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I. LATTICE GASES WITH ATTRACTIVE

FORCES: ISING FERROMAGNET

1. Introduction

The two dimensional Ising MSdel has never been solved in
a finite field.- The critical point exponents,! however, have all
been inferred from the exact solution of Onsager2 in zero field or
determined by series expansions.8 It remains to dete;mine the
magnetization m(H,T) for finite H. Recently Mattis and Plischke’
derived rigorous analytic lower bourds to m(H,T) in terms of the
gero field internal energy u(0,T) and the spontaneous magﬁetization
of Yhngu mo(T)e As the zero field susceptibility could not be
rigorously incorporated into this expression the response to
"small fields was much too weak and these analytic bourds do not
lie very élose to the correct answer,

In this chapter we present the results of numerical computations
giving a lower bound to m(H,T) which, except for a small region of the
H=T plane, lies qithin «1% of the correct answer. This lower
bound is obtained by dividing the infinite lgt§ice into strips
of infinite_length and width N spins. This is achieved by removing
ferromagnetic bonds and can only'lo;er the magnetization as has
been shown by Griffiths.5 The Kramers~Wannier transfer matrix for

~ x ZN matrix whose largest eigenvalue, as well

.such a strip is 8 2
as the corresponding eigenvector, we obtain by a simple iterative

process descxribed in Section IT.



'In Section III we introduce a new approximation to the
tfansfér matrix, solvable in zero field, which reproduces complétely
the criti;:al point behavior of the full Ising Model in zero field,
This pseudo transfer matrix has a feature which makes it easier

to study numerically.

2 Hamiltonian and Transfer Matrix
The Hamiltonian for the isotropic Ising ferromagnet on

a two dimensional M x N lattice is

L

M N
= ;
#H - ): 7z f{.}- i+ % ot:fw' B ”;Z ‘:’:f 1)

where Cg =31,

The partition function is

PP P Y RV

il d’ Yy Gﬂw—-ff . (2)
whero V is a 2N x ZN mtr;lx called the transfer matrix., For
a derivation of this matrix see, for example, reference 9.
V-(VV)II(VV)Z‘ (3)
where . . |
v, = (ZsinhZK) exp(-K 5 [y X
v, = exp(KZJ"cj:‘,) - (4)

= 6*
vy e;cp(<3H£ )
- where ©, *6'%are the Pauli spin matrices, K = J/kT, K = <}log(tanhK)

and vhere the lattice is wrapped on a torus in that 0;:'{; 6; d .



.If the lattice is M spins long then, as M =~ <o, the thermo-
dynamics of the system are completely contained in the largest |
elgenvalue and the corresponding eigenvector of V. In particular

£ = F/MN = «1/N kT log A m(N,H,T) (5)
where f is the free energy per spin and /\ — is-the largest
elgenvalue of V. E ' .

R ROAEAL ' (©)
vhere m(H,T) is the magnetization per spin and ﬂ;) is the

At H = 0 the transfer matrix
2

elgenvector belonging to /\ max®
may be diagonallzed exactly as was first dons by Onsagere.
Othem_r mothods have been developed since theny, and we will illustrate
one of them in the derivation of the ‘themodynmnic propert;ies

of the pseudo model in Section III. The zero field solution

has the following properties:

kT = 2J/10g(1+{‘) 2.269185J

u(0,T,) = -(2J

c(0,T) = A log(T-T, )T, | IT =1 A1

my (1) ={1 - (1 - tanhzh)’*/(iét nh x)j 1/s° e 0,
= 0 T2T,

In the critical region mo(T) (T T)1/8. ‘Ihe formula for

m.o(T) was first revealed by Onsager and subsequently derived by
Yang.u The derivation of mo(T) is not rigorous but Griffiths6
has shown that m;(T) is a lower bound to the true spontaneous
. magnstization m(0,T) of the Ising Model. The following critical
point properties have also bsen establisheds

X (0,7) =T - T | ’7/4 for |T = Tc|<<1



by Fisﬁer-,7 ad
m(H,T ) ¥ pl/15 for H 1

by Gaunt,d the latter by numerical studies.

3¢ Calculational Procedure and Results

We obtain the largest eigenvalue of V and t.he corresponding
elgenvector by the following simple iterative process. Eey.n
with any trial vector ¢o 'in the direct product representation.
Ir ¢b is not orthogonal to the ground state vector %’ we.

ray write
2= |
- fr ZdY -
; J =t Jod ™

whore the ts 's are eigenstates of V,

. : (2)
V= AT A< N,

Apply V n times.
| " n N, 1"y
é“ s V % = /])‘4(,;(':{?(" fJ%; % ( ) y)j (3)

If we normalize %n it is clear that

\/¢K —_>" /]wza?, ¢" _M n —_700

)-'hﬁroover %)‘[ _ %O an 721 — - (&)

)



In practice convergence of this process 1is very rapid. Except
for small inagnetic fields it rarely takes more than five iterations,
starting from the completely aligned state, to arrive at six figure
accuracy in thoe eigenvalue,

There are several ways of testing the convergence of the
numerical solution. If one is primardly interested in the largest
eigenvalue of V then there exists a criterion of- absolute convergence.

" Given an £ > 0 and a number O~ such that

Wheobl, <& = el . ©

_& q '

then “l-— A, \ <5 | 6)
CNRVALD,

Ty I

. norv. Proof of this theorem may be found in reference 15.

