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Introduction

In this paper we find precise conditions which insure

that a map between two Banach spaces is a global homeomorphism.

We then study the related problems of global univalence and

surjectivity. We approach each of these problems by finding

necessary conditions and then proceed to determine any

additional assumptions that are needed to insure the suffi-

ciency. Counterexamples are given whenever stated hypotheses

cannot be weakened.

Preliminary analytic and topological results are

developed in Chapter I.
ghapter II is concerned with the development of a general

method for attacking the global homeomorphism problem. More

precisely, we apply Theorem 2.2.L to show that the g1obaI

homeomorphism problem is equivalent to the more fundamental

topological problem of finding precise conditions which

insure that a map between two Banach spaces is a covering

space map. We then solve this problem by proving Theorem

2.2.22 necessary and sufficient conditions for a map F

between two Banach spaces to be a covering space map are

(i) F is a 1oca1 homeomorphism and (ii) F has the line

lifting property [De-finition 2.2.L). We further reduce the

problem by showing that a local fiomeomorphism has the line

lift,ing property if and or:1y if it. satisfies a limiting

condition vrhich we designate by (C) .
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The remainder of the chapter is devoted to finding

analytic hypotheses which j.nsure the verification of

condition (C). Among the theorems proven are the

Hadamard-L6qy and Banach-Mazur theorems (see below).

Many additional results are proven including a theorem

on quasiconformal maps between Banach spaces. The class

of quasiconformbl maps was first introduced (tor e3) by

Larrrent'ev in t191. In this paper he conjectured that
every 1oca11y homeomorphic quasiconformal map of n3 i-nto

itself is a global homeomorphism. Using the concept of
modulus 1291, this conjecture has recently been verified
by Zoric [31], and,, in fact, shown to be true for tsN, N > 3.

Our methods yield a more general approach to the globaI

homeomorphism problem when contrasted to the earlier resolu-

tions of this problem. These results ( [1] , [7] , [8] , [15] , t20l )

were based on ideas that can be traced back to a paper of

Hadamard in 1-904 t15]. In this paper he proved the follow-
ing theorem: Let F, RN -* RN " c1 (xN) and suppose that its

Jacobian determinant is never zero. Then if

I
of

f . 1/l I [F' (x) ] 
-11 lds--, F is a g1oba1 dif feomorphism

-5
to itself. The proof of this theorem was based on the

in
ll"ll
EN on

use of the nronodromy Lheorem and the fact that the hypotheses

imply that the image of any line of infinite length is a

(rectifiable) curve also of infinite length. Using

Hadamard's ideas, L6W I20l generalizeo this theorem to

func'Eion' spaces. The same rnethod of proof was used by
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Cacciopoli t7l to show that if F is a compact perturbation

of the ident,ity such that (i) F is a loca1 homeomorphism and

(ii) llr(x)ll --* o as ll"l I .1 o , then F is a globa1 homeo-

morphism. In 1934 Banach and Mazur tI] proved a very general

result using the monodromy theorem: if X and Y are metric

spaces, then a 1ocal homeomorphism F between X and Y is a

global homeomorphism provided F' is a proper map. In Theorem

1.4.7 we shall show that this result implies Cacciopoli's
result.

More recent are papers of Browder t4l and John t171.

The paper of Browder is concerned. with determining conditions

for .a 1ocal homeomo::phj-sm between general topological spaces

to be a covering space map. By specializLng to Banach spaces

we obtain simplef and more readily applicable conditions

than those in t41. Fhen F is a local homeomorphism between

two Banach spaces, John uses a general mean value theorem

due to Nevanlinna to weaken the differentiability of F and

obtain an extension of the Hadamard-L6r.ryr theorem. By using

the same mean value theorem, these results also fol1ow

from our work.

In Chapter III we look at the globaI univalence problem

from two viewpoints. First, in view of the invariance of

domain theoremr w€ assume that a map F: D 5: X --* Y is a local
homeomorphism (X, y Banach spaces, D open and connected) .

In this case we again use tire theory of covering spaces to
reduce the problem as was done in Chapter II. However, since
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.F(D) is not necessarily simply connected, T.heorem 2.2.L

is not applicable and so we must revise the methods of

Chapter fI. The major new hypothesis added is

(*): F is one-one at some point. We then show that the

theory of covering spaces becomes applicable and the

problem is reduced to determining when (*) holds and

(**) (D,F) covers r'(D) . We solve (**) by introducing an

appropriate modifi-cation of condition (C) of Chapter II.

The new condition is designated (C). We then introduce

analytic and topological hypotheses which insure the verifi-

cation of (*). As a consequence we prove Theorem 3.2.8,

a quantitative estimate on the size of the neighborhoods

j.nvolved in the inverse function theorem [see 30].

The second point of view studied involves removing

the a priori condition that our maps be loca1 homeomorphisms.

For example, in Theorem 3.3.3 we use simple methods of criti-

ca1 point theory to show that a monotone, CI map F is
globa11y univalent on D provi-ded Ker [r" (x)]* = 0 for all x e D.

Most previous results on gIobal univalence (12, pp. 133-

141 and Qa11 were based on the use of the Brouwer and

Leray-Schauder degree. However in [L21, Efimov establishes

deep global univalence results for maps of n2 into itself

using differential geometric techniques.

fn Section 4 of Chapter III we use the degree theory

of Leray-Schauder and the generalized degree for Fredholm

maps of index zero to prove results on surjectivity of maps
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such as Theorem 3.4.1: if I'is proper and there is a point p

so that d(r',p,8) / 0 whenever r-1(p) cB, then F, is onto.

As corollaries we derive a theorem of Cacciopoli t3lbl and

a theorem of Nijenhuis and Richardson 1221 which states that
a cl map F of nN j-nto itself is surjective provided l. is
proper and the Jaeobian determinant of F is non-negative.

Finally we seek answers to the question of the preserva-

tion of gIobal univalence and surjectivity under uniform

limits [see 8]. We assume that the convergence is normal

(i.e., uniform on bounded sets) and in Theorem 3.5.2 we

establish the following necessary and sufficient condition

for the limit. F of a normally convergent sequence of
univalent maps F' to be univalent (where F' and F are cornpaet

perturbations of the identity): for any bounded domain D

and any point a,Frr(x) y' a on D implies f (x)la on D. We then

show that if a map F is continuously differentiable and if
the Jacobian of E is non-negative, then the above conditj-on

is satisfied provided F has i-solated zeroes (i.e., the

solutions F (x) = y are isolated for each y) . From this we

derive Carotheodory's theorem which states that a normally

convergent sequence of univalent and analytic maps of 0N

into itself has as a limit a map which is either univalent

or has Jacobian determinant identically zero.

Next, for the question of the preservatj-on of surjectivity
in the limit, we show that if each F' is surjective, has

the line lifting property and cotrverge normally to a map F
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-1for which F r is Iocally bounded, then F is surjective.

F'rom this we derive an extension of the Banach-Mazur theorem:
't

a C^ monotone map F of a Hilbert space H into itself is a

homeomorphism provided (i) F is proper and (ii) Ker[F'(x)]*= O

forallxeH.



CHAPTER I
DITFERENTIAL CALCULUS AIiID TOPOLOGY

Introduction

Chapter I will concern itself with the analytic and

topological results that are necessary for the reading of

this thesis. The chapter is divided into three sections:

calculus of nonlinear maps, classes of nonlinear maps and

topological results

Since only the most elementary properties of linear
operators are usedr w€ shall not find it necessary to devote

a separate section to them, but shall instead introduce

results where they are needed.

We use the notation I I I I to denote the norm associated

with a Banach space, and if the seguence *r, and x belong to
this Banach space, then *rr* x means ll"r, *ll + 0 as n-) -
unless another type of convergence is specifically described.

Throughout this thesis, all maps are continuous and

X, Y will denote Banach spaces (unless otherwise mentioned).
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2. Calculus of Nonlinear Maps between Banach Spacgrq

(For general references see t101. )

Suppose X and Y are real Banach spaces.

be a continuous mdp, D open.

Oefinition 1.2.1 F is (Frechet) differentiable at x

lim =0

Let F: D g X + Y

o=0
if and only if there exj-sts a linear operator (denoted by

r'(xO) ) of X into Y so that:

F(x'+h) F(xO) - F'(xO)h = R(xO;h)

where I Inlxo;rr) I I

-TfriT-I ltr I l*o

In this case F'(xO) is called the (first) derivative
of F at xO.

If D C X is an open set and F is a map of D into Y,

then F is differentiable in D if F' is differentiable at

every xO e D.

F is said to be continuously differentiable in D (for

short, F e C' (D) ) if r is differentiable in D and the map

Fr: x-> Ft (x) is a continuous map of D+ L(X,Y1 , the space

of bounded linear maps of X into Y.

ff the map Fr: D-' L(xry) is differentiable, then F

is said to be twice differentiable, and the map

F"3 D --+L(X,L(xry) ) = f,(xxxrYl is called the second deriva-

tive of F. If the map F" is also continuous, we say that
)F e C- (D). Higher derivatives of F are defined inductively

in t,he same manner.
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As with differentiablity one can also generalize the

notion of complex analyticity to (comprex) Banach spaces,

i.e., if X and Y are complex Banach spaces then:

Definition 1.2 .2 If D E X is open, then F: D -+ Y is complex

analytic in D if and only if for every x e D, F(x+ty) is an

analytic function of the complex number t for all directions
y (t sufficiently smaIl).

rt ean be shown that a complex analytic map is !'rechet
differentiable and has derivatives of all orders. Arso one

has a direct analog of the cauchy rntegral Theorem for such

maps [25. p. 38].

Of use to us will be the

Chain Rule for oifferen tiation. IfH=FoGrwhere

G is differentiabre at a point x and E is differentiable
at G(x), then H is differentiable at x and H'(x)= F'(G(x) )

o G' (x) [10, p. 148].

A map F: D c X .* Y is a 1oca1 homeomorphism (diffeo-
morphism) on o if and only if every x e D has an open

neighborhopd W about it so that F (W) is open and r'l* is
a homeomorphism (diffeomorphism of W onto F(W). The

"rnverse Functi-on Theorem" gives us sufficient cond.itions

for a map to be a loca1 diffeomorphism.

Theorem 1.2.7 Let D gX be open, F: ! -> Y continuously

differentiable. rf F'(x) is an invertj-ble linear map of
x onto Y for every x e D, then F is a 1oca1 diffeomorphism

on O.
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Proof : 
.[10, 

p. 268).

We remark that a local homeomorphism on D is also

an open Rap, i.e., the image of an open subset of D

is an open sr:bset of Y. This follows from the definition
of a loca1 homeomorphism.

3 Classes of Nonlinear Maps

In this section we consider several classes of
(nonlinear) maps between Banach spaces and some of their
associated properties. Although these classes of maps

which we sha11 subsequently define are of interest in
themselves, we sha1I only consi-der those properties of
these classes which are needed for the presentation of
the results of Chapters II and III.

The first class of maps which we sha1l consider

is the class of compact maps.

Definition 1.3.1 Let X and Y be Banach spaces. F: X-? Y

is compact J-f and only if it maps bounded sets of X into
relatively compact sets in Y.

