
ABSTRACT:

real izi-ng

forr( R

C.
-1where ui, e

charges of

The Mean
Model of

Spherical Appro:iimation
Electrolytes by Eduardo

for the Primitive
M . Irtai sman

The mean spherical model approximate integral
equation applied to the primitive model for electrolytes is
investigated. The primitive model for electrolytes considers
tire solvent only insofar as using the dieletric constant L

of the medium in the Coulomb interaction betrEeen ions, rvhich

have additive hard core diameters. The solution is elec-
trically neutral.

The mean spherical moder consists of approximating
the di rect co rrelat j-on f unc tion f or i- 7 *, j (Ri j irard core

dianeter) by-f rirnes rhe Goulomb porentLaL,fi-
reclproeal temperature *, r^rith Kn the Boltzman constant andoBt b

is the

that the radial correlation function must vanish

1J

ft eiej /e o rL> ft :JJ J4(d= o n. RU

for the direct

is obtained in the case

from the solution analyzed. The

gene ra1

t ai.ne d

case of different sizes

and

are tl're
Ehe ions of species i and

correlation func tion

gene r a1

of hard

its implicatj.ons analy zed.

this work fol1ow closely those

j . The exac t solut i.on

for a binary electrolyte

and the thermodynamis follouing

j
j

R1= R2

ployed in

in solving

spher."(1)

structure for tlie

spheres is also ob-

The techniques em-

used by Lebowitz

fluids of hardthe

taith

Percus Yevick equation for

unequal hard core diameters.



Copyright 1970

By

Eduardo l,{. Waisman

II



This Committee of this Doctoral Dissertation

Coasisted of

Joel L. Lebowitz, Chairman
Geo rge S tel1 , PH. D.

Gerald Horowitz, PH.D.
Johannes Groeneveld, pH.D.

III



TABLE OI' CONTENTS

PAGE

Aeknowledgements

Abstract

1

3

Chap ter

Chap te r

Chapter

III .1

III.2

III. 3

III.4

III.5

III.6

Chapter

I: The prinritive model f or
electrolytes

II: Motivations for the Mean
Spherical- Model-

III: The Mean Spherical Model- (m. s.m. )
)

Smoothness of 6.,rJ

The Laplace Space Equation for the
m. s. m.

The s-complex plane

Behavior of I(s)

4

1L

L6

22

25

29

33

The Sol-ution for equal
IIard Spheres

Thermodynamics for the
Charged Hard Spheres

size Charged

equal size

4L

IV: 0pen Questions

48

51

IV



1

Probably the ackuowle dgemen t
to phllosophize, but I can not r."tst
pressLng a few ideas about the act of
gree Ln ?hys i cs.

section ls aot meant

the temptation of ex-
get ting the Ph.D. de-

Everybody knows lt takes a long tl.me to reach the
stage at whlch oae ls ready to wrlte his dissertatLon, and it
ls Ju6t fair to emphaslze that those years are an Lmportant
part of onets 1ife. 0n that light tt ls trot without serLous.
doubts that looking backwards I ask myself if tt !,7as r orth the
ef f ort put ln obtainlng a ttpass,t to enter to lhe tt?h. D.

PhysLcists Club," for the number of rltuals I, wlth all the
grad.uate students of ny generation not ooly at Belfer but at
all Axnerlcan Unlverslties, rras Lnvolved 1n was certalnly not
sEa11 , not always ratlonal and clear. And looking forward at
least the shadolrs of two big problens confront us: the financlal
and employment crlsls Ln the Physlcs rrorld and the problem of

-.relevancy; that is: io the subrrorlil of "publish or perishrr ia
vhat direction is physics advancing Ln the context of the dif-
ficult and confused world of today? What, if any at all, is
our contribution to better human knowledge and better the
quallty of human 1lfe suppose to be? I wlsh I could know the
ansirers.

One of the revarding aspects of the process of doing
research on statlstical nechani.cs leading to this dlssertation
has been fo meet Dr. Joel L. Leb<jwitz, to. whom, I want to express
y deep appreclatlon for three uain reasons: tr'irst, for his

dedlcatlon ln heJ-ping me through aLL aspects of thls research,
and by dedicatlon I mean time Dr. Lebowitz has spent teaching me

physics and guiding rne in the task of learning, dedicatlon I
conslder a very Lmportant manifestation of responsibllity to\rards
a student fron his thesis advLsor: Second, for the fact that
Dr. Lebowitz ls largeJy responsible for inany of the ldeas hereln
coatalned, and ln thLrd place because he helped me in tlif f icult
l[oments of my per.sonal life to bvercome obstacles ln my academic
career.
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Ab s trac t

The mean spherical model approximate integral

eguation applied to the primitive model for electrolytes 1s

lnvestlgated. The primitive model for electrolytes considers

the solvent only insofar as using the dleletric constant e

of the medLum Ln the Coulomb interaction between ions, which

have additive hard core diameters. The solution is elec-

tricalLy neutral.

The meao spherical model consists of approximatlng

the direct correlation function for \.2 *rj (Rfj hard core

diameter) by -f times the Gou1omb poten tLal, fr- is the

and

the radial correlation function must vanish

of species i and j. The exact solution

correlation function for a bioary electrolyte

the case R,=R^ and the thermodynamis followingL2

reclprocal teml 1)erature qT with Kn the Boltzman constant

realizLng that

for r ( *rj.

cir = ft, uj are the
of the ions

eiej/eo i\>ft;j i J,j(+)=o t<RU
where e.

t-
eharge s

for the di rec t

is obtained in

from the soluti.on analyzed. The generaL structure for the

general case of different sizes of hard spheres is al-so ob-

tained and its implicat{.ong analyzed. The technlques em-

ployed in this work foll-ow closely those used by Lebowitz

in sol.ving the Percus Yevick eguation for fluids of hard

spher"u(1) with unequal hard core diameters.
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ClIAP R I: The Primitive Model for

Electrol-ytes

The simplest description of electrolytes is given

by the so called prinitive model. In this plcture the

solvent is only considered through the dielectric constant

of the medium and the ions are thought. to be charged hard

spheres with additive diameters. (rn this work we concern

ourselves with the equilibriun propertles of such a system

for temperatures and densities for which the nethod of the

cllassical statistical Mechanics theory are valid and mean-

lngfuL. For aqueous sol-utions these temperatures are mostly

r:on temperatures with densities of the order of 1 moL/tLter).

Therefore the primitive model- consists of ass.uming that the

potential- energy of a system with 1vr, different kinds of ions

is given by

zV (t,8, ,
-tl

rN nrJ
L<id

utj (o) lq (',) erej /e o

.1, diameter RL, Ni of'charge ui and diameter

that.as to make the overaLl system electrically

arL

)=
( tn -tt)

where +

here N is the total number of i-ons of which we have N of
1

(1.1)

them with charge
olLL, etc, such

neutral, that is

(L.2)

-P,
Lj

s-
L Niei =L=t

is the average

(") represents the

+iL

Z frn''-o

7

number density

hard spheres

ao

of ions of

interaction

spe cies i .

between ions
n,.Li I

J,/
\

+ ,tL <
l;r (")

o + x, R.i
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(r..3) ftr, = R L At d-

For simpl-icity we sha11 consider from here on a

Rrj = (Rr* er)/, )fn ilj

thro-component system characteri.zed by (e

R'e >/ Rt ;

f,e , + fz e7 =Q
Therefore all

^rl *Li at

of finding
.-.1is at r.