Here O~ = is the Buclidean
Since our‘ primary interesty in this chapter, is the calcu-
lation of m(H,T), which is a more sensitive .function of the
eigenstate than /\ max WO test on successive values of the
quantity %\[ 2‘! 6:’5/ 4n> o This has the advantage that, while
very few m\ﬂ.tip;.;cations of a trial vector by V will produce the
eigenvalue to within the accuracy of the machine (6 figures), the
eigenvector, and other averages taken over it, mey still be changing.
In genoeral we stop iterating when successive multiplication of the
trial vector by V doss not change m by more than ons part in 10“.
This does not give any absolute criterion of the accuracy to
which we know m but we fesl that, except at a singular point. (8 =0),

m is accurate to one part in 103 at 1east.



From the largest eigenvalue we obtain the free energy of a strip
N spins wide and infinitely long. |

£(N,H,T) = = KI/N log' A __(N,H,T) - (?)
The ;t.hermodynamic functions u(N,H,T), m(N,H,T) may be obtained
from £ by_lnumerical differentiation or by computation of the
appropriate correlation functions in the ground state.

In particular

son = -5 FOT | da 2 ety @
We have computed m(N,H,T) as a function of H for several
temperatures for strips between 2 and 10 spins wide. In Figure 1
we plot m(N,H,T) vs. tanb GH for T = .61Tc, T= .927Tc, T= Tc’
T = 1.83Tc. These curves correspond to the lewer bounds of
reference 3 and were obtained from strips of width 6 spins, 8 spins,
9 8pins, al.nd 6 spins respectively. For T # Tc these curves lie
within .1% of the ‘limiting' curve for an infinite lattice. At
T = T‘; these results are accurate to within .1% for H > «1J and
accurate to 1% for H > .05J. In all cases the strips were wrapped
on a torus, | It might be argued that this destroys-the lower bounds
in that it is not possible to arrive at .these toroidal strips by
a removal of ferromagnetic bonds. However, we have found experi-
mentally that the magnetization of a toroidal strip increases
monotonically with the circumference, arnd we henceforth assume it
to approach the magnetization of the infinite lattice from below.

A notcuworthy feature of the curves is that for T < Tc our



computor solution exhibits a non zero spontaneous magnetization.
This is duwe to'the fact that the solution was iterated only a finite
numbar of times. The solution at H = 0 for i <[Tc is metastable
and a sufficient nuuber of iterations will reduce the zero field
magnetization to zero. However, the same curves may be obtained

by the following procedure, which, nevertheless, guarantees a lower
bound. Since the zero field magnetization of Yang, mo(T), is a
lower bound to the spontaneous magnetizafion of the Ising Mbdel§

and since m(H,T) is a concave function of Hlbany straight line

drawn between the point m(0,T) and the nearest accurate value at
another point, m(H;,T), where m(Hi,T)is, moreover, known to be a
lower bound, ﬁill provide a lower bound to the magnetization over
the entire range 0 < H £ Hy. Taking successively smaller values of
Hy one effectively generates the curves shown in figure 1 for T < T,
as a lower bound to the exact result.

In tables 1-3 ve show the magnetization m(H,T) as & function
of H for T = 9T,y T = Ty, 'T = 2T¢ for N = 8,10,6 respectively.
Again for T # T, the results are correct to .1%, For T = T, the
magnetizations are correct to .1% for H >.05J and accurate to .
e5% for H > .025J. The critical region behavior m =..lt(H/J)1/15
extends to H/J & .3. The coefficient A = 1,00 ¥ .01, This was
previously determined by Gaunt8 to be 1,002, gdnsistent with our result,

From the'Ising Model one can also obtain the thermodynamics
§f the classicai lattice gas. The correspondence is

p <= =(f + H + 2J)

| R (9)
v «» 2[/(1 = n(H,T))



In this chapter we deal only with attractive forces J > 0, In
figure 2 we plot the isotherms of the'lattice g;s for témperatures
T = 8T,y T = .927T;, T = Tc, and T = 1.5T, along with the boundary
of the two phase region as determined from the exact solution of
Onsager.2 Again, except for T = Tos the curves are accufate to
o1%, At high temperatures the isotherms approach those of the

hard core, J = 0, lattice gas given by

p/KT = log(v/(v-1)) _, (10)

4, Pseudo Ising Model
We arrive at the 'pseudo Ising lModel'! by combining exponents
in the transfer matrix, neglecting all Baker-Hausdorff corrections.
Thus
N %
- i N4 N g E e § o 'Off 1
V5 (.Qs_mkax) MPLK%G;O‘ -K'Z J+@H£ ) (1)

wheré we_have not imposed boundar& conditions yete At H= 0

this matrix may be diagonalized in the same way as the full

Ising Model transfer matrix except that slightly less algebra

is necessary., It is clear that we need only determine the largest

eigenvalue of the matrix in the exponent.

a1 2. i N X - N 2
. : Z - : ;
Ve = KJ.;—;'G;' "i;‘*‘%ﬂ"‘“fﬂ (2)

-

This property makes the pseudo model useful for the study of
the three dimensional Ising Model in that the matrix is'sparse?
in the product representation, i.e. it has a large number of

zerose. This decreases the amount of storage reqﬁirad and allows



the treatment of larger finite strips or parallelepipeds. To
verify that tﬁis pseudo transfer matrix reproduces the correct
cri‘ll'.ical point behavior at Ilea.st at H = 0 we carry out the calcu-
lation of fyu,c,m where |

£(0,1) = - KT/MN log tr. Vg = = KT/N log J\ (,0,7)

p
u(0,T) = -62(3 (&’ if) is the 'internal energy"'
| V)
c(0,T)/k = - Qa %’?2_ is the 'specific heat!
2 .
(T) = 1lim : is the analog of the Yang
" [i-31->o0 o G :

magnetization. To do this we follow step by step the procedure

of Schultz, Mattis and Lieb:i‘1 and first make a rotation.