Since every continuous map of tsN into itself maps

bounded sets to bounded sets, it follows that such maps

are compact. Thus the class of compact maps may be

considered as a direct generalization of such finite
dimensional maps. In fact, many of the topological
properties of maps from R.N into itself have direct analogs
j-n ti-re class of compact maps. For example the Brouwer
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fixed point theorem holds verbatim for compact maps as

was discovered by Schauder. This and other topological
properties of compaet maps follows from the Leray-schauder

degree theory which we shall discuss in Section 3 t2, pp.

97-1031.

We have observed that every contj-nuous map F of EN

into itself is a compact map. Thus F. - f + (f-f) is a

compact perturbation of the identity, i.e., of the form

f + C, C compact. If furthermore F is differentiable,
then F'(x) = I + (f '(x)-f ) and by the argument given

above, F'(x) is also a linear map of the form I+C, C a

linear compact map. The next theorem shows that this is
also true for differentiable maps,F: x --| X (X a Banach

space) of the form I + C, i.e., that F'(x) is also a

linear compact perturbatj-on of the identity.

Theorem 1.3.1 If F: X --+ Y is differentiable and compact,

then F'(x) j-s also a compact map.

Proof : 127 , p. 511.

The converse of this theorem is not, in general, true.
These last considerations and the following observation

will lead us to cleflne a more general class of maps, the

class of nonlinear Fredholm maps. Recall that a linear map

of X into itself of the form I + C, C a compact linear m&p,

is a linear Fredholm map of index zero. Thus we shalL

define a nonlinear Fredholm map as a continuously differ-
entiable map whose derivative is a linear Fredholm map.

I
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More precisely:

Definition 1.3.2 A linear mapL:X*YisaFredholm
map if and only if
(1) L has closed range

(2\ L has finite dimensional kernel and cokernel

The index of L (ind L) is defined as dim ker L -
- dim coker L, and is a conti-nuous function from the set
of linear Fredholm maps into the i-ntegers.

If F: X -+ Y is continuously differentiable and

if F'(x) is a linear Fredholm map for each x e X, then

again, F is called a nonlinear Fredholm map and ind F is
defined as ind F'(x). ind F is well defined (i.e.,

independent of x) since ind Fr (x) is a continuous function
of X into the integers and so it is constant.

Note also that if F is a map satisfying the hypotheses

of Theorem 1.2.1, then F is also a Fredholm map of index

zero

We were Ied to the concept of a nonlinear Fredholm map

from the fact that the derivative F'(x) of a map E = f+C

is also of this form, and so F'(x) is, in particular, a

Fredholm map (of index zero). ff we consider maps F: X -+ X*,

X* the dual of X, we are Ied, by analogous reasoning, to
that class of maps whose derivatives F,(x) are symmetri-c

linear maps, i.e., L: x-> x* is symmetric if
(txry) = (L1rrx) , Yx,y e X where the notation (r,x,y) indicates

the value of the line;rr functional Lx at y. We sha1l see
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.that this property characterizes the class of maps known

as gradS-ent or potential maps.

Let X* denote the d.ual space of the Banach space X.

For y e X* we use the notatj-on (y,x) to mean y(x) for x e X.

ff xra is a seguence in X we say that *r, converges to x

r.reakly if (y,xrr-x) -+ 0, Vy e X*.

A set D C X is said to be weakly (sequentially) compact

if every sequence of elements of D has a weakly convergent

subsequence whose limit is a point in X.

The following theorem wi1l be useful to us

Theorem 1.3.2 A set in a reflexive Banach space X is
weakly compact if and only if it is bounded.

Proof [11 , part I, p. 68].

We now define the concept of a gradient map.

Definition 1. 3. 3 r': X -+ X* is a gradient map if and only
if there is a real valued function f: X -' E so that

f (u+tv) f (u)(1) lim
t+0

Theorern 1.3.3 Let F:

if and only if F' (x) is

= (F (u) ,v) , vurv e x.

x -r x* e C' (x) . F is a gradient map

a symmetric linear map for each x e X.

t

We write F(u) = grad f (u).

Although there are many characterizations of gradient
maps 12, pp- 107-1161, the followi-ng one shal1 be especially
usefuL for us.

Procrf : 127 , p. 561 .

. A class of maps that has many applications to nonlinear
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partial differential equations is the crass of monotone

maps tl81 .

Definition L.3.4 F: X -+ X* is monotone if and only if
(F(x) r(y) , x-y) . 0 , Yx,y e x. rf the ineguality
is strict, F is said to be strictly monotone.

Theorem 1.3.4 Let F: x -r X* e C'(X). Then p is monotone

if and only if (F'(x)y,y) > 0, Vxry e X. F, is strictly
monotone if and onry if the strict ineguality hords.

Proof:

Suppose F is monotone. From Definiti.on 1.1.1:

F' (x) ty + R(x;ty) = r(x+ty) F(x) , t > o.

Thus
R (x;ty)

+(-a-,Y)>0'(E' (x) y ,y)

Let t + 0 and we have that (F'(x)y,y) > O.

Conversely, suppose (f , (x) y,y) : 0. Let
x(t) = (I-t)y + tx and Iet 9" e x** be the linear functi-onal
identified with x-y e x under the imbedding J of X in x**
given by (J(x) rw) = (w,x) 7 w e x*. Then from the mean varue

theorem t27, p. 371 we have (F(x)-F(y),x-y)=

= (r'(x(E) (x-y) ,x-y) > O. (strictness follows from the
strictness of the inequali-ties used in the above arguments.)

We say a map satisfies condition (E)

and E'(xrr) + y strongly implles f (x) = y.

if xrr-+ x weakly
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Condition (E) is satisfied by a large class of elliptic
differential operators andr €rs the next theorem shows, by

monotone maps. (Note that if F is a map between finite

dj.mensional Banach spaces, then (E) is equivalent to the

continuity of F. )

Theorem 1.3.4 Let F: X+x* be monotone. Then F satisfies

condition (E).

Proof:

Let xr, * x weakly, F(xrr) + y strongly. For any

veXwehave:

0' < (f (v) r (xrr) , v-xrr) (F (v) -y, v-x)--)

Thus (r'(v)-y,v-x) i 0, Yv e X. Choose v = x-.\2, I > O.

Then f (F(x-).2) -\y, z) < 0 and so (F(x-trt)-y,z) j 0, Yz e x.

Letting tr + O, we have (r'(x) -yrz) < O, 'dz e X and so r(x) = y.

Definiticn 1.3.5 A real valued f: X -+ R is convex if

andonlyif f((I-t)x+ry): (1-r) f(x) +rf(y) (o <r< 1)

Vx and y e x. f is said to be strictly convex if the strict
inequality holds for O < t < 1.

The next theorem describes the relatj-onship between

gradient, monotone and convex maps:

Theorem 1. 3. 5 Let f : X -+ X. e C' (X) .

convex (=) grad f is (strictly) monotone.

Pro. sE:

Suppose f is convex. Then

Then f is (strictly)
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(1) f(y+t(x-y)) < (1-t) f(y) + r f(x)

From Definition 1.3.3, equation (1), we have that

(2) 1im
t+0

f t x )-f (gradf(y),x-y)t

From (1) and (2) we have

(4) (grad f (y) ,x-y) < 1im 1-t f +tf x E
I = f (x) -f (y)

t-+ 0
t

Similarly

(s) (grad f (x),y-x) < f (y) f (x)

Adding (4) and (5) we have (grad f(y) grad f(x),y-x) > 0,

thus grad f is monotone. (rhe strictness folrows from the

strict inequality in (1) and thus (4). )

Conversely, suppose grad f is monotone. Let

0(t) = f (L(t)), where L(t) = y + t(x-y). Then from the mean

value theorem we have

0<t I and

(1-r) o' (t2) 
' 2

< 1.

However

Upon subtracting (2) from (1) and using (3) we have

0(1) 0(r)0(t) - 0(0)t 1-r(4)

= (graa f (t(tr))-srad f (L(t2)), L(t.,)-L(t))/ r1-t2

,
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of (4) is:0, and the left-hand side is equal to
f (y+t,(*-y) ) - f (y) - t(f (x)-f (y) ). rhus (4) yields
t(y+t(x-y) ) r t(y) + t(f (x)-f (y) ) a.nd so f is convex.
(Strict convexity follows from strictness in (4) . )

The next class of maps we define is the class of quasi-
conformar maps. This class was first int,roduced for the
special cases of n2 and E3 by Lavrentiev [19], where

he also proves global homeomorphism results for them.

This class of maps proves to be a useful generarization of
the concept of a conformal map.

Definition 1.3.6 Let r': [ --+ y e c'(X) and also F'(x) is
arl invertible linbar map of x onto y. F is quasiconformal

if and only if there is a number K > 1 so that

llr'(x) ll llrr'(x) l-1ll VxeX.

For a very complete exposition on quasiconformal maps

see 1291

< K,
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4 Topological Results

A. Covering Spaces

Suppose X and Y are connected and locally pathwise

connected topological spaces, F: X -+ y continuous.

Definition 1. 4.1 (x,f) is a covering space of y (and F 1s

then called a covering map) if and only if every y e y has

an open neighborhood U about it such that f-l (U) is the

disjoint union of open sets Oi in X, each of which is
mapped homeomorphically onto U by F.

Note in particular that if (X,f) covers y then F is
a 1ocal homeomorphism.

Theorem 1.4.1 If (x,f) covers Y then F has the

following properties:
(il Unique path lift.ing: If r(x') = yO and L is a path

in Y (i.e., a continuous map of [0,1] into y) with L(O) = yO,

then there is a unique path P in X with p (O) = *0 such

that roP (t) = L (t)

(ii) Covering homotopy property: Suppose Lt and L, are

paths in Y with fixed endpoints which are homotopic (with

fixed endpoints), then these paths can be lifted to paths

Pl and P, in X which are homotopic with fixed end points.
(Reca1l that paths Lt and L, in y with La (0) = L2 (0)

and L, (1) = L, (1) are homotopic with fixed endpoints if
there is a continuous map H: [0,1] x [0,1] -+ y with



H(t,0) = L

H(1 ,u) = f,

(r), H(r,1) = L

(1).)

(t), H(o,u) - L (0) and

13

pq

1 0

1(iii) card F (y) is the same for every y e y.

Proof: 174 , p. 181 .

Theorem L.4.2 Let F: f, -+ Y be a loca1 homeomorphism, and

Iet L(t), 0 < t < 1, be a path in y. Suppose pr(t) and pr(t)
are paths in X such that F o PI = L = F . P2. If
Pl (E) = er(E) for some 0 S E < 1, then pl(t) = pr(t), Vt.

Proof:

Ler s = {r I er(t) =pz(r)i.
By hypothesis S is nonempty. Also since p, and.p, are

continuous, s is closed. Thus, by connectivity, it suffices
to show that S is open. Let t, e S. Since F is a loca1

homeomorphism , 1 a neighborhood O about pI (LI) (= p2 (t1) )

so that F maps O homeomorphically onto F (O) r 4r.l open

neighborhood about L(t1). Thus pl(t) = pr(t) for 1t-trl
sufficiently smal1 and so S is open

Definition 1.4.2 A space y is simply connected if and only
if every closed path in y is homotopic to a point.

