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I 
Chapter l. Introduction 

Over the past two hundred years there have been many theorems 

relating sums to integrals. Perhaps the simplest of these is the 

following: 

Theorem l.l. Let f(x) be of 'bounded variation on the interval 

[o,n]. Then 

IS: f(x)dx- ~~ f(k)j 2 va~[O,n]f(x). 

The theorem that is perhaps the most generally used is the follow-

ing one due to Maclaurin (published first by Euler who waived 

claim to priority): 

Theorem 1.2. Let f(x) be 2k+l times continuously differentiable 

in [l,n]. Then 

n r B ~l f(v) = f(x)dx + !(f(l) + f(n)) + ~ 
l . 2! 

(f'.(n) - f' (l)) 

B B 
k + r/Y (f /II ( n) - f /II ( 1) ) + • • • + f ;~ \ I ( f ( 2k -1) ( n) - f ( 2k -1) ( l) ) 

+ rll p (k) f(2k+J_) ( ) J
1 

2k+l x dx 

where the B are Bernoulli numbers and 
n 

P1 (x) = x-[x]-~, P' r+l(x) = Pr(x), [Pk(x) = 0 for any k. 
0 

Thus it is possible to find a complete asymptotic expansion for 

Lf f( v) if a satisfactory esimtate of the error term can be found. 
1 
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We shall concern ourselves here largely with the first term of 

such an expansion, the validity of ~~ f(k) ~ ~ f(t)dt and gen-
1 

eralizations thereo f . 

In the first part of the paper we deal with the following 

type of ~uestion: if ~ f(k) ~ f(n) what can we say about 

~ G(f(k))? More generally, if f(x) ~ k(x), what can we say about 

G(f(x))? 

The second part of the paper considers the formula 

xn = Ei f(k) ~ Jf(t)dt from the point of view of the calculus of 

finite difference. The given relation is e~uivalent to the fol-

lowing statement: 

If x is a solution to the difference equation x 
1 

- x = f(n) 
n ~ n 

and ~(n) is a solution to the differential e~uation ~ = f(n) 

(where n is assumed to be continuous) then x - ~ . This leads n n 

naturally to the ~uestion: when are the solutions of 

xn+l - xn = f(x ,n) asymptotic to those of ~d = f(~,n)? n n 

In the third part we consider briefly some higher order 

non-linear diffeTence equations. 

2 
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Chapter II. Asymptotic Preserving Operations 

Let us begin by defining four relations between functions. 

i) f(x) = o(g(x))(f is little 0 of g ) (x ~a) if 

l im (x ~ a) f(x)jg(x) = 0 . 

ii) f(x) = O(g( x~~ is big 0 of g) (x- a ) if f(x)jg(x) remains 

bounded as x - a . 

iii) f(x) ~ g(x ) ( f is of the same order as g) (x - a) if 

f(x) = O(g(x)) (x ~a) and g(x) = O(f(x)) (x- a ). 

iv) f(x) ~ g(x ) (f i s asymptotic to g) (x - a ) i f lim f (x)/g(x)=l. 
x -a 

When "x- a " is understood from context, it may be omitted . 

It is obvious that all four relations are transitive ; that 

the l ast three are reflexive and that the first is i rreflexive 

the l ast two are symmetric and that the first is asymmetric. 

Further, f- g implies f ~ g which in turn i mplies that f = O(g) 

and that f = o(g) is false . 

These relations are all well- defined with respect to multi-

plication e.g. f 1 = O(g1 ) and f 2 = O(g
2

) imply f
1

f
2 

= O(g
1

g
2
). 

The l ast two are well-defined with respect to division as 

well as if we adopt the conventive that 0/0 = 1 (or just i gnore 

the points at which the denominator vanishes). 

With respect to addition , the situation is not so good. We 

have x + 1 ~ x (x - oo) and -x - - x (x - oo) but l - 0 (x - oo) is 

obviousl y false . I f we restrict ourselves to positive functions, 

these by virtue of the inequality 

all four 

·(a c) > a + c > . (a c) 
max b' d - b + d - mln b' d ' 



relations are well- defined for addition . Henceforth, all func -

tions will be assumed positive unless the contrary is stated . 

When we consider limits , most of these properties fail . For exampl e, 
k 

i f f (x) = rfl ~ 
n o k! 

X~ . 
and g(x) = e then f (x ) = o(g (x )) (x ~ ro) n 

for each n and f(x ) = lim (n ~ ro) f (x ) exists (= ex) and 
n 

f(x) r o(g (x ) ). In fact g(x) = o(f(x)). 

-Let h(y) = h(y1 , ... ,yn) be a function of n variables de-

fined for y. > 0 , i=l, ..• ,n. We shall say that his asymptotic 
l 

preserving if whenever 

f.(x)- ro, f.(x) ~ g.(x) (x - ro) i=l, ... ,n 
l l l 

we have h(f1 (x), ••. ,fn(x)) ~ h( g1(x), ..• , gn( x)). We say that h 

is order preserving if in the above definition we replace ", ... J' by 

"';::j". One class of functions with both properties is represented 
_. al a2 an . 

by h(y) = y1 y 2 .••. yn . We observe that 

al-l a2 an al a2 an-l 
Y·Vh(y) = (yl , ... ,yn)·(alyl Y2 ... yn , ... ,anyl Y2 ···Yn ) 

... 
h(y) al a2 an 

yl Y2 • · ·Yn 

= al + a2 + · · • • + an 

is bounded and prove our first theorem which extends and refines 

a result by R.C. Entringer [z]. 

Theorem 2.1. A function h(y) is asymptotic preserving iff for 

each E: > 0, h can be expressed as a product heY) = h1 cY)h2cY) 

where h1 cY) is continuously differentiable and 

4 



·. 

--+--> --> 
y·'Vhl(y) 

hl(y) 
is bounded and I h2_(y)c - lJ 

--> 
where y __.co means y. --+co, i=l, ... ,n. 

l 

--> 
< e: as y --+ co 

If we let k(y
1

, ... ,yn) =log h(exp y
1

, ... ,exp yn) and de-

fine k to be approximation preserving if whenever 

f:(x)--> co, f.(x) - g.(x)--> 0 (x--> co) i=l, ... ,n 
l l l 

I 
we have k(f1 (x), •.. ,fn(x)) - k(g1 (x), ... ,gn(x))--+ 0 as x--+ co, 

Theorem 2.1 is equivalent to 
--> 

Theorem 2.2. A function k(y) is approximation preserving iff 
-t · -t -+ 

for each e: > 0, k can be expressed as a sum k(y) = k1 (y) + k2(y) 

where k
1

(y) is 

ed and Jk2 (y) I 

--> __, 
continuously differentiable and llvk

1 
(y) II is bound-

--> 
< e: for y sufficiently large. 

We prove this result by means of two lemmas. 

Lemma l. A function k(y) is approximation preserving iff 

it can be expressed as a sum keY) = k
1

(y) + k
2
(y) where k

1 
cY) 

is uniformly continuous and k
2

(y) - 0 as x __, co. 

Proof. Suppose k is approximation preserving. Let 

yl+J/yl Yn +l/yn 

kl(yl, .. ,yn) = Yl··Yn JY ... J k(ul, •. ,un)dul ... dun. 
1 Yn 

If k2(y) = k(y) - k1 (y), 

5 



I k2(Y~) I 
yl+l/yl y +1/y n n _, _, 

Y 1 · · · Y n I J ... J. -- ~( k ( y) - k ( u) ) du1 ... dun I 
yl Yn 

yl+l/yl yn+l/yn 

~ y1 •.. yn J ... J lk(y) - k(~)ldu1 ... dun 
yl Yn 

Since \y.-u. I < 1/y. i=l, .•. ,n, it follows that for y suffi-
l 1 l . 

ciently large, the integrand, and hence the integral, is arbi-
.... .... 

trarily small. Hence k
2

(y) _, 0. Suppose k
1

(y) is not uniformly 
.... .... 

continuous. There are an e: > 0 and sequences ym .... co, om .... 0, 

such that \k1 (y + 6) - k
1

(y )I> e; for all m. But m m m 

\kl(ym + Zm) - kl(ym)\ 

< \k1(y +6 )-k(y +6 )\ + \k(y +6 )-k(y )I + lk(y )-k1 (y )I, - mm mm mm m m m 

where the first and third terms are values of k2 and the second 

approaches zero by hypothesis. This contradiction proves that 

k
1 

is uniformly continuous. 

Conversely, a uniformly continuous function is certainly 

approximation preserving, and the addition of a null function 

cannot affect this property. 

Lemma 2. A function k(y) is uniformly continuous iff for 

each e; > 0 it can be expressed as a sum k(y) = k
1

(y) + k
2

(y) 

where k1 (y) is continuously differentiable and its differential 

is bounded (in norm) and \k2(y)l < e:. 

6 
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Proof. Suppose k(y) is uniformly continuous. Then for 

any~> 0 there is a o > 0 such that for 1Yi-u1 1 < o,i=l, ... ,n 

we have \k(y) - k(;)l < ~. Let 

kl (yl' • · · ,yn) 

y
1

+o y +o 
l n 

= 7nJ ... J k(u
1

, ... ,u )du1 ... du . 
u Yl Yn n n 

If k2(y) = k(y) - k
1

(y), then lk
2

(y)l <e. Also 

0 
oyl kl(yl, .. ,yn) = 

Y +o Y +o 
1 2 n . 