J

*r'J 1) and
1

(e2, R2, I , ) with Rz
l_ 2

R +R and
1

2

for definiteness
2,

*z=a R

meant to be z
t-=t

Before going on with

is eonvenlent to introduce the

we are going to use.

Itre will refer to the

the theory of electrolytes it

Statistical Meciranics functions

radial- distribution function:

l_
sums ( Z

t-
) are

?t

(1.4)

whieh is

.,E,uji4" 
.,I;3,j (

+
t 3 fo * ',,i , f, v)t T)( ( )t

iat r.
1

the probability densiry

if an ion of species j

an ion of species

independently of

ij = Jji
(1.4) the ful1 depen-

the positi.ons of the N-2 other ions. 3

Purposely we have indicated .in

dence of g=,-her" fl i, the"reciprocal temperature_aJ, 
l_

V is the volune , L( C ) is rhe local number

* Many
wo rk

of
are

the considerations, however,
valid for the case l1;.-2)

throughout this
ions.

we make
kind of
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density of ioos of species i' The question whether the

limiting function gij exi-sts as V*- and the number

density golng to I, ls an oPen question' We wll-l assume

Its existence and notice that in this llmit and in the

absence of external f ields (homogenerity limit) *

(1.s) q
dL) 3 rJ (t4 -t-rj l,f,r...fr, f'*,P)

We will not write explicitl-y unless needed the depen-

dence of glj on t, and (*

We know some of

before solving.

NamelY,

the proPerties of the exaet

er, (r)

1r.sa) |,rS (.c) =o f* t<R;.i

which is Just the statement of hard spheres impenetrability'

Lri*Hl (at least for a single phase svstem) in such a wav

as to make the f o ]-]-owf.ng integral convergent :

(1.5b) Ir
We will al-so

3 ri3
(z) -rf a d'z < oo

use the direct

zLtnito"(6)

csrrela tion

defined ln the

cr' (")

Ornstein and
infinite

functions of

volume limit for homogenous sYstem bY ( krj = 5.:r-,)

(1.6) t tJ (4) Ci3 ('.) t I-Z f' 
A't ( r 7'r) cni(tl'fl\ d'7'

rnit has Eeen shown to ex is t onlY re ce.nt 1vbv
* The ihe rrno dYnamic 1i

erence (13) for sYs tems of Particl"es
Lebowitz and Lieb in ref

nteraction if the P articles have har d

interacting via Coulomb i
sion PrinciPl-e is v alid for the quan-

coresr or the Paul-i exclu
uirement of the Proof is the overali

tum d omain. A further reg
and it i.s on 1-y va11d for the

1 ggtrnneu tralitY of the fL
densitY, exa

uid, not been Provee
f s ten ce has
ree enerSy

n,rc1w c.rr tar- for the corre lation f unctions.
n ri- go r-
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And we know

From the point of view of the rigorous statistical
Mechanics theory it is in principle possible to solvre for gij

from lts definiti-on. rn practice the problem is so complica-
ted that in 50 years of existence of the model the approxima-
tions used are only valid for very low ion concentrations.*

rt is the scope of this dissertation to investigate
the properties of a partieular approximation to the primitive
modelr we shall define it in chapter 2 calIed the mean

spherical model (m. s. m. ) .

rt is welr- known that for the rigorous theory all
the different methods of obtaining the thermodynamigs of the
system in question are equivalent, for instance from the know_
ledge of sr, (r) it is possible to calculate the pressure calcu_

latlng the f ree energy with Sr, (r), get it f rorn 
_the 

Viria1

theorem or the compressibility reJ-ation, etc. when dealing
with approximations, however, the different methods wilr_
yield different results for the thermodynamics of the glven
system" Keeping this in mind we wil-1 make explicit wheaever
working out thermodynami.c properties'via which way we have
done it. o 

'

cij (") 
=

C1i,,(")

The most important approximation was made

ago by Debye and Hiicke L(2) and ir is var-id for rhe

* The extreme long ran
part to the complica
techniques of tfre f
applied wirhout spLc
coefficients diverge.to exist)rso resuuma
density are needed.

ge of the Coulomb pot
tions. Among other t
-bond Mayer The ory(L2
ia1 rnodifications, be(even though the fun
tlons using paraneter

47 years

limit of

ential adds a big
t il-gs. the expansions
), \L4) can not be
cause the Virial
ctions are assuned
s other than the
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in f inl te I-y

hard cores.

nlques than the ones

dil-uted eLectrolytes with zero diameters of
* rt was derived with eompleteLy different tech-

we use here, but it is equivalent to

the dj.rect eorrelation function Ls giventhe assumption that

by

(1.7) c
Yielding

(1.8)

-f eieJ/t, o<t<oo

* eiej e-r7,r-

(o) 
=LJ

J rr' (o)

7z= 47i&
the inverse Debye length.

can be calculated for the

this approximati.on

most obvious orr.fc

s ys tem . A1l-

-t 
rc ), yet it,t+o

L is called

the thermodynamics

deficiencies of

the years ( ttre

has been proven

fr"e;
From (1. 8)

t
all

the

correct in

feature is

the Coulomb potential due to

elee t roly te .

have been discussed over

ij

the very 1ow concentration linit and its main

that assymptoticall-y as t --+ o;-l* si5 -* bnslant e.--:
4

which is a prop?rty of

the electrical

the screening of

neutrality of the

* We refer to the original D-H theory, later attempts took
account of the hard sphere part of the j-on-ion interaction.
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A recent new deveJ-opment.for the theory of elec-

by stil-linger and Loverr (15) in vhich
phenomenological considerations, they

trolytes is the work

through rigorous and

prove the existence of moment rel-ations. We shall_ cal_1 these the

StiLlinger-Lovett mombnt

correlation function.

They are:

rel-ations for the exact radiaL

aO

(1.9a) 4tr f f"eL f;a h) 'z> /z -o

o

which are the well-known 1oca1 electroneutrality conditions
and

qO

(r.. eb ) /t7r fu f* €e €on fr.,n h) za/n G 7Llr4 o
In particul-ar the Debye Itilckel- approximared g ij

fulfil-1 these two moment conditions.

Besides giving a new element to Judge a given

approximation, stil-linger-Lovett prove in reference (16) that
(1.9a) and (L.9b) prove the existence of oscillations in the

charge cloud density for high enough ion concentrations if
hard spheres interactions are present between ions.*

* We define the charge cloud density by

f f, ez 1;, rd = | f, eofu.iQ, {"1 (r)
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For simplicity we will just reproduce the argument

for the case el - -e,, = e j
For this case we have (we can

R,=R.=fu
integrate from r=R because of (1.5a) ) .

f, =f.=f;
do

(1.10a) 4rl L J,, r" J,, kl nz dz I

It
b

and
(1. 1ob )

(1.10a) rhis i

shows that for

shall compare some of

and g, 
=-Qz = Q

4rr f I tJ,, (") - 3,, ftl '"
(rz) - -7r. k)I'f we assume g(r) 

= Jr,
Debye IIuckel approximation)

from (1.10b) 17rf R*

d,t - -a/*".

we have notieing

(as in the

4't >t'R2
6/*t us in g

o
that f" a >r&

f^|ft) n' dn
mplies -R2 >/ - 6/*' or

z2RzVG e(r) can

We shall call xcri. a -= (x.R) crit

FinaJ-1-y other recent eontribution to the understanding

of the primitive model comes from the work of Rasaiah and

Fried*"o.(7) They have done extensive calculations for the

primitive model using different. approximations l-eading to

various integral equations. They have come to the concLusion

that the hypernetted-chain approxmation is the best among

the ones they considered for the primitive mode1. In a later

paper they compare their resul-ts with machine calculations

done by P. N. Voronstov-Veliamirov and A.M. Eliashevich. We

not be always

the val-ue

which

negative.

