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Introduction

In ﬁhis paper we find precise conditions which insure
that a map between two Banach spaces is a global homeomorphism.
We then study the related problems of global univalence and
surjectivity. We approach each of these problems by finding
necessary conditions and then proceed to determine any
additional assumptions that are needed to insure the suffi-
ciency. Counterexamples are given whenever stated hypotheses
cannot be weakened.

Preliminary analytic and topological results are
developed in Chapter I.

éhaﬁter IT is concerned with the development of a general
method for attacking the global homeomorphism problem. More
precisely, we apply Theorem 2.2.1 to show that the global
homeomorphism problem is equivalent to the more fundamental
topological problem of finding precise conditions which
insure that a map between two Banach spaces is a covering
space map. We then solve this problem by proving Theorem
2.2.2: necessary and sufficient conditions for a map F
between two Banach spaces to be a covering space map are
(i) F is a local homeomorphism and (ii) F has the line
lifting property [Definition 2.2.1]. We further reduce the
problem by showing that a local homeomorphism has the line
lifting property if and only if it satisfies a limiting

condition which we designate by (C).
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The remainder of the chapter is devoted to finding
analytic hypotheses which insure the verification of
condition (C). Among the theorems proven are the
Hadamard-Lévy and Banach-Mazur theorems (see below).

Many additional results are proven including a theorem

on gquasiconformal maps between Banach spaces. The class

of quasiconformal maps was first introduced (for RB) by
Lavrent'ev in [19]. 1In this paper he conjectured that
every locally homeomorphic gquasiconformal map of R3 into
itself is a global homeomorphism. Using the concept of
modulus [29], this conjecture has recently been verified

by Zoric [31], and, in fact, shown to be true for RN, N > 3.

Our methods yield a more general approach to the global
homeomorphism problem when contrasted to the earlier resolu-
tions of this problem. These results ([1l], [7],[81,[15],[%0])
- were based on ideas that can be traced back to a paper of
Hadamard in 1904 [15]. In this paper he proved the follow-
ing theorem: Let F: RN et RN > Cl(RN) and suppose that its
Jacobian determinant is never zero. Then if

o

J inf . l/]l[F‘(x}]-1||ds=W, F is a global diffeomorphism
02 i¢xLAE§ itself. The proof of this theorem was based on the
use of the monodromy theorem and the fact that the hypotheses
imply that the image of any line of infinite length is a
(rectifiable) curve also of infinite length. Using
Hadamard's ideas, Lévy [20] generalized this theorem to

function' spaces. The same method of proof was used by
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Cacciopoli [7] to show that if F is a compact perturbation

of the identity such that (i) F is a local homeomorphism and
(ii) ||F(x)|| =» = as ||x||] = = , then F is a global homeo-
morphism. In 1934 Banach and Mazur [l] proved a very general
result using the monodromy theorem: if X and Y are metric
spaces, then a local homeomorphism F between X and Y is a
global homeomorphism provided F is a proper map. In Theorem
1.4.7 we shall show that this result implies Cacciopoli's
result.

More recent are papers of Browder [4] and John [17].

The paper of Browder is concerned with determining conditions
“for .a local homeomorphism between general topological spaces
to be a covering space map. By specializing to Banach spaces
we obtain simpler and more readily applicable conditions

than those in [4]. ‘VWen F is a local homeomorphism between
two Banach spaces, John uses a general mean value theorem
due to Nevanlinna to weaken the differentiability of F and
obtain an extension of the Hadamard-Lévy theorem. By using
the same mean value theorem, these results also follow

from our work.

In Chapter III we look at the global univalence problem
from two viewpoints. First, in view of the invariance of
domain theorem, we assume that a map F: D €X — Y is a local
homeomorphism (X, Y Banach spaces, D open and connected).

In this case we again use the theory of covering spaces to

reduce the problem as was done in Chapter II. However, since




ix

F(D) is not necessarily simply connected, Theorem 2.2.1

'is not applicable and so we must revise the methods of
Chapter II. The major new hypothesis added is

(¥*): F is one-one at some point. We then show that the
theory of covering spaces becomes applicable and the

problem is reduced to determining when (*) holds and

(**) (D,F) covers F(D). We solve (**) by introducing an
appropriate modification of condition (C) of Chapter II.

The new condition is designated (C). We then introduce
analytic and topological hypotheses which insure the verifi-
cation of (*). As a consequence we prove Theorem 3.2.8,

a quantitativé estimate on the size of the neighborhoods
involved in the inverse function theorem [see 30].

The second point of view studied involves removing

the a priori condition that our maps be local homeomorphisms.
.For example, in Theorem 3.3.3 we use simple methods of criti-
cal point theory to show that a monotone, Cl map F is
globally univalent on D provided Ker [F'(x)]* = 0 for all x e D.
Most previous results on global univalence ([2, pp. 133-

141 and [24]) were based on the use of the Brouwer and
Leray-Schauder degree. However in [12], Efimov establishes
deep global univalence results for maps of R2 into itself
using differential geometric techniques.

In Section 4 of Chapter III we use the degree theory
of Leray-Schauder and the generalized degree for Fredholm

maps of index zero to prove results on surjectivity of maps




such as Theorem 3.4.1: 1if F is proper and there is a point p

so that d(F,p,B) # 0 whenever F_l(p) <€ B, then F is onto.
As corollaries we derive a theorem of Cacciopoli [31lb] and
a theorem of Nijenhuis and Richardson [22] which states that
a Cl map F of RN into itself is surjective provided F is
proper and the Jacobian determinant of F is non-negative.

Finally we seek answers to the question of the preserva-
tion of global univalence and surjectivity under uniform
limits [see 8]. We assume that the convergence is normal
(i.e., uniform on bounded sets) and in Theorem 3.5.2 we
establish the following necessary and sufficient condition
for the limit F of a normally convergent sequence of
univalent maps Fn to be univalent (where Fn and F are compact
perturbations of the identity): for any bounded domain D
and any point a,F (x) # a on D implies F(x)#a on D. We then
show that if a map F is continuously differentiable and if
the Jacobian of F is non-negative, then the above condition
is satisfied provided F has isolated zeroes (i.e., the
solutions F(x) = y are isolated for each y). From this we
derive Carotheodory's theorem which states that a normally
convergent sequence of univalent and analytic maps of ¢N
into itself has as a limit a map which is either univalent
or has Jacobian determinant identically zero.

Next, for the question of the preservation of surjectivity
in the limit, we show that if each Fn is surjective, has

the line lifting property and converge normally to a map F
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for which F-l is locally bounded, then F is surjective.

From this we derive an extension of the Banach-Mazur theorem:
a Cl monotone map F of a Hilbert space H into itself is a
homeomorphism provided (i) F is proper and (ii) Ker[F‘(x)]*= 0

for all x e H.



CHAPTER I

DIFFERENTIAL CALCULUS AND TOPOLOGY

l. Introduction

Chapter I will concern itself with the analytic and
topological results that are necessary for the reading of
this thesis. The chapter is divided into three sections:
calculus of nonlinear maps, classes of nonlinear maps and
topological results.

Since only the most elementary properties of linear

operators are used, we shall not find it necessary to devote
a separate section to them, but shall instead introduce
results where they are needed.

We use the notation || || to denote the norm associated ;

with a Banach space, and if the sequence X and x beleng to
this Banach space, then x —» X means ||xn - x|| >0 asn» =
unless another type of convergence is specifically described.

Throughout this thesis, all maps are continuous and

R R R

X, Y will denote Banach spaces (unless otherwise mentioned) .



2. Calculus of Nonlinear Maps between Banach Spaces

(For general references see [10].)

Suppose X and Y are real Banach spaces. Let F: D€ X+ Y

be a continuous map, D open.

Definition 1.2.1 F is (Frechet) differentiable at Xy = 0

if and only if there exists a linear operator (denoted by

F'(xo)) of X into Y so that:

F(x0+h) - F(xo) - F'(xo)h = R(xo:h)

where ||R(x0:h)|f
lim BT
| |n| |0 i

In this case F'(xo) is called the (first) derivative

of F at xo.

If DS X is an open set and F is a map of D into Y,
then F is differentiable in D if F is differentiable at
0 e D.
F is said to be continuously differentiable in D (for

every x

short, F e C'(D)) if F is differentiable in D and the map J
F': x— F'(x) 1is a continuous map of D— L(X,Y), the space
of bounded linear maps of X into Y.
If the map F': D— L(x,y) is differentiable, then F
is said to be twice differentiable, and the map
F": D —L(X,L(X,Y)) = L(XxX,Y) 1is called the second deriva-
tive of F. If the map F" is also continuous, we say that

F e CZ(D). Higher derivatives of F are defined inductively

in the same manner.



As with differentiablity one can also generalize the
notion of complex analyticity to (complex) Banach spaces,

i.e., if X and Y are complex Banach spaces then:

Definition 1.2.2 If DS X is open, then F: D » Y is complex

analytic in D if and only if for every x € D, F(x+ty) is an
analytic function of the complex number t for all directions

y (t sufficiently small).

It can be shown that a complex analytic map is Frechet
differentiable and has derivatives of all orders. Also one
has a direct analog of the Cauchy Integral Theorem for such
maps [25, p. 38]. 1

Of use to us will be the

Chain Rule for Differentiation. If H=F o G, where i

G is differentiable at a point x and F is differentiable

at G(x), then H is differentiable at x and H'(x)= F'(G(x)) i

o G'(x) [10, p. 148]. i
Amap F: D € X = Y is a local homeomorphism (diffeo- |

morphism) on D if and only if every x € D has an open 5

neighborhood W about it so that F(W) is open and Ffw is

a homeomorphism (diffeomorphism of W onto F(W). The

"Inverse Function Theorem" gives us sufficient conditions

for a map to be a local diffeomorphism.

Theorem 1.2.1 Let D £ X be open, F: D — Y continuously

differentiable. If F'(x) is an invertible linear map of
X onto Y for every x € D, then F is a local diffeomorphism

on D.



Proof: [10; p. 268]:
We ?emark that a local homeomorphism on D is also
an open map, i.e., the image of an open subset of D
is an open subset of Y. This follows from the definition

of a local homeomorphism.

3. Classes of Nonlinear Maps

In this section we consider several classes of
(nonlinear) maps between Banach spaces and some of their
associated properties. Although these classes of maps
- which we shall subsequently define are of interest in
themselves, we shall only consider those properties of
these classes which are needed for the presentation of
the results of Chapters II and III.

The first class of maps which we shall consider

is the class of compact maps.

bDefinition 1.3.1 Let X and Y be Banach spaces. F: X— Y

is compact if and only if it maps bounded sets of X into

relatively compact sets in Y.

Since every continuous map of BN into itself maps
.bounded sets to bounded sets, it follows that such maps
are compact. Thus the class of compact maps may be
considered as a direct generalization of such finite
dimensional maps. In fact, many of the topological
properties of maps from RN into itself have direct analogs

in the class of compact maps. For example the Brouwer




fixed point theorem holds verbatim for compact maps as

was discovered by Schauder. This and other topological
properties of compact maps follows from the Leray-Schauder
degree theory which we shall discuss in Section 3 [2, pp.
97-103] .

We have observed that every continuous map F of RN
into itself is a compact map. Thus F = I + (F-I) is a
compact perturbation of the identity, i.e., of the form
I +C, C compact. If furthermore F is differentiable,
then F'(x) = I + (F'(x)-I) and by the argument given
above, F'(x) is also a linear map of the form I+C, C a
linear compact map. The next theorem shows that this is
also true for differentiable maps F: X —» X (X a Ranach
space) of the form I + C, i.e., that F'(x) is also a

linear compact perturbation of the identity.

Theorem 1.3.1 If F: X — Y is differentiable and compact,

then F'(x) is also a compact map.

Proof: [27, p. 51].

The converse of this theorem is not, in general, true.

These last considerations and the following observation
will lead us to define a more general class of maps, the
-class of nonlinear Fredholm maps. Recall that a linear map
of X into itself of the form I + C, C a compact linear map,
is a linear Fredholm map of index zero. Thus we shall
define a nonlinear Fredholm map as a continuously differ-

entiable map whose derivative is a linear Fredholm map.




More precisely:

Definition 1.3.2 A linear map L: X — Y is a Fredholm

map if and only if
(1) L has closed range
(2) L has finite dimensional kernel and cokernel.

The index of L (ind L) is defined as dim ker L -

- dim coker L, and is a continuous function from the set
of linear Fredholm maps into the integers.

If F: X — Y 1is continuously differentiable and
if F'(x) is a linear Fredholm map for each x € X, then
again, F is called a nonlinear Fredholm map and ind F is
defined as ind F'(x). ind F is well defined (i.e.,
independent of x) since ind F'(x) is a continuous function
of X into the integers and so it is constant.

Note also that if F is a map satisfying the hypotheses
of Theorem 1.2.1, then F is also a Fredholm map of index
zero. _

We were led to the concept of a nonlinear Fredholm map
from the fact that the derivative F'(x) of a map F = I+C
is also of this form, and so F'(x) is, in particular, a
Fredholm map (of index zero). If we consider maps F: X —» X*,
X* the dual of X, we are led, by analogous reasoning, to
that class of maps whose derivatives F'(x) are symmetric
linear maps, i.e., L: X—%» X* is symmetric if
(Lx,y) = (Ly,x), ¥x,y € X where the notation (Lx,y) indicates

the value of the linear functional Lx at y. We shall see




that this property characterizes the class of maps known
Ias gradient or potential maps.

Let X* denote the dual space of the Banach space X.
For y € X* we use the notation (y,x) to mean y(x) for x e X.
If x is a sequence in X we say that X converges to x

n
weakly if (y,x_-x) — 0, ¥y ¢ X",

A set D& X is said to be weakly (sequentially) compact
if every sequence of elements of D has a weakly convergent
subsequence whose limit is a point in X.

The following theorem will be useful to us.

Theorem 1.3.2 A set in a reflexive Banach space X is

weakly compact if and only if it is bounded.

Proof (11, Part I, p. 68].

We now define the concept of a gradient map.

Definition 1.3.3 F: X — X* is a gradient map if and only

if there is a real valued function f: X — B so that

f(ut+tv) - f(u)

(1) 1lim = (F(u) ,v), V¥Yu,v e X.
t>0
We write F(u) = grad f(u).

Although there are many characterizations of gradient
maps [2, pp. 107-116], the following one shall be especially

useful for us.

Theorem 1.3.3 Let F: X — X € C'(X). F is a gradient map

if and only if F'(x) is a symmetric linear map for each x e X.

Proof: [27, p. 56].

A class of maps that has many applications to nonlinear




partial differential equations is the class of monotone

maps [18].

Definition 1.3.4 F: X — X  is monotone if and only if

(F(x) - F(y), x-y) > 0, V¥x,y € X. If the inequality

is strict, F is said to be strictly monotone.

*
Theorem 1.3.4 Let F: X— X e C'(X). Then F is monotone

if and only if (F'(x)y.,y) > 0, ¥x,y € X. F is strictly

monotone if and only if the strict inequality holds.