X — 0"

Then we introduce fermion operators via the transformation:

-1 -
o = axpimZ GG ek

m
| . 1! (3)
. 0’;\ = 2/;(14%7}',_"2:;' C"]-'fcj ﬁ CM
where {cj,qj = g\il. and iCj,Clj = iC'S,CIj =0

With these substitutions the matrix VI') becomes
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N-1
v = Kg(cf'cj)(c AT o 21"2( G-2) W

We complete the first term by édding 6;;( (E:'

— ,thd ’ J ‘ ("" C)((},ﬂ+CHﬂ) (.j (C,'v! H)( A 97J(5)

Now if n is odd we let G4 = =C;  Cy 4 ='=Cj 3
if n is even we let Cy 4 = Cy Cﬁﬂ =
This imposes boundary conditions and gives two types of trans;fer
matrix, V}.',i' s Where z-m acceptable eigenstate of YI"+ must have |

an even number of fermions, and an eigenstate of VI.’- must have

ean odd number of fermions. 4o diagonalize we make the further

transformation
-d'/q (
- i & I
F-\f" _ 4 L+ 3T .. i,’l/:-I/T. )
or 9= =y )= 55/ N
(6)
N-2
FOI‘V- q = O) I-—%r} I 'TV-__ﬂ:JTI‘
Ten vy = AKX (Y (v 4, 7 7_5) £ (?)

— a2 ST UG 0)-2K "8 (5 1714)
The terms for q = = 77are
2k K (177 -4)
-2 (rr KE) (B 1,-4)
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Finallx the transformation
i oo '
+ 7 . (8)
7-7‘ = (0 f.7 -)5—:7/ 7 Sen ¢7 3%

with Iy

o a f”z
5"*&%' \/:?Z" Vadéod

where a = K cos q = K*, b =K sin q diagonalizes V.
In diagonal form V is given by |

+.,
v = "%%og (f "?if"’) (9)

> 25
I x%e B J&K“wg-f )

The ¢ = 0, q = J/ terms may be incorporated in the same way
with -

— - - 4
From (9) it is clear that the largest eigenvalue is obtained
when %/¢>-— 0, i.e. the completely empty state. If f“ K
and the singly occupied state of V™ is degenerate with the empty
state of V.. This defines the critical temperature as it is
‘well known that we must have such a degeneracy for long range
order to exdst. Thus T =T, where Tc is the critical temperature

P
of the full Ising Model.
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The free energy is givén by
. _ | _ |
t= — KT 3+ Asq (25ond 2k) += ( .
E 7 ( 7 jﬂ d1 & [ o

The internal energy is

u = —-J‘cb‘d,,?l‘( (11)
- [ &= i) (e £ 7)o
<H [ K+ K*%= 2KkK*opg § 2
As K—>K*
MQK -
r o )
-d AR =mer 27 K e
> - S am K idq\ﬁ o7 (12)

SRS -
—_— 2K - BN ) 537 S (13)

Now at T
oW a p

spbk2r =] - V-P (o, ?},): -II\/,E.1 = ‘U(a/'?;') (14)

In figure 3 we plot up(O,T) and u(0,T) as functions of T. The

most divergent term in the specific heat is given by

o . ’
s J’ ( 5 1,1411 2 i’ ) f g = i
ot T~ siak2is 4 i 2R KT (1=

.—Q (,4 SP‘AL QK) j{' + K j/ x (16)
—~ -""' ""'”"“‘""""_-——“ "* \
TF- Sh~ 1‘7" i Kﬂ"‘ K \/- (r;{- K{al)—& § IM-‘T

This diverges logarithmically as K » K and we have, after expanding



K, K*‘in terms of T - Tc

afic” e —L:&) MJ yr oq [ —:'l'::(" (17)

i~ St L-—?‘k

R

- (—%&)'{m}’?— ’ (18)

By comparison the specific heat of the full Ising Model is given

by12

/1

e x 2 ( ) ,(53 i T‘l (19)

The coefficients differ but the form of the divergence is exactly
the same. .
The spontaneous magnetization is expressable as a Toeplitz
Determinant:11
2 =
g (T) = det ‘aijl where

1> oA L cagad)

f137%.3° TN £ = "
where ?z? is the function of 1 defined in (8). The dimensionality
of the determinant is the separation of the spins i,j in the
correlation function (F7S;) and as this becomes infinitely
lgrge the determinant may be evaluated to give
| my(T) = (1 - K*2/k?)1/8 Bl T
(21)

n
o
s
\'
)

13



i4
EXpansion about Tc yields

(22)

