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1. Introduction 

!• LATTICE GASES WITH ATTRACTIVE 

FORCES: ISING FERROMAGNET 

The two dimensional Ising Model bas never been solved in 

a finite field.- The critical point exponents,1 however, have all 

been inferred from the exact solution of Onsager2 in zero field or 

determined by series expansi�ns.8 It remains to determine the 

magnetization m(H,T ) for finite H. Recently Mattis and Plischk:a-3 

derived rigorous analytic lower bounds to m(H,T ) in terms of the 

zero field internal energy u(O,T} and_ the spontaneous magnetization 

of Yang4 
nJo(T). As the zero field susceptibility could not be 

rigorously incorporated into this expression the response to 

· small fields was much too weak and these analytic bounds do not 

lie very close to the correct answer. 

In this chapter we present the results of numerical computations 

giving a lower bound to m(H,T) which, except for a small region of the 

H-T plane, lies tdthin .1� of the correct answer. 'Ihis lower 

bound is obtained by dividing the infinite lattice into strips 

of infinite length and ·width M spins. This is achieved by removing 

.ferromagnetic bonds and can only lower the magnetization as has 

boen shown by Griffi tbs .-5 The Kramers-Wannier transfer matrix for 

. such a strip is a 2N x 2N matrix whose largest eigenvalue, as well 

as the corresponding eigenvector, we obtain by a simple iterative 

process doscribed in Section II. 



In �action III we introduce a new approximation to the 

transfer matrix, solvable in zero field, which reproduces co?:lpletely 

the critical point behavior of the full Ising Model in zero field. 

This pseudo transfer matrix has a feature which makes it ea_sier 

to study numerically. 

2. Hamiltonian and Transfer Matrix 

The Hamiltonian for the isotropic Ising ferromagnet on 

a two dimensional M x N lattice is 

where 6,. = � 1. 
4J 

The partition function is 

vhero V is a 2N x 2 N matrix called the trans! er matrix. For 

a derivation of this matrix sea, for ex.ample, reference 9 • 

(1) 

(2) 

.!. 1.. ·  
V = (V2v

3)2v1 (v2v3
)2 (3) 

where. 
. N/2 • "1 X V1 = · {2oinh2K) exp(-K Z cS' .• ) 

- -� bt J 
T �:t 

( ) V2 = exp(K ..t:. 6, u.-,) 4 
j:/ ,I JI 

V3 = exp(� Ht. 6_;1 ) 

where <J':tr1:are the Pauli spin matrices, K = J/�, K• = -½log(tanhK) 
l: 1: and where th� lattice is wrapped on a torus in that o;'.;,. 1

::. � • 
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If the lattice is M spins long then, as M � 00 , the thermo­

dynamics of the system are completely con�ined in the largest 

eigenvalue and the corresponding eigenvector of V. In particular 

f = F/MN = -1/N kT log/\ max(N 11H,T) (.5) 

where f is the free energy per spin and /\ is ·the largest 
max 

eigenvalue of V. 

m.(H,T) = 1/N ("fol i-; �
.l 

/ �) 

where m(H,T) is the magnetization per spin am It) is the 

eigenvector belonging to /\ max• At H = 0 the transf�r �trlx 

may be diagonalized exactly as was first dona by Onsager.2 

(6) 

Other methods have been developed since then, an:l we will illustrate 

one of them in the derivation of the thermodynamic properties 

of the pseudo model in Section III. The zero field solution 

has the following properties: 

kT = 2J/log(1+{2) � 2.26918SJ 
0 

u(O,Tc) = -./2.J 

c(O,T) � A log(T-T }/T tT • T 1<'<1 C C . C 

m0(T) ={1 - (1 - tanh2K)4/(16tanh4K)j i/S 

= 0 

In the critical region Jno (T) � (Tc • T)118• The formula tor 

mo(T) was· �i:rst revealed by Onsager and subsequently derived by 

Yang. 4 The derivation of mo(T) is �ot rigorous but Griffitbs6 

has shown that Il\)(T) is a lo-..rer bound to the true spontaneous 

magnetization m (011T) of the Ising Model. The following critical 

point properties have also been established: 

X (o,r) = IT - Tc'· -7/4 for IT - TJ� 1 



by Fisher,? and 

m(H,T ) � n1/15 for H<'< 1 
• . 

C 

by Gaunt,8 the latter by nl.1Dler1cal studies, 

3. Calculational Procedure and Results 

We obtain the largest eigenvalue of V and the corresponding 

eigenvector by the following simple iterative process. Begin 

with any trial vector .¢
0 

.in the direct product representation. 

If ¢., is not orthogonal to the ground state vector Y., we. 

may write 

whore the t• •s are eigenstates or V. 

--

Apply V n times. 

;1 -[o< Y, r Z o<. _J 1f.. 
1t. 

·c,1. J 1( J -
tvl '-7 . o o J >o J /17'<� J 

If we nor:nalize IA it 1s clear that 

-✓r/n 

Moreover r� 

-�. · 11 �//411?' ¢ YI 

-> lo ct/) 

� 
·n. -7'� 

,v(. -> .OQ 

4 
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In prac�ioa convergence of this process is very rapid. E,ccept 

f or small magnetic fields it rarely takes more than five iterations, 

starting from the completely aligned state, to arrive at six figure 

accuracy in the eigenvalue. 

