ABSTRACT
WEIGHTED LA APPROXIMATION OF ENTIRE FUWNCTIONS AND RELATED TOPICS

by
Devora Kasachkoff Wohlgelernter

In Chapter 1, sufficient conditions for polynomials to be dense in
the space of entire functions of’Lz(dm) are examined, where dm is a posi-
tive, absolutely continuous measure defined on the complex plane., Let S
‘be the space of entire functions such that “f(z)“2 = ]“f(z) ‘zdm(z) < @,
Write dm(z) as K(z)dxdyz K(r,0)rdrdS. The main theorems.are: 1) Suppose
&n igf K(r,8) is asymptotic to £n sgp K(r,0) (together with other mild
restrictions). Then polynomials are dense in S. 2) let K(z) = e-¢(z)
where ¢(z) is a convex function of z such that etz belongé to S for all
complex t. Then the exponegtials aré complete in 5, (Corollargz Poly-
nomials are dense in S.) 1) is extended ﬁo the several~variable case.

2) was recently proven by B. A. Taylor for the many-variable situation.
Our proof does not extend beyond the case of one variable, but for this
it is simpler and more direct than Taylor's., Examples of‘spaces in which
polyuomials are not dense are also giveﬁ.

In the second chapter we discuss the existence of entire solutions

£(2) to the equation §(D)P(Z)f(z) = J (more generally, to

n .
z P.(D)P,.(2)£(2) = 0), where Z is the vector (z.,:.. 2 ), P(Z2) a poly-
{=1 i i . 1 k

nonial, and P(D) is the differential operator obtained from P(z). A

swimaary of knowm results is given. The main theorem is the following:

N.
Let P(2) = z ij 3 where Nj = (nj Fens nj ). Suppose there are positive
1 3



k ;
M such that )| a,n, =M for all j. Then the
=1 *3; -

only entire solution to §(D)P(Z)f(zl = 0 is the trivial one. In fact,

mnstmts 31,32' LR ak

we show that under these conditions no non-trivial formal power series

g(2) satisfies P(D)P(2)g(Z) = O.
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0. Introduction .

In this paper we study natural geheralizations of two questions

raised by D. J. Newman and .H. S. Shapiro in [7]. There they discuss the

2
(Fischer) space -32_[2 = (201250000 Z) |Z|2 = lzll2 + |22|2 + oes |zk| |

1

which is defined to be the space of entire functions £(2) in complex

2 1 2 -|z|?
Euclidean K-space (CK) normed by ||f(Z)” = —E'I |f(Z)l e dAZ. Here
m

integration is over all of CK and dAZ is the Lebesgue measure with respect

L2 _ g
2

to C .. If ¢(2) = Ole ] for all A > 0, clearly ¢(2) is in ‘}Z
and multiplication by ¢(2) is a well-defined operator on E}Z' its domain
being the set of functions £(2) in E}z for which ¢(2)£(2) is in :}Z'
For such ¢(2) they define the operator $(D) by

|2

da. for all £(Z) in 3—2 .

$(D)E(2Z) = 5-1-(-[ FEreeZt ot c
1: -

$(D) then represents a formal édjoint fo the operator "multiplication by
$(z)". If ¢(2) is a polynomial, let $(Z) denote the polynomial obtained
fxom $(2) by replacing each coefficient by its complex conjugate. It
tums out that for polynomial ¢, the formal adjoint $(D) is the differ-

ential operator obtained from E(Z) by replacing each Zi by a;_ . Given
- h§

¢(2) satisfying the above growth condition, the authors show that the
following two questions are equivalent.
l. Are polynomials dense in the Hilbert space of entire functions
|z)?
dAZ ?

2. Is the only solution in E}é to $(D)f(z) = 0 where £(2) = ¢(2)g(2),

with measure |¢(Z)l2 e

g(2) entire, the trivial one?



vii

T2
Moreover, they show that when ¢(2) = Z PT(Z)e ¢ L.e., when $(2) is
T

an exponential polynomial, the result is in the affirmative, i.e,, poly-

nomials are dense in the Hilbert space of entire functions with measure

-

2
-lzl dAz or equivalently, there is no non-~trivial solution £(2)

2
[¢(2) ] e
to $(D)£(Z) = O where £(2) € ‘SL'Z and £(2) = ¢$(2)9(2), g(2) entire.

Clearly both of the above questions have meaningful extensions

beyond the context of the Fischer space.

y :
1. Given a positive measure dm, one might ask when the analytic

; A : ; 2
polynonials are dense in the entire functions of L (dm). In Chapter 1,
we give some sufficient conditions on the measure dm which ensure that

they will be. - ' ) ? Vot

2. As we remarked above, when ¢ is a polynomial, $(DJf(z),

32-, g ...-del is meaningful outside the Fischer space and we
Zy 322 azk

may then ask whether there exists a non-trivial entire function £(2Z) (not

-

D=

necessarily in the Fischer space) such that £(2Z) = ¢(Z)g(Z{, g{Z) entire,
and satisfies $(D)f(2) = 0. In Chapter 2 we investigate this and some
closely related questions, Our results here are rather limited. For a
restricted class of polynomials we have shown that no such entire function

can exist. The general case is still open.



I Polynomiél Approximation to Entire Functions in Lz(de

In this chapter we consider én analogue of the Bernstein problem
of weighted polynomial approximation to a continuous funcﬁion on the
real line (see [©6]). instead of continuous functions on the real line,
we consider entire functions in the plane and extensiops to Qéveral
variables. More specifically we let CK deﬁote complex Euclidean

.

K~space. For points Z = (2 ;e.. zk) and W= (W 000 wa of CK we denote

e

i

their inner product by zgﬁ; by <%,W> and write © lz|2 = {2,2)>. We

denote by Z the K~-tuple (El,..; Ekj. We let EK denote the set of entire
functiQns in CK' Let m be a positive measure defined on the Borel sets
of CK' We define S = thdm) to be the set of entire functions f in EK
such that

(1) l£]P = j 1£]%an(z) < =

Here the integration is over all of CK' Initially all we require of the
measure is that all polynomials belong to the space S. We then ask what
Iconditions on dm are sufficient for polynomials to be dense in S with
the metric impoéed by (1). Henceforth when we uée the phrase “"dense

in 8" we will mean dense in the entire functiéns in the metrigﬁigtdm).

We consider only the case ﬁhere dm(Z) is absolutely continuous with

respect to the Lebesque measure. in CK' i.e., we may write

am(z) = K(X,Y)av = K(r,0)dv

where



X = (xl'... xk)' Y = (Yllnc. Yk)' r = (r go0e rm), 0 = (9

We let N = the K-tuple (nl,... nk)'of non-negative integers and write

For two functions f and h in S we define their inner product -

< (-]
. X
{£sh) =J fh dm(2) =] I fh mul ax dy
. -0 -0
2k
« @ 27 27,

- k
> e f‘i‘] .
[ [ gl
m=1
- -= © o
— —

k k
Definition: f is said to be orthogonal to g if {f,g> = O,
S is then a normed linear space, and in particular a pre-Hilbert space,
We recall some basic facts about such spaces which will be used frequently

throughout this chapter.

(a) Schwartz's Ineguality. |<£ + h)}< | €] In]l, f,h in s.




(b) Minkowski's Inequality. || + nfjf <€}l +||n]l, £n in s.

(¢) If S is a Hilbert space, then a set G C é is complete if and
only if <g,f> = 0 for everxry g in G implies £ = 0.
We shall make frequent use of the concept of weak convergence.
Definition: A sequence {fn}in a normed linear space S$ is said to con-~
verge weakly to £ in S if lim L(fn) " L(f). for every bounded linear func-
ticnal L on S, n*” |

By the Riesz Representation Theorem if S is, in particular, a pre-Hilbert

space the sequence {fn} converges to f weakly if the lim <fn,h)»= lim {£,h>
- Ny Ny

for every h in S where S is the Hilbert space completion'of s;
(Remark: The space S is not necessarily complete in the norm. A suffi-
cient condition for the space S to be complete is that for every compact

set Q there exists a constant C(Q) such that -’

x sup If(z)l < C()}|£(2)]| for every £ in s.

: ZE&Q -

Proof: Let S be the completion of S. Let {gn} be a Cauchy sequence in S.
There exists g(2) in S such that ”gn(Z) - g(2)]] » 0. Hence there exists

a subsequence { } = {£f_} which converges to g pointwise almost every-
In n
J

where, But by * for every fixed compact set @, given £ > 0, there exists
N such that for m,n > N and 2 in Q,

£ (2 - fl-n(z)l < ;uEPQ]fn(Z) - £ @] <collf (2) - £ (2)] <e. There-

fore fn(z) converges to a function h(2) uniformly on compact sets.
h(zZ) = g(2Z) almost everywhere. Since h(Z) is entire, g(2) is entire and

S =3, i.e., S is a complete Hilbert space.



When dm(Z) is absolutely continucus, i.e., dm(Z) = K(z)dp, =
K(X,y)dav, * is true if K(X,Y) is bounded away from zero on every compact

set, This is true because for every £ € § we have

£(£)

_ 1k »
£(z) = o) [ : (Eiwzl)iangz}...iskmzk) Ay rees at,
'Ig -z |=r ’
m m m
. ‘ 1 1
l£(z) ] < (%—)kj J £z | k@1 K@) 2 an
lwl!;il IWk!ﬂ- :
- Loy
= 3" j e® lixeEn? wEn? an,
lE -z {51
o oIm
L
< H* s —Am f )| (£11% an,
f‘; [K(g}] Ig - !{1
IE ~z_|<1 m m'*=
m m -

Applying Schwartz's inequality to this last integral and extending the

domain of intebration to all of CK we have

X
1.2 1
l£¢z)] < (3¢ sup s ||
T £ e
le -z [s1
and
k
1
sup |£(2)] < <-i*>2 sup sap  ——=g7zll£@ = cllf@ |
VA Z £ K8}
ZEQ zeQ |g -z |1

It is clear that if Kdoes not satisfy the abowve condition, * need not

hold,as seen by the following trivial example.



K(x,y) = K(z) =1 when |&] <1 .

-='0 when IE[ % L

The general question whether Lz(dm) is complete, while not necessarily
directly relevant to the considerations of this paper, does have inde-
pendent interest. We do, however, use the fact that the space S of
- Theorem 1.4 is.c0mp1e£e.)
One knovm condition that polynomials be dense in tﬁe entire functions
of Lz(dﬁ), i.e., in the space S, is that the measure dm be rotation

invariant, i.e., 'I dm(2) = f dn(Z) for every Borel set E and every

unitary trapsformétion U. For the sake of completeness we include the

proof.

Theorem 1.1l: Let m be rotation invariant. Then polynomials are dense in

; ; i . . 2 2 P
-the -entire functions in the metric of L (dm), i.e., "in the space S as
defined above.

k
Proof: Since m is rotation invariant, dm(2) = K(r)i‘ rmdrﬁdﬁm. For every

© m=1

£, let ? a ZN be the Taylor expansion of f. Clearly the monomials are
N|=0
=] .

laleP{N), i€y flff&m may be expressed as
0

1
orthogonal. f[fldm(Z) = ' %
N

a weighted sum of sqﬁares of the absolute values of the Taylor coefficients
of £, It therefore follows that the Taylor expahsion of £ converges to f
in tﬁe given metric. |

_.We now restrict our attention to the.case K = 1, _i.e., we consider
the problem in the complex plane. It will be shown that theorems 1.2 and
1.3 can easily be extended to CK' K arbitrary. For simplicity we let
Kl(r,e) = K(r,8)r = rK(x;y); since therxe will be no possibility of confusion

~-we drop the subscript.



-

Taking Theorem l.l as a point of departure, consider the case where )
K(r,0) is not necessarily rotation invariant but for fixed r, K(r,0) does

not vary very much with 8. We introduce the folloﬁing notation.

(2) K. {r) = inf K(r,0)
e 8 .
0 < B < 2% .
{3) : K. {r) = sup X{(r,9)
. > 5

A simple extension of Theorem 1.1 is

Theorem 1.2: Let K,(r) < &KX, (r) where A is a fixed constant. Then poly-

nomials are dense in the space S.

Proof: Let's2 be the space of entire functions £ in E such that

o 27 ’ ) .
f f lf[zxz(r)drde < o, Obviously sC S, since for every f in S

Tes 2

[ f |£]%k, (r) axae < A *k, (x) arae
o O

]fl K{r,8)drdd .