C

' {l +fanl K,._--!;AK:J? T—T)’? |
my 2 |= & LT T T
K e

The Yang magnetization near Tc behaves as

me = (LICU.)LQK(‘.);P(]:Q:}:;_)}& T#’T;: _ (23)

Again, as with the specific heat, the critical point behavior
is the same with the multiplicative constant being different.
We have shown that the pseudo model exhibits the same
critical point behavior as the Ising Model in zero field. We
have found that
TP = ?c
© w,(0,1,) = u(0,T,)

m (0,1) ~ |7 - 1, |1/8 5 T

e, (0,7) v - log |7 - 7,f | Tx T,
This leads to the speculation that the critical exponents will
be the samoe in a finite field in two dimensions as well as in
thres dimensionse. The investigation of this will be carried

ouf at a later tine.
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6. Figure Captions

Figure 1 Plot of M(H,T) as function of tanh ¢ H for
various temperatures. A) T = .61T°, N=6 B)T= °8Tc’
N=7 C)T=.92?Tc, N=28 D)T=Tc,'N=9 E)T=1.83Tc,
N = 6. The critiéal behavior m(H,To) = A(H/J)llis extends

to tanh F H =« .15 in curve D.

Figure 2 "~ Plot of isotherms for the lattice gas. A) T = 8T,
B) T = .927T¢= C)T-= Ta D) T= 1.5Tc. Curve E is the
boundary of the two phase region as determined from the

analytic solution at H = 0,

Figure 3 " Plot of internal energies of the pseudo model
and the Ising model in gzero field as function of temperature.
A) qp(o,T) B) UI(O,T). The deviation from infinite slope
at Tc results from inertia in the mechanical plotter, not

from any significant computer error.
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TABLE 1

M(H) AS FUNCTION OF H FOR T = 0.90T,

H
1.,0000
0.9500
0.9000
0.8500
0.8000
0.7500
0.7000
0.6500
0.6000
0. 5500
0.5000
0.4500
0.4000
0.3500
0.3000
042500
0.2000
0.1800
0.1600
0.1400
0.1200
0.1000
0.0900
0.0800
0.0750
0.0700
0.0600

* 0.0500
0.0450
0.0400
0.0350
0.0300
0.0250
0.0200
0,0100
0.0090
0,000
10,0070
0.0060
0.0050
0,0040
0.0030
0.0020
0,0010
0.0000

M(H)
0.,9818
0.9806
0.9794
0.9781
0.,9766
0.9751
0.9734
0.9716
0.9695
0.9673
0.9548
0.9621
0.9590
0.9555
0.9515
0.9469

0.9414

0.9390
0.9362
0.9332
0.,9298
0.9261
0.9239
0.9217
0.9205
0,9192
0.9131
0.9114
0.,9098
0.9081
0.,9065
0,9048
0.9031
0+,8998
0.8995

0.8992 |

0.8988
0.8982
0.8978
0.8975
0.8972
0.8968
0.8965
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TABLE 2
M(H) AS FUNCTION OF H FOR T =‘1.00Tc '

H M(H)
1.0000 0.9683
0.9000 0.9642
0.8000 0.9595
0.7000 0.9540
0.6000 0.9473
0.5000 0.9389
0.4500 0.9339
0.4000 0.9281
0.3500 0.9215
0,3000 0.9138
0.2500 0.9045
0.,2000 0.8931
0.1900 0.8903
0.1800 0.8875
0.1700 0.8845
0.1600 0.8813
0.1500  0.87275
0.1400 0.8738
0.1300 0.8698
0.1200 0.8655
0.1100 0.8607

. 0.1000 0.8556
0.0900 0.8499
0.0800 0.8434
0.0700 0.8357
0.0600 0.8274
0.0500 0.8159
0.0450 0.8083
0.0400 047995
0.,0350 0.7883
0.0300 0.7740
0.0250 0.7548
0.0000 0.0000




TABLE 3

M(H) AS FUNCTION OF B FOR T = 2,007,

H
1.0000
0.9500
0.9000
0.8500
0.8000
0.7500
0.7000
0.6500
0.6000
0.5500
0.5000
0.4500
0.4000
0.3500
0.3000
0.2500
0.2000
0.1800
0.1600
0.1400
0.1200
0.1000
0.0900
0.0800
0.0750
0.0700
0.0600
0.0500
0.0450
0.0400
0,0350
0,0300
0.0250
0.0150
10,0100
0.0090
~ 0.0080
0.0070
0.0060
0.0050
0.0040
0.0030
0.0010
0.0000

M(H)
0.5670
0.5490
0.5299
0.5099
0.4889
0.4667
0.4433
0.4188

- 03931

0.3661
0.3379
0.3084
0.2778
0.2460
0.2131
0.1793

0.1304
0.1162
0.1019
0.0875

0.0730

0.0658
0.0585
0.0549
0.0512
0.0439
0.0366
0.0330
0.0293
0.0256
0.0220
0.0183
0,0110
0,0073
0.0066

0.0051
0.0044
0.0037
0.,0029
0.0022
0.0007
0.0000
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II. LATTICE GASES WITH SOFT CORE

