2^{n-k+1}}^{x / 2^{n-k}} \frac{f(t)}{t} d t \geq \sum_{1}^{n} \frac{f(x)}{(1+\varepsilon)^{n}} \int_{x / 2^{n-k+1 t}}^{x / 2^{n-k}} \frac{d t}{}=$
$=\sum_{1}^{n} \frac{f(x) \log 2}{(l+\varepsilon)^{n}} \rightarrow f(x) \log 2$ as $n \rightarrow \infty$; for n sufficiently large
$0<(g(2 x)-g(x)) / g(x) \leq 2 \varepsilon$. The next question is: what happens when $g(x)=\int_{1}^{x} \frac{f(t)}{t} d t$ converges, say to C e.g. $f(x)=I / \log ^{2} t . g(x)$ is then slow but in a trivial sense: Less trivial is the fact that $h(x)=C-g(x)=\int_{x}^{\infty} \frac{f(t)}{t} d t$ is also slow: The proof is simple:
$0 \leq 1-\frac{\int_{2 x}^{\infty} \frac{f(t)}{t} d t}{\int_{x}^{\infty} \frac{f(t)}{t} d t}=\frac{\int_{x}^{2 x} \frac{f(t)}{t} d t}{\int_{x}^{\infty} \frac{f(t)}{t} d t} \leq \frac{(1+\varepsilon) \log ^{2} f(x)}{\log ^{2} f(x) \Sigma_{I}^{\infty} \frac{1}{(1+\varepsilon)}}=\epsilon(1+\varepsilon)$
In this line, a simple variation of the previous methods enables us to prove: If $f(x)$ is slow, $G(x)=\int_{x}^{\infty} g(t) d t \downarrow 0$ and $G^{-1}(x)$ is order preserving, then $\int_{x}^{\infty} f(t) g(t) d t \sim f(t) \int_{X}^{\infty} g(t) d t(x \rightarrow \infty)$.

Let us turn from functions to operators. The statement that if $f(x) \sim g(x)(x \rightarrow \infty)$ and $\int_{0}^{x} g(t) d t \rightarrow \infty$ implies $\int_{0}^{x} f(t) d t \sim \int_{0}^{x} g(t) d t$, is just a rewording of I'Hospital's rule. So we have: integration preserves asymptotic relations. In fact, fractional integration of any order preserves asymptotic relations. If $f(x) \sim g(x)(x \rightarrow \infty)$ and and $g_{\alpha}(x)=\frac{I}{\Gamma(\alpha)} \int_{0}^{x}(x-t) g^{\alpha}(t) d t \rightarrow \infty$, then $F_{\alpha}(x) \sim G_{\alpha}(x)(\alpha>0)$

$$
\begin{aligned}
\left|\frac{F_{\alpha}(x)}{G_{\alpha}(x)}-1\right| & =\left|\frac{\int_{0}^{x}(x-t)^{\alpha-1}(f(t)-g(t)) d t}{\int_{0}^{x}(x-t)^{\alpha-1} g(t) d t}\right| \\
& \leq \frac{\int_{0}^{x_{0}}(x-t)^{\alpha-1}(f(t)+g(t)) d t}{\int_{0}^{x}(x-t)^{\alpha-1} g(t) d t}+\frac{\int_{x_{0}}^{x}(x-t)^{\alpha-1}|f(t)-g(t)| d t}{\int_{x_{0}^{x}}^{x}(x-t)^{\alpha-1} g(t) d t}
\end{aligned}
$$

We can choose x_{0} so large that the second term is less then $\varepsilon / 2$ by the hypothesis. Now consider $0<\alpha \leq 1$. In the first term the numerator is non increasing with x, the denominator approaches infinity so for x sufficiently large, it too $<\varepsilon / 2$. If $\alpha>I, F_{\alpha}(x)=\int_{0}^{x} F_{\alpha-1}(t) d t$ and the result follows by indunction on the integer part of α. We can replace $(x-t)^{\alpha-1}$ with an arbitrary kernel $k(x, t)$ provided for each $t, k(x, t)$ remain bounded as $x \rightarrow \infty$. The same applies to sum i.e. if $k(x, n)$ is bounded as $x \rightarrow c^{-}, a_{n} \sim b_{n}(n \rightarrow \infty)$, $\Sigma_{I}^{\infty} a_{n} k(x, n), \Sigma_{l}^{\infty} b_{n} k(x, n)$ exist for $x<c$ and $\lim \left(x \rightarrow c^{-}\right) \quad \Sigma_{I}^{\infty} b_{n} k(x, n)=\infty$, thus $\sum_{\mathcal{L}}^{\infty} a_{n} k(x, n) \sim \sum_{i}^{\infty} b_{n} k(x, n)(x \rightarrow \infty)$. Differentiation, in general, does not preserving asymptotic relations as the following example shows.
$f(x)=x+e^{\sin x} \sim x$ but $f^{\prime}(x)=1+e^{\sin x} \cos x \nsim 1$.
Sufficient conditions have been supplied by Obreskov [l] who provedif $\varphi(x)=x^{\alpha} L(x)$ where $L(x)$ is slow and $\varphi^{(n)}(x)>-\mu x^{-n} \varphi(x)$, then for $1 \leq i \leq n-1, \varphi^{(i)}(x) \sim \alpha(\alpha-1) \ldots(\alpha-i+1) x^{\alpha-i} L(x)$. The result holds for i-n if $\varphi^{(n)}(x)$ is monotonic. For an exhaustive study of the ways in which power series preserve asymptotic relations see Hardy [3].

Charter III. Difference Equations and Differential Equations Before proceeding with some examples of difference equations, we present a useful extension of Bernoulli's inequality which does not seem to be in any collection we have examined. Lemma. Let $F(k, a, x)=1+a x+\frac{a(a-I)}{2!} x^{2}+\ldots+\binom{a}{k} x^{k}$ be the $k^{\text {th }}$ partial sum of the binomial series for $(I+x)^{a}$ where $x>-1$. If the first term omitted, i.e. $\binom{a}{k+1} x^{k+1}$, is positive, then $(1+x)^{a}>F(k, a, x) ;$ if the first term omitted is zero, then $(I+x)^{a}=F(k, a, x)$; if the first term omitted is negative, then $(I+x)^{a}<F(k, a, x)$.

Proof. The result is trivial if $k=0$. For $k=1$ it is Bernoulli's inequality. Suppose the theorem is true for all (real) a, all $x>-1$ and all positive integers less than k. Let
$G(k, a, x)=(1-x)^{a}-F(k, a, x) G(k, a, x)=a \int_{0}^{x} G(k-1, a-1, t) d t=a I$. We first consider the cases of equality. If a is a non-negative integer $\leq k$, the series has terminated; because if $x=0$. We now consider cases.
I. The first omitted term is positive:
$\binom{a}{k+1} x^{k+1}=\frac{a(a-1) \cdots(a-k)}{(k+1)!} \cdot x^{k+1}>0$
A. $x>0$. I. If $a>0,\binom{a-I}{k}=\frac{(a-I) \ldots(a-k)}{k!}$ is also positive. Thus $G(k-I, a-I, t)>0, I>0, a I>0$.
2. If $\left.a<0\binom{a-1}{k} x^{k}<0, G(k-I, a-I) t\right)<0, I<0$, $a I>0$. B. $x<0$. I. If $a>0,\binom{a-1}{k}$ has the same sign as $\binom{a}{k+1}$, x^{k} has sign opposite from $x^{k+1},\binom{a-1}{k} x^{k}<0, G(k-1, a-1, t)<0, I>0, a I>0$.
2. $a<0$. $\binom{a-1}{k}$ has opposite sign from $\binom{a}{k+1}$, x^{k} has opposite sign from $x^{k+1},\binom{a-1}{k} x^{k}>0, G(k-1, a-1, t)>0, I<0, a I>0$. II. The first omitted term is negative. The analysis is the same. We introduce the concept of oscillation and extend Theorem 1.1 to Riemann-Stieltjes integrals.
$\operatorname{Osc}[k-1, k] f(t)=\sup [k-1, k] f(t)-\inf [k-1, k] f(t)$, $\operatorname{osc}[0, n] f(t)=\sum_{k=1}^{n} \operatorname{osc}[k-1, k] f(t)$.
Theorem 3.0. $\left|\int_{0}^{n} G(x) d F(x)-\sum_{1}^{n} G(k)(F(k)-F(k-1))\right| \leq$ $\sum_{1}^{n} \operatorname{OSc}[k-1, k] G(x) \operatorname{var}[k-1, k] F(x)$.
Proof: $\left|\int_{k-1}^{k} G(x) d F(x)-G(k)(F(k)-F(k-1))\right|$
$=\left|\lim _{\delta \rightarrow 0} \Sigma\left(G\left(x_{i}\right)-G(k)\right)\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)\right|$
$\leq \operatorname{osc}[k-1, k] G(x) \cdot \lim _{\delta \rightarrow 0} \sum\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|$
$=\operatorname{osc}[k-1, k] G(x) \cdot \operatorname{var}[k-I, k] F(x)$, where the x_{i} represent
points of a partition of $[k-1, k]$ and δ represents the norm. The result follows upon summing. If $F(x)=x$, this reduces to the refinement of Theorem l.I.

If $\operatorname{osc}[0, n] G(x)=o\left(\sum_{1}^{n} G(k)\right)$ or $o\left(\int_{0}^{n} G(t) d t\right)$ then
$\sum_{l}^{n} G(k) \sim \int_{0}^{n} G(t) d t$. The gain is illustrated by $G(x)=\frac{1}{x^{2}} \sin \frac{\pi}{\{x\}^{3}}$ ($\{x\}$ means the fractional part of x). For any k, $\operatorname{var}[k, k+1] G(x)=\infty$ while osc $[0, \infty] \mathrm{G}(\mathrm{x})$ is finite.

What conditions can we place on a function to guarantee this behavior? Without monotonicity we can find bounded real analytic functions which vanish at the integers but not in bebetween eg $\sin ^{2} \pi x$. On the other hand, there are functions all of whose derivatives are everywhere positive and yet because of their rapid growth violate this condition. For example,
$\int_{0}^{n} e^{t} d t=e^{n}-1 \quad$ while $\sum_{1}^{n} e^{k}=\frac{e^{n+1}-1}{e-1}$ which differs by a factor of less than two. Combining the two types of conditions and switching to sequences, whose oscillations are the same by monotonicity, we have

Theorem 3.1. If r is an integer $\geq 1, \Delta^{r} a_{n}$ is eventually nonnegative and $a_{n}=O\left(n^{2 r-1}\right)$, then $a_{n}=o\left(\sum_{I}^{n} a_{k}\right)$ and this is best possible.