There are several ways or testing the convergence or the 

numerica1 solution. It one is primarily interested in the largest 

eigenvalue of V then there exists a criterion of absolute convergence. 

Given an E;, 0 and a number a-' such that 

then 

Here 

norm. 

I I - tf "'°1 \ !, E 

a- = is tha &lclidean 
�� I Y J </>)1) 

and � 
< �1\1 <Vn) 

Proof of this theorem may ba found in reference 15. 

• 1 Since our primary interest, in this chapter, is the calcu-

lation of m(H,T), l·rhich is a more sensitive function of the 

eigenstate than /\ max we test on successive values of the 

quantity ( i / -1 o. l/ 4'
n) • This has the advantage that, while 

J-=1 J 

very few multiplications of a trial vector by V will produce the 

(S) 

(6) 

eigenval.ue to within the accuracy of the machine (6 figures), the 

eigenvector, arrl other averages taken over it, may still be changing. 

·1n general we stop iterating when successive multiplication of the 
. . 4 trial vector. by V does not change m by more than ona part in 10 . 

This does not give any absolute criterion of the accuracy to 

which we know.m but we feel that, except at a singular point (H = 0 ) , 

m is accurate to one part.·in 103 at least. 

5 



From the large�t eigenvalue we obtain the tree energy of a strip 

N spins wide and infinitely long. 

f(N,H,T) = - Ia/N log·f\max
(N,H,T) 

The thermodynamic functions u(N,H,T), m(N,H,T) may be obtained. 

from r by numerical differentiation or by computation of the 

appropriate correlation functions in the ground state. 

In particular 

(7) 

m(N,H,T) (8) 

We have computed. m(N,H,T) as a function of H for several 

tempe·ratures for strips between 2 and 10 spins wide. In Figure 1 

we plot m(N,H,T) vs . tanb � H for T = .61T , T = .927T, T = T ,  
\ C C C 

T = 1.8JT. · These curves correspond to the lower bounds of 
C 

reference 3 and were obtained from strips of width 6 spins, 8 spins, 

9 spins, and 6 spins respectively. For T f: T these curves lie 
C 

within .1% of the limiting· curve for an infinite lattice. At· 

T = T �  these results are accurate to within .1� fo� H ). .1J and 

accurate to 1% for H ),- .05J. In all cases the strips were wrapped 

on a torus. It might be argued that this destroys-the lower bounds 

in that it is not possible to arrive at these toroidal strips by 

a removal of ferromagnetic bonds. However, we have found experi­

mentally that the magnetization of a toroidal strip increases 

monotonically with the circumfarence, am we henceforth assume it 

to approach the magnetization of the infinite lattice from below. 

A note-Aorthy feature of t.�e curves is that for T < T our 
C 
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computer solution exhibits a non zero spontaneous magnetization. 

This is due to the fact that the solution was iterated only a finite 

number of times. The solution at H = 0 for T < T is metastable 

and a sufficient number of iterations will reduce the zer� field 

magnetization to zero. However, the same curves may be obtained 

by the following procedure, which, nevertheless, guarantees a lower 

bound. Since the zero field magnetization of Yang, m0(T), is a 

lower bound to the spontaneous magnetiza�ion of the Ising Mode16 

and since m(H,T)' is a concave function of H 14any straight line 

drawn between the point m(0,T) and the nearest accurate value at 

another polnt, m(H1,T), ·where m(H1 ,T)is, moreover, known to be a 

lower bound, ·will provide a lower bound to the magnetization over 

the entire 1�ange O � H � H1. Taking successively smaller values of 

H1 one effectively generates the curves sho1m in figure 1 for T < Tc, 

as a lower bound to the exact result. 

In tables 1-J we show the magnetization m(H,T) as a function 

o! H for T = .9T 0, T = Tc,·T = 2Tc for N = 8,10,6 respectively. 

Again. for TI T c the results are correct to .1%. For T =.Tc the 

magnetizations are correct to .1% for H >.05J and accurate to . 

• 51, for H > .025J. The critical region behavior m = .A(H/J) 
1115 

extends to H/ J ::::: • J. The coefficient A = 1. 00 + • 01. This was . ' . 
8 

. . 
preViously determined by Gaunt to be 1.002, consistent with our result. 

From the Ising Model one can also obtain the thermodynamics 
1J 

of the classical lattice gas. The correspondence is 

p """-'"" -(f + H + 2J) 

v � ·2/(1 - m(H,T)) 
(9) 

7 



In this chapter we deal only with attractive forces J > o. In 

tigure 2 we plot the isotherms of the.lattice gas for temperatures 

T = .8T�, T; .927T0, T = T
0
, and T = 1.5T0 .along with the boundary 

of the two phase region as determined from the exact solution of 

Onsager.2 Again, except for T = Tc, the curves are accurate to 

At high temperatures the isotherms approach those of the 

hard core, J = o, lattice gas given by 

p/kT = log(v/(v-1)) (10) 

4. Pseudo Ising Model 

We arrive at the •pseudo Ising Hodel' by combining exponents 

in the transfer matrix, neglecting all Baker-Hausdorff corrections. 