REPULSIONs ISING ANTIFERROMAGNET

i, Introduction

~ Our aim is to investigate the properties of lattice gases
having a soft core repulsive potential as well as a hard core. The
basic system, in magnetic language, is the nearest neighbor Ising
antiferromagnet. In zero magnetic field this system has the same
thermodynamic properties as the'Ising ferromagnet which was solved
exactly in two dimensions by 0nse¢ger.1 The antiferromagnet was
treated by Garrett? using molecﬁar field theory (MFT). He obtained,
for T < Ty, a second order phase transition at a finite critical
field Hc(’l‘) at which the magnetization is continuous but the suscepti-
bility is dispontinous. In section 2 of this chapter of this chapter
we also use MFT to obtainl the properties of the lattice gas. In
section 3 we analyze the transfer matrix of the two dimensional
-antif erromagnet for strips of infinite length but finite width by
the same method used in chapter I to treat the ferromagnet. We
are able to treat strips up to 10 sites wide and find_MFT to be
qualitatively correct, with possibly one important exception,
Idiscussed- below, |

‘In section 4 we consider the aﬁtiferr§magnet with ferromagnetic
b intéracﬁ.ons between next nearest_. neighbors. In lattice gas language
this is a system with hard cores, soft cores, ard a longer range

attractive force. Hemmer and Stell3 have recently treated exactly:
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a ona dimensiqnal continuum fluid with hard core, soft core, and
a weak long range attractive potential. Théy found either a single
first order phase transition or two first order transitions depending
on certain parameters in their model. They have also argued that
if the attractive part of the interaction is capable of producing
a f;:st order phase transition in the lattice gas, then the soft
core repulsion should briné about two first order phase transitions.
In MFT, however, we find that while there are always two phase
transitions the nature of these transitions is variable. Notably,
there is a temperature Ty € T, above which the transitions are
second order, whereas the transitions are first order below Ty.
These results are expected to hold fof an exact calculation as well.
It might be expected that this model would at least quali=-
tatively reproduce the . properties of the rare gases, we find in
 MFT no critical line (or critical point or triple point) even for
interactiﬁns with more structure than the ones reported on here.
In view of the fact that Hemmer and Stell have found the possibility
§f such a critical line already in one dimension, it seems to us

that molecular field theory is the culprit. Thus, the major

improvement of an exact transfer matrix solution, in two or
three‘dimgnsions, over MFT ﬁill be the precise delineation of

the critical lines and thelr dependence on the‘structure of the
inter#ctions (depth and width of attractive potentials and radius,
.as woll as gradient, of repulsive core). It is our opinion, from
the present calculations, that only a blend of repulsive and
attréctive'fofces c;mparable to phe forces between two Argon atoms

can yield a thermodynamic phase diagram comparable to the experiments
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on Argon. We have not yef found this blend.

In séction 5 we apply the transfer matrix method to the
antiferromagnet with ferromagnetic interactions along crossed
bords, While at present time we cannot yet verify the existence
of the temperature T1 we present evidence that MFT does indeed

glve the correct picture concerning the order of the phase transitions.

2, Ising Antiferromagnet: Molecular Field Theory
| The Ising antiferromagnet on an isotropic square lattice

has the Hamiltonian

. S.. ) _ S..

H=T= (SL'J' St Sy S ) - HZ % ()
&9 | booa |

whore sij =+1 and J > 0. The magnetic properties of the antiferromagnet

have been previously derived in MFT by Garrett.? Dividing the

lattice into A and B sublattices and designating the sublattice

magnetizations by m, and my we have

m, = - tanh ¢ (zdng = H) = - tanh(ng - h)/t n
: 2

mp - tanh(m'A - h)/t

= « tanh G)(szA - H)
where ﬁ = H/ZJ, t= kT/;J, and wvhere 2z is the nwuber of nearest

neighbors. The ﬁFT treatment applié; to any lattice which may {
be divided into two sublattices in such a way that the nearest

.neilghbor of any site on the A sublattice is on the B sublattice

and vice versa. In Pj. (1) we wrote the Hamiltonian for a square

lattice in viéw of the transfer matrix treatment of the next
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section but the rest of this section applies equally well to the
three dimensional simple cubic and body centered cubic lattices )
only the parameter z is different.

The free energy per spin is given by

£/2d = -t log 2 - mymp - t/2 log cosh(ng - h)/t ' (3)

- t/2 log cosh(m, - h)/t .

The equations (2) admit two types of solution

a) my = mg with free energy f,

b) m, # mp with free energy fy
As was showmn by Garrett? fy, € £, whenever the b type solution
of equations (2) exists. As the maénetic field is increased
at constant temperature t ¢ 1 from zero ‘we pass through a critical
field hc(t) at wvhich the b type solution ceases to exist. The
sublattice magnetizations myy Wmp approach each other continuously
and the magnetization m = 3(my + mB) is continuous. Tho suscep-
tibility /'(= 37):1)1' is discontinuous and the transition is second
ordere In figure 4a we show some magnetic isotherms. The temper=-

ature dependence of the critical field is given by

h_(¢) =v1 -t + ttanh~1f1 -t (%)

This curve is plotted in figure 5.
The properties of the lattice gas are obtained from the

magnetic properties via S

PR o
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v=2/(1 - n(H,T))
. (5)
p=-f-H+ 2J/2

Since the magnetization is everywhere continuous the lattice gas
can have no discontinuous change in volume and thus no first order
phase transition. However, there are two seco;d order phase transitions
albhg gach i;ptherm with T ¢ TE = zJ ad we have three distinct
phases in the system. Some isotherms are shown in figure 4b along
with the locus of the coexistence curve pc(v). Note that there is
& region where §£)u< 0, in which increasing temperature causes
the pressure to decreases In figure 6 the coexistence curve in
the p - T plane is shown. In figure 7a we show the compressibility
factor pv/kT as function of 1/ve. Note the structure for t < 1,
At higher temperatures £ > 1 it is a monotonically increasing
function, |

| The identification of thg various phases is as follows:
(b) is degenerate because for any solﬁtion m, =5, mp =Q with
S # Q we can find a second equally valid solution m, =’Q, mp = Se

The exdistence of degeneracy is the sine qua non of long range

order, as is well known. Then whenever (b) is the solution,
a crystal is formed, having twice the basic latt;cé parameter
"of the original lattice.