Proof:

Suppose F is monotone. From Definition 1.1.1:

F'(x)ty + R(x;ty) = F(x+ty) - F(x), £ > 0.
Thus
R(x;ty)

(F'(x)y,y) + ( e g3 0

~Let t > 0 and we have that (F'(x)y,y) > 0.
Conversely, suppose (F'(x)y,y) > 0. Let

x(t) = (1-t)y + tx and let £ e X** be the linear functional
identified with x-y € X under the imbedding J of X in X**
given by (J(x),w) = (w,x), w € X*. Then from the mean value
theorem [27, p. 37] we have (F(x)-F(y) ,x~-y)=
= (F'(X(E)(x-yl,x-y) > O (Strictness follows from the

strictness of the inequalities used in the above arguments.)

We say a map satisfies condition (E) if X ~—> X weakly

and F{xn) —»> y strongly implies F(x) = y.




Condition (E) is satisfied by a large class of elliptic

differential operators and, as the next theorem shows, by
monotone maps. (Note that if F is a map between finite
dimensional Banach spaces, then (E) is equivalent to the

continuity of F.)

Theorem 1.3.4 Let F: X-e-x* be monotone. Then F satisfies

condition (E).

Proof:
Let x — x weakly, F(xn) —» y strongly. For any

v € X we have:
0"z (F(v) = F(x ), v-%,) — (F(V)-¥, V-X) .
Thus (F(v)-y,v-x) > 0, ¥v € X. Choose v = x-1z, X > 0.

Then A(F(x-Az) -ly, 2) < 0 and so (F(x-At)-y,z) < 0, ¥z € X.

Letting A > 0, we have (F(x)-y,z) < 0, Vz e X and so F(x)

I
<

Definition 1.3.5 A real valued f: X —- R is convex if

and only if £((1-t)x + ty) < (1-t) £(x) + t f(y) (0 < t < 1)
Yx and y € X. f is said to be strictly convex if the strict

inequality holds for 0 < t < 1.

The next theorem describes the relationship between

gradient, monotone and convex maps:

Theorem 1.3.5 Let f: X = R € C'(X). Then f is (strictly)

convex <=> grad f is (strictly) monotone.
ProQf:

Suppose f is convex. Then




(1) E(y+ti{x-y)) < (1-t) £(y) + t £{x)

From Definition 1.3.3, equation (1), we have that

o T f(y+t(X~yL) = £ - (grad £(y), x-y) .
| £+0

From (1) and (2) we have

(1-£)fly) + tE£(x) =

(4) (grad f(y),x-y) < lim 5

t>0

Similarly

(5) (grad f(x) ,y-x) < f(y) - £(x)

Adding (4) and (5) we have (grad f£(y) - grad f(x),y-x) > 0,
thus grad f is monotone. (The strictness follows from the
strict inequality in (1) and thus (4).)

Conversely, suppose grad f is monotone. Let
¢(t) = £(L(t)), where L(t) =y + t(x-y). Then from the mean

value theorem we have

(1) ¢(t) - ¢(0) (> ¢'(tl) 7 0 <t <t and

(2) ¢(1) - ¢(t) (1-t) ¢'(t2), £ < &, < 1.
However

(3) ¢'(t) = (grad £(L(t)) ,x~y)

(grad f(L(t))r L(tl)“L(tz))/ tl-tz .

Upon subtracting (2) from (1) and using (3) we have

(4) i(t) - ¢(0) = (P(l) = ¢(t)
t 1=t

= (grad f(L{tl}}—grad f{L(tz}), L(tl)-L(tz))/ tity .

£ - gx)-£(y)

= eE——ou T e SR B iR S o o mmmmeg gl

P P T T



Since t;=t; < 0 and grad f is monotone, the right-hand side

of (4) isli 0, and the left-hand side is equal to
f(y+t(x-y)) - £(y) - t(£(x)-f(y)). Thus (4) yields
f(y+t(x~-y)) < f(y) + t(f£(x)-f(y)) and so f is convex.

(Strict convexity follows from strictness in (4).)

The next class of maps we define is the class of quasi-
conformal maps. This class was first introduced for the

special cases of R2 and R3

by Lavrentiev [19], where
he also proves global homeomorphism results for them.
This class of maps proves to be a useful generalization of

the concept of a conformal map.

Definition 1.3.6 Let F: X — Y e C'(X) and also F'(x) is

an invertible linear map of X onto Y. F is quasiconformal
if and only if there is a number K > 1 so that

HE )| [ IF 017 | < K, ¥x € x.

For a very complete exposition on quasiconformal maps

see [29]
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4. Topological Results

A. Covering Spaces

Suppose X and Y are connected and locally pathwise

connected topological spaces, F: X — Y continuous.

Definition 1.4.1 (X,F) is a covering space of Y (and F is

then called a covering map) if and only if every y € Y has
an open neighborhood U about it such that F-l(U) is the
disjoint union of open sets o, in X, each of which is

mapped homeomorphically onto U by F.

Note in particular that if (X,F) covers Y then F is

a local homeomorphism.

Theorem 1.4.1 If (X,F) covers Y then F has the

following properties:

(i) Unique path lifting: If F(xo) = ¥, and L is a path

in Y (i.e., a continuous map of [0,1] into Y) with L(0) = Yor
then there is a unique path P in X with P(0) = X, such

that FeP(t) = L(t) .

(ii) Covering homotopy property: Suppose L, and L, are
paths in Y with fixed endpoints which are homotopic (with
fixed endpoints), then these paths can be lifted to paths
Py and P2 in X which are homotopic with fixed end points.
and L

(Recall that paths L in Y with Ll(O) = LZ(O)

1 2
and Ll(l) = L2(1) are homotopic with fixed endpoints if

there_is a continuous map H: [0,1] x [0,1] — Y with




H(t,0)

Lo(t), H(t,1) = L, (t), H(O,u) = LO(O) and
H(l,u) = Lo'u).)

(iii) card F_l(y) is the same for every y e Y.

Broofs {14, p. 18].

Theorem 1.4.2 Let F: X — Y be a local homeomorphism, and

let L(t), 0 <t <1, be a path in Y. Suppose Pl(t} and Pz(t)
are paths in X such that F o Pl =L=F e P2‘ If

Pl(E) = Pz(E) for some 0 < t < 1, then Pl(t) = Pz(t), Yt.

Proof:
Let S = {t | P, (t) = P,(t)}.

By hypothesis S is nonempty. Also since P, and P2 are I

1
continuous, S is closed. Thus, by connectivity, it suffices

to show that S is open. Let t1 € S. Since F is a local
homeomorphism, 3 a neighborhood O about Pl(tl) (= P,(t;)) j
so that F maps O homeomorphically onto F(O), an open |
neighborhood about L(t;). Thus P,(t) = P,(t) for |t-t, |
sufficiently small and so S is open.

Definition 1.4.2 A space Y is simply connected if and only

if every closed path in Y is homotopic to a point.

Theorem 1.4.3 (Monodromy Principle). Let X be a simply

connected space. Assume that we have assigned to every p € X
a non-empty set Ep. Assume furthermore that we have assigned
to every point (p,q) of a certain subset D of XXX a mapping ¢p

q
of Ep into Eq » in such a way that the following hold:



(1) D is a connected neighborhcocod of the diagonal
(all pairs (p,p)) in XxX.

(ii) Each ¢pq is a one-one map of Ep onto Eq; ¢pp is

the identity map.

r ¢ are all definied, then

(1ii) If ¢, , ¢ -

%pr T %qr ° %pq

gr

If (i)-(iii) hold, then there exists a map Yy which assigns
to every p € X an element y(p) € Ep in such a way that
v(q) = L

is a given point of X, y may be chosen in such a way that

q(w(p)) whenever ¢Pq is defined. Moreover, if Py

V(p,) is any preassigned element, say e0 , of E_ , and ¢
g Pg Po
is then uniquely determined.

Proof: See [9, pp. 46-48].

B. Degree Theory.

Suppose D € X is open bounded and connected, F: D — Y

continuous. We would like to "measure" the number of solutions
of F(x) = Yo in D, or more pregisely, we would like to find
an integer valued function, called the degree of F in D
(denoted d(F,yO,D)) with the following properties:
(1) If d(F,y,.0) # 0 then F(x) = y, has a solution in D.
(i) If F, — F uniformly in D, then d(F_,p,D) — d(F,p,D).
(iii) d4d(F,p,D) = d4(F,q,D) whenever p and g are in the same
component of Y - F(3D).

Such functions exist and we shall describe them briefly,

referring the reader to the texts cited for more detailed

. dB st . _ =

———

e i i B
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information.

I. Brouwer degree [see 2, pp. 32-54 and 25, Chapter III].

The Brouwer degree, d(F,p,D), 1is defined for continu-
ous functions F: D & R (provided F(x) # p for

X € 9oD) by the following successive steps:

(a) Let Fec'(D) and det F'(x)# 0 for x ¢ F +(p).

We défine d(F,p,D) = Z sgn det F'(x).
xeF~1(p) _
This is a finite sum since F “(p) is a discrete set

by Theorem 1.2.1 and thus has no limit point in the

' compact set D.

(b) Let F € C'(D) and suppose det F'(x) = 0 for i
some X € F_l(p): In this case we apply a special case of |
Sard's theorem: ‘Let S = {x | x € D, det F'(x) = 0}; then |
F(3) has empty interior. Thus we can find a seguence Py =% P | ;
so that det F'(x) # 0 for x ¢ F_l(pn). By (a), d(F,p ,D) is
defined and we then define 4(F,p,D) = lim d(F,pn,D).

no®

(Of course it must be shown that the limit exists and is ;

finite and independent of the approximating sequence.) |

(c) Finally let F e C(D). By the Wierstrass approximation
theorem, we can find a sequence F —> F uniformly on D

and F_ e C'(D). Then we define d(g,p,p) = iif d(F_.,p,D).
(Again it must be shown that the limit exists, is finite

and independent of the approximating sequence.)

Using this definition one verifies that the

properties (i)-(iii) are satisfied.
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II. Leray-Schauder Degree [2, pp. 95-103, and 25].

The Leray-Schauder degree extends the Brouwer degree
to maps which are compact perturbations of the identity
defined on a bounded open subset D which meets every
finite dimensional subspace in a bounded open set, e.g.,
we may choose D = {x I | 1x]] < r}.

The underlying method of extending the Brouwer degree
to such maps is the following approximation lemma

which characterizes compact maps.

Lemma 1.4.4 F is compact on the bounded set D, if and

only if for every € > 0 there exists a continuous and

bounded (maps bounded sets to bounded sets) map P which

satisfies
(i) . P has finite dimensional range
(ii) ||F(x)-P(x)]|] < e, ¥x e D.

Proof : [27, p. 12] .

If F=1I+ K, K compact, and F(x) # p on 3D, then
one defines d(F,p,D) = 1lim 4(F_,p,D_), where D_ is a
e n n n
finite dimensional open bounded set, and Fn —> F uniformly
on D and Fn is defined using Lemma 1.4.4. One shows that

the limit exists, is finite and independent of the

approximating sequence.
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III. Mod 2 Degree.
(a) Finite dimensional maps [see 21, pp. 20-25].
Let F: D C X s B e C'(D) , where D is connected, open

and bounded. If F(x) # p on 3D we define the mod 2 degree,
denoted by dZ(F,p,D), as follows: 1if det F'(x) # 0 for
X € F-l(p), then dz(F,p,D) = number F_l(p) (mod 2).
By the same considerations used in defining the Brouwer
degree, number F-ltp) is finite.

Following the steps used in defining the Brouwer
degree, one defines d,(F,p,D) for F e C' (D) via
Sard's theorem and then we finally define dz(F,p,D)

for any continuous function on D.
(b) Infinite dimensional maps

Suppose F: Eig'x — Y is a Fredholm map of index 0,
where again D is bounded, open and connected. We further
suppose that F is proper on D, i.e., the inverse'image of
a compact set of Y is a compact set of D. Suppose F(x) # p
on 9D. As before we proceed in steps.

i) Suppose F'(x) is a surjective linear operator

Vx e F“l(p)._ We then define dz(F,p,D) = number F_l(P)(mod 2]«

number Ful(p} is finite since F_l(p) is a compact set and
by the closed graph theorem and Theorem Le2s) 3 d8
a discrete set, thus it must be finite.
ii) PF'(x) is not surjective for some x € F-l(p).
In this case we use the infinite dimensional version of Sard's

i
theorem due to Smale [26]: If F: D — Y € C (D) is a proper

PR S R W N SNy I S



Fredholm map, where r > max (ind F, 0), then the image

of S = {x | F'(x) is surjective} is open and dense. Thus

we can approximate p by points P, such that F'(x) is

surjective for x e F_l(pn). We then define
d2(F,p,D) = lim dz(F,pn,D). (One must show that this
n-+c

limit exists, is finite and independent of the approximating
sequence.)

One can also define an oriented degree for Fredholm
maps of index zero. More specifically, let D be open,
bounded and connected; and F: D X —> Y ¢ C2(3) a
Fredholm map of index zero which is proper on D. Since
F'(x) is a linear Fredholm map of index zero, it can be
written as the composition of a (linear) homeomorphism
and a compact perturbation of the identity. Following
Elworthy and Tromba [13], we let GL(X) denote the set
of invertible linear maps of X onto itself which are
compact perturabations of the identity. With the topology
inherited from L(X) (the Banach space of all bounded
linear operators of X into itself), GL(X) has two
components if X is a real Banach space (and is connected

if X is a complex Banach space). We define, for p ¢ F(3D),

d(F,p,D) in two steps. If F'(x) is surjective for x e Fﬂl(p)

then d(F,p,D) = ) sgn F'(x) , where sgn F'(x) is +1
xeF~ 1 (p)

or -1 depending on whether the part of F'(x) which is a

compact perturbation of the identity 1lies in the identity

component of GL(X) or not. As for the mod 2 degree,

number F_l(pJ is finite. One then extends to the case where
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- F'(x) is not necessarily surjective as in the definition of
the mod 2 degree by using Smale's theorem. To show that this
degree satisfies properties (i)-(iii), the reader is referred
to [13]. We mention that if F is of the form I+C, C compact,
then this degree reduces to the Leray-Schauder degree.

The fact that GL(X) is connected when X is a complex

Banach space gives us:

Theorem 1.4.5 Let X and Y be complex Banach spaces and

F: D€ X — Y is analytic and proper on D (D open, bounded
and connected). If F is a Fredholm map of index zero,

then d(F,p,D) > 0 whenever p € F(D) - F(3D).

Proof:

Let x € F_l(p). By adding a compact linear map if neces-
Sary we may assume that F'(x) is invertible. Thus by Theorem
1.2.1, we can find an open ball W of x so that Fly is a
diffeomorphism of W onto the open set F(W) <« F(B)-F(3B).
We now apply Smale's theorem to find a point g € F(W) so that

F'(z) is invertible Y z e Fﬁl(q). Now by the preceding remark

d(fF,q,B) = ) sgn F'(z)> 0. However p and g are in the
zeF~ 1 (p)
same component of F(B)-F(3B) and so d(F,p,B) = d(F,q,B) > 0.