Thus 

where we have not imposed boundary conditions yet. At H = 0 

this matrix may be diagonalized in the same way as the full 

Ising Model transfer matrix except that slightly less algebra 

is necessary. It is clear that we need only determine the largest 

eigenvalue of the matrix in the exponent. 

v• 
p 

This property makes the pseudo model useful for the study of 

the three dimensional Ising Model in that the matrix is'sparse• 

in the product representation, i.e. it has a large number of 

zeros. This decreases the amount of storage required and al.lows 

(1) 

(2) 

8 



the treatment of larger finite strip� or parallelepipeo.s. To 

verify that this pseudo transfer matrix reproduces the correct 

critical point behavior at least at H = 0 we carry out the calcu­

lation of f,u,c,m where 

f(O,T) = - kT/HN log tr. � = - k.T/N log/\_J�O,T) 

u(O,T) � .;
(' 
l\'. f) 

c(O,T)/k = 
� i> v C �2 T) 

-� 0� 

is the · •internal energy' 

is the •specific heat• 

is the analog of the Yang 

magnetization. To do this we follow step by step the procedure 

of �chultz, Mattis and Lieb11 and first make a rotation. 

Then we introduce fermion operators via the transformation: 

where i c
j
,q J = �-.i.l and l c

j
,s J = l c;,ci j = 0 

With these substitutions the matrix VP becomes 

9 

(J) 



• 

V' = p 

We complete the first term by adding 

Now if n is odd we let �+l = -c1 c;
+t 

= ·-ct; 
+ . + 

if n is even we let �+l = c1 <¾+1 = C1 

This imposes boundary conditions and gives two types of transfer 

matrix, Vp'±, where an acceptable eigenstate of y, + must have 
-p 

an even number of fermions, and an eigenstate of vp- must have 

an 0<3:d 11umber of fermions. 'l'o diagonalize we make tjie further 

trans.formation 

For v+ q = 

For v- q = 

Then V' = q 

..,. l[ 
i..J 

0 
} 

filI J ,t I N. 

.,. .)_ 7r --1 
N 

1--

+ ,-1-J 7f -I 
N 

N-2,
,r 7f 

{\I I J 

The terms tor q = o, q = 7lare 

:l (" - K, 'r) (t-t ( � i) 
- 2. ( i

<
-f Kt}_( r; � -i) 

10 
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Finally the transformation 

.1/; -::: Ctf) 11 J/" - se--.:...rft J..7 
-t-

Co) lr x; -f s,,,;,_ ¢ 'I � 
f-1 -

with 

°" J� C6:>� 
I 

[ 1-+ -
\/..i 7-..f ,e,, 'l, ... 

-
� 

-
I 

l \51 I-

* where a = K cos q - K, b = K sin q diagonalizes V.  

In diagonal form V is given by 

V= 
1) 

The q = o, q = T terms may be incorporated in the same way 

with 

From (9) it is clear that the largest eigenvalue is obtained 

when J� Jf> = O, i.e. the completely empty state •. If K'� K . 1 . . . 
and the singly occupied state of v- is degenerate with the empty 

st�te of V"".. This defines the critical temperature as it is  

well-known that we must have such a degeneracy for long range 

order to exist. Thus Tp = Tc where T0 is the critical temperature 

of the full Ising Hodel. 

11 
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(9) 



_The free energy is given by 

The internal energy is 

u :: 

Now at Tp 

In figure J we plot u (O,T) an:l u(O,T) as functions of T. The p 

most d,ivergent term in.the specific heat is giyen by 

. . . 

(10) 

This diverges logarithmically as K � K and we have, after expanding 

12 

... 



- ·-

• 
K, K •in terms of T - T 

C 

(17) 

{18) 

By comparison the specific heat of the full Ising Model is given 

by12 

c/k � {19) 

The coefficients differ but the form.of the divergence is exactly 

the same. 

The spontaneous magnetization is expressable as a Toeplitz 

Determinant:11 

m2 (T) = det \ a. · I where 0 J.J . 

a = a = - .L Z: .€- <J. ( j-i,) .i.e. 
/<�/.e l .f} 

1j 1-j N � (20) 

where· c/� is the function of 1 defined in {8)·. _Th� dimensionality 

of the determinant is the separation of the spins i,j in the 

correlati�n function (t1c<SJ> and as this becomes infinitely 

large the determinant may be evaluated to give 

= 0 T�T . C 

(21) 

13 
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Expansion about T yields 
C 

The Yang magnetization near T behaves as 
. C 

Illy � 

T,v T ""' C 

T�T C 

Again, as with the specific heat, the critical point behavior 

is the sa.me with the multiplicative constant being different. 

We have· shown that the pseudo model exhibits the same 

cri t�ca� point behavior as the Ising Model in zero field. We 

have found that 

mp(O,T} � }T - T
0 

\ l/S 

This leads to the speculation that the critical exponents will 

be the samo in a finite field in two dimensions as well as in 

three dimensions . The investigation of this will be carried 

out at a la ter time. 

14 
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6. Figure Cap�ions 

I 

Figure 1 Plot of M(H , T) as function of tanh (:; H for 

various temperatures. A) T = .61T t N = 6 B) T .= .8T t 
0 C 

N = 7 C) T = .927T , N = 8 D) T = T ,  ·N  = 9 E) T = 1 . 8JT , 
C C C 

N = 6. The criti�al behavior m(H,T0
) = A(H/J)l/!S extends 

to tanh r H --.:::J .1.5 in curve D. 

Figure 2 Plot of isotherms for the lattice gas. A) T = .8T
0 

B) T = .927T
0 

C) T = T
0 

D) T = 1 .,5Tc• Curve E is the 

boundary of the two phase region as determined from the 

analytic solution at H = o. 