Proof. Let $P(x)$ be: if $a_{n} \neq \circ \Sigma_{1}^{n} a_{1}$ and $\Delta^{r} a_{n} \geq 0$, then $\Delta^{k} a_{n}$ is eventually positive for $0 \leq k<r$ and $a_{n} \neq 0\left(n^{2 r-1}\right)$. Let $R(k)$ be: If $0 \leq k<r, a_{n} \neq o\left(\sum_{1}^{n} a_{1}\right)$ and $\Delta^{r} a_{n} \geq 0$, then $\Delta^{k} a_{n}>0, \Delta^{k} a_{n}$ is unbounded and $a_{n} \neq 0\left(r^{2 k-1}\right)$. Suppose $a_{n} \neq 0\left(\Sigma_{1}^{n} a_{1}\right)$ and $\Delta^{r} a_{n} \geq 0$. For some subsequences $\left\{a_{n k}\right\}$ and some $\varepsilon>0, a_{n k}>\varepsilon \Sigma_{l}^{n_{k}} a_{r} \geq \varepsilon a_{l}, a_{n k}>\varepsilon \Sigma_{l}^{n_{k}} a_{r} \geq \varepsilon \Sigma_{l}^{k} \varepsilon a_{l}=k \varepsilon a_{l}^{2}$. $a_{n k}$ is unbounded, and $R(0)$ and $P(1)$. Suppose $P(r-1)$. Suppose $R(r-1)$. Since $\Delta^{k-1} a_{n}>0$ and $\Delta^{r} a_{n} \geq 0, \Delta^{k} a_{n}$ cannot change sign more than $\mathrm{r}-\mathrm{k}$ times (Rolle's theorem for sequences). $\Delta^{k-1} a_{n}$ is unbounded, the final sign must be positive. By $P(k), a_{n} \neq O\left(n^{2 k-1}\right)(k \geq 1), \Delta^{k} a_{n}$ is unbounded, $R(k)$ for $k=0,1, \ldots, n-1$. We need yet another induction to finish. For the subsequence $\left\{a_{n i}\right\}$ of above, let $S(k)$ be: $\Delta^{k} a_{k_{i}}>\frac{\epsilon}{2} \Delta^{k-1} a_{n_{i}}=\frac{\epsilon}{2} \Sigma_{i}^{n_{i}} \Delta^{k} a_{m}$. Then $S(0)$. Suppose $S(k-1)$. Suppose $\Delta^{k-1} a_{n_{i}-1} \geq \frac{n_{i}-1}{n_{i}} \Delta^{k-1} a_{k_{i}}$. Since $\Delta^{k-1} a_{n}$ is increasing $\Delta^{k-1} a_{m} \geq \frac{m}{n_{i}} \Delta^{k-1} a_{n_{i}}, \quad \Delta^{k-1} a_{n_{i}}>\varepsilon \Sigma_{1}^{n_{i}} \Delta^{k-1} a_{m}$ $>\frac{\varepsilon}{n_{i}} \Delta^{k-1} a_{n_{i}} \Sigma_{i}^{n_{i}} m>\frac{\varepsilon}{3} \Delta^{k-1} a_{n_{i}} . n_{i}$ which is impossible for $n_{i}>\varepsilon / 3$.

Thus $\Delta^{k-1} a_{n_{1}}-1<\frac{n_{i}-1}{n_{i}} \Delta^{k-1} a_{n_{i}}$. Fence $\Delta^{k-1} a_{n_{i}}>\varepsilon \Sigma_{1}^{n_{i}} \Delta^{k-1} a_{i}$ $>\frac{\varepsilon}{2} \cdot \frac{\left(\Delta^{k-1} a_{n_{i}}\right)^{2}}{\Delta^{k-1} a_{n_{i}}-\Delta^{k-1} a_{n_{i}}-1}, \quad \Delta^{k} a_{n_{i}}>\frac{\varepsilon}{2} \Delta^{k-1} a_{n_{i}}, \quad S(k), k=0, \ldots, r$.
Now by $P(r-1), a_{n} \neq O\left(n^{2 r-3}\right), \Delta^{r-1} a_{n}$ is unbounded. It is also monotone; for n sufficiently large, $\Delta^{r-I_{a}} a_{n}=M, a_{n}>\frac{M n^{r}}{r!}$ By $S(r), \Delta^{r-1} a_{a_{n_{i}}}>(\varepsilon / 2)^{r} a_{n_{i}}>(\varepsilon / 2)^{r} M_{i}{ }_{i}^{r} / r$: Thus

$$
\begin{aligned}
& a_{2 n_{i}}>\frac{\left(2 n_{i}-n_{i}\right)^{r-1}}{r!} \Delta^{r-1} a_{n_{n}}>\frac{n_{i}^{r-1}}{r!} \frac{\mathrm{Mn}_{i}^{r}}{r!}(\varepsilon / 2)^{r}= \\
= & \frac{M}{(r!)^{2}}(\varepsilon / 2)^{r} n_{i}^{2 r-1} .
\end{aligned}
$$

By choice of M, the first factor is arbitrarily large.
Conversely, for any sequence $a_{n} \neq 0(n), \Delta^{r} a_{n} \geq 0$, we can find a sequence $b_{n} \leq a_{n}$ such that $\Delta^{r_{b}} b_{n} \geq 0$ and $b_{n} \neq 0\left(\sum_{1}^{n} b_{k}\right)$. We do not give the details here.

This completes our discussion of the difference equation
$x_{n+1}=x_{n}+f(n)$ and we turn our attention to

1) $x_{n+1}=x_{n}+f\left(x_{n}\right)$
and the corresponding differential equation
2). $\frac{d \mu}{d n}=f(\mu)$

We have the following result about the convergence of x_{n}. Let $f(x)$ be a real or complex-valued function of a real or complex variable. a) If there is a number L such that $f(I)=0$ and $f^{\prime}(L)$ exists and $\left|I+f^{\prime}(L)\right|<l$ (f need not be even continous elsewhere), then for x_{1} in a sufficiently small neighborhood of $L, x_{n} \rightarrow I$.
b) If in addition $f(x)$ is continuous, the set of all \dot{x}_{0} which result in convergence to L is open.
c) If $\left|I+f^{\prime}(L)\right|>I$, the sequence cannot converge to L unless $x_{n}=L$ for some n.
Proof: a) Let $g\left(x_{n}\right)=x+f(x)$. Then $\left|g^{\prime}\left(I_{1}\right)\right|=1-\varepsilon$ for some $\varepsilon>0$ and $\left|\frac{x_{n-I}-L}{x_{n}-L}\right|=\left|\frac{g\left(x_{n}\right)-g(L)}{x_{n}-I}\right|<I-\varepsilon / 2$ for x_{n} in some neighborhood n of L by definition of derivative. Hence for x_{o} in η

$$
\left|x_{n}-L\right|<\left|x_{0}-L\right|(1-\varepsilon / 2)^{n}
$$

b) Let $f_{1}(x)=f(x), f_{n+1}(x)=f\left(f_{n}(x)\right)$. Then for each $n, f_{n}(x)$ is continuous and $x_{n}=f_{n}\left(x_{0}\right)$. If x_{0} results in convergence to L, for some $n, x_{n}=f_{n}\left(x_{0}\right) \in \eta$ and hence for all x in some neighborhood of $x_{0}, f_{n}(x) \in \eta$ and they too result in convergence.
c) For all x in some deleted neighborhood of L,

$$
\left|\frac{x_{n+1}-x_{n}}{x_{n}-L}\right|=\left|\frac{g\left(x_{n}\right)-g(L)}{x_{n}-L}\right|>I+\varepsilon / 2
$$

The nature of the convergence, or what is the same thing, divergence to infinity, was first discussed by Lublin [7] who obtained a series for the $n^{\text {th }}$ term which is rapidy convergent as well as asymptotic in the case where $g(x)$ is a polynomial of degree \geq 2. DeBruijn [1, ch. 8] gives a complete discussion of
convergence in the case where g is analytic. He includes the case $g(x)=a_{1} x+\Sigma_{2}^{\infty} a_{i} x^{i}$ where $\left|a_{1}\right|<1$ and the very slow case $g(x)=x+\sum_{2}^{\infty} a_{i} x^{i} \quad a_{i}$ real, $i=2,3, \ldots$ In many cases considered, the solution of 2) either converges or has a pole for some positive value of n. Our main theorems are concerned with cases that lie between these two extremes. To begin, let us consider the difference equation
3) $x_{n+1}=x_{n}+x_{n}^{\alpha} \quad \alpha<1$.

The differential equation is
4) $\frac{d \mu}{d n}=\mu^{\alpha}$

The solutions of 4) are $\mu=[(1-\alpha)(n+c)]^{1 / 1-\alpha} \sim\left[(1-\alpha)_{n}\right]^{1 / 1-\alpha}$ Thus any two solutions of 4) are asymptotic to each other. We show that they are asymptotic to any solutions of 3) as well.
$x_{n+1}^{1-\alpha}=x_{n}^{1-\alpha}\left(1+\frac{1}{x_{n}^{1-\alpha}}\right)^{1-\alpha}=x_{n}^{1-\alpha}\left(1+\frac{1-\alpha}{x_{n}^{1-\alpha}}+\alpha\left(\frac{1}{x_{n}^{1-\alpha}}\right)\right)=$
$x_{n}^{1-\alpha}+1-\alpha+o(1) \cdot x_{n}^{1-\alpha}=(1-\alpha) n+o(n) . \quad x_{n} \leadsto\left[(1-\alpha)_{n}\right]^{1 / 1-\alpha}$
since powers are asymptotic preserving.
Lemma I. Let x_{0} be non-negative and let $f(x)$ be defined and positive on $\left[x_{0}, \infty\right]$ and let $f(x y) / f(x) \leq y$ for $y \geq 1$. Then any solution of 1) or 2) is unbounded.
$x_{n+1}=x_{n}+f\left(x_{n}\right)>x_{n}, x_{1}>x_{0} \geq 0$. Thus if x_{n} is bounded, it must converge to a positive number A and $f(A)>0$.
$x_{n}=x_{0}+f\left(x_{0}\right)+\sum_{I}^{n-1} f\left(x_{k}\right) \geq x_{0}+f\left(x_{0}\right)+\sum_{I}^{n-1} x_{k} f(A) / A$ $\geq x_{0}+f\left(x_{0}\right)+(n-1) x_{1} f(A) / A$, which is unbounded.