I A
g

o~——--« <>~——-“

i
[

But Kztx) is rotation invariant. Hence by Theorem 1.1 f can be approxi-

mated by polynomials in Sé, i.e., given € > 0 there exists a P such that
f f f—PI K(r,0)drdd < & .
o o

The same polynomial obviously approximates £ to within e in S because

-



JI If-P]zx(r,e)drdef_J- j llf—Plzxz(ll')drd6<e .
2 :

"Before proceeding with Theorem 1.3 we give two simple examples of

spaces in which we show that polynomials are dense. These will motivate

both the statement and proqof of Theorem 1.3. The following notation will

be used in both examples and in the proof of Theorem 3.1. As above,

given K(r,9)

(4) S = the set of functions £(Z) in E such that
2
I J |£(2) | “k(x,8) drad < «

We let

(5) G = the set of functions f (A3), %-5 A< l'such that £(2) belongs

to S.

(6) 82 = the set of functions f(Z2) in E such that

f J |£(z) | X, (r)drds < =
o O

where Kz(r) = sup K(r,6) as defined in (3)%
e .

Remarxk: G is clearly a convex set: Let f(Aiz), g(Azz) be elements of

G. If'll = A, af(Az) + (L-a)g(Az) = h(Az) where h(z) = cf(z) + (L-a)g(z).

If A, < }‘2' af()\lz) + (l—a)g()\zz) = h(lzz) where h(z) = af(ri» z) + (L-a)g(z).

If 0 < g <1, by Minkowski's inequality h(z) clearly belongs to S.



Example l. ‘Let

2
K(r,0) = rne_r for 0

1A
@
A
=

2
=e X ' for w <8 < 27m.

Note: Kz(r) = rnKl(r) forr > 1,
" We will show that G is dense in S and that G CZSE. These two facts imply

that polynomials are dense in S, G is dense in S implies that for any
f(z) in S, given € there exists a A such that ”f(z) - f(Az)”S < %-.
Since Kz(r) is rotation invariant, G C S2 implies that given € > 0 and

£(z) in S there exists a polynomial P such that

. . w
[[£(xz) - 15»]|S2 <.

The same polynomial approximates f£(z) in S to within € because

£z) = e || < fl£(2) - £02llg +|[£02) - 2l

<llg@ - g0allg + [[£02) - 22l <¢
2

Therefore polynomials are dense in S,

1. G is dense in S.

Since f£(Az) in G obviously converges to f£(z) in S pointwise as A =+ 1,
it suffices to show that f(Az) is bounded in norm in S. "It then follows
that f£()z) converges weakly to £(z) in S, i.e., G is weakly dense in S.

Since G is convex, G is in fact dense in S (see [4], page 207). We show



that f(Az) is bounded in norm in S, .

o 271
. 2 ,
]]f(Az)llz - j J [£0re™®y |*cPe™ apar + } j |£(are™®)
o O : T -

o]

iza-r dedr .

By the obvious change of variables Ar = r'

iz |2 = = f j';f{r-ew);zrv” e * agar’
, LA .

. 2 X 2
< 2" j [ ]f{rele)]zrne”r dedr + I j If(rele)lze"r dedr
o o o T

n+l Uf( )l

To prove that G CZS2 we need the following fact which will be proven in

more generality in the prbof of Theorem 3.l. Let %(z) be entire. Then

»
o R —
ot

' 2
[ {g(z) |%e" dedr <c ] j {g(2)]|%c"e ™™ asar
o O .

where C is independent of g(z). Assume * is proven,
2. Gt:.sz
Let f(iz) belong to G. We wish to show that]lf(Azﬂ]S < w, Using *

2
and then letting Ar = r', we have



10

12 2 - 2 n ~r? i
W g2 IS = | | lf0=|% dﬁdr + |£(Az) | *c"e™F aear
_ 2

o

r3{2‘!1’ _ 2

2 n -

<c J £ 2) [“x e ™™ dedr + J I lf(?xz)[zrne * aear

20 o -

© | ' 2

r rZT 2 2_.n "(i ? ARAE
<c f(Az)l re " dear = n+l f |£(x | e pdr*-

lo o

2
-5

2T
J [£(2) |*ce * dedr]-
™

= 8

.2
<C[J J|f(z)]re d0dr +
o o

By standard methods of calculus one can easily show that the function
~r’15 = 1 -5? 2
A - .
g(r) = rne < A(A), i.e., rne A< A(A)e ¥ where A(X) is
positive constant depending on A and finite for —]245. A <1. From (1) we

therefore have
i 2
l!f(xz)ll < B(A)[I J |Gp [ 2™ d9dr + J I lf(z)lze”r aoag]
. o T

=8 lle@ [l <= .

Hence G C 52.

Proof of *: g(z) is entire, therefore for r < 1,.

27 2 i
1p,. 19
. g (&) =1 g(te V) te
) 9(2) = 33 I t-z 9 = 27 J ECI de 25t
lg]=t °

2<t_<_3



27

(2) lo@ | < 5 J Jﬂit—‘?—ﬂ-t—m# < —[ lg(ee™® [tas .

Ite - zl .

: o
Integrating both sides of (2) from t=2 to t=3 we get
1
(3) lg(Z)l E?I J g(te Itdq’)dt .
' 2 o

By the Schwartz inequality

3 2 3 2n 1 3 2x 1
J J lg(tel¢)]td¢dt < [I J lg(tel¢)[2d¢dt]2[jj J t2d¢d{]2
2 o 2 o ’ 2 o
) ‘
['I J lgtte™® | d¢dé] Y3§“ .
2 o
Hence
: ) 3 2n
(4) lg(rele)l2 <,CJ‘ J lg(tel¢)|2d¢dt o -
2 o
_.2
If we multiply (4) by e r and integrate drd6 from r = 0 tor = 1, 6

to 6 = 27 we have
2 : . ‘ 2
[ [ Ig(re 2 -r dodr < CI [ |g(tel¢)|2d¢dtj [ e r
o 2 0 - o o

I I lgtel?) 2asat .
(o]

2 .
F Ne-t
'or2<t53r te > B > 0. Thercfore

11
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1l 2n 2
8 12 - .
[g(rel ) |“e ¥ g8ar < §L-J

o

0 “—,

J lgee® )I Bdgat
O

(6) J
. . e
3 27

2
» 1 2 -
<c' J j lg(te™?) %t~ asar
' 2 o

which proves *,

Examgle 2, IlLet

K(r,0) = ere d for O < 0 < W

- for w <8 < 217 .

H
(0]

2
Note: Kz(r) = ere r oo erKl(r).

'As in Example 1 we show that G is dense in S and that G C S,

l., G is dense in S

As pointed out in Example 1, it suffices to show that given f(z)

in §, £(X*z) is bounded in norm in S.

«w 27

. 2 . 2
@ lleoe (|2 = [ J |£(are®) [2eTe ™ agar + j [ l£ are®) [P asar .
o 7
Letting Ar = r' we have
o x' (r')Z
lzoa |I2 = [Ht el (2 N goar
! :
© 2T -(EL 2 . E._(E,z
+-[ f le(ere®) [%e dedr5}< 2 [f [ l£xre?® % N aear
o T

o 27 2

[ |£(rel®) |27 asar| .
m

+
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By ordinary method of calculus one aan aasily’show that for %’» <A<l

-

rm
e < e [e ol 1. We therefore have

1
— 2
i £ (az) Hg 2e? “ I |£(2) | %X r* a8dr + J } I£(z) 2T aear]
) .

.n.;w

e H£(z) [

2. G CZ.S2

Let £({Az) belong to G.

o 27

. 2
Iif(kz}ll: = j |£ ey |2e¥7F asar
] ,

2

O S,

© 27 5;_“(3:’)2
j', { te(e 'e]‘e)lze;" A agdr' .
o ©

bl

E=

4

r 1
x % 3, r-r’
As pointed out above e < e [e ]+ Similarly it is easy to show
r 2 )
'E' -"(')‘:) o2 :
< A(\)e where A()A) is some constant depending on ) and

that e

finite for %—5 A <1, We therefore have from (1)



14
©
. 2 2 r-r2
(2) leaafly < B J £z | e*7F aoar
. o o ' '
_ © 27 i _rz v
+ I [ | £(z) | “e dBdr] = B(A)"f(z)”s < e
oW
i‘e.’ GC32. |
Rermark: Example 2 was somewhat easier to handle because for fixed ©
K(r,0) was bounded away from zero in every r-interval.
Theorem 1.3: As above, we let S = the set of £(z) in E such that
w27 2
[ [ |£lx(x,8)dxae < =, K, (r) = inf K(r,8), and K, = sup K(r,0).
o o ' G )
Assume K(r,6) satisfies the following conditions.
(a) Kl(r) = e—P(r: where P(r) is a convex function of r'for r >_r1.

(b) For all 6, 6 fixed, K(r,0) is a decreasing function of r for
r > r and lim K(r,0) = 0,
r—)@#

(c} K(r,0) =1, 02 rxr & rl. _ .

(d) K(x,0) is uniformly bounded with respect to 0 in every r-interval.
(e) £In Kl(r) is asymptotic to fn Kztr). -
.Then polynomials are dense in S.
Remark: (a) aﬁd (b) are reasonable conditions on K(r,8) to ensure that
all polynomials do indeed belong to the space S. It.will be clear from
-the p;oof that we may replace (a) by a somewhat weaker condition, namely

that there exist constants C, C' and a convex function P(r) such that

Ce_P(r) =P (x) for . € 2. {(c) and (d) are needed for the

b i

methoé employed. We will show that in actual fact once we assume (a) the

]
< Kl(r} < C'e

assumption that K(r,0) = 1 for 0 < r £ r, is no -restriction at all.

Condition (e) is our main assumption about K(r,8). As above, we let
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«w 27
s, = the set of functions £(z) in E such that j J ]f(z}[sz(r)drqe < o,
' o o

G = the set of functions £(Az), %~§ A <€ 1 such that £(z) belongs to S.

. That these

Proof: We will prove that G is dense in S and that G C'_S2

two facts are enough to guarantee that polynomials are dense in S follows
from the argument given in Example 1. The reasoning is the same and we
do not repeat it here.

l. G is dense in S

As in the above examples, since f£(Az) converges to f{z) pointwise
as A > 1, it suffices to show that for every f(Xz) in G,
"f(kz)”s < cnf{z)ﬂs. Then f£(Az) converges weakly to £(z) in the norm

of 5, i.e.,-G is weakly dense in S. Since, in addition G is convex, G

is, in fact, dense in S. ([4}, page 207}.

. N © 27
(1) , !lf(kz)”i = [ f lf(krele)lzx(r,e)dﬁdr .
o O . N
Let Ar = r', ¥We than have
[--3 27{
- (2) leal? = %-J f lecxre™®) P& 0)atart
Q [» ]

If(reie>lzx(§» 6)dedr .

n
N
Q Sy
O S,

Condition (b) says that K{%, 8) % K{(r,9) when rl < r < «, Conditions

(c) and (d) imply that when O £ r £ x,, 8 fixed,
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Kz, ©)

X(r ""3")' - £ sup K(r,0) <M where M is a-constant independent of 0.
r

<r< ‘
0_r_2rl
We therefore have from (2)

] £ (re® )szcl.ﬂ)dedr]

i6
3 Jlgaall® l£xe™) |*x(F, 0y a0ar +

A

[N
—
=

L0 —
138
H‘—‘—'\

< 2[M J I lf(reiellzx(r,ejdadr + [ I [£(zet ;I K (x,0)dedr]
’ (o] (o]

= C [ I |f(reie) lzK(r,Q)dﬁdr = C”f(z)ng
o i .

2.
G(.‘LS2

Let £(Az) belong to G. We wish to show that ”f(lz)”s < », i.e,,
: - 2

f(Az) belongs to S_. Conditions (c¢) and (d) imply that when 0 < r < r_,

1

2 1
r :

KZ(T} r '

== - Sup K(3»0) < sup sup K(r,0) <M

K(r,0) 4 0 o0<r<ar

i.el'

(1) K2 (% < MK(r,6) when O < r < X M a fixed constant independent of 0.