Theorem 1.4.3 (Monodromy Principle). Let X be a simply

connected space. Assume that we have assigned to every p e X

0

0

a non-empty set En. Assume furthermore that we have assj-gned

to every point (p,q) of a certain subset D of XxX a mapping O

of E* int.o E_ , in such a way that the following hold:pq
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(i) D is a connected neighborhood of the diagonal

(a11 pairs (p,p) ) in Xxx.

(ii) Each 0-_ is a one-one map of E-_ onto E ; 0__ is'pq ' p -q"pp
the identity map.

(iii) rf onn , 0q,

d =6 o d'pilqilpq

If (i)-(iii) ho1d, then there exists a map rf which assigns

to every p e X an element rp (p) 
" "p 

in such a vray that

0(e) = 0nn(r!(n) ) whenever $nn is defined. Moreover, if p0

is a given point of X, rf.r may be chosen in such a way that

.0(eo) is any preassigned element, say .30, o, ,no, and rf

is then uhiquely determined.

Proof: See t9, pp. 46-481.

B. Degree Theo ry.

Suppose D € X is open bounded and oonnected, F: 6 --* y

continuous. We would like to "measure" the number of solutions
of F(x) = yO in Dr or more precisely, we would like to find
an j-nteger valued function, called the degree of F in D

(denoted d(F,yO,D) ) with the following properties:
(i) If d(F,yO,0) t' 0 then r(x) = yg has a solution in D"

(ii) If Fn -+ F uniformly in D, then a(Fn,p,D) -> d(F,p,D).
(iii) d(F,p,D) = d(F,q,D) whenever p and q are in the same

component of Y - F(aD).

such functions exist and we shal1 describe them briefly,
referring the reader to the texts cited for more detailed

,0 are all definied, thenpr
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information.

I. Brouwer degiree [see 2, pp. 32-54 and 25, Chapter III].

The Brouwer degree, d(F,p,D) , is defined for continu-
ous functions F: D c nN -' RN (provided r(x) / p for
x e aD) by the following success j-ve steps:

(a) Let F e c'(6) and det F,(x)/ 0 for x e r-l(p).
We define d(F,p,D) = I , sgn det F' (x) .

xeF-r (p) _1This is a finite sum since F-- (p) is a discrete set

by Theorem 1.2.1 and thus has no limit point in the

corirpact set O.

(b) Let F e C' (6) and suppose det I" (x) = 0 for
some x e E-I(p), rn this case we apply a special case of
Sard'.s theorem: 'Let S = {x I x e D, det F'(x) = 0}; then

E.(S) has empty interior. Thus we can find a sequen". pn -> p

so that det F'(x) / 0 for x e F-l (nrr). By (a), d(F,prr,D) j.s

defined and we then define d(F,p,D) = Iim d(F,prr,O).

(ot course it must be shown that the rlila "*i-=t" and is
finite and independent of the approximating sequence.)

(c) Finally let F e c (D) . By the wierstrass approximation

theoremr w€ can find a sequence Fn -+ F uniformly on il
and F' e C'(D). Then we define d(F.,p,D) = 1T d(Fn,p,D).

11+co(Again it must be shown that the limit exists, is finite
and independeni of the approximating sequence.)

Using this definition one verifies that the

Protrerties (i)-(iii) are satisfied.
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rr. Leray-Schauder Degree t2, pp. 95-103, and 25).

The Leray-Schauder degree extends the Brouwer degree

to maps which are compact perturbations of the identity

defined on a bounded open subset D which meets every

finite dimensional subspace in a bounded open set, €.g.,

hre may choose D - {" I tt"t t s .}.
The underlying method of extending the Brouwer degree

to such maps is the following approximation lemma

which characterj-zes compact maps.

Lenrna L.4 .4 F is compact on the bounded set D, if and

only if for every e > 0 there exists a continuous and

bounded (maps bounded sets to bounded sets) map P which

satisfies
(i) P has finite dimensional range

(ii) llr(x)-P(x)l I < e, Vx e D.

Proof : 127 , p. 121

If F=I*K, K compact,and f(x) /p on0D,then

dne defines d(FrprD) = Iim d(Frr,p,Dr) , where D' is a
n.x

finite dimensional open bounded set, and Fr, 4 F uniformly

on D and F' is defined usingLemma L.4.4. One shows that

the limit exists, is finite and independent of the

approximatin g seguence.
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III. Ivlod 2 Deqrree.

(a) Finite dimensional maps [see 2L, pp. 20-251.

Let F,6 C RN -, BN e c'(6') , where D is connected, open

and bounded. If F(x) / p on ED we define the mod 2 degree,

denoted by d2(f,p,D), as follows: if det F'(x) I 0 for
-'l -]x e F '(p) , then d2 (F,p,D) = number In-'(n) (mod 2) .

By the same considerations used in defining the Brouwer

degree, number p-l(p) is finite.
Following the steps used in defining the Brouwer

degree, one defines d2 (F,p,D) for F e C' (D) via
Sardrs theorem and then we finally define d2(FrprD)

for any continuous function on 5.

(b) Infinite dimensj-ona1 maps

Suppose F: O g X -+ f is a Fred.holm map of index 0,

where again D is bounded, open and connected. We further
suppose that F is proper on D, i.. e. , the inverse image of
a compact set of Y is a compact set of D. Suppose E,(x) / p

on aD. As before we proceed in steps.

i) Suppose F'(x) is a surjective linear operator
. -1 -'rVx e F t(p). We then define d2(F,p,D) = number F-'(p) (mod 2).

-t -1number F (p) is finite since F (p) is a compact set and

by the closed graph theorem and Theorem 1.2.L it is
a discrete set, thus it must be finite.

ii) F' (x) is not s.urjective for some x e r-I(p).
In this case we use the infinite dimenslonal version of Sard's

theorem due to Smale [26]: If F: D -+ Y e Cr(O) is a proper
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Fredholm map, where r > max (ind f,, 0), then the image

of S = {x I r'(x) is surjective} is open and dense. Thus

vre can approximate p by points pn such that F'(x) is
surjective for x e r-1 (err) . We then define
d2 (r,P,D) = 

li: 
u, (F,pr,,D). (one must show that ttris

linLit exists, is finite and independent of the approximating

sequence. )

one can also define an oriented degree for Fredholm

maps of index zero. More specifically, Iet D be open,

bounded and connected i and F, il c x --+ y e c2 (D) a

Fredhorm map of index zero which is proper on D. since
F'(x) is a linear Fredholm map of index zero, it can be

written as the composition of a (linear) homeomorphism

and a compact perturbation of the identity. Following

Elworthy and Tromba [13] , we let GL (x) denote the set
of invertibre linear maps of x onto itself which are

compact perturabations of the identity. with the topology

inherited from L(X) (the Banach space of all bounded

linear operators of X into itself), ct(X) has two

components if x is a real Banach space (and is connected

if X is a complex Banach space). We define, for p I T(aD) ,

d(F',prD) in two steps. If F' (x) is surjective for x e f-l(p)
then d(F,p,D) = I sgn F'(x) , where sgn F'(x) is +1

xer-r (p)
or -1 depending on whether the part of F' (x) which is a

compact perturbation of the identity lies in the identity
component of GL(X) or not. As for the mod 2 degree,

_1
number F'(p) is finit.e. One then extends to the case where
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F'(x) is not necessarily surjective as in the d.efinition of
the mod 2 degree by using smale's theorem. To show that this
degree satisfies properties (i) - (iii) , the reader is referred
to t13]. We mention that if F is of the form I+C, C compact,
then this degree red.uces to the Leray-schauder degree.

The fact that GL(X) is connected when X is a complex

Banach space glves us:

Theorem L.4. 5 Let X and Y be complex Banach spaces and

F: ilc x -+y is analytic and proper on D (o open, bounded

and connected) . If F is a Fredholm map of index zexo t

then d(F,p,D) > 0 whenever p e F(D) F(aD) .

Proof:

LetxeF I (p). By adding a compact linear map if neces-
sary we may assume that F'(x) is j_nvertible. Thus by Theorem

l--2-L, we can find an open ball w of x so that rlr,l is a

diffeomorphism of W onto the open set F(W) < F(B)_F(aB).
We now apply Smale,s theorem to find a point q e F(W) so that
E'(z) is invertible v z e r'-l(q). Now by the preceding remark

d(F,g,B) = I_., . . sgn F'(z)> O. However p and q are in thezer,-a (p)
same component of F(B)-F(aB) and so d(F,p,B) = d(F,g,B) > 0.

rf F is not analytic and [ = RN we do have an anarocr

of Theorem 1.4.5.

Theorem 1.4.6 suppose F: D c nN -> BN is contj-nuous and

j

E e C'(o).
whenever

If det F' (x) > 0

p e F(D) F(aD) .

G 0) , Vx e D, then d(F,p,D) > O
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Proof:

If det F'(x) l0 for * e r-1 (p), then from the

definition, d(F,p,D) = I sgn det F'(x) > O.
xer-r (p)

The general case proceeds as in Theorem I.4.5 by using

Sardrs theorem.

Using the degree, one c€rn prove the Invariance of
Domain Theorem: rfF: Dgx*Xis a compactperturbation
of the identity and D is open, then if F is unj_valent,

it is an open map on D (i.e., maps open sets of D to
open sets) lsee 31a].

C. Miscellaneous

We have already come across the notion of a proper map

in part B. We now formally defj-ne properness and give

several characterizations .

Definition 1.4.3 A continuous map F between two toporogical
spaces X and Y is proper if and only if F,-1 (C) is a compact

set in X whenever C is a compact set in y.

Theorem L.4.7 Let X and Y be Banach spaces, F. : X -> y.

(a) rf x = Y and E is a compact perturbation of the identity,
then if llrtx) ll -> 6 as ll"l I * -r F is proper. The converse

is true whenever X is finite dimensional.

(b) F is proper if and only if f is a closed map and the
pre-image of any point is compact.

(c) rf X is reflexj-ve, then F is proper provided
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(i)

(ii )

llrtx)ll-+@ as ll"ll+@
F satisfies the following stronger version of

condition

implies

Proof:
-1(a) Let C, = F *(C), C a compact subset of Y, F = I+K.

Let the sequence x' e Cr. Then xrr*K(xrr) = yn e C and so

I a subsequence (which we renumber) yr, * y0 e C.

Since the sequence yn is bounded, the coercive condition

I lr tx) I I -' co as I l" I I -> oo implies that the seguence *r,

is also bounded. However as K is a compact map, there is a

subsequence (which we again renumber) x' so that
X(xrr) * yI. Thus since *r, * x(xrr) + y6 r we conclude

that *r, * y0 - yl = ; and. sinc" Cl is closed, I e Cr.

Hence C, is compact.

Now suppose X is finite dimensional and F is proper.

Then the pre-image of a bounded set is bounded since its
closure is compact and thus the pre-image of the closure

is compact and in particular bounded. Ilowever the

condition that the pre-image of a bounded set is bounded

is equivalent to llrtx) ll -+ @ as ll"l I -> co

(b) First suppose F is proper. Then since a point is
a compact set, the pre-image of a point is compact. Now

suppose C is a closed set. We wish to show F(C) ls closed.

To this end suppose F(xr) f i, xi e C. Since

*r, * x weakly and F (xrr) -,+ y strongly

*., * x strongly.