If F is not analytic and X = RN we do have an analog

of Theorem 1.4.5.

Theorem 1.4.6 Suppose F: B'crky —¢~RN is continuous and

FPec' (D). If det P'(x) >0 (2 0), ¥Yx € D, then d(F,p,D) > 0

whenever p e F(D) - F(3D).

.

e T, W



Proof:

If det F'(x) # 0 for x e F-l(p), then from the

definition, d4(F,p,D) = z sgn det F'(x) > 0.
xeF~1 (p)

The general case proceeds as in Theorem 1.4.5 by using
Sard's theorem.

Using the degree, one can prove the Invariance of
Domain Theorem: If F: D € X — X is a compact perturbation
of the identity and D is open, then if F is wunivalent,
it is an open map on D (i.e., maps open sets of D to

open sets) [see 3la].

Cs Miscellaneous

We have already come across the notion of a proper map
in part B. We now formally define properness and give

several characterizations.

Definition 1.4.3 A continuous map F between two topological

spaces X and Y is proper if and only if F—l(c) is a compact

set in X whenever C is a compact set in Y.

Theorem 1.4.7 Let X and Y be Banach spaces, F: X — Y.

(a) If X =Y and F is a compact perturbation of the identity,
then if ||F(x)|| » » as ||x|| + », F is proper. The converse
is true whenever X is finite dimensional.

(b) F is proper if and only if F is a closed map and the
pre-image of any point is compact.

(c) If X is reflexive, then F is proper provided
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(1) ||F || »= as || || + =
(ii) F satisfies the following stronger version of
condition (E): x — x weakly and F(xn) — y strongly

implies X, — X strongly.

Proof:
(a) Let Cl = F_l(C) » C a compact subset of Y, F = I+K.
Let the sequence X, € C;. Then xn+K(xn) 5 P e and so
37 a subsequence (which we renumber) ¥y = Yo © Cs
Since the seqguence Yi is bounded, the coercive condition
||[F(x) || » = as ||x|| » » implies that the sequence X
is also bounded. However as K is a compact map, there is a
subsequence (which we again renumber) X SO that
K(xn) = Yy Thus since x + K(xn) =+ ¥y We conclude
that Xy ™ ¥ = ¥y = x and since Cy is closed, X € Cl.
Hence Cq is compact.

Now suppose X is finite dimensional and F is proper.
Then the pre-image of a bounded set is bounded since its
closure is compact and thus the pre-image of the closure
is compact and in particular bounded. However the

condition that the pre-image of a bounded set is bounded

is equivalent to ||F(x)|| — « as ||x|| » = .

(b) First suppose F is proper. Then since a point is
a compact set, the pre-image of a point is compact. Now
suppose C is a closed set. We wish to chow F(C) is closed.

To this end suppose F(xi) —35 §, X, € C. Since



s = {y, F(x)}, i=1,..., is a compact set, - Y(s) 1s alse
compact. However, the sequence X; € F—l(S) and so there is a
convergent subsequence xn.—+-§ . Since the sequence x €C
and C is closed, then x ejc. By continuity F(X) =y gnd
so § € F(C) and thus F(C) is a closed set.

Conversely, let K = F T(K), K< ¥ compact. Let K={ / C

oed
where Ca are closed sets which have the finite intersection

o}

property (f.i.p.). We show /ﬁ] C, # ¢ and so K is compact.

aed
=(/_\c:Ot

To this end, let BC J be a finite set. Thus GB

aeB
is closed and non-empty. By hypothesis, F(GB) is closed and
Ko & F(GB) (since K = o/ GB)' Also F(GB) has the f.i.p.

BcJ BcT
since if y is any appropriate finite index, then:

OF(GB) 2 PG = F(Sy) # 9

(some finite 6 c J).

Thus K compact implies S = (’\\ F(GB) # d.
BC J
Let y eS. LetD =CNFl(y) (# @ . By hypothesis

Lt D, = Fﬁl(y) is compact. Thus it suffices
aed -
to show that o has the f.i.p.; for then

@ # /“\ Da = (IF\ CaJ F\F'l(y) and so (~\ Ca 7 9,

oaed oed aed

which was to be shown. However if B < J is finite, then

(’1 Da = GB L) F_l(y) # @ since y e S.
aef




(c) Let K be a compact subset of Y. Let the sequence X
e Fl(x). since ||F(x)|] »= as ||x||] + » is equivalent
to saying that the inverse image of a bounded set is
bounded, then F-l(K) is bounded. Thus by Theorem 1.3.2,
there is a weakly convergent subsequence (which we again
call xn) X, converging weakly to X. However the sequence
F(xn) is contained in the compact set K and so it has a
strongly convergent subsequence (which we again call F(xn))
so that F(x ) — y. Thus by hypothesis, X, —* X strongly
and since F T(X) is closed, ; e F1(K) and thus F 1 (K) is

compact.

We remark that if X is reflexive, condition (E) and th
coerciveness condition ||F(x)|| » « as ||x|| » « together
imply that F has closed range. Suppose F(xn) — y. Then
by the coerciveness of F, the sequence X is bounded.

Thus by Theorem 1.3.2, the sequence X, has a weakly conver-
gent subsequence, Xn.—+§ weakly, and so by condition (E),

Fix) = § and so F has closed range.
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CHAPTER II

Global Homeomorphisms

l. Introduction

Suppose we have a continuous (or possibly continuously
differentiable) map F between two Banach spaces X and Y.
We ask what additional assumptions must be imposed upon F
to insure that it is a global homeomorphism (diffeomorphism)
of X onto Y? We observe that if F is a global homeomorphism
then in particular it is a local homeomorphism. Also if F
is a global diffeomorphism, then F'(x) is an invertible

1

linear operator Vx € X. Since F "o F(x) = x, then by

the chain rule we have that

FHEE)] o ) =T,
and similarly

P Ly)) o [Fl(y)] = I,

where F—l(y) = i, Thus F'(x) is invertible.
Since these conditions are necessary conditions

for our problem, we shall always assume that our maps F are
either local homeomorphisms or if F € C'(X), that F'(x) is
invertible, and we again ask when such a map F is a global
homemorphism (diffeomorphism). Using Theorem 2.2.1 we shall
see that we can reduce this question to a more fundamental
one, that of determining when the given local homeomorphism

F is a covering space map of X onto Y [Definition 1.4.1],

and in Section 2 we prove the following theorem (Theorem 2.2.2):
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If F: D& X~ Y 1is a local homeomorphism (where X and Y are
Banach spaces, D open), then (D,F) is a covering space of
F(D) if and only if F "lifts lines".

Section 3 is devoted to applications of Theorem 2.2.2
in the case D = X. Here we develop a systematic method for
verifying the hypotheses of Theorem 2.2.2 and prove such
theorems as (Banach-Mazur [l]) F: X — Y 1is a homeomorphism
of X onto Y if and only if F is a local homeomorphism and
a proper map [see Definition 1.4.3] and the following
theorem due to Hadamard [15] for X = Y = RN, and Lévy [20]

for X and Y Banach spaces: If F: X — Y € C'(X) and F' (x)

is an invertible linear map for all x e X and

[ inf 1 = dt = », then F is a global
0 [lx|l<t [[[F' ()17 7]
N

diffeomorphism of X onto Y. For X =Y = R, we sharpen this

slightly by requiring that f inf 2 —
0 [|x||=t || [F"(x)]

We also prove global homeomorphism theorems for a special

dt = = .

ol

class of quasiconformal maps (Definition 1.3.6) (see Zoric [31]).
The background references for this chapter are:
(1,4,7,8,12,15,17,19,20,31]. Further references can be

found in these papers.



" 2. Local Homeomorphisms and Covering Spaces.

Our first step in attacking the global homecmorphism

question is the following:

Theorem 2.2.1 Let X and Y be connected, locally arcwise

connected spaces. Furthermore, let Y be simply connected.
If (X,F) is a covering for Y, then F is a homeomorphism

of X onto Y.

Proof:
Suppose F(x;) = F(x,) = V.
Let p(t) be a path in X joining X, to Xy
Set L(t) = F(p(t)). L(t) is a closed path, i.e.,
L(0) = L(1) = y.
Since Y is simply connected, there exists a homotopy H(t,u)
so that H(t,0) = L(t), H(t,1) =y and H(0,u) = H(l,u)= y.
By the covering homotopy property (Theorem 1.4.1 (ii)

there exists a homotopy ﬁ(t,u) so that F(ﬁ(t,u))=H(t,u),

ﬁ(t,O) = PlE) sy ﬁ(O,u) = X and H(1,u) Xy

Let Wl be a neighborhood of X, on which F is a homeomorphism.
Thus Fle)_is a neighborhood of y and by the continuity of
H(t,u), there exists u 3 H(t,u) C:F{Wl). Let P(t) be the

and F(P(t)) = H(t,u). By the

path in W with P(0) = x

1 1
unique path lifting property (Theorem 1.4.1 (i )
P(t) = H(t,u). Hence P(0) = x, and P(l) = x, , which is

a contradiction by our choice of W,
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Suppose X and Y are Banach spaces, F: X — Y a local
homeomorphism. In order to show that F is a global homeo-
morphism Theorem 2.2.1 tells us that we must show that
(X,F) covers Y.

Let X and Y be Banach spaces, D € X open and connected.

Definition 2.2.1 F: D — Y lifts lines (in F(D)) if and

only if for each line L(t) = (l—t)yl + ty, (in F(D))
and for every point X, € F-l(yl) there is a path

Pa(t) 3 Pa(O) = x, and F(Pa(t)) = L(t).

By Theorem 1.4.2 if F is a local homeomorphism, and
F lifts lines, then the path Pa(t) in Definition 2.2.1

is unique. With this in mind, we prove:

Theorem 2.2.2 Let F: D C X —> Y be as above. Suppose

also that: (i) F is a local homeomorphism and

(ii) F lifts lines in F(D).

Then (i) and (ii) are necessary and sufficient for (D,F)
to cover F (D).

Proof:

The necessity follows from the definition of a covering
space and from Theorem 1.4.1(i). To prove the sufficiency,
we first observe that if y € F(D), we can find an r so that
B(y;r) = {z

can be described by a line L (t) =y + tr z, ||z|| =1,

[|z-y|| < r} < F(D), and that any radius in B

0 <t <1 which can be lifted. Let x € F—l(y),

ax = {p(t)|F(P(t)) = L,(t), Y||z|] =1, 0 ¢t <« 1 and P(0)=x}.

A - AR R A == = e
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-

Let 0x = 0x considered as a point set, i.e.,

O, = {x|x=P(¥), P e O} (0 # @ by (ii)). By intuitively
thinking of Q. and B(y;r) as the spokes of a wheel, we
shall show that these sets satisfy the conditions given

in the definition of a covering space [Definition 1.4.1],
i.e., we show that the 0x (x e F—l(y)) are disjoint, open
sets mapped homeomorphically onto B(y;r) by F, and

Flh(Blyir) = _Ll'j o,.

xXeF ~(y)
(a) Each O, is mapped onto B(y;r) since any y € B(y;r) lies
on some radius L, hence there is a path P(t) ¢ Sx and a t

so that F(P(t)) = y. By definition of o, P(t) e 0.

(b) Each O, is mapped homeomorphically onto B(y;r). If not,
let X # X, € 0, and F(xl) = F(xz) = y. By definition of Oy #
Xy and X, lie on paths Pl and P2 which are not identical, for
otherwise their image would be a radius which would intersect
itself. Hence F(P, (t)) and F(P,(t)) are distinct radii by
Theorem 1.4.2. Thus y = y, and so

F(xl) = F(Pl(tl)) = F(P(0)) =y = F(Pz(tz)) = F(XzJ-

Hence t; = 0 and t2 = 0 (otherwise the image of Pi(t) (i=1,2)
would be a radius which intersects itself), and so X1=Xy=X,

a contradiction. The continuity of the inverse follows from

the fact that F|O is a local homeomorphism and thus an open map.
X

(¢) O, x e F—l(y), are disjoint, for if x e 0. N O with
x Xy X,

Xy # Xy then x = Pl(tl) = P2(t2). The images of
Pl and P2 under F must be the same radius, for otherwise

the radii would intersect and so F(x) = F(xl) = F(xz) =y.

b aa R SRS E= = o oL Ao
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By part (b), x = X; = X, == a contradiction. Thus

F(Pl(t)) = F(Pz(t)) L(t), and so L(t = L(tz) which

1)
implies that t; = t, (= t). From Theorem 1.4.2, we
1 2

conclude that P,(t) = P,(t), and in particular, X; = X,.

Thus the Ox's are disjoint.

(d) Each O  is an open set in D, for if not, then3x e 0
and a sequence X, so that X x and X 4 O+ Choose a
neighborhood W of x 3> F|, is a homeomorphism and

F(W) < B(y:;r). N > X, € W for n > N, and so F(xn) € B(y;r)

for n > N. Hence there are points X e O, with

F(in) = F(Xn)' n =N,N+l,... . However, since F is a

homeomorphism of Ox onto B(y;r), then F(En) — F(§)

implies x_ —> X. Thus for n sufficiently large, in ewW
and so §n= X which is a contradiction since we assumed

that X & Ox' Thus each Ox is open.

te) Flmiy:z)y = U/ o0 .

xeF L(y) *
Since F_l(B(y;r)) ol k:{ O, + it suffices to show
xeF ~(y)

the opposite inclusion. So let x e F-l(B(y;r)). Let
L(t) = (1-t) F(x) + ty, O £t <1. Then L(t) € B(y;r)
and so by hypothesis there is a path P(t) so that P(0) = x

and F(P(t)) = L(t). Thus P(1) e F Y(y). Let L(t) = L(1-t)

and P(t) = P(l-t). Thus F(P(t)) = L(t), B(0) = P(l) e FL(y)

and ﬁ(l)

X. ©So by definition of OP(l) + We see that




3. Global Homeomorphisms

In view of Theorem 2.2.1 and 2.2.2, we now proceed
in developing a method (Theorem 2.3.1) for determining
when a local homeomorphism lifts lines.

Again we suppose that X and Y are Banach spaces, D € X
is open and connected. Let F: D — Y be continuous.
We introduce the following condition:

(C) Whenever P(t), 0 < t < b is a path satisfying
F(P(t)) = L(t) for 0 < t < b (where L(t) = (l—t)yl + ty,

is any line in Y), then there is a seguence ti — b as

i » © such that 1lim P(ti) exists and is in D.
i1 =

Theorem 2.3.1. Let F: D € XY be a local homeomorphism.

Then condition (C) is necessary and sufficient for F to be

a homeomorphism of D onto Y.

Proof:
The necessity is trivial, for we let P (b) =.F-1(L(b)).

For the sufficiency, we first show that F lifts lines.

3.