of x

za R'< 6

our results with this r.rork for &=Rr=R-
for various densities in Chapter 3
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C}IAPTER II

Motivations for the Mean Spherical Model

The mean spherical model approxi.mate integral- equation
was constructed by Lebowitz and p.r"r" (8) as a generali-
zation to continuum systems of the well known spherical
model for rsing spin systems. rt consists of approximating
the direcr correlarion function of rhe fluid by - P 

lfAft)
for 4- > *rj and recognizing the fact that the radial

distribution function err(r) must be zero for r 4 Rfj where

R., is the distance of cl-osest approach between moleculesLJ *r'Y-

of class i and j. Therefore r^/e have

(2.1)

For

fore ob tain

Ccj (a-) = -P -,j
the primitive nodel

( 4 ) =o

arguments that

>?- < Rdj

f* ,. > t?tj

eLectroJ-ytes

la n<

/u o !,n
make this

3rj fo,

(,2,)

of

('u) : o

(rc) = -f e;e,

we there-

4..
(2.2, '"J

Crj

The several

tion plausible are:

(a) The original

diluted electrolytes

Rrj

t > [?dJ'

app ro xima-

Debye-Ililckei,(2) rheory for inf inirely

is included in the m.s.m. when Rii ->o
(b) When expandlug graphically.
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CLj (rt ) -P qJ (rz) Yz o <JL<e

is the first order

(c) !'Ihen .1*

the uncharged hard

when compared with

and experiments.

(d) As a kind

meaningful cases fo

approximation in the high temperature Limit (e)

o we recover the P.Y. approximation for

spheres system that works extremel-y wel_1

the rigorous Statistical_ Mechanics Theory

of a posteriori argument

r which we have obtained

we have found

for the m. s.m. (namely Rr=Rr=R equd size of

the

hard

exact solution

core s) ;

and we are confident that the m.s.m. can be solved exactly
;

in other

(e)

bounded

eases.

Imposing the val-.id condition that rC. . (r) remains

for r ( *rj (of course by construction it is already

bounded for r >*i3)' .the m.s.m. satisfi.es the Stillinger-

the primitive model- of electroLytes as

in Chapter I.

Lovett relations for

we have di"scussed it

Tbe

Groeneveld(11)

proof we are going to give

f or 'the

was constructed by

the o ry

th at

and works not only m. s .m. but any

of electrol-ytes (Like the m:s.m. ) for which it is true
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,\
C *

zi (t<1 q TT et ei fr/e * + fj G>
(2. 3)

Whe re +* A" 14 (n)
k+o J

o cr, (P)

is the 3-dimensional Fourier transform of C j.j (r) and (2.3)

is the statement that C ij (r) =-f 'r"J/t,t ".(*) ct ! rt-Doo

and that 1im C

a+Q
Ir is

i5(r)r exists and it is

straightforward to see

finite.

that St il-l-'nger-Lovett

given bymoment relations are in Fouri-er spaee

,(rr 2
!.

f-

r, 7 f- ru 4n (k) =.,e;(2 .4 a) et Sit G) =
4;,*

k+o k+o

and lim
k*>o z h €e €o,. .dt jn^ @/l*

Q, +'t'

(2 .4b ) = l"r* Z f* f^ "n  ,t'tro /, ^
fizi k) '*/ 

2rr'(u,

€.r* d't"*@/rtko= trLrp

are the 3-dimensional Fourier transforms of Srr(r) and fr.r(r)

respectively. Using the convolution theorem for 3-dimen-

sionaL Fourier transform the defining relation between

C., (r) and g,, (r)
rJ .LJ

(eq .1. 6) becomes in Fourier spaee:

Y(?)

then if r (F) ?r (fl) it implies i (E) i (tHr)

* The 3-dimensional Fourier transform of a function
is defined by

? (E) 
= /; Y ft) .itrr o{u?



(rr.s)

or in matrix notationl

1im
h+o

k+o I

+ 7 ln tr(a 4t cA

(r") = ecr.r LA- 99 ro'l-'

Iij (nl - C,J (h)

4;,'.
kna

L4

c rt (B)

L

Going to the k=o limit we can write from (Z.S).
ts (I,?,) r = (;

(T,"cr.l) (3,r-f,

:)

z
t-

Z t," (r,) ft

Cr, {at

e" €J ec €J

)

MultipLying through bY k and imposing (2,3) we have2

or

l

l
I

I

I

1

t* &l f, A'i, cal !; Cr,'(il h'
h-+o 'J

l int
h+o

whe re

which rakes us ro the desired relation , k / ne.irek') ='€t
For the second moment relation we have f rom 1Z.S)

A
fL:

(k) ?(r<l - a(k) (9zoof, )

ft c" -l'

^(h) = d,t [6a)= cr,

+ l, fz ^(h)

&) e, (k) -(C, rr')

crz

lcuMZ
,=

),

the last equality f ol-lows f rom (Z.l) so we wil-l' have

(using (2.1) again)

I
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z
$a* f" f* Qe €^, tr.,,- (k) =

-lzr (f, 
"," r Jo ei)" + Z

h (k) n twice differenriable near k=o.

?nf**€e€^ h^ fi",t.$r)Orl.

dif ferentiating twice and going to k..o o Lirnit we get

which is the wanted result. Ilere we have assumed that

2

I + <r -h, ((,u,,*(r":) - J,t, -(. I,= + f,(" e,t,S

i'1,, ?fr fr f* €te, du[r* kl /at = ko t; ffi=
= €/arh

J
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CHAPTER III: The me an spherieal model (rn. s .n. )

As we already said the m.s

Dodel of an electrolyte consists of

n. for the primitlve

the foll-owing equations :

(3.1a)
flrj (o) o

(3.1b)

Equation (3.fa; is a true statement

radlal distribution function Eust satisfy and

that the exact

come s about

(3.lb)from the irnpenetrability of hard spheres.

constltutes the approxination to the exact

the m.s.m.

Therefore

theory given by

Since we already have the equation relating C ij (r)

with gl . (r)

ob taLnlng C

eq. 1.6

ij (r) for r ( Rr. s uch

with ( 3. 1b)

that g. . (r)=o for

r< R ij' and conj une t ly c determined + r,1j

theE g ij (r) is determined by invertlng the reLationship

be tween g ij r-J

Rewriting the defining

(Eq. 1.6).

equation b e trnre en rij m

C ij

h z(3.2)
LJ

(") CrJ@) o I
D
)2

v-+,oo

(ti-;,tS d'a

P* 4<R

G1 (z) =-f5,rrt,.) =-f 2y f^ i>RiJ
"J

and C

solving the m. s .m. consis ts o f

l, s ( ,r') cnJ
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where we have introduced hr, (r)=sij (r) -r. We now

odefine a matri-x C such thatiJ

(3.3) t' /eo

seen that C (r) = o for ,;, Rij toij

electrical neutraJ.ity of the electrolyte

e g =O ' we notice

o
J

etciik) -L)cLj (

oIt is immediately

satisfy (3.Ib) .