Figura J Plot of internal energies of the pseudo model 

and the Ising model in zero field as function of temperature. 

A) Up(O.T) B) u
1 (0 ,T) . The deviation from infinite slope 

at T results from lnertia in the mechanical plotter, not 
C 

from any significant computer error. 
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TABLE 1 

M(H ) AS FUNCTION OF H FOR � = 0.90T� 

H 
1.0000 
0.9500 
0.9000 
0.8500 
o.sooo 
0�7500 
0.7000 
0.6.500 
0.6000 
0. 5500 
0.5000 
o.4500 
o.4000 
0.3.500 
O.JOOO 
0.2500 
0.2000 
0.1800 
0.1600 
0.1400 
0.1200 
0.1000 
0.0900 
0.0800 
0.07.50 
0 .0700 
0.0600 

. 0 .0.500 
o.0450 
0.0400 
0.0.3.50 
0.0300 
0.02.50 
0.0200 
0.0100 
0.0090 
o.oo�o 

. 0.0070 
0.0060 
0.00.50 
0.004-0 
0.0030 
0.0020 
0.0010 
0.0000 

M(H) 
0.9818 
0.9806 
0.9794 
0.9781 
0.9766 
0.97.51 
0.9734 
0.9716 
0.9695 
0.9673 
0.9648 
0.9621 
0.9.590 
0.95.5.5 
0.9515  
0.9469 
.0.9414 
0.9.390 
0.9.362 
0.93.32 
0.9298 
0.9261 
0.9239 
0.9217 
0.9205 
0.9192 
0.9164 
0.91.31 
0.9114 
0.9098 
0.9081 
0.9065 
0.9048 
0.9031 
0.8998 
0.8995 
0.8992 
0.8988 
0.8985 
0.8982 
0.8978 
0.8975 
0.8972 
0.8968 
0.8965 
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TABLE 2 

M(H) AS FUNCTION OF H FOR T � 1.00T0 

H M(H ) 
1.0000 0.9683 
0.9000 0.9642 
0.8000 0.9595 
0.7000 0.9540 
0.6000 o.9473 
0.5000 0.9389 
o.4500 . 0.9339 
o.4000 0.9281 
0.3500 0.9215 
0.3000 0.9138 
0.2500 0.9045 
0.2000 0.8931 
0.1900 0.8903 
0.1000 o.8875 
0.1700 o.8845 
0.1600 o.as13 
0.1500 0.8775 
0.1400 0.8738-
0.1300 0.8698 
-0.1200 0.8655 
0.1100 0.8607 
0.1000 0 .85.56 
0.0900 o.8499 
o.oaoo o.8434 
0.0700 0.8357 
0.0600 . 008274 
0.0500 0.8159 
0;0450 0.8083 
0.0400 0.7995 
0.0350 0.7883 
0.0300 0.7740 
0.0250 0.7548 
0.0000 0.0000 

22 
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TABLE J . 
M(H) AS FUNCTION OF H FOR:T = 2.00Tc 

H 
1.0000 
0.9.500 
0.9000 
0.8.500 
0.8000 
0.7.500 
0.7000 
0.6.500 
0 .6000 
0 • .5.500 
0 • .5000 
o.4.500 
o.4000 
0. 3.500 
0.3000 
0.2.500 
0.2000 
0.1800 
0.1600 
0.1400 
0.1 200 
0.1000 
0.0900 
0.0800 
0.0750 
0.0700 
0.0600 
0.0.500 
0.0450 
o.0400 
0.03.50 
0 .0300 
0.02.50 
0.01 .50 
- 0.0100 
0.0090 
0.0080 
0.0070 
0.0060 
0.00.50 
0.0040 
0.0030 
0.0010 
0.0000 

M(H) 
0 • .5670 
0.5490 
0 • .5299 
0 • .5099 
o.4889 
o.4667 
o.44JJ 
o.4188 
0.39.31 
0 • .3661 
0 • .3379 
0.3084 
0.2778 
0.2460 
0.2131 
0.1793 

- o.144.5 
0.1304 
0.1162 
0.1019 
0.087.5 
0.0730 
0.06.58 
0.058.5 
0.0549 
0.0.512 
o.o4J9 
0.0.366 
O.OJJO 
0 .029.3 
0.02.56 
0.0220 
0.0183 
0.01 10 
o-�0073 
0.0066 

. 0. 0059 
0.0051 
0.0044 
0.00:37 
0.0029 
0.0022 
0.0007 
0.0000 
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II .  LATI'ICE GASES WITH SOFT CO R E  - ------ - -
REPULSION: ISING ANTIFERROMAGNEI' 

1. Int roduction 

Our aim is to inv estigate the properties of lattic e gases 

having a soft core repulsive potential as well as a hard core. The 

basic syst em, in magn etic langwige, is th e n earest neighbor Ising 

a ntif errorn.agnet . In zero magnetic fi eld this system has th e same 

t hermodynamic prop erties as the �Ising ferromagn et which was solved 

exactly in two dim ensions by Onsager.1 The antiferromagnet was 

t reated by Garrett2 using molecula r fi eld theory (MFI') . He obtained, 

for T < TN, a second order phas e transition at a finite  critical 

field H0(T ) at n1lich th e magn etization is continuous but the suscepti­

bility is disc ontin ous. In section 2 of this chapter of this chapter 

w e  also use MFT t o  obtain the prop erties of the lattice gas. In 

s ecti on 3 we analyze the transfer matrix of th e two dim ensiop.al 

a ntif erromagnet for strips of infinite length but finit e width by 

the same method used in chapt er I t o  treat the ferromagnet . We 

a re abl e to treat strips up to 10 sites wide and find MF'l' to be  

qualitatively correct, with possibly one imp ortant exception, 

discuss ed below . 