'We now wish to show

(2) K2 (1{) < Ml (A)X(x,0) when rl < r < = vhere Ml(l) depends only on A

and is finite for -;- <A <1,

We will show the stronger fact,

e e ——
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) r ‘
{3) . . Kziiﬁ < Ml(A)KI(r) where r, < r‘< o,

2 l

i.e. ’

£n Kz(r) = Q(r)in Kltr) where lim Q(r) = 1 .

e

‘Since Kl(r) = e”P{f> where P(r) is convax’for r > 1 {(condition (a)}, we
have

@. sz - e;P{r} o(xr)

and _ ’ .

r r
; o - & - ~P{) 2(5)
(5 Kol =e .

-

We will show that there exists R{A), R(A} a fixed constant depending on

- A, such that

(6) P(r) - P() Q() < constant when r > R(A)
and
{(7) . K2(§ﬁ < C(A)Kl(ri when £, < r < R{A) where C{}) is finite

for 0 < X < 1.

It will follow from (5) and (6) that
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Y r
=P (93 _
(8) K2(§~) = e A A < constant e P(x) = clk:l {r) for r > R{A)} .

Combining, (7) and (8) we get (3} which was the desired assertion.

" P(r) is given to be convex for r, $xr<e, Let A(A) = ?——%‘%ﬁ .
) 1
Since r, < rand%ﬁ A <1, A(d) <1,

i
. Afr=-x.)
o A =
1 ~ A(d) Py Yo N
- - a(a)) =
r A(A)rl + (1 -al) .
From the definition of convexity we have

(9) P(x) £ ARG + (1 - A0PE) .

Recall that lim Q{r) =1, i.e., given € > O there exists R(e) such that
X3 :

"l =€ < Qxr) whenr » R(e}), We take € = A(A). Since 0 < A < 1, we have
(10 Q(-f—) >1 - A(A) when r > R(A(A))
and therefore,

(11) - o pd > @ - a0nP@ . when r>RAM) .

From (9) and (11} we have

. r ,r
(12) P(r) < A(A)R(r,) + Q(X') PP
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., P(D) - Q) PP < AM)P(r)) < B(r)) when r > R(A(A)), which is (6).
Statement (8) follows quite easily. Consider rl «xS R(A(A)). By

condition (d) of the hypothesis,

sup K_(xr)
K2(§j r, <rs2R <
e < c(A)
Kl(r) inf K. (x)

l
1 ___,R.

i.e., Kztii < C(l)Kl(r) where C(A) is finite when-% £ X < 1. We have thus

shown (4), namely
5 _
pl, < % < <
Kz‘k) Hl(l)ﬁlir) when £, <x <

It is now easy to see that ”f(lz}”s < «, From (1) and (2),
2

2 _ 2 =L ig 2  r
||f{Az)HS = ( [ |f(lre J| K, (x)drad = = [ [ |£(xe ;! K, () drdé
2 ' E o O
e
p B . %
<2, ]f(re )|k, ) arde
o] o]
27 rl T
50, 2 ie 2 x
- 2[J I |£(xe™) | x2(§adrae + J J |£(xe™") | K, (1) drdé]
] O o )
) 27 r1
< 2[M J J |f(rele)lzx(r,6)drd8 + Ml(x} I J If(re K(r,s)drdel
le] o o
21 @« )
= B()) I { If(re?e)lzxcr.e)drde = B(AJ“fczaug <o,
o] o]

This completes the proof of Theorem 1.3.
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As pointed out in the remark following the statement of Theorem 1.3,

- it should be clear that we need only assume that there exist constants

~P(x) ~-P(x)

C, C' and a convex function P(r) such that Ce < KI(r) < C'e

when ¥ > r . We novw show that condition (c), namely the requirement that

_ K(r,0) =1 for 0 < xr < X is, in fact, no restriction. Suppose K(r,9)

satisfies all fhe conditions of Theorem 1.3 except (c). We show that we

may define an eguivalent measure ﬁ(r,ﬁ) where

i
[

E(r,e) = when 0 £ r <r

h

il

K(r,0) " when ry <r <o,

Let S = the set of £(z) in E such that [ [ [£]%k(r,0)drae < » . To say
(o] o -

the two measures are eguivalent means there exist positive constants A, A'!

such that for every g(z) in E

. < < allsll- .
(1) allely < el < adllel;
. Clearly f(z) belongs to S if and only if f(z) belongs to g,and polynomials
are dense in S if and only if polynomials are dense in Be
We will show that if L(r,8) = Ll(z) has the. properties

(a) L(x,9) >0

o 27
o [ [ L(x,0)d8dr < =,
o (o]

(¢) there exists a constant C > O such that for r > r_, Ce_P(r)

1 < L(x,6)

where P(r) is a convex function of r,

then there exists B > 0 such that for-every g(z) in E,
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r, 27 3xl 2m
(1I) } J lg(2) |%L.(x,8)d8ar < constant J [ f%{z)[zL(r,Bjdeir

0 . ‘
’o 2r1 [0

Note: We can assume that L(r,8) > 0 almost everywhere for 0 £ 6 < 2w,

0<rs . Statement (II) implies statement (I) for since both K(r,e)'

and i(r,e) satisfy the conditions (a), (b), and (¢), we have

2% @
, ) .
Hfllg = f J £ (2) %R (x, 0) axad
(o] [ o]
. 2T r 2m @
1 2., 2
= if(z}l K(r,8)ards + J J If(z)l K(r,0)dbax
o o . .o
. 2# 3r 2r =
12 2.
<B lfl K(x,0)drdd® + 'f(z)’ K(r,0)darad
(o] Zri | o) rl
27 © ) ' 21 . ]
<B l£]%(x,6)ard0 < B |£1%k(x,6)arde = B}l £]
l 4 l ¥ 1 S .
°© r ' | o ? | o
Similarxly
' 27 »
“fug a»] ] If(z)lzx(r,e)drde
[o] o]
2r 27 ©
1 2 1L 2
“’J f |£(z) |“k(r,0)arae + J J | £(2) | “k(x,6)drae
o o o r '

1
2n 3rl 2 o
- 2 2
< B* |£]“k(x,0)drae + |£]“k(x,0)arae <
Lo} 2r1 | o rl
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2 e 2
1 J J !fl ?{{r,e)drd'e = Blll-fw)“g

o} I‘l ; o o

b 21 @
< B} J I [£]%%(x,0)dras < B!

Proof of II: The proof is essentially the same as that given in Example 1,

Let g(z) be entire. Then for Izl < X

&
27
' ie, i¢ -
s _ 1 g(§) X g(te ")te
(1) g(z) = 557 J g;-;ds—ﬂj ) as , (2r; £ t 2 3r))
’ lg|=t o (te -2 ' '
2r15t£3rl
2n ¢ 27
(2) lgtz)| < ;—nf g(fi:%__);li as < ;—nJ lgtte™®) |tas -
- ee®? - 2| !

Integrating both sideé of (2) dt from t = Zrl to t = 3rl we get

: 3x 2T
' : 1 . i
(3) r lgtz)] < [g(te™®) |tasat .
2rl o

By the Schwartz inequality

3r 27 ] 3% 27 L

: 1 3 i6. 2 2 1 5 2
(4) lg(z)l R o [] _ J lg(te }]‘d¢dt] [ J J - d¢dt] :
1 ,
2rl 9 21:l o

. '9
Squaring both sides of (4) and letting z = re* we have

, 3rl 2
(5) | |g(rel¢}|2 < constant[ j [ Ig(tel¢}|2d¢d€]
; ! _

2r1

If we multiply both sides of the inequality in (5) by L(r,0) and integrate

drdd fromr = 0 toxr =1, 6 =0 to 6 = 2w, we have
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2%
"1 i4 2
(6) : Ig(re }| L(x,8)dedr
o o
Brl 2n 1o, 12 r1 2%
< constant I ]g(te )l d¢dt J J L{r,0)dédr .
2rl o o 0.
o 29 T 2m
since L(r,8)»0 a.a., and [ [ L{r,8)dxd8 <®, 0 < [ [ wL(r,8)dedr < =
. o0 o o
and therefore
‘ rl 27 o 2 Brl 27 ' )
{7) J _ J lgtre™) |“L(z,8)d8dr < constant J ] Ig(tel¢)] asat .
To] © 2rl o

We are given that for r > r,, L(r,98) > Ceﬁp(?) for some positive constant

1

C and some convex function P(r). Since P{r) is convex, P(r) is continuous

and therefore in the interval 2y, £ t £ 3r

1 1
e"P(?) > e“a = B > 0. . Consequently from (7) we have

P(t} < o < w( i.e.,

r, 2T 3r, 27

. L . L,
(8) J I ]g(ra"BJIzL(r,e)aadr<-°—°-’-‘—m§mi‘3 lgte™®) | ®patas
o © 2rl o]
3r1 2% A
< gonstant [ j ]g(tei¢}|2e“?(t)d¢dt
. 2r, o© ’
3x. 2n
. 1 . i¢. ;2 ’ .
< constant [ j lg(te™ ) | “L(t,¢)da¢at .
2rl o

This completes the proof of statement IX.
We now show that Theorem 1.3 can easily be extended to the case
k # 1. Recalling the standard notation introduced in the beginning of

this chapter we let



7 = (zl,... zn) = (xryl,xzyz,.-..xk.-yk} where ,zm =x. + iy_'m

X= (Breeex))y Y= (¥yreee w))
{z2z) = Izl = £ = (|2]® & [z2|2 +...+lzk]2)

g
av = | ] dx dy
m - nm
m=1
Given dm(z) = K(xl,... :{k, Yl,... yk)dV,r let S be the set of functions

in EK. (the set of entire functions in CK) such that
N 2 2
(1) £} = J |£(z) |“k(x,y)av < = .

Here the integration is over all of CK considered as a 2k-dimensional

real Euclidean space., We introduce the variables E’m = xm/r, nm = ym/r.

Let @ = (Elnl,.ﬁznz.... u‘;knk) . It is clear that |[G” = 1. 2 can then be

24

written as r®. In (1) we make the change of variables x = rEm. Yo = TN
2 R R 2 2 (X,Y) 2k~1
2] - eee 0 = L o 0) «
nk 1 : (El + €2 + + Ek) and the Jacobean J 3 (x,0) x g(0)

(For a complete discussion of this transformation see [3], cheipter Iv.)

~For £(2) in s

e = [ . J |£2) |k x,v)av = J J |£(x,0) |*k(r,0) |7|aear
= oo o l|lef=2
2k-fold

- J. j lfgr,e)llecr,ejdedr .
o |lo]=1
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Theorem 1.3 then states the coxresponding result in C, with the
understanding that 0-= 0 as defined above.. Becausé of the parametriza-
tion the proof for arbitrary XK is jdentical to the proof of Theorem 1.3
. with the obvious modifications, and we do not include it.

Before we proceed to Theorem 1.4 which gives another class of
nmeasures {@m(zj} for which‘polyncmials are dense in the‘antire functions
in the metric of Lz(dm(z)), we give arn example of a space in which polyf
nomials are not densg. The space we give is one to ﬁhich not all expoﬁen~
?ials belong. Givén a measure dm{z} having the prgpertyvthat all of the
exponentials belong to Lz{ém), we might ask whether this property is
sufficient for polynomials to be dense in Lz{dm). We shall later show by
example that this is not the case. 1In Theorem 1.4 we consider spaces
having this propefty but with added restrictions. In our example we use
thevknown fact that eix cannot be approximatéd in Lz(o,w) with the weight
C :

e s 0 < g < %-. For the sake of completeness we include the proof of

this fact.

Notation: 1) By Lz[o,“) we mean all measurable functions £(x} on [0,=)

@«
such that [ |£(x)[%ax < = .

© o

2) By :l'..z(e_x ) we mean all measurable functions £(x) on [0,=)

. o o
such that f ff{x)fze-k Jdx < = , As usual we say a set is complete in
0 x

MLz[G,;) or the“x } if the set is complete in the given Lz metric. We
shall need the folling lemma.

Lenwgna 1l: Leé Hi{x) be a continucus strictly positive function on [0,%)
satisfying

(i) & 1mw’2‘-¢—m~.o n=0,1,2,.4s
oo HEX)
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o
‘. fn H{x)
1 ¥

n

_ H(x)
Proof: ([6&], page 40.)

Then the sequence {—-—} is not complete in L> [0,%).

o
Note: In particular {x" e /2}, 0 <a < £~, is not complete in L2{0,m).