Using the
s-solurion 
* f,

7 fr I co, (r;-?,t) d'i' - *
o

(3.4)

f, cli ( r-i,t) a3i' - t "Jffi l#'= 7r,
d

With exactly the same arguments we have

b)
e1?r"[,c ) ft

3

1rT

( ti-7

l+ -.1lr- r{l

I

(3.s) z 0
)t €^ea.t L, t (i' 3n

d ]f,u, 9;t1r' ,) d'F'

v V r- F'

* Uere V is the volume of the system that is then made to
go to the V+ * r' 9t+b^*, fJo"onstant thermodynamic
lirnit that as we stated in Chapter I was proven to exist
for the partition function by Lebowitz and Lieb (13)
and it is assumed to exist for the pair correlation function
we are here working with. Besides we work throughout with
the mean densitie t ft which innpli-es , of course, the
limit V--+ oo - ' -

t)



get: (I,lhen no

understand the

(3.6)

dependence

function to

Now substituting (3.3) and (3.5)

on dis tances is

b e tlepen tlen t on

in (3.2) we

lndicated we

r).

l,r2 (rr')

I8

x dx

1,.

o

cLr - f" C, (r;-a)al,-eLeJ + 7 ,,ij

re
lZ f, ep1z

-t-
L

t/

d.-0 ( t;,r) ft3

/7-;,1V
We now work in

second integral in the

namely T = !o^ 
r'1"6*1

the angular integration T
2

spherical coordlnates $/i th the

right hand-side of equatlon (3.6),
( )Jt

J ti-f'l
becornes

; p e rfo rning

Oa

r J,1 (i x'/x + z/V jre ( ")
477
)Z

o

TFur the r can be wri tten
bqo60

(3. 7) T

(3.8)

and (3.8) reads

vJ
(3.e)

47r
4 lra G) x'c/* ' G) x"lx f 4f drdy(

4v
tz f,t

o a

0n the other hand the (Equatlon 1.9a) inplies

4V z o
J4 e2 q

Therefore equation (3.6) wlth the help of (3.7)

I

a (i x'Jx =- €L
nI

l.
ocl

Z f, [ 1,," (r;,0 cej (r-;,D /3;,=

It(x) x'clx+ry Ff,,", [fi,4k)x/*-*



. The left-hand stde of this equatlon equated to
zero would be precisely the p.y. equatlon for pure hard
spheres potenrial 1f lnsread of C?j we had the fuIl (hard

epheres) Crr. Reca111ng the technlques Leborqlt, (1) .rp1oy"

the same manipulatlons for the left-
(3.9) because as ln the case of pure

have here,

we see that

hand sLde of

hard s phe res

o

rre can use

eq uat i on

rre a1s o

(a) C f* z>i?tJ'LJ

on 1y

for

rt

de f ine

Multiplying

Z and using

rse obtain

drj _ A,J o

(b) we

is bounded

(3.11)

(") =o

)

drl (\) 277

will admit solutions such that

o-<2-< R i.1

ci (") ,?-

((c) tr .J
lle the re f o re

(3.10)

2rw
hand-side,

=-l for ,L<R

3 iJ
o

qJ

both sides of equarion (3.9) by

bipolar coordinates for the left

4t0t dnj
RelJ

du

4

zt
+ ?P f W+,,

lr-yl<€ej

l* O rR..t

l^ o.3rS

-- - rrt z d- {ffi e,1

r)y,
sddx

+

IrV
(")

ru;

oo

t( G) xdx
* h.2frieJ @< Cn,R, ,1

when lr1kf1""a XrJ it ," understand
double integral vanishes for
ities are not simultaneouslv

rrs such that the
satisfied.

that the
tr'ro 1nequal-

19

[f, tt

!

zI
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Where 4,, z7r W
2Tl W[t 2

-e, f, [, c,r (rF,r 173i' =

f. [r'r":!(*s 
x'/*,' wttkETI W,L I -171>2

x lr,l
Differentiating ,L6 both sides we Bet, ( slnce

!'re have assumed RZ ) Rt, it fol-1ows that

Min I t+J; R"il Rnj unLess (i,J) = (1,rr)

,r

d !,' A tj
.L

dy 4t (J) dn, ( r;- rt) sir^ h-il +
tr-yl 1 Qrj

J>Fie
Oq>

+ prj ( z) -47r* ? W €ret
tt .L

leGt dx
l\ e,nJ

rL> ryo
+ =)

* ln".* Prl (o) = [i, { 4 .Rr*

Jr,rr{u e-o) (0, 
b) dd j2 zs J

J- we use rhe norarion l..Q) , lr,rr', ro mean f irsr and
second derivatives ,rii'respect to r respectively.



2L

From equarion (3.rr) we have fr. (ir) / (qr)

(but thatrs enough because we know d,, (z) : dr, (o) Yn->

/1 (o)
4

T f W €r eJ f r,*d,, G)xotx

(the double integral- term vanishes because f r-yl = J for

r=o and

therefore the U integral is nuI1).

Rewri t in g

(3.10) and remembering

4re @ in rerms of its def inition

Jreft) =o /* t< R;a

ft ee €J

we have

roo
I ,f, c G) 

^'olx 
=Js

dr,, h) 4Vfr
gt 2

{ W 27r

(3.13)

-?ryrw, l/ z
Du 

=-{'rgl,y
e eJ

1

Where we used again Equation (1.9a). I

i

* We have defined Kt= I 7rA/t
and DrJ 

= @, e;eJ' -



Eere d;i b) j o and thls is an

lnportant dlfference betwaen our case and the pure hard

22

( i,1) 4 (t, ,)

spheres one.

From equation (3.12) we have (again

(')
(3.14) d

and the lntegral on the left hand-side vanlshes for t = O)

u)
(o) Arl - ,rob

{j"c.tar-I

h_

'{@; en

L2

)

A LJ V"J wi 0)u =vs = / Q, +,
2

^ 
l',ure Bt

(3.1s) drt (o
for ,L<)

l;,I, (x) dx,{,

It al-so folLows from (3.12) that

d," &) = (A,, ' k Y.,)zz
2

III. 1 Smoot ss of l"
)By inspecting equation (2.11) r,,,e see that 6 uJ' <r)

can not have aay d -fft. singularities ln lts entlre
range of deflnLtion and furthermore we also ean prove from



equation ( 3.lL)

(a) dr, 1*);
are continuous

(b) dli'c"l
{n

and its derivatives that:

di'! h) , {,? tu); d' r..t
for o< rZ<a and

' is discontinuous only across r
o 1z _< Rzt

It is easily seen that the only

23

points at which

and its 2 first derivatives

) t

one

are

might expect discontinuiries in dg.