The argument for 2) is similar. We now prove
Theorem 3.2. Let x_{n} be any solution of 1) and $\mu(n)$ be any solution of 2). Let $f(x)>0$ for $x \geq x_{0}, f(x y) / f(x) \leq y$ for $y \geq 1$ and $f(x)=0\left(\frac{x}{\log x}\right)$. Then $x_{n} \sim \mu(n)$.
Suppose first $\mu(0)=x_{0}>0$
We have $\frac{d \mu}{f^{\prime}(\mu)}=d n, n=\int_{\mu_{0}}^{\mu} \frac{d t}{f(t)}$
Suppose $\mu(n)=x_{n} y_{n}$ with $y_{n}>l$ (for some n).
$\frac{x_{n}\left(y_{n}-1\right)}{f\left(x_{n}\right) y_{n}} \leq \int_{x_{n}}^{x_{n} y_{n}} \frac{1}{f\left(x_{n}\right) t / x_{n}} \leq \int_{x_{n}}^{\mu(n)} \frac{d t}{f(t)}=n-\int_{x_{0}}^{x_{n}} \frac{d t}{f(t)}=$
$\sum_{0}^{n-1}\left[1-\int_{x_{k}}^{x_{k+1}} \frac{d t}{f(t)}\right] \leq \Sigma_{0}^{n-1}\left[1-\int_{x_{k}}^{x_{k+1}} \frac{d t}{f\left(x_{k}\right) t / x_{k}}\right] \leq$
$\sum_{0}^{n-1}\left[1-\frac{x_{k+1}-x_{k}}{f\left(x_{k}\right) x_{k+1} / x_{k}}\right]=\Sigma_{1}^{n-1}\left[1-\frac{x_{k}}{x_{k+1}}\right] \leq$
$\log x_{n}-\log x_{0}$.
Hence $\frac{y_{n}-1}{y_{n}} \leq \frac{f\left(x_{n}\right)}{x_{n} /\left[\log x_{n}-\log x_{0}\right]} \rightarrow 0 . \frac{\mu(n)}{x_{n}}=y_{n} \rightarrow 1$ for those n
for which $\mu(n) \geq x_{n}$. We intermupt the proof to show that the hypothesis cannot in general be weakened, then complete the proof with a weaker hypothesis. Consider
$\frac{d \mu}{d n}=\frac{\mu}{\log \mu}, \frac{d \mu}{\mu} \log \mu=d n, \frac{\log ^{2} \mu}{2}=n+c, \mu=e^{\sqrt{2 n+c}}=e^{\sqrt{2 n}+o(1)} \sim$
$\sim e^{\sqrt{2 n}}$. Now for $x_{n} \cdot x_{n+1}=x_{n}+\frac{x_{n}}{\log x_{n}}=x_{n}\left(1+\frac{1}{\log x_{n}}\right)$,
$\log x_{n+1}=\log x_{n}+\frac{1}{\log x_{n}}-\frac{1}{2 \log ^{2} x_{n}}+0\left(\frac{1}{\log ^{3} x_{n}}\right)$,
$\log ^{2} x_{n+1}=\log ^{2} x_{n}+2-\frac{1}{\log x_{n}}+0\left(\frac{1}{\log ^{2} x_{n}}\right)<\log ^{2} x_{n}+2$ for n

$$
\begin{aligned}
& \log ^{2} x_{n} \leq 2 n, \quad \log ^{2} x_{n+1} \leq \log ^{2} x_{n}+2-\frac{1}{\sqrt{2 n}}+o\left(\frac{1}{n}\right) . \text { Thus } \\
& \log ^{2} x_{n}<2 n-\sqrt{2 n}+o(\log n) \text { and } \\
& x_{n} \leq e^{\sqrt{2 n-\sqrt{2 n}}}=e^{\sqrt{2 n-1+0(1)} \sim e^{\sqrt{2 n}} / e . \text { We could prove }}
\end{aligned}
$$

$$
x_{n} \sim e^{\sqrt{2 n}} / e \text { but this is enough. }
$$

We suppose now $x_{n}>\mu(n)$ in which case $f(x)=O(x)$ is sufficient: (This is no real gain; the only way $\mu(n)$ can lay behind x_{n} is if $f(x)$ is decreasing most of the time.) Since $\mu(n)$ is divergent, for any $\varepsilon>0$ we can find n so large that $x_{m} / x_{m-1}<I+\varepsilon$ whenever $x_{m} \geq \mu(n)$. For some non-negative integer k, $x_{n-k} / 1+\varepsilon<x_{n-1-k}<\mu(n) \leq x_{n-k}$. We show that for all $m \geq n$, $\mu_{m}>x_{m-k} / 1+\varepsilon$. For $m=n$, we have the result. Suppose true for integers less than m. If $\mu_{m}>x_{m-1-k}$, then $\mu_{m-k} / I+\varepsilon$. If-

$$
\begin{aligned}
\mu_{m} \leq x_{m-1-k}, \frac{\mu_{m}}{x_{m-k}} & \geq \frac{\mu_{m-1}+m \min \left[\mu_{m-1}, \mu_{m}\right] \cdot f(x)}{x_{n-1-k}+f\left(x_{m-1-k}\right)} \\
& \geq \frac{\mu_{m-1}+f\left(x_{m-1-k}\right)\left(\frac{\mu_{m-1}}{x_{m-1}}\right)}{x_{n-1-k}+f\left(x_{m-1-k}\right)}=\frac{\mu_{m-1}}{x_{m-1-k}} .
\end{aligned}
$$

Now consider $x_{n+1}=x_{n}+f\left(x_{n}, n\right)$. We know that if f is independent of x, we must have a) osc $[0, n] f(x, n)=o \Sigma_{l}^{n} f(x, k)$ and hence uniformly in x, and if f is independent of n,
b) $f(x y / n) / f(x, n) \leq y$ and $\frac{f(x, n)}{f(1, n)}=o\left(\frac{x}{\log x}\right)$ to insure that $\mu(n) \sim x_{n}$.

We give an example to show that if we do not strengthen a) we must strengthen b) and that the slightest strengthening of the first
condition of a) eliminates the need for the second and then we prove our main theorem.
Consider $x_{n+1}=x_{n}+\frac{x_{n} n^{2}}{\log ^{2} x_{n}}, \frac{d \mu}{d n}=\frac{\mu n^{2}}{\log \mu}$ which satisfies a) and b).
We have $\frac{d \mu}{\mu} \log ^{2} \mu=n^{2} d n, \frac{\log ^{3} \mu}{3}=\frac{n^{3}+c}{3}, \mu=e^{n+o\left(n^{-2}\right)}$
Let $x_{n}=e^{k_{n} n^{\prime}} \cdot e^{k_{n+1}(n+1)}=e^{k_{n} n}\left(1+\frac{n^{2}}{k^{2} n^{2}}\right)=e^{k_{n} n}\left(1+\frac{1}{k^{2}}\right)$.
The sequence k_{n} has a fixed point for $e^{k}=1+\frac{1}{k^{2}}$ where $k \approx .85$ so $x_{n}=O\left(e^{.85 n}\right)$.
Lemma II. If $\frac{f(x y)}{f(x)} \leq k(y)$ for all $x, y \geq 1$, then
$\varlimsup_{x \rightarrow \infty} \frac{\log f(x)}{\log x} \leq \inf \frac{\log k(y)}{\log y}$ which implies that if for a single value of $y, k(y)<y$, then for some $\alpha<1, \frac{f(x y)}{f(x)}<y^{\alpha}$ and $f(x)=O\left(x^{\alpha}\right)$.

Proof. Let $f(x)=\exp h(\log x)$ and the condition becomes $\exp h(\log x+\log y) / \exp k(\log x) \leq k(y)$. Take logs, let
$\log x=u, \log y=v$ and $v y(v)=\log k(y)$. Then
$k(u+v)-k(u)<v y(v)$
$k(u+2 v)-k(u+v)<v y(v)$
$k(u+n v)-k(u+(n-1) v)<v y(v)$
Hence $k(u+n v)<h(v)+n v y(v)$
and $\frac{k(u+n v)}{u+n v}<\frac{k(v)+n v y(v)}{u+n v}$. Let $n \rightarrow \infty$
$\overline{\lim } \frac{h(u)}{u} \leq g(v), \quad \lim \frac{h(u)}{u} \leq \inf g(v)$ whence the result.
We omit the easy proof of

Lemma III. a) If $f(x)$ is non-decreasing and for $a<b, f(a)\rangle a$ and $f(b)<b$, then for some $c \varepsilon(a, b), f(c)=c$.

Thus, if $f(x)$ is monotone, $f(x)=x$ has a unique smallest "solution".

Let $f(n, x)>0$ and $f(n, x y) / f(n, x)<y$ for $y \geq 1$.
We cannot say, as before, that x_{n} is divergent e.g. $f(n, x)=\frac{1}{n^{2}}$. We do have the following result:

Lemma IV. a) If $\sum_{n=1}^{\infty} f(n, x)$ converges for some $x>0$, it converges for every larger x and x_{n} also converges.
b) If $\sum_{n=1}^{\infty} f(n, x)$ diverges for x arbitrarily large, it diverges for all $x>0$ and x_{n} also diverges.
Proof. a) Suppose $\Sigma_{2}^{\infty} f\left(k, x_{0}\right)$ converges to S. Then for $x>x_{o}$, $\Sigma_{l}^{n} f(k, x) \leq \frac{x}{x_{0}} \sum_{l}^{n} f\left(k, x_{0}\right)<\frac{x S}{x_{0}}$. Then for n sufficiently large, $\Sigma_{n}^{\infty} f\left(k, x_{0}\right)<\frac{l}{2 x_{0}}$. Suppose x_{n} diverges. Then for m sufficiently large, $k_{n+m}>2 x_{0}$. But
$x_{n+m}-x_{n}=\sum_{n}^{n+m-1} f\left(k, x_{k}\right) \leq \sum_{n}^{n+m-1} f\left(k, x_{0}\right) \frac{x_{k}}{x_{0}} \leq \frac{x_{n+m}}{x_{0}} f\left(k, x_{0}\right)<$ $<\frac{1}{2} x_{n+m}$, a contradiction.
b) The first part follows from a). Suppose x_{n} converged to L. Then $x_{1} \leq x_{n}<I$.
$x_{n}=x_{0}+\Sigma_{1}^{n} f\left(k, x_{k}\right) \geq x_{0}+\Sigma_{1}^{n} f(k, L) \frac{x_{k}}{L}>x_{0}+\frac{x_{1}}{L} \Sigma_{1}^{n} f(k, L)$
which diverges. A corresponding result holds for $\mu(n)$.
A quick corollary. Let $\Sigma_{l}^{\infty} f(k)$ be divergent and let $h(x)$ be decreasing. Then if $x_{n+1}-x_{n}=f(n) h\left(x_{n}\right)$,
$x_{n+1}-x_{o}=\Sigma_{l}^{n} f(k) h\left(x_{k}\right)$ is divergent i.e. for any divergent series there is a slower divergent series. In fact, in the variables separate case weaker hypotheses suffice.

Let $x_{n+1}=x_{n}+f(n) g\left(x_{n}\right)$
a) If $g(x)=O(x)$, then the convergence of $\Sigma_{l}^{n} f(k)$ implies that of $x_{n+1}=\dot{x}_{1}+\sum_{I}^{n} f(k) g\left(x_{k}\right)$.
b) If $g(x)$ is bounded away from zero on each finite interval, the divergence of $\Sigma_{1}^{n} f(k)$ implies that of x_{n}.
Proof. a) Suppose $\Sigma f(k)$ converges and x_{n} diverges. There is an M for which $g\left(x_{n}\right)<M x_{n}$. For $n>N_{0}, \sum_{n}^{\infty} f(k)<\frac{l}{2 M}$ and $x_{m+n}>2 x_{m}$.

$$
\begin{aligned}
x_{n+m}-x_{n} & =\sum_{m}^{m+n-1} f(k) g\left(x_{k}\right) \leq\left[\sum_{m}^{m+n-1} f(k)\right] \operatorname{Max}\left[x_{m} \leq x \leq x_{n+m}\right] \\
& <\frac{1}{2 m} \cdot M x_{m+n}=\frac{1}{2} x_{m+n} \cdot x_{m+n}<\frac{1}{2} x_{n}, \text { a contradiction. }
\end{aligned}
$$

b) Suppose $\Sigma f(k)$ diverges and x_{n} converges to A and on $[0, A] g(x) \geq c$. Then $x_{n}=x_{1}+\sum_{l}^{n-1} f(k) g\left(x_{k}\right) \geq c \sum_{1}^{n-1} f(k)$ which is divergent.

