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2 
WEIGHTED L APPROXIMATION OF ENTIRE !:'UNCTIONS AND RELATED TOPICS

by 
Devora Kasachkoff �iohlgelernter 

In Chapter 1, sufficient conditions for polynomials to be dense in 

the space of entire functions of· L2 
(dm) are examined, where dm is a posi­

tive, absolutely continuous measure defined on the complex plane. Let S 

be the space of entire functions such that l!f(z)\l
2 

= /Jlf(z) j
2
dm(z) <"". 

Write dm(z) as K(z)dxdym K(r,0)rdrd6. The main theorems are: 1) Suppose 

tn inf K(r,8) is asymptotic to tn sup K(r,6) (together with other mild
6 6 

restrictions). Then polynomials are dense in S. 2) Let K(z) = e-$(z)

tz where ♦(z) is a convex function of z such that e belongs to S for all

complex t. Then the exponentials are complete ins. (Corollary: Poly­

nomials are dense ins.) l) is extended to the several-variable case. 

2) was recently proven by B. A. Taylor for the many-variable situation.

our proof does not extend beyond the case of one variable, but for t.�is

it is simpler and more direct than Taylor's. Examples of spaces in which

polynomials are not dense are also given.

In the second chapter we discuss the existence of entire solutions 

f(Z) to the equation P(D)P(Z)f(Z) = 0 (more generally, to 

I P.(D)P. (Z)f(Z) = O), where Z is the vector (zi,••• zk), P(Z) a poly-
i"'l 1 :i. 

• 

nomial, and P(D) is the differential operator obtained from P(Z). A

summary of known results is given. The main theorem is the following: 

N. 

Let P(Z) al b.Z J 
J 

where Nj Suppose there are positive 



k 
constants a1 ,a 2 , ... ak,M such that l a1n. = M for all j. Then the 

i=l Ji 

only ~ntire solution to P(D)P(Z)f(Z) = 0 is the trivial one. In fact, 

we show that under these conditions no non-trivial formal power series 

g(Z) satisfies P(D)P(Z)g(Z) = o. 
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O. Introduction

In this paper we study natural generalizations of two questions

raised by D. J. Newman and.H. s. Shapiro in [7]. There they discuss the 

(Fischer) space j-
z

· [Z = (z1,z
2

, ••• z
k

), lzl
2 

= lz11
2 

+ lz
2

1
2 

+ ••• lzkl2

1

which is defined to be the space 

Euclidean K-space (C
K

) normed by 

of entire functions f(Z) in complex 

llfCz>ll
2 

= 
1

K / If CZ) l
2e-

lzl
2

dA
z

. Here

integration is over all of C and dA is the Lebesgue· measure with respect
2 K Z 

�...L. - Alzl
to c. If q,(Z) = O[e 

2 ] for all A> o, clearly $CZ) is in "'"9--
z. K 

and multiplication· by <j>(Z) is a well-defined operator on :3-
Z

, its domain

being the set of functions f(Z) in :f for which 4> (Z) f (Z) is in 
z 

For such <j>(Z) they define the operator i(D) by 

4> (D) then represents a formal adjoint to the operator "multiplication by

<j>(Z)". If <j>(Z) is a polynomial, let $(Z) denote the polynomial obtained

f;rom <j>(Z) by replacing each coefficient by its complex conjugate. It

tunls out that for polynomial$, the formal adjoint $(D) is the differ-

�ntial ope�ator obtained from iCz) by replacing each z.
l. 

$ ( Z) satisfying l:he above growth condition, the au tho rs 

following two questions are equivalent. 

aby az. • Given 
l. 

show that the 

1.- Are polynomials dense in the Hilbert space of entire functions 

with measure l$(Z) j 2 e-lzl
2

dAZ?

.-

2 . Is the only solution in 7
z 

to $(D)f(Z·) = O where f(Z) = q,(Z)g(Z),

g(Z) entire, the trivial one? 
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~ T•Z 
Moreover·, they show that when cf,(Z) = l P (Z)e , i.e., when ♦_(Z) is 

T T 

an exponential polynomial, the result is in the affirmative, i.e., poly-

nomials are dense in the Hilbert space of entire functions with measure 

l~(Z) l
2e-lz1

2
d.Az or equivalently, there is no non-trivial solution f(Z) 

to i(D)f(Z) = 0 where f(Z) £ :t and f(Z) ~ cf,(Z)g(Z), 
z 

g(Z) entire. 

Clearly both of the above questions have meaningful extensions 

beyond the context of the Fischer space. 

1; Given a positive measure drn, one might ask when the analytic 

polynomials are dense in the entire functions of L
2

(dm). In Chapter 1, 

we give some sufficient conditions on the measure dm which ensure that 

they will be . 

• 2. 

a 
As we remarked above, when cf, is a polynomial, cf,(D)f(Z), 

(D = ( az, 
l 

a a >J • • ful • h • h a • • • a l.S meaning outside t e Fl.SC er space and we 
z2 zk 

may then ask whether there exists a non-trivial entire function f(Z) (not 

necessarily in the Fischer space) such that f (Z) = cf, (Z) g (Z), g(Z) entire, 

and satisfies cf,(D)f(Z) = o. In Chapter 2 we investigate this and some 

closely related questions. Our results here are rather limited. For a 

restricted class of polynomials we have shown that no such entire function 

can exist. The general case is still open. 
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I. Polynomial Approximation to Entire Functions in t 2 (dm) 

In this chapter we consider an analogue of the Bernstein problem 

of weighted polynomial approximation to a continuous function on the 

real line (see [6J). Instead of continuous functions on the real line, 

we consider entire functions in the plane and extensiops to several 

variables. More specifically we let C denote complex Euclidean K . 

K-space. For points z = (z
1

, ••• zk) and W = (w
1

, ... wk) of CK we denote 

k - 2 2 
their inner product by l z.w. by (Z,W) and writer = jzj = <z,z). We 

1 J. J. 

-denote by Z the K-tuple (z 1 , .. ~ zk). We let EK denote the set of entire 

functions in CK. Let m be a positive measure defined on the Borel sets 

of CK. We defines= L
2

(dm) to be the set of entire functions fin EK 

such that 

Here the integration is over all of CK. Initially all we require of the 

measure is that all polynomials belong to the space s. we then ask what 

conditions on dm are sufficient for polynomials to be dense ins with 

the m(!tric imposed by (1). Henceforth when we use the phrase "dense 

in S" we will mean dense in the entire functions in the metric ~
2 (dm). 

We consider only the case where dm(Z) is absolutely continuous with 

respect to the Lebesgue measure. in CK, i.e., we may write 

dm(Z) = K(X,Y)dV = K(r,0)dV 

where 



k k-
dV = TT dx dy - TT r dr d8 = TTdA m m m m m . z 

m=l m=l m 

+ iy 
im8 z = X = r e 

m m m m· 

We let N = the K-tuple (n
1

, ••. nk) of non-negative integers and write 

ZN 
nl n2 nk 

= zl z2 I • • • zk 

k 
- INI = }: n. 

i=l 
1 

For two functions f and h ins we define their inner product· 

"' "' 

f f f 
X 

(f,h) = fh dm(Z) = ... rliTT dx dy 
m=l 

m m 
_co -co 
~ 

2k 

"' "' 211 f 211. k 

I ••• I f .-.. tii IT r dr de . 
m=l 

m m m 
-co -co 0 0 

k 

Definition: f is said to pc orthogonal to g if (f,g) = O. 

Sis then a normed linear space, and in particular a pre-Hilbert space. 

We recall some basic facts about such spaces which will be used frequently 

throughout this chapter. 

(a) Schwartz's Inequality. l<f + h)l< 11£1! !1hll, f,h in s. 
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(b) Minkowski' s Inequality. II f + hi! :: \I fll + 11h11 , f,h in S. 

(c) If Sis a Hilbert space, then a set G c Sia complete if and 

only if (g,f) = O for every gin G implies f = o. 

we shall make frequent use of the concept of weak convergence. 

Definition: A sequence {f }in a normed linear space Sis said to con-
n 

verge weakly to fins if lirn L(f) "L(f) for every bounded linear func­n n~ 
tional Lons. 

.. 

By the Riesz Representation Theorem if Sis, in particular, a pre-Hilbert 

space the sequence {f} converges to f weakly if the lim (f ,h)·= lirn (f,h) 
n n+o, n n-n> 

- -for every h in S wheres is the Hilbert space completion of s. 

(Remark: The spaces is not necessarily complete in the nonn. A suffi­

cient condition for the spaces to be complete is that for every compact 

set Q there exists a constant C(Q) such that -

* • sup I f(z) I < C(Q>\I f(Z)ll for every f in s. 
ZtQ 

Proof: Let s be the completion of S. Let {g} be 
n 

a Cauchy sequence ins. 

There exists g(Z) ins such that Jig (Z) - g(Z)\I -+ O. 
n 

Hence there exists 

a subsequence {g } = {f} which converges tog pointwise almost every-
n. n 

J 

where. But by * for every fixed compact set Q, given e: > o, there exists 

N such that for m,n > N and ·z in Q, 

If (Z) - f (Z) I < sup jf (Z) - f (Z) I < C(Q)llf (Z) - f (z))I < e:. There-
n rn ZE:Q n m n m 

fore f (Z) converges to a function h(Z) uniformly on compact sets. 
n 

h(Z) = g(Z) almost everywhere. since h(Z) is entire, g(Z) is entire and 

S = s, i.e., sis a complete Hilbert space. 
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Wnen dm(Z) is absolutely continuous, i.e., dm(Z) = K(Z)dAZ = . 

K(X,Y)dV, * is true if K(X,Y) is bounded away from zero on every compact 

set. This is true because for every f € S we have 

f(Z) = cL>k f 2,r ' 
- jt; -z l=r 

m m m 

l 1 

If (Z+W) I [K (Z+W)] 2 [K{Z+W) ~ 2 
dA 

w 

1 

= <;>k f !f(f;) !{K{f;)]2 

I E;m -zm j il 

sup 
I; 

ji; -z l<l 
m m -

l 
l 

f jf(E;)j[K(E;)]
2

dAI; 

ji;m-zmj::il 

Applying Schwartz's inequality to this last integral and extending the 

domain of intebration to all of CK we have 

and , 

sup lf(Z) I < 
z 

ZEQ 

k 
l 2 (-} sup 
1T z 

ZEQ 

sup 
I; 

II; -z l<l 
m Ill -

sup 
i; 

Ii; -z l<l 
m m -

l: l/2 II f (Z) II 
[K(I;)] 

l l/2 II f (Z) I) = C II f (Z) IJ 
(K(f;)] 

It is clear that if Kdoes not satisfy the above condition,* need not 

hold,<'\s seen by the following triv·ial example. 



K(x,y) = K(Z) = l when 1(1 < l 

- =· 0 when I ( I > l . 

2 
The general question whether L (drn} is complete, while not necessarily 

directly relevant to the considerations of this paper, does have inde­

pendent interest. We do, however, use the fact that the spaces of 

Theorem 1.4 is complete.) 

5 

One kno~m condition that polynomials be dense in the entire functions 

of L
2

(dm}, i.e., in the spaces, is that the measure drn be rotation 

invariant, i.e., ·J dm(Z) = / dn(Z} for every Borel set E and every 
-E ·- --UE 

W1itary transformation U. For the sake of completeness we include the 

proof. 

Theorem 1.1: Let m be rotation invariant. Then polynomials are dense in 

-the·entire·functions in the metric ·of L
2

(dm), i.e., -in the spaces as 

defined above. 
k 

Proof: Since mis rotation invariant, dm(Z) = K(r)1f r dr d6. For every 
m=l m m m 

C)C) 

f, let }: a ZN be the Taylor expansion of f. Clearly the monomials are 
INT=o N "" 

orthogonal. JI fl7m(Z) = J. laNI 
2
P(N), i.e., f lfl~d:m may be expressed as 

_ INT=o 

a weighted sum of squares of the absolute values of the Taylor coefficients 

of f. It therefore follo~.,,s that the Taylor expansion of f converges to f 

in the given metric. 