? = fr,t,0; ,?- = Rie * ftp,t ; (,c rrz I
Qrj)+0,2) *" have f rom eguation (3.11-) and (3.t2) thar

dry

andr= A For

are continuous everywhere/,particu-

, because lf we write from equations

4j
1arI-y

(3.11-)

and

across R. .
r-J

and (3.r2)

and )

rre see that al-1 the other terms in the equations are

tinuous. Next we can prove that
tG). 6U is continuous across *rj

discontinuous across ).. t:?= d,f is

d ri Grr) - /iJ k) , *,,/ trl f".
,(,)

e)-drJtG). f2o
con -

1

.

d:l ," discontinuous across R +Ri9, ij

To see this we rewrite equation (3.L2) replacing

the condit'ion j.n the integral of the left hand-side that if
lf-]( < Rnj ir vanishes, by a Heaviside funcrion

x(Rq -lr-l/) X (u) --Y o U1o
>t u>oEq. (3.12) becomes then for

Q,) i (',')
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b
(,) 2 dJ d,s Q) deiA LJ (r ,-y) s,X*- G-fl X (f"l - lo-Sl

.L fl;e h

qfi
tE I

Diff W e:fi.{:{#;i:,i"

* Qtn = 4r€ f nf ee"r(srutt{(,s,i,

dn, fd d;((n) >((z-frrn)

erentiat

(3.17) d:; F
-2 2

.e
where 4c

d,,
dQu, &) drt tfl dn, (,*;t) stu(.flX(ny-to-D

e e

and the Last equality in Eq. (3.16) tollows from (3.13) . Now
6

cj t&) dn
d /"e $t /rl) (,,-1i 

',fr h-;) x k, - /z-tD *

+2
[:,

b

4c 0 dg (ra-si d(zt) xk, -/r-/ +

dt ltQ) ds (r,;r) f, (r-ea)
.[i*,r401)!wn!),

+ Io,

i

I

I
I

I

Calling the four terms of the d.erivarive of a cJ I

Qo, a 1 , a 2' a 3
we have

Qo continuous everywhere

o if r Rig
Qt=

e, li,ch) /e1 h) z> Rte

Q2=------+ (i,i) = (2,L) o if , <)

6i@*) 'r2)dru (,**
g"i )

d ,t (z+ Reii) Jq ( Rei)
i=j YZ
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(3.18) if r<o *t !* R
Q3 

=
{,j

/ ru <,-* tj ) du (R.2.j ), fn z) Bez+Rei

Putting

dlscontlnulty in

(3.18) back

*7 o" is

in (3.17) $re see thar rhe

just cancelled with the

dlscontinuity for the right hand-side at R Lr,. Clearly

of page 23 are true.thLs shows that the starements (a) anrt (b)

III.2 The Laplace Space Equation for the m s.m

To seek the solution for the m.s.

Laplace transform of equatlon (3.12), that
lts Laplace cransform is defined by

m. we take the

is, g iveu (r)

Oo

{ (t,.,) f,., -S-r. I

o
The Laplace transforn of the left hand-side of

equation (3.12) yield.s the same expression that the p.y.

equatlon for uncharged hard spheres did wlth the exceptLon

of the facr rhat lri61/ ". for the charged sysrem

(nq.3.r:) so recalllng that

( /r"r.t) = s/ Q,r,t) - /tG)
we get for the left hand-side: (using (3.13).
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5 [ |ct+EcuJo k' g - A/'u
4

IAc(x7/*
/mq forpieJ

I C; t, (')- Fr-. ,J-gnt=4

f-x
L2

k'

z

t W eter

V t Kz
2 O G)D

2s

@

d ,r(r) e-"o Jzwhe re (t)r, G ij I
R ij

(3. r1
r0'l ,

J. d1h) e-sD lz(f),, 
=

L.
'rJ (t) =

(Il, lrr(') = t;, [1, f,, t'1 = 4, 4. fr-l- ?ail whe re

P(') f.^ e-tz ph)d+

The matrices y, D have already been defined and

so have P(r) and K.
I

l

I

IGrouping'.

(3.1e) c(s) Is s=- 'Ij G) - $, DT

fa
L -sa Ecrl + sI G)_ 112 (sI

T

nry il
F'(r/

T
is a short-hand symbol'for Cs) -whe re E
Solving for G

(-')
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O (r: r
I A +s f -sz Fle

L
K' ('D *: ilJ .\5=
1

ls'r- sFrG)-
-

K
I Dl- y(, L@a

z
(3.20)

1, lece

fl (s) A +s f _52 ('g+zY )

K c') = l-r ,'-L:
We can verify that equarion (3.f9) goes to the

correct P.Y. uncharged hard spheres equation when ei, er->g

because then D-roand V+Oand we recover the equation we had

for that ease (eq. (2L) ref.

The. other limit R..
r.J

(1) ) .

-+ o should give the Debye-Hiickel

In this caseresul r(') , when R. . ,-> o.aJ

Frj @ ; I'".;(r) -& 6 Arl o Q. Ti Wtr
and

(3.20) becomes in rhis limiti

(a K,4 ! u-
z Y) ( ,.! -#'!

)
5

G (s)
5' (s" -ry (DlrDz))

Dzz Dzr
and we used that i

Dr= = D,where D*

- D:r D,,

t
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but D D* v D*=o

and 2
K2
2

(D +D )fC 11 22

( X- is the Debye inverse 1-ength) giving

(3.20a) I (s) 2
s ln -,[t s D

1- al 4'v) - $ b2"
* (ste ) (s-*)

We know we mus t have 9crl = 4s-:+ a-tAcr *eraqs

(see (3.22)

l

for eij (r) -+ I , When r 4te

Then we obtain from (3.20a) after some algebra

(3.20b) A k"q besides.
5z

The factor s-{. in the denominator must be cancelled

out by the numerator' otherwisq the existence of such a factor

means'that er, (r) would have a u It mode which is not

physicalJ.y possible. This requires

5 ! +7 V (s-x-; D +

V *:-
2,

9

s! +2j
@
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whlch re c aL1in g

result and fron

the defLoitlon of

(3.20b)

B is indeed the o.r y" I2)ii"re r

and going

back to physical sp acri

/Lj (z) A rJ
pz W e ej€ -.2,LI L

or

(3.20d) Jti &) l- k2 et <J I

8ir
which is exactly !/hat we lranted.

III. 3 The s-compJ"ex plane

lle consider (3.20) 1n the s-complex p1ane.

lowrng closely Lebowitz's t."h.r1q.r""(1). First of all F

Fo 1-

a j (s)

is an entire fuactioo because we have assumed rC
(o)

bounded and it is a Laplace transform over the finite in-

terv51 (o, *rj)' Furthermore from the continuity properties

of d iJ and 1ts derivatives,

4.- h0 s5--Dao

+
54,

(t!! at

/-* F,, G) -

f d,l,'' t"

i G,,r"t - 4, rQ "-"')n ; (/!,'a; - {,1,''rr,*'6}

t n ( d,'," { )-l ^ l,i'Al) 
"-')- 

/jlla,) .-'n'l r

t-n@

+ _L
53

9c'> - L/r,- +'1
'31 *-

.o*2tr\_
rz

ij

(3.21)
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It follows rhar J1-(") is an

On the other hand the solutions of
physical-ly meaningful are those for

entire function of s

the m.s.m. that are

which it;(d +l
" ,?.-roo

{:"
in sueh a way as to have I srik) -lJa <o' *

; This

requires that /t (7tt jG) - a 7i W / t" is an ana-

lytte function of s in the closed right-hand plane of
the compl-ex s-p1ane.

And we can see that for s --+aa

(3.23) Gtj co + l'j G't) e-sn'j

d;? (Pi1 ) "-'Pu +

,o
+ + 4; fi,i)"-'

S^"v

p,j
t

S +ao

+ -L53

From its definition F," r)
l, (r) =

S+c"
O ( r^'/*) and it

is an even function 1,.(-s) .**
r

Now we write K(s) explicitly;

K(s ) T(s) / a" c'>
i
I

* As a ma'tter of fact this condition must be
disordered fluid, see r,eference (10).

satisfied for any

r tZ (") is ":a independenr .of
deteruined by the condition

the other quantities, it gets

I

,r*

0gl (", =Grr(s).
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(3.24)
sa- s i"t', -$r," ur,i.(s) + I ,,.,

J (s)

Tz, = T,e,
+

*- s [, r.r -*ru

a^d. lb) = s. + ,,[qlci -G:)f-r'[[,'*
-r sg ( Pu r,I + D, Ft -aD., tri

I^le have used here the f act that fr, (s) = Fr, (s) and

D DtZ. It becomes transparent that f(s) T2L = K(-s) K (s )

where the superscript T indicates the transpose of the corres-
ponding matrix.