2

Proposition: The function elx cannot be approximated by polynomials in

o8
t2(e™® ) when 0 < a < &,
2 C’t

Proof: We first show that polynomials are not dense in L (e ) when

0 <ac< %- . We then show that the set {el}‘x}, %—5 A <1, is complete in
2 = | ix |

L (e ), and finally that if e could be approximated by polynomials in
2, ~x° iAx

L (e ), for evexry A, e could be approximated by polynomials.

: o

I. Polynomials are not dense in Lz(e"x ) for 0 < a < %—- : Let g(x)
: . . o

be any function in LZ[O,“). Define f(x) = g(x)ex /2.

© o o '

f lf(x) iz e X ax = f Ig(x) Izdx < @, Hence f(x) belongs to Lz(e“X J. Now

o o ‘ - .

suppose lpolynomials were dense in Lz(emX }Jp 0 << % » Then for every

&

€ > 0 there exists P(x) such that f ]f(x) - P(x) le e ® dx < €. But then
o >

® -« ? o
[ Jg{x) = P(x) e /2|2 dx = j [£(x) = ?(x)]2 e ™ ax < E o

© (o]

x/2

i.e..'; the set {xn e } is complete in L [0,%) which contradlcts the

lemma. .
a

II. The set {el}‘x}

P %s. A <1, is complete in L2 (e"x ): It suffices to
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o © . o
show that for every £f(x) in L2(e-x Yo 3f f f(x)elkx e-x dx = 0 for all A
. o .
: © ] o .
%-5 A <1, then f(x) Z 0., Let F(x) = f f(x)elzx e_x . Assume F(z) =0
o

for z real, <€ z < 1l, We assert that F(z) is analytic in the upper half

V|-

plane Im z 2 0. Since an analytic function cannot vanish on a segment

unless it is identically zex0O, F(z) = 0. ([10], page 88.) This obviously

implies that f£(x) = 0. F(z) is analytic for Im z 2 O for by the Schwartz

inequality,
) izx & 3 —xa -(Im z)x
J max|f(x)e e |dx = J maxlf(x)le e dx
z . z
o ;
et T BT AT
Fjlf(x}le dx<[Jlf(x)|e dx} [j e dx] < @ .

o o o

0

‘ ] B
Therefore f f{x)elzx e ¥ dx is unifoxrmly convergent in the upper half plane
o
which implies that F(z) is analytic ([10], page 95). We have shown that
: Ca
{elkx}, %-g_l <1, is complete in the_x ¥

: o
I1x. elx cannot be approximated by polynomials in L2(e * ): Assume

the converse, i.e., for every £ > 0 there exists a polynomial P(x) such

that

ix 2 -x* )
[e™ - p(x)|“ e ax<e .
] |

For fixed A, -’é-g A <1,
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0 o3

. ’ o . o
J [e™* L pax) |2 e™ ax < } [ L pun |2 o)
o o '

o

J [ ix 2 -xa '
e - P(x)[ e dx < 2,
5 :

I
ot s

" We have shown that the assumption that polynomials approximate elx in

a . P o SR
Lz(e * } implies that polynomials approximate elxx, %-5 A <i, in Lz(e * }.

. ‘ a . .
But since {ellx} is complete in Lg(e * } it would follow that polynomials

v
. 2, - , .
are dense in L (e % ) which contradicts I.

We now give an example of a space $ in which polynomials are not

dense., We divide the complex plane into two sets Rl and Rz, where
R = {z} Re 2 £0 or Rez >0 and |Im z| > 1}

R2‘={zinez>0 and |mm z| < 1} .

Let 2z = x + iy. We define dm(z)

_!ztl%é
dm{z) = e ' daxdy (6 > 0) for z in Rl
~lea 1 .
= e dxdy(i}<a<§-)forzan2.

Let S be the set of entire functions f(z) in C such that
el = | let Panta) < .

The .function e™™ is easily seen to be in S.
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| 18 , a
"eiz": = jleizlzdm(Z) = J e—2y e-{x2+y22 2dxdy +.J e-2Y e-(x2+yz,2dxdy
| | BB, ‘ Ra |
s L e
- J ] e-2y —(x +y ) - A & J .f o 2 e-(x2+?2)2dxdy )
- -1l o
& B 1+o
J ! e-zy e_(x2+y2) ’ dxdy is obviously convergent since 6 > 0.
-0 =
1 °‘ & 0 . : :
{- J R - (x* +y 2)2 axay <c J dx < @ , Thus "elz"z <@, i.e. e
-l o ©

belongs to 5. We will prove
** There exists a constant K such that for every £(z) in s

© V]

: 2 - 2
J £ ]% ™ ax < xfjg(a)]|

S

o
** jmplies that in pérticular the function e? cannot be approximated by
poiynomials in S. For suppose the converse, i.e., given g > 0 there
exists a polynomial P(z) such that”elz - P(zﬂlz < Ke ., By **

© . } a s, i
[ 1e™ = e [? e™ ax 2 kfe™® - p(2)]|® < € , i.e., ™ can be approxi-

a

mated by polynomials in I.z(r-:"x ), 0 2 a < %-, which contradicts the

previous proposition.

Proof of **; JLet f(z) be any function in S. Then for any point u, u 2 0,

. 2T
2 r
1 £°(E) o - . % ie, )
(1) f (u) = Py I S dg = E;-[ ‘£(u + xe ). d6 whexre 0 f *r <1l

| g-ul= | o
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2%
{2) " ffz(u)[ s %;-J | £u +'rele)[2d9’ (0O <r<l) .

-

Q

-

o
Multiplying both sides of (2) by «r e % and then integrating drdu from

r=0+%t r=1and fromu =0 tou = Q, we get

12 wug 1l 2 - ¢
(3) ,j lf(u)] e du < ;—J J J lf(u + re )] e b rdrdédu .
o o

¢

We make the following change of variables in the rigﬁt hand integral

of (3).
Xx=u+x cos O
y = r gin 0
v=u
. 1 "
dfdrdu = ;-dvaydxA
and A
@ . ©° 1 x+le
2 -u” 1 2 -7
(4) |£w) [“e™ au < = C{flx + iy) ] e dvdydx
o -l ~1 max{0,x~1}
N 2 1 ) ) X+1 o = 1 , x+1 va
= E‘[ [ !f(x + iy)l [ e v dvdydx + j I !f{x‘+ iy}l J e  dvdxdy

-1 =1 max{0,x~1} 2 -1 x-1

Let z = % + iy and note
.a) for -1 £ x < 2, [yf <l, e < 1l, and Iz! < 3
(+] ZIC‘.

“p) ‘for 2 £ x < ®, ly| < 1, eV < constant e"' .

b) is true because for 2 < x < @ and |y] <1

(i) vox=1=|x]+1-22]x]+ [y] =22 |x+iy] ~2=|z] =220
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and

a

[" = tlz] = 2 + 2% < t]z] ~-2)%+ 2%.

(ii) |z

Combining (i) and (ii) we have”

a

~v e-(|z|-2)°‘ " e-lz]“-za

. a
e = constant e—lz|

which is b). From (4) we have

[=+]

L o o 2 1+6 1+¢8
(5) J l£@) %™ au < %—” J leca 21217 121 dydx

o -1 -1
’ "2 1 (s A o © 1 o
4 I J |f(z)|2ce—'z' elZI dydx + cJ J |f(z)lze-lzl J
o =1 2 =1
o T 2 @ ] - 3
. 1+6 a
< K“ I l£(z) |%e |z dydx + J [ lf(z)lze"lzl dydx]
o=l =1 o =1 -
o 1468 ¥ 148
< x[f J | £(2) |2 =] dydx +J [ lf(z)lze-lzl dydsx
~0 = "o |yls1 '
© 1 "
+ I j lf(z)lze-lzl dyd%]

o =1 '
12 2 2
= K[| |[£(2) |“am(z) + [. |£(2) |“am(2)] = k[£(2)[|° .
: Rl ; . R2 .
This completes the proof of ** and, as shown above, it therefore follows

that e'? cannot be approximated in the space S.
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Remark: The above case was obviously constructed in such a way so as to

make use of the fact that e’? is in it, and eix cannot be approximated
o
by polynomials in Lz(e * }Jp 05O < %—. If we vary the conditions on

dm{z) slightly, e.g., a = %-or 8§ = 0 (in which case eiz does not

“

belong to Lz(dm)}¢ the situation becomes entirely different, and whether

polynomials are dense in Lz(dm) remains an open problem.

l' i’e.' tlle

In Theorem l.4 we confine our attention to the case k

complex plane. We let z = x + iy dm(z) = k(x,y)dxdy.

- Theorem 1,4: Let k(x,y) = e~¢(x,y) where $(x,¥) = ¢(2) is a positive convex

function of z, ¢(0) = 0. Let S be the space of all entire functions

b(z) such that ||b(2)]|2 = f f [b(z) | %k (x,y) axdy < =, and suppose e

-
belongs to S for all complex t. Then the exponentials are complete in S.
Proof: S is easily seen to be a Hilbert space. Therefore to prove that
the exponentials are complete, it is sufficient to show
(1) I I biz)et? e ¥ ¥ gp4v = 0 for all complex t (b{z) in S)

implies b(z) £ 0.

The proof will be given as a series of lemmas. We begin by introducing
notation which will be used throughout the series.

Notation

1. C(X'Y) = b(z)e-¢(x'Y).

Recalling the &efinition of the Fourier transform in the plane we define

L T <]

2. d(a,S) = f f d(x,y)elax+lsydxdy, a,8 complex,

w—gy) GO
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In particulaf,
= ‘oo oo . 'B
. Ll & la +
3. &@,B) = [ [ cx,ye’ T Yaxdy.
=g =

Since ¢(x,y) is such that all exponentials belong to the space, c¢(a,B) is
meaningful and an analytic function of the two complex variables ¢,B

_ &(a,B)

4- 'E(alﬁ) e 6 e iS -

5. ¢(x,y) is convex. We may therefore define the conjugate function

Plt,7') = max {tx + T'y = ¢(h,Y}] where ¢ and { have a rec;procal

XY
-0 Sm
_m<y<w
relationship, i.e., ¥ is convex and ¢(x,y) = max {1t + 1'y - ¢(1at,) [5).
R . T T
T

- T <00

J f b(z) et e~ Xe¥) gyay = [ [ clx,y) et ) grq

00
- -
= [ I c(x,y)el(-lt)x+l(“t}ydxdy = C(=it,~t) .
-0 =~
o0 o t— i
Assume f f b(z) - e~¢‘xfyjdxdy = ¢g(~-it,~-t) = 0 for all t complex,
"-w -_m -

i.e., &(a,B8) = O when a = if. It then follows that h(a,8) is analytic
in a and B. We will show b(z) = 0. Let a = ai‘+ ia2, g = Bl + 182.

¥ Sl, B real.

b 2

Lemma l: Let 0 < k < », Then



. . 2
J- J [d(a:B)I de,

where M is some positive constant independent of «

2 & (kx,ky)

Proof: (a)

Assume ff

(1) ” 13(e, 8) | 2ac. as
. ’ s

dBl < Me

hﬁ

ld(xy) ‘e

: x' Yy
Letting x = Pt y = L we have

—2a2x‘ -Zﬁzy'
' a "20x-2B,y 1 x' y' 12 k& kK
(2) ” latx,y) < e dxdy = == ” Id(;-,-%)l e dx 'dy*
' k
~20.x ' -28_y"
[ 1 s I -¢(xz',y")
k .
i v - ' I
mx{ i 28_2_1’ ‘-¢(X' y")
-<- _l__2__ [J Id(%" Y )|2 e‘p(X"Y') o XY k k d:{.dy'
X
=20, =28
T — )
1 ' .
<L [l gz et K g

J Id(x:Y)I

” |d(x,y)e
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if and only if

2 e¢ (}(XI}CY)

dxdy < @

5 and BZ'

dxdy < «, By Parseval's identity

—a2x~8 y 2
| axay

-2a, x-28_y
” lace, |2 e 2 % axay .

: ’
Letting x = 3-):- , Y= .}.{Y. , we have from (1) and (2)
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| w(-232 w282}
. ~ Ot 2 F4 by '
{3) [j ]d{a;B)I duldsl se k k [j ,d(x,y)]z e¢(kx'ky)dxﬁy
i e
=M e k "k
“2&2 9282 :
~ 2 ‘}3( T ’ "‘}'{""‘)
(b} Assume ]d(a,ﬁ)] daldﬁl <Me +« By Parseval's
identity
-2a ~-28
2 2
x—282y V(== , )

| 2 "% A 2
AL }J lax, v |° e dxdy = jJ la(a,B)| do,dB <M e

Hence
-2, =28

2 2
m2apx =2y =55 )

{2) f[ {d(x,y)[z e 2 dzrdy < M .