We now restrict our attention to the .. case K = 1, _i.e., we consider 

the problem in the complex plane. It will be shown that theorems 1.2 and 

l. 3 can easily be extended to C , K arbitrary. For simplicity we let 
K 

K
1

(r,6) = K(r,6)r = rK(x,y); since there will be no possibility of confusion 

•• -we drop the subscript. 
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Taking Theorem 1.1 as a point of departure, consider the case where 

K(r,8) is not necessarily rotation invariant but for fixed r, K(r,8) does 

not vary very much with 8. We introduce the following notation. 

(2) Kl (r) = inf K(r, 8} 
8 

0 < 8 < 211' . 
(3) K

2 
(r) = sup K(r,8) 

8 

A simple extension of Theorem l.l is 

Theorem 1.2: Let K2 (r) ~ AK
1

(r) where A is a fixed constant. Then poly­

nomials are dense .in the spaces. 

Proof: Let s
2 

be the space of entire functio11s f in E such that 

0:, 

J 
0 

21f 2 
J 1£1 K2(r)drd8 < ""· 
0 

Obviously s C s2 since for every fin S 

·o:, 21f• 

f f It! 2K2 (r) drd6 

0 0 

m 21T 

< A J f ltl 2
K1 (r)drd8 

0 0 

"' 211' 

< A J f jfj 2
K(r,8)drd6. 

0 0 

But K
2

(r) is rota~ion invariant. Hence by Theorem l.l f can be approxi­

mated by polynomials in s 2 , i.e., given E > 0 there exists a P such that 

"" 2» 

f f jf-PJ
2
K(r,0)drd8 < E. 

0 0 

The same polynomial obviously approximates f to within e ins because 



00 21T 

J· I lf-Pj
2
K(r, 0 )drd8 

0 0 

00 2n

< I- I lf-Pl 2K2(�)drd0 

0 0 

7 

< £ 

·Before proceeding with Theorem 1.3 we give two simple examples of

spaces in which we show that polynomials are dense. These will motivate 

both the statement and proQf of Theorem 1. 3. The f ollowing notation will 

be used in both examples and in the proof of Theorem 3.1. As above, 

given K(r, 0) 

(4) s = the set of functions f(Z) in E such that 

00 21T 

J I jf(Z) j
2
K(r, 0) drd0 < 00 

0 0 

We let 

(5) G = the set of· functions f (.XZ),, .!. < .X < 1 such that f (Z) belong s  
2 - J 

to s. 

(6) s
2 

= the set of functions f(Z ) in E such that 

00 2Tr 

I J jf(Z) j
2K2(r)drd0 < �

0 0 

where K
2
(r) = sup K(r, 0) as defined in (3).' 

8 

Remark: G is clearly a convex set: Let f(Aiz), g(.X
2

z) be elements of

G. If·>..1 = >..2, af(.Xz) + (1-a)g(AZ) 

If >..1 < >..2, af(.X1z) + (l-a)g(.X2z) = 

= h(.Xz) where h(z) = af(z) + (1-a)g(z). 

h(.X2z) where h(z) = af ( :l z) + (1-a) g(z-).
2 

If O <a< 1, by Minkowski's inequality h(z) clearly belongs to s.
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Example 1. -Let 

2 
K(r,8) = n -r r e for 0 < e < Tr 

2 
-r 

for e < 2n. = e 1T ~ 

Note: 
n = r K

1 
(r) for r > l. 

We will show that G is dense in Sand that G C s
2

. These two facts imply 

that polynomials are dense ins. G is dense ins implies that for any 

f(z) ins, given£ there exists a>.. such that Jlf(z) - f(>..z>lls < ~ • 

Since K
2

(r) is rotation invariant, G C s
2 

implies that given£> O and 

f(z) ins there exists a polynomial P such that 

< .£. 2 • 

The same polynomial approximates f(z) in S to within£ because 

llf(z) - P(z) JI! !lf(z) - f(>..z>ll
5 

+ llf(>..z) - P(z>ll
5 

< llf(z) - f(l.z>ll
5 

+ llf(>..z) - P(z>ll
5 

< £ 
2 

Therefore polynomials are dense ins. 

l. G is dense ins. 

Since f(>..z) in G obviously converges to f(z) in S pointwise as).~ 1, 

it suffices to show that f().z) is bounded in norm ins. It then follows 

that f().z) converges weakly to f(z) ins, i.e., G is weakly dense ins. 

Since G is convex, G is in fact dense in S (see (4), page 207). We show 
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that f(Az) is bounded in norm ins •. 

f

"' 111' • 2 2 Joo f 2,r • • 2 2 
= jf().re 18) I rne-r dedr + lf().re 18) I e-r d8dr. 

0 0 0 11'. 

By the obvious change of variables ).r = r' 

• "' 1r . r' 2 

2 l J 1· ie 2 n -<-r-> llf().z) 11s = n+l jf(r'e ) I r' e dedr' 
). 0 0 

00 211' 

+ i I f j£(r'ei8>12 

r' 2 
-(-) 

e ). d8dr' 

0 11' 

To prove that G C s
2 

we need the following fact which will be proven in 

more generality in the proof of Theorem 3.l. Let ~(z} be entire. Then 

* 
O O 2 0 

where C is independent of g(z). Assume* is proven. 

2. G C s
2 

Let f().z) belong to G. We wish to show that II f(),z>ll < "'• Using * 
s2 

and then letting ).r = r', we have 



(1) 

0 0 

3 2 i 2 r r I 1
2 n -r < C fO.z) r e d8dr +

J J 
2 0 

i 0 

00 2'1t' 00 21T 
- er'\ 2

10 

r r I 1 2 n -r 2
c• f f ie·· 2 n , ' 

< C' .f(AZ) r e d8dr = --
1
- • jf(r'e ) I r' e I\ dedr'·· 

J J • 
A

n+ 
1 o . A o 

0 0 0 1T 

By standard methods of 

-r2 ( .!._ - 1] 

calculus one can easily show that the function 

n A2 
g(r) =re 

-( r) 2 
2 n A -r < A(A), i.e., r e < A(A)e where A(A) is

lpositive constant depending on A and finite for 2� A< 1. From (1) we 

therefore have 

00 ,r co 21T 

B(A) [f I if(z) l
2

rne-r2

d8dr + f f if(z) i 2
e-r2

d8dr] 

0 0 0 � 

. 
. 

Proof of*: g(z) is entire, therefore for r < 1, 

(1) 2 < t < 3 



(2) lg <z> I

Integrating both 

(3) 

21T 
• ¢>

21T 
< l J I 9 < �:

1 

> I t .a ct> < !:...f I g ( te 
i(j,) I td(j,- 21T 2 :rr 

0 
lte

1 

- zl 
0 

sides of (2) from t=2 to t=J we get 

3 21T 

jg(z) I� �n J J jg(te
iq>) ltdq>dt. 

• 
2 o 

By the Schwartz inequal ity 

Hence 

(4) 

2 

3 21T 

CJ f jg(te
i9) !

2
d�dt. 

2 o 

11 

.. 

-r If we multiply (4) by e and integrate drd8 from r = 0 to r = l, 8 = O • 

to 8 = 2,r we have 

l 21r 
2 

3 2 1T . l 21r . 

(5) J f lg(rei8>l 2e-r d0dr <CJ 1· jg(tei9)j2
dcf>dt J f e-r2

d8dr

0 0 2 o 

.3 2tr 

= C' I I jg(tei
•)�

2
dtdt. 

2 o 

For 2 _< t _< 3, tne-t2 

> B > O. Therefore

0 0 



3 21T 

(6) 

1 21T 
2 

J 
·f I ie 12 -r g(re ) e d8dr < ~· J J lg(tei 9>12ad~dt 

0 0 0 0 

which proves*• 

Example 2. Let 

Note: 

3 2,r 
2 

< c" J f I g(teicj,) I 2 tne -t d0dr 

2 o 

2 
K(r,8) r -r 

for = e e 0 < e < 

2 
-r 

for = e 1T < e < 

1T 

21r • 

As in Example 1 we show that G is dense in Sand that G C s
2

. 

1. G is dense in S 

As pointed out in Example 1, it suffices to show that given f{z) 

in s, f {AZ) is bounded in norm in s. 

C)0 1T C)0 21T 

12 

(1) II 112 I I I i8 12 r -r
2 

f(}..z) s = f(>..re ) e e d8dr + f f I 
i8 

1
2 -r 2 

f{>..re ) e d0dr. 

0 0 

Letting >..r = r' we have 

(2) tlf(>..z) 112 . s 

IC)O f 211" • e 2 - ( r ) 2 ] 
+ lf(r'e

1
) I e d8dr' < 2 

0 1T 

0 1T 

.. 



l By ordinary method of calculus one oan easily show that for - <A< l 
2 -

2 r r 
X-- A2 

e < 

1 
4 r-r 2 

e {e ] • We therefore have 

• l "" 1T "" 2n • 

(3) \lf(Az) II!< 2e
4 [I f _1f(z)l

2
er-r

2
d6dr + J J lf(z)l

2
e-r

2
d6drl 

0 0 0 1T 

l 

= 2e
4 

llf(z) H! • 

2. G C s
2 

Let f(i.z) belong to G. 

<O 21T 

J I I 
i6 

1
2 r-r 2 

= f(Are ) e d6dr 

0 0 

0 0 

r r 2 - -(-) 
1 

• 
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As pointed out above eA A 
2 

4 r-r < e [e ] • Similarly it is easy to show 

2 -r < A(A)e where A(A) is some constant depending on A and 

l finite for 2 ! A< l. We therefore have from (l) 



00 tr 

(2) < B(.l.) [f .f 
0 0 

00 211' 

+ff lf(z) l2e-r
2

d0dr] = B_(>.)!lf(z)ll 5 < co 

0 11' 

Remark: Example 2 was somewhat easier to handle because fQr fixed e 

K(r,8) was bounded away from zero in every r-intervaI. 

Theorem 1.3: As above, we lets= the set of f(z) in E such that 

·a, 21T 

f J jfj
2
K(r,8)drd0 < 00 , K1 (r) = inf K(r,8), and K

2 
= 

o o , e 
Assume K(r,8) satisfies the following conditions. 

sup K(r,8). 
e 

14 

(a) K
1 

(r) = _e-P(r1 where P(r) is a convex function of r, for r > r 1 . 

(b) For all e, 8 fi~ed, K(r,8) is a decreasing fWlction of r for 

r > r
1 

and lim K(r,8) = O. 
~ • 

(c) K(r,8) = 1, 0 Sr~ r
1

. 

.. 

(d) K(r,0) is uniformly bounded with respect to 8 in every r-interval . 

. Then polynomials are dense ins. 

Remark: (a) and (b) are reasonable conditions on K(r,8) to ensure that 

all polynomials do indeed belong to the spaces. It will be clear from 

the proof that we may replace (a) by a somewhat weaker condition, namely 

that.there exist constants C, c• and a convex function P(r) such that 

Ce-P(r) < K
1

(r) < c•e-P(r) for r
1 

< r. (c) and (d) are needed for the 

method employed. We will show that in actual fact once we assume (a) the 

assumption that K(r,.8) = 1 for O :£ r ~ r
1 

is no -restriction at all. 

Condition (e) is our main assumption about K (r, 8). As above, we let 
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Q) 21T 

s
2 

= the.set of functions f(z) in E such that J J jf(z)! 2K
2

{r)drd8 < m. 

0 0 

G = the set of functions f().z),; i A< l such that f(z) belongs to S. 

Proof:. We will prove that G is dense in S and that G C s
2

• That these 

two facts are enough to guarantee that polynomials are dense in s follows 

from the argwnent given in Example l. The reasoning is the same and we 

do not repeat ~there. 

1. G is dense in S 

As in the above examples, since f().z) converges to f(z) pointwise 

as A+ l, it suffices to show that for every f().z) in G, 

llf(Az)ll 5 < cl!f(z)Jl
5

. Then f().z) converges weakly to f(z) in the norm 

of s, i.e.,.G is weakly dense ins. Since, in addition G is convex, G 

is, in fact, dense ins. ([41, page 207). 