Next we define the matrix

(3.2s) r,(s) c(s) H
T (-s) or i.n components l

l r, cr1 z
.e.

Qec) /{t t4
zf Wye /t, is analyrical

8,", is enrire. There-

As already stated G i9,(s)

in the closed

fo re

right hand s plane and

L
"J

G)- 2It rw 4, G)1
3G,nG)H,a,-r-{ l@,ry{d5z

will be analytical in the crosed right.hand plane
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7 W, ilisk) = FWr (4r 4, vit)=

2
.L

,ff1, At{

And we also have

!

)

be caus e

is anal-ytic in the

W Z BJ,*,[F,e-*.3ft*,

zI W" vit W D-rr-(,B
J '7r1"

Z 7J.,o V 6 Dz; 
=

2
+}L

q
o

-f 
ecau se --I fn"n = o

r-J

L r.l 4 6-"
o'cJ = elr 2,lm Ai"Theref ore, ca1-1ing f dl

the matrix

closed right hand s plane; besides

and

L

tttL,",= 9G) [Gn=
= lGr y@fc-,1

,l r

L (-s) = 19 c) !'('{' = le { c-s)=

= I G) y'^c-) f c-l = Ec,)vG) fc,l
r.I-
L: )((3.261 which proves (s) -s
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U )
T

Since Ar = it follows that

LG
=

=

) A 5 ("i )(3.26a) is en ti re ( al-1 i ts
elements are entire functions of s).

III.4 Behavior of L(s)
We rewrite

!(s) Uol k) f @ /5" crl
and notice that aS l(eSl*-

d' cE -+lfusl-t* "f f,t r;i (r:tJ C f us(8,*R))

On the other hand as Re s +*ao we see (using 3.2L f or)
(irj) t' (t,21

ll, t (') --*&i+*
Aij -s d,r"l /.? r") - * t:,'h) -

+"ol -4
d,i (a :

z 
VtJ =-i;,fr,s

because krl z
DU

(see Eq. (3.1,3)

di" r,)=-
g
z

z 
VrJ (see Eq. (3.14)

and f rom (3.1-5) d:l b) -o It immediatel-y fol-1ows

(3.27 a) /;
k s^*

ili; G) €l
5

tG)
6r'i (")

/.;
&. t+*

(3.27b) l/,r G) = C G'"/)

.->
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For ttr, (s) the dominant term as A" S -r f qa comes

from s r (s)
L2

Yiel ding

(3.27 c) fu* H,z G) O ( "')/')
With this in mj.nd we can prove that L (s) L (-s)

22 22

and t rr (s) LI1(-s) are bounded along every ray in the s

complex plane. L-".

We will give here the proof fo, Lzr(s), but exactly the

same reasoning applies for L
11

(s). We have

d G) lgz G) = l/., Gt [//,,r, Ta (s) * tlrz Gr 7", OJ- //r, r,l [L,Gs)grs)t\,r,",d
b ut lirn

4-t** H,, Gs) T,z (t) t [Ltz (-s) r., .cs) _

1im
Qs-o*

sz F,,Gs) F,. (_s) ( .'(R,il) /, )

l- im
fu.sn^ H,r() fH,,[=) I,z (') + H,z G") T". C)J

O ( r'K,/,,)

which inplies
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For the second term qre have

1im
k s** [HuG4 T, G) + //r. (-,)C,(rJ =

L
3

@,rr)
2

3 E, C-') n c-rl1im
&s+*

5 S

ot se s (P,r2r)

which hence shows

l- im
&sn*

Ho" {r1 [ flr, (d Te G) * Htz G) T)z CO J .
O (rt (€'t4)

l||

which definitely means

(3.28) 1im lez G) = A; /per-i = Qrsho/ 4t.&iln' 4 s+* /
But hre know that an entire function bounded along

every ray must be a const"rt.(3)

So we have, defining these constants as Z SZZ

and 2
(>
ail'

+=z&"
4, ; z{r

ILe2
(3. 29 a)

/ /t
Turning now to L 2L

(s) we have

//rrG) { H,, G') Tt G) + tl,a Gs) 7P lilJlu @Jf't

+ /-/.ztk) [ flzzGs) D, rs) 1 l,zk) GzHJ

+



36

Analyzlng the 1st term

HzrG) [ //,t t') Tr() + //,2 Cs) T, G)J =

? f n,c-tl F,, (o) - (fr, Gil:J 0

( 
" 

tCP,r n'-^' 
)O

For the second term we obtain

1im
k.s-t^

s.t+

liut
hs**

(3. 30a)

(3.30b)

1im
Qes.,*

a s46

= 
COrttt*"* /

5

o

In conclusion

/"^
&s+q

Fin a1-1y

+

(r tte,il)/r,)

('")/')

H* G) t H,rGs) r,tcs) + Hrz ?s) T,.(til =

/,. s2 L, (-t) 6, t-il =
t

o (+)

t-'

lr, G) e)' S

/o, Gr) / (') = l/o H [ f,fi4., Gs) + 2f') H,z {4J 1

//ra G) [ n, G) /lr, G, * Ez k) lrrcd
a.a( L'- /erG) Jk) e, ) ^o; 

u [ @, r)1 f,c.s)f,r-,] =' s r,/ &s+*
( .') e 5 (er A) ) o_z:

/r,(-t)e-t) = co,os/"^d /,,L,-
& t-^

t

I
I
I
!

I
I
t

I
t
I
t

i

I

I
I

I

I

I
I

I
I
I
I

I
I

I
t'
t
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rrhLch shor^rs that the function 1", G) J' A
t

zl

a

L+-+1
ls entlre and bounded along every ray, hence constant we

are goLng to call Z t,,
(3.29b) Lz, (') u)t - Azl L

I

s' +
j

J = 'f,='3

Ihe term l coEes about because:
s

belng L"t(t) A2t /, entire iurp 1i e s

L", {t) --t A zl + cotrstant + o(s)
s-+o s2

Therefore I

Lr, k) ")s
A + A al

I
A + constant + o(s)

5'-oo 5

?herefore

L2
)

)se A 2l t + l 15
l-s

aaalytical everywhere lncluding s=o, 1.e. ectire.

Now one caa take the lnverse Laplace transform of
(3.29a) 'and (3.29b) aDd exactly following reference (1) we

flnd

l./t\
z

A
t

tcD
4

(3.31)

z< QL

(err-V tt,) +&io,+
2

4

t

5

D;i +

S2

I

t

drr(o)=

/.



dut rL) d,,(z) kz D.r + (A.t-{V,
Z ) f" z<)(3.31.) I h

d., 1,-) 
=

d,, G) -v2 D, r+(A.,- 9 u')o
xai l*

+ Ir., x= +

)<rz < ?.,
X= rr-l

-4
+ il (+)4'

The main
A

I

zrx3 + e) '1. A d fr*-
2L

difference b e tr,re en the structure of Eq.

for the P.Y. for un-

a eons tant term in

from the f act

(3.31) and the one obtained by Leb o!,,1t z

presence of

comes about

charged hand spheres is the

the poLynomi a1 forms, that

dr., tr.2v ,;I;J

What is noi,, 1ef t to solve conpletely the n. s.m. ls

the unknown coeffieients of the polynoninals of

Namely, the unknowns are:

I
findlng

(3.31).

t tt

ar'a2' 11' t22' 52L, Vr* Vr*
7 unknowns, and to

) ("t)of
at r = R. ..r-J

find them we shall use the contlnuity of

) ,n= O, l, Z

To determine the unknown coefficients of the poly-

nomial { ij ls for r < R
aJ

* We have AZ, a z ft (za, 4,, , zi( V(, otr.A,,, 
"fr(,qtanrCl /, U,r + fz Vr"=o.