. x* AR
Letting x = Fry=5 in (2), we have

L] ¢ - ' - bl
2a2x 232y 2&2 2R

| -4 % 3
1 x" y'. (2 k k kf k

dx'dy’ <M.

Recall that ¢(x',y?) = max m "
' 0‘.2'32

independent of o, and Bz. Therefore {3) holds for that azf 82 at which

2

the maximum occurs, i.e.,

4) L?'.'j [ id(‘i": ]{:,'”2 YY) gyt <,

—C)

-

. - l
Letting x = %-, y = %- in (4) we get the desired result, i.e.,
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©w o

(5) . g J JMmmﬂzg&“w’&w<M<é-

"—ﬁbx a4 ]

Lemma 2: Let ¢ and c' be fixed real constants. Let A be any real

number 0 <-A < 1, Then there exist M and Ml such that
| . , 2 . P(=2c,~2c")
a) ' jj !c(al + ic, ﬂl + ic*) | daldBl <Me *
ac 2¢!
Py i l c v 12 p(- E“? - i“ )
b) _ |hie, + dc, B, + ic')|"aw,ap < Me | .

Proof of a): sSince b(z) is in S,

Therefore, by Lemma 1

J{ laial + ic, Bl + ic’)lzgdldgl <M e¢f“2c,~2c')‘

Proof of b): ﬁe first show

> max ¢(~2(G2£l};”2(32i1))
’ Bl + iﬁz)f < constant e

By |&(a, + ia,
wvhere the max is taken oveyxr the four possibilities of sign., Since
(é(d,B))z is an analytic function of a and 8 we have
2 .
' 21 e " 19 18
(1) (é(e,B)) =-5] J f (e{xtzie 'y Brpe 7))de deydr.ar,
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and therefore

) l1 1 29 2n i i0 .
{(2) Ia{a 8)[2 £ é—-j ]3(a¢r e 1 8+ el 2)[2 r,.ds_4e dr.&r
R R ) R 15 Rl Nt Rt S R
o o o © ‘
iel ~ iez
Lettlng'zl = xl + 1y1 = rle r 2, = x2 + 1y2 = r2e we have
1 -1 1 1 ‘
- 2 _1 o . 2"
< e : -
(3) ]c(a,ﬁ)l 3 j &yl } ﬁyz J j lc{al+xl+m(32+yl),Bl&x2+l(§z+y2)ji axld42
. “1 =) -1 -1
1 1 «  w ) -
1 : - . . 2
< = .
2 J ¥y J W, J f |ote bttty ) 8 b i (B v )1 | P ax,
-1 -1 0 =@
. T L. . .
Lettln? “1 +‘xl = al, Bl + X, Bl in the last integral of (3), we have
from part a) of lemma 2
1 1 @ W
~ 2 1 A, v 2 v !
(4) ir:(a,ﬁ)l ., £ ;’5{ ay, [ dy, j j lcgal+1(a2+yl), Bl+1(82+y2}][ daldﬁl
-1 -] L
- o Wy ) -2 (B +y.)) "
<M o 21! 272" 4
2 ~ Y1
b 21 -1
. 4 w(—2(a2+¥1)r*2(32+y2})
—-2- mnax e
—lsyZSl
However since ¢ is convex, e$ is convex and
- - - + -
v ( 2(al+yl), 2(82+y2)] b(~2(a,tl), 2(8231))
max e = max e :
ulﬁylgl *
~lgy,<l

and thus for fixed a,B
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may. W(—zaziz,-zﬁziZ)
a e

2

- " . . 2
!c{al+1azj 31+182)l < -

which -was the assertion of {(A).

We now prove the second assertion of Lemma 2, namely

T ® @ 2c 2c¢!
J ~ 2 ‘p(- X-—l' }i )
: ‘o
fh(al+1c, B, +ic ) da,dg, <M e
Lo oo
where A is any fixed numbexr, 0 < X < 1.
0 00
» 2
. .
] I !h(al+zc, Sl + ic")| daldﬂl
— o0
L]
= [h(a, +ic,B, +ic') |%an aB, + f J |h(a, +ic, B +ic') [ac. as
1777 1771 ~ 1771 11
- - -] < L -
]51 c!>l o IBl cl<1 fal+c I 1

c+l =c'4l
S 2 N
: -
+ |h(a, +ic, 8 +ic )|“aa a8, .

Ce=1l =c'-l

When }Bl*¢f > 1 ox {al+c‘[ > 1, ]ﬁ(al+ic, 81+ic')] < fg(al+ic, ﬁl+icﬁ}{ .

Hence
o _

: ~ . g2 , - 12
(2) lh(al+1c,61+1c'}[ do dB) + f I lh{al+zc,81+1c')l do, &8,

[8,~¢c[>1 -= - [8,~c|<ila +e' [>1

© 0 . .
- - ]
< [ [ |6(a1+ic, sl+ic’)]2aaldsl < 2n o¥47%€720) 4y remma 2, part a).

-l il

Moreover for fixed ey, Ial+c‘f < 1, and fixed B,, !Bl-cl 21,
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h(al+izl, Bl+izz) is an entire function of 2y and z,. 1In particular,

it is analytic in the polydisc lzl-c[ L2, !zz~c'f < 5. HRence by the

maximun modulus principle, for some Ol, 62 depending respectively on
o o .
p and &y

- ~ iel . iez

Ih(al+ic, Bl+ic*>l < Ih(alfi{c+23 )r. B ¥ic'45e y |

.

Since
. 162 iel 102’ iel
[a~iﬁf = [al+c'+5e +i(c~61+2e )' 2 {]al+c'+5e l - lc~81+23 ][ P f4-3| = 1,
we have
i6 | i8

Jﬁ(al+ic, Bl+ic'I < Ié(al+i{c+2e 1),‘Bl+i(c’+5e 51

and thereforé by (&)

max §(-2(c+2 cos 6.31),~2(c'+5 cos 0_1))
L , 2 4q * 2
lﬁ(al+1c,ﬁl+1c')[ < ;E-e

1

max Y{-2(ct3), =-2(c'+6))
+

S (since ¢ is convex) constant e

Now consider the last integral in {(l1). By the above reasoning

c+l ~c'+l - max ¥ (=2 (ct3),-2(c'+6))
n 2 16
. s -4 L 4 .
(3) j [h(§l+1c, B, +ic ) | do dB, < —;E-e ]
c=l =c'=1

It follows from (2) and (3) that



o o
. A a2
) . J j [nta +ic, B +ic')| de a8,

— oD

’ W (=2c,=2c! b (= 20t IO =t
< Mi[ew( 2c,-2¢") | w(-2ct6,~2c +12) | ¥(-20-6,-2¢7+12)

.

i (- 2t b {m20=6, =201~
+ ev( 2016, ~2¢'~12) £ ev( 2c 6, 2c'-12)

Since § is a convex function, we have for 0 < A < 1

2c 2ct. ) 6 12
. ~20t6, =20ttt < - 28 AL - — 4 2L
(5} ¢( 2c“61 20 ”12) - Aw( A ] A ) + (1 A}W(i l_Al - 1~A) -
6 12 . . .
We note that w(* o .o E:KQ is finite for 0 < XA < 1. Moreover, since
every exponential belongs to S,
| 2 2¢!
(6) ¥{-2c, -2¢Y) < ¥(- 5, - 5=) .
Combining (5} and (6) we have from (4)
: ' 2 2c’
- 2 i KE’ -
s '3 F
(7} ! [ fh(al+lc, Bl+;c )[ dalﬂﬁl < Mz e -

iy -l

This completes the proof of Lemma 2.



ma 3 olr,y) = i0GRy) @ _dh . odn
Lerma 3: c(x,y) I R P ET e - §§°
Proof: By definition

wn  w w o

A )
dh dh iox4ip dh .,
W = I j Shyre T axay = J J (- i

o

< {jl’]eziux+2isy[ e-¢u,~».,x;:)axdy]z [th(x;y)lz L AxAy)

Hence

A
dh

dxéyj < @

o= ~ila=ig) ” h(x,y) X Y avqy = —i(a-iB)Ale,B) = —it(a,B)

41

g.}l) emx-i-n.sy avdy .

dx dy
- D -, =

X = + " [ S— i;lx+iﬁy d-ll
We integrate (1) by parts letting "u" = e , dv" = e We show
that the boundary terms vanish., "av" = e’l{’hﬂlgy h(xy). By Fubini's.
Theorem we need only show

1 o w
. . % +1 A
(2) f J le"‘”‘ 2 h(x.y)[axay <,
-l D o

By lemma 1 and Lemma 2, for %‘5 A<1l, ff Ih(x,y)[z eé(ax’}‘y}dxdy < e,
Since exponentials are in the space S

w w ‘ --aa‘no j‘_w{.*-iﬁyz

o ioo+i 2 -d({Ax,A S ‘ -

I f |elentify |2 me s, y’axdym%j i oM M T ey <o

-0 -'cn . ! A S lh w00
We therefore have by the Schwartz inequality

: =0 (Ax,Ay) ${Ax,Ay)
- ‘. - . * . 2 2

( f‘f ‘elwﬁ lByh(x,y){dxdy = ”'le;,ux+16y e ‘hix,y) e ldxdy
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and

. dh
c(x,y) = 1 3;-(x.yl

Lemna 4: Let g(z) be any function in S. Then for A, %-f A% Ly
[ bz)5(rz)e™ ¥ gxay = 0,

Proof: 3? Lemma 4,

(1) IJ b(z)&(hz)"¢‘x'y’axdy = J[ c(x,y)ag(Az)dxdy = i [J {%24 g (Az)axdy

We integrate (1) by parts letting "u" = g(Az), "av" = %% « It is easy

to see that "u v" = g(Az)h(x,y) vanishes on the boundary. For, as in

Lemma 3, we need only show

(2) fjlh(er)E(lzjdxdy < w

$0x,Ay)  =0(x,Ay)

(3) Jf\h(x,y)g(XZﬂdxdy = JIlh(x.yJ e % g(rz)¢€ 2 )dxdy .

Applying the Schwartz ineqguality to the left hand side of (3) we have

4) JJIh(x;y)E(Azﬂdxdy

1 . 1
Lo et 1
< Ifflh(xry)lz R T EI{|9(12)IZ ¢ OEAY) 40012 .

As shown in Lemma 2, fflh(x,y}lz e¢(lx'lyjdxdy < » , Letting Az = 2'
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jj’@ﬁxz)lg Y eay = iﬁ'ing(z)¥2 N axay < gllg@)l® <

because g(z} is in S. We have shown that (2) is txrue and therefore the

dg

boundary terms vanish. Moreover, since g is analytic, I 0 and there-
fore
(5) JJ b(z)g(Az) e-¢(x'y)dxdy = i I} h(x,y) gg-(xz)dxdy =0

'Lemmé 5: Let %'S A <1, Let G = the set of functions f(Az) such that
f(z) belongs to S. Then G is weakly dense in S. In particular, f£(Az)
'converges weakly to £(z) as A + 1,

Proof: As shown in the proof 6fyTheorem 1.3 since, for any £(z), f£(iz)
converges to f£(z) poiniwise, it suffices to show that f(\Az) is bounded
in nérm in s, i.e., ﬂf(la)” < Mllf(z)” where)M is independent of A. Let
Az = z', Since ¢(z) is an increasing function of lz, on every half ray;

¢(§*, %) > ¢(x,y) and therefore

xl yi
~o &, L)
AT dxay:

[!f(AZﬁfz = {flf(Az;{Z eﬁ¢(x'y)dxdy'=Ai§'ijfiz’)Iz e
< 4 fflf(z)lz TP quay = af£(2)]]2
Theoreﬁ‘l.Q is now obvious. Let g{z) = b(z) in lemma 4, - By Lemma 5
Ib(z)]? = 1;§ [ b(z)B(Az) e ¥ * P axay =0 .