=- J ... J (k(y1+o,u2, ... ,u)- k(y
1

,u2 , ... ,u ))du2 ... du 
on y y n n n 

2 n 

which is continuous and less in absolute value than 

y
2
+o y +o 

l n . -n J ... J ~ du2 ... dun = ~;o. 
0 Y2 Yn 

Similarly, the other partials are continuous and bounded. Con-

versely, suppose that for each ~ > O,k can be expressed as a 
~ ~ ~ . ~ 

sum k(y) = k
1

(y) + k2(y) where k
1

(y) is uniformly continuous 

and lk2(y) I < ~. Let e > 0 be given. Choose k
1

(y) and k
2

(y) 

to satisfy the hypotheses with e/3. We can find a o > 0 such 

that for IIY-~11 < o, I k1 (y) - k1 (~)I < e/3. Then for IIY-~11 < 6, 

lk(y)-k(;) I 2 lk1 (y)-k1 (;) I+ lk2 (y)-k2 (~)1 < e/3 + 2~/3 =e. 

~ 

Hence k(y) is uniformly continuous. 

Combining the two lemmas, we ·have the theorem. That we 

cannot strengthen the second lemma, and hence the theorem, to 

7 



I ~ ~ 
have k2(y) ~ 0 is obvious upon consid~ring k(y) = vlsin Yl 

where a function that approximates to within e must have 

slopes of the order of lje. 

While it is not obvious from the definition that an asym-

ptotic preserving function is orde~ preserving, the following 

theorem shows this to be true. 

Theorem 2.3. A function h(y) is order preserving iff it can 

-+ --. -+ -+ 

be expressed as a product h(yl: h~y)h2 (y) where h1 (y) is con-

y.9hl(Y) ~ 
tinuously differentiable and ~ is bounded and h2(y) ~ l 

hl(y) 
~ 

as y ~ ro. 

~ 

If we define k(y) as before and define k to be error pre-

serving if whenever 

f.(~) 
1 

~ (X) 

' 
f. (x) - g. (x) 

1 1 
is bounded as x ~ ro i=l, ... ,n 

it follows that k(f
1

(x), ... ,fn(x)) - k(g
1

(x), •.. ,gn(x)) is 

bounded, then Theorem 2.3 is equivalent to 
~ 

Theorem 2.4. A function k(y) is error preserving iff it can 

~ -+ -+ ~ 

be expressed as a sum k(y) = k1 (y) + k2(y), where k1 (y) is con-

tinuously differentiable and 119'k
1 

cY) II anc'!- k
2

(y) are bounded. 

Proof. Let 
yl+l yn+l 

I J ~ -> -> 
k1 (y 1 , .. ,y n) = . • • k( u1 , .. ,un)du1 ... dun and k2(y )=k(y) -k

1 
(y). 

yl Yn 

The result follows by arguments similar to preceeding ones. 

Functions which are asymptotic to themselves when their 

arguments are merely_of the same order were investigated by 

8 

' 



9 

Karamata [4.] who called them slowly increasing . He obtained 

the single variable version of the following theorem whose 

proof is similar to the previous ones. 

Theorem 2.5. A function h(y) is slowly increasing iff it can 
_... _... --+ --) 

be expressed as a produce h(y) = h
1

(y)h2(y) where h
1

(y) is con-

tinuously differentiable and 

y·vh1 (Y) 
... 

hl(y) 
.... o and h

2 
(y) _, l as 

-+ 
y -+ co. 

Note that this class of functions is smaller than that of 

asymptotic preserving functions. On the other hand 

Theorem 2.6. Any function which is the same order as itself 

when its arguments are asymptotic is necessarily order preserving. 

Proof. We make the usual transformation and show that if 

k(yl+el(yl), ... ,yn+en(yn)) - k(yl, ... ,yn) 

is bounded whenever ~(y) _, 0, as y-+ co, then 

k(yl+Ml(yl), .•. ,yn+Mn(yn)) - k(yl, ... ,yn) 

-+ ""') -+ is bounded whenever M(y is bounded as y -+ co 

Let M(y) be given with !IM(y) II < M and suppose k(Y\McY)) -k(y) 

is not bounded. Then for some sequence 
... 
y -+co, y +l. - y . >2M i=l, ... ,n we have m m ,l m,l 

I .... _,_, __. I 2 
k(y +M(y )) - k(y) > m , m=l,2, ... 

m m m 



Define e .(y.) = M.(y.)/m f or y. between y . andy . + M.(y .) 
1 1 1 1 1 m,l m,1 1 m,l 

and zero othe rwise, i=l, ... ,n. Obviously, ;(y) ~ 0 as y ~ 00 • 

Then for each m, one of the m numbers 

lk(y +j;(y )) - k(y + (j-l);(y) I j=l, ... ,m m m m m 

must exceed m, which is a contradiction. 

Karamata' s proof uses the weaker hypothesis that for each 

b > 0, G(by) ~ G(y) (y ~ oo) and he concludes that their relation 

holds uni f ormly f or 0 < b1 ~ x ~ b2 Korevaar ~ J proves the uniform

ity assuring measurability (and not integrability) and then pro-

ceeds as above ·. 

Landau [6] notes that if G is monotone and G(2x) ~ G(x), then 

G(Ax) ~ G(x) f or every A > 0 . Another result of Karamata gives a . 

partial answer to our first question. 

Theorem: If f(x) is slowly increasing, there exist numbers k and 

~ > 0 such that 

(1) { f(t)tkdt...., ~ f(x) J tkdt 
0 0 

Conversely, if there are such numbers k and ~ for which 1) holds 

10 



I 
then f(x) = xa L(x) where L(x) is slowly increasing and 

a+k+l ·~ ' 
-- In particular, f(x) is slowly increasing iff for ~ = a+l · 

some k' r f(t)tkdt ,.._, f(x) r tkdt. We prove the following 
0 

generalization. 
0 

Theorem 2.7. If f(x) is slowly increasing, G(x) 

and G-
1

(x) is order preserving, then 

~f(t)g(t)dt ~ f(x) Jx g(t)dt (x ~ oo). 
0 0 

We first prove the following 

CX) 

= J g(t)dt t CX) 

0 

Lemma. If G(x) = j~ g(t)dt t oo and f(G-1 (A(x)G(x))) ,.._, f(x) (x ~ oo) 
0 

for every A(x) ~ 1, then ~f(t)g(t)dt ~ f(x) ~ g(t)dt. 
0 . 0 

Proof .. By hypothesis, whenever G(x) increases by a bounded 

factor, f(x) increases by a factor approaching l. If G(x) is 

bounded, f(x) must be identically one and the result is trivial. 

Let € > 0 be given and suppose fort> x' ,l~f~~ -11 < € when 

k } -l( ( )/ n-i) G(~) < 2G(t). Let n=max{K:G(x) / 2 > G(x') . Letx.=G G x 2 
- . l 

xo n xi r f(t)g(t)dt = I f(t)g(t)dt + L:.=l I f(t)g(t)dt 
0 0 .l X· 

l-l 

which lies between 

K + L:n (l±€)i f(x)G(x) 
l 2 

= K + l±€ (l - (l±€)n) f(x)G(x) 
l=f€ 2 

Now as x increases,G(x) increases without bound and whenever it 

doubles, f(x)G(x) is increased by a factor of at least 
1

2 and n +€ 

increases by l. Then for x sufficiently large, the sum is between 

ll 

I 



(l±4e) f (x) G(x). Since e i s a rbit rary, we have the result . 

The converse i s also t r ue but we shall not prove it . 

Now for the theorem. G-1 (x) order pr e serving means that for 

each A'(y) ~ l there is a B'(y) ~ l such that 

G-1 (A'(y)y) = B'(y)G-1 (y). Let y = G(x), A(x) = A'(G(x)), 

B(x) = B' (G(x)) and we have G-1 (A(x)G(x)) = B(x)x. Hence 

f(G- 1 (A(x)G(x))) = f(B(x)x) ~ f(x) and the result follows by 

the lerrLrna. 
0' r 0' X +l 

We observe fork >1-1, G(x) = x dt = a+l' 
-- 0 

G-1 (x) = [(a+l) x]a+l is order preserving (in fact , asymptotic 

preserving) which implies part of Karamata's result . It is in-

tuitively obvious that i f g(x) is growing faster , the class of func-

tions that can be factored out is larger. A simple result of this 

kind is the following 

Theorem 2.8. If Gr(x) = r g(t)dt t oo and G-
1

(x) is slowly inc r ea-
o .. 

sing, and f(x) is asymptotic preserving, then 

~f(t) g(t)- f(x ) ~g(t)dt. The proof is simple . For each 
0 0 

A' (x) ~ l we have G-1 (A' (y )y) ....., G-1 (y). Let 

y = G(x), A(x) = A'(G(x)). Hence G-1 (A(x)G(x)) ~ x and 

f(g-1(a(x)G(x))- f(x ). 

r O't arx t 'JIX Thus, for example t edt,..... x J~ edt....., x e a real . 
0 0 

Now let us examine what happens on the boundary of the condi -

tions described in Theorem 4 . It is certainly not t r ue that 

~ lo~ t dt ~ log x ~ ~t = log2x. In fact the integral is 
0 1 

log2x 
equal to 2 . Although log t is slo1-r, 

12 



-1 J.x dt) -1 x dH(x) _}_ rl) H(x) = G (x) = ( --· = e and = l r o,- . 
1 0 t H(x) x 