We now come to our main theorem.
Theorem 3.3. Let $f(x, n)>0$ for $x>0, n>0$ and suppose that
a) osc $[0, n] f(x, k)=o\left(\sum_{l}^{n} f(x, k)\right)$ uniformly in x
b) For some $\alpha<1$ and all $x>0, y \geq 1, \dot{n} \geq 0$

$$
f(x y, n) / f(x, n) \leq y^{\alpha} \text { and } f(x, n)=f\left(x^{-}, n\right)
$$

Let x_{n} be any solution of
5). $x_{n+1}=x_{n}+f\left(x_{n}, n\right)$
with $x_{0}>0$, and let $\mu(n)$ be any solution of
6) $\frac{d \mu}{d n}=f(\mu, n)$
with $\mu(0)>0$. Then x_{n} and $\mu(\mathrm{n})$ are both unbounded and

$$
\mu(n) \sim x_{n} \quad(n \rightarrow \infty)
$$

For any function which satisfies the first condition of b), the limits $f\left(x^{+}, n\right)$ and $f\left(x^{-}, n\right)$ exist so that the second condition is not restrictive. Also, if the condition is satisfied for $\alpha<0$, it is satisfied for $\alpha=0$, We shall assume $\alpha \geq 0$. The first conclusion is immediate. Suppose for some $x, \Sigma_{1}^{\infty} f(x, k)$ is convergent. Then osc $[0, n] f(x, k)$ must be identically zero and $f(x, k)$ must be constant in k. The constant must be zero which contradicts the hypothesis. The result follows by Lemma IV. The rest of the proof is long so we have broken it into sections.
I. We show that if $\{\ln \}$ is any sequence with $n \leq I_{n} \leq n+1$, then $f(x, \ln)=o\left(\sum_{l}^{n-1} f\left(x, I_{k}\right)\right)$ uniformly in x For n large, osc $[0, n] f(x, k)<\varepsilon \sum_{1}^{n} f(x, k)$

$$
\begin{aligned}
& =\varepsilon \Sigma_{1}^{n-1} f(x, k)+\varepsilon f(x, n) \\
& <\varepsilon \Sigma_{1}^{n-1} f(x, k)+\varepsilon[f(x, n-1)+\text { osc }[n-1, n] f(x, k)] \\
& <2 \varepsilon \Sigma_{1}^{n-1} f(x, k)+\varepsilon \operatorname{osc}[1, n] f(x, k) . \text { Therefore }
\end{aligned}
$$

$$
\text { osc }[0, n] f(x, k)<\frac{2 \varepsilon}{1-\varepsilon} \sum_{l}^{n-1} f(x, k) .
$$

$$
\Sigma_{1}^{n-1} f(x, k)<\Sigma_{1}^{n-1}\left[f\left(x, I_{k}\right)+\operatorname{osc}[k, k+1] f(x, 1)\right]
$$

$$
=\Sigma_{1}^{n-1} f\left(x, I_{k}\right)+\operatorname{osc}[1, n] f(x, k)
$$

$$
<\Sigma_{I}^{n-1} f\left(x, I_{k}\right)+\varepsilon \Sigma_{I}^{n-1} f\left(x, I_{k}\right)
$$

for n sufficiently large. Thus

$$
\Sigma_{I}^{n-1} f(x, k)<\frac{1}{1-\varepsilon} \Sigma_{I}^{n-1} f\left(x, I_{k}\right)
$$

Let N be so large that for $n>N$, osee $[0, n] f(x, k)<\frac{\epsilon}{2} \Sigma_{1}^{n-1} f(x, k)$ and $\frac{l}{N-1}<\frac{\varepsilon}{2}$. Then for each $n>N$, either

$$
\text { a) } f(x, 0) \leq 2 \operatorname{osc}[0, n] f(x, k)=2 \frac{\varepsilon}{2} \Sigma_{1}^{n-1} f(x, k)=\varepsilon \Sigma_{1}^{n-1} f(x, k)
$$

or b) osee $[0, n] f(x, k)<\frac{1}{2} f(x, 0)$ in which case

$$
f(x, k) \geq f(x, 0)-\operatorname{osc}[0, k] f(x, 1)>\frac{1}{2} f(x, 0) \text { for all } k \leq n
$$

and $f(x, 0)<\frac{2}{n-1} \Sigma_{1}^{n-1}<\varepsilon \Sigma_{1}^{n-1} f(x, k)$
Then $f(x, n)<f(x, 0)+\operatorname{osc}[0, n] f(x, k)<\frac{3}{2} \in \Sigma_{1}^{n-1} f(x, k)$.

$$
<\frac{3 \varepsilon}{2(1-\varepsilon)} \sum_{I}^{n-1} f\left(x, I_{k}\right)
$$

and

$$
\begin{aligned}
f\left(x, I_{n}\right) & <f(x, n)+o s c[n, n+1] f(x, k) \\
& <\varepsilon \Sigma_{1}^{n-1} f(x, k)+\text { os }[0, n+1] f(x, k) \\
& <\varepsilon \sum_{1}^{n-1} f(x, k)+\varepsilon \Sigma_{1}^{n} f(x, k) \\
& =2 \varepsilon \sum_{1}^{n-1} f(x, k)+\varepsilon f(x, n) \\
& <\left[2 \varepsilon+\frac{3 \epsilon^{2}}{2}\right] \Sigma^{n-1} f(x, k) \\
& <\left(\frac{2 \varepsilon+(3 / 2) \varepsilon^{1}}{1-\varepsilon}\right) \sum_{1}^{n-1} f\left(x, I_{k}\right) \\
& <\sigma \varepsilon \Sigma_{1}^{n-1} f\left(x, I_{k}\right) \text { for } \varepsilon<\frac{1}{2}
\end{aligned}
$$

It follows that there is an absolute constant A_{1} such that for all x ,
$f(x, 0)<A_{1} \Sigma_{1}^{n-1} f(x, k)$ and $f(x, n)<A_{1} \Sigma_{1}^{n-1} f(x, k) \quad n>1$.
II. We show that $x_{n+1} \sim x_{n}$. uniform ll for $x_{0} \geq c>0$.

$$
\begin{gathered}
x_{1}-x_{0}=f\left(x_{0}, 0\right) \leq f(c, 0)\left(x_{0} / c\right)^{\alpha} \leq f(c, 0)\left(x_{0} / c\right) \\
x_{1}<(1+f(c, 0) / c) x_{0}<A_{3} x_{0}, \quad A_{3} \text { to be chosen later. }
\end{gathered}
$$

Assume $x_{k+1} \leq A_{3} x_{k}$ for $k<n$. Then

$$
\begin{aligned}
x_{n+1}-x_{n} & =f\left(x_{n}, n\right) \\
& <A_{1} \sum_{l}^{n-1} f\left(x_{n}, k\right) \\
& \leq A_{1} \sum_{l}^{n-1} f\left(x_{k}, k\right)\left(x_{n} / x_{k}\right)^{\alpha} \\
& =A_{1} x_{n}^{\alpha} n_{l}^{\sum_{1}^{1}}\left(x_{k+1}-x_{k}\right) / x_{k}^{\alpha}
\end{aligned}
$$

$$
<A_{1} A_{3}^{\alpha^{\prime}} x_{n}^{\alpha} \sum_{1}^{n-1}\left(x_{k+1}-x_{k}\right) / x_{k+1} \quad{ }^{\alpha} \text { by induction }
$$

$$
\leq A_{1} A_{3}^{\alpha} x_{n}^{\alpha}\left(x_{n}^{1-\alpha}-x_{1}^{1-\alpha}\right) /(1-\alpha) \text { by comparison with }
$$

integral,

$$
\leq A_{1} A_{3} \alpha_{X_{n}} / 1-\alpha
$$

Thus $x_{n+1} \leq\left(1+A_{1} A_{3}^{\alpha} /(1-\alpha)\right) x_{n}<A_{3} x_{n}$ for A_{3} sufficiently large. We have also shown
7) $\sum_{1}^{n-1} f\left(x_{n}, k\right) \leq \frac{A_{3}^{\alpha}}{1-\alpha} x_{n}$

Now choose N so large that for $n \geq N, f(x, n)<\frac{\epsilon(1-\alpha)}{A_{3}^{\alpha}} \Sigma_{1}^{n-l} f(x, k)$.
Repeating the argument for $n \geq N$ with $\frac{\varepsilon(1-\alpha)}{A_{3}^{\alpha}}$ in place of A_{2}, we have $0<x_{n+1}-x_{n}<\varepsilon x_{n}$.
III. Let u_{n} and v_{n} be any two solutions of 5). We show that
$u_{n} \sim v_{n}$. Suppose $u_{n}>v_{n}$. Let N be so large that
$v_{n+1} / v_{n}<l+\varepsilon$
a) If $u_{n+1}<v_{n+1}$, we have $v_{n}<u_{n}<u_{n+1}<v_{n+1}<(1+\varepsilon) v_{n}$ $l<u_{n} / v_{n}<l+\varepsilon$. Furthermore,
$l<v_{n+1} / u_{n+1}<v_{n+1} / v_{n}<l+\varepsilon$, so whenever the order changes, both ratios are less than $l+\epsilon$.
b) Suppose $u_{n}>v_{n}$ for all n.

$$
\begin{aligned}
\frac{u_{n+1}}{v_{n+1}} & =\frac{u_{n}+f\left(u_{n}, n\right)}{v_{n+1}} \leq \frac{u_{n}+\left(u_{n} / v_{n}\right)^{\alpha} f\left(v_{n}, n\right)}{v_{n+1}}=\frac{\left.u_{n}+\left(u_{n} / v_{n}\right)^{\alpha} v_{n+1}-v_{n}\right)}{v_{n+1}} \\
& =\frac{u_{n}}{v_{n}}\left[\frac{v_{n}+\left(v_{n} / u_{n}\right)^{1-\alpha}\left(v_{n+1}-v_{n}\right)}{v_{n+1}}\right]<\frac{u_{n}}{v_{n}}
\end{aligned}
$$

Thus if $u_{n} / v_{n}<l+\varepsilon$ for any n, the same is true for all succeeding n.