A+l

Therefore b(z) = 0. This completes the proof of Theorem 1l.4.
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Corollary: Polynomials are dense in the space S as defined in Theorem l.4.
Proof: We prove that the exponentials can be approximated by polynomials.
Since the exponentials are complete in S§ this gives the desired result.

az

In particular, we show that the Taylor expansion of e?? converges to e

in norm for all a, a complex,

1

n a1 g
27 . ) faz)l | ..l.m! (az)™ 2" -nat (111, page 76).
n! ni
k=0 o ’
<Therefore
n n .
+ t
(L SR - = l J (am ™ 22 (1~t)“dt1
. nl nl
k=0 o
1 ’ n+l Re azt [azfn+l B £ Re az
< ST-J 1&31 e dt = ) f & at
o ' o ‘
1 T 1
n+l = n+l 2Re az -
!az! 2Re azt 2 - Iaz[ e - 112
< il ( I e at} = nl! [ 2Re az ]
o

1

n+l Lo
< lazll [+ |a2azl]2

Furthermore

n+ly2 4 . K 2
(2) . (!az| ) § Z Ieé{;) azl

n! k=1

One verifies (2) quite easily. |az| < |Re az]| + |Im az| < 2max(]Re az],|Im az)).



When max(|Reaz|, |[Im az|) = |Re az|

o n+l n+k '
[az| < (2Re a2) » (3he an (2Re az)n & e4Re az _ Ieéazl
n! n! n!
(Re az > 0)
n+l . n+l n
|az| (-2Re az) (-2Re az) ~4Re az ~daz
= (=2 ————————ee =
nl s Bl (=2Re az) s <e ]e ,
(Re az > 0)
.Similarly, when max(|Re az|, [Im az|) = |Im az|
[az[n+l ~4iaz '
< Ie | ; (Im az > 0)
n!
laz|n+l diaz ;.
22l < |e | , (imaz < 0) .
nl
Combining (1) and (2) we have
n n |2 4 . ] 2 4 .k
2% _ EE%_"| z z|e4m az |© zle(‘l(l) +haz [%_ o,
k=0 7 =1 =i
Since by assumption every exponential is in S, f g(z)e_¢(2)dxdy < w,

and therefore by the Lebesgue dominated convergence theorem

n

az 0 (az)
h =+ e k=0 S

45
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.We now 'give an example of a Hilbert space S to which all the
exponentials belong and yet in which the exponentials are not complete.
We divide the complex plane into four regions. As usual z = X + iy. Ve

let

v

{z| |z]| >3, x>0, |xy|] g1}

e
0

R2 = {zl IZI >3,%x>0,y>0, |x2_y2l‘ g 2}
R, = {z]| |z| s 3} | v
R, =C = (R1L1R2LJR3) :

We let dm(z) = k(x,y)dxdy where

2
( e—2x x12 (z e'Rl)
-(x+ 2- 12
& y) (x+y) (z e RE)
kix,y) = 4
1 (z € RB)
8
t -3zl (z € R)

As above we let S be the space of entire functions f(z) such that

|]f(zﬂig = f if(z)lzdm(z} <.w. S is easily seen to be a Hilbert space

and clearly f ]eaz|2 dm(z) < © for all complex a, i.e., every exponen-

tial belongs to S. We first define the space
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Si-= the set of entire functions f£(z) sﬁch that

Hﬁ(z)llzl =! deeo | + 2o Pan 00 <=,
O

-2%% 11 %3

where dml(x) =

It is clear that eaz > Sl for all complex numbers a. The inner product

of two functions g, h in S

1 is, as usual, defined as

o

{f,g> = [ [£(rg(x) + f(ﬁxig(€X)]dml(x)
©

Sl is then a pre-Hilbert space. We will show that the exponentials are

not complete in S. by exhibiting a function sz} Z 0 such that

1
(i) F(z) belongs to S,
and |
(ii) F(z) is orthogonal to every exponential.

2 8
(l-i}=z (L-e z y
8 - L]
2

Let F(z) = =

(i) F(z) belongs to 5, ¢

* 8y2 2
. 2 -X ) ~2%x" 11
2 2x l-e e X
”p(z)”s = z‘jp e e 5 -ax
1 ° X

-
l-e

. 8
= 2‘[ Sé:f:f;j ax < =
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and therefore F(z) ¢ Sl'

(ii) (e'%, F(2)), = 0:
1
We wish to show

+ 2

T e T
(1) ] €™ Fix) + e ¥ F(Ex))dm (x) =0 for all complex T, i.e.,
o T .

-]

fy L iy L2
T - - - T P bie
(2) [ e e (1~3)x x3 + e'gx e (1+1) Xde =0 ,
e}

2 .
T ~{l=i 3
Now g(z) = e z-e f 1z 2z is analytic and therefore since

r
r 4 i8
lim f Rlg(re™ ) |ae = o
R0 -
L]
[~ ] [~}
] gix)ax = E[ g(Ex)ax .
[e] . o)

Hence (2) holds. Therefore (atz, F(z)}s = 0 for all t complex, so the

1

exponentials are not conplete in Sl. As in our previous example (page 28)

we will now show

(iii) F{z) is in 8

and that for any f{z) in &
(ivf l!f(z)”s < constantf?f(zﬂ!s .
: 1

And again, as in our previous example, (iv) implies that, in particular,
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F(z) cannot be approximated by linear combinations of exponentials in S.

(iii) F(z) is in S:

3 L. 2. A 2) 4 2 -
. X X =y )taxy ..
J |F(z)lzdm(zl 4 J J 2 | I16 e - xl2dx < K J §§.< © g
. .:.L_. z x

B 2 =Z 2

Similarly letting z = &€n, n = t + iw,
» o E 3 2 (=
s 2
J |F(2) [Pam(2) < 4-2° ] [ 2 (t =W )-dtw =2t 124t < x[ 1-5 < =,
1 _ 416 t

R, 2 - ¢ il 2

Obviously j If(z)lzdm(z) < ® and therefore F(z) is in S.
VR
Proof of (iv):
Given f(z) entire we show
= 2

(a) [ lie fuy | £ “8 du <M [ [ | £(2) | “axay +I [£(2) | 2am(z)]

o 1~ lzl=4 Rl '
and similarly

© 2
5 g0 gt 2 2

(B) | £(Ew) | 5 du < M [ |£(z) |“axay + | |£(z)|%an(z)] .

o . 1-e 0. Izl=4 o n R,
Since f(z) is entire

2u
1 i0 .1

(1) £(u) = -2-;!-—i-f £(u + re  )de ©<r<39)

’ o

and hence



(2)

Multiplying both sides of (2) by 3———25—

u = «, we have

<o

le(uy |2 <

1
2m =
4u2 2u
T
o o
—zu2 11
l-e-u

(3)
- -1

2
j If(u)lzenzu ull

- om
4
< -
du < = J J
3 o

o

1
20 i0 12 13 ~2u°
J If(u+re )[Au e

8

'f(u + reie),2 u

10
[£u + re*") |%raras .

and integrating from u =

50

3 to

rdréedu

l-e-u

2
13,729 araeau .

We make the following change of varxiables in the last integral of (3).

u+ r cos 6

r sin 8 =
u=v
We then have
® 2 ~20% 11 ®
=
“) l£) |%e “" u a < A [ x
NC w(e-1) ),
3 l~e 3~ g*
Since
1
v <x+ STaiT

1
2(x-~1)

£ (x+iy) |2ay
1
"2 (x-1)

< x+l < 2x

X

1
X+ 35D

eV 134v.
J_r
2{x-1)
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e R T R - 2
X (x 2(x—1)) ~x"+2
and
< 2when x 2 2
x=1
we have : . 2
[y 2,29 41 By - & (xed) 5 ol A3
(5) J —5 du Stz J J | £ (x+iy) | %e — dydx
3 l-g u ' 1 o __E;#_ﬁ
/ 3- = 2 (x-1)
6
1 ,
) Y=
9+8 > ik 2 ~2x% 12
<2 e . .
ot J ax | £ (x+iy) [“e™" x” “ayax
1 1
3 .6 T 2(x~1)
,16 5,12 | . F o
“(e_l) ] J |f(x+1y)[ dydx + IJ | £ (x+iy) | “ayax]
i} 1 R
6  x ' "
(6) < constant [ J J ]f(x+iy),2dydx + [ I |f(x+iy)'2dydx] %
,z[=4 Rl ~‘
120 \
For 0 £u £ 3, we have 0 £ ——-E~*§-< constant and therefore,
-e") ‘
3 11.zu2 3 ,
(7) [ £ )| 5~ du < constant J | £() | “au
—u aldt
o l-e (o]
3 1 2m .
< constant [ J [ ]I(u*re )I rdrdfdu < constant ] If(z)lzdxdy .
o o © Izlgd-

Combining (6) and (7) we have (A).



In exactly the same manner we have, letting n = t + iw,

© . 5
‘e 11 .2u
(8) e |2 22— au<n (| |eEn) | acaw
; -1
o l-e lnlﬁ‘q
: Ti 2
* e %7 Man
In|>3
[£w] <1
t>o0
i

Létting z = e4 N we have from (8)

2
11 2u
(9) |£gw) |? 2= au
; 1-e-u
(o]
—(x+y)2 12 -
<np| e [Paxay + | |50 |? S ayay)
2 ;
|z] <4 R

which is (B).

Moreover, for 3 g |z| < 4, am(z) > My

we have

> 0. Therefore from (A) and (B)

52

T T M WM A o Sy 2 AT I
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W fle@lly <2t J | £(2) | Paxay 4.-;— I'f(z)lzmldxdy-i- [ £ (z) |am (2)]
1 1 :
IZlf-?'- 3(.lzl£4 Pj'lJR2
< 2 [J |£(2) [am(z) + 3~ I |£(2) |%am(z) + I - | £42) |2an(2) ]
1 :
™y = 3¢|2] <4 - it

< constant “f{z)": .

Thié completes the proof of (iv), and therefore the exponeptials are not

complete in S.

Remark: It easily follows that polynomials are not dense in S.
Theorem‘1.4 can be generalized to the space of entire functions in

Lp(¢(z)), 1 £ p £« The proof is essentially that of B. A. Taylor [12].

We have ménaged to simplify it somewhat.

Theorem 1.5: Let ¢(xy) = ¢(z) be a positive convex function of z,,¢:(0)‘-—'-‘ 0. Let

Sp, 1 < p <=, be the space of entire functions f(z) such that

Il £]lF = } l£(z) [P e P axay < = .

Let S be the space of entire functions such that'f(z)e—¢(z} + 0

. |z| + =, As customary we define

ll£c2)] _ = sup {|f(z)|e-¢(z)}
S

—

T My T, -

TP IEART | e -t A e



where the sdp is taken over the complex plane. Assume that every
exponential belongs to the space Sp, 1 : p < @, Then polynomials are

dense in Sp, 1l <p¢<=.

Proof:
Lemma l: Let £(z) belong to Sp._ Then the sequence {fx(z)} = {£(A2) },
%-f A < 1, converges in norm to f£(z) as A + 1.

. Proof: (a) Let 1 < p < We use the fact that if a sequence {fn} + £

e . 4 N 0 4
pointwise, and if llfnle +[|fle #hen in fact ”fn f]Lp + 0 (see [4],

page 209). f(Az) obviously converges to f(z) pointwise as A + 1. Moreover,

Z
j . ' ' =$(3)
||fuzJ”pp = f l£02) [P e ¢ axay = -%—I [£(2) [P e. Paxdy .
'S : A

For fixed z, ¢(§0 decreases monotonicaliy to ¢(z) as A + 1. Therefore

-¢(§0 increases monotonically to -¢(z) and by the theorem of Beppo Levi,

Lin J|£02)|[® = f l£2) [P e P axay = [l£@P
A1 g" o s

ice., |[£(22){|P_ converges to "f(zﬂ]p .
sP g -

(b) Let p =, If £(2) is in S, by definition f(z)e-¢(z)

i.e., given € > 0, there exists N such that for le >N

lf{z)l e_¢(z) < %—.
Let hlzl > 2N. Then [Az| > N and
lf{szl e-¢(lz)-< %‘r

+ 0 as ]z[ ey

B N ey

-
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| ”f()\z)'— £(2)] _ = sup{|£(rz) - £(z) | e““z)}
- S

=max ( sup {[£0ha) - £(2)[e™®@®)}, sup (|£02) - £2)[e* @Y.

|z|s2n |z|>2n

For Izl > 2N we have, since =-¢(2) < =d(Az),
|[£(x2) =~ £(2) |e~¢(z) < ,f(lz)le-t")(}'z) + ]f(z)'e_¢(z)‘ < -;—+ %: €.