I n  secti on 4 �e consider the antifer�oma.gnet with ferromagnetic 

i nteractions between next nearest neighbors . In lattic e gas language 

this is a system with hard cores ,  soft cores, and a longer range 

attractive· force. Hemmer and Sten3 have rec ently treated exactly 

I 
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a one dimensional continuum f'luid with hard core, soft core, and 

a weak long range attractive potential. They found either a single 

first order phase transition or two first order transitions depending 

on certain p arameters in .their model. They have also argued that 

if the attractive part of the interaction is capable of producing 

a fi�st order phase transition in the lattice gas, then the soft 

core repulsion should bring about two first order phase transitions. 

In MFT, however, we find that while there are always two phase 

transitions the nature of these transitions is variable. Notably, 

there is a temperature T1 < Tc above which the transitions are 

second order, whereas the trans�tions are first order below T1• 

These results are expected to hold for an exact calculation as well. 

It might be expected t�at this model l1ould at lea9t quali­

tatively reproduce the . properties of the rare ·gases, we find in 

MFl' no critical line (or critical point or triple point) even for 

interactions with more structure than the ones reported on here. 

In view of the fact that Heilll11er and Stell have found the possibility 

of such a critical line already _in one dimension, it seems to us 

that molecular field theory is the culErit. Thus, the major 

improvement of an exact transfer matrix solution, �n two or 

three dim�nsions, over MFT 'Will be the precise delineation of 

the critical. lines and their dependence on the structure of the 

interactions (depth an:l width of attractive potentials and radius, 

as well as gradient , of repulsive core). It is our opinion, from 

the present calculations, that only a blend of repulsive and 

attractive 't'orces comparD.ble to the forces between two Argon atoms 

can yield a thermodynamic phase diagram ·comparable to the experiments 

2s 
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on Argo�. We have not yet found this blend. 

In section S we apply the transfer matrix method to the 

antiferromagnet with ferromagnetic interactions along crossed 

bonds. While at present time we cannot yet verify the existence 

of the temperature T1 we present evidence that MFT does indeed 

give the correct picture concerning the order of the phase transitions . 

2 .  Ising Antiferromagnet : Molecular Field Theory 

The Ising antiferromagnet on an isotropic square lattice 

has the Hamil tonia.n 

if - J � ( s s. . + s . .  s . ) _ H z. s.
J
• 

� lj' '-j t- 1  "J i+l . j  ,: 1· ' 
. (. l . I . 

(1) 

26 

whore s1j 
= ±1 and J > o. The magnetic properties of the antiferromagnet 

have been p�eviously derived in MF'!' by Garrett.2 Dividing the 

·1attice into A and B sublattices and designating the sublattice 

magnetizations by mA and � we have 

mA = - tanh � (zJmB - H)  - - tanh{mB - h )/t 

mB = - tanh f' (zJmA - H) = - tanh(mA - h)/t 

where h = H/zJ, t = kT/zJ, and 'tlhere z 1s the number of nearest 

neighbors. · The MFT treatment applies to any lattice which may 

be divided into two sublattices in such a way that the nearest 

. neighbor or any site on the A sublattice is on the B suolattice 

and vice versa. In Si• (1 ) we wrote the Hamiltonian for a square 

lattice in view of the transfer matrix treatment of the. next 

(2 ) 

· . . 

j' 



section but th e r est of this section applies equally well to th e 

three dimensional simpl e cubic and body c entered cubic lattic es; 

only th e param eter z is different. 

The free en ergy p er spin is given by 

f/zJ = -t log 2 -½ mAmB - t/2 log cosh (mB _ - h)/t 

- t/2 log cosh (mA - h )/t 

The equations (2) admit two types of solution 

a) mA = mB with free energy _fa 

b) mA 1' mn with free energy f b 

As was shown by Ga�rett2 . f b < fa whenev er the b type solution 

of equations (2) exists. As th e magnetic fi eld is increased 

at constant temp erature t < 1 from zero we pass through a critical 

_ field hc (t) a� which th e b type solution c eas es to exist. The 

sublattic e magnetizations mA, mB approach each oth er continuously 

and the magn etization m � ½(mA + mB) is continuous. Tho suscep­

tibility X,::: �;;21 is discontinuous am the transition is second 

order. In figure 4a we show some magnetic isotherms .  Th e temper­

ature d ependenc e of the critical field is given by 

h (t) = {1 - t + t tanh-1J 1 _- t 
0 

This curve is plotted in figure 5. 

Th e prop erti es of the lattic e gas are obtained from the 

magn etic properties via 

·' 
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v = 2/(1 - m(H,T))  

p = - f - H + zJ/2 

Since the magnetization is everywhere continuous the lattice gas 

28 

(5) 

can have no discontinuous change in vol ume and thus no first o rder 

phase transition .  However ,. there are two seco nd o rder phase transitions 

along each isotherm with T < T = zJ am. we have three distinct 
. - C 

phases in the system. So me isotherms are shown in figure 4b along 

with the l ocus of the coexistence curve Pc (v ) .  Note that there is 

a region where �)v-( o, in which increasing temperature causes 

t he pressure to  decrease . In figure 6 the coexistence curve in 

the p - T plane is shown. In f'igure· 7a we show the compressibility 

factor pv/kT as !'unction of 1/v . Note the structure for t <  1.  