(E) :



22

s = {t, F(xr)i, i = 1,..., is a compact set, r-l(s) j-s also
compact. However, the sequence xi e r-1 (s) and so there is a

convergent subsequence ,rr_* i since the sequence *rr. e c
and C is closed, then I "lc. By continuity r(i) =, LU
so t e r(C) and thus F(C) is a closed set,.

Conversely, let i = n-I(x), KC y compact. Let i= U ao
oeJwhere Co are closed sets .which have the finite intersection

property (f.i.p.). we show O co I a and so i is compacr.
0erJ

To this end, Iet B C J be a finite set. Thus Ga = n C^,Poegs
is closed and non-empty. By hypothesis, E'(GB) is closed and

K - LJ r(c^) (since ft = U 6,1. Also F(cg) has the f .i.p.
Bc,l o B.J 5'

since if y is any appropriate finite j-ndex, then:

F(c
B
)>r(Ae B) = F(c6) / Q

Y Y

(some finite 6CJ).

Thus K compact implies S -
Let y e S. Let D = C AF-

a) F(c8) I 0.

H A). By hypothesis
B
1
CJ
(y)

U
oeJ

D=0
-1 (V) is compact. Thus it sufficesF

to show that Do has the f.i.p.; for then

q/ a\ D^ = (

0eJ
n

oeJ
C ) n r-11y1 and so n cd y' p,

0 oeJ

which was to be shown. However if g c .l is finite, then

n D G
EoeB cl

AP -1 (V) lA since yeS.
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(c) Let K be a compact subset of Y. Let the seguence x
-i 

n
e F--(K). since llrtx) ll ->@ as ll"l I + @ is equivalent

to saying that the j-nverse j-mage of a bounded set is
bounded, then f-I (x) is bounded. Thus by Theorem I .3.2,
there is a weakly convergent subsequence (which we again

call x ) x converging weakly to i. However the seoruencen-n
f (xr.) is contained in the conrpact set K and so it has a

strongly convergent subsequence (which we again call f(xrr) )

so that F(xr,) --* f . Thus by hypothesj-s, Xn -+ i strongly
and since r-1(r) is closed, * " r-l(x) and thus r-1 (x) is
compact.

We remark that if X is reflexive, condition (E) and the

coerciveness condition llrtx) ll -> o as ll"l I + - together

imply that F has closed range. Suppose n(xrr) -* i. Then

by the coerciveness of F, the seguence *r, is bounded.

Thus by Theorem 1.3.2, the sequence x' has a weakly conver-

gent subsequence, *.r.*i weakly, and so by condition (e),

F(;) = t and so a n.l closed range.



CHAPTER II

G1oba1 Homeomorphisms

1 Introduction

Suppose we have a continuous (or possibly continuously

differentiable) rnap F between two Banach spaces X and y.

We ask what additional assumptions must be imposed upon F

to insure that it is a g1oba1 homeomorphism (diffeomorphism)

of X onto Y? We observe that if r. is a global homeomorphism

then in particular it is a 1ocaI homeomorphism. Also if r'

is a global diffeomorphism, then f'(x) is an invertible
linear operator Yx e X. Since F-1o F.(x) = xr then by

the chain rule we have that

tr-I(r'(x) ) I' o F' (x) = r*
and similarly

-t -'lF'(f *(y) ) o [F ^(y) ]' = ,y ,

-1where F (y) = x. Thus F'(x) ls invertible.
Since these conditions are necessary conditions

for our problemr w€ sha1l always assume that our maps F are

either 1oca1 homeomorphisms or if F e C'(X), that F'(x) is
invertible, and we again ask when such a map F is a global

homemorphism (diffeomorphism). Using Theorem 2.2.L we shal1

see that we can reduce this question to a more fundamental

one, that of determd-ning when the gi'.ren Ioca1 homeomorphism

F is a covering space map of X onto Y [Definition 1.4.1],
and in section 2 we prove the following theorem (Theorem 2.2.2) z
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If F: D € X-> Y is a local homeomorphism (where X and y are

Banach spaces, D open) , then (prf) is a covering space of
F(D) if and only if F "lifts lines".

Section 3 is devoted to applications of fheorem 2.2.2

in the case D = x. Here we develop a systematic method for
verifying the hypotheses of Theorem 2 .2.2 and prove such

theorems as (Aanach-Mazur t1]) F: X --+ y is a homeomorphism

of X onto Y if and only if F is a locaI homeomorphism and

a proper map lsee Definition 1.4.3] and the following
theorem due to Hadamard t15l for X = Y = RN, and t6'{f I2Ol

for X and Y Banach spaces: If F: x -+ y e C'(X) and F,(x)
is an invertible linear map for all x e X and
r-I r.ntts ll"ll
diffeomorphism of X onto y

1

:r lltr,(x)l-1ll
dt = -r then F is a global

. For X = Y = RN, we sharpen this
sligh-tIy by requiring rhar [' infJs ll"l I

I dt=--r I I rr,(x) t-rl I

we also prove. globar tromeomorphism theorems for a special
class of quasiconformal maps (oefinition 1.3.6) (see Zoric t31l).

The background references for this chapter are:

11,4,7 ,8,12,L5,77 ,79,20 r311 . Further references can be

found in these papers.
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2. Local Homeomorphisms and Covering Spaces.

Our first step in attacking the global homeomorphism

questi-on is the following:

Theorem 2.2.1 Let X and Y be connected, 1ocaI1y arcwise

connected spaces. Furthermore, Iet Y be simply connected.

If (x,r) is a covering for Y, then F is a homeomorphism

of X onto Y.

Proof:

Suppose r(xt) = F(x2) = t.
Let p(t) be a path in X joining x, to xr.
Set L(t) = F(p(t) ). L(r) is a closed path, i.e.,

t(0) = L(1) = i.
Since Y is simply connected, there exists a homotopy H(tru)

so that H(t,0) = L(t), H(t,1) = t and H(O,u) - H(I,u)= !.
By the covering homotopy property (Theorem 1.4.1 (ii)
there exists a homotopy ;(t,u) so that F(fr(t,u) )=H(t,u) ,

fr(t,o) = p(t), i(o,r) = *t and i(r,.rr) = x2.

Let Wl be a neighborhood of x, on which F is a homeomorphism.

Thus f(Wf).is a neighborhood of; and by the continuity of
H(t,u), there exists I e n(t,[) c r(wr). Let P(t) be rhe

path in W, with P(0) = *1 and F(P(t) ) = H(t,[). By the

unique path lifting property (Theorem 1.4.1 (i )

P(t) = H(t,u). Hence P(0) = *1 and P(1) = x2 , which is
a contradic.tion by our choice of Wr.

l!
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Suppose X and Y are Banach spaces, F: X -+ y a local
homeomorphism. rn order to show that F is a global homeo-

morphism Theorem 2.2.1 te1ls us that we must show that
(xrr) covers Y.

Let X and Y be Banach spaces, D c x open and connected.

Defini tion 2.2.1 F: D -+ Y lifts lines (in r(D) ) if and

only if for each line L(t) = (1-t)y1 + ty2 (in r(p) )

and, for every point *o e r-l(yt) there is a path

Po(t) 3 Po(0) = *o and F(po(r)) = L(r).

By Theorem I.4.2 if f is a 1oca1 homeomorphism, and

F lifts lines, then the path po(t) in Definition z.z.L
is unique. With this in mind, we prove:

Theorem 2.2.2 Let F: D g X -+ Y be as above" Suppose

also that: (i) f is a Ioca1 homeomorphism and

(ii) F lifts lines in r(D).
Then (i) and (i:-1 are necessary and suf ficient for (Orf)

to cover F (D) .

Proof:

The necessity follows from the definition of a covering
space and from Theorem L.4.1 (i). To prove the sufficietrcy,
we first observe that if y e F(D) r w€ can find an r so that
B (y; r) I l,-vl I{

z
)

r g F(D), and that any radius in B

can be described by a line Lz(t) = y + tr z, I lrl I = L,

0 < t < I which can be lifted. Let x e r-1 (y) ,
- ( 

..r r r r 'lo*= {ettllr(p(t)l = Lzrc'), Vllrll= 1, o < r < I andpto)="}
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Let O_- - O__ considered as a point set, i.e.,xx
o* = txlx=n(E), p r 6*] (ox / fr bv (ii)). By inruirivery
thinking of O* and B(y;r) as the spokes of a wheelr w€

shalr show that these sets satisfy the cond.itions given

in the definition of a covering space lDefinition 1.4.r],
i.e. r w€ show that the O* (x e 

"-1 
(y)) are disjoint, open

sets mapped homeomorphically onto B(y;r) by F, and
-r I tF-' (B (y; r) ) = _Y o...

xeF '(y) A

(a) Each o* is mapped onto B(y;r) since any t e B(y;r) lies
on some radius L, hence there is a path p(t) r 6* and a E

so rhar r(p(E)) = t. Bv definition of o*. p(E) r o*.

(b) Each O* is mapped homeomorphically onto B(y;r). If not,
let x, I xZ r o* and F(xr) - r(x2) = i. By definition of o* t

*1 and x, lie on paths Pt and p, which are not i-dentical, for
otherwise their image would be a radius which would intersect
itself . Hence r(Pl (t) ) and F'(e, (!) ) are distinct radii by

Theorem L.4.2. Thus y = y, and. so

r(xt) = F(P1(t1)) = F(P(0)) = y - F(p2(r2)) = F(xr).
Ilence tl = 0 and tz = 0 (otherwise the image of pi(t) (i=!,2)
would be a radius which intersects itself), and so x1=x2=x,

a contradiction. The continuity of the inverse follows from

the fact that rlo is a local homeomorphism and thus an open map.
x

(c) o* , x e r'-1 (y), are disjoint, for if ; e o.. no-- with*1 x2
*L / *2 , then i = Pr(tr) = p2(t). The images of
PI and P, under F must be the same radius, f cr otherwj_se

the radii would intersect and so f'(x) = F(x1) = F(xr) = y.
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By part (b), i = *I = *2 a contradiction. Thus

r(Pl (t) ) = F(Pr(t) ) = L(t), and so r(t1) = L(r2) which

implies that t, = E2 (- E). From Theorem L.4.Zr we

conclude that PI(t) = P2(El, and in particular, *1 = *2.
Thus the O--'s are disjoj-nt.x

(d) Each o* is an open set in D, for if not, thenll e o*
and a sequence *r, so that xn -+ I and x' I O*. Choose a

neighborhood w of I > rlw is a homeomorphism and

E'(w) I B(y;r). lu ) *r, e w for n > N, and, so F (xrr) e B(y;r)
for n > N. Hence there are points ;n 

" O* with
F(;n) = F(xrr)r n = NrN+lr... . However, since F is a

homeomorphism.of O* onto B(y;r), then F. (;n) --_> I. (;)
implies Ir. -> i. Thus for n sufficiently large, i, e W

and so irr= Xn, which is a contradiction since we assumed

that *r, d A*. Thus each O* is open.