Suppose $u_{n} / v_{n}>l+\varepsilon$ for all n. Rearranging the last expression we obtain

$$
\begin{aligned}
& \begin{aligned}
\frac{u_{n+1}}{v_{n+1}} & \leq \frac{u_{n}}{v_{n}}\left[1-\frac{\left(v_{n+1}-v_{n}\right)\left[1-\left(v_{n} / u_{n}\right)^{l-\alpha}\right]}{v_{n+1}}\right] \\
& <\frac{u_{n}}{v_{n}}\left[1-\frac{c\left(v_{n+1}-v_{n}\right)}{v_{n+1}}\right], \text { where } 1>c>1-\left(\frac{1}{1+\varepsilon}\right)^{1-\alpha}>0 . \\
\frac{u_{n+m}}{v_{n+m}} & =\frac{u_{n}}{v_{n}} I_{k=n}^{n+m}\left[1-\frac{c\left(v_{k+1}-v_{k}\right)}{v_{k+1}}\right]
\end{aligned} .
\end{aligned}
$$

But the product diverges to zero since the product

$$
\Pi_{k=n}^{n+m} l-\frac{v_{k+1}-v_{k}}{v_{k+1}}=\Pi_{k=n}^{n+m} \frac{v_{k}}{v_{k+1}}=\frac{v_{n}}{v_{n+m}}
$$

diverges to zero. (The convergence of Π I-cx, $\Sigma c x, \Sigma x$, II l-x are equivalent provided $0<c \mathrm{cx}<1,0<\mathrm{x}<1$.). Thus for m large, $u_{n+}, / v_{n+m}<1+\varepsilon$.
IV. We establish bounds for the solutions of 5) and 6). The previous step allows us to assume $x_{0}=\mu(0)>0$. Let $z_{0}=y_{0}=\mu(0)$ also. Define

$$
\begin{aligned}
& y_{n+1}=\inf \left\{y: y=y_{n}+\sup \left\{f(x, k): y_{n} \leq x \leq y, n \leq k \leq n+1\right\}\right. \\
& z_{n+1}=\inf \left\{z: z=z_{n}+\inf \left\{f(x, k): z_{n} \leq x \leq z, n \leq k \leq n+1\right\}\right.
\end{aligned}
$$

The existence of y_{n+1} is assured by the lemma on monotone functions and the fact that $f(x, n)=O\left(x^{\alpha}\right)$ for a closed and bounded n-interval. That of z_{n+1} is assured by continuity from the left in x.

Extend these definitions to $[0, \infty]$ by making y and z polygonal functions of n.
$\mu(0)=y(0)$. Suppose $\mu \leq y$ on $[0, n]$. If $\mu(n+1) \leq y(n)$, then $\mu \leq y$ on $[n, n+1]$. Suppose $\mu(n+\eta)=y(n) 0 \leq \eta<1$ and for some $\theta, \eta<\theta<1 \mu(n+\theta)>y(n+\theta)$. Then for some ξ in (η, θ)

$$
\begin{gathered}
f(\xi)=\mu^{\prime}(\xi)=\frac{\mu(n+\theta)-\mu(n+\eta)}{\theta-\eta}>\frac{y(n+\theta)-y(n, \eta)}{\theta-\eta} \\
\geq \frac{y(n+\theta)-y(n)}{\theta}=y(n+1)-y(n), \text { which contradicts the defini- } \\
\text { tions of } y_{n+1} \text {. A similar argument shows } \mu \geq z .
\end{gathered}
$$

$x_{0} \geq z_{0}$. Suppose $x_{n} \geq z_{n}$. If $x_{n} \geq z_{n+1}$, then $x_{n+1}>z_{n+1}$.
If $x_{n}<z_{n+1}, x_{n+1}=x_{n}+f\left(x_{n}, n\right) \geq z_{n}+f\left(x_{n}, n\right) \geq z_{n+1}$, .
$x_{0} \leq y_{0}$. If $x_{n} \leq y_{n}$, either $x_{n-1} \leq y_{n+1}$ or $x_{n+1}<(I+\varepsilon)_{x_{n}} \leq$
$\leq(1+\varepsilon) y_{n}<(1+\varepsilon) y_{n+1}$.
If $x_{n}>y_{n}, \frac{x_{n+1}}{y_{n+1}} \leq \frac{x_{n}+f\left(x_{n}, n\right)}{y_{n}+f\left(y_{n}, n\right)}<\frac{x_{n}+\left(x_{n} / y_{n}\right) f\left(y_{n}, n\right)}{y_{n}+f\left(y_{n}, n\right)}=\frac{x_{n}}{y_{n}}$
Thus, although y_{n} is not an upper bound, it is asymptotic to x_{n}. whenever it is not.
We show z_{n} diverges. Suppose z_{n} converges to A.

$$
\begin{aligned}
z_{n+1}= & z_{n}+\operatorname{Min}\left[z_{n}, z_{n+1} ; n, n+1\right] f(z, k)=z_{n}+f\left(v_{n}, m_{n}\right) \\
\geq & z_{n}+f\left(A, m_{n}\right)\left(\frac{v_{n}}{A}\right)^{\alpha}>z_{n}+[f(A, n+1)-\operatorname{osc}[n, n+1] f(A, k)]\left(\frac{z_{n}}{A}\right)^{\alpha} \\
> & z_{n}+\frac{1}{2}\left[f\left(A, m_{n}\right)-\operatorname{osc}[n, n+1] f(A, k)\right] \text { for } n \text { sufficiently large. } \\
z_{n+N}-z_{n}> & >\frac{1}{2}\left[\Sigma_{n+1}^{n+N} f(A, k)-\operatorname{osc}[n, n+k] f(A, k)\right] \\
& >\frac{1}{2}\left[\sum_{n+1}^{n+N} f(A, k)-\frac{1}{2} \sum_{1}^{n+N} f(A, k)\right] \text { for } n \text { sufficiently large } \\
& =\frac{1}{4} \sum_{n+1}^{n+N} f(A, k)-\frac{1}{2} \sum_{1}^{n} f(A, k)
\end{aligned}
$$

which diverges. This proves the assertion that $\mu(\mathrm{n})$ diverges.
V. We show that $y_{n+1} \sim y_{n}$ and $z_{n+1} \sim z_{n}$

$$
\begin{aligned}
y_{n+1}-y_{n} & ={\operatorname{Max}\left[y_{n}, y_{n+1} ; n, n+1\right] f(x, k)=f\left(w_{n}, l_{n}\right)} \leq A_{2} \sum_{I}^{n-1} f\left(w_{n}, I_{k}\right) \\
& \leq A_{2} \sum_{I}^{n-1} f\left(y_{k+1}, I_{k}\right)\left(w_{n} / y_{k+1}\right)^{\alpha} \\
& \leq A_{2} \sum_{I}^{n-1} f\left(w_{k}, I_{k}\right)\left(w_{n} / y_{k+1}\right)^{\alpha} \\
& \leq A_{2} y_{n+1}^{\alpha} \sum_{1}^{n-1}\left(y_{k+1}-y_{k}\right) / y_{k+1}^{\alpha} \\
& \leq A_{2} y_{n+1}^{\alpha}\left(y_{n}^{1-\alpha}-y_{l}^{I-\alpha}\right) / 1-\alpha \\
& <A_{2} y_{n+1}^{\alpha} y_{n}^{I-\alpha} / 1-\alpha
\end{aligned}
$$

If $y_{n+1}=c_{n} y_{n}$, we have $(c-1) y_{n} \leq A_{2} c^{\alpha} y_{n} /(1-\alpha)$ or $\frac{c_{n-1}}{c_{n}^{\alpha}} \leq \frac{A_{2}}{1-\alpha} \cdot c_{n}$ is uniformly bounded. Further, for n sufficiently large, we can replace A_{2} by ε and get c_{n} as close to l as we please.
It follows that $\Sigma_{1}^{n-1} f\left(y_{n}, n\right)<A_{4} y_{n}$ for some $A_{4} \cdot z_{1}<B z_{\text {o }}$ for some B. Suppose $z_{k+1}<\mathrm{Br}_{k}$ for $k<n$.

$$
\begin{aligned}
z_{n+1}-z_{n} & =\operatorname{Min}\left[z_{n}, z_{n+1} ; n, n+l\right] f(x, k)=f\left(v_{n}, m_{n}\right) \leq f\left(z_{n}, m_{n}\right) \\
& \leq A_{2} \sum_{1}^{n-1} f\left(z_{n}, m_{k}\right) \\
& \leq A_{2} \sum_{l}^{n-1} f\left(v_{k}, m_{k}\right)\left(z_{n} / v_{k}\right)^{\alpha} \\
& \leq A^{2} z_{n}^{\alpha} \Sigma_{l}^{n-1}\left(z_{k+1}-z_{k}\right) / z_{k}^{\alpha} \\
& \leq A_{2} B^{\alpha} \Sigma_{l}^{n-1}\left(z_{k+1}-z_{k}\right) / z_{k+1}^{\alpha} \text { by induction hypothesis, } \\
& \leq A_{2} B^{\alpha} z_{n}^{\alpha}\left(z_{n}^{l-\alpha}-z_{l}^{l-\alpha}\right) / l-\alpha \\
& <A_{2} B^{\alpha} z_{n} / l-\alpha<B z_{n} \text { for } B \text { sufficiently large. }
\end{aligned}
$$

Now choose \mathbb{N} so large that for $\mathrm{n}>\mathbb{N}_{2}, \mathrm{~A}_{2}$ can be replaced by $\epsilon(1-\alpha) / B^{\alpha}$ and repeat the argument.
VI. We now show $y_{n} \sim z_{n}$

Suppose for $n>N_{0}$, osc $[0, n] f(x, k)<\eta \sum_{I}^{n} f(x, k), y_{n+1} / \dot{y}_{n}<1+\eta$
and $z_{n+1} / z_{n}<1+\eta$. Since y_{n} and z_{n} are monotone, it suffices to show the asymptotic relation for a subsequence $\{n(j)\}$ defined as follows:

$$
n(0)=N_{0}, n(j+1) \text { is the first integer which } z_{n(j+1)} \geq y_{n(j)}
$$