Let L(t) be any line in F(D), with L(0) = y. Let x € F_

Since F is a local homeomorphism, there is an € > 0
and a path P(t) (= F 1(L(t))), 0 < t < ¢, such that P(0) = X
and F(P(t)) = L(t) for 0 < t < €. Let K (< 1) be the largest

number for which P(t) can be extended to a continuous path

for 0 < t < K and satisfying F(P(t)) = L(t), 0 < t < K.

Since F satisfies condition (C), let z = lim P(t.). By
ti—a-K .

continuity, F(2) = L(K). Let W be a neighborhood of z on

which F is a homeomorphism. JIN 3 P(t;) e W for i > N.
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Also 6 > 0 and a path Q(t) defined for K-8 < t < K43
so that‘Q(tM) = P(tM)(where M is chosen so that M >N
and K-8 < tM < K) and F(Q(t)) = L(t) for K-§ < t < K+6.
‘Hence P(t) can be extended to a continuous path
(which we again call P(t)) on 0 < t < K+§, P(0) = %
and F(P(t)) = L(t), 0 < t < K+6. By the maximality of K,
we conclude that K = 1, and hence F lifts lines.
By virtue of Theorem 2.2.2, (D,F) covers F(D).
We need only show that F(D) = Y in order to apply
Theorem 2.2.1 and thus concluﬁe that F is a homeomorphism
of D onto Y. So let y e Y; Choose y; € F(D) and
" let L(t) = (1-t)y; + ty. If we retrace the steps of the
first part of our proof, we find a path P(t), 0 < t <1,
so that F(P(t)) = L(t) on 0 < t < 1. 1In particular

F(P(1)) = L(1) = y, and so F(D)

Y.

From this follows a theorem due to Banach and Mazur EL 3
which they proved using complicated arguments based on the

Monodromy theorem (Theorem 1.4.3).

Theorem 2.3.2 Let X and Y be Banach spaces, F: X — Y.

Then F is a homeomorphism of X onto Y if and only if F is a

local homeomorphism and a proper map [Definition 1.4.3].

Proof:

The necessity is obvious for if F is a homeomorphism,
then F ' is continuous and thus maps compact sets into

compact sets. Hence F is proper.
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Suppose now that F is a local homeomorphism and F
is proper. By virtue of Theorem 2.3.1, it suffices to show
‘that F satisfies condition (C) in order to conclude that F
is a homeomorphism. So suppose P(t) is defined on 0 < t < b
and satisfies F(P(t) = L(t) for 0 < t < b. Let t; — b.

Since S = {L(t)} is compact, so is F_l(S) and it

0<t<1
contains the sequence P(t,). Hence there is a subsequence

t, . =¥ b DP(E; ) =» %, and so condition (C) is satisfied.

J J

Corollary 2.3.2 F: BY — B' is a diffeomorphism if and

only if F € C'(RN) and F satisfies (i) det F'(x) # 0 V¥x,

and (ii) ||F(x)]|| — = as ||x|| —=.

Proof:

We observe that if F is a diffeomorphism, then we have
already seen in Section 1 that F'(x) is invertible, and so
dét F'(x) # 0. The corollary now follows from Theorem 2.3.2,

and Theorem 1.4.7.

In Corollary 3.4.4, we show that if det F'(x) > 0 and

||F(x)|| — « as ||x|] — « , then F is onto.

Corollary 2.3.3 Let F be a local homeomorphism of the

reflexive space X into Y. If (i) ||F(x)|| — = as ||x]|| » »
and (ii) whenever x — X weakly, and F(xn)—ﬁ y strongly
implies X, X strongly, then F is a homeomorphism of

X onto Y.



Proof:

From Theorem 1.4.7 (c), (i) and (ii) imply that F is

proper. Thus the Corollary follows from Theorem 2.3.2.

In general the coerciveness condition ||F(x)||—
as ||x||— = is not enough to insure that the map F is
proper and so a direct proof as in Corollaries 2.3.2
and 2.3.3 may be unattainable. However in certain cases
it is possible to show directly that a given map is a
homeomorphism, i.e., showing it is one-one, onto and
possesses a continuous inverse. In Chapter III, Sec. 3 Iy
we shall be able to prove, in this direct manner, P

the following: s

Corollary 2.3.4 Let F: X — X* € C'(X) be a monotone

Fredholm map of index zero. If (i) Ker (F'(x))* = 0
and (ii) ||F(x)|] — « as ||x|| — =, thenF is a diffeo-

morphism of X onto X*. J

The following theorem is due to Browder [4]: b

Theorem 2.3.5 F: X — Y is a homeomorphism of X onto Y f
if and only if F is a local homeomorphism and a closed

map.

Proof:

To prove the necessity we need only notice that if F
is a homeomorphism, then F—l is continuous and so F maps

closed sets into closed sets.



To prove the sufficiency, we need only show that F

satisfies condition (C) and then apply Theorem 2.3.1 to
‘conclude that F is a homeomorphism of X onto Y.

We now show that F satisfies condition (C). So suppose
-that P(t) is defined on 0 < t < b and satisfies F(P(t))= L(t)

for 0 <t <b. Let S = {P(t)} By hypothesis F(S) is

0<t<b °
closed. Thus since L(t) € F(S), for all t < b, then by
continuity L(b) € F(S). Hence 3 x € S so that F(x) = L(b).

Since x € S, ZZti so that P(ti) — X. Since 0 < ti % Dy

there exists a subsequence t, — t. We claim t = b (and
thus condition (C) is satisfied by S b and P(ti_) — X).
However by continuity, L(t) = L(b) ané so t = b. ?

Let us remark that by Theorem 1.4.7(b) we could have
deduced Theorem 2.3.2 as a corollary of Theorem 2.3.5.
However we preferred to prove it directly in order to illus-

trate the type of arguments that one can use in verifying

condition (C).

Corollary 2.3.6 Suppose F: X — Y is a local homeomorphism.

Furthermore, suppose F satisfies the following:

(13 IR || o~ o am x| e,

(2) There exists a compact operator K: X — Y such that the
operator B(x) = F(x) + K(x) satisfies the following condition:
for any x, and x, with ||x;|| and Il%,]] < R we have
[|B(x2)-B(xl)|[ > ¢(]|x,=%;||iR); where ¢(r;R) is continuous,
real-valued and strictly increasing with respect to r > 0 for

each R > 0 and ¢(0;R) = O.




If the above conditions are satisfied, then F is a

homeomorphism of X onto Y.

Proof:
We shall show that F is a closed map and then use
Theorem 2.3.5 to conclude the desired result. Let C € X

be closed, let the sequence X; € C be such that

F(xi) — y. By (1), the sequence Xy is bounded (by M)

and since K is compact, there is a subsequence X,  such
- - 3
that K(x, )— y. Hence B(x ) — y + y. Suppose 360 > 0
! j :

such that ||x -x_ || > e, > 0 for all n,m. Then

m. 0

3 J
||B(xnj)—B(xmj)|| > o] ]x -x 0
which is a contradiction since ||B(xn )=B(x )|| — o.

J j
Hence there is a subsequence of X which converges to some
' J
X, and x € C since C is closed. Thus F(x) = y by continuity,

; 2M) > ¢ley, 2M) > 0,

m, ||

and so F(C) is closed, as was to be shown.

Notice that if in Corollary 2.3.6, X and Y are finite
dimensional, the corollary follows from Theorems 1.4.7

and 2.3.2.

Again, let X and Y be Banach spaces. Let B(x) > 0
be a real valued continuous function cn X. Let P(t) be a

path (in X) of class C' on 0 ZE £ b.

Definition 2.3.2 The arc length of P with weight B is

b b
Ly(P) = f B(P(t))||P'(t)|]| at.
0

Definition 2.3.3 X is complete with respect to arc length

B BRI e
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with weight B if and only if Lg(p) < ® => lim P(t) exists
' t-b
and is finite whenever P(t) is a C' path on 0 < t < b.

We remark that if X = B, then Definition 2.3.3 is

equivalent to the usual notion of Rﬁ being complete with
respect to the conformal metric induced by the tensor
as® = B(x)1% ax? (see Hartman [16]).

With B(x) as above, we prove the following sufficient

condition for completeness:

Theorem 2.3.7 Let h(s) = inf B(x). IE I h(s) ds = o,
|x||<s 0

then X is complete with respect to arc length with weight B.

Proof:
Let B {t) e.cr[6.b) and Lg(p) < @. et 8 ©d < B.

For any partition 0 =t < t, < ... < t,. =6 of [0,6],

N
let ¢, <¢t;, < t;41 Dbe that point for which

sup [[P* (&) || = [[P"(¢))|]. By the mean value theorem
t.<t<t
LA B
we have
8
Lg(P) = J B(P(t))||P'(t)]]| at
0
= lim } B(2AE)) |2 () || (b =ty)
> lim § B(P(Ei))(llp(ti+l>|! - lleted |

)
- J B(P(t)) d||p(t)]],
0

this last eguality following from the fact that
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5 _
J B(P(t)) a||p(t)|| is defined since g(t) = ||P(t)]|] is
0

of bounded variation on [0,8]. So we have that:

8
(1) > B&&HHF&H[%gJwaHdHHaH
0

| v
o O“"—0 O 3§

inf B(x) d||p(t)]|
x| <]]Pt) ]
| 1B(8) ]|
= h(||p(t)|]) da||p(t)]|]| = h(s) ds .
|20 ||

By hypothesis, this implies that {P(t)} is bounded.

5 0<t<b

Also J h(s) ds = « implies that sup {s|h(s) > 0} = =,
0

and since h(s) is nonincreasing, we have that B(x) is

bounded from below on any bounded set. In particular, B(P(t))

is bounded from below by some number X > 0, for all 0 < t < b,

Let ti — b. Then

n n _
(2) P(t,, .)=-P(t.) < sup P'(t) || (t.,,-t.)
i£l | 2EL i || _'izl £, bk, I || IFE 1
i——"1+1
tn+1 1 b
< [ [|P'(t)]]at < T J B(P(t))||P'(t)]|| dt < =.
tl | 0
Hence JX so that Pt ) X as t, — b.

Suppose s; — b and P(si) — z. If we form the sequence
t1,8,+t5,S,,..., and call it Ei, then Ei — b and (2) shows

that [[P(s;)-P(t;) || = |]|P(E;

l+l)-P(Ei)|| < ¢/3 for large

enough i. Hence for £ > 0,

lli“EI! = |!§_P(ti)fI+|IP(ti)"P(Si)!]+IIP(51)'EI' < €

= i S ———

.\ﬁnuun



for i sufficiently large. Thus 1lim P(t) exists and
t>b

is finite.

For X = RN, we have the following slightly stronger
version of Theorem 2.3.7.

Theorem 2.3.8 Let h(s) = inf Bix)e - IF f h(s)ds = =,
X| |=s 0
then Ry is complete with respect to arc length with weight B.

Proof:

Let P(t) e Cl[O,b) and suppose Lg(P) < «, Let

0 <8 <b. Following the proof given in Theoren . Sy .
|?P(6)|f
we have that «» > J,|P(0)][ h(s) ds. Hence {P(t)}Oit<b

bounded. Since B(x) is a continuous, real valued function

is

on RN, it maps bounded sets into bounded sets. Thus B(P(t))
is bounded from below by some positive number (since B(x)

is positive). Again, as in Theorem 2.3.7, we find that if

n b
: 1
t; — b, then i£1 [1Ptes  0-PLe || 2 5 jo B(P(t))|[P'(t)][at
< » , and thus we conclude that lim P(t) exists and is

t-+b
finite.

An immediate consequence of Theorem 2.3.7 is the

following theorem due to Hadamard [15]:

Theorem 2.3.9 Let X and Y be Banach spaces, F: X — Y € C'(X)

and F'(x) is invertible for all x e X. If

[ inf 4 =T ds = ®, then F is a diffeomorphism
0 [|x[|zs HIF'(x)1 7]

of X onto Y.
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Proof:
By Theorem 1.2.1, F is a local diffeomorphism, thus in
view of Theorem 2.3.1, we need only show that F satisfies
condition (C). To this end we apply Theorem 2.3.7 as follows:
Suppose P(t) is defined on 0 < t < b and satisfies
F(P(t)) = L(t) for 0 < t < b. If we look at the proof
of Theorem 2.3.1, we see that it suffices to show that F
satisfies condition (C) only for those paths P(t) that are
constructed by the method used in Theorem 2.3.1. Also, if

P(t) is such a path, we may assume, by the inverse function

theorem, that P(t) is continuously differentiable on 0 < € x'Bbs

Since F(P(t)) = L(t) on 0 < t < b, we use the chain rule and

get F'(P(t))P'(t) = L'(t) (= z). Thus P'(t) = [F'(P(t))] 1z

for 0 < t < b. ILet B(x) = l/[][F'(x)]_l!|.
By our hypothesis, combined with Theorem 2.3.7, we have
that X is complete with respect to arc length with weight B.

Also

LE(P) B(P(t)) ||P'(t)]|]| at

=%

l[l [[[F'(P(t))] "z|| 4t

|| [ (P(t))]

Z
|

| A

b||z]]

Thus, by Definition 2.3.3; F satisfies condition (C).
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Corollary 2.3.10 If F: X —> ¥ & C"(X), P'(x) is invertible

for all x € X and further there exists M > 0 so that for
each x € X, ||F'(x)z|| > M||z|| for all z, then F is a

diffeomorphism of X onto Y.

Proof:

M||z|| for all z implies that

=21

[[F" (x)z] |

for every x. Hence J inf 8¢ =
0 ||x|lzt ||IF'(x)]

==}
> J M dt = ». So by Theorem 2.3.9, F is a diffeomorphism
0

of X onto Y.

P 17| <

The next corollary pertains to a class of maps that are

related to quasiconformal maps [see Definition 1.3.6].

Corollary 2.3.11 Suppose F: X — Y e C'(x) and F'(x) is

invertible VYx € X. Also suppose that there are continuous,
positive non-decreasing real valued functions M(t), M(t)

so that ||F'(x) || < M(||x|]) and ||IF (x)17Y]] < #(||x|]).
Then if M(t)M(t) < A(t) for ali real t where A(t) > 0

and j 1/A(t) dt = », F is a diffeomorphism of X onto Y.
0

Proof:
e || | @17t < u I1F ()] ]
. [z 1< Iyl
. su ||[F'(z)]-l[|
Hz11<] Ivl]
<Myl DmcllylD < x(|ylD

Thus

1 s JEEIA L]

e o1 T Ayl

el

B L= B

- — 1



So by virtue of Theorem 2.3.9, F is a diffeomorphism

of X onto Y.

Corollary 2.3.12 Let H be a Hilbert space and F: H — H

€ C'(H). Furthermore suppose there is a positive real

valued function A(x) such that (F'(x)z,z) > A(x)||z|!2.

Then if J inf A(xX) dt = », F is a diffeomorphism
0 ||x|[zt

of H onto itself.