There 

are two things we can say: 'rb.e first ~ is that if f(ex) is 

,X f(t) log X 
slow, we ~ factor it out: j -t- dt = J f(ey)dy 

0 0 
log X slog X 

~ f(e ) dy = f(x) log x. The second is that if 
0 X ( ) 

f(x) is slow and if g(x) = J
1 
\t dt diverges, g(x) is slow 

itself. Since f(t) > 0, g(x) is monotone and we need only 

show g(2x) ~ g(x) or g(2x) - g(x) = o(g(x)). Let e > 0 be 

given. Choose x so large that for y > x/2n (n to be chosen 

later), I f(y1 )/f(y 2) -11 < e when~ 2 y1 jy2 ~ 2. Then 

2x 2x dt 
0 2 g(2x) - g(x) = Jx (f(t)/t)dt ~ (l+e)f(x) Jx ~ = (l+e) f(x) log 2 

/~~ ~~~ 
g(x) > r,n Jx f(t) dt > Lf1 f(x) Jx dt = 

- l x/2n-k+l t - 1 (l+e )n xj2n-k+lt 

= ~ f(x) log 2 _, f(x) log 2 as n _, co; for n sufficiently large 
(l+e )n 

0 < (g(2x) - g(x)) jg(x) ~ 2e. The next question is: what 

happens when g(x) = ~ f~t; dt converges, say to C e.g. 
l 

f(x) = l/log2t. g(x) is then slow but in a trivial sense~ Less 

trivial is the fact that h(x) = C-g(x) = Jco f~t) dt is also 
X 

slow. The proof is simple: 

0 < l 
Sco f(t) dt ~x f~t) dt (l+e)log2 f(x) 

2x t = co < 
2 

co 1 

J~ ~ dt . J ~ dt - log f(x) r,l (l+e) 
X X 

= e(l+e) 

In this lin~ a simple variation of the previous methods enables 

co -1 
us to prove: If f(x) is slow, G(x) = J g(t)dt l 0 and G (x) 

co X co 
is order preserving, then J f(t)g(t)dt """ f(t) J g(t)dt (x _, co). 

X X 

13 



....... 

I 
Le~ us turn from functions to operato!s. The statement that 

~ ' 

if f(x) ~ g(x) (x ~ oo) and ~ g(t)dt ~ oo implies 
0 

~ f(t)dt "" { g(t)dt, is just a r ewording of l'Hospital's rule. 
0 0 

So we have: integration preserves asymptotic relations. In 

fact, fractional integration of any order preserves asymptotic 

relations. If f(x) ~ g(x) (x ~ oo) and 

and g (x) = ~1•1 r (x-t)~g(t)dt ~ oo, then F (x) - G (x) (~ > 0) 
~ l\~J 0 ~ ~ 

F~(x) 
G ---r:-:"1 - l 
~\X) 

( (x-t )~-l( f( t) -g( t))dt 

Jx (x-t)~-lg(t)dt 
0 

Jx0 (x-t)~-l(f(t) + g(t))dt 
< 0 

rcx-t)~-1g(t)dt 
0 

~0(x-t)a-ljf(t)-g(t)jdt 
+ ~----~----------
~ (x-t)~-lg(t)dt 

X 
0 

We can choose x so large that the second term is less then 
0 

€/2 by the hypothesis. Now consider 0 < ~ < 1. In the first 

term the numerator is non increasing with x, the denominator 

approaches infinity so for x sufficiently large, it too < €/2. 
X 

If~> l, F (x) = J F 
1
(t)dt and the result follows by in-

~ 0 ~-

dunction on the integer part of ~. We can replace (x-t)~-l 

with an arbitrary kernel k(x,t) provided for each t, k(x,t) 

remain bounded as x ~ 00 • The same applies to sum i.e. if 

k(x,n) is bounded as x ~ c , a ~ b (n ·-. oo) 
n n ' 

'L.
00 

a k(x,n), 
l n 

lim (x ~c-) 

00 

r.1 bn k(x,n) 
CXl 

r.1 bn k(x,n) 

exist for x < C and 

= oo, thus 

'L.
00

1 a k(x,n) ~ 'L.
00 

b k(x,n) (x-. oo). Differentiation, in 
n 1 n 

general, does not preserving asymptotic relations as the fol-

lowing example shows . 

14 



) sin x ( ) sin x 1 f(x = x + e - x but f' x = 1 + e cos x ·r l. 

Sufficient conditions have been supplied by Obreskov[l] who 

provedi f ~(x) =xa L(x) where L(x) is slow and ~(n)(x) > -~x-n~(x), 

then for 1 ~ i 2 n-1, ~(i)(x) ~ a(a-l) ... (a-i+l)xa-iL(x). The 

result holds for i-n if ~(n)(x) is monotonic. For an exhaustive 

study of the ways in which power series preserve asymptotic rela-

tions see Hardy [3]. 

15 



ChaJter III . Difference Equations an~ Differential Equations 

Before proceeding with some examples of difference equa-

tions, we present a u seful extension of Bernoulli's inequality 

which does not seem to be in any collection we have examined. 

( ) a(a-1) 2 (a; k Lemma . Let F k , a , x = l+ax + 2 ! x + ••• + k) x be the 

kth partial sum of the binomial series for (l+x)a where x > -1. If 

the fir st term omitted, i.e. (k:l) xk+l, i s positive, then 

(l+x)a > F(k,a,x);if the first term omitted is zero , then 

(l+x)a = F(k, a , x);if the first term omitted is negat ive , then 

(l+x)a < F(k,a,x). 

Proof. The result i s trivial if k=O. For k=l it i s Bernoulli's 

inequality. Suppose the theorem is true for all (real) a , all 

x > -1 and all positive integers less than k . Let 

a Jx G(k,a,x) = (1-x ) - F(k,a,x) G(k,a,x) = a G(k-l,a-l,t)dt = ai . 
0 

We first consider the cases of equality. If a i s a non-negative 

integer ~ k , the series has terminated; because if x = 0 . We 

now cons i der cases . 

I. The first omitted term is positive: 

( a ) k+l . 
k+l X = 

a(a-l) ... ~ a -k ) k+l 
(k+l ! .x > 0 

A. X> 0. l. Ifa>O, (a~l) = (a-l)::·(a-k) is also positive . 

Thus G(k-l, a 7l,t) > 0 , I> 0 , ai > Q. 

2. If a < 0 (a~l) xk < 0, G(k-l,a-l)t) <-a, I < 0, ai > 0. 

· (a-1) . ( a ) k B. x < 0. l. If a > 0, k has the same s1gn as k+l , x has 

sign opposite from xk+l,(a~l) xk < 0, G(k-l, a-l,t) < O,I > O,ai > 0. 



I 2. a < o. ca~1 ) has opposite sign from ck:1), xk has 

k+l a-1 k ··· ·-; 
opposite sign f rom x , ( . k )x > 0, G(k-l,a-l,t) > O,I < O,ai > 0. 

II. The first omitted term is negative. The analysis is the same. 

We introduce the concept of oscillation and extend Theorem 1.1 to 

Riemann-Stieltjes integrals. 

osc[k-l,k]f(t) = sup [k-l,k]f(t) - inf[k-l,k]f(t), 

n 
osc[O,n]f(t) = k~l osc[k-l,k]f(t). 

Theorem 3.0. ~~ G(x)dF(x) - ~ G(k)(F(k) - F(k-1)) I < 
n o 1 
~ osc[k-l,k] G(x) var [k-l,k]F(x). 
1 k 
Proof: IJ G(x)dF(x) -G(k)(F(k)-F(k-1))1 

k-1 
= I lim ~ (G(x.)-G(k))(F(x.)-F(x. 1)) I 

0-->0 l l l-

< osc[k-l,k]G(x).lim ~ IF(x.)-F(x. 1 )1 - o-->0 1 l-

= osc[k-l,k]G(x)·var[k-l,k]F(x), where the x. represent 
l 

points of a partition of [k-l,k] and o represents the norm. The 

result follows upon summing. If F(x) = x, this reduces to the 

refinement of Theorem 1.1. 

If osc[O,n]G(x)=o(~ G(k)) or o(fG(t)dt) then 
1 0 

~ G(k) ~ ~G(t)dt. The gain is illustrated by 
1 . 

0 

([x} means the fractional part of x). For any k, 

1 TT 
G(x) = - sin --

. x2 [x}3 
var[k,k+l]G(x) =ro 

while osc[O,ro] G(x) is finite. 

What conditions can we place on a function to guarantee 

this behavior? Without monotonicity we can find bounded real 

analytic functions which vanish at the integers but not in be-

between eg sin2 TTx. On the other hand, there are functions 

all of whose derivatives are everywhere positive and yet because 

of their rapid growth violate this condition. For example, 

17 



rD t n 
j _ e dt = e - l 

0 
while Lfl ek = 

l 

n+l 
1 e 

1
- which differs by a 

e-

factor of less than two. Combining the two types of conditions 

and switching to sequence~ whose oscillations are the same by 

monotonicity, we have 

Theorem 3.1. If r is an integer ~ 1, 6r an is eventually non

negative and ah = O(n
2
r-l), then an= o(~ ~) and this is 

best possible. 

n r 
Proof. Let P( r ) be: if an f o L::1 a1 and !J an ~ 0, then 

6ka is eventually positive for 0 < k <rand a f O(n2r-l). 
n - n 

Let R(k) be: If 0 ~ k <. r, an f o(~ a1 ) and 6ran ~ 0, then 

k k . 2k-l 6 a > 0, 6 a lS unbounded and a f O(r ). Suppose n n n 
n r 

an fo(L:1 aJ! and 6 an ~ 0. For some subsequences [ank} and some 
. nk 
e > 0, ank > e L::1 a r ~ e a1 , ank > e 

nk k 2 
L:

1 
a r ~ eL:1 ea1 =ke a1 . 

~k is unbounded, and R(O) and P(l). 