(1) 
2 fo, f 21T • 8 2 

!lf(Az)ll
5 

= jf(>-re 1 
) I K(r,8)d8dr • 

0 0 

Let Ar = r•. we than have 

Q) 21T 

(2) 11£(>-z>l!! = ! f f lf(r'ei
8

) l2K(~
1

, 0)d0dr• 

0 0 

00 21T 

~ 2 f f !f(rei
8

)1
2
K(~, 8)d8dr. 

0 0 

r Condition (b) says that K(i, 8) ~ K(r,8) when r 1 < r < 00 • Conditions 

(c) and (d) imply that when O ~ r i r 1, 8 fixed, 

.. • 



r 
K(·r, 8) 
---,---< 
K(r,8) 

sup K(r,8) < M 
Q<r<2r • 

- - 1 

We therefore have from (2) 

16 

. 
where Mis a-constant independent of e. 

CX) 21T 

[J
-r1f2n ·e 2 

2 lf(re
1

) I K(~ 1 8)d8dr 

0 0 • 

+ f f lf(rei
8
) l

2
K(~,8)d8dr] 

r
1 

o 

< 2[M J
r1/2n ·a 2 •• 

jf(re
1

) I K(r,0)d8dr + J
~ f21r ·a 2 . 

lf(re
1 

_) I K(r,8)d8dr] 

·o o 

la, f 21T . a 2 
= C lf(re

1 
>I K(r,8)d8dr = 

o o_ 

2. GC.S
2 

Let f(Az) belong _to G. we wish to show that lif(Az)ll
8 

< 00 , i.e., 
. ' 2 

f(Az) belongs to s
2

• Conditions (c) and (d) imply that when O ~ r < r, 
- 1 

i.e., 

.. 

(1) K
2

(~) < MK(r,0) when O < r ~ r
1

, Ma fixed constant independent of e. 

We now wish to show 

(2) K (r) < M
1

(A)K(r,8) when r < r < 00 where M
1

(A) depends only on A 
2 A 1 

1 
and is finite for - <A< 1. 

2 -

We will show the stronger fact, 



(3) 

Condition (e) says that 

i.e., 

where 

Q(r).tn K1 (r) where li.m Q(r) = 1. 
r+<o 

17 

_since K
1 

(r) == e-P(~) where P(r) is convex
1

for r. >·1 (condition (a)), we 

have 

(4 ). = e 
-P(r) Q(r) 

and 

(5) 
P( r., Q(~) 

- -:;::, I\ 

= e 

we will show that there exists R(i..), R(A) a fixed constant depending on 

• >., such that 

(6) p (r) - p (r) Q (r) < constant when r > R(A) A A 

and 

(7) r K
2

(-:;;:) < C(A)Ki_(r) when r 1 < r < R(i..) where C(A) is finite 

for O <A< 1. 

It will follow from (5) and (6) that 

.. 



(8) 

Combining, (7) and (8) we get (3) which was the desired assertion. 

P(r) is given to be convex for r
1 
~ r < ~. 

1 
Since r 1 <rand 

2 
~A< 1, A(A) < 1, 

l - A(A) = 

Let A(A) = r(l-A) • 
r-Ar 

l 

r r = A(A)r
1 

+ (1 - A(A)) 'f. 

From the definition of convexity we have 

(9) 

18 

Recall that lim Q(r) = 1, i.e., given E > 0 there exists R{E) such that 
r-ta> 

• 1 - E < Q{r) when r > R(e:). We take E = A(A). Since O < A < 1, we have 

(10) Q(r) > 1 - A(A) when r > R(A(A)) 

and therefore, 

(11) • • Q(I> P(I> > (1 - A(A))P(~). when r > R(A(A)) • 

From (9) and (11) we have 

(12) 

.. 



i.e., 

Statement (8) follows quite easily. Consider r
1 

< r ~ R(A(A)). By 

condition (d) of the hypothesis, 

r sup K
2

(r) 
K

2 
(i) r

1 
<r~2R 

--·< ------ < C(>.) 
inf Kl (r) 

r <r<R 
l -

19 

.. 

i.e., We have thus 

shown (4), namely 

It is now easy to see that IJ f(Az) fl < co. From (1) and (2), 
s2 

- f2n(mlf().re18) 12K2(r)drd8 = ! f2nfmJf(rei8) J2K2(~)drd8 

0 0 0 0 

< 2 

0 0 _ 
r 271' co 

I 
1

J i9 12 r f I I ie 12 r f(re ) K
2

(3:)drd8 + f(re ) K2 (i)drd6] 

0 0 o r
1 

• 

< 2[M 
J

2 71' fr l • e 2 f ·271'JO) • e 2 
lf(re 1

) I K(r,e)drde + M
1

(X) jf(re
1 

>I K(r,8)dr.d0) 

271' 0) 

= B(A) f f jf(reie) j2K(r,9)drd9 = B(A>llf(z>}I! < m • 

0 0 

This completes the proof of Theorem l. 3. 
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As pointed out in the remark f~llowing the statement of Theorem 1.3, 

it should be clear that we need only assun:e that there exist constants 

c, C' and a convex fnnction P(r) such that Ce-P(r) < K
1

(r) < c•e-P(r) 

when r > r
1

. We now show that condition (c), namely the requirement that 

K(r,8) = l for O < r ~ r
1

, is, in fact, no restriction. Suppose K(r,8) 

satisfies all the conditions of Theorem 1.3 except (c). We show that we 

-may define an equivalent measure K(r,6) where 

K(r,8) = 1 when O < r ~ r
1 

= K(r,6) • when r
1 

< r < OC) • 

21r OC) 

Let S = the set of f(z) in E such that/ / jff
2
K(r,8)drd8 < OC). To say 

0 0 -· 

the two measures are equivalent means there exist positive constants A, A' 

such that for every g(z) in E 

( I) 

Clearly f (z) belongs to S if and only if f (z) belongs to s ,and polynomials 

are dense ins if and only if polynomials are dense ins. 

We will show that if L(r,6) = L
1 

(z) has the. properties 

(a) L(r,8) ~ 0 

CD 21f 

(b) /· / L(r,6)d6dr <..,, 
0 0 

Cc) there exists a constant c > 0 such that for r > r , Ce-P(r) < L(r,6) 
1 

where P(r) is a convex function of r, 

then there exists B > 0 such that for·every g(z) in E, 

.. 



(II) tr
0 0 

3r1 2'11' 

jg(z) 1
2

t(r,8)d8dr < qonstant J { l\(z)( 2L(r,8}d8dr

.. 2r1 o

Note: We can asswne that L(r,8) > O almost everywhere for O $ 8 < 2v, 

O < r i r1• statement (II) implies statement (I) for since both K(r,8)

and K(r, 8) satisfy the conditions (a), (b), and (c), we have 

2'1f ClO 

11£11: == J J !f(z) J
2

i<(r,8)drd0.

0 0 

' 211' r 211' ClO 
• 

= J f 1
1£(z) f

2
R(r, 8)drd8 + J J 1£(z)l 2R(r, 8 )d8dr

0 0 0 

. 211' 3r 211' ClO 

< B "J J 1 
J£1

2
K(r,8 )drd8 + f f lf(z) l

2
K(r, 8 )drd8

o 2ri o r1
211' ClO 211' 00,. • 

• 

< B1 f f 1£1
:!

K(r, 8)drd8 < s1 J J 1£1
2
K(r, 8)drd8 = B11!£ff! ,

0 

Similarl.y 

211' 00 

0 0 

fj£1J! �- f f lf(z) 1
2

K(r, O )drd0

0 0 

211' r
1 

211' oo. 

=· J f lf(z) 1
2
K(r,8)drd8 + J I ·,f�z) r

2
Kcr. 8�drd8

o o o r
1 

211' 3r1 
2tt oo 

< B' I f ]£1 2
K(r,8)drd8 + f J j£1 2

K(r,8)drd8 < 

o 2r1 o r1 

21 

.. 
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Proof of II: T'ne proof is essentially the same as that given in Example .l.

Let g(z) be entire. Then for lzl � r
1

(1) 

(2) 

1 
g(z)

= 2iTi 

I g<z> I

Integrating both 

(3) 

f l�;> 
dE; = k J 

I c l=t o 

211' 

211' 

·q, < l J lg<7e
1 

) j-t 
dq>- 21T I 14> ·1 

0 
te - z 

i$ i<t,
g(te )te 

(te
i4> - Z)

21T 

< L J 21T lg(te iqi) ltd<t,

·o

sides of (2) dt from t = 2r
1 

to t = 3r1 
we get

3r 21T 

r
1jg(z) I < ;1T I l 

I jg(te ic/>)Jtd$dt •

2r1 0

By the Schwartz inequality 

(4) lg<z> I

. 
• 8 

Squaring both sides of (4) and letting z = re1 �e have 

(5) 

2 ]2 
t d<t,dt • 

If we multiply both sides of the inequality in (5) by L(r,e) and integrate 

drd8 from r = 0 tor= l, 8 = 0 to 8 = 2n, we have 

.. 



(6) 

r
1 

211" • 

J · f lg(rei♦) l2L(r,0)d6d; 

0 0 

3r
1 

211' • r
1 

21r 

< constant J I jg(tei♦) j 2d♦dt f J L(r,8)d6dr . 

2r
1 

o o o . 

.., 211" rl 21r 
Since L(r,8)>O a.a., and J J. L(r,8)drd8 < 03 , 0 < J f L(r,8)d6dr < .., 

0 0 

and therefore 

(7) 
J

rl J21r ·e 2 
. jg(re 1

) I L(r,8)d8dr < 

0 0 

0 0 

3r 2n 

constant J 
1 

J jg(tei♦) j 2a♦dt. 
2r

1 
o 

23 

W • that f L( e)· C -P(r) f •• e are given or r > r
1

, r, > e . or some positive constant 

C and some convex fw1ction P(r). Since P(r) is convex, P(r) is continuous 

and therefore in the interval 2r
1 

< t $ 3r
1 

P(t) <a<"", i.e., 

e-P(t) > e-cx = B > o .. Consequently from (7) we have 

(8) 

r
1 

2v 

f f 
·a 2 

lg(re 1
) ! L(r,8)d0dr 

0 0 

< constant 
B, 

3r
1 

21r •. 

J f lg(tei♦) l 2Bdtd♦ 
2r

1 
o 

3r
1 

211' 

< constant f I Jg(tei♦)l 2e-P(t)d$dt 
2r

1 
o 

3r
1 

21r 

<constant.I J • lg(tei♦)j 2L(~,$)d4dt. 
2r

1 
o 

This completes the proof of statement II. 

We now show that Theorem 1.3 can easily be extended to the case 

k r 1. Recalling the standard notation introduced in the beginning of 

this chapter we let 

.. 



k 
dV = TT dx dy 

m=l m m 

Given dm(Z) = K(x 1 , ... xk, y
1

, ... yk)dV, let S be the set of functions 

in E (the set of entire functions in C ) such that 
K • K 

(l) 

Here the integration is over all.of CK considered as a 2k-dirnensional 

real Euclidean space.· We introduce the variables ~ = x /r, n =· y /r. 
m m m m 

Let 0 = (~
1

n
1

,_~2n2 , ... ~knk). It is clear that l101f = 1. z can t;:hen be 

24 

written as r0. In (1) we make the change of variables x = r~, y = rn. 
m m m m 

2 2 a (X, Y) 2k-l 
~2 + ... + ~k) and the Jacobean J = a(r; 0) = r g(0). 

(For a comp1ete discussion of this transformation see [3], chapter IV.) 

For f(Z) in S 

OC) OC) OC) 

... f jf_(Z) 12
K(X,Y)dV = j J • jf(r,0) /

2
K(r,0) jJjd0dr 

0 II 01/=l -oo -co 
,.__.._r--✓ 

2K-fold 

OC) 

= f · I jf(r,0) 12is_ (r,0)d0dr 

o 11011=1 
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Theorem 1.3 then states the cor.respon~ing res~lt in CK with the 

understanding that 8-= 0 as defined above .. Because of the parametriza­

tion the proof for arbitrary K is identical to the proof of Theorem 1.3 

with the obvious modifications, and we do not include it. 