(e) r-1(s(y;r)) = t/
xeF 1

ox(v)
Since F-l (B (y; r) ) g V o-- , ir suf fices ro show

xel' * (y) 4

the opposite inclusion. So 1et x e F l(u(y;r) ). Let
L(t) = (1-t) F(x) + ty, 0 < r < 1. Then L(t) e B(y;r)
and so by hypothesis there is a path p(t) so that p(O) = x
andF(p(t)) =r(t). Thusp(1) er'-1 (y). i,eti(t) =L(1-r)
and p(r) = p(1-r) . Thus F(p(r)) = i(t), p(o) = p(1) e r-1(:,)
ana i(r) = x. so by definition of op(t) , we see that
* " op(t)'
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3. Global Hcneomorphisms

In view of Theorem 2.2.1 and 2.2.2r w€ now proceed

in developing a method (Theorem 2.3.1) for determining

when a Iocal homeomorphism lifts 1ines.

Again we suppose that X and Y are Banach spaces, D C X

is open and connected. Let F: D -+ Y be continuous.

We introduce the following condition:
(C) Whenever P(t), O < t < b is a path satisfying

F(P(t)) = L(t) for 0 < t < b (where L(t) = (1-t)y1 + Eyz

1S line in Y then there is a sequence t, '--+ ! as

i -> co such that,Iim P(ti) exists and is in D.
f- ->@

Theorem 2.3.1. Let F: D $ X+y be a loca1 homeomorphism.

Then condition (C) is necessary and sufficient for F to be

a homeomorphism of D onto Y.

Proof:

The necessity is trivial, for we 1et P(b) = F-l (L(b) ).
For the sufficiencyr we first show that F lifts Ij-nes.

Let, L(t) be any line in r(o), with r(O) = t. Let i e r-1 (i).

Since F is a local homeomorphism, there is an e > 0

and a path P(t) (= r-I("(t) )), 0 < t < €t such that p(0) = ;

number for which P(t) can be extended to a continuous path

Since F satisfi-es condition (C) , 1et z = lirl p(t.' ). Byti*K r
continuity, F(z) = L(K). Let W be a neighborhood of z on

which f is a homeomorphism. Jlt > p(t1) e W for i > N.

I
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so that O(tM) = p(t*) (where M is chosen so that M > N

Hence P (t) can be extended to a continuous path
(which we again call p(t) ) on O < t < K+6, p(O) - ;
and F(P(t)) = L(t), O < t < K+d. By the maximality of K,

we eonclude that K - l, and hence F lifts lines.
By virtue of Theorem 2.2.2, (O,F) covers E, (D) .

We need only show that F(D) in order to apply
Theorem 2.2.7 and thus conclude that F is a homeomorphism

of D onto Y. So Iet I e y. Choose y1 e F(D) and

1et L(t) = (1-t)y1 + tt. rf we retrace the steps of the
first part of our proof, we find a path p(t), O < t S I,
so that r.(P(t))'= L(t) on O < t < 1. In particular
E'(P(I) ) = L(1) = i, and so F(D) = y.

From this follows a theorem due to Banach and Mazur tl l

which they proved using complj-cated arguments based on the
Monodromy theorem (Theorem 1. 4. 3) .

Theorem 2.3.2 Let X and y be Banach spaces, F,: X -+ y.

Then F is a homeomorphism of X onto y if and onry if F is a

loc.al homeomorphism and a proper map loefinition 1.4.3].

Proof:

The necessity is obvious for if r is a homeomorphism,

then r-r is continuous and. thus maps compact sets into
compact sets. Hence F is proper.

l

!

il
itt

rill
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Suppose now that B is a local homeomorphism and F

is proper. By vj-rtue of Theorem 2.3.1, it suffices to show

that F satisfies condition (C) in order to conclude that F

is a homeomorphism. So suppose p (t) is defined on O < t < b

and satisfies F(P(t) = L(t) for 0 : t < b. Let ti * b.

since s = {t(t) }0.t.1 is compactr so is r-1(s) and it
contains the ".nrr.r.1" P(ti). Hence there is a subsequence

ri. -> b > P(ti.) + ;,
3J

Corollarv 2. 3.2

only if F e C' (RN)

and so conditj-on (C) is satisfied.

F: RN -* tsN is a diffeomorphism if and

and F satisfies (i) det F' (x) / 0 Vx,

>0and

and (ii) | lrtx) I I --' co I l"l I -+€o.AS

Proof:

We observe that if f is a diffeomorphism, then rse have

already seen in Section I that F'(x) is lnvertible, and so

det F'(x) / 0. The corollary now follows from Theorem 2.3.2,

and Theorem 1.4.7

I

In Corollary 3.4.4 r we show that if det F'(x)

llrtx) ll --> co as ll"ll --> @ , then F is onto.

Corollary 2.3.3 Let F be a 1oca1 homeomorphism of the

reflexive space X into Y. If (i) llrtxl ll -+ oo as ll"ll -> oo

and (ii) whenever "rr* x weakly, and f (xn)-* y strongly

implies xn -+ x strongly, then F is a homeomorphism of
X onto Y.



33

Proof:

From Theorem L.4.7 (c) , (i) and (ii) imply that I' is
proper. Thus the Corollary follows from Theorem 2.3.2.

rn general the coerciveness condition I lrtx) I l* *
as ll"l l-'+ - is not enough to i.nsure that the map F is
proper and so a direct proof as in Corollaries 2.3.2
and 2.3.3 may be unattainable. However in certain cases

it is possible to show directly that a given map is a

homeomorphism, i.e., showing it is one-one, onto and

possesses a continuous inverse. In Chapter III, Sec. 3

ltre shalI be able to prove, in this direct m;rnner,

the following:

eo1plJ-ary 2 .3. 4 Let F: X .-.-.> X* e C'(X) be a monotone

Fredholm map of index zero. If (i) Ker (f ' (x) ) * = 0

and (ii) f lrtx) ll -+ @ as ll"ll --> @, thqrF is a diffeo-
morphism of X onto X*.

The following theorem is due to Browder [4]:

Theorem 2.3.5 F: X -+ Y is a homeomorphism of X onto y

if and only j-f F is a local homeomorphism and

map.

a cl-osed

Proof:

To prove the necessity we need only notice that if I.

is a homeomorphism, then F-l is continuous and so F,maps

closed sets into closed sets.



34

To prove the suf ficienc! r we need only shor^r that F

satisfies condition (C) and then apply Theorem 2.3.L to
conclude that F is a homeomorphism of X onto y.

We now show that F satisfies condition (C). So suppose

that P(t) is defined on 0 < t < b and satisfies F(p(t))= t(t)
for O: t < b. Let s = lE@f,<r<b By hyporhesis F(s) is
closed. Thus since L(t) e F(S)l for aff t < b, then by

continuity L(b) e F(S). Hence J x e S so that r(x) = L(b).
Since x e S, 3ti so that p(ti) -+ X. Since 0 S ti 4 b,

there exists a subsequence ti.* E. We claim E = b (and
lthus condition (C) is satisfied by ti. -+ b and p(ti.) -> x).

However by continuity, t(E) = L(b) .rrl 
"o E = b

Let us remark that by Theorem I.4.7(b') we could have

deduced fheorem 2.3.2 as a corollary of Theorem 2.3.5.

Ilowever we preferred to prove it directly in order to illus-
trate the type of arguments that one can use in verifying
condition (c).

9qrq1lary 2.3.6 Suppose F: [ -> Y is a 1ocal homeomorphism.

Furthermore, suppose F satisfies the following:
(1) l[rtx) ll->@ as ll"l l-']co.
(21 There exists a compact operator K: X -+ y such that the

operator B(x) = F(x) + K(x) satisfies the following condition:
for any x, and x, with ll"tll and ll"zll : nwe have

lle(xr)-s(xr) | | : o( I l*z-"rl l;n); where 0(r;n) is continuous,

real-valued and strictly increasing with respect to r > 0 for
eachR>0and0(0;R) =0.

l
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If the above conditions are satisfied, then F is a

homeomorphism of X onto Y.

Proof:

We shal1 show that F is a closed map and then use

Theorem 2.3.5 to conclude the desired result. Let. C g X

be closed, 1et the sequence *i e C be such that
p(xi) * y. By (1), the seguence *i is bounded (by M)

and since K is

that i1(xn 
. )*l

such that I lxrr n

I ls (rr, . ) -B (xm.
ll

which is a con

Hence there is
xrandxeCs

and so F(C) i-s

compact, there is a subsequence xn. such
)

;. Hence B(*:_) -+ y + t. suppose-3e o > 0

'l -,

j 
**jll : to > o for all n,m. Then

))
tradiction since I ln txr, . ) -a (x*. ) | | -) O.

))
a subsequence of *rr. which converges to some

l
ince C is closed. Thus F'(x) = y by continuity,
closed, as was to be shown.

Notice that if in Corollary 2.3.6, X and Y are finite
dimensional, the corollary follows from Theorems L.4.7

and 2.3.2.

Again, 1et X and Y be Banach spaces. Let B(x) > 0

be a real valued continuous function on X. Let P(t) be a
path (in X) of class C' on 0 < t < b.

Definition 2.3.2 The arc length of P with weight B is
1b

= I etP(t))lle'(t)ll dr.
Jg

r,! et

Definition 2.3.3 X is complete with respect to arc length



36

with weight B if and only if r,!fe) < o -> Iim P(t) exj-sts
t'+b

and is finite whenever P(t) is a C'path on O < t < b.

We remark that if X - EN, then Definition 2.3.3 is
eguivalent to the usual notion of nN being complete wlth

respect to the conformal metric induced by the tensor

ds2 = tB (x) I2 d*2 (see Hartrnan t16l ) .

with B(x) as abover w€ prove the following sufficient
condition for completeness:

Theorem 2.3.7 Let h(s) = inf
ll"ll:=

then X is complete with respect to arc length with weight B.

Proof:

Let P(t) e Cl

For any partition

1et t.
.L

ana r,!(e) < oo. tet 0 < 6 < b.

o1tr1 .tN 6of[0,6],
be that point for which

[0,b)

Q=t

B(x).

By the mean value theorem

llrrtrrll)

rr Il n,", ds = @r

sup
<t<

!

"i+1
r)ll

I-

llp'(
+1

I lp'rE:.) ll.t.
l-

t.,1
Ire have:

0

0

0

I
)
0

L (P) = B(P(r) )llP'(t) ll dr

= 1im I B(p(ri) ) lle'(Ir) ll (ri+r-ri)

> lim I ate(Ei) ) t llptri+l) ll

B(P(r)) allp(r)ll,
6

=t
0

this last equality following from the fact that
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6

B(P(r) )
0I allptrl ll is defined sj-nce s(r) = llpttl ll is

of bounded variation on [0,6]. So we have that:

B(P(r) ) | lP'(r) ll dr . B(P(r)) allp(r) ll

r-nt B(x) allp(r) ll
I l"l l:l lp (r) I I

llp 6) ll

T
0

o

I
0

6

I
0

:

0

I
0

h(llP(r)ll) allp(r)l I = h(s) ds

ll p (o)

By hypothesis, this implies that {p(t) }..t.b is bounded.
rd,I_AIso I h(s) ds = - implies that sup {slfrts) > O} = -,Jg

and since h(s) is nonincreasingr w€ have that B(x) is
bounded from below on any bounded set. rn particular, B(p(t))
is bounded from below by some number l > o, for all o < t < b.