( ) k-1 r R r-1 . Since 6 a > 0 and 6 a > 

Suppose P(r-1). Suppose 

k 0, 6 a cannot change n n n-

sign more than r-k times (Rolle's theo rem for sequences). 

6k-l a is unbounded, the final sign must be positive. By 
n 

P(k), an f O(n2k-l)(k ~ 1), 6k a is unbounded, 
n R(k) for 

k = O,l, ..• ,n-1. We need yet another induction to finish. For 

the subsequence [a.} of above, let 
lll n. 

S(k) be: 

k 6 a > ~ k-1 
K. 2 6 a n. 

l 

e ." l Ak =-L, ua. 
2 1 m 

Then S(O). Suppose S(k-1). 
l 

k-1 n. -1 
6 a > _l_ 6k-l 

n--1- n Suppose ~ .. S • Ak-1 . . . lnce u a lS lncreaslng 
n 

l i l 

6k-l a > ~ 6k-l a ' 
n. 

6k-~a > e L: l 6k-la 
m- n. n. n. 1 m l l l 

> e 6k-l L:ni > e 6k-l n. which is impossible for n. > e/3. - a 1 m- a. n. n. 3 n. l l l l l 
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k-l n. -l 
Thus ~ a -l < __ l __ ~k-l 

ni ni 

c~k-la .)2 
€ nl 

>-
2 Ak-1 Ak-1 l 

u a -u a -
ni ni 

a n. 
l 

~ka 
n. 

l 

Now by P(r-l), a f O(n2r-3), 
n 

. n k-l i k-1 
Hence ~ an. > €L:1 ~ a1 

€ k-1 
>- ~ a ' 

2 ni 

l 

S ( k) , k=O, •.. , r. 

r-1 . 
~ a ls unbounded. It is n 

also monotone; 
r 

for n sufficiently large, ~r-la = M, a > ~ 
n n r. 

By S(r), ~r-la > (€/2)r a > 
ni ni 

· r r 1 (€/2) Mh. 1 r! Thus 
l 

= 

( ) r-1 2n.-n. 
> l l 

a2n ' . r. 
l 

M 
(r!)2 (e/2)r 

2r-l n. 
l 

r-1 
~ a n. 

l 

r-1 n. 
> l 

r! 

Mnr 
i 

r! 
(€/2)r 

By choice of M, the first factor is arbitrarily large. 

Conversely, for any sequence a ~ O(n), ~r a > 0, we can n T · n-
r n 

find a sequence b <a such that~ b > 0 and b ~ o(L:
1 

bk). n- n n- nT _ 

We do not give the details here. 

This completes our discussion of the difference equation 

x +l = x + f(n) and we turn our attention to n n 

l) X l = X + f(x ) n+ n n 

and the corresponding differential equation 

2) d+L = f(f.L) 
dn 

We have the following result about the convergence of x . Let 
n 

f(x) be a real or complex-valued function of a real or complex 

variable. a) If there is a number 1 such that f(L) = 0 and 

f'(L) exists and ll+f'(L) I < l (f need not be even continous 

elsewhere), then for x
1 

in a sufficiently small neighborhood of· 

L, X ..... 1. 
n 

l9 



b) If in addition f(x) is continuous, the set of all }c which 
0 

result in convergence to L is open. 

c) If 11 + f'(L) I> 1, the sequence cannot converge to L unless 

x = L for some n. 
n 

Proof: a) Let g(x ) = x + f(x). Then lg'(L) I = 1-e for some 
n 

e > 0 and 
X -L 
n-1 

xn - L 

g(x )-g(L) n 
X - L n 

< l-e/2 for x in some neighborn 

hood ~ of L by definition of derivative. Hence for x in ~ 
0 

lx -LI < lx -LI (l-e/2)n. 
n o 

b) Let f 1 (x) = f(x)~ f 1 (x) = f(f (x)). Then for n+ n 

each n, f (x) is continuous and x = f (x ). If x results n n n o o 

in convergence to L, for some n, x = f (x ) e ~ and hence 
n n o 

for all x in some neighborhood of x , f (x) e ~ and they too o n 

result in convergence . 

c) For all x in some deleted neighborhood of L, 

l
x -x I n+l n = 

X - L 
n 

g(xn)~g~L) I > l+e/2 . 
n 

The nature of the convergence, or what is the same thing, 

divergence to infinity, was first discussed by Lublin [7 ] who ob

tained a series for the nth term which is rapidly convergent 

as well as asymptotic in the . case where g(x) is a polynomial 

of degree ~ 2. DeBruijn [l,ch. 8] gives a complete discussion of 
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convergence in the case where g is analytic . He includes the 

case g(x) = a1 x + -r.; ai xi where I a1 1 < l and the very slow case 

g(x) = x + -r.; a i xi a. real , i=2,3,.... In many cases con
l 

sidered, the solution of 2) either converges or has a pole for 

some positive value of n. Our main theorems are concerned with 

cases that lie between these two extremes . To begin, let us 

consider the difference equation 

3) 0! x 1 =x +x ct<l n+ n n · 

The differential equation is 

4) d)-1 0! 
-= ).1 dn 

The solutions of 4) are~= [(l-ct)(n+c)]l/l-0! ~ [(l-ct)n]l/l-0! 

Thus any two solutions of 4) are asymptotic to each other . We 

show that they are asymptotic to any solutions of 3) as well. 

l-0! l-0!( l )l-0! l-0!( l-0! ( l 
xn+l =X l+ =X l + 1 + 0 l-0!)) = n l-ct n -0! X X X n n n 

l-0! ) l-0! 
x - [(1-ct)n]l/l-0! x + l-0! + o(l . x = (1-ct)n+o(n). n n n 

since powers are asymptotic preserving. 

Lemma I. Let x be non-negative and let f(x) be defined and 
0 

positive on [x
0

,co] and let f(x y)/f(x) ~y for y:=: l. Then any 

solution of l) or 2) is unbounded. 

x 1 = x + f(x ) > x , x1 > x > 0. Thus i f x is bounded, n+ n n n o - n 

it must converge to a positive number A and f(A ) > 0. 

n-1 n-1 
x = x + f(x ) + 2:. f(x ) > x + f(x ) + 2:.1 xk f(A) /A no o 1 k -o o 

> x + f(x ) + (n-1) x1 f(A)/A, vrhich is unbounded . - 0 0 
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The argument for 2) i s s i milar . We now prove 

Theor em 3. 2 . Let x be any sol ut i on of 1) and ~(n) be any n 

solution of 2 ) . Let f (x ) > 0 f or x > x , f (xy)/f(x ) < y f or 
- 0 -

y > 1 and f (x ). = o C x ) . Then x ,...., ~(n). 
- og x n 

Suppose fir s t ~(0) = x > 0 
0 

dJ..L rfL dt 
We have f[tj:) = dn , n = j~0 f (t) 

Suppose ~(n) = x Y. withy > 1 (for some n). n n n 

X (y - 1) XJ'n 
n. n 2 I 1 }1(n) dt xn dt 

' • )t/x 2Jx f(t) =n-Ix f(t)= ( n)yn Xu n n n o 

n-1 - Ixk+ 1 dt J < L::n-1 [1 
L: [1 f7t' - 0 

0 X l.\ IJ) 

~+1 dt J < 
I f(~) t/~ 

k 

X - X, 
n-1 k+l K J = 

L:o [1- f(~) xk+l/~ 

log x - log x . 
n o 

n-1 
L: 

1 

xk 

~ [1- -] < 
~+1 

y -1 
Hence _n_ < 

yn 
f (xh) ~ 0 ~ = y ~ 1 for those n ~~~---,~~J · x n x j[log x - log X

0 
n 

n n 

for which ~(n) > x . We interrupt the proof to show that the 
- n 

hypothesis cannot in general be weakened, then complete the 

proof with a weaker hypothes is . Cons ider 

dj..L - j..L dj..L 
dn - log J.1 ' ~ log ~ 

e.f2n Nmv for x . 
n 

= dn log
2

11. 
' - -~I"" n + c, 

X 
n 

X = X + ----n+l n · log x 
n 

1 1 + o( log x = log x + --- -n+l n log x 
2 1 

2 
n og x 

n 

j..L=e/2n+c ffn+o(l) 
= e 

1 ), X (1 + log X 
n n 

1 
) ' 

log3x n 

2 2 1 + o( 1 2 log x 
1 

= log x + 2 -
1 2 ) < log x +2 for n n+ n og x n n log x 

n 

large . 
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2 log x < 2n, n-
2 2 1 (1) log x 1 < log x + 2 - r;::-

2 
+ 0 - . 

n+ - ,., n ; ..; en n 

2 log x < 2n - ffn + O(log n) and 
n 

x < ef2n~ = el2:n-l+O(l) ~ e/2Dje. we could prove 
n-

xn ~ e/2nje but this is enough. 