Before we proceed to Theorem 1.4 which gives another class of 

measures {dm(z)} for which polynomials are dense in the entire functions 

2 
in the metric of L (dm(z)), we give an example of. a space in which poly-

.. 

nomials are not dense. The space we give is one to which not all exponen­

tials belong. Given a measure dm(z) having the property that all of the 

exponentials belong to L2 (dm), we ~ight ask whether this property is 

sufficient for polynomials to be dense in L
2

(dm). We shall later show by 

example that this is not the case. In Theorem 1.4 we consider spaces 

having this property but with added restrictions. In our example we use 

the known fact that e·ix cannot l;>e approximat~d in L2 
(O,co) with the weight 

.e_xa, o <a<;. For the sake of completeness we include the proof of 

this fact. 

Notation: 1) 2 By L [0,"") we mean all measurable functions f(x) on [O,"") 

"" 
such that J jf(x) j2ax <"'. 

0 a 
2 -x 2) By L (e ) we lt\ean all measurable functions f(x) on [O, 00 ) 

such tha:t 
"' a 

J jf(x) l2e-x )dx <"'. As usual we sa·y a set is complete in 
. o a 

2 2 -x . l . . 2 . L [0,"') or L (e ) if the set is compete in the given L metric. We 

shall need the felling lemma. 

Lemma 1: Let H (x) be a continuous strictly positive function on [0,"') 

satisfying 

n 
(i) lim ~ = 0 n = 0,1,2, ... 

H(x) 
x--



(ii) 

n 
2 Then the sequence {u7x)} is not complete in L [0,00).

Proof: ([ 6 } 1 page 4 0 • ) 

26 

n -xa/2
} 

• 1 . 2 
In particular {x e , O <a< 

2
, is not complete in L [O,m). 

Proe,?si tion: ix The function e cannot be approximated by polynomials in

2 a 1 L (e-x) when O <a< - •
2 

Proof: 
(l 

We first show that polynomials are not dense in L2 (e -x } when 

O < a < ½ . We then show that the set {eii..x}, ½ � l < 1, is complete in 

2 -x0 • ' • 

L (e )1 and finally that if el.X could be approximated by polynomials in 

2 -x
a 

H.xL (e ) , for every l, e could be approximated by p0lynomials. 
. . (l  

. , 2 -x l I. Polynomials are not dense in L (e ) for O <a< 
2: Let g(x)

Z • �2 be any function in L [O,co). Define f(x) = g(x)ex . 

co a oo 

J 1£(x) 1
2 

e-x dx = 1· fg(x) l
2
ax < co. 

(l 

Hence f(x) belongs to L2
{e-x ). Now 

o o a• 2 � 
suppose polynomials were dense· in L (e } , o < l a < - • Then for every 

2 
. (X 

& > o there exists P(x) such that·/ ff(x) -
0 

P(x}l 2• e-x dx < e. But then 

dx 
= J jf(x} 

a 
P (x) f 2 e -x dx < c. ,

i .. e .. r the set {x n
a/ 

e
-x 2

} is complete in 2 L [0,00) which contradicts tha

lemma •. 

{ei).x }, l 
a 

:CI,. The set -<A < l, is complete in L2
(e-x ): It suffices 2 - to 
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a co a 
show that for every f(x) in L2 (e-x )., if f f(x)eiA.x e-x dx = 0 for all ). 

o· 
1 
2 ~). < l, then f(x) - o. 

co a 
Let F(x) = J f(x)eizx e-x. Assume F(z) = 0 

0 
·1 

for z real, 2 s z < l. we assert that F(z) is analytic in the upper half 

plane Im z ~ O. since an analytic function cannot vanish on a segment 

unless it is identically zero, F(z) = o. ([10), page 88.) This obviously 

implies that f(x) = o. F(z) is analytic for Im z ~ 0 for by the Schwartz 

inequality, 

co 

= J 
a 

max!f(x) le-x e-(Irn z)x dx 
z 

0 0 

a l 
-x J2 e dx < co • 

0 0 0 

co • . a 
h f J f(x)e izx_ e-x dx i's ·f l t • th half 1 T ere ore uni orm y convergen in e upper p ane 

0 

which implies that F (z) is analytic ( [10], page 95). We have shown that 

{e iXx}, 1
2 
~ , 1 . • . 2 -xa 

~ < , is complete m L (e ). 

a 
III. eix cannot be approximated by polynomials in L

2
(e-x ): Assume 

the converse, i.e., for every £ > 0 there exists a polynomial P (x) such 

that 

co 

f 

. 2 a 
jel.X - P(x) I e-x ax·< £ • 

0 

For fixed X, ! ~A< 1, 



co 

Q) 

P(ix) 12 e-xadx < J leilx 

0 

= ~ J jeix - P(x>l 2 e-xadx < 2£, 

0 

ix We have shown that the assumption that polynomials approximate e in 

a 
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feilx} 2 -x But since is complete in L (e ) it would follow that polynomials 

a 
~re dense in L2 (e-x) which contradicts I. 

We now give an example of a space S in which polynomials are not 

dense. We divide the complex plane into two sets R1 and R
2

, where 

~ = {z I Re z < 0 or Re z > 0 and I Im z I > l} 

R2 = {zl Re z > 0 and !Im zl < l}. 

Let z = x + iy. we define dm(z) 

dm(z) = I 1
1+0 

e-.z dxdy co> O) for z in Rl 

== e-lzladxdy(o < a < ; ) for z in R2 • 

Let s be the set of entire functions f(z) in C such that 

T'ne.function eix is easily seen to be ins. 
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Cl . -
II eiz 112 

. s f 
l+c5 

2 2 -2-
-2y -{x +y ) 

e e . dxdy -2y -(x +y) dxd f 
2 2 2 

+. e e y 

CD CD 

<O CD 

l+c5 
2 2 2 

-(x +y) 
e dxdy 

-1 0 

R2 

Cl 

2 -2 2 
e- 2y e-(x +y) dxdy. 

I I 
l+o 

2 22 
-2y -(x +y) 

e e dxdy is obviously convergent since o > o. 

l CD 

I I 
-lo 

a 

e -2y e -(x2 +y2) 2 dxdy < C 

co 

f 
Cl 

-x 
e dx 

0 

< co • I izl!2 Thus I e s < =, i.e. 

belongs to s. we will prove 

** There exists a constant K such that for every f(z) ins 

iz 
e 

iz 
** implies that in particular the function e cannot be approximated by 

polynomials ins. For suppose the converse, i.e., given£> 0 there· 

exists a polynomial P (z) such that /I eiz - P (z}IJ ! < Ke. By** 

CD (l • 

/ leix P(x} 12 e-x dx ~ Klfeiz - P(z)Jj 2 < £ , i.e., ix e can be approxi-
0 

. (l 

mated by polynomials in. L2 (e-x ), O <.a<~, which contradicts the 

previous proposition. 

Proof of **: Let f(z) be any function in s. Then for any point u, u ~ o, 

1 
2ri 

21f 

1 I . 1. ie • : = 2rr :-f (u + re J : d8 where O < r < l 

0 
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211 

(2) 2 l J ·a 2 I f (u) I .:S 21r _ I f (u + .re 
1 

) I d8 (0 < r ;5: l) • 

0 

a 
Multiplying both sides of (2) by r e-u and then integrating drdu from 

r = 0 tor= land from u = 0 to u = a,, we get 

00 = 211' l 

(3) J 
· 2 ua 

jf (u) I e - du 

0 

~ ! J f. I jf(u + rei
8

)j
2 

e-uardrd8du • 

0 0 0 

We make the following change of variables in the right hand integral 

of ( 3) • 

and 

(4) 

Let z = x + iy and note 

X = U-¥ r COS 8 

y = r sin a 

v=u 

1 dOdrdu = - dvdydx r . 

a 
a) for -1 ! x < 2, !YI< 1, e-v < 1, and lzl < 3 

a 
.. b): -'for 2 s x < a>1 IYI < 1, e -v < constant 

b) is true because for 2 < x < a, and jyj < 1 

• 



and 

• (ii)

Combining (i) and (ii) we have 

-va <. e-Clzl-2)a -lzl a-2 a �lzl a

e < e = constant e 

which is b). From (4) we have 

(5) 

< K [ t (1 f(z) I 2e -I zl 1:id.'< + f I If (z) l
2e-l zl HO dydx

• -o, -<XI • 0 IYl>l
• 

00 1 

+I. I l£(z) l 2e-lzl"dydx]

o -1 - •

This completes the proof of ** and, as shown above, it therefore follows 

iz that e cannot be approximated in the spaces.

31 
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Remark: The' above case was obviously constructed in such a way so as to 

make use of the fact that eiz 
a 

b l . l . 2( -x y po ynomia sin L e ), O 

ix is in it, and e cannot be approximated 

l <a< -. 2 • If we vary the conditions on 

dm(z) slightly, l iz e.g., a= 2 or o = 0 (in which case e does not 

belong to L2
(dm)), the situation becomes entirely different, and whether 

polynomials are dense in L
2

(dm) remains an open probl~m. 

In Theorem 1.4 we confine our attention to the case k = 1, i.e., the 

complex plane. We let z = x + iy dm(z) = k(x,y)dxdy • 

. Theorem 1.4: Let k(x,y) a e-t(x,y) where t(x,y) = t(z) is a positive convex 

function of z, $(0) = o. Lets be the space of all entire functions 

"" "" 
b(z) such that flb(z)Jl 2 = f J lb(z) !2k(x,y)dxdy < "", and suppose etz 

-cc,, -0) 

belongs to S for all complex t. Then the exponentials are complete in s. 

Proof: Sis easily seen to be a Hilbert space. Therefore to prove that 

the exponentials are complete, it is sufficient to soow 

(1) JI b(z)etz e-t(x,y)dxdy = 0 for all complex t (b(z) in S) 

implies b(z) = o. 

The proof will be given as a series of lenu:nas. We begin by introducing 

notation which will be used throughout the series. 

Notation 

Recalling the definition of the Fourier transform in the plane we define 

2. 
,. 
d(a,S) = f f 

"" ... 
d(x,y)eiax+iSydxdy, a,S complex. 
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In particular, 

f f 
iax+i8y 3. c(a,8) = c(x,y)e dxdy. 

Since cf,(x,y) is such that all exponentials belong to the space, c(a,8) is 

meaningful and an analytic function of the two complex variables a, 6 

( [ 8 J , page 13) . 

4. h ca, 6> 
c(a,6) = ...._,;,....:.._.;;... 
a - il3 • 

5. 4>(x,y) is convex. We may therefore define the conjugate function 

ii, (-r, T •) = max { Tx + T 'y - $ (x,y)} where cf, and ljJ have a reciprocal 
x,y 

..o:><x<o:> 
-r»<y<o:> 

relationship, i.e.,$ is convex and $(x,y) = 

co 0C) 0C) t:¥3 

co 0C) 

max { TX + T 'y 
1:,T' 

-o:><1: <a> 
-o:><T <o:> 

= I I ( ) i(-it)x+i(-t)ydxd c x,y e . y = c C-it,-t> • 
--oo ,co 

0C) co 

Assuine f f b(z)tz e-cf,(x,y)dxdy = c(-it,-t) = 0 for all t complex, 
-oo -00 

i.e., c(a,S) = O when a=. i8. It then follows that h(a,8) is analytic 

in a. and 6. we will show b(z) _ O. Let a = ai + ia
2

, 13 = f\ + i8
2

• 

a
1

, a
2

, 6
1

, 6
2 

real. 