At  higher temperatures t > 1 it is a monotortj.cally increasing 

function . 

1he identification of the various phases is as follows : 

(b) is degenerate becaus� for any solution mA = s, mB = Q t-r.ith 

S , _Q we can find a second equally valid solution mA = ·Q, mB = s. 

The existence of degeneracy is the � qua !22!! of l ong range 

o rder , as is well known. Then whenever (b ) is the solution, 

a . crystal is formed ,  having twice the basic latt�ce parameter 

of the original lattice • . 

(a ) The solution being unique, there is no long range order. 

The identification of vapor vs. liquid is merely a question of 

donsity. 



). Ising Ant�ferromagnet : Transfer Matrix Method 

The Ising antiferromagnet on a square lattice has the transfer 

matrix 

where 

K = � J and O'x, o-s are the Pauli matrices. The thermodynamics 

is given by the partition function 

where A is the largest eigenvalue of V. In zero magnetic max 
field the transfer matrix may be exactly diagonalized.1 and the 

thennodynamic properties are exactly the same· as . those of the 

Ising f erromagnet with the same interaction strength. In 

particular the specific heat is logarithmically infinite at 

In chapter I we used a simple iterative process to obtain 

/\ max and the corresponding eigenvector for the ferromagnet on 

strips of infinite length and width up "to 10 spins. We use this 

same procedure to analyze the transfer matrix of the antiferro-
. .  

magnet for strips of width 2, 4, 6, 8, ·and 1 0  spins. Only strips 

29 
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with an even number of sites are treated so that, when wrapped 

on a t·orus, they may be divided into two sublattices. In .figure 8a 

· we plot the magnetization M(H). for several temperatures for the 

case N = 6. All isotherms are smooth as is to be expected for a 

lattice which is infinite in only �ne direction. That a phase 

transition is developing is indicated, however, by the specific 

heat CH(N ,T). For strips of width N the specific heat �(H,T),  

which we obtain by numerical differentiation of the internal energy 

UN(H,T) , has a maximum at a temperature T0
(N,H) . As N➔ e,.t:, ,  

Tc(N,H) ➔ T0(H) where Tc(H) is the critical temperature of the 

infinite two dimensional lattice in field H. We estimate that the 

numerical differentiation introduces a possible error of 1% in the 
. . 

specific heat. Using T for 8 spins we,nevertheless, find that 
. C . 

in any field H < zJ 

CH(N,T0(8,H)) ,.., lo� N 

leading to the conjecture that the infinity which is known to 

exist At H = 0 persists a� finite field. A plot of CH(N,Tc(8,H)) 

.!!. log N is whown in figure 1J. From the maxima of the specific 

heat we obtain the curve h
0

(t) in successively better approximation. 

Hore we de.fine t = T/T0 (rather than t = k:r/zJ) and h !! B/zJ. 

We plot it in figure 5 for N = 8 together with the MFT version of 

hc(t). While convergence is worst near t = o, it is clear that the 

initial increase in he at t = 0 in MFl' is an artifact of the 

approximation. 

In figure 8b we show the lattice gas isotherms corresponding 

to the magnetizations shown in figure 8a. 

essential fe..1.tures of MFr are preserved. 

It will be seen that the 

The region .?/' 1 < 0 exists 
2iTlv-
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here- also. 

Various thermodynamic phases can be identified using the 

degeneracy _(or nondegeneracy) of /\ max' follcming the arguments 

given at the conclusion of the preceding section. The ex.act results 

agree with molecular field theory in the essential qualitative 

. f'eatures. 

4. Ising Antiferromagnet with Next Nearest Neighbor 
· Ferromagnetic Interactions : Molecular Field Theory 

We consider the antiferromagnet with ne� nearest neighbor 

ferromagnetic interactions. In anticipation of the transfer matrix 

treatment we let the ferromagnetic interactions be along crossed 

bonds: 

-r .,Z.. ( S  . .  S . . -s S ) - ;J· .,- .5: - ( S . · 1 $  } " ·c i 'J � J tl ' iJ t1 1 J « fJ 'l "' J t1  i+t i-1. 

- /-1 z.. .s  .. · .  u (.� 

Here o< > 0 is a parameter specifying the strength of the ferro-

(8) 

magnetic coupling. In lattice gas language this Hamiltonian describes 

particles with a hard core, a soft core, and a longer range attraction. 

If the soft core part of the interaction were not there the attraction 

would be sufficient to bring about a first 01"tier phase transition 

in the 1.llttice gas in two or mora dimensions. Hemmer and stell4 

have argued that the soft core should then cause the system to 

undergo � first order phase transitions . In the NFT approximation 

· we find that, while there are always two phase transitions, they 

are first order only below some temperature T1 (� ) < Tc( c{). 

Between T1 and. Tc the transitions are - second order and above Tc 

I : ' ' : 
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there is no transition at all. 