Let t. -+ !. Then
l_

I lp(ri+r)-P(ri)l I

(

I

(2)
n
I

i=1

n
I

i=1
b

I
0

sup
t. <t<t. -I- - r-+I

I lp' tt) | | (ti+l-ti)

:

I li-;l I 1 I l"-p(ri) I l*l lp(ti)-p(si) I l*l lp(sr)-Zl I

t

i"tt
+1

llp'(t) llat : * B(P(tl)llp'(t) ll dr < @.

Hence l; so that P(ti)-* I as ti * b.

Suppose *i * b and P (sr) -* 2. If we form the sequence

t1rs1 ,t2,s2,..., and call it Ei, then E, * O and (Z) shows

enough i. Hence for e > O,

<e
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for i sufficiently large.
is finite.

Thus lim P (t) exists and
t'+b

ForX= EN, we have the following slightly stronger
version of Theorem 2.3.7.

Theorem 2.3. I Let h (s)

and F' (x)

=,,i+f B(x). rf l*n(s)ds =*,ll"ll== Js
respect to arc length with weight B.then EN is complete with

r, ---+ b, .n"r ,f, llettr*r)-p(ti) ll

Proof:

Let P(t) e c1 [O,b) and suppose r,f tn) < co. Let
0 < 6 < b. Followinq the proof given in Theorem 2 .3.7,

bound,ed. since ,,LJ llJtlllor,.i-r,,rous , rear varued function
on EN, it maps bounded sets into bounded sets. Thus B(p(t))
is bounded fronr below by some positive number (since B(x)
is positive). Again, as in Theorem 2.3.7, we find that if

b
B(P(r))llP'(t)llat

0
< @ , and thus we conclude that 1im p(t) exists and is

t+bfinite.

An immediate conseguence of Theorem 2.3.7 is the

following theorem due to Hadamard [tS1,

Theorem 2.3.9 Let X and Y be Banach spaces, F: X -> y e C'(X)

1l1rJ

@ 
inf

o I lx[ l1s

is invertible
1

I

for all x e X. If
ds = -, then F is a diffeomorphismlltr,(x)t-Ill

of X onto Y.

I
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Proof:

By Theorem 1-2.L, F i.s a local diffeomorphism, thus in
view of Theorem 2.3.1, w€ need only show that F satisfj-es
condition (C). To this end we apply Theorem 2.3.7 as follows:

Suppose P(t) is defined on O a t < b and satisfi.es
r(P(t) ) = L(t) for o < t < b. rf we look at the proof
of Theorem 2.3.1, we see that it suffices to show that F

satisfies condition (C) only for those paths p(t) that are
constructed by the method used in Theorem 2.3.1. Also, if
P(t) is such a path, we may assume, by the inverse function
theorem, that P (t) is continuously differentiable on 0 : t < b.
since r(P(t)) = L(t) on o. t < b, we use the chain rule and

get E'(P(t) )p'(t) = L'(t) (= z). Thus p'(t) = [F'(p(t) ) ]-12
for O < t < b. f,er B(x) = t/ll tr,(x) l-, I l.
By our hypothesis, combined with Theorem 2.3.7r w€ have

that x is complete with respect to arc length with weight B.

Also

"f tnr

b

=I
0

b

=l
0

B(P(t)) lle'(t)ll dt,

1 llrr'(P(t) ) 1-1zll dr
lltn'(P(r))r-1ll

Thus , by Definition 2. 3. 3, F satisfies conditiou (C).
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Corol 2.3.10 If F: X -+ y e C,(X), F'(x) is invertible
for all x e X and further there exists M > 0 so that for
each x e X, llr'(x)zll : ul lrll for all z, rhen F is a

diffeomorphj-sm of X onto Y.

I I tr' (x) ]-11 I . fi ror every x. I
)

r*> I M dt = *.
J0

of X onto Y.

SUDll,llilvll

Proof:

llr't"l ,lliul lrll

I

for all z j-rnpIi-es that

Hence

So by Theorem 2.3.9, F is a diffeomorphism

co

inf
o ll"ll:t

dt_i-

ll tr'(x) l-'l I

The next corollary pertaj-ns to a class of maps that are

related to quasiconformal maps [see Definition 1.3.6].

Xqro11ary 2.3.11 Suppose F: X -+ Y e C'(x) and F'(x) is
invertible Vx e X. Also suppose that there are continuous,

positive non-decreasing real valued functions M(t), fr(t)
so rhar llr'(x)ll < M(ll"ll) and llrr'(x)l-1 ll < fr(ll"lll.
Then if M(t)fr(t) < I (t) for all real t where f (t) > O

r-and I f/f(tl dt = *, F is a diffeomorphism of X onto y.
J0

Proof:

llr,(z) ll

:

sup
ll,ll:l lvll

F'(0)

lltr'(z)l-1 ll

lllr,tl,)l-1 ll

Thus

r(llvil)



So by virtue of Theorem 2.3.9, F is a diffeomorphism

of X onto Y.

Coro11ary 2.3.L2 Let H be a Hilbert space and F: H ---+ H

e C' (H) . Furthermore suppose there is a pos j-tive real

valued function I (x) such that (.F' (x) z,z) > I (x) I l"l 12 .
r-

Then if I . i+f ).(x) d.t = @r F is a diffeomorphism
t s I l"l l:t

of H onto itself.

Proof:

By the Lax-Milgram Theorem, r" (x) is invertible and

ll tr'(x) I-1ll < 1/tr(x). Thus F is a 1oca1 diffeomorphism.

Also

lnf I (x) dt = -.ll"ll:t
Hence Theorem 2.3.9 is applicable.

Theorem 2.3.L3 suppose F: RN -, RN, F e c'(nN) and also

F' (x) is invertible for all x e X.

1/lltr,(x)t-1 ;;at= *r

Ir onto itself.

Then

41

If

then F is a diffeomorphism

(n- 1) - (n-t) /2

for all x ry e EN.

,

T
0

inf
ll"ll:t

I - dtrl
lltr'(x)l-rll - t

0

I

l

l

I

I
of

inf
*ll=t

Proof:

The proof mimics that of Theorem 2.3.9, except that
we use Theorem 2.3.8 in place of Theorem 2.3.7.

Lemma 2.3.74 Let L: EN -r RN be an .invertible linear
operator.

I aet rl

,l
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Proof:

[See 11, Part II, p. 1020.]

Coro1l ary 2.3.15 Let F: EN --* BN e C'(eN). Suppose that
(i) laet r'(x) I > o > o, and (ii1 llr,txl ll < M. rhen

F is a diffeomorphism of tsN onto nN.

Proof:

From Lemma 2.3.L4, we have that:

(1) faet F' (x) I I tfr' (x)]'tr,*)l . .tn) | lzl I I lvl I I lr, (*) I l'-1,

where c (n) =

and let w =

(n-1)-b-L)/2. choose z so that IlrlI = !,
-1[F'(x) f '2. With these choices, (1) becomes:

laet F'(x) I I I rr'(x) I-1rll2 . "(n) ll [F'(x) ]-1"11 llr't-) llt-I.

Using hypotheses (i) and (ii) we have that

I I fr'(x) I 
-Lrll I c(n)r,rn-'/o, for all I lri I = 1. Hence

I I tr'(x) l-'l I < c(r,)r"rt-l7o , for each x.

Thus by coro11ary 2.3.10, F is a diffeomorphism of g.N onto RN.

Corollary 2.3.L6 Suppose F: tsN -' EN is continuously

differentiable. A1so, suppose that (i) !aet r,(x)l > o I 0,

and (ii) F is quasiconformal, 1.e., iM I

llr'(x) ll ll rr.' (*) l-1ll < M, for all x. rhen F is a

diffeomorphism of nN onto EN.

Proof:

By Lemma 2.3.\4, we have with c (n) = (n-1) - (r-L) /2 :
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(1) f aet r'(x) | l( tr'(x) t-12,w) I : c(n) llrll ll*ll llr'(x)ll"-r

Choosing z = w and llrll = L, (1) becomes:

(2) laet r'(x) | l( tr'(x) l-7r,il1 < c(nl llr,(x) llt-I, vl lrll=r.

Takinq sup of the left side of (2) , we get:- llrll=r
f aet r' 1x) I IItr,(x) l-1 1I < c(n) Ilr' t") Ilt-I,

and so

(3) laet F'(x) I I I rr'(x) l-'l l" : c(n) I le't*) llt-I1 I tr'(x) l-'lf-'

Using hypotheses (f) and (ii) , we have

lltr'(*)l-1ll' c (n) l,tt-1 and finally
o,

c (n) Mt-1 L/n
l for all x.

By corollary 2-3.70, F is a diffeomorphism of En onto En.

corollary 2.3.16 is true under the weaker hypothesis

detF'(x) lO, providedN>3 t311.

In general, the hypotheses of Theorems 2.3.9 and. 2.3.13
cannot be entirely omitted as the following examples show:

Example 3.1 F(x)=p(xI , . . ,*r)= (tan-lx, ,x2O+x2L)2 ,*3,.. . ,Xn)

is a C' map of Rn into Rn and:

T

c)t,
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1

,*=

0

4*t*zt r+xf )

tr+"f l2
0

F' (x) = F' (xI, . . ,*r) =

0 I n-2

Since det F'(x) = xi+f I 1, F satisfies the conditions
of the inverse function theorem. By looking at the charac-

teristic polynomial of E'(x), we see that | = t/(l+xi) is
an eigenvalue, and so l/X = f*"f is an eigenvalue of
Therefore I I fr'(x)l-11 I > l+xf , and so we have rhar

, , i+f 1/l I tF' (x) l-tl I < t/(t+t2) . since I urr(l+t
ll"ll:t l o

lr' (x) l -1

2
) < @t

F does not satisfy the hypotheses of Theorems 2.3.9 and

2.3.13 and we observe that F is one-one, but not onto.

Example 3.2
,)

A second example of a univalent map which

isn't onto is the famous examprq of Fatou and Bieberbach

[3, p. 45]. This is an example of an analytic map F of q2

into itself whose Jacobian (of the map considered as

mapping X.4 ---* g.4) is identically equal to l and F is
univalent, however the range of F omits a fulr open neighbor-

hood of a point in +2.

Example 3.3 F( *L'*2
x

)-e 1

F 1s a Cr map of lR

onto (i.t omits 0).

_.> E.
2

Now:

2 which is neither one-cne nor

(cos *2 , sin *Z).
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x1 sin x
ẑ.

.-sin x,

sin *2

cos *2

thus

Fr (xr rxr) = e

We observe that

1

and I -ta dt < co.

and also F' (x)

(i) llrtxt ll

I lr'(xr,xr) I I = exl,
*r

6e I -t
l l fr' (xrxr) l -1 

I I

So inf
I l"ll:t I I tr'(xl,xr) 1-tl I

Examples 3.1 and 3.2 also show that the conditj.on

laet F'(x)l . o > o is not in itself sufficient to insure

that F is a gIoba1 homeomorphism, for if E'(xr,xr)

= (tan-l *1 , *2(**l)2 , *3,...,xn) then det F'(xr,xr) > 1,

yet F is not a homemorphism of tsn onto En. However we shall
show [Corollary 3.3.5] that if F is a gradient map of R2

into itself, then laet r"(x)l > o > O insures that F is
g1oba11y one-one.

The following theorem can be used when the integral
condition of Theorem 2.3.9 fails.