Lemma 1. : Let O < k < 0C). Then 



------------------------------------..... �--=--·-·------

-w ..0, 

CO 00 

and only if 

f J Id (x,y} I 
2

e it> (kx, ky} dxdy < m ,·

where Mis some positive constant independent of a2 an'd B2.
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Proof: (a} Assume JJ!d(xy) j
2e�(kx,

ky)dxdy < �. By Parseval's identity

(l) Ir

Letting x x' =-

Jr 
-� x-B y 2

= J 
jd(x,y}e 2 2 

I dxdy 

= Jd(x,y} 1 2 
e 

2 2 dxdy. II 
-2a x-2 8 y

Y - L we haveI - k , 

-2a. x' -28 y'2 2 

(2) ff
-2a x-2B y 

If 
-

lacx,y) 1
2 

e 2 2 dxdy = :2
lac:', (> 1 2 e k k 

=tdf 

�½If 

� :2 ff 

Id c:' , ! ' ) I 2 e it> (x' , y • )

I 
X I y I 12 cj, (X I 

I y I ) 

d(k, k
) e 

Id c: I , � I ) 
I 

2 e 4i (x I , y I ) 

-2a x'
2 

-26 y'2 
- --

k 

nax 2 

x'y' � 
e 

{
-2a. X 1

-2a. -282 
--1., ipc T' k 

e 

I y I 

Letting x 
x

y = k , we have from (l) and (2)= 
k 

, 

-4> (X I 
I y I)

dx'dy' 

-28 y'
-9 (X 1.,:; I))

2 
k 

dx'dy' • 

dx'dy' 

dx'dy' 



(3) 

-2a 2132 lp( -1.. 
= M e k , k) 

,...213 • 

(b) 
--2) 

k 
• By Parseval's 

identity 

. (1) 

Hence 

(2) ff lacx,y) 12 

-2a -26 2 2 
-ip( -, -) 

k k dxdy 

Letting x = :•, y = f' in (2), we have 

(3) I X' 
d(k, 

Recall that tf, (x • , y • ) 

the maximum occurs, i.e., 

OI) 00 

2 2 2 -213 y• -2a -2J3 

1 ~ -t/ic k' T> • 

(4) l 

J I 

~• v• 2 e"'(x' ,y') 
2 I a c; , k > I .,, dx, dy • 

k - -oo 

< M • 

< M • 

But Mis 

XI Y' Letting x = k , y = k , in (4) we get the desired result, i.e., 

• 35 



<O <O 

(5) j . J !d(x,y) 12 
ecf>(l-.x,ky) dxdy < M < 00 • 

-co -co 

Lemma 2: Let c and c' be fixed real constants. Let A be any real 

number O <·). < l. Then there exist Mand M
1 

such that 

a) 

b) ic, 

2c 2c 1 

1/1(- -, - - ) 
Me A ). 

l • 

Proof of a): Since b(z) is ins, 

Therefore, by Lemma l 

M 
1/l(-2c,-2c') 

< e • 

Proof of b): We first show 

(A) 
2 max 1/l(-2(a

2
±1),-2($

2
±1)) 

lc(al + ia2, Bi+ iB2>l < constant e • 

where the max is taken over the four possibilities of sign. since 

A ' 2 
(c(a,8)) is an analytic fWlction of a and 8 we have 

(c (a, 8)) 2 

36 
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and therefore 

(Z) 

1 

lc~a,S) 1
2 

s :2 J 
1 2n 2n 

f f J 
0 0 0 0 

l 1 

J J l~cal~xl+i(a2+yl) ,sl+x2+i(~2+y2)]l 2dxidx-i 

-1 -1 

l l ® Q) -

< !__ f dy 
11'2 l 

J dy2 f ·f jc[al+xl+i(a2+yl),Sl+x2+i(S2+y2)1 j2dxidx2 

-l -l -co -w 

' C: Q' Letting a
1 

+ x
1 

= a
1

, 8
1 

+ x
2 

v
1 

in the last integral of (3), we have 

from part a) of Lemma 2 

l l co co 

(4) l~ca,$)1
2 ~ 1

2 f dyl 
'II' -l 

f dy 2 J J l~~a~+i(a 2+y1), 

-1 -co -"" 

J
l Jl ~02(a2+yl),-2(82+y2)) 

< : 2 . d d .. e Y1 Y2 
-1 -1 

~(-2(a2+yl),-2(82+y2)) 
e 

However since ~ is convex, e~ is convex and 

max 
-l<y <l 

- 1-: 
-l<y· <l 

- 2-

~(-2(al+yl),-2(82+y2)] 
e 

and thus for fL~ed a,6 

= max 
± 

~(-2(a 2±1),-2CS
2

±1)) 
e 
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which•was the assertion of (A). 

We now prove the second assertion of Lemma 2, namely 

00 QO 

J J ·--
where A is any fixed number, 0 <A< 1. 

"" 00 

J J !h(a 1+ic, 61 + ic') 1
2

aa 1dB1 
-c:io -oo 

QO 

= I J lh(a 1+ic,B 1+ic') !2da1as1 + J. 
1al-cl>1 - 00 IB1-cl<1 

+ Jc+l Jc'+lJh(a
1

+ic, B
1

+ic'>l 2aa
1

dB
1 

•• 

c-1 -c•-1 

Hence 

00 

(2) J jh(a
1

+ic,a 1+ic') j2da1as 1 + f · f jh(a1+ic,B 1+ic') l2aa 1as1 
IB

1
-cj.<1Ja

1
+c' j>l 

(by Lemma 2, part a} • 



h(a
1

+iz
1

, B
1

+iz2) is an entire function of z1 and �2. In particular,

it is analytic in the polydisc lz1-c( � 2, lz
2
-c•I � s. Hence by the

maximum modulus principle, for some e
1

, 82 depending respectively on 

a. and a .
1 .2. 

Since 

i8 i8 

= la.1+c'+5e 2+i{c-S1+2e 1)1

\re have 

and therefore by (A) 

.:!i (since ii, is convex) constant e 

max �(-2(c±3), -2(c'±6))
± • 

Now consider the last integral in (1). By the above reasoning 
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c+l -c'+l max �(-2(c±3),-2(c'±6)) 

(3) I. J lh(al+ic, al+ic') 1
2
aaldJ,3l < 1

:� e ± • 

c-1 -c'-1 

It follows from (2) and (3) that 

.: 



(IO (IO 

(4) } f 'lh(a 1+ic; B1+ic 1
) 1

2
da

1
as

1 
-e:o -co 

< H·l[eljl(-2c,-2c 1
) + et/l(-2c+6,-2c'+l2) + ei/l(-2c-6,-2c'+l2) 

+ e t/l(-2c+6,-2c'-l2) + $(-2c-6,-2c'-l2) 
e . ·] • 

Since~ is a convex fw;:lction, we have for O <A< l 

. (5) 
2 2c 1 • 6 12 

ljl(-2c±6, -2c'±l2) !: Al/I(- AC;' - 7:") + {l-A)l/1(± l-A' ± l-')..) • 

We note that ,v(± l~A, ± i~A) is finite for O < >. < l. Moreover, since 

every exponential belongs to s, 

(6) l/J{-2c, -2c 1 ) < 1/1(- fc, - fc') • 

Combining {5) and (6) we have from (4) 

(IO "" 

(7) f f jh(a 1+ic, s1+ic 1
) l2aa 1as1 

This completes the proof of Lemma 2. 

40 



Lemma 3; c(x,y) = i dh(x,y) 
dz ' 

Proof: By definition 

"" "" co "" 

(1) J I dh ( ) iax+iSydxd dz x,y e y = • dhl iax+iSy "'··d i-,e uz.y. dy 
.... co -co -co . -co 

We integrate (1) by parts letting "u" = eiax+iBy, "dv" =:. we show 

that the boundary terms vanish. "uv" = e iax+i/3y h (xy) . By Fubini I s . 

Theorem we need only show 

"" c:o 

(2) f f le iax+ iSy h (x, y),dxdy. < c:o • 

-co -co 

By Lemma 1 and Lemma 2, for;$ A< 1, ff !h(x,y) 12 et(Ax,Ay)dxdy <co. 

Since exponentials are in the space S 

We theref-ore have by the Schwartz inequality 

h(x,y) e 

1 

qi (AX,Ay) 
2 

laxdy 

< cf f 1e2iax+2i8yl e-</>(Ar.,A1)dxdy]2 cJJ,h(x,y) 12 eq,(Ax,Ay)dxdyJ <"". 

Hence 

-i(a-i8) JI h(x,y)iax+iSydxdy = -i(a-iS)h(~,8) = -i~(a,tH 

41 



and 

c(x,y) = i: (x,y) 

Lemma 4: Let g(z) be any function ins. Then for>..,;~>..< l., 

ff b(z)g(>..z)e-4>(x,y)dxdy =.O. 

Proof: ~Y Lemma 4, 

42 

(1) f I b(z)g(>..z)-4>(x,y)dxdy = JI c(x,y)g(>..z)dxdy = i If (
1h} g (>..z) dxdy 
dz 

We integrate (1) by parts letting 11u 11 = g (Az), 11dv" 
dh 

= - • dz 
It is easy 

to _se~ that "u v" = g(>..z)h(x,y) vanishes on the boundary. For, as in 

Lemma 3, we need only_show 

(3) 

4>(>-x,>..y) -~(>..x,>..y) 

f[\h(x,y)~(>..z))dxdy = f I\h(x,y) e 
2 

g(>..z)C 
2 

Jaxdy • 

Applying the Schwartz inequality to the left hand side of (3) we have 

l . l 

$ cf I lh(x,y) 12 eq>(>..x,">..y)dxdy]2 cff jg(>..z)l 2 e-ct,(>..x,>..y)dxdyJ2 . 

As shown in Lemma 2, J JI h(x, y) I 2 eel> (>..x,>..y) dxdy < 00 • Letting >..z = z • 
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< Q) 
, 

because g(z) is in S.

boundary terms vanish. 

fore 

We have sho..m that (2) is true and therefore the

.Moreover, since g is analytic, � = o and there­
dz 

• f J b(z)g(Az) e-q>(x,y)dxdy =-if f h(x,y) dg 
(A.z) dxdy = 0

dz 

Lemma 5: 
. 1 

Let 
2 

�A< 1. Let G = the set of functions f(Az) such that

f (z) belongs to S. Then G is weakly dense in s. In particular_, f (Az) 

converges weakly to f(z) as A➔�. 

Proof: As shown in the proof of Theorem 1.3 since, for any f(z), f(A.z) 

converges to f(z) pointwise, it suffices to show that f{Az) is bounded

in n�rm in s, i.e., {If (Az)/1 < M II f (z)II where M is independent of A.. Let 

AZ= z•. Since q>(z) is an increasing function of lzl on every half ray, 

q>(� , f> > q>(x,y) and therefore 

dxcy' 

Theorem 1.4 is now obvious. Let g(z) = b(z) in _Lemma 4. • By Lemma 5

ljb(z)Jl
2 

= lim f b(z)b{>..z) e-ct,(x,y}dxdy = 0 
>..➔l 

•

Therefore b(z) _ o. This completes the proof of Theorem 1.4. 
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Corol"lary: POlynomials are dense in the space s as defined in Th<?orem 1.4. 

Proof: we prove that the exponentials can be approximated by polynomials. 

Since the exponentials are complete in S this gives the desired result. 

az az In particular, we show that the Taylor expansion of e converges toe 

in norrn·for all a, a complex. 

,Therefore 

~ (az) n 
k=O nl 

0 

1 
n 

(az)nl 1 I I (l) I az I e - =-
k=O nl nl 

0 

l 

!.-. J lazln+l Re aztdt = ~ e nl 
0 

< jazln+l 
1 1 

I 2Re aztdt]2 [ e n! 
0 

!azjn+l 
l 

< [l + je2az·ll2. 
nl 

Furthermore 

(2) 

( ( l J , page 76) • 

(az) n+l eazt(l-t)ndt/ 

jazln+l 
l 

I t Re azdt e nl 
0 

jaz!n+l 2Re az l 
e - 1]2 = [ 2Re nl az 

.. 

One verifies (2) quite easily. jazl < !Re azl + !Im azl < 2max(!Re azj,jnn azj). 
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When -max(IRe·azl, jrm azj) = jRe azl 

jaz!n+l (2Re az)n+l (2Re n 
4Re I e 4azl .s (2Re az) az) az = < e = n! n! n! 

(Re az > 0) 

!az!n+l (-2Re 
• )n+l n az 

(-2Re az) (-2Re az) 
~ = < e n! n! • n! 