Thus 

We suppose now x > ~(n) in which case f(x) = o(x) is sufficient! 
n 

(This is no real gain; the only way ~(n) can lay behind x is if 
n 

f(x) is decreasing most of the time.) Since ~(n) is divergent, 

for any e > 0 we can find n so large that x /x 1 < l+e whenever m m-

x > ~(n). For some non-negative integer k, m-

xn-k/l+e < xn-l-k < ~(n) 2 xn-k" We show that for all m ~ n, 

~ > x k/l+e. For m=n, we have the result. Suppose true for m m-

integers less than m. If~ > x 1 k' then~ k/l+e. If -m m- - m-

~ ~ 1 +min[~ 1 ,~ ]·f(x) m m- m- m 
~m 2 xm-1-k' -x- ~ x + f(x ) 

m-k _ n-1-k m-1-k 

~ 

~m-1 + f(~-1-k)(xm~l:k) ~m-1 
> ----

X + f(x ) - X 
n-1-k m-1-k m-1-k 

Now consider x 1 = x + f(x ,n). We know that iff is inde-n+ n n 
n 

pendent of x, we must have a) osc [O,n] f(x,n) = o~1 f(x,k) 

and hence uniformly in x, and if f is independent of n, 

b) f(xy/n)/f(x,n) 2 y and:>~'~( = o(,~- __ ) to insure that 

~(n) ~ x . 
n 

We give an example to show that if we do not strengthen a) we must 

strengthen b) and that the slightest strengthening of the first 
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I 
I 

condition of a ) eliminates the n~ed : for the second and then 

we prove our main theorem . 
x n2 

Consider xn+ 1 = xn + n 
2 

, 
2 

~ = ~n which satisfies a ) and b). 
dn log ~ 

log xn 

d~ 2 2 log3~· n3+c n+o(n-2) 
We have - log ~ = n dn -- = --... ~ = e 

~ ' 3 3 
k n k 

1 
(n+l) k n 2 k n 

1 Let x n n+ =en (l + ~ 2) =en (l + ~). = e . e n 
k n k 

The sequence k has a fixed point for ek 
n 

l 
= l + ~ where k ~ .85 

k 
sox = O(e· 85n). 

n 

Lemma II. If ~t~) ~ k(y) for all x ,y ~ 1, then 

lim lolg~l < inf l~g k(y) which implies that if for a single 
~ og x - og y 

value of y, k( y ) < y , then for some a < 1, ~~x)) < ya and 
1 X 

f(x) = O(xa). 

Proof. Let f(x) = exp h(log x ) and the condition becomes 

exp h(log x +log y)jexp k (log x) ~ k(y). Take logs , let 

log x = u, logy= v and v y(v) =log k(y). Then 

k(u + v) - k(u) < vy(v) 

k(u + 2v) - k(u + v) < vy(v) 

k(u + nv) - k(u + (n-l)v) < vy(v) 

Hence k(u + nv) < h( v ) + nv y(v) 

and k(u + nv) < k (v) + nv y (v) 
u + nv u + nv · 

Let n _... co 

lim h(u) < g (v ) ... 
u -

lim h(u) < inf g (v) whence the result. 
u . -

We omit the easy proof of 
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Lemma III. a) If f(x) is non-decreasing and for a < b, f(a) > a - . 
and f(b) < b, then for some c € (a,b), f(c) =c. 

Thus, if f(x) is monotone, f(x) = x has a unique smallest 

"solution". 

Let f(n,x) > 0 and f(n,xy)jf(n,x) < y for y ~ 1. 

We cannot say, as before, that xn is divergent e.g. f(n,x) = 12 . 
n 

We do have the following result: 
~ 

Lemma IV. a) If ~=l f(n,x) converges for some x > 0, it con-

verges for every larger x and x also converges. 
n 

~ 

b) If L f(n,x) diverges for x arbitrarily large, 
n=l 

it diverges for all x > 0 and x also diverges. 
. n 

~ 

Proof. a) Suppose 

t-!'1 f(k,x) < ~ Ln 
-X 1 

0 

~ f(k,x ) converges to S. Then for x > x , 
1 0 0 

f(k,x) < xs. Then for n sufficiently large, 
0 X 

~ 1 L f(k,x) <---
2 

. 
n o xo 

large, kn+m > 2x
0

. 

0 

Suppose x diverges. 
n 

But 

Then for m sufficiently 

n+m-1 n+m-1 ~ xn+m 
= L f(k,~) < L f(k,x ) - < -- f(k,x ) < X -X n+m n n - n o x

0 
- x

0 
o 

< t x + , a contradiction. nm 

b) 

verged to L. 

The first part follows from a). 

Then x1 < x < L. 
- n 

Suppose x conn 

_n n ~ xl n 
X = X + ~1" f(k,~ ) > X + ~l f(k,L) --L > X + --L L f(k,L) no K-o o 1 

which diverges. A corresponding result holds for ~(n). 

A quick corollary. Let ~~ f(k) be divergent and let h(x) be 

decreasing. Then if x 1 - x = f(n)h(x ), n+ n n 
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x - x = Li f(k)h(~ ) is divergent i . e . for any divergent series ~1 0 K -

there is a slower divergent series. In fact, in the variables 

separate case weaker hypothes es suffice. 

Let x 1 = x + f(n) g (x ) n+ n n 
n 

a) If g (x) = O(x), then the convergence of Ll f(k) implies 

that of xn+l = xl + Li f(k) g (~). 

b) If g(x) i s bounded away from zero on each finite interval, 

n 
the divergence of L f(k) implies that of x . 

1 n 

Proof. a) Suppose L f(k) converges and x diverges. . n There 

is an M for which g(x ) < Mx . For n > N , L00 f(k) n · ~~ o n < 1 2M and 

x > 2x m+n m· 

-ID+n 1 m+n-1 
X - X = ~ - f(k) g (~) < [~ f(k)] Max[x <X <X ] n+m n m K - 1m m - - n+m 

1 l <- ·M X =-X 
2m m+n 2 m+n x < ~ x , a contradiction. m+n n 

b) Suppose L f(k) diverges and x converges to A and on 
n 

[0 ,A] g(x) > c . . Then x = x
1 

+ ~-l f(k) g(~ ) > c~-lf(k) 
- n 1 K - 1 

which is divergent . 

We now come to our main theorem. 

Theorem 3.3. Let f(x,n) > 0 for x > 0, n > 0 and suppose that 

a) osc [O,n] f(x,k) = o(L~ f(x,k)) uniformly in x 

b) For some a < 1 and all x > 0, y ~ 1, n ~ 0 

f(xy,n)/f(x,n) ~ ya and f(x,n) = f(x-,n) . . 

Let x be any solution of n 

5)· 

with 

x 1 = x + f(x ,n) n+ n n 

x > O,and let ~(n) be any solution of 
0 
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6) dJ..1 = f(!-L,n) 
dn 

with i-L(O) > 0. Then x and 1-L(n) are both unbounded and n 

1-L(n) "' x n 
(n---> oo), 

For any function which satisfies the first condition of b), the 

limits f(x+,n) and f(x-,n) exist so that the second condition is 

not restrictive. Also, if the condition is satisfied for a < 0, 

it is satisfied for a = 0, We shall assume a > 0. The first 

00 

conclusion is immediate. Suppose for some x, ~ f(x,k) is con-
1 

vergent. Then osc [O,n] f(x,k) must be identically zero and 

f(x,k) must be constant in k. The constant must be zero which 

contradicts the hypothesis. The result follows by Lemma IV. The 

rest of the proof is long so we have broken it into sections. 

I. We show that if [ln} ls any sequence with n :5 ~ :5 n+l, 

then f(x,ln) = o(~-l f(x,~)) uniformly in x 
l 

n 
For n large, osc [O,n]f(x,k) < e ~l f(x,k) 

n-1 
= e ~ f(x,k) + e f(x,n) 

1 

< e ~-l f(x,k) + e[f(x,n-1) + osc [n-l,n]f(x,k)] 

_n-1 
< 2€ ~l f(x,k) + e osc[l,n] f(x,k). Therefore 

2e n-1 
osc [o,n] f(x,k) < ---1 ~ f(x,k). 

-€ l . 
~ 1 n-1 
~l- f(x,k) < ~l [f(x,~) + osc[k,k+l]f(x,l)] 

= ~-lf(x,~) + osc[l,n]f(x,k) 

_n-1 · n-1 
< ~l f(x,~) +e~1 f(x,~) 

for n sufficiently large. Thus 
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n-l ) l n-1 ( ) z::1 f(x,k < l-e: z::1 f x,~ .• 
e: n-1 

Let N be so large that for n > N, osc [O,n]f(x,k) < 2 z::1 f(x,k) 

l E: 
and N-l < 2· Then for each n > N, either 

a) f(x,0)22osc[O,n]f(x,k) = 2 ~ ~-lf(x,k) = n-1 
e: z::

1 
f(x,k) 

or b) osc [O,n] f(x,k) < ~f(x,O) in which case 

f(x,k) ~ f(x,O) - osc[O,k] f (x,l) > ~f(x,O) for all k < n 
2 n-1 n-1 

and f(x,o) < n-l z::1 . < e: z::1 f(x,k) 

Then f(x,n) < f(x,O) + osc [O,n]f(x,k) < ~ e: ~-lf(x,k). 

3e: n-1 
< L:1 f(x,~) 

and f(x,l ) < f(x,n) + osc[n,n+l]f(x,k) 
n 

< E: 
n-1 

L: f(x,k) + osc [O,n+l]f(x,k) 
l . 

< E: 
~-1 n 
~l f(x,k) + e z::1 f(x,k) 

= 2e: lfl-l f(x,k) + e: f(x,n) 
l 

3 2 n-1 < [2e: + __ e: __ J L: f(x,k) 
2 l 

< (2e +, (~/2)e:2) ~-1 f(x,~) 

< 6e: ~-l f(x,~) 
l 

for e: < ~ 

It follows that there is an absolute constant A1 such that for 

all x, 
n-1 n-1 

f(x,O) < A1L:1 f(x,k) and f(x,n) < A1 z::1 f(x,k) n > l . 
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II. We shor,.r that x +l ......., x uniformly for x > c > 0. 
n n o-

x1-x = f(x ,o) < f(c,o )( x /c)a < f(c,O )(x /c) 
0 0 - 0 - 0 

x1 < (l + f(c,O)/c) x
0 

< A
3
x

0
, A

3 
to be chosen later. 