Theorem 2.3.L7 Let F: X -+ Y be continuously differentiable
is invertible for all x e X. Suppose that
---)oo as ll"ll-+@

(ii) ll tr'(x)l-tl I < M(ll"lll, where M(r) is a conrj-nuous

positive function of R -+ B.

Then F is a diffeomorphism of X onto Y.

Proof:

By Theorem 2.3.1, it suffices to show that F satisfies
condition (c). using the argument of the beginning of
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Theorem 2.3.9, it suffices to show that cond.ition (C) is
verified for C' paths. So suppose p(t) is defined on

0 < t ( b, is continuously differentiable and satj-sfies

(1) r(P(t))=L(r) (=(r-r)yl +tyz) for0<t<b.

By (i), s = r-1 (r,(t) )O<t<I is a bound.ed set, and so

{P(t) }o.a.o is uoundeal -rir,". P(t) is continuously

differentiabler w€ can apply the chain rule to I and thus

r, (P (r) )

Therefore

P' (t) =

P'(t) =y2 -y1 = z 0 < t < b.

lF' (P (t) ) I 
-12 0 1 t < b.

Bv (ii) ,

Let tt -->

I C so that

b.

lltr'(p(t))l-1ll < c for o < r < b.

tt,t

I
)
tll

ttt

P (rM) P (h) P' (t) dt I lr' (P (t) ) I -12 dt

\I
So

llett*l-P(h) ll : i'
h

!!rr'(p(r))l-11I IlrlI d* cllrll lt*-t*l

Thus {ettr) } is a cauchy seguence, and so condi-tion (c)

is verified, as was to be shown.



Chapter III

Global Univalence and Surjectivity.
Section 1.' Introduction.

rf we inspect the methods that were employed in chapter rr
to determine when a mappj-ng between two Banach spaces was a

homeomorphism, we see that the properties of grobal univalence

and surjectivity were related in an intimate wdy, i.e., once

we showed that the mapping F: X + y was a covering space map

of the simpry connected set Y, then F was automatically uni-
valent by Theorem 2.2.7. In the general case of a mapping F

of some domain D into a Banach space we usuarly have 1itt1e
information about F(D). Thus the assumption that F(D) is
simply connected is not viable and so Theorem 2.2.1 is not

applicable. rn this chapter we investigate the questions of
gIoba1 univalence.and surjectivity independ.ently and without

any assumptions on the ranqe of the mapping at hand

In Sections 2 and 3 we concern ourselves with the problem

of gIobal univalence. we assume, in section 1, that the mapping

is a local homeomorphism and so the question of global uni-
valence is equi-valent to the problem of determining when a

Iocal homeomorphism is a g1oba1 homeomorphism between its
domain and ::ange. we then show that the method of covering

spaces is applicable to this problem and deduce such theorerns

as Theorem 3.2.3: rf D c x is open and starshaped about some

point a and if F: D + Y is a local homeomorphism, then the

follcwing are necessary and sufficient for F to be a homeo-

morphism of D onto F(D): (i) whenever M c D is open and star-
shaped a.bout a, theh (FlM)-1 is locally finite [Def. 3.2.t] and
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(ii) F is one-one on every line emanating from a. We also

prove analogs of the Banach-Mazur Theorem 2.3.2 and of
Theorem 2.3.9 and Corollary 2.3.11.

As menti-oned, Sectj-on 3 is also concerned with the

question of g1obaI univalence, however we start with a

different point of view from section 2. More specifically,
in Section 3 we do not a priori assume that our maps are

local homeomorphisms. Thus the methods of section 2 cannot

be applied and so we must employ specialized techniques to
handle the cases which we deal with. we show, for exampre,

in Theorem 3.3.3 that if F is monotone, contj-nuously differen-
tiable and Ker[F'(x)]* = 0, then F is globa11y univalent.

rn section 4 we investigate surjectivity using the topo-

logical method of degree of a mapping. We prove that if a

map F: x + f is proper and if there is some point p so that
d(FrprB) l0 whenever F-l(p)cg, then F maps x onto y. From

this we deduce as corollary 3.4.4 a result of Nijenhuj-s and

Richardson 122') which says that if F: R.N * R.N is continuously
differentiable, det F'(x) > 0 and proper, then F maps iRN onto RN

The final question that arises in this chapter is that of
the preservation of univalence and surjectivity in the 1imit.
We gi-ve necessary and sufficient conditions for the
preservat,ion cf univalence (Theorem 3. 5. 2 ) and then

generarizLng the Hurwicz Theorem for analytic mapsr \ir€ show

in Theorem 3.5.3 that if Fn converges normally to p and if
det Fr(x):0, then F is univalent provided it has isolated
zeroes and the Frr'" are univalent. From this we deduce as

I
rt
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Corollary 3.5.5 that if Frr, Ctr * Cn are analytic and converge

normally to F, then F is eittrer degenerate in the sense that
the Jacobian of F is identicatly zeror or F is univalent. We

also show that if F' converge to F normally then F is sur-
jective provided that (i) F., is surjective and lifts Lines

-1and (fi) P * is Ioca11y bounded [Def. 3.5.2]. We then apply

this theorem to the class of monotone maps and give a proof of
a result of Browder's [5, p.15] which states that a monotone

map F is surjective if F-I is IocaIly bounded.

Section 2. Global Uni Valence via Coverinq Spaces.

. Suppose X and Y are Banach spaces and D g X is an open

and connected set. rf F: D + Y is a continuous mapr w€ ask

what additional assumptions must be imposed upon F to gruarantee

that it is univalent on D. The natural starting point for this
investigation is the search for necessary conditions.

Definition 3.2.L. Let F: D <- X -+ Y be continuous. We -'tLsay !'

is locally finite if and only if r-1 (y) is a finite set and

every y e Y has an (relative to f (p) ) open neighborhood N absut

it such that number l'-1(x) = number r-1(y) for every x e N.

So if F: D + Y is univalent, the first necessary condition
that arj-ses is that F-l is 1oca11y finite, for number r-11y1 = 1

Vye F(D) , and 0 otherwise.

Second1y, Lf D is starshaped about a point a, then when-

ever F is univalent on D, F must certai-nly be univalent on

every line in D whose initial point is a, i.e., tf t(t) is such

a line , then g (t) = F (L (t) ) is o.ne-one for every t in the

interval [0,1] .
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Finally, suppose F is a compact pert,urbation of the

identity. ff F is unj.valent on D then the invariance of
domain theorem tells us that F must be an open mapping,

thus F is a locaI homeomorphism since every open set O

of D is mapped homeomorphically onto F (O) , which is also

open. In view of this and of example 2.1 which folIows,

we shal1 (in this section) always a priori assume that F

is a 1ocal homeomorphism. Thus, if F is a local homeo-

morphism on D, the question of univalence is equivalent to

the problem of determining when F is a homeomorphi-sm of D

onto F' (D) . It is this last reformulation of our origi-naI
problem which we i-nvestigate.

Example 2.L. Let X be a complex Banach space, F: DgX + X

be analytic and of the form I + C. If f'(zO) is not invertible
for some zO€ D, then there j-s an open neighborhood of ,O on

which F is not one-one. So in particular F is not univalent

on D.

The following example shows that the assumptions F: D + Y

a 1ocal homeomorphism and F one-one on every line emanating

from a (where D is starshaped about a) are not sufficient for
F to be a homeomorphism of D onto F (D) .

Example 2.2. Let F(xry) = .*1.o"y, siny) be a map of D * n1.2

where D is defined as follows:
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x=3n

3n

-1

Example 2.3. Let F (x 22
t,x2) = (xj-xl , 2xrxr) be a map defined

3n

2r

v 3rv

t I

1I-fi

on D'= B - {O} where B - open unit baIl. Although

(D. is the interior region)

D is open and starshaped about 0. One checks that F is a

loca1 homeomorphism on D, and F is one-one on every line

through 0. However F is not one-one in D since, for example,
)nF(xry) = e'" (1r0) has two solutions in D.

We observe that F-l is not lccaily finite , for if

-1 < y < O then f'(0,y) = F(0,2,t+y) and so number f'-1(f (0,y)) = 2.

If 0 
-< 

y < L, then number r'-1(r(0,y) ) = 1.

The next example is a loca1 homeomorphism for rvhich F-I

is locaIly finite on an open set D, but again is not a

homeomorphism.
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I
F is locally finite and F is a locaI homeomorphisnr on D',
F fails to be one-,one since for example F(*1r*2) = F(-xI,
Note also that F is everywhere two t.o one on D' .

x )
2

However, Lf D c X is starshaped about a and F: D + y

satisfies (i) F is a local homeomorphism (ii) F-I is loca1ly

finite and (j-ii) F is one-one on every line emanating from

a, then we shall show in Theorem 3.2.3 that F is indeed uni--

valent on D, in fact a homeomorphism of D onto r(D). Actually
a weaker version of (ii) will suffice as wil1 be seen.

Our poi-nt of departure is:
Lemma 3.2.1. Let D a X be open and connected. Then F maps

D homeomorphically onto I'(D) if and only if (i) (D,F)covers

F (D) and (ii) for some y€ F (D) , "-1{V) 
contains exactly one

point.

Prgof: If F maps D homeomorphically onto F(D) then (D,F)

covers F(D) ana r-1(y) contains exactly one point for every

v€F(D).
Conversely, if (i) and (ii) are satisfied, then

Theorem I.4.1 (iii) is applicable and so for every yeF(D)
- 

.,|

F * (y) contains exactly one point. Thus F maps D onto F (D)

in a one-one way. Also a covering map is a local homeomor-

phism and so in particular is an open rnap. Hence E is a

homeomorphism of D onto F (D) .

Thus Lemma 3.2.1 shows us the direction we must follovr is
that of covering spaces. so vie ask when a 1ocal homeom,crphism

F: D + Y covers F(D). Here Theorem 2.2.2 is applicable and
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says that necessary and sufficient conditions for (D,F) to

cover F (D) is that (i) F is a loca1 homeomorphism and (ii) f
lifts any line in F(D) [recalI Def . 2.2.L7. Thus we are lead,

as in section 3 of chapter rr, to introduce the following weak

version of condition (C):

(d) wheneverP(t),0_<t <b is a path satisfying F(p(t)) = L(t)
for0 < t < b (where L(t) is any Ij-ne contained in F (D) ) , then

there j-s a sequence ti * b as i + - so that 1im P(tr) exists
1+oo

and is in D.

The essenti-al dif ference between (c) ana (d) is that for
(c) we requj-re that the hypothesis is satisfied for any rine
in Y, whereas in (e) it is only required that the hypothesis

be satisf ied for any 1j-ne in F' (D) . Thus r ES the development

of Chapter fI indicates, condition (C) guarantees that
F. (D) = Y, which condj-tion (e) does not guarantee, as is
j-llustrated by the map F(x) = "*, 

;R1 * R,1. F satisfies
cond.itj-on (A), but not condition (C)since if L(t) = 1-t, then

P(t) = 1n(1-t) and so P(t) + -co as t -> 1.

Theorem 3.2.2. Let F: D g X + Y be a loca1 homeomorphlsm.

Then condition (C) is necessary and sufficient for (D,F) to
cover F (D) .