' Dividing the lattice into A and B sublattices. with magneti­

·zations mA, � we obtain t�e equations 

mA = - tanh � (zJ� - zJmA - H) = - tanh(mB - mA - h)/t 

mB· = - tanh � (zJmA - zJmB - H) = - tanh(rnA - � - h)/t 

for the magnetizations and 

t = F/zJN = - t log 2 - ½znAmB + 2/4(m_i + �) 

- t/2 log cosh(mA - � - h)/t 

- t/2 log cosh(mB - mA - h)/t 

for the free energy. Again t = k:r/zJ, h = H/zJ. The critical 

. temperature tc = 1 + � • The equations (9) admit two types of 

solution 

a) m :;: mA = mB ,rl.t� free energy f8 

b) mA f- mB with free energy fb 
Except at t = 0 the (a) state is always a solution with m / o. 

At t = 0 we need h > 1 - r){ ,  for d< 1, for the (a) state to exist. 

At h = 0 tho (b) state alt1ays has the solution m� = - mB f O for 

t < t .  Moreover, at h = 0 the (b) state always has the lower 
C 

free energy. - As h is raised we reach a value h
0
(t) where ta = rb. 

However, unlike the antiferromagnetic case, this does not mean 

that mA = �• The (b) state may continue to be a solution of 

equations (9) after the free energies have crossed . The situation 

is illustrated in figure 9a for the case « =  .5. The dashed curve 

J2 

(9) 

· (10) 

.. . .. 
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is the locus of f (h,t) = f (h,t) and the solid curve represents 
a b 

the mathematical limit of the (b) state. The two curves merge 

at a temperature t1 (o( ) .  For t <  t1 , the system switches from 

the (b) state to the (a) state with a discontinuous change of 

magnetization. For t �  t1 there is no discontinuity in m and 

only the kink, familiar from the pure antiferromagnet, remains . 

In figure 9b t1 ( a.(. ) / ( 1 + cl- ) 1s plotted· as a function of r;I. • 

As o( � oo , i . e. the limit of purely ferromagnetic interactions , 

t1 -� cl.. which is the critical temperature of a molecular field 

• ferromagnet with interaction strength c,(.. • In figure 10 we show 

m(h ,t) as function of h for several values of «. for a fixed ratio 

t/(1 + oL ) = 0.5. As t
1 

(o(' ) becomes greater than 0.5 it can be 

seen that the magnetization changes from a continuous function 

to a discontinuous one. 

We make the transforrr.ation (5) to obtain the properties 

of . the lattice gas .  The jump in magnetization at ! h0(t) �plies 

two first order . phase transitions for the lattice gas . In figure 11a 

we show some isotherms of the lattice gas for '1(. .  � 1 . 0. In figure 11b 

we show the coexistence curve in the p - T plane. We intorpret 

the enclosed region as a solid phase, for regions given in section 2.  

The lattice spacing (fee) is twice the length of the basic lattice 

parameter. The _ second phase transition talces the system to a 

liquid phase • . In figure 7b we show the compressibility factor 

pv/kT for d... = 0.5 at several temperatures as function of 1 /v. 

· Again, as in the i. = 0 case, there is considerable structure 

for t < 1 + Ci(. • Moreover, for t < t1 .there is a straight line 



segment in each region of decrease, corresponding to cons tant p 

and disconti·mious chan ge in v .  

We also find that }IF'.l' is incapable of predic ting the type 

of phase diagram found in the rare gases ,S,6 
i.e.  a triple point 

a t  Pt, Tt(A) and a liquid-gas transition line terminating at �c ' 

p (B) as sketched in fi gure 11b. Assuming that the enc losed region 
C. . 

in fi gure 1 1b correc tly limits the solid phase, we are still missing 

the liquid-gas transition line ex tending from A to B� In magnetic 

langua ge we would need a ·region T t � T � Tc where the critic al 

field h 0(t) is zero, i . e. where the o rdering is ferromagnetic 

rather than antiferromagnetic. _ In MFT, however , if the ground 

state is antiferromagnetic ally o rdered then this type of ordering 

also exists just below -the highest critical temperature. This 

theorem can easily be prov ed by Fourier transfoming the interaction 

_J (Ri j) .  We note alsq that, while the Hamiltonian was written 

�or a two dimensional lattice with the ferromagnetic coupling 

along crossed bonds, the. ¥&'1' treatment is for a lattice of any 

dimensionality with antiferromagnetic interac tions between A-B 

sublattices and ferromagnetic interac tions inside a sublattice. 

5. Ising Antiferromagnet with Next Nearest Neighbor 
Ferromag�etic Interac tion : Transfer Matrix 

We write the transfer matrix £or the _crossed bond problem 

with Hamiltonian (8 ) as 

V = (V2V
.3

)½ VI (V2V3)½ 

V2 and VJ are the same as for the antiferromagnet. It is incon-
. . . . . 

veriient to express the matrix Vi in closed · form ·in terms of Pauli 



matrices. This is not required , as we know all the matrix elements 

of · V in the direct product represent-ation • .  Let / f!--.:)
° 
be some 

configuration of the N spin s correspondin g to a row. Then 

- t<rr..1. 6': I. 
.,(_ 

' "  J "-

,s 

where 
O""ik = ! 1 is  the orientation of the kth spin in conf iguration 1. 