(a) The solution being unique, there is no long range order,
The identification of vapor vs. liquid is merely a question of

density.
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3. Is;ng Antiferromagnets Transfer Matrix Method

Thé Ising antiferromagnet on a sguare lattice has the transfer

matrix _
3 ¥
= 2
V= (V,V5)° Vi (V,V5) ) (6)
where
_ MKk aK
W= & (1457, )
P : M
25 exp (-kZ gia" |
J=1i JHi
4

B axp (o0 2 )

K= GJJ ard g%, 0% are the Pauli matrices. The thermodynamics

is given by the partition function
ZQM,H,N,T) =2 = tr VN = A\ 1L (4,H,T) (?)

where /\max is the largest eigenvalue of V. In zero magnetic
field the transfer matrikx may be exactly diagonalized1 and the
ihermodynamic properties are exactly the same as those of the
Ising ferromagnet wiith the same interaction strength. 1In
particular the specific heat is logarithmically infinite at
T = Ty = 2,269185J.

In chapter I we used a simple‘iterative process to obtain |
/\ max and tﬁe corresponding eigenvector for the ferromagnet on
_ st;ips of infinite length and width up to 10 spins. We use this
same procedure to analyze the transfer matrix of the antiferro- |

magnet for strips of width 2, 4, 6, 8,'and 10 spins. Only strips
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with aﬁ even number of sites are treated so that, when wrapped
on a torus, they may be divided into two sublattices. In figure 8a
“we plot lthe magnetization M(H) for several temperatures for the
case N = 6. All isotherms are smooth as is to be expected for a
lattice which is infinite in only one direction. That a phase
transition is developing is indicated, however, by the specifi;:
heat CH(N,T). For strips of width N the specific heat éH(IJ,T),
which we obtain by numerical differentiztion of the internél energy
UN(H,T), has a maximum at a temperature Tc(N,H). As N-> o0,
To (N,H) — Tc(H) where To(H) is the critical temperature of the .
infinite two dimensional lattice in field H. We estimate that the
mme.x;icgl differentiation introduces a possible error of 1% in the
specific heat. 'Using Tc for 8 spins we,nevertheless, find that
in any field H ¢ 2J
Cy(NyT,(8,H)) ~ log N
1 leading to the conjecture that the infinity which is known to

exist at H = 0 persists at finite field. A plot of Cy(N,T,(8,H))

'

¥s log N is whown in figure 13. From the maxdma of the specific
heat we obtain the curve h a (t) in successively better approximation, ‘
Hore we define t = T/Tc (rather than t = kT/2J) and h = H/2J.
We plot it in figure 5 for N = 8 together with the. MFT version of
hc(t). Wﬁile convergence is worst near t = 0, it is clear that the
initial increase in h, at t‘= 0 in MFT is an artifact of the
approximation.

In figure 8b we show the lattice gas isotherms corresponding
to thoe magnetizations shown in figure 8a._ It will be seen that the

essential features of MFT are preserved. The region f; < 0 exlsts

o7 /- :
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here- also.

Vafious thermodynamic phases can be identified using the
degeneracy_(or nondegeneracy) of A max? following the arguments
given at the conclusion of the preceding section. The exact results
agree witp molecular field theory in the essential qualitative
. features. -

4, Ising Antiferromagnet with Next Nearest Neighbor
" Ferromagnetic Interactions$: Molecular Field Theory

We consider the antiferromagnet with next nearest neighbor
ferromagnetic interactionse In anticipation of the transfer matrix
treatmenﬁ we let the ferromagnetic interactions be along crossed

bonds:

= TZ(U S gn TS MJ) 'ﬂz ‘J(”’J”fs“f’) ©

L

Here ol D> 0 1is a parameper specifying the'strength of the ferro-
magnetic coupling. In lattice gas language this Hamiltonian describes
particles with a hard core, a soft core, and a longer range attraction.
If the soft core part of the interaction were not there the attraction
would be sufficient to bring about a first order phase transition

in the lattice gas in two or mors dimensions. Hemmer and ste11%¥

have argued that the soft core should then cause the system to

undergo two first order phase transitions. In the MFT approximation
we find that, while there are always two phase transitions, they

are first order only below some temperature Tq(«) < To () '

Between Tl and.Tc the transitions are second order and abové Tc

R ——



there is no transition at all. _
‘'Dividing the lattice into A and B sublattices with magneti-

‘'zations myy Mg Ve obtain tbe équations

my = - tanh @ (zdmy - 2dmy = H) = - tanh(mg - m, - h)/t

mg = - tanh G(szA - szB -H) == ta.nh(mA - my - h)/t

for the magnetizations and

2
£f=F/2dN=-1t1log2 - émAmB + 2/4(111% + mB)
- t/2 log cosh(m, - my - h)/t

- t/2 log cosh(mg = m, - h)/t

for the free energy. Again t = kT/zJ, h = H/zJ. The critical
. temperature tc =14+,{. The equation; (9) admit two types of
solution
a) m= m, = mg with. free energy f,
b) m, # my with free energy f|
Except at t = 0 the (a) state is always a solution with m # O.
At t =0Oweneed h>1 « &, for &< 1, for the (a) state to exist.