It can only worsen the relation to assume that equality holds
in each case, and we shall do so. Hence

$$
R_{j}=y_{n(j)} / z_{n(j)}=y_{n(j)} / y_{n(j-1)}=z_{n(j+1)} / z_{n(j)}
$$

Let $V=\operatorname{osc}[n(j), n(j+1)] f\left(y_{n(j)}, k\right), C=\Sigma_{1}^{n(j)} f\left(y_{n(j)}, k\right)$, $=\sum_{n(j)+1}^{n(j+l)} f\left(y_{n(j,}, k\right)$
$D+V=\sum_{k=n(j)+1}^{n(j+1)}\left[f\left(y_{n(j)}, k\right)+\operatorname{osc}[k+1, k] f\left(y_{n(j)}, k\right)\right]$
$\geq \sum_{k=n(j)+1}^{n(j+1)} \operatorname{Max}[k-1, k] f\left(y_{n(j)}, 1\right)$
$\geq \sum_{k=n(j)+1}^{n(j+1)} \operatorname{Max}\left[y_{k-1}, y_{k} ; k-1, k\right] f(x, 1)\left(y_{n(j)} / y_{k}\right)^{\alpha}$
$=y_{n(j)}^{\alpha} \sum_{n(j)+1}^{n(j+1)}\left(y_{k}-y_{k-1}\right) / y_{k}^{\alpha}$
$\geq y_{n(j)}^{\alpha} \sum_{n(j)+1}^{n(j+1)}\left(y_{k}-y_{k-1}\right) / y_{k-1}{ }^{\alpha}(I+\eta)^{\alpha}$
$\geq y_{n(j)}^{\alpha}\left(y_{\left.n(j+1)^{1-\alpha}-y_{n(j)}^{l-\alpha}\right) /(1-\alpha)(l+\eta)^{\alpha}}\right.$
$=y_{n(j)}\left[\left(\frac{y_{n}(j+1)}{y_{n}(j)}\right)^{I-\alpha}-1\right] /(1-\alpha)(1+\eta)^{\alpha}$

$$
\begin{aligned}
& D-V=\sum_{k=n(j)+1}^{n(j+l)}\left[f\left(y_{n(j)}, k\right)-\operatorname{osc}[k-1, k] f\left(y_{n(j)}, l\right)\right] \\
& \leq \sum_{k=n(j)+1}^{n(j+1)} \operatorname{Min}[k-1, k] f\left(y_{n(j)}, l\right) \\
& \leq \sum_{k=n(j)+1}^{n(j+1)} \operatorname{Min}\left[z_{k-1}, z_{k} ; k-1, k\right] f(x, 1)\left(y_{n(j)} / z_{k-1}\right)^{\alpha} \\
& =y_{n(j)}^{\alpha} \sum_{n(j)+1}^{n(j+1)}\left(z_{k}^{-z_{k-1}}\right) / z_{k-1}^{\alpha} \\
& \leq y_{n(j)}^{\alpha}(1+\eta)^{\alpha} \sum_{n(j)+1}^{n(j+1)}\left(z_{k}-z_{k-l}\right) / z_{k}^{\alpha} \\
& \leq y_{n(j)}^{\alpha}(l+\eta)^{\alpha}\left(z_{n(j+l)}^{l-\alpha}-z_{n(j)}^{l-\alpha}\right) /(l-\alpha) \\
& =y_{n(j)}(1+\eta)^{\alpha}\left[l-\left(z_{n(j)} / z_{n(j+l)}\right)^{l-\alpha}\right] /(1-\alpha) \\
& V<\eta(C+D), C<A_{4}{ }^{y} n(j) \\
& \text { Let } y_{n(j)} / z_{n(j)}=R_{j} \\
& D+\eta\left(A_{4} y_{n(j)}+D\right)>D+V>y_{n(j)}\left[\left(y_{n(j+1)} / y_{n(j)}\right)^{1-\alpha}-I\right] /(1-\alpha)(1+\eta)^{\alpha} \\
& D-\eta\left(A_{4} y_{n(j)}+D\right)<D-V<y_{n(j)}\left[1-\left(z_{n(j)} / z_{n(j+1}\right)^{1-\alpha}\right](1+\eta)^{\alpha} /(1-\alpha) \\
& \frac{1}{1+\eta}\left(\frac{R_{j+1}^{1-\alpha}-1}{(1+\eta)^{\alpha}(1-\alpha)}-\eta A_{4}\right) \leq \frac{D}{y_{n}(j)}<\frac{1}{1-\eta}\left(\frac{(1+\eta)^{\alpha}\left(1-1 / R_{j}^{1-\alpha}\right)}{1-\alpha}+\eta A_{4}\right) \\
& \text { Let } R_{j}^{1-\alpha}=1+r_{j} \text {. } \\
& r_{j+1}<\left[\frac{1+\eta}{1-\eta}\left(\frac{(1+\eta)^{\alpha}\left(1-\frac{1}{1+r_{j}}\right)}{1-\alpha}+\eta A_{4}\right)+\eta A_{4}\right](1+\eta)^{\alpha}(1-\alpha) \\
& <(l+\varepsilon)\left(\frac{r_{j}}{l+r_{j}}\right)+\varepsilon^{2} \text { for } \eta \text { sufficiently small. }
\end{aligned}
$$

Now the sequence S_{n} defined by $S_{n+1}=(1+\epsilon) \frac{S_{n}}{I+S_{n}}+\epsilon^{2}$ converges to the fixed point $\frac{1}{2}\left[\varepsilon+\varepsilon^{2}+\sqrt{5 \varepsilon^{2}+2 \varepsilon^{3}+\varepsilon^{4}}\right]$ so that for n sufficiently large, $r_{n}<S_{n}<2 \varepsilon$. This completes the proof.

It is apparent from the proof that the difference equations $x_{n+1}-x_{n}=f\left(x_{n}, m_{n}\right)$ and $x_{n+1}-x_{n}=f\left(x_{n+1}, m_{n}\right), n \leq m_{n} \leq n+1$ also have solutions asymptotic to the solutions of 5). It also follows by slight modifications of the proof that if, instead of conditions a), f satisfies condition

$$
\left.a^{\prime}\right) \operatorname{osc}[0, n] f(x, k)=0\left(\sum_{1}^{n-1} f(x, k)\right) \text { uniformly in } x \text {, }
$$

then $x_{n} \approx \mu(n)$.
We cannot expect a similar result for systems of equations even when the functions involved are decreasing, for even in the simple system $\frac{d \mu}{d n}=\frac{l}{v}, \frac{d v}{d n}=\frac{l}{\mu}$, the asymptotic behavior of the solution

$$
\mu=c \sqrt{n+d}, v=\sqrt{n+d} / c, c=\sqrt{\mu(0) / v(0)}, \quad d=\mu(0) v(0)
$$

depends on the initial conditions.

We give an example which illustrates what happens as α approaches and finally exceeds 1.

Consider

9) $x_{n+1}=x_{n}+x_{n}^{\alpha} / n^{\alpha}$

For $x_{1}=1$ and each $\alpha, x_{n}=n$ is a solution
If $\alpha<0$,

$$
\left.x_{n+1}^{1-\alpha}=x_{n}^{1-\alpha}\left(1+\frac{1}{n^{\alpha} x_{n}^{1-\alpha}}\right)^{1-\alpha} \geq x_{n}^{1-\alpha}\left(1+\frac{1}{n^{\alpha} x_{n}^{1-\alpha}}\right)=x_{n}^{1-\alpha}+i 1-\alpha\right) n^{-\alpha}
$$

Summing, $x_{n+1}^{1-\alpha} \geq n^{l-\alpha}+O\left(n^{-\alpha}\right)$. Hence the second order terms in the binimal $=O\left(\frac{1}{n^{2 \alpha} x_{n}^{1-\alpha}}\right)=O\left(\frac{1}{n^{1+\alpha}}\right)$ which sums to $O\left(n^{-\alpha}\right)$.
Hence $x_{n}^{l-\alpha}=n^{l-\alpha}+O\left(n^{-\alpha}\right)$,
$x_{n}=n\left(1+O\left(\frac{1}{n}\right)\right)^{\frac{1}{1-\alpha}}=n+O(1)$.
If $\alpha=0, x_{n+1}=x_{n}+1, \quad x_{n}=n+\left(x_{1}-1\right)$.

$$
\begin{aligned}
& \text { If } 0<\alpha<1, x_{n+1}^{1-\alpha}=x_{n}^{1-\alpha}\left(1+\frac{1}{n^{\alpha} x_{n}^{1-\alpha}}\right)^{1-\alpha} \leq \\
& \leq x_{n}^{1-\alpha}\left(1+\frac{1-\alpha}{n^{\alpha} x_{n}^{1-\alpha}}\right)=x_{n}^{1-\alpha}+\frac{1-\alpha}{n^{\alpha}} \text {. Summing, } \\
& x_{n}^{1-\alpha} \leq n^{1-\alpha}+0(1) \cdot x_{n+1}^{1-\alpha} \geq x_{n}^{1-\alpha}\left(1+\frac{1-\alpha}{n^{\alpha} x_{n}^{1-\alpha}}-\frac{\alpha(1-\alpha)}{2 n^{2 \alpha} x_{n}^{2(1-\alpha)}}\right) \\
& =x_{n}^{1-\alpha}+\frac{1-\alpha}{n^{\alpha}}-\frac{\alpha(1-\alpha)}{2 n^{2 \alpha} x_{n}^{1-\alpha}} \geq x_{n}^{1-\alpha}+\frac{1-\alpha}{n^{\alpha}}-\frac{\alpha(1-\alpha)}{2 n^{2 \alpha} x_{1} 1-\alpha} \cdot \text { Summing, } \\
& x_{n+1}^{1-\alpha} \geq n^{1-\alpha}+0(1) . \quad \text { Therefore, } \\
& x_{n}^{1-\alpha}=n^{1-\alpha}+O(1), \text { and } \\
& x_{n}=n\left(1+O\left(n^{\alpha-1}\right)\right)^{1-\alpha}=n\left(1+O\left(n^{\alpha-1}\right)\right)=n+O\left(n^{\alpha}\right)
\end{aligned}
$$

The corresponding differential equation
10) $\frac{d \mu}{d n}=\frac{\mu^{\alpha}}{n^{\alpha}}$
has the solution $\mu^{1-\alpha}=n^{1-\alpha}\left(\mu_{1}^{1-\alpha}-1\right)$
These are the cases covered by the theorem: x_{n} and $\mu(n)$ agree and their growth is independent of initial conditions.
$\alpha=1 \cdot x_{n+1}=x_{n}+x_{n} / n=x_{n}\left(1+\frac{1}{n}\right) \quad x_{n}=n x_{1}$
$\frac{d \mu}{d n}=\frac{\mu}{n}, \log \mu-\log \mu_{1}=\log n, \mu=n \mu_{1}$

Hence the two solutions agree if $x_{1}=\mu_{1}$ but this is not always the case for $\alpha=1$.