Proof:

By the Lax-Milgram Theorem, F'(x) is invertible and

||[F'(x)]_1][ < 1/X(x). Thus F is a local diffeomorphism.
Also

[ inf = —T— dt > J inf A(x) dt = o,

o l=xll<t [lF (x)1 7] o |lxllzt

Hence Theorem 2.3.9 is applicable.

Theorem 2.3.13 Suppose F': B — RN, F e C'(Rn) and also

F'(x) is invertible for all x e X. If

f inf l/||[F'(x)]_1[|dt= w, then F is a diffeomorphism

0 ||x]|]|=t
of RBY onto itself.

Proof:

The proof mimics that of Theorem 2.3.9, except that

we use Theorem 2.3.8 in place of Theorem 2.3.7.

Lemma 2.3.14 Let L: RN — RN be an invertible linear

operator. Then

jget o] | @™ | < (lxl] yl] HelI™™ -y~ 07H 72

foxr: all x.,y € EN.

R — —.



Proof:

[See 11, Part II, p. 1020.]

Corollary 2.3.15 Let F: B — RN € C'(RN). Suppose that

(i) |det F'(x)| > & > 0, and (ii) |[|F'(x)|| < M. Then

F is a diffeomorphism of RN onto RN.

Proof:

From Lemma 2.3.14, we have that:

(1) |det F' ()| [([F' ()17 2z, | < c@)||z]] [ly]] [IF' ) [|P7L,

-(n-l)/2_

where c(n) = (n-1) Choose z so that ||z]|| = 1, y

and let w = [F'(x)]—lz. With these choices, (1) becomes: "

1

ldet F'(x)| || [F' (0017 2||2 < c) || 1P (017 2] ] ||F" (x| |™L.

Using hypotheses (i) and (ii) we have that '
||[F'(x)]_lz|| < cm)M L/, for all ||z]| = 1. Hence | ’
IE[F'(X)]-ll] < c(n)Mn_l/a, for each x. - i

|

Thus by Corollary 2.3.10, F is a diffeomorphism of o onto RV.

Corollary 2.3.16 Suppose F: RN — EN is continuously ”
differentiable. Also, suppose that (i) ldet F'(x)| > a« > 0,
and (ii) F is quasiconformal, i.e., 3IM 3

[IF' () || [|1F' (x)17Y]| < M, for all x. Then F is a

N

diffeomorphism of R onto B,

Proof:

By Lemma 2.3.14, we have with c(n) = (n-1)  (®"1)/2,
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(1) |det F'(x)| [([F' ()1 2,m)| < cm)||z[] ||w|| [IF" ()™t
Choosing z = w and ||z|| = 1, (1) becomes: J
1

(2) |det F'(x)| |[([F'(x)1

Taking ',S?T of the left side of (2), we get:
z||=1

z;%) | < c(n)|]F'(x)||n_1, ¥||z]|=1.

ldet F'(x) | |[1F' 0172 | < ey |[F (0 ||,
and so

i = =1 ,0n=1 '
(3) laet F') | |[[1F' )17 ™ < ey ][R (0 | [P et 017 P 1
il
.
Using hypotheses (i) and (ii), we have 1
‘ I

n-1
a1 ™ ® o LM - ang finally 4
W
o -1 1/n '
[ [F' (x)] lj] < [ Ei&laﬂz—— ] for all x. iy
i
By Corollary 2.3.10, F is a diffeomorphism of " onto R". .
|
I 1"
Corollary 2.3.16 is true under the weaker hypothesis I
I

det F'(x) # 0, provided N > 3 [31].

In general, the hypotheses of Theorems 2.3.9 and 2.3.13

cannot be entirely omitted as the following examples show:

1

Example 3.1 F(X)=F(xl,...,xn)= (tan xl;x2(1+x§)2,x

is a C' map of " into R" and:

3reee ¥ )



Pli(x) = F'(xl,...,xn)=

0 In_2

xi+l > 1, F satisfies the conditions

Since det F'(x) =
of the inverse function theorem. By looking at the charac-

teristic polynomial of F'(x), we see that ) = 1/(1+xf) is

an eigenvalue, and so 1/X = l+xi is an eigenvalue of [F'(x)]
Therefore [[[F'(x)]-l|[ 5 l+x§ , and so we have that

inf  1/||IF'(x)17 Y|

| A

l/(l+t2). Since J dt/(1+t2) < «,
0

F does not satisfy the hypotheses of Theorems 2.3.9 and

2.3.13 and we observe that F is one-one, but not onto.

=3

Example 3.2 A second example of a univalent map which

isn't onto is the famous example of Fatou and Bieberbaéh

[3, p. 45). This is an example of an analytic map F of ¢2
into itself whose Jacobian (of the map considered as

mapping R4 e R4) is identically equal to 1 and F is
univalent, however the range of F omits a full open neighbor-
hood of a point in ¢2.

X
_ A -
Example 3.3 F(xl,xz) = @ ~(cos X, + sin sz.

2

F is a C' map of R*® — Rz which is neither one-one nor

onto (it omits 0). Now:



45

X sin x sin x
~sin x, cos x,
X
We observe that |[F'(x;,x,)|| =e 1, thus
1 £ . 1 -t

< @ ~, S0

oy Iy =°

= Ink -
||[F'(xer2)] | |x]]|<t IIIF'(xl,xz)]

-
and J e dt < o,

0

Examples 3.1 and 3.2 also show that the condition
|det F'(x)| > o > 0 is not in itself sufficient to insure
that F is a global homeomorphism, for if F(xl,xzj
_ =] 252 .
= (tan S x2(1+xl) . x3,...,xn) then det F (xl,xz) > 15
yet F is not a homemorphism of R" onto R'. However we shall
show [Corollary 3.3.5] that if F is a gradient map of 22
into itself, then |det F'(x)| > a > 0 insures that F is
globally one-one.

The following theorem can be used when the integral

condition of Theorem 2.3.9 fails.

Theorem 2.3.17 Let F: X — Y be continuously differentiable

and also F'(x) is invertible for all x e X. Suppose that
(1) [|IF&X)|] = = as |[|x]] — =

(i1) [[F* (217

< M(|[x%]||), where M(t) is a continuous
positive function of R — R.

Then F is a diffeomorphism of X onto Y.

Proof:
By Theorem 2.3.1, it suffices to show that F satisfies

condition (C). Using the argument of the beginning of




Theorem 2.3.9, it suffices to show that condition (C) is |

verified for C' paths. So suppose P(t) is defined on ‘

0 <t <b, is continuously differentiable and satisfies
(1) Fi(R(t)) = L(t) (= (I-t)y; + ty,) for 0 < t £ b ‘

By (i), S = F Y(L(t)) is a bounded set, and so

0<t<1
{P(t)}05;<b is bounded. Since P(t) is continuously

differentiable, we can apply the chain rule to 1 and thus ‘

F'(P(t)) P'(t) =y, -y, =2, 0<t<bh.

Therefore m
P'(t) = [F'(P(t))] 1z , 0 < t < b. ﬁ

L

By (ii), JC so that |[[F'(P(£))]1 || < C for 0 < t < b. i
Let t. — b. :|-.
' I

Ey tn ﬁ

P(e,) = PlL) = f P () dt = f [F' (P(£)]1 70z at . | E
y y

So . |I
t ' |

letg e |l < [ L @en1 ™) [lz]] ae < cllzl] lgotgl |
: i !

Thus {P(ti)} is a Cauchy sequence, and so condition (C)

is verified, as was to be shown.



Chapter III

Global Univalence and Surjectivity.

Section 1. Introduction.

If we inspect the methods that were employed in Chapter II
to determine when a mapping between two Banach spaces was a
homeomorphism, we see that the properties of glabal univalence
and surjectivity were related in an intimate way, i.e., once
we showed that the mapping F: X -+ Y was a covering space map
of the simply connected set Y, then F was automatically uni-
valent by Theorem 2.2.1. In the general case of a mapping F
of some domain D into a Banach space we usually have little
information about F (D). Thus the assumption that F(D) is
simply connected is not viable and so Theorem 2.2.1 is not
applicable. 1In this chapter we investigate the questions of
global univalence -and surjectivity independently and without
any assumptions on the range of the mapping at hand.

In Sections 2 and 3 we concern ourselves with the problem
of global univalence. We assume, in Section 1, that the mapping
is a local homeomorphism and so the question of global uni-
valence is equivalent to the problem of determining when a
local homeomorphism is a global homeomorphism between its
domain and range. We then show that the method of covering
spaces is applicable to this problem and deduce such theorems
as Theorem 3.2.3: If D < X is open and starshapred about some
point a and if F: D » Y is a local homeomorphism, then the
following are necessary and sufficient for F to be a homeo-
morphism of D onto F(D): (i) whenever M€ D is open and star-

shaped about a, then (FIM)-l is locally finite [Def. 3.2.1] and
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(ii) F is one-one on every line emanating from a. We also
prove analogs of the Banach-Mazur Theorem 2.3.2 and of
Theorem 2.3.9 and Corollary 2.3.11.

As mentioned, Section 3 is also concerned with the
question of global univalence, however we start with a
different point of view from Section 2. More specifically,
in Section 3 we do not a priori assume that our maps are
local homeomorphisms. Thus the methods of Section 2 cannot
be applied and so we must employ specialized techniques to
handle the cases which we deal with. We show, for example,
in Theorem 3.3.3 that if F is monotone, continuously differen-
tiable and Ker[F'(x)]* = 0, then F is globally univalent.

In Section 4 we investigate surjectivity using the topo-
logical method of degree of a mapping. We prove that if a
map F: X =+ Y is proper and if there is some point p so that
d(F,p,B) # 0 whenever F"l(p)c:B, then F maps X onto Y. From
this we deduce as Corollary 3.4.4 a result of Nijenhuis and

N

Richardson [22] which says that if F: R =~ RN is continuously

differentiable, det F' (x) > 0 and proper, then F maps RN onto R .

The final question that arises in this chapter is that of
the preservétion of univalence and surjectivity in the limit.
We give necessary and sufficient conditions for the
presefvation of univalence (Theorem 2.5.2) and then
generalizing the Hurwicz Theorem for analytic maps, we show
in Theorem 3.5.3 that if Fn converges normally to F and if
det F'(x) > 0, then F is univalent provided it has isolated

zeroes and the Fn's are univalent. From this we deduce as

N
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n n 2
+ € are analytic and converge

Corollary 3.5.5 that if Fn: (o
normally to F, then F is either degenerate in the sense that
the Jacobian of F is identically zero, or F is univalent. We
also show that if Fn converge to F normally then F is sur-
jective provided that (i) Fn is surjective and lifts lines
and (ii) F 1 is locally bounded [Def. 3.5.2]. We then apply
this theorem to the class of monotone maps and give a proof of

a result of Browder's [5, p.l6] which states that a monotone

map F is surjective if F ' is locally bounded.

Section 2. Global Univalence via Covering Spaces.

Suppose X and Y are Banach spaces and D € X is an open
and connected set. If F: D » Y is a continuous map, we ask
what additional assumptions must be imposed upon F to guarantee
that it is univalent on D. The natural starting point for this
investigation is the search for necessary conditions.

Definition 3.2.1. Let F: D < X - Y be continuous. We say pol

is locally finite if and only if F-l(y) is a finite set and
every y €Y has an (relative to F(p)) open neighborhood N abcut

it such that number F T (x) = number le(y) for every xe N.

So if F: D =+ Y is univalent, the first necessary condition

1 is locally finite, for number F“l(y) =

that arises is that F
vy e F(D), and 0 €therwise.

Secondly, if D is starshaped about a point a, then when-
ever F is univalent on D, F must certainly be univalent on
every line in D whose initial point is a, i.e., if L(t) is such

a line, then g(t) = F(L(t)) is one-one for every t in the

interval [0,1].
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Finally, suppose F is a compact perturbation of the
identity. If F is univalent on D then the invariance of
domaih theorem tells us that F must be an open mapping,
thus F is a local homeomorphism since every open set O
of D is mapped homeomorphically onto F(0), which is also
open. In view of this and of example 2.1 which follows,
we shall (in this section) always a priori assume that F
is a local homeomorphism. Thus, if F is a local homeo-
morphism on D, the question of univalence is equivalent to
the problem of determining when F is a homeomorphism of D
onto F(D). It is this last reformulation of our original
problem which we investigate.

Example 2.1. Let X be a complex Banach space, F: DeX -+ X

be analytic and of the form I + C. 1If F'(zo) is not invertible

for some z_€ D, then there is an open neighborhood of z0 on

0
which F is not one-one. So in particular F is not univalent
on D.

The following example shows that the assumptions F: D - Y
a local homeomorphism and F one-one on every line emanating
from a (where D is starshaped about a) are not sufficient for
F to be a homeomorphism of D onto F(D).

Example 2.2. Let F(x,y) = ex(cosy, siny) be a map of D ~» mz

where D is defined as follows:



-] y:—l

(D_is the interior region)
D is open and starshaped ébgut 0. One checks that F is a
local homeomorphism on D, and F is one-one on every line
through 0. However F is not one-one in D since, for example,
F(x,y) = 92“(1,0) has two solutions in D.
We observe that e is not lccally finite, for if
-1 <y <0 then F(0,y) = F(0,27+y) and so number F-l(F(O,y)) = 2%

If 0 <y < 1, then number F_l(F(O,y)) = 1.

The next example is a local homeomorphism for which F“l
is locally finite on an open set D, but again is not a
homeomorphism.

2 2 .
Example 2.3. Let F(xl,xz) = (xl—xz, 2xlx2) be a map defined

on D' = B - {0} where B = open unit ball. Although

g

il
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[}

7 4g locally finite and F is a local homeomorphism on D',
F fails to be one-one since for example F(xl,xz) = F(—xl,-xz).

Note also that F is everywhere two to one on D'.

However, if D € X is starshaped about a and F: D -+ Y
satisfies (i) F is a local homeomorphism (ii) i is locally
finite and (iii) F is one-one on every line emanating from
a, then we shall show in Theorem 3.2.3 that F is indeed uni-
valent on D, in fact a homeomorphism of D onto F(D). Actually
a weaker version of (ii) will suffice as will be seen.

Cur point of departure is:

Lemma 3.2.1. Let D £ X be open and connected. Then F maps

D homeomorphically onto F(D) if and only if (i) (D,F)covers
F(D) and (ii) for some yé& F (D), F_l(y) contains exactly one
point.

Proof: If F maps D homeomorphically onto F(D) then (D,F)
covers F (D) and F-l(y) contains exactly one point for every
ye F(D).

Conversely, if (i) and (ii) are satisfied, then
Theorem 1.4.1 (iii) is applicable and so for every y € F(D)
F_l(y) contains exactly one point. Thus F maps.D onto F (D)
in a one-one way. Also a covering map is a local homeomor-
phism and so in particular is an open map; Hence F is a

homeomorphism of D onto F (D).