At h 0 the (b) state always has the solution mA. = = mp # 0 for

t < tc. Moreover, at h = 0 the (b) state always has the lower
free enorgy. -As h is raise-d we reach a value hc(t) where £, = fb.
However, unlike the antiferromagnetic case, this does not mean
‘that my = mB. The (b) state may continue to be a solution of
equations (9) after the free energies have crossed. The situation

is jllustrated in figure 9a for the case d = ,5, The dashed curve
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(9)

(10)



is the locus of fa(ﬁ,t) = fb(h,t.) and the solid curve represents
the mathematical 1imit of the (b) state. The two curves merge
at a témperature ti(o( ). ‘Foi' t < ty, the system switches from
the (b) state to the (a) state with a discontinuous changé of
magnetization. For t > ty there is no discontinuity in .m and
only the kink, familiar from the pure antiferromagnet, remair;s.
In figure 90 ti(oé )/(1 +oL ) is plotted as a function .of A o
A_s oA — oo 4, 1,6, the limdt of purely ferromagnetic int.eractions,
ti —> o« which is the critical temperature of a molecular field
- ferromagnet with interaction strength K« .« 1In figure 10 we shéw
m(h,t) as function of h for several values of « for a fixed ratio
t/(.i + oL ) = 0.5, As ti(o() becomes greater than 0.5 it can be
soen that the magnetization changes from a continuous function
to a discontinuous one.

We make the transformation (5) to obtain the properties
of the lattice gas. The jump in magnetization at 1 hc(t) implies
two first order.phase transitions for the lattice gas. In figure 11a
we show some isotherms of the lattice gas for 9<, =1,0, In. figure 11b
we show the coexistence curve in the p -~ T plane. We interpret
the enclosed region as a solid phass, for regions given in section 2.
The lattice Spacing (fcc) is twice the length of-the basic lattice
parametelr. The second phase transition takes the system to a
liquid phase. In figure 7:0 woe show the compressibility factor
pv/kT for & = 0.5 at several temperatures as function of 1/v.
"Again, as in the & = 0 case, there is considerable structure

for t {1+ o . Moreover, for t < t; there is a straight line



segﬁent in egch region of decrease, Forresponding to constant p
and discontiruous change in ve.

We also find that MFT is incapable of predicting the type
of phase disgram found in the rare gases,s’6 i.e. a triple point
at p;, T, (A) axd a liquid-gas transition line terminating at ?c,
pc(B) as sketched in figure 11b. Assuming that the enclosed region
in figure 11b correctly limits the solid phase, we are still missing
the liquid-gas transition line extending from A to B In magnetic
language we would need a region Tt;g T< Tc vhere the critical
field hc(t) is zero, i.e. where the ordering is ferromagnetic
rather than antiferromagnetic. In MFT, however, if the ground
state is aﬁtiferromagnetically orderéd then this type of ordering
also exists just below the highest critical temperature. This
theorem can eésily be proved by Fourier transforming the interaction
J(Rij)’ We note also that, while the Hamiltonian was written
for a t&o dimensional lattice with the ferromagnetic coupling
along crossed bonds, the MFT treatment is for a lattice of any
dimensionality with antiferromagnetic interactions between A-B
sublattices and ferromagnetic interactions inside a sﬁblattice.
5. Ising Antiferromagnet with Next Nearest Neighbor
Ferromagnetic Interaction: Transfer Matrix

We write the transfer matrix for thelcfossed bond problem
with Hamiltgnian (8) as

V= (Vg vyt

Vo, and Vj are the‘same as for the gntiferromagnet. It is incon-

venient to express the matrix Vi in closed form in terms of Pawli



matricess This is not required, as we know all the matrix elements

of Vin the direct product representation. Let / /1;) be some

configuration of the N spins corresponding to a row. Then

ok Ko, s,
<f"£/l,///}4.a> = 7/" o S E”‘Kqé(ﬁb:*?;bi)
£z

where O’ik-= + 1 is the orientatioﬁ of the ktB spin in configuration i.
It is clear that the crossed bond coupling supports both
ferromagnetism and antiferromagnetism so that at H =..0 we always
oxpect the ordering to predominantly é.ntiferromagnetic. At t=0
the critical field can be exactly determined to be H = zJ (or h = 1)
by examination of the matrix elements of V. Again we compute the
largest eigenvalue for strips up té 6 spins wide for several values
of o . From the maxima of the specific heat we find that Tc(a{)
T (1 +o{)‘1‘c(0) where Tc(o{) is the critical temperature. This
confirms the molecular field result. We show, in figure 12, the
effect of increasing o/ on the magnetization m(h) at i“ixed value
of t =T/(1 + X )Tc(O) = 0,5. The solid curves are the N =6
isotherms and the dashed curves are the N = 4 isotherms at the
same t, of o While the data so far obtained is inconclusivel
it seems likely that at t = 0.5, o =0and & = 0.5 there
“is n§ first order phase t_ransition; whereaé, _judéing from the
change in slope of m(h) in going from N = 4 to N = 6 there is a first
order transition at £ =1.0.
Our results on the transfer matrix are not yet extensive
enough to discuss .the existence (or lack thereo_f) of a critical

line, or its dependence on the various parameters. We have found



that fwo-repulsive step potentials, of decreasing magnitude, do
not give any indication of a triple point or critical line for
strips up to 8 sites wide. This may be due to the finite size
of the strip or to an inopportune choice of potentials. We hope
to report on calculations done on larger strips soon, and pl&n'

to study this peculiar problem from other points of view as well.
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7. Figure Captions