Consider $x_{n+1}=x_{n}+x_{n} / n^{\beta}=x_{n}\left(1+I / n^{\beta}\right), \frac{1}{3}<\beta<\frac{1}{2}$.
$\log x_{n}=\log x_{1}+\sum_{1}^{n-1} \log \left(1+1 / k^{\beta}\right)=\frac{n^{1-\beta}}{1-\beta}-\frac{n^{1-2 \beta}}{1-2 \beta}+C+o(1)$
whereas $\frac{d \mu}{d n}=\frac{\mu}{n^{\beta}}, \log \mu-\log \mu_{1}=\frac{n^{1-\beta}-1}{1-\beta}$. Hence x_{n} is smaller
by a factor of $e^{\frac{n^{1-2 \beta}}{1-2 \beta}}$.
Now consider $\alpha>1$. We show that for $x_{1}<1, x_{n}$ and $\mu(n)$ converge at similar rates and for $x_{1}>1, \log x_{n} \approx \alpha^{n}$ while $\mu(n)$ has a pole at some finite positive number.
We have $\mu_{n}=\left[\left(\mu_{i}^{1-\alpha}-1\right)+n^{1-\alpha}\right]^{-\frac{1}{\alpha-1}}$ which shows that if
$\mu_{1}<1, \mu_{n} \uparrow\left(\mu_{1}^{1-\alpha}-1\right)^{\frac{1}{\alpha-1}}$, and if $\mu_{1}>1$, there is a pole
at $n=\left(1-\mu_{1}^{1-\alpha}\right)^{\frac{1}{\alpha-1}}$. Suppose $x_{1}<1$. We show there exist
constants $c>0$ and $2^{\alpha-1}>B>1$ such that
$x_{n} \leq\left(c+\frac{B^{\alpha / \alpha-1}}{n^{\alpha-1}}\right)^{-\frac{1}{\alpha-1}}=f(n)$ and a fortiori $x_{n}<c^{-\frac{1}{\alpha-1}}$.
Suppose true for n. Then
$x_{n+1}=x_{n}+\left(x_{n} / n\right)^{\alpha} \leq f(n)+(f(n) / n)^{\alpha} \leq f(n+1)$ if
$f(n+1)-f(n) \geq f^{\prime}(n+1)=\left(\frac{B}{c(n+1)^{\alpha-1}+B^{\alpha / \alpha-1}}\right)^{\alpha / \alpha-1} \geq\left(\frac{f(n)}{n}\right)^{\alpha}=\left(c^{\alpha-1}+B^{\alpha / \alpha-1}\right)^{-\alpha / \alpha-1}$
That. is, if $B \geq \frac{c(n+1)^{\alpha-1}+B^{\alpha / \alpha-1}}{c n^{\alpha-1}+B^{\alpha(\alpha-1)}}$, which is true for all n if
$B \geq \frac{c 2^{\alpha-1}+B^{\alpha / \alpha-1}}{c+B^{\alpha / \alpha-1}}$ or $c=\frac{B^{\alpha / \alpha-1}(B-1)}{2^{\alpha-1}-B}$. Now choose B so that
$x_{1}=\frac{1}{\left(c+B^{\alpha / \alpha-1}\right)^{1 / \alpha-1}}=\frac{1}{B^{\alpha}}\left(\frac{2^{\alpha-1}-B}{2^{\alpha-1}-1}\right)^{1 / \alpha-1}$.

Suppose $x_{1}>1 . x_{n+1}>x_{n}^{\alpha} / n^{\alpha}, \log x_{n+1}>\alpha \log x_{n}-\alpha \log n$ Let $\alpha^{n} y_{n}=\log x_{n} \cdot \alpha^{n+1} y_{n+1}>\alpha \cdot \alpha^{n} y_{n}-\alpha \log n, y_{n+1}>y_{n}-\frac{\log n}{\alpha^{n}}$ $y_{n}>y_{k}-\sum_{k}^{n} \frac{\log i}{\alpha^{i}}, \frac{\log x_{n}}{\alpha^{n}}>\frac{\log x_{k}}{\alpha^{k}}-\sum_{k}^{n} \frac{\log i}{\alpha^{i}}>$

$$
>\frac{\log x_{k}}{\alpha^{k}}-\sum_{k}^{\infty} \frac{\log _{i} i}{\alpha^{i}}
$$

If

for some $k, \frac{\log x_{k}}{\alpha^{k}}-\sum_{k}^{\infty} \frac{\log i}{\alpha^{i}} c>0$, then $\log x_{n}>c \alpha^{n}$.
We need $\log x_{k}>\alpha^{k} \sum_{k}^{\infty} \frac{\log i}{\alpha^{i}}=\sum_{0}^{\infty} \frac{\log (i+k)}{\alpha^{i}}=\sum_{0}^{k} \frac{\log (i+k)}{\alpha^{i}}+$
$+\sum_{k}^{\infty} \frac{\log (i+k)}{\alpha^{i}}$ which is less than $\log 2 k \sum_{o}^{k} \frac{1}{\alpha^{i}}+\sum_{k}^{\infty} \frac{\log 2 i}{\alpha^{i}}<$
$<\frac{\alpha}{\alpha-1} \log k+\log D$. Let $x_{n} / n=z_{n}, x_{1}=z_{1}$. Then 9) becomes
$(n+1) z_{n+1}=n z_{n}+z_{n}^{\alpha}, z_{n+1}=z_{n}\left(\frac{n+z_{n}^{\alpha-1}}{n+1}\right)$
i) $z_{n+1}>z_{n}: z_{2}=z_{1}\left(\frac{1+z_{1}^{\alpha-1}}{1+1}\right)>z_{1}$ since $z_{1}=x_{1}>1$ Assume true for integers $<n . z_{n+1}=z_{n}\left(\frac{1+z_{n}^{\alpha-1}}{1+1}\right)>z_{n}\left(\frac{1+1}{1+1}\right)=z_{n}$
ii) Let $z_{1}{ }^{\alpha-1}=1+\varepsilon . \quad z_{n}^{\alpha-1}>1+\varepsilon$. We say
$z_{n}>\prod_{k=1}^{n}\left(1+\frac{\varepsilon}{k}\right) \sim \frac{n^{\epsilon}}{\Gamma(\epsilon)}$. Assume true for n.
$Z_{n+1}>\Pi_{1}^{n}\left(1+\frac{\varepsilon}{k}\right)\left(\frac{n+(1+\varepsilon)}{n+1}\right)=\Pi_{1}^{n-1}\left(1+\frac{\varepsilon}{k}\right)\left(1+\frac{\varepsilon}{n+1}\right)=\pi_{1}^{n+1}\left(1+\frac{\varepsilon}{k}\right)$
iii) For $n>n_{0}, z_{n}^{1-\alpha}>\frac{\alpha}{\alpha-1}, z_{n_{0}+n}>z_{n_{0}} \Pi_{n_{0}+1}^{n_{0}+n}\left(1-\frac{\alpha / \alpha-1}{k}\right)>$

$$
>\mathrm{En}^{\alpha / \alpha-1}, \mathrm{E}>0
$$

$\mathrm{x}_{\mathrm{n}}>\mathrm{nE} \mathrm{n}^{\alpha / \alpha-1}>\mathrm{Dn}^{\alpha / \alpha-1}$ for n sufficiently large. Thus $\alpha^{n}=O\left(\log x_{n}\right)$. Next we show that for some $F>0$. $\log x_{n}<F \alpha^{n}$. $x_{n+1}<x_{n}+x_{n}^{\alpha}<2 x_{n}^{\alpha}, \log x_{n+1}<\alpha \log x_{n}+\log 2$.
$y_{n+1}<y_{n}+\log 2 / \alpha^{n}$
$x_{n} / \alpha^{n}=y_{n}<y_{1}+\sum_{1}^{n} \frac{\log 2}{\alpha^{n}}<y_{1}+\sum_{1}^{\infty} \frac{\log 2}{\alpha^{n}}=\frac{x_{1}}{\alpha^{1}}+\frac{\alpha \log 2}{1-\alpha}$.
We note in passing that it is possible to violate the hypothesis of the theorem and still have $\mathrm{x}_{\mathrm{n}}=\mu_{\mathrm{n}}$. Consider
$x_{n+1}=x_{n}+1+2^{[n]} \sin 2 \pi n$. Then $x_{n}=\mu_{n}=x_{0}+n$.
We also note that the solutions of 9) and 10) for $\alpha \leq 0$ are more than just asymptotic. In fact, their differences are bounded. Sufficient conditions for this are given in

Theorem 3.4. Let $f(x, n) \geq 0$ be non-increasing in x and n. Let x_{n} be any solution of 5) and $\mu(n)$ be any solution of 6).
Then

$$
\left|x_{n}-\mu(n)\right| \leq \operatorname{Max}\left[f\left(x_{0}, 0\right), f(\mu(0), 0),\left|\mu(0)-x_{0}\right|\right]+f(\mu(0), 0)
$$

First, if x_{n} and y_{n} are any two solution of 5),
11) $\left|x_{n}-y_{n}\right| \leq \operatorname{Max}\left(f\left(x_{0}, 0\right), f\left(y_{0}, 0\right),\left|x_{0}-y_{0}\right|\right)$.

Chapter 4. Some Higher Order Non-linear Difference Equations As a first example of a non-linear difference equation of higher order, we consider $x_{n+1}=x_{n}+l / \Sigma_{l}^{n} x_{k}$. The corresponding integral equation is $\frac{d \mu}{d n}=l / \int^{n} \mu(t) d t$. Differentiating and eliminating the integral, we get $\frac{d^{2} \mu}{d n^{2}}+\left(\frac{d \mu}{d n}\right)^{2}=0$. Let $\rho=\frac{d \mu}{d n}$ to get $\rho \frac{d \rho}{d \mu}+\rho \mu^{2}=0$. Reject $\rho=0$ and find $\rho=c e^{-\mu^{2} / 2}=\frac{d \mu}{d n}, \quad n=\frac{1}{c} \int_{\mu_{0}}^{\mu^{\prime}} e^{t^{2} / 2} d t$. Let $v=t^{2} / 2, t=\sqrt{2 v}, d t=\frac{d v}{\sqrt{2 v}}$ $n=\frac{1}{c} \int_{\mu_{0} \mu^{2} / 2}^{2} e^{v} \frac{d v}{\sqrt{2 v}} \sim \frac{1}{c} e^{v} /\left.\sqrt{2 v}\right|^{\mu^{2} / 2}=\frac{1}{c \mu} e^{\mu^{2} / 2}$
$n \subset \mu \sim e^{\mu^{2} / 2}, \mu \sim \sqrt{2 \log (n c \mu)} \sim \sqrt{2 \log n}$ since μ is obviously of). We prove a more general result for the diffference equation. Let $f(n)$ be slowly oscillating. Let
$x_{n+1}=x_{n}+1 / \Sigma_{1}^{n} f(k) x_{k}$. Then $x_{n} \sim \sqrt{2 \Sigma_{1}^{n} \frac{1}{k f(k)}}$. To simplify the argument, we omit some factors of $(1+\varepsilon)$.
$x_{n+1}>x_{n} . \quad x_{n+1}-x_{n}>l / x_{n} \Sigma_{l}^{n} f(k) \sim 1 / n f(n) x_{n}$. Hence $x_{n}>\sqrt{2 \Sigma_{l}^{n} \frac{1}{k f(k)}}$ Thus $x_{n+1}-x_{n}<1 / \Sigma_{l}^{n} f(k) \sqrt{2 \Sigma_{l}^{k} l / j f(j)}$ but $\Sigma_{l}^{k} l / j f(j)$ is itself slow and the product with $f(k)$ is also slow. Hence the last expression is $\sim l / n f(n) \sqrt{2 \Sigma_{1}^{n} 1 / k f(k)}$.

Summing, $x_{N+1}<\Sigma_{1}^{N}\left(2 \Sigma_{1}^{n} \frac{1}{k f(k)}\right)^{-\frac{1}{2}} \frac{1}{n f(n)}$. Let $G(n)=\Sigma_{1}^{n} \frac{1}{k f(k)}$.
Then $x_{N+1}<\sum_{1}^{N}(2 G(n))^{-\frac{1}{2}}(G(n)-G(n-1)) \sim \sqrt{2 G(N)}=\sqrt{2 \Sigma_{1}^{N} \frac{1}{n f(n)}}$
by theorem 3.0 , since $G(n)$ is monotone and slow, if it diverges.
If $G(n)$ is bounded, so is x_{n}.
If $f(n)=1, \sqrt{2 \Sigma_{1}^{N} I / n} \sim \sqrt{2 \log N}$.
We consider an extension of the previous problem.