. Similarly, when max Cj Re az I , I Im az j> = J Im az I 

lazln+l I -4iazl n 
1 

< e , ( Im az > 0) 

lazl
n+l 

~--'--- < le 4iaz I 
n! , (Im az < 0) • 

Combining (1) and (2) we have 

I az 
le -

n 
l 

k=O 

n (az) 
n! 

-4Re az je-4azj = 

(Re az > O) 

• 

Since by assumption every exponential is ins, J g(z)e-$(z)dxdy < ~, 

and therefore by the Lebesgue dominated converge~ce theorem 

n 
lim fleaz - l 

t\ -+ co k=O 

n (az) 
n! II = 0 • 

s 

; 



_, 

46 

We now· ·give an example of a Hilbert space S to which all the 

exponentials belong and yet in which the exponentials �re not complete. 

We divide the complex plane into four regions. As usual z = x + iy. We 

let 

� 
= ! z l l z l > 3 1 X > 0 

I 

R
2 

= {zl l z l > 3 1 X > 0 1

R3 
= {zl lzl � 3}

R
4 

.= C - '1\ U R2 UR3) •

We let dm(z} = k(x,y)dxdy where 

k(x,y) = 

2 
-2x 12e X

2
-(x+y} ( )

12
e x+y 

l 

·Jxyj < l}

y > Q I 
I 2 21· X -y < 2}

As above we lets be the space of entire functions f(z) such that 

< co 
. 

sis easily seen to be a Hilbert space 

d l l I le
az

l
2 

dm(z) an c ear y < m for all complex

tial belongs to s. We first define the space 

a, i.e.,_ every exponen-



<. 

Si•= the set of entire functions f(z) such that

fl f (z>ll!
1 

= J d f (x>l
2 

+ If (�x) l
2

lml'J. (x) < .. ,

2 -2x lle x· 
where am

1
(x) = ---

8 
dx

-x1-e

and 

47 

az It is clear that e e: s1 for all complex numbers a. The inner product 

of two functions g, � in s1 is, as usual, defined as 

( f, g} = J [ f (x) g (x) + f ( tx) g ( tx) l dm1 be) 

0 

s1 is then a pre-Hilbert space. We will show that the exponentials are
, . 

not· complete in s
1 

by exhibiting a function F(z) 1, O such that 

(if F(z) belongs to s
1 

and 

(ii) F(z) is orthogonal to every exponential.

Let F(z) 

(i) F(z) belongs to s1: 

2 1 
8) 2 

2x l .. -e -x e 16 

-2x
2 

lle x· 
--�8-.dx 
1-e 

-x



and therefor-e F (z) e s
1

. 

(ii) (eTz, F(z))
5 

= O: 
1 

We wish to show 

• 0:, 

(1) J 
Tx 

(e 
TE;x-

F (x) + e F ( tx) ) dm 
1 

(x) = 0 for all complex ,: , 

0 

"' 

(2) f T:x: -(1-i)x 2 3 i:E;x 
e e x + e -(l+i)x

2 
3dx O 

e X = • 
0 

Now g (z) 
,:z -(l-i)z 2 3 = e e z is analytic and therefore since 

1T -
r J4 • e 

lim Rjg(R~
1 

> !ae = 0 
R-><><> 

0 

,» co 

I g (x) dx = ~ f g (E;x) dx . 
0 0 

i.e., 

Hence (2} holds. Therefore <ei:z, F(z))
5 

= 0 for all,: complex, so the 
1 

.48 

exponentials are not complete in s
1

• As in our previous example (page 28) 

we will now show 

(iii) F{z) is in S 

and that for any f (z) in S· 

(iv> llf<z>lls < constant nfcz>lls • 
1 

And again, as in our previous e.'Cample, (iv) implies that, in particular, 

. I 
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F(z) cannot·be approximated by linear combinations of exponentials ins. 

(iii) F(z) is in S:

c,o 

J •. 
1 

similarly letting z = �n, n = t � iw, 

f � f 
t

l

l 
e2 (t

2
-w

2
)-4tw e-2t

2

tl2dt <

2 - t 111r 16
KI L

t s 

2 

Obviously f IF(z) 1
2

am(z) < 
c,o and therefore F(z) is ins.

Proof of (iv) : 

Given f(z) entire we show 

c,o 2 

It cu> 1
2 -'2U 11 

(A) 
e u d < H [ 8 u 

1-e -u 
0 

and similarly 

a, 2 

It c,u, I 
2 

-2u 11 
(B) 

e u d < M [8 u 
-u 

0 1-e

Since f(z) is ent ire 

21r 

I 
lz/=4 

jf(z) /
2

cL'Cdy + f jf(z) j
2

dm(z}]

J 
/z/=4 

R
l 

jf(z} /
2
dxdy + f jf(z) /

2
dm(z}] 

. . � 

(1) f(u) = 2!i f 
iO 

f(u + re )d0
. 1 

(0 < r S.. 2u}

and hence 

•
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(2) If <u> 12 < 4u2 J2TT 

- TT 

l 

J2u i8 2 
If (u + re ) I rdrd e . 

0 0 

2 

Multiplying both sides of (2) by 
:-2.u 11 e u 

8 -u 
1-e 

and integrating from u = 3 to 

u = oo, we have 

(3) 

l 

f 
o, 2 2 2 11 oo 2TT 2 

. I f ( u) I e - 8 u u du ~ ; J J J2u ..:.l-ef_,_(u_+_r_e_i_O-::~:--l_2"""u_13_e_-_2_u_ rdrd8du 

• -u -u 
3 1-e 3 o o 1-e 

< _4_e_ foo. f2TT f ;u 
TT (e-1) 

3 0 6 

We make the following change of variables in the last integral of (3). 

we then have 

(4) 

Since 

U + r COS 8 = X 

r sine= y 

U = V • 

l l 
f/0 

4e 
du< --­TT(e-1) f dx 

l 
3- -

6 

2(x-l) 

f lfCx+iy) l
2

dy 
l 

x+ 2(x-l) 

f 
-2v

2 
13 · 

e v dv. 
l 

X - -2-(X---1-.) 

1 v < x + -,-,:--:- < x+l < 2x 2(x-l) , 



and 

we have 

co 2 

2 1 2 2 
-x < -(x - 2 (x-l)) < -x +2 

~ < 2 when x > 2 
x-1 

1 

co 2(x-l) 2 13 
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( 5) J ..;..I _f __ (u __ > __ l_2_e -_28_u_u_1_1 du < 215 e 5 
Tr(e-1) 

3 · 1-e-u 
J I . 12 -2x X f(x+iy) e x-l dydx 

1 

OQ 

216e5 
<---

n (e-1) 

2 (x-1) 

1 
2(x-l) 

2 f 
1 

lf(x+iy) l
2
e-

2
x x

12
dydx 

2 (x-1) 

ff lf(x+iy) l2
dydx] 

Rl 

(6) < constant [JI /f(x+iy) l 2
dydx +ff jf(x+iy) j

2
dydx] 

lz 1=4 R1 

ll-2u
2 

For O !S u .=: 3, we have O < u e 
8 

< constant and therefore; 

(7) 

-u (1-e ) 

3 2 3 

J 
ll-2u 

.1 f (u) I 2 u e 8 du< constant J jf(u)J
2
du 

0 o 1-e 
-u 

< constant 

3 1 21T 

f I f 
0 0 0 

• a 2 I 2 jf(u+rc
1 

>I rdrd8du < constant /f(z)j dxdy. 

lzl~4 

Combining (6) and (7} we have (A). 

'· 



In exactly the same manner we have, letting n = t + iw, 

(8) 

+ I J 
1111~3 
jtwl~l 
t>o 

. 1Ti 

1Ti 

jf(e~ 

du< M I J Jf(Sn)) J
2
atdw 

I 11 I ~4 

4 •• Letting z = e n we have from (8) 

co 

l 
ll-2u 

2 

(9) 1£C~u) 12 u _e 8 du 

1-e 
-u 

0 

< M 

2 
-(x+y} ( )12 

lf(z) 12 e x+y dxdyJ 
26 

which is (B). 

Moreover, for 3 ~ lzl ~ 4, dm(z) > M
1 

> o. Therefore from (A) and (B) 

we have 

52 

,. 

, 
r 
r 
I 
i ,. 
·, 
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(1) If lf(z) l
2
~dy ~ ! f if(z) 1

2
M1dxdy + f lf(z) j

2
dm(z)] 

lzl~3. l 3~Jzl~4 _· 1½_UR2 

< 2M cf I f(z) l
2

am(z) 

~ 

. . 2 
< constant II f (z) ll . s 

This completes the proof of (iv), and therefore the exponentials are not 

complete in S. 

Remark:· It easily follows that polynomials are not dei1se in s. 

Theorem 1.4 can be generalized to the space of entire functions in 

< co -.• The proof is essentially that of B. A. Taylor [12). 

We have managed to simplify it somewhat. 

Theorem 1.5: Let 4>(xy) = 4>(z) be a ·positive c.9,nvex func_ti_oµ of z,.~(o)::o. Let 

sP, l ~ p < co, be the space of entire functions f(z) such that 

Let S 
00 

be the space of en tire functions such that· f (z) e -ip (z) -+- 0 

lzl ~ co. As customary we define 

l 
) •. 
!l ; 

' I 



where the sup is taken over the complex plane. Assu.-ne that every 

exponential belongs to the space sP, l � p < 00• Then polynomials are 

dense in sf!, l � p < co. 

Proof: 

Lemma 1: Let f(z) belong to sP. Then the sequence {f
A
(z)} = {f(Az)},

l. 
2 

�A< 1, converges in norm to f(z) as A+ 1. 
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• Proof: {a) Let l � p < co. We use_ the fact that if a sequence {f } + f
n 

pointwise, and if II f j J + JI f 11 then in fact \If - f II + 0 {see l 4] ,
n sf? SP . n SP 

page 209). f{Az) obviously converges to f(z) pointwise as A ➔ 1. Moreover,

For fixed z, <f, (�) decreases monotonically to qi (z) as A -+ 1. Therefore 

-� {z) increases monotonically to -qi (z) and by the theorem of Beppo Levi,
A 

I 

i.e.,

{b) Let p = co. If f(z) is ins, by definition f(z)e-qi(z)-+ 0 as lz l

i.e., given e: > o, there exists N such that for .I zl > N

Let lzl > 2N. Then jAzJ > N and 



II £(>.z) • - f(z)JI 
00 

= sup{ I f(Az) 
s 
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= max ( sup {ff(Az) - f(z)le-4>(z>}, sup {!f(,\z) -· f(z>I E:
-9(z)}).

lzl�2N lzl>2N 

For lzl > 2N we have, since -4>(z) < -cf>(Az), 

f(z) le -ct>(z) 
<

e: e: <-+-=e:.
2 2 

On the other hand, since f(z) is uniformly continuous on lzl < 2N, 

for A> >. 1
, jf(Az) - f(z) I<: where·M = sup 

lzl $2N 

Hence lim 11£(,\z) - f(z){I = o. 
00 

>-�1 
• 

S

Lemma 2: 
. 

1
• 

Let 
2 

� k < k ' < k 11 < 1 • ·Then

(a) 

(b) 

. , 
sup 4> (kz + u) < 4> (k 'z) + constant, 

lul$1 

there exists M such that for I zl > M 

4> (k"z) - /fl (k 'z) > (k11 

- k') I z I

Proof: (a) Since cf>(z) is convex 

Hence, 

cf>(kz + u) 

k' 
sup cf>(kz + u) < 4>(k'z) + sup $(k'-k u )  

lul�1 lu/�1 

4> (z) •

< 4>(k'z) + constant. 