Asswne ~+l S A3~ for k < n. Then 

x - x = f(x n) n+l n n' 

n-1 
< A

1 
2:: f(x ,k) 

l n 

n-1 a 
~ A1 2::1 f(~,k)(xn/~) 

a n-1 ) a 
Alxn ~ (xk+l-~ /~ 

< A A a . a n~l( ) / a . d t . 
l 3 Xn '-' ~+l-Xk Xk+l by ln UC.lOn 

l hypothesls 
a a( 1-a 1-a)/( ) ~ A1A3 xn xn -x1 1-a by comparison with 

<A A ax /1-a - -~ 3 n 

integral , 

Ynus xn+l ~ (l + A1A3a/(l-a))xn < A
3

xn for A
3 

sufficiently large. 

We have also shown 

7) 

a 
n-1 A3 

2::1 f(x ,k) < -
1 

x 
n - -a n 

e(l-a) n-1 Nor,.r choose N so large that for n > N, f(x,n) < 2:: f(x,k). 
- a l 

Repeating 

A3 

the argument for n > N with e(l-a) in place of A
2

, we 
A a 

3 
have 0 < x - x < ex n+l n n 
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I 
rr1. Let u and v be any two solutions of 5). We show that 

n _ n ·-· " 

u ~ v . Suppose u > v . Let N be so large that 
n n n n 

vn+l/vn < l+e 

a) If u < v , we have v < u < u < v < (l+e)v n+l n+l n n n+l n+l n 

l < u /v < l+e. Furthermor e, n n 

l < v 
1
/u 

1 
< v 

1
/v < l+e,so whenever the order changes, n+ n+ n+ n 

both ratios are less than l+e. 

u n+l 
v ' n+l 

b) Suppose u > v for all n. n n 

u + f(u ,n) u + (u /v )af(v ,n) 
n· n < n n n n = 

un 
= --

v 
n 

v n+l v n+l 

v 
[ n 

)1-a( v ) 
+ (vn/un vn+l- n J 

v n+l 

u 
<~ 

v 
n 

u + (u /v ftv +l-v ) n n n n n 

vn+l 

Thus if ~/vn < l+e for any n, the same is true for all succeeding 

n. 

Suppose ~/vn > l+e for all n. Rearranging the last expression 

we obtain 

u ~+l < ~ [l------ v 
(vn+l-vn)[l-(vn/un)l-a] 

v l J vn+l n n+ 

u c(v -v ) · 
n [ n+l n J ( l )1-a < - l - where l > c > l - - > 0. 

v v ' Be 

u n+m 
---· = 
vn+m 

n n+l 

un n+m [l 
- IIk=n vn 

( -v ) c vk+l k J 
vk+l 

But the product diverges to zero since the product 
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v -v n+m k+l k v v n+m k c. n n 1 -
""k=n vk+l 

- n --····= --- v 
k=n vk+l n+m 

diverges to zero. (The convergence of TI l-ex, ~ ex, ~ x, 

n 1-x are equivalent provided 0 < ex < 1, 0 < X < 1.) Thus 

form la rge , u / v < 1+€. n+, n+m 

IV. We establish bounds for the solutions of 5) and 6). The 

previous step allows us to assurrte x = ~(0) > 0. Let z = Y = ~(0) 
0 0 0 

also. Define 

Yn+l = inf[y:y = Yn +·sup[f(x,k):yn ~ x ~ Y, n ~ k ~ n+l} 

z - . f[ n+l- ln z:z = z + inf[f(x,k):z < x < z, n < k < n+l} 
n n- - - -

The existence of yn+l is assured by the lemma on monotone 

functions and the fact that f(x,n) =O(xa) for a closed and 

bounded n-interval. 

from the left in x. 

That of z 
1 

is assured by continuity n+ 

Extend these definitions to [o,oo] by making y and z polygonal 

functions of n. 

~(0) = y(O). Suppose~~ yon [O,n]. If ~(n+l) ~ Y(n), then 

~~yon [n,n+l]. Suppose ~(n+Tj) = y(n) 0 ~ Tj < 1 and for 

some e, Tj < e < 1 ~(n+e) > y(n+8). Then for somes in (TJ,e) 

, f( ~) = ~I ( ~) _ ~(n+8)-~(n+Tl) > 
- e - Tl 

y(n+8)-y( n ,T]) 
e - Tl 

> y(n+e~-y(n) = y(n+l)-y(n),which contradicts the defini-

tions of y 
1

. A similar argument shows ~ > z. n+ -
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X 
0 

> z . Suppose x > z . If x >- z 
1

, then x 
1 

> z 
1

. 
- o n - n ···n - n+ n+ . n+ 

If x < z 
1

, x 
1 

= x + f(x ,n) > z + f(x ,n) > z 
1

, 
n n+ n+ n n - n n - n+ · 

x < y . If x < y , either x 
1 

< y +l or x +l < (l+e)x < o - o n - n n- - n n n -

~ (l+e)yn < (l+e)yn+l' 

x x + f(x ,n) 
n+l < n n 

If x > Yn' -y - Yn+ f(y ,n) 
n n+l n 

x + (x /Y )f(y ,n) 
< n n n n 

Yn + f(yn,n) 

X 
n 

= --
yn 

Thus, although y is not an upper bound, it is asymptotic to 
n 

x whenever it is not. n 

We show z diverges. Suppose z converges to A. n n 

z 
1 

= z + Min[z ,z 
1

;n,n+l]f(z,k) = z + f(v ,m) 
n+ n n n+ n n n 

v z 
> z +f(A,m ) ( An)a > z + [f(A,n+l)-osc[n,n+l]f(A,k)](An)a 

n n n 

> zn + ~[f(A, ~) - osc[n,n+l]f(A,k)] for n sufficiently large. 

z -n+N 

n+N 
z >~[I: 

1 
f(A,k) - osc[n,n+k]f(A,k)] n n+ 

n+N n+N 
> ~[I: f(A,k) - ! L: f(A,k)] for n sufficiently large 

n+l l 

= ~ L:n+N f(A k) - l L:n f(A k) 
4 n+l ' 2 l ' 

which diverges. This proves the assertion that ~(n) diverges. 
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v. I We show that y 
1 
~ y and z 

1 
~ z n+ n . n+· · n 

Y +l - Y = Max[y ,y +l;n,n+l]f(x,k) = f(w ,1 ) n n n n n n 

n-1 
< A

2 
L: f( w , lk) 

- 1 n 

~ A2 L:~-1 f(yk+l'lk)(wn/Yk+l)a 

n-1 a 
< A2 L:l f(wk,~)(wn/Yk+l) 

< A a n-1 ( )/ a 
- 2 yn+l L:l Yk+l-yk yk+l 

a ( l-a 1-a)/ 
~ A2 yn+l Yn -yl l-a 

a 1-a/ 
< A2 Yn+l Yn l-a 

If y 
1 

= c y , we have (c-l)y < A
2

cay /(1-a) or 
n+ n n n - n 

c A 
n-l < 

1
2 • c is uniformly bounded. Further, for n sufficiently 

a - -a n 
c n 
large, we can replace A

2 
by € and get en as close to 1 as we 

please. 

n-1 
It follows that L: f(y ,n) < A4y for some A4. z

1 
< Bz for 

1 n . n o 

some B. Suppose zk+l < Bzk for k < n. 

z 
1

-z = Min[z ,z 
1

;n,n+l]f(x,k) = f(v ,m ) < f(z ,m ) n+ n n n+ n n - n n 

<A ~-l f(z ,IYL) 
- 2 1 n K 

~ A2 ~-1 f(vk'~)(zn/vk)a 

< 2 a ~n-1 ( )/ a 
A zn ~1 zk+l-zk zk 

~ A2B a L:~-l (zk+l-zk)/zk+la by induction hypothesis, 

<A Baz a (z l-a_z l-a)/1-a 
- 2 n n 1 

< A2Bazn/l-a < Bzn for B sufficiently large. 
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Now choose N so large that for n ~ N~ A2 can be replaced by 

e(l-a)/Ba and repeat the argument. 

VI. We now show y "" z 
n n 

Suppose for n > N, osc[O,n]f(x,k) < ~ ~n f (x,k), y 
1
jy < 1+~ 

o 1 n+ n 

and z 1/z <l+~. Since y and z are monotone, it suffices to n+ n n n 

sh~w the asymptotic relation for a subsequence [n(j)} defined as 

follows: 

n(O) = N0 , n(j+l) is the first integer which zn(j+l) ~ yn(j)' 

It can only worsen the relation to assume that equality holds 

in each case, and we shall do so. Hence 

Rj = Yn(j)/zn(j) = yn(j)/Yn(j-1) = zn(j+l)/zn(j) 

Let V = osc[n(j) ,n(j+l)]f(y ( •) k), C 
n J ' 

n(j+l) · 
= ~ ( . ) 1 f( y ( . \ 'k) n J + n J, 

n(j) 
=~ f(y(•)k), 1 n J , 

D + V = ~(j+(l)) [f(y ( ·) k)+ osc[k+l,k] f (y ( ·) k)J 
k=n j + 1 n J ,. n J , 

( .+1) 
> 'ff J(•) Max [k-l,k] f(y (•) 1) - k=n J +1 n J , 

...n(j+l) [ . )a 
~ Lk=n(j)+l Max yk-l'yk,k-l,k]f(x,l)(yn(j)/Yk 

a n(j+l) a 
= yn(j) ~n(j)+l (yk-yk-1)/yk 

a n(j+l) a a 
~ Yn(j) ~n(j)+l (yk-yk-1)/yk-1 (l+~) 

a ( 1-a . 1-a )/( ) ( )a 
=:.: Yn(j) yn(j+l)-yn(j) l-a l+~ 

[(yn(j+l))l-a a 
= Yn(j) yn(j) ~1] /(1-a)(l+~) 