(1,2 ) are
The coefficients

not needed because we knowfor ( r,,J)

(o )/," dr,fu) / rz o:-(D<+

38

6) =-

a
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we use

(3.33) Lri =.[,, r A'i; 1r, =
ct? H,; G,) + Gt\ H,, r-s:

caJ-1-in g x
'J

{,: (R,t)

fij (R.:,)

d:? (R{)
continuity of

2 LJ

a..atl 
=

I,Ie know (using the d;' (zt
D = 0, 1, ? across R ij and (3.2I, to 3.23)

I-im
&.s+*

Grn Q lnn Gs) = "/r,* - sz
4.s**

'52 ( Xce +
(,
);L zL { )(+xn;- L + *;*...

g3
t5 sz +

)53 5L

Equating terms of the same order in s in (3.33) it f ol-lovrs

2E \q2

f x;t (z ,r, a, E)(3.34a) J

A LL, -- 2 z
x_

x;,e 21, r i J,L r(u t,, ,, A,)

And also

/,^ Lr, G) .)t z&, ) Al, A
I

k to* + t 2t
5 sz

./
U-7* f G,, G) f,,,(-s) + G,, G) H,zc-ilJ .)t =&s++

4; s2
r
L ry + brr*rl[*+\- *]"
l \zz. Xzr LL * Zzt l lt

/n- So *

+ 3 t Js +** -1 I 5

I
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Equating terms of same order in s

2 Ir, 
= - Xzt ( *,, + xr=) (t 34L,5)

(3.34b)
4zl= -Zzr (x,,+ x=z) -xL, (r,ftzrr) + Ir, (J,,rl,r);fi.Nbrn)

) A'r, = Yzr (y,,-l*o)+ 
f,r-,(xrr.-x,,)2. (t.zq b,)n,)

The other equations r{e have to our disposal

the 2 linear equations coming from the definition of

aTe

a.
J

oj=r- 2 7 w
e1

(3.34c) de, @ L Jn-
o

pendent

have the

Some of the equations of set

of th? others because we know
t

solution f or 6Z l(o) when

(3.34) are not inde-

we should automati call-y

we ser d,,k) or

vice versa, that is

d.z0)
(rrr) +-. (51)

J,, ( )q-

Rz .+R,
3, *1,
€z ++ Q-,

'and 6 ,r, remaining invariant under the transformation

(2,2) a--+ (1,1) .

That means we have

coni cs )

a total- of 5 independent quadratic

equations for the sevenequations (general and 2 linear
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unkn or,,rn s (n arne L y

equatlons

pure hard

the polyuoni a1 coefficlents).

(3.34) 1s identlcal rrith the

The struc-

ture of

for the

Ytj 
'J

one obtained

sphere case in Reference 1, Ln

Of course the coefficieuts

terms o f

Lj )zcj'
because

will be

different the polynoninals differ by a cons tant

the Z term ne now have Aq 
-

term

and the fact that in &] v,,
2J

rather than just Ar-l

The sol-ution f or equal size chareed hard spheres

We have been

equatlons (3. 34) fo r

charged hard sphere s.

able to solve the system of algebraic

equal sizethe case ^1- o2 ' that is for

To find the answer we define

(3.3s) /ri b) =
/'?rJ ( lt ) + \ct b) t-* ,L< R

"J

4[? (") *
where (z) -2Tl ry,1' LC (n) f* o.Ri

C
,r(

z) is tte p oJ- yno mial

Y. for equal

found by Wertheim and Thlele

sphe re s ,

(s)

that solves the P slze uncharged hard

We should emphasLze g(o)
density 

f=f,+fz
(r) for lnverse tenperature and

(4)
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tJe then write (ca1-Ling Rr=Rr=R)

xii= W
ffii
Wrt

X

I

o+X*
tJ

o ( 
" J'(o))o= RX z7T

Yrj o tT: j J" = zT( *, t" jor,) )r= B
+

Zri zo + n{i , o

firtu g'tu)),= R= zll
A ij ri+ni

,i -si
subseript

oj = *3*4
5,, z i

I

Xi,l At . A:;
The o here means the reference system , i.e.,

dis-the uncharged hard sphere system; go(r) being the radial-

tri.bution f unction f or the ref erence sys tem.

T

The solution to the algebraic equations (3.34) is in
this case given by

(3.36) ?,ih) K. D, ( trebz+zrcz')v
and we

(3.36)

shorrr i t as f o1l-owing I neplacing the

linear equations (3.34C) for

2..t"J of equation

in the a.
J

we have

a"j

2
4.

/-2 2
L w.[,n04! (a) ry /z+ $'Sii:r"r4.sz) zcln1'o 

vwr",but
W^t =tJ F f"€e = D )

which iurplies : oj 
=ao q *Qz' =ofl

)
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From their definitions it is obvious then that
*

A!r: = o
form (3.36) .

For the

which is consistent with the

equations (3. ga",t) and (3.34b,, ) we

have realizlag that we

z [ir+28:i = -
2 xi1 YIt - z Qoi

can rewrite for instance (3.34rr S ) as

8; )
t

6r)
2)

(x{, )'- $i;)' -
*\ii

By deflnition and the mentioned fact

same for the referenee

that the alge-

system as forbraic structure is the I
the m. s.m. we have

2[
o

-&;,)'* (xli)2
cL= )

on the other hand,

-z ( *t, xZt + xT,; x
o
.L ) = +' xo (6zb(r+/t.R') (Wf,

( f ,f,€,€z " ?: et) : o

Dr,* (;D*)=

r xa (r* bR+q.Q')
z

that is, the ttcrosstt terms vanishes and we obtain

-z Kt. Dy =
-zl<'c Dzz =
-rV". Drt 

=

K
q ( r*.bR+ 4.p')'

(t+rb8+zt.Q')"
t ftzbR +e'P')'

(0.i+o,i)
'L

1zeftL

Kqf re

( D; + D:,)

Dzt (D,r*?'r) ,
D *O; z 2

Drt f Dzzbut since Dz L

D,r
the 3 equations yie1d the

Dr.
same equation:

lt 2 ( o, r rD,z) ( r* zb|+arQ')'

)cz
(3.37a)

C
E2

l6
(,*2bR*4cQ')'
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Turning to eguation (3.34b,

we should have

) o' ) , si.nee ) Qr-?, az

x*
2t ('/,7 -,/i,) + 1:, (x{, -x a(

rf ) o

xlr (y,f -Yf,) * yf (xL -x 7(
lt ) la, ( D,, -Dr,)+ D,r (0,=-D,,il-

o K4 (r+, b R+ a. R') (, L+ fc R) :o I
E

Finally we get from (3.34",A') and (3.34b,At) 4

single equation (again remembering the relations for

sys tem and the f act that in these 2 eq,uations

the ref-

it is

vanish. ) .

e rence

also straightforward to verify that the cross terms

Cross terms being products of the form xx z) il,
Namel.y # (rb +sc R)z- l<4 . ( ,r , bR *AcR.) - o.