(b) Let z = t,, t > 0, j,j = 1. Define h(t) = 4>(t�) = ct>(z). For fixed (

h(t) is obviously a convex function of the r�al variable t. From the

t 

,. 

t 
7 



definition of 

h(t) > h(t )+
- 0 

convexity, 

L (t-t )t 0 
0 

it can be 

where 
Lt

0 
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easily verified that 

h(t ) h(t) 
= sup 0 L

t 
ist - t . a non-

t<t 

decreasing function of t since for t < t < t we have t = a.t + (1-a) t10 1 0 

and by convexity h(t
0

) < ah(t) + (1-a)h(t1). Therefore

= sup 
't<t 

0

< sup 
t<t 

l

h(t } -
0 

h(t) h(t ) 
0 

h(t) 

t 
0 

t < sup 
t<t l

t
0 

- t

(a-l)h(t) + (l-a)h(t1)

t t 
0 

= sup 
t<t1

(1-a) [h(t
1) - h(t)]

t - t 

Moreover, since every exponential· belongs to the space sP, 

lim $ (ti;) = lim h (t) = o:, and hence l. L . t llO t 
t+oo I tt I t-� t-+o:> 

In particular, there 

exists t' such that for t > t' 

h(k"t) 
(k" 

t, I� I ( �)For every = 1, let t 
O· 

- h(k't)
k I) t

= min{t} 
t 

> 1 •

. h (k"t) - h (k 't) 
such that . {k" _ k')t 

.> ·1.

We will show that the fw1ction t (E;) is bounded from above. This will 
0 

give the. desired result, for suppose t (�) < M •. Then for all , , I.; I = 1, 
0 

t � M implies 

h(k"t�) - h(k't() 
----�.;.___________ > l . 

(k" - k')t 

Since· I z I = jtt;I = t, we will then ha.ye for lzl

<j)(k"z) - ¢(k'z) 
(k" -.k')l�I

> l •

> M
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We will show that t
0

U;) is upper semi-continuous. Since {tllr;I = l} is 

compact, this will imply that t
0

(F;) is bounded from above. Fix t
0

, and 

let E > O be given. 

t1 > t Ct )" we have
0 0 

Choose t
1 

such that t (t) < t < t Ct)+ E. Since
o o l o o 

cj>(k"t t ) <l>(k'·t F; )
lo lo 

__ _.,;;;'"""(,.;..k_" __ k_' _) t_l __ 
;;;;...-___ > l + 6, 6. > 0

�(z) is convex in z, hence continuous.· Therefore one can find o' such that 

cj>(k"t F;) - t(k't t) 
--�l _____ l;;;;;.__ > l + o

(k"-k')t1 2 
when· j E; 

Hence for It - t I < 6',· t (F;) < t1 < t (t) + E, i.e., t (t;) is upper
0 0 - 0 0 0 

semi-continuous. This completes the proof o� Lemma 2. 

We now prove the assertion of the theorem. By Lemma 1, it suffices 

to show that given f (z) in sP_, f (),z) , .!. < A < l, can be approximated by
2 -

polynomials in sP . 

(a) Let 1 � p < co. Let ). ba fixed. Choose constants a, b, c such that

A < a < b < c < l. Let H = the space of entire frmctions g(z) such that

00 00 

I I 
-00--<lO 

2 
-- <P (bz) 

jg(z) 1
2 

e p dxdy < 00• We first show that f(Az) belongs to H. 

By 'J.'heorem l. 4 f ( ).z) can then be approximated· by polynomials in H. We 

then show that the same sequence of polynomials which approximates f(>..z) 

in H, approximates f().z). in sP . 

(1) f().z)

l 2n

=¼I -I 
0 0 

i8 f(>..z + re )rdrd8

I I 
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hence 

(2) If (AZ) I 
0 0 

l 2tr 

:= ! I I 
0 0 

l. 
- sup 4>().z+u) 
P lul~l < e . I

· _!_ 4>0,z+u) 
; • j f O,z + u) I e p • dAu • 

I uj_sl 

. . 
Applying Holder's -inequality·to this last integral and then extending the 

domain of integration to the entire .plane, we have from (2) 

(3) 

l. sup q,(Az+u) 

~ K ep / u / :£l I/ f (z) 11 . 
. sP 

Using the estimate from (3) and Lemma 2, we have 

(5) 

2 JI f (Az)II 
H 

0) 0) 2 

I I 
--~(bz) 

= • lf(Az)l
2 

e p dAz 

-co -co .. 

2 
-- ~(bz} 

e p dA· 

f [ 2 
[¢(bz)-$(az)] 

I z i ~i'1 e p dA z + 

z 

2 

f { 
-- [ 1' (bz) -<I> (az)] 

e P dr'\ 
z jz >M 

) 

• • I 
I 

.­
( 

I 
! 
r 

;_ 
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The first integral of (5) is finite by the M. L. formula. on _the other 

hand by Lemma 2, M can be • chosen such that for I z I > M 

Hence 

<I> (bz) - <p (az) > (b-z) I z I .

[(j) (bz)-ip (az)] 
dA < 

z 
• I J 
lz/ >M

2 (b-a) lzJ
e p dA < ()0 • 

We have shown that given f(z) in sP , l :s p < <l'l1 f(;\z) '. 
; s, A < l is in

. ' 

the space H. Let .p (z) be t.l:le sequence of polynomials w�1ich converges
� 

to f(Az) in H. These polynomials ·also converge to f(Az) in sP. For as 

above 

hence 

f(AZ) - P (z)
n 

0 0 

i0 i0 f (A (z + re )) - P (z + re ) rdrd8 ,
n 

(2) I f(AZ) - P •• (z) /
- n

l 21r

� !. I f lf(A(z+re
i0)}

• 1 i0 l iO .0 
- - �(b(z+re )) - <j>(b(z+re )

P n (z+rc/· )j e p • ep rdrd0 

l 

0 0 

sup cp (bz+u) l 2n • 

< e p I u I :$1 ! J J I f ( J.. ( z+re
i 

0) )

O 0 

l . i0 
.0 - - ip(b(z+re )) 

P (z+re1 ) le P rdrd0. n 

Applying the Schwartz inequality tb this last integral and then extending 

domain of integration to the entire plane we have from (2) 

l. 

, I 
I 

i. 
_i 

·-

-
/ __ .,.__ 



'i 

(3) I£ (AZ)

l
sup cf>{bz+u)

Pn(z) I < K e
p 

lul�l
llf{Az) - P (z>ll • n H 

Using this ·estimate and Lemma 2 we have 

II f (AZ) - P (z)II p < K111 f (AZ) - P (z>llp f e 9 (cz
) 

-$ 
(z)

n sP n H • . dA
Z 

But lirn II f (Az) • - P (z>ll = 0 and therefore lirn II f (Az) - P (z)}I = O. n H n ~P 
n-kX> n->o:> s-

The proof for p = 00 is e·ssentially 1;:he saroe. As above, let A be fixed. 

We choose constants a, b, c such that A·< a <  b < c < 1. Let H = the
00 00 
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space of entire functions g(z) such that f J jg{z) j 2e-2cj>(bz)dxdy < 00• We have

{1) lf(Az> I < ! I - 'Ir 

lul�l 

If (AZ ) I -cf>(AZ+u) ¢ (Az+u)
dA + u e e u 

sup �(AZ+u) sup cj>(AZ+u) 

� elul < l sup jf(>.z + u) le-¢(>.z+u) < /1£(z) IJ 00 ·e lul :Sl

ju I �l s • -

Using this estimate and Lem.ma 2, we have 

- constant [II e-2[¢(bz)-4daz)JdA
z 

+ I I. e-2(b-a} Jz.l dA
z

] < co

I z I �M • I z J > M

Hence f (,\z) belongs to· H. By Theorem 1.4, f (.Xz) can be approxi..-nated by 

• 

;.i 

I. 

;7, 

t ,•

,,' ' 
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polynomials in H. Let {p n (z)} be the sequence of polynomials which
co 

Then {p (z)} converges to f(Az) ins as well. n 
approximate f(Az) in H. 

For as above we have the estimate 

sup .$(bz+u) 

P (z) I < K e l_ul:£l
Jjf(>..z) - P (z)J( n n H

and therefore by Lemma 2 

\lf(Az) - P (z) II = sup !f(A z) - P (z) le-<j,( z)
n co n s 

< K
1

ljf(>..z) - P-(z)Jj sup e-[4>(z)-<j,
(cz)] <K )lf(>.z) - P (z)lj 

n H . . 2 n H'

and as before since lim llf(Az) 
n� 

Pn (z)\/H = O, we have lim II f(>. z)

We have shown that given f(z) in sP , l < p !S colf(>.z), � .S >. < 1, 

can be approximated by polynomials in sP . As remarked above, since by 

Lemma 1, f(Az) converges to f(z) in sP as>.+ 1, this completes the 

proof of Theorem 1.5. 

Remark: 'l'heorem 1.4 was recently proven by B. A. Taylor in {9] with 

slightly different conditions on cj,(z), e.g., he do.es not assume evary 

exponential belongs to the spaces. Tne theorem is given there· for the 

much more general n-variable case. Our proof, discovered independently, 

is simpler and more direct for the single-variable situation, but 

unfortunately it does not generalize. 

 
• 

I  
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2. On the Existence of Solutions to the Equation P(D)P(Z)f(Z) - o 

For convenience we begin this chapter by restating notation pre­

viously introduced. we let Z = (z
1

, ... zk) be a point in Euclidean 

K-space. N = the K-tuple (n
1

, ••• nk) of non-negative integers. We write 

ZN 
nr n2 nk 

= zl z2 , ... zk 

and 
k 

INI = l n. . 
i=l 

l. 

P(Z) - P(z 1 , ... zk) will always denote a polynomial l aNzN (O ,:s !NI .:SR.) 
. N . . 

and P(Z) the polynomial obtained from P(Z) by replacing each coefficient 

. by its complex conjugate. - - a 
By P(D) = P(-c) - , 

zl 

a a -a- , ... -a-> we shall mean 
z2 zk 

a 
the differential operator obtained. from P (Z) by replacing each z. by -. 

l. c)z. 

We recall some basic facts about the Fischer space j- Z of entire func-

tions mentioned in our introduction. 

"i - the Hilbert space of entire fWlctions f(z) such that Jz -

As usual, the inner product of two functions f, h in ::l-z is defined by 

We let 

<f,h) = lK I 
1T 

f(Z)g(Z)e-lzl
2
aA 

z 

l. 
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It is clear that K C "3-Z and tha~ i; 1>(Z) is in K then every exponential 

times c/>(Z) is also in "'::I. J z· It can. easily be verified that the operators 

- a a 
"multiplication by P" and P(D) = P[9a, ••• al are fonnally adjoint. 

zl zk 

Thus, given P(Z) and functions c/>(Z), h(Z) such that c/>(Z) is in K, h(Z) 

is in J~ and P (D) h (Z) is in :I- , then 
z z 

(l) c(P(Z)c/>(Z), h(Z)) = ($(Z), P(D)h(Z)) 

t.. 
J 
'£ 
\ 
( 

' :~ 
✓ 

.•,· 

:: 
. ,~· 

D. J. Newman and H. s. Shapiro have shown [7] that in fact these operators i 

are truly adjoint, i.e., if P(Z)F( 4 ) G '3-z and h(Z) G '3-z, F(Z) entire, 

then 

(2) <P(Z)F(Z), h(Z)) = (F(Z), P(D)h(Z)). 

It is clear that (2) implies that there is no non-trivial solution within 

-the Fischer space to P(D)g(Z) = 0 where g(Z) = P(Z)f(Z), f(Z) entire. 

For from (2) we have 

IIP(Z)f(Z)J/
2 

= (P(Z)f(Z),P(Z)f(Z)) 
3z 

= (£CZ) ,P(D)P(Z) f(z>> = <f.CZ), o) = o . 

Hence • /jg(z)ll = 0 and g(Z) = O. 

We now ask whether there are any non-trivial entire solutions to 

P(D)P(Z)f(Z) = 0, 

t : 
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where we no longer require that P (Z).f (Z) belong to :J-. For K = 1 the . z 
result is kno,.,m. For the sake of completeness we include the proof. 

Theorem 2.1: Let K = 1, and assume that f(Z) is entire. Then 

P(D)P(Z)f(Z) = 0 implies f = O. 