It is  clear that . the crossed bond coupling supports both 

ferromagnetism and antiferromagnetism so that at H = 0 we always 

�xpect the ordering to predominantly antiferromagnetic. At t = 0 

the critical field can be exactly deterzy,ined to be H = zJ (or h = 1)  

by examination of the matrix element s ·of V. Again we compute the 

largest eigenvalue for strips up to 6 spin s wide for several values 

of � • From the maxima of the specific he�t we fi_nd that T
0 
(<.>{) 

,..., . 

;< . = ( 1  + o{)Tc(O ) where Tc( ol.) is the critical temperature. This 

confirms the molecular field result. We show, in figure 12, the 

effect of increasing oL on the magnetization m(h) at fixed value 

of t =  T/( 1 + .,/. )T0(0) = 0.5. The solid curves are the N = 6 

isotherms and the dashed curves are the N = 4 isotherms at the 

same t, o( • While the data so far obtained is inconclusive 

it seems likely that at t .= 0.5, � = 0 and o< = 0.5 there 

· i s  no first o rder phase transition ; whereas, _ judging from the 

change in slope of m(h) in goin g fro� N = 4 to N = 6 there is a first 

o rder transition at e:<. = 1.0. 

Our results on the transfer mat rix are not yet exten sive 

enough to discuss -the existence (or lack thereof) of a critical 

line, or its dependence on th o various parameters. We have found 

I • I 
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. . 
that two - repulsive step potentials, of decreasing magnitude, do 

not give any i ndication of a triple point or critical line for 

strips up to 8 sites wide. This may be due to the finite size 

of the strip or to an inopportune choice of potentials. We hope 

to report on calculations done on larger strips soon, and pla:n 

to study this peculiar problem from other points of view as well. 

f : 
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7. Fig:u.re Captions 

Figure 4a Plot of m(h) obtained from MFT for the simpl e 

antiferromagnet at several t emperatures. 

A) . t = .25, B) t = .5, C) t = .75, D) t = 1 .0 

Figure 4b Plot of some p-v isotherms in the MFT approximation 

for the antif erromagnet. 

A) t = O, B) t = .25, C) t = 1.0 

Th e dashed curve D is the co exist enc e curve. Only those 

crossings of D by an isoth erm_ marked with a dot correspo:rxl 

to phas e  transitions. See also figure 6 .  

Figure 5 Plot of th e critical field h (t) as function of 
C 

temperature for th e antif erromagnet. 

A) MFr B) Transf er Matrix for N = 8 

For curve B the variable t is defined t = T/2.26918,5J ; ·  

for curve A, t = T/zJ. 

Figure 6 Co exist enc e curve for the antif erromagnet in the 

p-v· pla ne obtained from MFT. 

Figure 7a Plot of th e compressibility factor pv/k:r agai nst 

1/v for the lattic e gas with only so.rt core repulsion for 

sev eral t emperatures : 

A) t = .25, B) t = .5, C) t = .75, D) t = 1.0 
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Figure 7b . . Plot of the compressibility factor pv/kT against 

1/v for the lattice gas with soft core repulsion and next 

nearest neighbor attraction with strength e(. = .5. 
A) t = .25, B) t = .5, C) t = .75, D) t = 1 .0. 

The straight lines in curve A correspond to first order 

phase transitions. 

· Figure 8a Plot of some magnetic isotherms for the Ising 

antiferromagnet obtained by the transfer matrix- method 

for N = 6. 

A )  t = .25 ,  B) t = .5, C) t = .75 ,  D) t = 1 .0 .  

Here t = T/2.269185J. 

Figure 8b Plot of the lattice gas isothems corresponding 

to the magnetic isotherms of figure Ba. 

A) t = .25, B) t = • .50 , · C) t = .75, D) t = 1 . 0  

Figure 9a The critical field h (t) obtained from MFT is 
. C 

plotted against t/(1 + c(. )  for the antiferromagnet with 

next nearest neighbor ferromagnetic coupling of strength 

· � = .5. The -dashed curve is the locus �f f'-?-(h, t) = fb(h, t) 

and ·the solid curve is the mathematical limit of the b state 

Figure 9b Plot of t1/ (1 +� ) as function o-£ o( • For t < t1 

m(h) has a discontinuity at hc( t ). 
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Figure 10 Plot of m(h ) as function of h to several values 

of ·c(. at fixed t/(1 + c.( ) = • .5. 

A ) . o(  = O ,  B) � =  .25, C) o( = .5, D) d. = .7.5, E) o( = 1.0 

Figure 11a Some lattice gas isotherms in MFT for o(. =1.0 •. 

A) t = O ,  · B) t = .5(1 +o( ), C )  t = .75(1 + o<) ,  . D) t = 1 + £)(  

Figure 11b Coexistence curve in the p-T plane for the lattice 

gas at � = 1.0. The solid part of the curve corresponds 

to first order phase transitions along an isothenn. AB is 

the critical line which is not given by MFT, exterrling from 

the triple point A to the critical point B, which should 

appear in a better theory. 

Figure 12 Plot of m(h ) against h for several values of e,l... 

at fixed ratio if T/2.269185J(1 +o( ) = 0.5 The solid curves 

are obtained from a· six site transfer matrix, the dash.eel 

curves from a four site transfer matrix. 

A )  r;( = o, B)� = 0 • .5, C) � = 1 . 0  

Figure 1J Plot of Cn(N,Tc(8,H ) )  as function of N on a 

logarithmic scale. 

A) h = O, B) h = .4, C) h = .8.  

The error bars correspond to an estimated error of 1% in CH. · 

-
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