34 



n(j+l) -
D-V = ~=n(j)+l [f (yn(j)'k) - osc[k-l;k]f(yn(j)'l)] 

n( j+ l) 
<). ( ") 1 Min[k-l,k]f(y ( .),1) - ~=n J + n J 

< n( j+ 1) . [ . et 
_ Lk=n(j)+l Mln zk-l'zk,k-l,k]f(x,l)(yn(j)/zk-l) 

et _n(j+l) et 
= yn(j) ~n(j)+l (zk-zk-l)/zk-1 

et et n(j+l) et 
2 Yn(j) (l+~) ~n(j)+l (zk-zk-1)/zk 

et et l-et l-et 
2 Yn(j) (l+~) (zn(j+l) - zn(j))/(1-et) 

= yn(j)(l+~)et [l- (zn(j/zn(j+l))l-et]/(1-et) 

V < ~(C+D), C < A4yn(j) 

I - R Let Yn(j) zn(j) - j 

D + ~(A4yn(j) +D)> D+V > yn(j)[ _(yn(j+l/Yn(jl-et-1]/(l-et)(l+~)et 

D- ~(A4yn(j) +D) < D-V < yn(j)[l- (zn(j)/zn(j+l)f-et](l+~)et/(1-et) 
l-et et l-et 

l R.+l - l D l (l+~) (1- 1/R. ) 
-(J -~)< <-( J +~) 
l+~ (l+~)et(l-et) 4 - yn(j} 1-~ l-et 4 

l-et Let R. = l+r J .. 
J l 

l+~ (l+~)et(l- l+r·) 
rj+l < [1-~ ( l-et J + ~4) + ~4](l+~)et(l-et) 

r. 2 
< (l+e)(----

1 
J ) + e for ~ sufficiently small. +r. 

J 
s 

Now the sequence S defined by S 1 = (l+e) 1 nS + e
2 

converges n n+ + 
n 

to the fixed point ! [e + e2 + ;:
5 

2 2 3 4] so that for n 
€ + € + € 

sufficiently large, r < S < 2e. This completes the proof. 
n n 
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~ 

It is apparent from the proof that the difference equations 

x -x n+l n f(x ,m ) and x 1-x = f(x 1 ,m ~ n < m < n + 1 n n n+ n n+ n - n -

also have solutions asymptotic to the solutions of 5). 

It also follows by slight modifications of the proof that if, 

instead of conditions a), f satisfies condition 

a') osc[O ~] f(x,k) = O(~n-l f(x,k)) uniformly in x, 
l 

then x ~ !-L(n). n 

We cannot expect a similar result for systems of equations 

even when the functions involved are decreasing, for everi in 

the simple system dd!-1 = ~' 
n v 

the solution 

dv 
dn 

~' the asymptotic behavior of 
!-1 

!-1 = c /ll+d, v = /n+d.jc, c = /!-1(0)/v(o), d = !-L(O)v(O) 

depends on the initial conditions. 
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We give an example which illustrates what happens as a ap-

proaches and finally exceeds l. 

Consider 

9) X -n+l - x + x a/ a n n n 

For x
1 

= land each a, xn = n is a solution 

If a < 0, 

37 

X 1-a 1-CY 
n+l = x (l + n 

1 ) 1-a .1-a( . l ) l-a . ) -a -- > x l +. =x +t_l-a n 
a 1-a - n a 1-a n 

n x n x 
n n 

1-a l-a -a) Summing, x 
1 

> n + O(n . n+ 
Hence the second order terms 

in the binimal = o( 2 l l ) = a -a 
n x 

n 
1-a 1-a ( -a) Hence x = n + 0 n , 

n 

X 
n 

l 

n(l + o(l))l-a = n + 0(1). 
n 

0(----
1

1 ) which sums to O(n-a). 
+a 

n 

0 X = If a = ' n+l X + l 
n ' 

x = n + (x -1) 
n · 1 · 



1-CY 
If 0 <a < 1, xn+l = X 1-CY(l + ~ l )1-Q' < 

n a l-a -

< X 1-CY (1 + 
n 

n x 
n 

1-CY ) 1-CY 1-Q' . ---
1
-- = x + ---. Summlng, a -a n a 

n x n 
n 

X 1-CY < nl-Q' + 0(1). 
n - · 

1-a 1-a( 1-CY a(l-a) ) x >x 1+ -n+l - n . . Q' l-'Q' r 2a 2(1-a) 
n x ~n x 

n n 

1-CY 1-Q' 
X + ---

a(l-a) 1-a 1-a a(l-a) 
-~--'-- > X + - - --->--_!..._ 

2CY 1-CY - n Q' 2CY 1-Q' n a 2n xn n 2n x1 n 

1-Q' 1-Q' ( ) xn+l ~ n + 0 1 . Therefore, 

X 
n 
1-a = nl-a + 0(1), and 

x = n(l + O(na-l))l-a = n(l + O(na-l)) = n + O(na) 
n 

The corresponding differential equation 

10) d!J. 
dn 

Q' 
~ 

Q' 
n 

1-Q' 1-CY ( 1-Q' . ) 
has the solution ~ = n ~l - 1 

Summing, 

These are the cases covered by the theorem: x and ~(n) agree and 
n 

thei r growth is independent of initial conditions. 

. 1 
CY=l. X l = X + X /n = X (1 + -) n+ n n n n xn = nx1 

d!J. = 1:: log ~ - log ~1 
dn n' · 

log n, ~ n~l 

Hence the two solutions agree if x1 = ~E but this is not always 

the case for CY=l. 
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I 
Co~sider xn+l = xn + xn/n~ = xn(L .. + 1/n~), 3 < ~ < ~ -

1-~ l-2~ .....n-1 ~ n n 
log xn = log x1 + ~l log( l + 1/k ) = l-~ - 1~2~ + C + o(l) 

1-~ 
d).b 1-1 n -1 

whereas dn = ~' log 1-1 - log 1-11 = l-~ 

n l-2~ 
n 
l-2~ by a factor of e . 

Hence x is smaller 
n 

Now consider a > l. We show that for x1 < l, xn and !J.(n) 

converge at similar rates and for x1 > 1, log xn ~an whil e 

~J.(n) has a pole at some f inite positive number. 

l ' 

We have 1-1 
n 

[( 1-a ) l-a]-a-1 = 1-1
1 

- l + n which shows that if 

1-1 < l l-1 t ( l-a 
l ' n 1-11 

_ __!__ 
1) a-1 and if 1-11 > 1, there is a pole 

l 

at n = (l _ 1-1
1
1-a)-a-l Suppose x

1 
< l. We show there exist 

a : l 
constants c > 0 and 2 > B > l such that 

x < ( Baja-l ___!__ 
n - c + ) a-1 a-1 -n -

Suppose true for n. Then 

f(n) and a fortior i x 
n 

l ----
< c a-1 

x +l = x + (x /n)a < f(n) + (f(n)/n)a < f(n+l) if n . n n - -

39 

f(n+l) _ f(n) > f' (n+l) = ( B / . )a/a-~(f(n))a=(cna-l+Baja-l)-a/a-1 
- ( )a-1 a a-l - n c n+l +B 

. . · c(n+l)a-1 + Baja-l . 
That- ls, lf B > 1 ( ,) , whlch is true f or all n if - a- a a-

c n + B 

B > c 2a-l + Baja-l 
c + Baja -1 or c = 

Ba/a-l(B-1) 

a-1 B 2 -
Now choose B so that 



xl = l . l 2a-l 
(c+BCY/ a-l)l/a -1 = Ba (2a-l - ~)lfa-l. 

. - l 

Suppose x1 >l. 
Q' Q' 

x 
1 

> x /n , log x 
1 

> a log x - a log n n+ n n+ n 

n n+ l n · . log n Let a y = log x . a y 1 > a.a y -a log n, y 1 > y -n n n+ n n+ n n 
Q' 

n l 
. log x log x 1 . 

> _ >'- ~ n > K _ lfl og l > 
Yn Yk -k i ' n k i 

a a a ka 

log ~ oo log i 
> - 2: i 

k k Q' a If 

log~ 
for some k, k 

l · n 
2:

00 0~ 1 c > 0, then log x > c a 
Q' 

k l n 
Q' 

We need log ~ > ak \' log i 
Q' 

= i; lo~ .(i+k) = ~ log~i+k) + 
l 0 l 

Q' Q' 

oo log (i+k) . . _k l 00 log 2i 
+ Lk i whlch lS les s than log 2k ~0 -r + 2:k < 

Q' Q' Q' 

Q' 
< -- log k + l og D. 

a-l Let xn/ n = zn' x1 = z1 . Then 9) becomes 

a-l n +z 
(n+l) zn+l 

Q' 
= nz + z , 

n n 
( n ) z - z n+l- n _,, 

i) 
l + a-1 

zl 
zn+l > zn: z2 = z1 ( 1 + 1 ) > z1 since z1 = x1 > 1 

Assume t rue for integers < n. 
1+z a-1 

zn+1 = zn ( 1 ~ 1 

ii) 
a-1 Let z1 = 1 +e:. a-1 > 1+e:. zn We say 

E: 

z > rf (1 + _ke:) ,... fT:\n • Assume t rue- for n. 
n k=1 · 1 \ e:; 

) > 1+1 z (-) - z n 1+1 - n 

z 1 > rrn (1 + _ke:)(n+(l+~)) = ~1-1 (1+ _k€)(1 + +€1) = rrn+1(1 + _ke:) 
n+ 1 n + · n 1 
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iii) 
1-a a 

For n > n , z > -- • 
o n a-1 

z > z 
n +n n ·· o c o 

n +n 
11 ° (l a/a-1) 
no+l - k > 

. > E naja-l E > 0 
' 

aja-1 aja-1 x >nE n > Ih for n sufficiently large . n Thus 

. n 
Q' O(log x ). 

n Next we show that for some F >01 log x 
n 

Q' Q' 
X +l < X + X < 2X , log X l < Q' log X + log 2 , n n n n n+ n 

Yn+l < Yn + log 2/oP 

<F 

X 
x jan = y < y + ~n log 2 < y + ~oo log 2 = _! + a log 2 

n n l 1 n l l n l 1-a 
Q' Q' Q' 

n 
Q' • 

We note in passing that it is possible to violate the hypo-

thesis of the theorem and still have x = ~ . Consider n n 

Gn] . 
X +l = X + l + 2 Sln 2TTn. Then X = ~ = X + n n n n n o · 

We also note that the solutions of 9) and 10) for a :5 0 are 

more than just asymptotic. In fact, their differences are 

bounded. Sufficient conditions for this are given in 

Theorem 3.4. Let f(x,n) ~ 0 be non-increasing in x and n. 