1) $x_{n+1}-x_{n}=1 / \Sigma \frac{f(k)}{k^{\alpha}} x_{k}$ where $0<\alpha<2$ and $f(n)$ is slow.
$\frac{1}{x_{n+1}^{-x_{n}}}=\frac{f(n)}{n^{\alpha}} x_{n}+\sum_{1}^{n-1} \frac{f(k)}{k^{\alpha}} x_{k}=\frac{f(n)}{n^{\alpha}} x_{n}+\frac{1}{x_{n}-x_{n-1}}$
Let $x_{0}=0, z_{n}=l /\left(x_{n}-x_{n-l}\right)$. Then $x_{n}=\Sigma_{l}^{n} l / z_{k}$,
$z_{n+1}=z_{n}+\frac{f(n)}{n^{\alpha}} \sum_{1}^{n} \frac{1}{z_{k}}, z_{n} \uparrow$. Thus
$z_{n+1} \geq z_{n}+\frac{f(n)}{n^{\alpha}} \frac{n}{z_{n}}=z_{n}+\frac{f(n) n^{1-\alpha}}{z_{n}}$. Squaring,
$z_{n+1}{ }^{2} \geq z_{n}^{2}+2 f(n) n^{1-\alpha}$. Summing,
$z_{n}^{2} \geq 2 f(n) n^{2-\alpha} / 2-\alpha$. Let $\beta=1-\alpha / 2,1-\beta=\alpha / 2$. Then
$z_{n} \geq \sqrt{f(n) / \beta} n^{\beta}$. Using this bound in 1),
$z_{n+1}-z_{n} \leq \frac{f(n)}{n^{\alpha}} \sum_{1}^{n} 1 / \sqrt{f(n) / \beta} n^{\beta} \sim \frac{f(n)}{n^{\alpha}} \frac{n^{\alpha / 2}}{\alpha / 2} \sqrt{\beta / f(n)}$
$=\frac{\sqrt{\beta f(n)}}{(\alpha / 2) n^{\alpha / 2}}$, since $\beta<1$.
Summing, $z_{n} \leq \frac{\sqrt{\beta f(n)}}{\alpha / 2} \frac{n^{\beta}}{\beta}=\frac{1}{\alpha / 2} \sqrt{f(n) / \beta} n^{\beta}$.
The geometric mean of our bounds, $\bar{z}_{n}=\frac{\sqrt{f(n) / \beta}}{\sqrt{\alpha / 2}} n^{\beta}$, satisfies 1) and the associated integral equation. The bound can be improved
to show that any solution is asymptotic to \bar{z}_{n}. We illustrate with $f(n)=1, \alpha=1$. Then $z_{n+1}=z_{n}+\frac{1}{n} \Sigma_{1}^{n} \frac{1}{z_{k}}$. We have as bounds $2 \sqrt{2 n} \geq z_{n} \geq \sqrt{2 n}$ and we claim $z_{n} \sim 2 \sqrt{n}$. It is easy to see that an upper bound of the form $2 \sqrt{n} a, a>1$, determines a lower bound $2 \sqrt{n} / a . \sqrt{2}$ is a value of a. Suppose the best possible value of a exceeds 1.

$$
\begin{aligned}
z_{n+1}=z_{n}+\frac{1}{z_{n}}(1 & \left.\left.+\frac{1}{n} \sum \frac{z_{n}}{z_{k}}-1\right)\right) \\
1+\frac{1}{n} \sum_{1}^{n}\left(\frac{z_{n}}{z_{k}}-1\right) & >1+\frac{1}{n} \sum_{1}^{n / a^{2}}\left(\frac{z_{n}}{z_{k}}-1\right) \geq 1+\frac{1}{n} \sum_{1}^{n / a^{2}}\left(\frac{2 \sqrt{n} / a}{2 \sqrt{k} a}-1\right) \\
& \rightarrow 1+\frac{2}{a^{3}}-\frac{1}{a^{2}}=c>\frac{2}{a^{2}}
\end{aligned}
$$

since $1+\frac{2}{a^{3}}-\frac{3}{a^{2}}=\left(1-\frac{1}{a}\right)^{2}\left(1+\frac{2}{a}\right)>0$.
Thus $z_{n+1} \geq z_{n}+c / z_{n}, z_{n} \geq \sqrt{c / 2} 2 \sqrt{n}$ with $\sqrt{c / 2}>1 /$ a. Substituting, $z_{n+1}-z_{n} \leq \frac{1}{n} \sum_{1}^{n} \frac{1}{\sqrt{c / 2} 2 \sqrt{k}} \sim \frac{1}{\sqrt{c / 2} \sqrt{n}}$. Summing, $z_{n} \leq \sqrt{2 / c} 2 \sqrt{n}$ with $\sqrt{2 / c}<a$. This contradiction proves that $z_{n} \sim 2 \sqrt{n}$.

Summing in the general case, we find that $x_{n} \sim \frac{\sqrt{1-\alpha / 2}}{\sqrt{f(n) \alpha / 2}} n^{\alpha / 2}$. $\alpha=2$ is a boundary case. We consider it in more detail. Let $x_{n+1}=x_{n}+I / \Sigma_{1}^{n} \frac{x_{k}}{k^{2} \log ^{\alpha} \alpha_{k}}, \alpha<1$. $\frac{1}{x_{n+1}-x_{n}}=\frac{x_{n}}{n^{2} \log ^{\alpha}{ }_{n}}+\frac{1}{x_{n}-x_{n-1}}$. By the same substitution, $z_{n+1}=\frac{1}{n^{2} \log ^{\alpha} n} \sum_{1}^{n} \frac{1}{z_{k}}+z_{n} \geq z_{n}+\frac{1}{n \log _{n}^{\alpha} z_{n}}$. Apply Theorem 3.4.

$$
\frac{d \mu}{d n}=\frac{1}{\mu n \log ^{\alpha} n} \quad \mu \partial \mu=\frac{d n}{n \log \alpha_{n}^{-}} \frac{\mu^{2}}{2} \sim \frac{\log ^{1-\alpha_{n}}}{1-\alpha}
$$

Let $\beta=\frac{1-\alpha}{2}, \gamma=\frac{1+\alpha}{2}$, so $\alpha+\beta=\gamma, 1-\gamma=\beta, \quad z_{n} \geq \log ^{\beta} n / \beta^{\frac{1}{2}}$. $z_{n+1}-z_{n} \leq \frac{1}{n^{2} \log _{n} \alpha_{n}} \sum_{1}^{n} \beta^{\frac{1}{2}} / \log ^{\beta} k$

$$
\sim \frac{1}{n^{2} \log _{n}^{\alpha}} \cdot \frac{n 3^{\frac{1}{2}}}{\log _{n}^{\beta}{ }_{n}}=\frac{\beta^{\frac{1}{2}}}{n \log _{n}^{\gamma}} \cdot \text { Summing, }
$$

$z_{n+1} \leq \Sigma_{1}^{n} \frac{\beta^{\frac{1}{2}}}{k \log _{k}} \sim \frac{\beta^{\frac{1}{2}}}{1-\gamma} \log ^{1-\gamma_{n}}$ by monotonicity,

$$
=\log ^{\beta} n / \beta^{\frac{1}{2}} \text {. Therefore } z_{n} \sim \log ^{\beta} n / \beta^{\frac{1}{2}} \text {. Summing again, }
$$

$$
x_{n} \sim n \log ^{\beta} n / \beta^{\frac{1}{2}} . \text { Since }
$$

the constant depends on α, we cannot expect a result for a general slow function. Now suppose $x_{n+1}=x_{n}+1 / \sum_{I}^{n} \frac{1}{k^{2} \log k}$ $\frac{1}{x_{n+1}^{-x_{n}}}=\frac{x_{n}}{n^{2} \log n}+\frac{1}{x_{n}-x_{n-1}}$, $z_{n+1}=z_{n}+\frac{1}{n^{2} \log n} \sum_{1}^{n} \frac{1}{z_{k}} \geq z_{n}+\frac{1}{n \log n z_{n}}$. Applying Theorem 3.3, $\frac{d \mu}{d n}=\frac{I}{n \log n \mu}, \mu d \mu=\frac{d n}{n \log n}, \frac{\mu^{2}}{2} \sim \log \log n$. Thus $z_{n} \geq \sqrt{2 \log \lg n}$.

$$
z_{n+1}-z_{n} \leq \frac{1}{n^{2} \log n} \sum_{1}^{n} \frac{1}{\sqrt{2 \log \log k}} \sim \frac{1}{n \log n \sqrt{2 \log \log n}}
$$

$$
\begin{aligned}
z_{n+1} & \leq \Sigma_{1}^{n} \frac{1}{k \log k \sqrt{2 \log \log k}} \sim \int_{1}^{n} \frac{d(\log \log t)}{\sqrt{2 \log \log t}} \\
& =\sqrt{2 \log \log n}
\end{aligned}
$$

$$
\begin{aligned}
& z_{n} \sim \sqrt{2 \log \log n} \text { and } x_{n} \sim n \sqrt{2 \log \log n} \\
& \text { Finally, suppose } x_{n+1}=x_{n}+1 / \Sigma_{1}^{n} a_{k} x_{k} \text { where } \Sigma k a_{k} \text { converges. } \\
& z_{n+1}-z_{n}=a_{n} \sum_{1}^{n} \frac{1}{z_{k}}<\frac{n a_{n}}{z_{1}} \\
& z_{n+1}<\frac{1}{z_{1}} \Sigma_{1}^{n} k a_{k}<c_{1} \quad z_{n} \text { converges to some } c_{2} \text { and } \\
& x_{n} \sim c_{2} n .
\end{aligned}
$$

Bibliography

1. deBruijn, N.G., Asymptotic Methods in Analysis, Interscience Publishers, New York, 1958.
2. Entringer, R.C. "Functions and Inverses of Asymptotic Functions", American Mathematical Monthly 74 (1967) 1094-5.
3. Hardy, G.H. Divergent Series, Clarendon Press, Oxford, 1949.
4. Karamata, J. "Sur une mode de croissance regulaire des fonctions, Mathematica (Cluj) 4 (1930) 38-53.
5. Korevaar, J., van Aardenne-Ehrenfest, T., and deBruijn; N.G. "A note on slowly oscillating functions, Nieuw Archive vor Wiskunde (2) 23 (1949) 77-86
6. Landau, E. "Sur les valeurs moyennes des certains fonctions arithmetiques's, Bulletin d'1'Academie Royale de Belguique (1911) 443-72.
7. Lubin, M. "Om en Klasse ikke-lineare Differensligneñ, Matematisk Tidskrift B (1946) 120-8.
8. Obrechkov, N. "On the asymptotic behavior of the derivatives of a real function of a real variable, Doklady Akademii Nauk SSSR (N.S.) 67 (1949) 225-8.

70-4097

AUTHOR
Gerber, LeonE.
Asymptotic relations between differential and difference
equatIons. BORROWER'S NAME