Thus Lemma 3.2.1 shows us the direction we must follow is
that of covering spaces. So we ask when a local homeomorphism

F: D > Y covers F(D). Here Theorem 2.2.2 is applicable and
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says that necessary and sufficient conditions for (D,F) to
cover F(D) is that (i) F is a local homeomorphism and (ii) F
lifts any line in F(D) [recall Def. 2.2.1]. Thus we are lead,
as in Section 3 of Chapter II, to introduce the following weak
version of condition (C):

(C) whenever P(t), 0 <t <b is a path satisfying F(P(t)) = L(t)

for 0 <t <b (where L(t) is any line contained in F(D)), then

there is a sequence ti + b as i + ©» so that lim P(ti) exists
1o
and is in D.
The essential difference between (C) and (C)is that for

(C) we require that the hypothesis is satisfied for any line

-1 ==
| B -3 - -3

in ¥, whereas in (C) it is only required that the hypothesis
be satisfied for any line in F(D). Thus, as the development
of Chapter II indicates, condition (C) guarantees that

F(D) = Y, which condition (C) does not guarantee, as is
illustrated by the map F(x) = e*: Rl o Rl. F satisfies
condition (C), but not condition (C)since if L(t) = l-t, then

P(t) = 1n(l-t) and so P(t) - == as t > 1.

Theorem 3.2.2. Let F: D £ X + Y be a local homeomorphism.

Then condition (C) is necessary and sufficient for (D,F) to
cover F(D);

Proof: If (D,F) covers F(D) and L(t) is any line in F(D),
then if x is any point in F_l{L(O)). Theorem 1.4.1 (i) says
that there is a path (in D) P(t), O <t <1, with P(0) = x

and F(P(t) = L(t)) for 0 <t < 1. Thus lim P(t) always exists
t+b

and is in D for any b in [0,1].

.Conversely, we can apply the argument of Theorem 2.3.1



to obtain the desired conclusion.

Theorem 3.2.3. Suppose D € X is an open set which is star-

shaped about some point a. Let F: D -+ Y be a local homeo-
morphism. Then the following conditions are necessary and

sufficient for F to be global homeomorphism of D onto F(D):
1) Whenever M D is open, bounded and starshaped about a,

then (F|M}-l is locally finite.

2) F is one-one on every line in D which emanates from a.

Proof: If F is a homeomorphism of D onto F(D), then number

(F-l(y)) = 1 for every ve F(D), and so for any set M described

in (i), number (F|M(y))'l = 1, and thus is locally finite.

Also as F is univalent, F is one-one on every line in D.

For the sufficiency it is enough to show that F is uni-
valent on D, for then F will map D one-one onto F (D) and F“l
will be continuous since F is a local homeomorphism.

So suppose F(xl) = F(xz}. Then we can find a bounded,
open set M containing X and X, and so that M is starshaped
about a. Since F]M is a local homeomorphism and by (i)

(|,

line emanating from a, it suffices to show that FJM maps M

is locally finite and (ii) F|M is one-one on every

homeomorphically onto F(M). Applying Lemma 3.2.1, we first
show that with F = F[M, (M,¥) covers F(M) and there is a
point y € F(M) so that F~l{y) contains exactly one point.

A) (M,F) covers F(M).
We shall show that F satisfies condition (C), and then invoke
Theorem 3.2.2 to obtain the desired conclusion. So suppose

L(t) is a line in F(M) and P(t) is a path defined for 0 < t <

1

D



and satisfying F(P(t)) = L(t) for 0 <t < b. By hypothesis

there is an open neighborhood U of L(b) so that number
#1(x) = number F T(L(b)) YxeU. For each x, (i=1,...M)€

f_l(L(b)) let Oi be disjoint open neighborhoods of X, so that
N
0 is a local homeomorphism. Let S = /) [F(Oi)ﬂU], and
i=1
1

A, = Ofﬁf' (S). One can check that F(Ai) = S and A; and S

F|

-

are open and ﬁlA. is a homeomorphism. Choose t < b so that

L(E)E S. 1In particular L(t) € U, hence each point of ?'l(L(g))
lies in one and only one A,. Thus P(E}EAj for some j. Since
FlA. is a homeomorphism onto S, there is a path Q(t) defined "
on t <t <b so that Q(t) = P(t) and F(Q(t)) = L(t) for “i

£t <t <b. However from Theorem 1.4.2 we conclude that

P(t) = Q(t) for E.f t < b, and so if t, * b is any sequence,
then P(t;) > Q(b). Thus condition (C) is verified.

B) There is some point y € F(M) so tﬁat number F—l(y) = 1.
In fact y = F(a), for suppose F(xl) = F(a). If we let

L(t) = (1-t)a + txl, then (ii) implies that X, = a.

Related to Theorems 2.3.2 and 2.3.5 we have:

Theorem 3.2.4. Let D € X be open and connected, F: D +> Y

a local homeomorphism. Then the following are necessary and
sufficient for F to be a homeomorphism of D onto F(D):
(1) a) Either F is a relatively proper map or
b) F is a relatively closed map, and (ii) for some point
yeF(D), F_l(y) consists of exactly one point.
Proof: If F is a homeomorphism of D onto F(D), then (i) a,
b and (ii) follow immediately.

Conversely, we show first that either (i) a or (i) b

implies that (D,F) covers F(D). Applying Theorem 3.2.2 it



suffices to show that F satisfies condition (C).

However, the arguments of Theorems 2.3.2 and 2.3.5 are 1
applicable and so we conclude that (D,F) covers F(D). That F

is a homeomorphism now follows from (ii) and Lemma 3.2.1.

As we have seen, Lemma 3.2.1 provides us with a viewpoint

for attacking the problem mentioned at the beginning of this |
section. Its use depends on showing two things: 1) that

(D,F) covers F(D) and 2) that for some y&€ F(D), F_l(y) con-

tains exactly one point. For the former we know that it

suffices to show that F satisfies condition (C). To verify 2,

P

one condition that we have already introduced is as follows:

=

suppose D is starshaped about a, then if F is one-one on
every line emanating from a,2 is satisfied. In fact F-l{F{a))=a
for if F(x) = F(a) then, since F is one-one on the line : .
L(t) = (1-t)a+tx, we conclude that x = a.

If D is not starshaped the hypothesis on F given above
does not make sense and so other methods of verifying 2 must
be looked for. One of these is topological in nature and in-
volves the use of the degree of a map (Sect. 3B, Chapter I).

We shall assume once again that F: D - F(D) is a local
homeomorphism and that D is an open and connected set. We
also assume that D is bounded. This involves no loss of
generality for the question of univalence because F univalent
on D is equivalent to F being univalent on every bounded
open subset of D (if F(xX)=F(y) in D we can always find a
bounded open subset of D which contains x and y).

The usefulness of the degree of a map in our situation



will be apparent from the following theorem of Rothe [24].

We first note that if F = I+K, K compact is a local homeo-

morphism then number F-l(p) is always finite provided F(x)#p on

aD. For if xﬁGF_l(pJ, =12 « « ; EhEn xn+K(xn)=p, and since D

is bounded, K(xn) has a convergent subsequence K(xn.) +'¥.

Thus X, converges to some X and since F is a localjhomeo-

morphis% on D, x9D which is a contradiction since F(x) = p.
Let 0x denote an open ball of xe D such that 5; is con-

tained in an open set ¥ of x for which F|V is a homeomorphism.
X
Theorem 3.2.5. Let D € X be open, bounded and connected, e

F: D+ X a local homeomorphism. If F = I + K and 4d(F,p,D) = £1
then F_l[p) contains exactly one point.
Proof: Since F—l(p) is a finite set, we have

(1) 4d4(F,p,D) = Z oy d(F,p,OxJ, where Ox is as above and
xeF ~(p)
disjoint. Thus it suffices to show that d(F,F(P(t)),OP{t))

constant whenever P(t) is any path in D. For if this is so,
then d(F,p,Ox) = d(F,p,Oy) = C for x and yeF_l(p). So by (1),

tl = d4(F,p,D) C number F-l(p) and this implies that number

Flp) = 1.
So suppose P(t), 0 <t <1, is any path in D. For fixed

t choose O as above. Let t, be any number such that

P(t) 1
d(F,F(P(t)),0 is

P(tl)é 0 By definition of O

p(E) P (E) " p(t)’
defined and is a continuous function of tl-f £ % t (we assume,
without loss of generality that tl < t), and so it is constant.
In particular

Let W be

= 4(F,F(P(t)),0 P(t,)

(2) d(F,F(P(tl),o

p(E)’ p(E)) "

c 0 N o Then

an open ball about P(tl) so that W P(tl) p (%) "

P(t,)




(3) d(F,F(P(t;),0

P {tl) ) - = d(F,F (P (tl) ;WP (tl) )

d(F,F(P(tl)),O So 2 and 3 yield d(F,F(P(tl)),O

p(f))" P(t;)’
d(F,F (P (E));OP(E))V’ t, such that (tl-E) is small enough to

insure that P(t;) €0 Thus 4 (F,F(P(t)),0 )) is a conti-

P(t)"° P(t
nucus function of té€[0,1l] into the integers, and so it is constant.

Corollary 3.2.6. Suppose DC X is open, bounded and connected

and F: D » X is continuous and is a local homeomorphism on D.

If (i) F I +K, (ii) F(D)NF(@D) = ¢ (iii) 4(F,p,D) = £1

]

for some p, then F is a homeomorphism of D onto F(D).
Proof: By virtue of the Invariance of Domain Theorem it

suffices to show that F is univalent on D. Now

(ii) implies that F(D)< Y-F(@®D). Thus d(F,q,D) is defined
for every g€ F(D) and is equal to some constant. However
from (iii) we conclude that d(F,q,D) = *1 VgeF(D) and so we

now apply Theorem 3.2.5 to obtain the desired conclusion.

We now apply our methods to derive "local" versions of
Theorem 2.3.9 and Corollary 2.3.1l1, i.e.,:

Theorem 3.2.7 [17]. Let B = {x| |[x-a|| <}, F: B > YeC'(B) and

also F'(X) is an invertible linear map V xeB. Then there is
a domain Bls; B so that a€B.and F maps Bl one-one onto

I
D= {y||y-F@)| <[ int . —
olx-al st JiF (%]
A

1
dt}. (Wnere this

1

I

dt; A <I.')*

integral is defined as lim inf 1_
e dox-all st P )]

ol

Proof: Without loss of generality, let a = 0, F(a) = 0. We
proceed as follows: let L(t)=tg, 0<t<C<l, & € 3D, describe any
segment of any radius of D. We shall show that F lifts any such

L(t) to a path P(t) € B, where P(0) = 0. Then we let
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B. = {x|x=P(f), 0 < t < 1,P(t) as above}. Then using the argument

1
of Theorem 2.2.2, we conclude that Bl satisfies the conditions
stated in our theorem. So suppose P(t) is defined for

0 <t <b <C < 1, P(0) = 0 and F(P(t)) = L(t), a radius of D.
We shall show that condition (C) is verified for such paths,
and hence F lifts L(t). By the usual construction of P(t)
(see Theorem 2.3.1) we may assume that P is continuously
differentiable on 0 <t <b. Thus P'(t) = [F'(P(t)] 1¢
on 0 <t <b, where £ = L'(t). Also, we may suppose that

r =) =supit, 0 = & K r|h(t)>0}, where h(t) = inf 1 n
Izl <t JI[F' (x)]

Otherwise we apply all our arguments to the set

L

A r
B' = {x|lxll< A} (D is the same since f h(t)dt = f h(t)dt )-
0 0
Hence 2 4> %>0on B. Let t",t' <b, then with
NMF* (x)1 ~Il

BY (£) = [FY(P(£))]1 Lt we have:

n

P (&)l
cIE e )17

[t =t | gl > f

dt > afP(t")-P(t")]l
& _

Hence lim P(t) exists and call it P(b). We now must show that

t+b
IP(b)l « r. Suppose [|[P(b)Il.= r. Then from the inequality (1)
of Theorem 2.3.7 (where B(x) = 1 ) we have since £ e 3D

IIE" (x) 172

b ; It (b)l £
bllglf > f I (t)!1; dt > J h(t)dt = f h(t)dt = [i&]
0 (EF" (%) 7l 0

which is a contradiction, since b < 1. Hence condition (C)
is verified, and the result follows from our introductory argu-

ments.



The next theorem gives us more information on the size of Bl

of Theorem 3.2.7.

Theorem 3.2.8. Let B = {x|llx-all< r}, F: B - YéC'(B) and

F'(x) is invertible YxeB. Let M = sup IF* (x)| and
= X = |]x-aH <r
M = sup IIF'(x)] ~||. Then there is a domain B, € B so

Ix=-all <
that ae€ B and F maps Bl one-one onto D

fy|liF(a) -yl < £}
M
B(a, =) = fx|lIx-ax =} .

Furthermore, Bl 5
r MM 1 MM >
Proof: Since j inf l”dt > = , we conclude
M

o lIx=al <t [IIF* (x)1"
from Theorem 3.2.7 the existence of a Bl which is mapped in

a one-one way onto D by F. It remains to show that

Bl > Bl(a, —é). Let L(t) = (l-t)a+tx, [|lx-all & 3& be any radius
MM MM
of B(a, — ).
MM
We show that P(t) = F(L(t)) is in D. This is enough,
because as P(0) = F(a), there is a path i(t) in B, so that
i(O) = a and F(i(t)) = P(t). From Theorem 1.4.2,
L(t) = L(t). Thus By 2 B(a, —). So with P(t) = F(L(t)),
MM
then:
£
P (£)-F (a)]l _<j IF' (L(t))L' (v)] at
0
<tlFr@en] Jrre <t XL
MM M

We »emark that for X = Y = Rn, Theorem 3.2.8 was

originally due to Wazewski [30].




We remark that the proofs of Theorems 2.2.2 and 3.2.2

show us that these theorems remain valid when D is pathwise
and locally pathwise connected and F(D) is locally convex.

Thus Theorem 3.2.4 is also valid with the above modifications.

In view of this we can now apply Theorem 3.2.4 to prove two
theorems of Miranda's [3lc, p. 142] which have interesting
applications to nonlinear partial differential eguations

[see 31d, pp. 461-465].

Theorem 3.2.9 Let F be a map between two Banach spaces

X and Y. Let Z <€ Y be closed, connected and locally convex.
Suppose that:
(i) F is a local homeomorphism at each point of F-l(Z).
(ii) The preimage of a compact set in Z is a compact set
in ¥ i
(iii) There is a point z € Z which is the image of
exactly one point.

l(z).

Then F is a univalent map on F_

Proof:
As F-l(Z) is closed, (ii) implies that F is a relatively

L(z)

proper map between F_l(ZJ and Z. Thus if we show that F
is pathwise and locally pathwise connected we can then apply
Theorem 3.2.4 which yields the desired conclusion. Since

F
'e=12)
of Z gives us the local pathwise connectedness of F

is a local homeomorphism, this and the local convexity
4

(Z2).
It now suffices to show that F_l(Z) is connected. Let

A C F-l(Z) be a component. F-l(z) locally connected implies



that A is both open and closed (relative to F Y(Z)).