Let x be any solution of 5) and ~(n) be any solution of 6). 
n 

Then 

I x n-~ ( n) I :::_ Max [ f ( x 
0 

, 0 ) , f ( ~ ( 0) , 0 ) , I ~ ( 0 ) - x 
0 
I ] + f ( ~ (0 ) , 0 ) . 

First, if x and y are any two solution of 5) , 
n n 

ll) lx -y I <Max (f(x ,o) ,f(y ,o), lx ~Y I). n n - o o o o 
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I 
Chapter 4. Some Higher Order Non-linear Difference Equations 

As a first example of a non~linear difference equation of 

higher order, we consider xn+l = xn + 1/~ ~· The corresponding 

= 1/Jn ~(t)dt. Differentiating and eli-integral equation is ~~ 
l d2 d 2 

get ~ + (d~) = 0. Let 
dn n 

minating the integral, we 

p = : to get p ~~ + p~2 = 0. Reject p = 0 and find 

2 
P = ce-~ /2 _ d~ 

- dn' - l r n-c 
~0 

2 _ dv 
v = t /2,t = /2V, dt - /2v 

t
2
/ 2 dt. e 

- ~ r2/2 v dv ~~ ev//2vl~2/2 n - e -,.;::;:-2 c 
c 2/ ..;c:.v 

~0 2 

1 
c~ 

Let 

2 
e~ /2 

2 
n c ~ ..... e~ /

2
l 1-1 ,... /2 log (n c ~r"" /2 log n since ~ is 

obviously o(n). We prove a more general result for the dif-

ference equation. Let f(n) be slowly oscillating. Let 

n 
xn+l = xn + l/~1 f(k)~. Then xn '"'"',h.z;_ ,_ -;/,_ \ To simplify 

the argument, we omit some factors of (l+€). 

X >X • n+l n 
n 

x 1 - x > 1/x ~l f(k) "'"' 1/n f(n) x . Hence n+ n n n 

xn >.ht! 1 · Thus 
l 7 

X < 1/~~ f(k) t _k 
xn+l - n · J2~1 1/j f(j) 

but 

k 
~l 1/j f( j) is itself slow and the product with f(k) is also 

slow. Hence the last expression is - 1/n f(n) j . 
J2~~ 1/k f(k) 



N ( n 1 )-t 1 ( ) ~ 1 
Summing, ~+1 < L:l 2L:1 kf(k) nf(n} · Let G 11 = L.;l kf(k) · 

1 . 

Then ~+l < ~ (2G(n)) - 2 (G(n) -G(n-1)) ,..._ /2GtN) = / 2~ 1 . 
1 nf(n) 

by theorem 3.0, since G(n) is monotone and slow, if it diverges. 

If G(n) is bounded, so is x . 
n 

If f(n) = 1, / 2S l/n ----./2 log N. 

We consider an extension of the previous problem. 

"f(k) 
1) x 1 - x = 1/L: -- xk where 0 < et < 2 and f(n) is slow. 

n+ n ket 

_1_ = f(n) x + L:n-1 f(k) = f(n) x + __ 1 
x +l-x .a n 1 ket ~ et n x -x 1 n n n n n n-

Let x = 0, z = 1/(x -x 1 ). Then x = ~l 1/zk, o n n n- n 

z = z + f(n) ~ ~ z t. 
n+l n net 1 zk ' n 

Thus 

z > z + f(n) ~ = z + f(n)nl-et 
n+l- n a z n z Squaring, 

n n n 

2 2 
zn+l ~ zn + 2f(n)n

1
-a. Summing, 

2 ) 2-et; z > 2f(n n 2-a. n - Let~=l-et/2,1-S=et/2. Then 

z >I -~ 
n - f(n) /~ n . Using this bound in 1), 

z - f(n) ~ 1// f(n) /S n~ z < "' 1 
) et/2 

~ f(n ~ /~/f(n) 
n+l n - n'-" 

./~:ten:; 

= (et/2)net/2 ' 
since S < 1. 

Ci et; 2 n 

. L[IGii n~ 1 ~ 
Summlng, zn ~ -a/2-- ~ = a/2 /f(n) /~ n . 

The geometric mean of our bounds, z = .r~· ns, satisfies 1) 
n a 2 

and the associated integral equation. The bound can be improved 
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to show that any solution is asymptotic to z . We illustrate with 
~ ; n 

. l l 
f(n) = 1, a=l. Then z 1 = z + - ~nl --. We have as bounds 

n+ n n zk 

2/2ll > z > !2ll and we claim z ~ 27ll. It is easy to see that n- n 

an upper bound of the form 2/lla, a > 1, determines a lower bound 

2/llja. /2 is a value of a. Suppose the best possible value of a 

exceeds l. 

l 
z =z +--n+l n z 

n 

l z 
(l +-~_E. - l)) 

n zk 

l z 
l + - r!! ( _E - l) > l 

n l zk 
l I 2 z 

+ - rf! a ( _E -1) 
n l zk 

> 1 + ~ rf!/a
2

(afn/a ) 
n l 2/k a - l 

since 

2 !._ = ->1+3- 2 
a a 

c > _g_ 
a2 

2 3 l 2 2 1 + --3 - ~ = (l - a) (l + -) > o. 
a a . a 

Thus zn+l ~ zn + cjzn' zn ~ ~2/TI with !C]2 > 1/a. Substituting) 

z - z < ~ Lfl l ,...., --1--
n+ l n - n l JCf2 2.fk ./Cf2 Tn Summing, z < f27C 2/n n- v "'-! '-' 

with ~ < a. This contradiction proves that 

Summing in the general case, we find that 

z ....., 2/ll. 
n 

()-a/2 
X-~~~ 

n /f(n)a/2 

a = 2 is a boundary case. We consider it in more detail. 

Let xn+l = xn + 1/~ L, a< l. 
k2logak 

l 
x -x n+l n 

X 
n = + 2 a 

n log n 

l 
By the same substitution, 

X -X 
n n-1 

na/2 

- a zn+l - n2log n 
n l l 
~ -- + z > z + ----~----

1 zk n - n a Apply Theorem 3.4. 
n log n z 

n 

. 
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dj.J. 1 
dn= (i 

IJ.nlog n . 
1-Ldj.J. 

2 l-et dn IJ. log n 

1
·;:.: Ci c 2 "' l-et 

n ug n 

l-et l+Ci 
z > loln/!3~. Let !3 = 2' y = 2 , so a+!3 = y, 1-y = !3. 
n-

z - z < 1 ~ !3 ~/log!3k n+l n- 2 (i 
n log n 

l 

1 n!3 2 
...... 2 (i ·-!3 

n log n log n 
l l 

l 
!3 2 

n log'Yn 
Summing , 

~ !3 2 !3 2 1-
Zn+l '~ ~l ~~log 'Yn by monotonicity, 

k loe;,'Yk y 

!3 ]._ 
log n/!3 2 • There f ore z ~ log13n/!3 ~ . 

D 
Summing again, 

x ...., n 
n log13 n/!3~ Since 

the constant depends on a, we cannot expect a result for a 

general slow function. 1 
- X + 1/lfl -2-Now suppose xn+l - n 1 k log k 

1 

xn+l-xn 

X 
n 

= 2 
n log n 

+ 1 
x -x n n-1 

1 ~ 1 1 z = z + 
2 - > z + n+l n n log n 1 zk - n n log n zn 

diJ. 1 dn IJ. 
2 

- = IJ.diJ. = -- ~ log log n dn n log n 1J. ' n log n' 2 · 

Thus z > /2 log lg n n-

Applying Theorem 3.3, 

1 n l l 
z - z < L: - ~ -
n+l n - 21 1 /2 log log k n log n /2 log log n n og n 
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< ~ l r d( log log t) 
zn+l - l k log k ~log log k ~ 1 /~ log log t 

= ../2 log. log n 

z ,..... ./2 log logn and x "'"' n ./2 log log n ~ n n 

Finally, suppose xn+l= xn + 1/~ ~~where L: k~ converges. 

z - z n+l n = a 
n 

n 1 n a 
L: - < n 

l zk z;-:-
l n 

z <-L:ka<c,. 
n+l z1 l K l 

xn ,... c
2
n. 

zn converges to some c2 and 
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