Figure 4a Plot of m(h) obtained from MFT for the simple

antiferromagnet at several temperatures.

A) t=.25 B)t=.5 C)t=.75 D)t=1.0

Figure 4b Plot of some p-v isotherms in the MFT approximation
for.the antiferromagnet,
A)t=0, B)t=.,25 C)t=1,0
The dashed curve D is the coexistence curve. Only those
crossings of D by an isotherm marked with a dot correspord

" to phase transitions. See also figure 6.

Figure 5 Plot of the critical field hc(t) as function of
. tenperature for the antiferromagnet.

A) MFT B) Transfer Matrix for N = 8

For curve ﬁ the variable t is defined t = T/2.269185J;-

for curve A, t = T/2J.

Figure 6 Coexistence curve for the antiferromagnet in the

p~-v plane obtained from MFT.

Figure 7a Plot of the compressibility factor pv/kT against
1/v for the lattice gas with only soft core repulsion for

several temperatures:

A) t=.25, Byt=.5 C)t=.75 D)t=1.0
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Figure 7b Plot of the compressibility factor pv/kT against
1/; for the lattice gas with soft core repulsion and next
nedrest neighbor attraction with strength ¢ = ,5,
A)t=.25 B)t=.5 C)t=.75 D)t=1.0,

The straight lines in curve A correspond to first order

phase transitions.

‘"Flgure 8a | Plot of soﬁe magnetic isotherms for the Ising
antiferromagnet obtained by the transfer matrix method
for N = 6,
A) t = .25, B)t=.5 C)t = .75, D) t =1.0.
Here t = T/2.269185J,

Figure 8b Plot of the lattice gas isotherns corresponding
to the magnetic isotherms of figure 8a.
A) t = .25 B) t=.,5, C)t=.,75 D)t=1.0
Figure 9a The critical field hc(t) obtained from MFT is
plotted against t/(1 + &) for the antiferromagnet with
next nearest neighbor ferromagnetic coupling of strength
X = ,5, The dashed curve is the locus of fa(h,t) = fb(h,i)
and the solid curve is the mathematical limit qf the b state

for t < ti.

Figure 9b Plot of t{/(1 +<{) as function of { . For t<ty

m(h) has a discontinuity at hg(t).



Figure 10 ~ Plot of m(h) as function of h to several values
of ' at fixed t/(1 +«) = .5.
A).L =0, B)KX=.25 C)X=.5 D)od=.75 E)L=1.0

Figure 1ia Some lattice gas isotherms in MFT for o =1.0.

A) t=0, B)t=.5(1 +«), C) t=.,75(1 +0l), D)t =1+
Figure 11b Coexistence curve in the p-T plane for the lattice
gas at /£ = 1.0, The solid part of the curve corresponds
to first order phase transitions along an isotﬁerm. AB is
the criiical line which is not given by MFT, extending from
the triple point A to the critical point B, which should

appear in a better theory.

Figure 12 Plot of m(h) against h for several values of <
at fixed ratio if T/2.269185J(1 +of) = 0.5 The solid curves
are obtained from a-six site transfer matrix, the dashed
curves from a four site transfer matrix.

A)o( =0, B)X =0.5 C)xX=1.0

Figure 13 Plot of CH(N,TC(8,H)) as function of N on a
"~ logarithmic scale. -
A)h=0, B)h=.4 C)h-=.8.

The error bars correspond to an estimated error of 1% in CH'
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Figure 4b

20°




.mohdm.rm.

%

<

w4

)

+
o

L

o

n

l..ln‘o

o

o

e



LIQUID

2.5 +
1.5 %=
R .
1.0
0.5 =
VAPOR
|.|I. } “ H 1
0.25 0.5 Q.75 1.0

.EQ.? oy

Figure 6 -




20

k5

.Mgure 72



0.6 -

0.4 -

0.2 -

1.0

Figure 7b




W7

1.0~

0.75

0.5

0.25—+

olm

——

1.2

Figure 8a




U
ol
t
o -
ml-.- -

Figure 8b



2.0+

0.25

0.5 |

t/(1+4)

0.75

Figure 9a




. —-—-.

1.0+

0.757

Figure 9b

1If




0T ean3dTd -

3.0

25

1.0+ -




Figure 1ia




53

2.5+

2.0

1.5

Hco ) Tl A

0.5

—_—

0.25

—r—

0.75

Hio

T/(1+d)

- 1,25

Figure 11b




1.0

075 T

0.5~

0.25 A

Fgure 12




€1 eam3ny

3.0-1-

119

1
1
n
N

2-0 T

0.5 -