On the other hand, since f(z) is uniformly continuous on |z| < 2N,

for A > A', |£(xz) - £(2) | <i—- where M = sup ¢(2).
_ |z|52N

Hence lim |[£(Az) = £ (2)f| o = 0.
A>1 ‘ S

Lemma 2: Let %—5 k < k' < k" <1, 'Then

(a) sup ¢(kz + u) < é(k'z) + cozistant',
[ul <2

(b) there exists M such that for ,zl >M
$(k"z) - ¢(k'z) > (k" - k") |z][ .
Proof: (a) Since ¢(z) is convex

k

kl
plkz + w) = o (K'2) + (1 =5 (Fo w)

> ilg = k'=k, k! . k"
<3 0(k'z) + (55D el w) < 9(k'z) + Sl w) .

L
Hence, sup ¢(kz +u) < ¢(k'z2) + sup ¢(-)-<-}-',:-_¥ u) < ¢(k'z) + constant.
Ju <2 uls1

(b) et z =tf, t >0, || = 1. Dafine h(t) = ¢(tf) = ¢(z). For fixed §

h(t) is obviously a convex function of the real variable t. From the

VO g u;-r_.—_..-‘.,.,.", e Latad r

-

I B R
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definition of convexity, it can be easily verified that

» - h(to) = h(t)
h(t) > h(t )+ L (t-t ) where L, = sup
o e % s t<t_ T

. Lt is a non-

decreasing function of t since for t < to < tl we have t = at + (l-a)t1
o

and by convexzity h(to) < ah(t) + (l-a)h(tl). Therefore

Rt o= ROE) h(t ) - h(t)
L = sup s < sup L -
tO "e<t to'-t -t<t- to"t
o 1
(a-1)h(t) + (1-a)h(t,) (1-0) [h(t)) - h(t)]
< sup = sup
S N e o
t<t1 o | t<tl [o)
[h(tl) - h(t)]
= sup - =L .
t<tl tl t tl

Moreover, since every exponential belongs to the space SP,

1im 91£§l.= 1im EéEl.= o and hence lim Lt = o, In particular, there
oo Itgl treo too

exists t' such that for t > t°

h(k"t) = h(k't) , ,
(k" - k)t :

. - h(k"t) - h(k't) .
For every &, IE' =1, let toﬂg) = mén{t} such that — k" = k¢t > 1.

We will show that the funétion to(ﬁ) is bounded from above. This will

give the.desired result, for suppose to(€) < M. .Then for all &, ]€| =1,

t > M implies

h(k"t) - h(k'tf)

(k"-kl)t >1 .

Since |z| = Itgl = t, we will then have for Izl > M

o(k"z) -~ 6(k'z)
TS O

e W™

~

ST R AL,
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We will show that to(E) is upper semi-continuous. Since {€||£| = 1} is
compact, this will imply that to(€) is bounded from above. Fix Eo' and

let € > 0 be given. Choose t, such that t (£ ) <t <t (E) + €. Since
1 o o 1 o o

tl > to(go) we have

¢(k“tl€o) = ¢(k'tl€°)
(k" = k')tl

> 1+68, 6>0.

¢(2) is convex in z, hence continuous. Therefore one can find 8' such that

¢(k"tl€) - ¢(k'tl€)
(k" - };')tl

_>_l+—2- wh_en'la-Eol < 8.

Hence for ]E - Eol < 6',-to(€) - tl'< tb(go) + €, 1e€ey ﬁo(g) is upper

semi~continuous. This completes the proof of Lemma 2,
We now prove the assertion of the theorem. By Lemma 1, it suffices

to show that given £(2z) in S?, £(x2] , %-5 A < 1, can be approximated by

polynomials in SP.

(a) Let 1 < p <o, Let A be fixed. Choose constants a, b, ¢ such that
A <a<b<c<1l. Let H = the space of entire functions g(z) such that

©  w ——-¢(b7)
| [ |g(z)| dxdy < ., We first show that f(Az) belongs to H.
-~ €0 -0 .

By Theorem 1.4 f(Az) can then be approximated by polynomials in H. We

then show that the same sequence of polynomials which approximates f£(Az)

in H, approximates £(Az) in SP.

0
2|

(1) ' £(Az) } [ £(Az + ret )rdrde
’ o o

e
e Tl

» T e e,

N LT
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hence _ ‘.
; 1 2% £
(2) |£(xz) | < %—J J |£(xz + re*®) | raxae "
o o
] P i@ -1 ¢(12+relel L o0z+ re'®) ?"

s [ j [f(lz' + re )Iep e rdrd6

o o

n ;
— sup ¢(Az+u) 1
P lulslli’ 1 ""p" ¢ (Az+u)
<e . = [£(Az + u) |e © aa_ - .
[ulst
i
Applying HOlder's dinequality to this last integral and then extending the )
domain of ir;tegration to the entire .plane, we have from (2) | )
. |!
1
=3 sup ¢ (Az+u)
<1
(3) [£(xz)| < kK e |uls le@ || .
: : 5°
Using the estimate from (3) and Lemma 2, ‘we have
" o o " -2- ¢,(sz
@) Jlgaa)||” = I [ [£xz) | e P dn_
H - =0
2 sup ¢ (Az+u) 2 2
’ 2 P lulgl . -'E_’ ¢ (bz) ' )
< K||£(2)|| H e a e an; i
- gP : z

are 2
—~ [¢(az)-¢(bz)]
< k, £(2)]]? P
: 1 P

dAz
S
=y 2 -2 [ (bz) ~P(az)] -2 [¢(bz)~¢(az)]
(5) = Kl”f(z)” " I e P dAz + " P o
e 8 % a)em |z]>m 2 &
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The first integral of (5) is finite by the M. L. formula. On the other

hand by Lemma 2, M can be-chosen such that for |z| > M

¢ (bz) - ¢(az) > (b-z)|z]

Hence ' .

- 2 [¢(b2)-¢(az)] N - 2 (b-a) |3
Jjep | dAz<IJep aa_ <.

.Izlml | z]>m

We have shown that given £(z) in Sp, l<p< oo, £(A2), %—5 A <1lis in

the space H. Let 21(z) be the sequeﬁce of polynomials which converges

to £(Az) in H. These poiynomials also converge to £(Az) in Sp. For as

above
1l 2n. .
£(Az) ~ P (z) = E-J j £f(A(z + re* )) - P (z + rele)rdrde '
n o n )
hence
(2) If()«z) - p"(z)l
1 ™ e L s timese 'l & g (Blatne )
- I J |f(A(z+re )) - P_(z+re ﬂ e P eP rdxrd8
™ n :
o .
l- sup ¢ (bz+u) 1l -
b lulsl 1 an = 5-¢(b(4+rc ))
<e = If(]\(z+re )) - P_(z+re ) e rdrd6.

Applying the Schwartz inequality to this last integral and then extending

domain of integration to the entire plane we have from (2)

il

-
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i- sup ¢ (bz+u)

(3) |£(rz) =~ Pn(z)l <Ke uls l|£(2z) - Pn(z)”H .

Using this ‘estimate and Lemma 2 we have

¢(cz) -
l£azy - Pn(z)”pp < K ll£0z) - pn(z)ng I‘e cz) ~¢(z)

S dAz
g P
< K2”f(l)\z) P (2)] -
But lim lf(kz)'— P (zﬂl =‘O and therefore lim If(Az) - P (zﬂ = 0.
- I .n H sl ' n 'Sp

(b) Jet p = o,
The proof for p = ® is essentially the same. As above, let A be fiﬁed.

We choose constants a, b, ¢ such that A.< a < b <c¢c < 1. Let H = the

0 ©

2 ~-2¢(bz

space of entire functions g(z) such that f f fg(z)] e B{hz)
. -0 O

L) ez s %. I £z + u)le—¢(Az+u)e¢(Az+u)dAu
lul<1
sup ¢(Az%u) sup ¢ (Az+u)
< e|u|<l sup |E(rz + u)[e—¢(Az+u) <Jle) ] e us1 .-
luls'l_ - S .~

Using this estimate and Lemma 2, we have

(2) ]If(lz)ui = f] lf(lz)lz e-2¢(b2)dnz < constant IJ 3“2[¢(b2)-¢(az)]dhz

= constant [ j J e-2[¢(bz)-¢(a?)]dAz + J f e—z(b-a)[zl dAz] <

|z]<m |z)>n

Hence f£(Az) belongs to H. By Theorem 1.4, f£(Az) can be approximated by

dxdy < =, We have

]
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polynomials in H. Let {Pn(z)} be the sequence of polynomials which
approximate £(Az) in H. Then {Pn(z)} convexges to f(Az) in Sm as well.

¥or as above we have the estimate

sup .9 (bz+u)

u| £l

|£Az) =P (2)] < xe! etz - @l

_and theréfore by Lemma 2
” f(AZ) - P (2) ” = sup If(kz) - P (2) le-¢(z)
n S n

_[¢ (Z) "¢ (CZ)] < K2 ”f(}‘z) - Pn(Z)“

h_

< Klllf(xz) £ Pn(z)llH sup e H'

and as before since 1im[lf(Az) - Pntzﬂ,H = 0, we have lim|[£(12) - Pn(zﬂl_w = 0,
na>® : ¢ n-> S

We have shown that given f(z) in SP, l <p£& m’f(kz), %-s A <1,
can be approximated‘by polynomials in Sp. As remarked above, since by
Lemma 1, £(Az) converges to f£(z) in sP as A + 1, this completes the
proof of Theorem 1l.5.

Remark: Theorem l.4 was recently proven by B. A, Taylor in [9] with
slightly different conditions on ¢(z), e.g., he does not assume every
exponential belongs to the spéce S. The theorem is given there for the
mach mo?e general n-variable case. Our proéé, discovered independently, |
is simpler and more direct for the single-variable situation, but

unfortunately it does not generalize.
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W '

2. on_the Existence of Solutions to the Equation P(D)P(2)£(z) = 0 i

For convenience we begin this chapter by restating notation pre- i
viously introduced. ¥We let Z = (zl,... zk} be a point in Euclidean ‘ J

K-space. N = the K~tuple (nl,... nk} of non-negative integers. We write

Moy gk, 2 iy - |
2 TEE R k :

and
k

= I g
i=1

P(Z) = P(zl,... zk) will always denote a polynomial Z a_HzN (0 =2 [N| < L)
N :
and P(Z) the polynomial obtained from P(2) by replacing each coefficient

3
8z

e S

e ) we shall mean
8z

2 k

by its complex conjugate., By P(D) = 5(32 ’
1

the differential operator obtained from ﬁ(z) by replacing each zi by 5§—u
: i

We recall some basic facts about the Fischer space E}Z of entire func~

tions mentioned in our introduction.

E}Z = the Hilbert space of entire functions f(z) such that

| | 2
2 _ 1 12,12l "
ey =i [ e %l an, <o

As usual, the inner product of two functions £, h in :33 is defined by

. 2
<E,h) = [ f(z;ETEBe"lz’ dn, -

ﬂ“lp

We let I'I2
A
> _.Ajzl

K= {$(2)|¢(2) = Ofe 1¥
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It is clear that K C }z and that if ¢(Z) is in K then every exponential 5
; 1

|

i

times ¢(Z) is also in 32' It can easily be verified that the operators
; = - O 2
"multiplication by P" and P(D) = P[-gz—,... 3*2.—-1 are formally adjoint.

1l k
Thus, given P(Z) and functions ¢(2), h(2) such that ¢(z') is in K, h(2)
is in :-'J-Z and P(D)h(2) is in SLZ, then

(1) <P(2)$(2), h(z)> = {$(2), P(D)h(2)) .

D. J. Newman and H. S. Shapiro have shown [7] that in fact these operators

are truly adjoint, i.e., if P(2)F(%) € 3, and h(z) ¢ ‘32, F(z) entire,

then

e wme o

(2) <P(Z)F(Z), h(2)> = <F(2), P(D)h(2)) .

It is clear that (2) implies that there is no non-trivial solution within

the Fischer space to P(D)g(2) = O where g(Z) = P(Z)£(2), £(2) entire.

For from (2) we have

ez e@)® = <p(z)£(2) ,Pi2)E(2)>
3
VA

= <£(2) ,B(D)P(Z) £(Z)) = <£(2Z), 0> =0 .

Hence Jlg(z”] = 0 and g(2) = 0.

We now ask whether there are any non-trivial entire solutions to

P(D)P(Z)f(Z) = O ,
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where we no longer require that P(Z).£(2Z) belong to ?}Z. For K = 1 the
‘result is known. For the sake of completeness we include the proof.