However (i) and (ii) gives us that F is both an open and
closed map and so F(A) is an open and closed subset of Z.
Thus the connectivity of Z implies that F(A) = Z, and in

lezy.

particular, that every component A contains a point of F
However F_l(E) contains exactly one point and so the disjoint-
ness of the components implies that there is only one component.

Thus Z is connected.

Theorem 3.2.10 Let X and Y be Banach spaces, Z € Y closed,

connected and locally convex. Suppose F: Xx[0,l1] is a map
with the following properties:

(i) Each point (x,t) € F-l(z) has an open neighborhood
about it so that Ftl = F(x,;l) is a homeomorphism on it

whenever [E-tl| is sufficiently small.

(ii) The preimage of a compact set in 2 is a compact set

of Xx[0,1].

(iii) For some particular to, there is a point of Z which
is the image (under Fto) of exactly one point.
Then F, is a univalent map on le(z)'for each t ¢ [0,1].
Proof:

Let StO = {(x,t0)| F(x,to) € 2} . The hypotheses imply
that the map FtO and the set St0 satisfy the conditions of
Theorem 3.2.9. Thus Fto is univalent on Sto.

Let w € 2 and let G = {(x,t) | F(x,t) = w}. We define
the map P: G > [0,1] by P(x,t) = t. We shall show that P

satisfies the hypotheses of Theorem 3.2.4. First, P is a




local homeomorphism on G for if (x,t) € G, then by (i) we

can find an open neighborhood (of (x,E)), L Ux(t-c,t+e)

so that F, is a homeomorphism on it for each fixed

t € (t-e,t+e). Hence W 3 N G is an open neighborhood

ot}
of (i,E) in G on which P is a homeomorphism. Also P is a
proper map for if ¢ <« [0,1] is compact, then it is, in
particular, closed. Thus P_l(C) is closed in G and,

by (ii), it is compact since G is compact. Since Ft

0

is univalent on S, , there is exactly one point of G
0

whose image under P is the point tgo- In order to apply
Theorem 3.2.4, we must show that G is pathwise and locally
pathwise connected. This, however, follows by the same
arguments used in Theorem 3.2.9. Thus by Theorem 3.2.4,

P is univalent on G and this in turn implies the desired

conclusion.




Section 3. Global Univalence Once Again.

Throughout Section 3 we concern ourselves once more with
the problem of global univalence and global homeomorphisms.
However, we add a slight twist, whereas in Chapter II and in
Section 2 of this chapter we always assumed that our maps were
local homeomorphisms, in this section we shall try to remove
this assumption. In other words if D < X is
open and connected and F: D =+ Y is continuous (or continuously
differentiable), when is F globally univalent or when is it
a homeomorphism of X onto Y? Since we do not a priori assume
that F is a local homeomorphism, the techniques of Chapter II
and of Section 2 do not, in general, work. Thus we must use
specialized methods which suit the problem at hand.

Theorem 3.3.1. Let D < X be open and convex. Let F: D » X*

be a gradient map, where F = Vf. If f is convex, then F is
globally univalent on D if and only if f is strictly convex.
Prcof: If f is strictly convex, then by Theorem 1.3.5
(F(x)=-F(y) ,x-y) > 0Y x,yeD. Thus F is one-one on D. Conversely,
suppose f is not strictly convex. Then Hxl # X, and

(1) x = (1-E)x +Ex,, 0 < t < 1 so that f£(x)=(1-t)f(x;)+tf(x,).
It suffices to show that f(x) = f(xi)+(F(§),§—xiJ, i=1,2. Por

suppose this is so, then for any zeD.

£{z)] = £(%;) = £12)~£(H+E (&) -E£(%;)
> (F(X),2z-%) + (F(E),E—xl) (by convexity)
= (F('i),z—xl) .

Let yeX. Then for XA small enough,z = xl+AyeD. Thus




f(x

_ +Ay) -£(x,) _
f(x,+Ay)-£(x;) > (F(x),\y). Hence ) > (F(x),y).

2

Letting X » 0 we get (F(x;),y) > (F(X),y) YyeX. Thus
F(xl) = F(X), a contradiction since F is one-one. We now
show that £(x) = £(x))+(F(X),x-x;), i = 1,2. Let

L(t) = (l-t)x,+tx,, hence X = L(¥). Let g(t)=£(x)-£(L(t))
-(F(X) ,x-L(t))< 0 by convexity from (4) of Theorem 1.3.5.
However, by (1), g(0) = E[-(f(xl)—f{xz))+(F(:‘c),xl-xzn and
g(1l) = (1-%) [£(xy)-£(x,) - (F(X),x;-%x,)]. Thus g(0) and g(1)
have opposite signs. However g(t) < 0 and 0 < t <1 imply

g(0) = g(1) = 0, which is what was to be shown.

B =

The following corollary is related to Theorem 2.3.2.

Corollary 3.3.2. Let H be a Hilbert space, F = H » H be a

gradient map where F = Vf. If f is convex then necessary and
sufficient conditions for F to be a homeomorphism of H onto H

is that (i) f be strictly convex and (ii) F is proper.

Proof: The necessity follows from Theorem 3.3.1 and the fact
that a homeomorphism is a proper map. The sufficiency follows
from Theorem 3.3.1, Corollary 3.5.9 (Section 5)and the continuity
of the inverse comes from the fact that a proper map is a

closed map. -

The finite dimensional case of Corollary 3.3.2 was first
proven by Rockefeller [23, p.260] using technical results in
the theory of convex functions.

In the last two resulis F was the gradient of a convex
functional and so in particular F was a monotone map. Since

a strictly monotone map is always one-one, one may ask what



can be said if F is just monotone?

Theorem 3.3.3. Let F: D » X* be a monotone map, D CX open.

Suppose F is continuously differentiable and Ker[F'(x)]* = 0
¥x€éD (equivalently F' (x) has dense range). Then F is globally

univalent on D.

Proof: Suppose F(xl) = F(xz) = a. Let g(x) = (F(x}-F(xl),

x-xl) > 0. Then inf g(x) = 0 is attained at x = Hye Also
X€D

Vg (x) = [F'(x)]*(x-x))+F(x)-F(x;). Now the zeroes of Vg

are in one-one correspondence with the critical points of

g(x). In particular inf g(x) is a critical value , thus :
xXeD

X = X, is a critical point of g and so it is a zero of Vg. a

¥

Hence 0 = Vg(xz} = [F'(xz)]*(x2~xl). By hypothesis we con-
clude that Xy = Xp.

Recalling Theorem 2.3.5 we prove:

Corollary 3.3.4. Let F: X - X* be a monotone map. Suppose

also that F is continuously differentiable and satisfies
Ker[F'(x)]* = 0. Then a necessary and sufficieng condition
for F to be a homeomorphism is that F is a closed map.
Proof: The necessity is obvious. For the proof of the
sufficiency it is enough to show that F maps H one-one onto
itself. Then since F is a closed map, F_l is continuous.
The fact that F is one-one follows from Theorem 3.3.3. The on-
toness follows from a generalization, due to Browder [6], of
a theorem of Pokhozhaev.

We are now in a position to prove Corollary 2.3.4 which

states: Let F: X » X*eC'(X) be a monotone Fredholm map of

index zero. If (i) Ker[F'(x)]* = 0 and (ii) [[F(x)| > = as



x| + », then F is a diffeomorphism of X onto X*. Since F

is monotone, F satisfies condition (E) by Theorem 1.3.4. By
the remark following Theorem 1.4.7, condition (E) and (ii)
imply that F has closed range. Since F'(x) is a linear Fred-
holm map of index zero, (i) and the closed graph

theorem imply that F'(x) is invertible, and so by Theorem 1.2.1
F is a local diffeomorphism. In particular, F is an open

map and thus has open range. Since the range of F is both

open and closed, it is all of X*. F is also univalent by
Theorem 3.3.3. Since F is a local diffeomorphism, F T+ is

differentiable and so F is a diffeomorphism of X onto X*.

Theorem 3.3.3 is a direct generalization of the following
theorem of Berger [2, p.139 Theorem 4.4]:

Let F(x) be a continuously differentiable mapping

of a convex open bounded set D in RM into RV . Suppose that

F'(x)+[F'(x)]*
2

minor determinants. Then F(x) is univalent in D. This theorem

det F'(x) > 0 and that has non-negative principal

follows from Theorem 3.3.3 if we observe that the kEyoothesis

LI} &* 1 & P
[F ‘X)% oLl 0 . F implies that (Fy,y) > 0. However

(F'(x)y,y) = (ﬁy,yJ > 0, and so F is monotone. Also

on

det F'(x) > 0 implies Ker (F'(x))* = 0.
2

Corollary 3.3.5. Suppose F: R2 + R is continuously

differentiable and |det F'(x)| > o > 0. If F is a gradient
map then F is globally univalent on Rz.
Praof: Case I. det F'(x) > a > 0 .

Let F(x,y) = (u(x,y),v(x,y)). By Theorem 1.2.1,F'(x) is a

symmetric matrix and so det F'(x) = va —Vi > a > 0. Hence

¥



g 5 ; %
Ux # 0. By continuity either UX 0 or Ux < 0, If UX >: 0.4

then the principal minor determinants of F'(x) are positive

and so by the remarks preceding the corollary on Theorem 3.3.3,
F is globally one-one. If Ux < 0, we apply the above arguments
to the map E(x,y) = (-U(x,y),-V(x,y)).

Case II. det F'(x) < -a < 0.

This is a theorem of Efimov [12].

Our next theorem is related to Corollary 3.2.6 and

Theorem 3.5.3 of Section 5.

Theorem 3.3.6. Let 5chN be continuous on D and continuously

~differentiable in D and det F'(x) > 0 (Z 0). Suppose that the
- solutions of F(x) = p are isolated and F(D)NF(®D) = ¢. If
(F(x),x) > 0 on 9D then F is globally univalent in D.

Proof: (x,F(x)) > 0 implies that d4(F,0,D) = 1. Also

F(D)AF(3D) =¢ implies that F(D) € R -F(3D), thus d(F,F(x),D)

is defined and is constant. Hence 4(F,F(x),D) = 1 ¥xeD.
Suppose F(le = F(xz) = a, %X and x2eD. Then since the
solutions of F(x) = a are isolated in D and since F(D)NF (D) =¢,

then there are only a finite number of solutions, say
1

xl,...xnéF_'(a). Let B, be disjoint open neighborhoods of
n
X, - Then 1 = d(F,a,D) = ;—1 d{F,a,Bi). However from

Theorem 1.4.6 d(F,a,Bi)> 0. Thus there can be only one

solution, and so F is globally univalent on D.



4. Surjectivity

In this section we shall consider the problem of
determining when a given map between Banach spaces is surjec-
tive. Throughout this section we only consider those
classes of maps F between Banach spaces that are described
in Chapter I, Section 3B, i.e., for which one can associate
a certain integer valued function called the degree 4(F,P,B)
which satisfies properties (i)-(iii) of Sect. 3B.

First of all we observe that if F maps X onto Y, then

lim sup ||F(x)|| = ». For if not then Range F is
| | % > ©

. bounded and so F cannot be surjective. However this necessary
condition is far from being sufficient as the example
F(xl,...,xn) = (xi,...,xﬁ) shows. In fact F is proper since
| IBGR) || — = a8 |[%]|] — =

In our search for sufficient conditions let us for the
moment consider a polynomial P(x) as a function of R' into
itself. Since every polynomial is proper, under what
conditions does it map Rl onto Rl? If P(x) is of odd order,
then this is certainly true. Taking a closer look at our
polynomial of odd order we notice that it has the property
that if |b| is sufficiently large, then d(P(x),b,I) # 0
whenever I is chosen so large that P-l(bJCZ I. Surprisingly,

this condition along with properness, is sufficient to

guarantee surjectivity for more general mappings, i.e.:



Theorem 3.4.1 Suppose F: X — Y is proper. If Jp e ¥

so that 4(F,p,B) # 0 whenever B 2 F_l(p), then F maps

X onto Y.

Proof:

Since F is proper, F has closed range. Also by
property (i) of Section 3B, Chapter I, F(X) # d.

Thus it suffices to show that F has open range.

So let g e y and let L(t) = (1-t)p + tq, 0 < t < 1,
where p is a point which satisfies d(F,p,B) # 0 when
F_l(p) € B. Since L(t) is a compact set in Y, F~1(L(t))
is a compact subset of X. Choose r large enough so that
F_l(L(t))C: B(0,r) = {x|||x|| < r}. Hence d(F,L(t),B)
is defined, and is a continuous function of t e [0,1].

Since d is integer valued, d(F,L(t),B) = Const. = 4(F,p,B)#0.
In particular, d(F,q,B) = d(F,p,B) # 0. Also F(3B) is a
closed set since a proper map is also a closed map. Thus

Y - F(3B) is open and so it is the union of open components.
Let Cq be the (open) component containing g. We show that
th: Range F, and so F has open range. However d(F,y,B)

= d(F,q,B) whenever y € Cq. Thus d(F,y,B) # 0 and so

Cq C F(B) C Range F by property (i) of Section 3B, Chapter I.
A direct analog of the case of an odd order polynomial is

Corollary 3.4.2 Let F: X — Y be an odd map, i.e.,

F(-x) = -F(x). Suppose d(F,0,B) is an odd integer

whenever B is a ball about the origin. If F is proper,
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then F maps X onto Y.

Proof:

This follows from Theorem 3.4.1.

The example F(xl,...,x ) = (xz,...,xz) shows that the
n 1 n
hypothesis concerning the degree of F cannot be removed
from Theorem 3.4.1. For d(F,p,B) = 0 whenever F_l(p)CZ B
since F always omits negative directions. F is proper but

not onto.

Corollary 3.4.3 Let X,Y be a complex Banach spaces,

F: X — Y complex analytic which is also a Fredholm map

of index zero. If F is proper, then F is onto.

Proof:

Since F is proper, we can define an oriented degree
for F as in Section 3B, Chapter I. By Theorem 3.4.1
it suffices to show that d4d(F,p,B) > 0 whenever F_l(p)c: B
for any bounded domain B. However, by Theorem 1.4.5,

d(F,p,B) > 0 whenever p € F(B) - F(3B).

In the same manner we give a simple proof of a result

of Nijenhuis and Richardson [22].
N N i Gaily ;
Corollary 3.4.4 Suppose F: R — R e C'(R'). If F is

proper and det F'(x) > 0 (and £ 0), then F maps RN

onto itself.




Proof:

The proof is the same as Corollary 3.4.3, except we

use Theorem 1.4.6. d(F,p,B) > 0 whenever p € F(B) - F(3B).

In Section 5, Corollary 3.5.10 we shall.prove a
Hilbert space analog of Corollary 3.4.4, for monotone maps.
Again F(xl,...,xn) = (xi,...,xﬁ) serves as a counter-
example for this corollary, if the condition det F'(x) > O
is not fulfilled. Also we cannot remove the properness
condition as is seen from the map F(xl,xz) = exl(cos xz,sin x2).
For this map det F'(xlfxz) > 0, however F is not proper
since for fixed Xq lim F(xl,xz) = 0. Since F(xl,xz)#o,
F is not onto. R
In the case where F: ¢" — ¢" is analytic, we know
that det F'(z) > 0. Thus it suffices to show that an
analytic map is proper in order to show that it is onto.
If n = 1, proper <=> F being a polynomial. Thus

Corollary 3.4.3 is equivalent to the Fundamental Theorem

of Algebra in this case.