Solving for c yields

(3.37b) C rA

l
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Substituting (3.37b) in (3.37a) we obrain

fi a bR = c zx- X + x rl l+r* ) x-* X=xfu(3.38)

a R
2 874c

where i.n solving (3. 37 a) and (3.37b) rre have selected rhe

roots that give the corre ct Debye-Hiickel lirnit when R+ o

That is 1,,*
R+o

L (F.,ft,f) 7.
2

So for the case Rr=Rr=R the sol-ution to the m.s.m. is
given by fol-l-owing direct correlati.on function

(3.3e ) clj1, = c" (") +

z<R"
with B and a given by equations

A
T'

e( eJ (, L
R

t4 Q+) /.R'/ /
(3.38).

l
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To get er, (r) for x 7 R it ls neiessary to perform

gl Lnverse Fou ri er

a couple of thin g s

computatlons.

. tr'ron the

or Laplace transform numericaLly. There are

worth nentioni.ng even without doing this

relationship between h ij
,\

(k) and Cr, {t) in

Fourier space ( see Eq.

(3.39)
4/",(at: e.(al

(2.4)) one has (uslng the result of

+

2{ro6 a
.).e

$ /(k) fi et
/l
u, it

1., Ur) =

et <1 { k) * ?"(al 
o2

enn, Irt (k)

('*-4ab) j

f. l,'z(u*

n<k

/s

/7
T

+ .e

{(t1 u tt, Iourier transform

So one gets t il tLz= ft ", (o,-u=) f@ t
(e,- e.1 f f,", - [""]
and fr"r(",-ef&S_ 1(p)

ci k) + f, ?, &) L rut

"/

+

so c al11n g

it fo 1l ows

(3.40)

.,I,(,4'l';

Thus we have elimlnated expllcitly the pure uncharged hard

spheres part, so when integrating nunerically the inveisl,on

sists of taking the inverse of the pure hard spheres and the
,,\functions h, (on1l one of theur) explicitly.

con-



47

charge cloud density oscillations

and deterrnine the critical *. for

given by Q" ( n) 7 k"",1,.u(")
whlch the first zeros of

the function 1;; b) - ?ri i
occur;

o; that

)/) Jt;
rhar is ror 44xr._L, ft;(t-)_J4(o) /o
is the equation has roots Y+

,li
and for " = "ctidlid-frJ

for son€o14<o.

Another necessary test our radial distribution

for someshould pas s is
J1 (,,= R) )- o

phystcaL region J.n the ( *rJ) (x= *R
Z =(y,+9. )R'))

p1ane.

To test this we have 1, tel =i"k) - f; et er. (trB *Q)

(3.41)
3 (e) 3"G)

/1
m e (r B)'LJ c ,J

(3 .42) e z ( t+s) 'lL

One should also be able nurnerlcally to detect the

So the physical region Ls deternined by



48

and of course >/ (we know that. even for theo

pure uncharged hard spheres ?.y 3"G) ge ts negatlve

our case. (The probabillty of having 2 particles of opposite

.charge at the dlstaace of cLosest approach should be bigger
than the probabillty of havlng particles of the same charge

ln the same situatlon. )

Thermodynamics for the eq uaI size charged hard spheres

fl"(*)

(14)It is well known that the thermodynamic properties

of a system.- can be computed in many dLfferent ways 
.like vi_rial

or conpressibillty pressure, from the energy form, etc. A11 of
these ale the -ane for the exact Statistical l"Iechanics formula-

tion: But when approxlnation to the exact theory are lntroduced,
as ln the n.s.m., one expects discrepancies among the different
nethods of conputl.ng the thermodynamics o.f a glveu system.

' We get the thernodynamics calculating the excess

eEergy of the system (energy over the ideal gas for the same

density .f ,r (, = ( ). we know

E
A 2z

b
€;€

3i, {d 1// o-/z =f ,liz
L I

K €z

I
€ 7 r{ ft -fi e,rt 2t/

h
2J4 h) dn

above a certain density).

Another fact which is physically desirable is

a i+i
ddG)> 3;LG) ""a it is obvious that this is sarisf ieal ln
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So we have

E
/+

-L
e

t.
a

b

D.I
ah

( dtikz) dn-
)t< v _r_ z: B.ZrJ'-LJ ?,---l" j

? t/cc
L -

I

e
b z

C

D..sL b ((..,. + ft":) =a

Xz

z//rR[*

./t<From E we can get the Helmholtz free energy
density " (ttp)

(3.43) r o E4 (f, f) a/7'a- t' 4
o

: -l 
/-

,irtp, ( b x t 3 x2 * 2 ^'z ( ft'*) il')

which goes 
=?^ 

n'/tz Ti rhe Debve-u'ricket limiring
R+o 

s rruL&cr

1aw; next we get the osmotic pressure

(3.44) ?
tut
/r f D Po-

+a( 4'fff R3

2
3

(t+zx),/' r iJ
)r= ?4 [r * x (ttz$z
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o
PO being the

uncharged

Helmholtz freea, energy density and pressure

sys tem.for the hard spheres

I{e compare our results for a particular case with
Rasaiah and Friedr*an t 

= 
(7) 

, that they have obtained as we

expl-ained in chapter (r), in Table r eoming from refe."o""(17)

T,c,rm I. Comparison of results of lt.s.lt. "'iti HNCr aqueous solution for l-l elcctrol-r.te; r: 25"c; R:4.6 .i,;
Z : l; c:78.358 and assumed temperature independent.

;'-,'. !

-.E"' (cal/mole.liter) (PP /p)

}I.S.M. HNC

0.002
0.020
0.200
0.900
1.000

0
0
0
0
0

0002
0021
0234
1056

0

0
0
1

I

0677

2141
6770
4362

5138

58. 514
163 .743
388.449
600.862
617.003

58. 983

165.778
390. 052

605.028
621.663

0
0
0
1

1

9848
9630

9fl4
1412
1728

0

0
0

I
t

981,{.4

96272
96406
r356
1666

1li2

3 C; moles o[ electrolyte per liter

C (moles). pR, r:KR M.S.M. HNC
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CHAPTER .IV
Open Questions

IiTe want to summarize in ilris last chapter some of ttre questions
tJ:at, in our opinion, deserve furttrer thought and investigation in ttre
future.

A) To have'the solution for the general case of the binary
prlmitive electrolyb" (Rf / Ar) the atgebraic equations

G-lD must be solved. r:is wourd give a mueh greater
degree of flexibility in comparing wit, e4periments and

other ttreoiies. The question whettrer it is possible to
solve (r-rD in closed (analytical) form, and therefo:re

. the m.s.m., is a very relevant one in asserting its
usefulness for the general case

B) solution of ttre m.s.m. for systems with more than two

components wourd be a powerful achievement. rn particular
the simplest possibre description of the solvent-solventl
solvent-solute interaction wtrich co.r-d be a system wittr
ttizee species of ions,"1 = 0, e, = -eri R1 = R2 = R3,

seems to be a very interrestlng case for research and

appears as soluble with ttre techniqugs of ttris present
work.
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C) A number of calculations are needed for the case R1 = R2, namely

Numerical Fourier transform to obtain Crr(r)
erplicitly and ttre already discussed oscillations

of the charge cloud density for x 2/ xcrit (xcrit

to be found by tiris calculation).

More examples for different parameter R, €,

constructed in Table 1.
f 'as

Comparison between the already obtained free energy

pressure (l-++) wittr pressure obtained through the

virial ttreorem and compressibility relations (see

ref. 7).

D) A most interesting point is whether tjre m.s.m. could be applied

to molten salts systems.
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