Proof:· Let P(z) 
N k 

= l bkz, bN = 1. 
k=O 

Let g(z) = P(z)f(z). By definition 

P(D)g(z) = 0 implies that g(z) is an entire solution to the ordinary 

differential equation 

(1) 

We show that an entire solution to such an equation can grow at most 

exponentially. We let 

A = the N x N matrix (a .. ) where 
l.J 

0 when j ;I- i + l 
for 1 :;.. i < N, l ~ j ~ N, a . . = 

l.J l when j = i + 1 

_ and for . l ~ j ~ N, a_J .. = :..b 
N . j-1 

I: 

I! 



.... 

(1) can then be expressed as 

(2) dY = AY 
dz 

• where multiplication is ordinary matrix multiplication. One further 

defines 
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It is clear that llayll = IIAII IIYII and since A is a constant matrix we have 
dz 

(3) 

• ·e dy. ·dy. . e 
. l. l. J.l. 

Letting z = re , dr = dz e and \I dY II = • II ?Y 1\ · 
dr dz 

Since 

f !r II Ylf J .S 11:.H (s~e [2], pg. 18) we have from (3) 

(4) 

Let z 
O 

be any point for which g (z) = y O '/ o. Then 

(5) 

jzj. ,~IIYII/ • jzl . 
~ f · dr dr < M J dr = M ( I z / - I z O I ) 

Jz I llylJ /z ) • 
0 . 0 . 

~ . 
• ~­

}. 

;i 
-~ 

I . 



Hence ]l Y (z) II < constant /1 / z I , so i:1. particular, I
_
Y O I

< constant eM I z I . • It then follows that g ,z) is in � 
z

g(z) = P(z)f(z), g(z) = O. 

We generalize the above theorem •. 

= jg <z) I < 

and since 

Theorem 2.2: Let k = 1, assu.me that f(z) is entire. Then 

n 
l P. (D).P. (z)f(z) = 0 implies f (z) = o.

i=l • 1 1 

Proof: As above we show that jf(z) I < constant eMjz /
. T"nis implies

that f(z) e K, and P.(z)f(z) e 'j- . Therefore, 
.a. z 

n 

i=l 
<P. {z)f(z),P. (z)f(z)) = 

J. l. 

n 

n 
l 

i=l 

= <f(z) l P. {D)P. (z)f(z)) = 0 • 
' ·

1 
J. l. 

i= 

(f(z)P. (D),P. (z)f(z>> 
l. l. 

Hence l f IP. f I\ = 0 and f - 0. 
i=l 1 � 

Let N. be the degree of P. (z), 
l. l. 

l � i � N, and suppose that N = N > N. for i < n. Assuu1e
n i 

n 
(1) l

i=l
P. (D)P. (z)f(z) =

J. l. 

0 • 

.. k Consider any tenn bk;D (Pi(z)f(z)). By Leibnitz I s rule we have 
l. 

• (k) , fK-1) fk} 
= bk. [Pi (z)f'"(z) +_ kP

i.
(z)f" (Z) + ••• + 1\ (z)f(z)J •

• • • 1 • th th d • • f f ( )Since N > N., i < n, the only tarm invo vi�g- e N erivative o z 
l. 
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, fN-J) 
NP (z)f' (z) + ... + N! f(z)J • n. . 

Thus 

n 
(2) l P. (D)P. (z)f(z) 

• i=l l. l. . 

N-1 
+ A 

1
(z)f (z) + ••. + A f(z) = O, 

N- o 

where A , O :: p !S N-1 is a polynomial of degree at most p. Choose R 
p 

such that for lzl > R, P (z) :/ O. 
n 

.For such z, we have 
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AP (z) 
where Bp(z) = 

b P (z) 
N n 

and jBP(z) I is bounded. Hence for J z I > R we have 

(3) 

dY • 
Recalling the notation from Theorem 2.1, (3) may be written as - = AY 

dz 

where A now is the matrix . (a .. ) such that • for 1 < i . < N, 1 ::'. j _< N, 
l.J -

• 0 when j :/ i + l 
a .. = 

: ·J.] 
1 when j = i + 1 

and for 1 $ j ~ N, a . = -B. 
1

(z). 
• NJ . J-

Thus for 

l~I > R, HAIi=}: jaij/ <Mand exactly as in the proof of Theore."ll 2.1, 

I~ II Y 11/ < fl dY If = II dY II 
dr dr dz ' 

i0 
(z = re ) , 

and 

II 
j 
r-

f 



-
" 

N-1 
r 

i=0 

N-1 r I gi <z> I .< 
i=Q 

constant eM I z I for I zl > R. • 

Thus in particular, IY
0

l = jg(z) I < constant eMlzl for l:z,I > R. For 

lzl ~ R, lg(z) I is obviously bounded because of continuity .. 
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Note: It should be clear that the assumption N > n., i < n, was unnecessary. 
. n i 

Its only purpose was to simplify_our notation. 

We now consider in more general terms the statement 

(A) P(D)P(Z)g(Z) = 0 ~ g(Z): 0 

where P (Z) is again any polynomial. We have Shown that for k = 1, (A) 

' is true if we ask that g (Z) be entire. One might ask whether (A) is still 

true if we ask 01.ly that P(Z)g(Z) be entire.' Clearly this is false. Let 

k = 1, P(z) = 1 - z, g(z) 
z 

e 
= """1---z- • 

z ... 
P(z)g(z) = e and P(D}P(z)g(z) = o. 

We now ask ,-,hether (A) is true when P (z) is any formal power series. As 

seen by the above example, this ·is clearly false. In that case the power 

series g(z) has in fact a positive radius of convergence. We show, however, 

that for a certain class of polynomials (A) is true f(?r any formal power 

series g(Z). This, of course, implies that for polynomials in this class 

no non-trivial entire solution g(Z) exists which satisfies P(D)P(Z)g(Z) = o. 
N. 

Theorem 2.3: Let P(Z) = 'b.Z J, N. = (n.
1

, ... 
. l J J J . 

positive constants a
1

, ak, M, such that 

Then if g(Z) is any formal powar series 

P(D)P(Z)g(Z) = 0 =9g(Z) - 0. 

i=l 

Suppose there are 

a.n .. = M for all j. 
l. Jl. 

i· 

t. 
I. 
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()0 

Proof: g(Z) may be written as. l Q (Z) where Q (Z) 
m=O ·m ln . 

L.·, k 

is the sum of 

monomials l diZ 
1 

, Li'= (t 1 , ••• tk), such that I a.t. 
l. l. 

= m. consider 
i=l L.,+N. , 

any monomial, constant z 1. J of P(Z)Qm(Z). 
L. ,+N. 

Either P(p)Z 1. J = 0 

L. ,+N. 
or P(D)Z 1 J = l 

j I 

k 

L. ,+N .-N. I 

C .,[ Z 1. J J ) • 
J. 

k 
Since L 

i=l 
a.Ct.+ n .. - n.,.) 

l. l. Jl. J l. 

= L ait"i = m, there can be no cancellation of terms between P (Z)P(Z)_~ (Z) 
i=l 

and P(D)P(Z)Q , (Z), m =Im'. Now let n be arbitrary and assume 
,n 

n co 

P(D)P(Z)g(Z) = P(D)P(Z) l ~(Z) + P(D)P(Z) l Q (Z) = o. 
m=O m=n+l ,n 

Each of the above terms must vanish separately. Hence 

n 
P(D)P(Z) L ~(Z) = 0. 

m=O 

But since the a. are positive, 
l. 

n 

I 
m=O 

Q (Z) is a polynomial and therefore in 
'1Tl . 

n 
the Fischer space. Therefore, as in Theorem 2.1, l ~(Z) - o. Since n 

m=O 
was arbitrary, g(Z) = O. 

Remark: The above class of polynomials .clearly includes any·homogeneous 

polynomial. 
, k t 

In the case k = 2, the condition on P(z) = l z
1 

z
2

. 
k,t 

has 

a simple· geometric interpretation •. It sirnpl¥ means that the points 

(k,t) lie on a line of negative slope. Theorem 2.3 can easily be 

generalized. 

Theorem 2.4: 

Nr 

Let P (Z) =lb~ Z j and ass~~e there exist positive con-
r J 

k 
stants a

1
, ... ak, Mr such that l 

i=l 

a.n:'. • = .Mr for all j. 
l. Jl. 

Let g(Z) be 

r 



J 
I 

I 

any formal power series. Then 

Proof: 

1 
r=l 

P (D)P (Z)g(Z) - 0 implies g(Z} - o.r r 

The proof is almost identical to that of Theorem 2.3. We let 
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g(Z) = 
co L. I 

L O (Z) where Q (Z) is the· sum of monomials constant \' d. ,z 1 ,· -in  m l i  m=O 
k 

L� = (1
1

, ••• tk} such that 2 
i=l 

a. £ . = m. J. J. 
As above, we note that there ·can be

n 
no cancellation of terms between l P (D)P (Z)Q (Z)
. _ r=l r r - m 

m # m 1
• Let n 1 be arbitrary and assume

n 
1 

r=l 
P {D)P (Z)g(Z).

r r 

n n' n co 

. n 

and l P (D)P (Z)� 1
(Z), 

r=l � r 

= 2 p {D) p (Z) • l O (Z) + l p (D) p (Z) l � (Z) = 0 
r=l r r rn=O "'m r=l r r m=n'+l

Hence the above two terms must vanish separately, and, in particular, 

n n' 
2 P (D)P {Z) 2 �(Z) = o.

r=l r r m=O 
But since the a. are positive,

J. 

n' 
� �(Z) = Q(Z) is a polynomial and therefore in the Fischer space. We 

rn=O 

then have 

l <Pr
(Z)Q{Z),P

r
(Z)Q(Z)>

r=l 

n n 

= l <Q(Z),P (D)P {Z)Q(Z)) = (Q(Z), 2 Pr(D)Pr(Z)Q(Z)) 
_
;.. (Q(Z),O) = o. 

r=l r r r=l 

.TT 
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Hence IIPr(Z)Q(Z)II; = O, l :S. r ~ n,,and Q(Z) = o. Since n' was arbitrary 
z 

g(~) = O. This completes the proof of Theorem 2.4. 

We conjecture that _when P (Z) does not satisfy the condition of 

Theorem 2.3, then there always exists a non-trivial fonnal power series 

g(Z) satisfying P(D)P(Z)g(Z) = O. While for some individual cases this 

is ea·sy to see, we have not been. able to prove this in general. 

Finally we remark that given a specific polynomial one can sometimes 

show that no non-trivial entire function g(Z) exists which satisfies 

~(D)P(Z)g(Z) = O. 
2 -

For e>~arnple, let k = 2, P (Z) = z
1 

+ z
1 

+ z
2

. We use 

the shift rule 

Now suppose P(D)P(Z)g(Z) = 0 where g(Z) is entire, g(Z) 1 O. Let 

Then 

e 

P(D)P(Z)g(Z) 

and therefore 

0 • 

- ·----, .. ~ • _r 



Let 

Let 

l 
wl = zl +-

2 

l 
w2 = z2 - . 4 

2 
[ 

d . 
--+ 
dz2 

l 

d: ] (z: +· z
1 

+ z
2

)f(z
1

,z
2

) 

2 

f(w
1

,w
2

) I m n = C w w2 mn l m,n 

f(w
1 

l .!.) I C (w
1 

- !_)rn 
(w2 2' w2 + = 

4 m,n 2 
m,n 
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0 . 

l)n +-
4 

2 
We note that w

1 
_+ w

2 
= P 

1 
(w

1 
,w

2
) satisfies the condition of Theorem 2.3, 

and, as in the _pi.-oof of that theorem, it follows that 

i.e~., f (w
1 

,w
2

) cannot be expanded in ~ power series about the point 

l l 
<2, 

4
)~ Hence f(w

1
,w

2
) cannot be entire. Since 

e 

g (wl ,w2) 

1 1 
, g (w

1 
,w

2
) cannot be entire. Clearly this example 

2wl+4w2. 

is very special. It is conjectured that for any polynomial P {Z), if g (Z). 

is entire and satisfies P{D)P(Z)g(Z) = O, then g(Z) = O. 
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