Theorem 2.1: Let K = 1, and assume that £(Z) is entire. Then

P(D)P(z)£(Z) = O implies f = 0.
k

- N < ; .
Proof: let P(z) = | bz, b, =1. Let g(z) = P(z)£(2). By definition

k=0

E(D)g(z).= 0 implies that g(z) is an entire solution to the ordinary

differential equation

(1) 'bog(z) + blg'(z) + eas + én&z) =0 s

We show that an entire solution to such an equation can grow at most

exponentially. We let

= g(z), y, = g (@) rese ¥ = $z)

Yo

Y= (Y ¥y eees Yy )

ay _ ' _ o B _
'a'z_— (yl;yzpo-t YNJ o {eryzf-oo YN_lf boyo i blyll".

-b

N-1¥n-1]

A = the N X N matrix (aij} where

) Owhen j #1i + 1
for 1 < i <N, 1s3j<N, a; s =
' J l when j =41+ 1

and for . 1 ¢ j < N, aNj = ;bj-l 4

-

s

TR S
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(L) can then be expressed as

: ' day _
(2) . . = = B

- where multiplication is ordinary matrix multiplication. One further

defines

el =T lygle ISH= T Is,l, flall=Fla,l -

i=0 i=1

It is clear that “%—E—“ = ”A” ”Y” and since A is a constant matrix we have

e —p e

. b
’ .
' | |
(3) X)) = MIIYII "
T ¥
Letting z = rele, -a-;i = a—?:-lé e and “ “ ” Since

E‘;“YH} & ”%” (see {2]., Pg. 18) wg have from (3)

@ | |52l [< mle]

Let Z, be any point for which g(z) = Yo # 0. Then

ll¥ (2, | |z )| IIY”

[z <. ”Y”[ |2

dr < M ar = M(|z] - [z,]) .




Hence “Y(z)||< constant eMIZI , so in particular, |y0| = |g(z)] <
< constant eMIZl,' It then follows that g(z) is in'~3% and since
g'(Z) = P(z)f(z), g(z) = 0.

Wé generalize the above theorem.

Theorem 2.2: Let k = 1, assume that £(z) is entire. Then

n
L P.(D)p.(z)£(z) = O implies f(z) = O.

. i i

i=1 :

Proof: As above we show that |f(z)| < constant eM,zl. This implies

that £(z) € K, and B(z)£f(z) ¢ Efz. Therefore,
I

n n n {
Y lle.flP = L <p.(2)E(2),P.(D)E(2)) = | (E(2)D,(D),P, (2)£(=)
=1 * 0 = 7 & i=1 * *
n -
= {£(z), [ P, (DIP (2)f(2)} =0 .
i=1
v n .
Hence ) [Ipif]‘ = 0 and £ 2 0. Let N, be the degree of P, (2),
i=1 ‘

A

1 £ i £ N, and suppose that N = Nn > Ni for i < n. Assume

N.
1

n n
) ] B,0p (f(z) = ] [ [ b Dr (2)E(z))] =0 .
- Sl i=1 k=0 i

Consider any term bk_Dk(Pi(z)f(z)). By Leibnitz's rule we have
i

k - —-—
b, D(P. (2)£(z)) = b,
A i

; : th . .
Since N > Ni' i < n, the only term involving the N derivative of f(z)

will ‘be

66

[Pi(z)f(k)(z) + kp;(z)fﬁ("l)(z) Fouut 15’;)(z)f(z)] .

e

i TIPS —
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N : : N ' N-
bND [Pn(zlf(ZH = bN[Pn(Z)é)(Z) L ; NPn(.z)f( 1)(z)_ +o..+ N! £(2)] .

Thus
v = N
(2) _izl P, (D)P, (2)£(2) = BP (2)f (2)

N-1 g e
+ B (2)E T (2) 4e.at A E(2) =0,

vhere np, 0 £ p £ N~1 is a polynomial of degree at most p, Choose R

such that fox lzl > R, Pn(z) # 0. For such z, we have

N) Ly iN-D) 3
bNPn(z)_[é (z) + BN_l(z)é (z) +...+ B £(2)] =0

-

. A _(z) i :
where BP{zJ = BQE;TET and [Bp(zjl is bcunéed. Hence for Iz] > R.we have
(3) {f'm(z) + BN_l(z}fm'l)(zj ook Bof(z)] = 0.

Recalling the notation from Theorem 2.1, (3) may be written as % = AY
where A now is the matrix (aij) such that for 1 < i <N, 1 £ 3j <N,
Owhen j# i+ 1

B =
J 1 when j=4i+1

and for 1 £ j £ N, s =-_Bj-1(z)° Thus for.

[zl > h,l]A|]= Z ,aij, < M and exactly as in the proof of Theorem 2.1,

| el] < DN =, (2 = xed?)
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“Yl|= Zo lYil = ) lg"(z)| < constant e for |z| > R.
i= i=0 % :

Thus in particular, lyo] = lg(z)] < constant elel for |z| > R. For

]zl % ﬁ, Ig(z)l is obviously bounded because of continuity,

Note: It should be clear that the assumption Nn > Ni, i < n, was unnecessary.
Its only purpose was to simplify our notation.

We now consider in more general terms the statement
(a) P(D)P(2)g(Z) = 0 => g(3) = 0

where P(Z) is again any polynomial. We have shown that for k =1, (A)
is true if we ask that g(2Z) be entire. One might ask whether (A) is still
true if we ask only that P(2)g(2) be entire. Clearly this is false. Let

) Z :
k=1, P(z) =1 -z, g(z) = le_ ~ . P(2)g(z) = e” and BP(D)P(z)g(z) = O.

We now ask whether (A) is true when P(z) is any formal power series. 2as
seen by the above example, thié is clearly false. In.that“case the power
series g(z) has in fact a positive radius of convergence. We show, however,
that for a certain class of polynomials (A) is true for any formal power
series g(Z). This, of course, implies that for polynomials in this class
no non-trivial entire solution ¢g(2) exists which satisfies E(D)P(ZJQ(Z}.= 0.

N.

Fewe n,

). Suppose there are

Theorem 2.3: Let P(2) = z ij J, Nj = (n,

jl jk

e

positive constants ayr Bprees Ay M, such that ‘ain.. = M for all j.

= ji
i=1
Then if g(2) is any formal power series '

P(D)P(2)g(2) = 0 => g(2) =0.




69

-]

Proof: g(2) may be written as. Z Qm(z) where Qm(Z) is the sum of
L i | k

i 7
monomials z diZ . ’ Li' = (21,... Lk), such that Z aili = m. Consider

' L 4N, I L, N,
any monomial, constant 2 I of P(Z)Qm(Z). Either P(D)2 &= o

~ L, 4N, L, NN, k '
or B(D)z J =) c.lz 3 3%y, since § a.(2 +n.. -n.,.)
3t J. jmp 1 Ji j'i

=0

k
= z ai&i = m, there can be no cancellation of terms between E{ZJP(Z)Qh(Z)
i=l '

and g(D)P(Z)Qm,(Z), m#¥ m'. Now let n be arbitrary and assume

n o
P(D)P(2)g(2) = B(D)P(2) ) Q (2) + B(D)r(z) 0. (z) = 0.
] m=0 m=n+1

Each of the above terms must vanish separately. Hence

n
P(D)P(2) ] g (z) = 0.
. m=0

n
But since the a, are positive, X Qm(Z) is a polynomial and therefore in
m=0 - :
the Fischer space. Therefore, as in Theorem 2.1, Z Qm(Z) £ 0. Since n
' m=0

was arbitrary, g(2) £ 0.

Remaxk: The above class of polynomials clearly includes any homogeneous
polynomial. In the case k = 2, the condition on P(z) = z zi z; has
’ krt

a simple geometric interpretation. It simoly means that the points
(k,2) lie on a line of negative slope. Theorem 2.3 can easily be

generalized. &

Theorem 2.4: Let Pr{Z) = Z b§ z 7 and assume there exist positive con-

k 4

¢ Mr such that Z ainji =M for all j. Let g(2z) be

stants a rpoeee a]\

&
i=1
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‘any formal power series. Then
n —
Y B_(D)P_(2)g(Z) = O implies g(z) = O.
: 5 ¥
r=1
Proof: The proof is almost identical to that of Theorem 2.3. We let
(-] by - L.l
g(z) = Z. Qm(z) where Qm(Z) is the sum of monomials constant X di,Z = 7
n=0
k . e
[}
Li = (21,... Rk) such that Z aili = m., As above, we note that there can be
3=l n _ ©n _
no cancellation of terms between ) p_(D)P _(2)Q (2) and ) Pr(D)Pr(Z)Qm,(Z),
v r=1 r=1 ;
m# m'. Let n' be arbitrary and assume r
n
) P_(D)P_(Z)g(2) . -
r=1 ¥ o : '
) ) } Foe,@ }
- P (D)p_(2) (z2) + P_(D)P_(2) (z) =0 .
xr=1 = o m=0 Qm r=1 o o m=rf+1 Qm

Hence the above two terms must vanish-separately, and, in particular,

n n' .
Z P_(D)P_(2) z Qm(z) = 0. But since the a. are positive,
=1 Y r e i

n' -
2 Qm(Z) = Q(2) is a polynomial and therefore in the Fischer space. We

m=0

then have
3l 12 = 3
P _(2)9Q(2) = K<p_(2)0(2),P_(2)Q(2)>
yml T ¥ =1 T x
n - n : .
= [ <o@) P (0P (2)0(2)) =<o(z), [ P DIP_(200(2)) = (Q(2),0) = 0.

r=1 r=1




2
Hence ”Pr(Z)Q(ZH|H_ =0, 1 £rsn, and Q(%2) = 0. Since n' was arbitrary
Z .

Q(Z) £ 0. This cbmpletes the proof of Theorem 2.4;

We conjecture that when P(Z) does not satisfy the condition of
Theorem 2.3, then there always exists a non-trivial formal power series
g(z) satisfying F(D)P(Z)gtz) = 0. While for some individual cases this
is easy 1fo see, we have not been able to prove this in general.

Finally we rema;k that given a specific polynomial one &an sometimes
show that no non-trivial entire function g(Z2) existslwhich satisfies
§(D)P(Z)g{2) = 0. For example, let k = 2, P(2) = zi ¥‘zi + Ze We use
the shift rule |

oz +p=z az_+Rz
152 & 1758 =
h(zl;zzl) = e P(Dz + “'Dz + B)h(zl,zzj . ,

1. 2 : - 1 2

Now suppose E(D)P(z)g(ZJ =0 where g(2) is entire, g(2) Z 0. ILet

g(2,2))
f(zl,zz) = ) -Jiz . Then
271 4 72
a
% " '%Zf%zz
P(D)P(Z)g(2) = P(D)P(Z) e f(erZZJ
1 1
~ —Z 4 -2 2
= e & A 49 [-93-+ _Q_,](ZZ + z, + zz)f(zl,z ) =0,
dz., - dz 1 1 “
1 2 . '
and therefore
a2 d 2 ;
[— + — 1(z; + 2, + 2 )f(z_,2) =0.
2 ' 1 1 2 i 2
dzl dzl .
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Let W, ™ zl + %-
2 2 4°
Then
2
[__c_i__._!_ 2. Il(z2 +z + 2z )f(z, ,z.)
2 1 3 2 1°2
dz dz :
. 1 2
2 .
da 2 1 1
= ——-‘!‘ — . — — = -
[dw2 .y ](wl - wzjf(wl S wz + 4} 0
1 2
: m n
t = T
Le f(wl,wz} z cmn“l W,

1 y R l.m P
f(wl - 5 w_ + Zﬂ = z C (w ) (wé + 4) o

We note that w: + w2 = Pl(wl,wz)' satisfies the condition of Theorem 2.3,

and, as in the proof of that theorem, it follows that

' lm n
I ¢ _(w -3, +D" =0,
mn ™12 273

i.e.,; f(wl,wb) cannot be expanded in a powar series about the point

1 1 = "
(2, =gy Hence f(wl,wzJ cannot be entire. Since
_ , g{wl;wzJ , _
Flw, ,w.) = : g(w,,w, ) cannot be entire. Clearly this example
! e - x . & 1 172
’ & 21 4 2.

is very special. It is conjectured that for any polynomial P(Z), if g (2).

is entire and satisfies P(D)P(2)g(Z) = 0, then g(2) = O.

 ppie
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