5. Preservation of Univalence and Surjectivity Under

Normal Convergence.

Suppose F_, n = 1,2,... 1is a sequence of univalent
or surjective maps from one Banach space into another and
they converge (in some sense) to a map F. Under what
conditions does F inherit the properties of univalence
or surjectivity from the FN'S? The Hurwitz theorem for

functions of a single complex variable tells us that F

is univalent provided the F_'s are analytic and univalent

N
and converge to F uniformly on bounded sets of ¢l. One of
our aims is to see how this theorem can be generalized to

non-analytic functions defined on any space B.

Definition 3.5.1 We say that F ~converges to F normally

(or F can be normally approximated by Fn) if and only if

F_converges to F uniformly on any bounded subset.

In view of the Hurwitz theorem we shall always assume
that the convergence of our sequences is taken to be normal
convergence. Of course just the fact that we have normal
convergence is not in itself sufficient to guarantee the

univalence or surjectivity of the limit as is illustrated

by the sequence Fn(x} = % X. This is a sequence of homeo-
morphisms which converges normally to F(x) = 0 which is

of course neither univalent nor surjective.
Restating our problem, we ask: If F converges to F
normally and if the Fn's are univalent or surjective, under

what conditions does F also have these properties?



To be consistent with the approach used in previous

sections, we first establish a certain necessary condition.

(For details in the finite dimensional case, see Cartan [8]).

Lemma 3.5.1 Let Fj: X —» X be maps such that Fj — P
normally in X, where Fj and F are of the form I+C. Let
p € D where D is any open bounded set. If F is a
local homeomorphism at p, then 3R and N so that

Bp = B(F(p);R) C:Fn(D) for all n > N.

Proof:

Let B(p;r) = B be such that F|; is a homeomorphism;

since Fn — F uniformly on B, then Un = FnF-l = I

~

uniformly on F(B). Choose R so that B

B(F(p) ;2R) € F(B).

Let Bp = B(F(p) ;h) S F(B). Then JN so that

[lu (x) - x|| <R for all n > N and for all x ¢ 3B. Let z € By
Then d(Un,z,ﬁ) = d(I,z,ﬁ) = 1 for all z ¢ Bp. Hence Un maps

2 1

B onto Bp for all n > N, or by definition of Un' FnF- maps

B onto Bp for all n > N. Thus Fn(D).D Fnﬁ_l(ﬁ)‘b Bp=B(F(p);R).

From Lemma 3.5.1 we can now derive necessary and suffi-
cient conditions for the limit (in the normal sense) of a

sequence of univalent maps to be univalent.

Theorem 3.5.2 Suppose Fj: X =» X form a sequence of
univalent maps converging normally to a map F where F and Fj
are of the form I+C. The following condition is both necessary

and sufficient for F to be univalent:
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(U) If D is any open bounded set in X and a € X then

Fn(X)gﬁa oh D for all n implies F(x) # a on D.

First suppose F is univalent. Then the invariance
of domain theorem tells us that F is an open map and so
in particular, F is a local homeomorphism. Thus by
Lemma 3.5.1,Fn(x) # a in D implies F®)#a in D for if Jp e D
so that F(p) = a, then we conclude that there are points
p, €D for which Fn(pn) = a for n sufficiently large --
a contradiction.
Conversely, suppose condition (U) and suppose
F(xl) - F(xz) = a. If Xy # X, let 0, and 0, be disjoint

open sets about x, and X, respectively.

1

By (U), there is a subseguence R and points pl e O

N 1
J

so that Fn (pl ) = a. Similarly in 02, there is a subsequence
0% g
J
of the Fn.'s (which we renumber and call Fo ) and points

J J
pﬁ € 02 for which F, (pﬁ ) = a. From the disjointness of
j c SURE
0l and 02 we have that p% # pﬁ which contradicts the
j ]

univalence of F_ .
n.

J
We now proceed to find suitable conditions which insure

that condition (U) of Theorem 3.5.2 are satisfied.

Theorem 3.5.3 Let Fn be a sequence of maps of RN into

itself which converge normally to a map F. Suppose furthermore

that F is continuously differentiable and satisfies:




(i) det F'(x) > 0 and (ii) the solutions of F(x) = p are

isolated for every p. Then if the Fn's are univalent, then

either F is univalent or det F' (x) 0.

Proof:

Suppose det F'(x) # 0, then it suffices, by Theorem
3.5.2, to show that condition (U) is satisfied. Thus let
D be a bounded open connected set of EN so that Fn(x) # a
for all x € D. Suppose Ix € D so that F(x) = a. Let a € B
be an open ball in D so that x is the only solution of
F(x) = a in B. Thus d(F,a,B) > 0 by Theorem 1.4.6, and
since F, converges to F uniformly on B, we have that
0 < d(F,a,B) = d(Fn,a,B) for n sufficiently large. Hence

Fn(x) = a has a solution in B (for n large) =-- a contradiction.

If in the pfoof of Theorem 3.5.3 we use Theorem 1.4.5
instead of Theorem 1.4.6 we could just as easily prove:
If X is a complex space, F, — F normally where.Fn and F
are complex analytic and of the form I + C, then if F has

isolated zeroes, F is univalent if the Fn's are.

Corollary 3.5.4 Suppose F_converges to F normally and

Fn: RN =¥ RN are univalent. If F is continuously differ-

entiable and satisfies det F'(x) > 0 then F is univalent.

Proof:
This follows directly from Theorem 3.5.3 and the fact

that F is a local homeomorphism and thus has isolated zeroes.



In general we cannot remove the condition that the

solutions of F(xX) = p are isolated from Theorem 3.5.2
and still retain the conclusion of the theorem. This is

shown by the following example:

(x-1)%, x >1

~ * : F(x) ={ 0 . x| o<1
-(x+l)2, X <=1

Then F'(x) > 0, F is not one-one and F can be
approximated by Fn(x) = F(x) + % x which converge normally
to F. In fact FA(X) > 0 and |Fn(x)] + o as |x| » o , thus

F 's are homeomorphisms of R' onto R' .

n
Let F: ¢N—+ ¢N be analytic where
F(zl,...,zN) = (Fl(zl""’zN)' e FN(zl,...,zN)). We
introduce the following notations:
3(Fyrene Fy)
Let F'(z) = X ) and
ZyreeerZy
F'(x,y) = Jacobian of F considered as a map of
m2N ol RZN.
It is well known that det F'(x,y) = |det F'(z))z,

and in particular, det F'(x,y) > 0. With this in mind

we prove:



Corollary 3.5.5 - Let Fn: ¢N et ¢N be analytic and

suppose F  converges normally to a map F. If the Fn's are

univalent then either F is univalent or det F'(x,y) = 0.

Proof:
Since P -~ & normally, then F is also analytic and

so det F'(x,y) is defined. Suppose det F'(#,y) # 0, then

by Corollary 3.5.4 it suffices to show that det F'(x,y) > 0

in order to conclude that F is univalent. However by our

preceding remarks this is equivalent to showing that

det F'(z) # 0. Suppose det F'(z) = 0. Let z, be such that

det F'(z)) # 0. For [A] <1 let g (A) = det F ((1-\)Z+z}),

g(A) = det F'((1-)\)z + Az;). We observe that g, and g are

analytic functions of A and g, — g uniformly on |a] € 3

Also since Fn is univalent, gn(l) # 0 and since g(l) # 0,

g(A) # 0 on |A| < 1. However since g is analytic, it has

isolated zeroes on |A| < 1 and so the argument of Theorem

3.5.4 is applicable and shows that condition (U) is satisfied,

i.e., g, # 0 implies g # 0 on [A] < 1 -- a contradiction

since g(0) = 0. Thus det F'(z) # 0, and the corollary follows.

We shall now investigate the limit of a sequence of
surjective maps and impose conditions which guarantee that
this limit is also surjective. As before, our convergence
will mean normal convergence.

For F: X — Y we have already introduced in Chapter I
the following condition which is satisfied by a large class

of nonlinear differential operators:
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() If x, — x weakly in X and F(xn) — y strongly in Y,

then F(x) = y.

Theorem 3.5.6 Suppose X is reflexive and F: X — Y satisfies

condition (E). Furthermore suppose that F can be normally
approximated by a sequence Fj with the following properties
(i) Fj is onto for each j = 1,..., (ii) F (x ) = a =>|[x ||
< Ma for every a, wheneMais a constant depending on a.

Then F maps X onto Y.

Proof:

Let y € Y. By (i) and (ii) Ix,, n=1,..., so that

F (x) =y and ||x || < #z . Since X is reflexive a

subsequence x_ = — X in the weak sense. Thus it suffices

to show that F(xn-) — y since F satisfies (E). However

j
||xn_|| = M; and the normal convergence of Fj to F implies
that ||F(x, -y|| = ||F(Xn.)“Fn.(xn;)I| & as ny —xe.

J J J J
Definition 3.5.2 Let F: X = Y. Then F_l is locally bounded

if and only if each point y € Y has an open neighborhood N

about it so that F_l(N) is bounded. (F_I(N) may be empty.)

Notice that F-l locally bounded is a weaker condition
than ||F(x)|| — « as ||x|| — « , which is equivalent to
being bounded, i.e., the inverse image of a bounded set in Y,

is a bounded set in X.



Theorem 3.5.7 Let X be a reflexive Banach space, F: X — Y

satisfying condition (E) and F"l is locally bounded. Suppose
Fn: X— Y ,n=1,2,... is a sequence of surjective maps
such that Fn lifts any line in Y. 1If Fn converges to F

normally, then F maps X onto Y.

Proof:
We show that every boundary point of F(X) is an interior

point. Thus F(X) has empty boundary and thus F(X) = Y by

connectivity. Let y € 3F(X). Let N be an open neighborhood

of y so that F_l(N) is bounded. Choose r so large that

F L) C B(0;r) = {x|]|x|| < r} and choose § so that
B(y;48) C N.

Since y e 3F(X), dy; € F(X) N B(y:$) and F(x;) =y,
where X, € B(0;r). From the normal convergence I M so that
I]Fn(xJ-F(x)f' < §, for all n > M, and for all x € B(0;r).
In particular |[F_ (x;)]|] < lly;1[+8, so F (x1) € B(y,26).

We claim that B(y;28) £ F(X) and thus y € 9F(X) is an
interior point. So let Yo © B(y;268) and let L, (t)=(1-t)y,
+ t Fn(xl). Since Foron=1,2,... lifts lines, J paths
P,(t) so that P_(0) = x, and F, (B, (£)) = L (t). Now P_(t)
C B(0;r). If not, then Pn(t) passes out of B(0;r) and
since Pn(t) is continuous ,th ¥ E, = Pn(tn) € 3(B(0;r)).
Therefore dist (F(x ), B(y; 28)) < § and so F(x ) e B(y;38)
CN. Hence x_ ¢ F_l(N) € B(0;r) and in particular
%, £ 39B(0;r), a contradiction. Thus Pn(t)c: B(0;r) and so

P,(1) € B(0O;r). (Remember that Fn{Pn(l)) = ¥y-) Let
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xg = Pn(l). As xg € B(0;r) for all n there is a subsequence
xg_ — X weakly. However
J
HFGQ vyl | = [IF(x) )-F (x2 )]| — 0 as ng %@
3 o G -

By condition (E) we conclude that F(xo) =Y, and so

B(§:25)<: F(X) as was to be shown.
N N . -1 .
Corollary 3.5.8 Suppose F: RF — R 1S such that F is

locally bounded. Also suppose that Fj: By — RN is a

sequence of maps each of which lifts any line in Rg.

If Fj — F normally, then F maps B onto B .

Proof:
This follows immediately from T leorem 3.5.7 by observing
that for finite dimensional spaces condition (E) reduces to

the continuity of F.

Corollary 3.5.9 [5, p. 16]. Let F: H — H be monotone.

TEF L is locally bounded, then F is onto.

Proof:

In view of Theorem 3.5.7 and Theorem 1.3.4 it suffices
to show thatthere is a sequence F : H — H such that F
lifts lines and Fn — F normally. Let Fn(x) = F(x) + % 3
Then Fn — F normally and we claim that Fn' n = _1;2pe%
are homeomorphisms of H onto H. In fact, (Fn(x)—Fn(y),x-y)
= % ||x‘y||2. Thus F_ are 1-1 and F_ maps H onto H [2, p. 105].
Thus F;I is defined and satisfies %I|F;l(x)—F;l(y)||2=]|x—yl|2.
Hence F;l is continuous and so e is a homeomorphism of H onto

H. In particular B lifts any line in H.
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We now have the following Hilbert space analog of

Corollarf 3.4:25

Corollary 3.5.10 Suppose F: H — H is continuously

;differentiable and satisfies (F'(x)y,y) > 0, ¥x,y e H.

1f ||F(x)|| — « as ||x|| — «, then F maps H onto H.

Proot:
(F(x)-F(y) ,x-y) = (F'(x(t)) (x-y),x-y) > 0 by the

mean value theOrem, where x(t) is a point on the line

joining y to x. Thus F is monotone and ||F(x)|| —»= as

| |x]| — « is equivalent to F 1 (N) is bounded whenever N

is bounded. In particular rlis locally bounded. Hence

F maps H onto H by Corollary 3.5.9.

One may ask.if the properties of univalence and
surjectivity are preserved in the limit of a sequence
which converges uniformly on the whole space X. Corollary
3.5.12 shows us that in fact the homeomorphism property is

preserved in this situation.

Lemma 3.5.11 Suppose F : B ﬂ?-RN converges
uniformly to F. If the Fn's are proper, so is F.
Proof:

Since F is a compact perturbation of the identity,

by Theorem 1.4.7 it suffices to show that ||F(x)|| — « as

||x|]| — <. However the uniform convergence implies, for n
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large enough, that IIFn(x)-F(x)|| < 1 for all x € X. Thus
(1) |]Fn(x)|| - 1< ||r(x)||] for all x e X.
Since the F_'s are proper, [P (x) || — = as [x]] — = ,

and so from (1) the result follows.

corollary 3.5.12 Suppose F is a

local homeomorphism on RN. If F can be

uniformly approximated by homeomorphisms, then F is also

a homeomorphism of RN onto itself.

Proof:
Since a homeomorphism is a proper map (Theorem 2.3.2),

the corollary follows from Lemma 3.5.11 and Theorem 2.3.2.

We remark £hat by virtue of Theorem 1.4.7, Lemma g W 1 |
can be extended to Banach spaces if we require that Fn and F
are compact perturbations of the identity and that F
satisfies the coercive condition ||F_ (x)|| —> = as | |x] |>e.

We can then extend Corollary 3.5.12 accordingly.
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