Proof : If (D,F) covers F(D) and L(t) is any line in F(D),

then if x is any point in r-1(r,(O)). Theorem L.4.I (i) says

that there j-s a path (in D) P(t) , 0 . t _< 1, with p(0) = x
and F(P(t) = L(t)) for 0 < t < 1. Thus lim P(t) always exists

t-fb
and i-s in D for any b in [0,1].

.Conversely, vJe can apply the argument of Theorem 2.3.1

Ir
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to obtain the desired conclusion.

Theorem 3.2.3. S uppose D = X is an open set which is star-

shaped about some point a. Let F: D -' Y be a loca1 homeo-

morphism. Then the following conditions are necessary and

suf f j-cient for F to be global homeomorphism of D onto F (D) :

1) Whenever Mc D is open, bounded and starshaped about al
. -1then (r I u) is loca1ly f inite .

2) F is one-one on every line in D which emanates from a.

Proof : If F is a homeomorphism o'f D onto F(D), then number

-'l(F'(y) ) = 1 for every ye. F(D) , and so for any set M described

in (i), number (rl-- (V) )-I = L, and thus is 1oca11y finite.
M

Also as F is univalent, F is one-one on every line in D.

For the sufficiency it is enouEh to show that F is uni-

valent on D, for then F will map D one-one onto f (D) and f-l

will be continuous since F is a local homeomorphism.

So suppose F(xr) = F(x2). Then we can find a bounded,

open set M containing *1 and x, and so that M is starshaped

about a. Since f l, is a 1ocal homeomorphir:m and by (i)
. -1tniu) is locally finite and (ii) rl* is one-one on every

line emanating from a, it suffices to show that F] , maps M

homeomorphically onto F(M). Applying Lemma 3.2.L, w€ first

show that with F = rlu, (M,F-) covers r(M) and there is a

point y€ F(M) so that a-I(Vl contains exactly one point.

A) (M, F ) covers F (M) .

We shall shorv that F satisfies condition (d), and then invoke

Theorem 3.2.2 to obtain the desired conclusion. So suppose

L(t) is a line in F(M) and P(t) is a path clefined for 0 < t < b

illl
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and satisfying F'(p (t) ) = L(t) for o < t < b. By hypothesis

there is an open neighborhood U of L (b) so that nunlcer
--1 

-]F - (x) = number F '(L (b) ) Vx e U. For each x, (i=11.. .N) €

-1F *(L(b) ) Iet o, be disjoint open neighborhoods of x. so that
NA

Flo. is a 1oca1 homeomorphism. Let S = n [F(oi)nU], and
-i,i=II

A- = o,r'lF--t(s). one can check"that F'(a.) = S and A. and Sr- 1 - '--i ---- --l_

are open and F'lo. is a homeomorphism. Choose E < b so that
L

L(E)€. S. rn particutar L(E) € u, hence each point of F-I(L(E) )

lies in one and only one A.. Thus P(E)€Aj for some j. Since

Flo. is a homeomorphism onto S, there is a path O(t) defined
lon t j t j b so that Q(t) = P(t) and F(Q(t)) = L(t) for

E < t < b. However from Theorem !.4.2 we conclude that

P(t) = Q(t) for E < t 1br and so if t.: + b is any sequence,

then p(ti) -> Q(b). Thus condition (e) is verified.

B) There is some point ye r(M) so that number F'-ltyl = 1.

In fact y = F(a), for suppose F(xr) = F(a). If we let
L(t) = (I-t)a + txlr then (ii) implies that *I = a.

Related to Theorems 2.3.2 and 2.3.5 we have:

Theorem 3.2.4. Let D c X be open and connected, F: D -> Y

a loca1 homeomorphism. Then the following are necessary and

sufficient for F to be a homeomorphism of D onto F (D) :

(i) a) Either F is a relatively proper map or

b) F. is a relatively closed mdp, and (ii) for some point
-1ye F(D), F '(y) consists of exactly one point.

Proof: If F is a homeomorphism of D onto I'(D) , then (i) a,

b and (ii) fo1Iow immediately.

,Conversely, we show frrst that either (i) a or (i) b

implies that (D,F) covers F(D). Applying Theorem 3.2.2 it



56

suffices to show that E satisfies condition (d).

However, the arguments of Theorems 2.3.2 and. 2.3.5 are

applicable and so we conclude that (DrF) covers F, (D) . That F

is a homeomorphism now follows from (ii) and, Lemma 3.2.L.

As r.re have seen, Lemma 3.2.L provides us with a viewpoint

for attacking the problem mentioned at the beginning of this
section. Its use depends on showing two things: 1) that
(o,r) covers F(D) and 2) that for some y€ F(D), r-1 (y) con-

tains exactly one point. For the former we know that it
suffices to show that F satisfies condition (d) . To verify 2,

one condition that we have already i-ntroduced is as follows:

suppose D j-s starshaped about a, then if F is one-one on

every rine emanating from ar2 is satisfied. rn fact r-1(r(a))=a
for if F(x) = E(a) then, since F is one-one on the line
L(t) = (1-t)a+txr w€ conclude that x = a.

If D is not starshaped the hypothesj-s on F given above

does not make sense and so other methods of verifying 2 must

be looked for. One of these is topological in nature and in-
volves the use of the degree of a map (Sect. 38, Chapter f).

We sha1l assume once again that F: D + F(D) is a loca1

homeomorphism and that D is an open and connected set. We

also assume that D is bounded. This involves no loss of
generality for the question of univalence because F unj-valent

on D is equivalent to F being univalent on every bounded

open subset of D (if F(X)=p',r, in D we can always find a

bounded open subset of D which contaj-ns x and y) .

The useful-ness of the degree of a map in our situation

I

I

I
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will be apparent from the following theorem of Rothe 124J.

. We first note that if F = f+K, K compact is a 1ocal homeo-

morphism then number t-I{n) is always finite provided F,(x)/p on

aD. For if xrr€r-l(p) , n=I,2,..., then xn+K{xrr)=p, and since D

is bounded, K(xrr) has a convergent subsequence K(xrr.) -' Y.
l

Thus *.r. converges to some x and since F is a local homeo-
)

morphism on D, ><eBD which is a contradiction since E' (x) = p.

Let O-- denote an open ball of x e D such that C i= con-x-x
tained in an open set V* of x for which F'lv is a homeomorphism.

x
Theorem 3.2.5. Let D I X be op€Dr bounded and connected,

F: D + x a loca1 homeomorphism. If F = I + K and d(Frp,D) = tl

then f-1 (p) contains exactly one point.

Proof: Since r-1 (p) is a finite set, we have

(1) d(F,p,D) = f_., d(F,p,o*), where o* is as above and

xeF - (p)
dis joint. Thus it suf f ices to shol that d (F,F (P (t) ) ,op (t) ) =

constant whenever P(t) is any path in D. For if this is sor

then d(F,prOx) = d(F,nror) = C for x and yef'-l(p) . So by (1),

t1 = d(F,p,D) = C number r-1 1p; and this implies that number

-'tF -(P) = 1.

So suppose P(t), 0 _< t _< 1, is any path in D. For fixed

E choose Op (T) as above. Let t1 be any number such that
p(tt)€ op(E) . By definition of op(E), d(F,F(P(t) ),optE) ) is

def ined and i-s a continuous function of tl. _. t _< E (we assume,

without loss of generality that tt . E), and so it is constant.

In particular

(2) d(F,r'(P(tt),op(E)) = d(F,F(P(E)),opf1l). Let we{t.,) be

an open bal-I about P (t so that fn,, c o ThenI

,

i

P (r1) fl op t{l



d (F,r'(P (rt) ) ,op til ) .

d (r,F (P (E) ) ,op (E) ) v r
So 2 and 3 yield d (F,F (P (tt) ) ,Op (t1) )

We now apply our

Theorem 2.3.9 and Coro

Theorem 3.2.7 tI7l. L

also F'(x) is an inver

a domain B, € B so thal-r
D- {v I llr-r ta)ll
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1 such that (tf-E) is smaI1 enough to

methods to derive "loca1" versions of

l1ary 2.3.11, i.e.,:

et B = {xl 11x-ail <r.i, rr B + y€C' (B) and

tible linear map V xeB. Then there is
t a€Brand F maps 81 one-one onto

tinf
6 llx-all-'t

integral is defined as 1im
tr+r

insure that p(tf ) u Op(f). Thus d(E,F(P(t)),Op(t) ) is a conti-
nuous function of t€[011] i-nto the integers, and so it is censtant.

Core.llqry 3.2.6 . Suppose DcX is open, bounded and connected

and F: 5 + X is continuous and i-s a local homeomorphism on D.

If (i) F - I + K, (ii) F(D)nF6D) = 0 (iii) d(F,p,D) = tI

for some pr then F is a homeomorphisni of D onto F(D).

Proof: By vi-rtue of the Invariance of Domain Theorem it
suffices to show that F is uni-valent on D. Now

(ii1 implies that F(D)c y-FGD). Thus d(F,e,D) is defined

for every qeF(D) and is equal to Some constant. However

from (iii) we conclude that d(F,e,D) = t1 VqeF(D) and so we

now apply Theorem 3.2.5 to obtain the desired conclusion.

I
rl

IlF (x) l

inf
ilx-ail .:t

ttI
1 dt, ). < r) .

0

Pqoof: Without loss of generality, Iet a - O, F(a) = 0. We

proceed as follows: let L(t)=Xg, 0<t<C<1, € e ED, descrj-be any

segment of any radius of D. we shal1 show that F lifts any such

L(t) to a path P(t) a B, where P(O) = 0. Then we 1et

,, -1 ,'

lltr' (x) I *ll

dti . (l{nere this
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Bt = {xlx=e(E), 0 < E < l,P(t) as above}. Then using the argument

of Theorem 2.2.2r w€ conclude that 81 satisfies the conditions

stated in our theorem. So suppose P (t) is defined for

0 _< t _< b 
-< 

C < 1, P(0) = 0 and F(P(t)) = L(t), a radius of o.

We shalI show that condition (C) is verified for such paths,

and hence F lifts L (t) . By the usual construction of P (t)

(see Theorem 2.3.1) we may assume that P is continuously

differentiable on O < t < b. Thus P' (t) = [f ' (P (t) ]-1g

on 0 
-< 

t < b, where , = 
"'(t). 

Also, we may suPpose that

r = tr = sup{t, 0 _< t . rlh(t)>6}, where h(t) = inf
llxll .

Otherwise we apply all our arguments to the set
),r

1

t lltF' (x) l

B' ='{xl il*il . li (o is rhe same since i,n,r)dt = j

P' (r) lF' (P (r) ) l 6 we have:

h(r)dr ).
0

dr > ailp (t" ) -P (r' )fi

r
h (r) dr = llEli

1Hence -1 I cx, > 0 0n B. Let t" rtr < b, then with
lttr' (x) l ll-=

-1

Hence lim P (t) exists and call it P (b) . We now must show that
t+b

llp tulil 1 r. suppose llp (n)l[ = r. Then from the inequality (1)

of Theorem 2.3.7 (where B(x) I ) we have since 6 e aD
-1,,

1l [F' (x) ] 'll

llP (b)il

f tr(t)dt = I
0

It"-t'l llEll z {

llp'ttl// r
lltu'(,.)-ql 

*

t" 
llp 

, (r) ll

r, f/tr' te (r) mtt

b
uilsll , f

-) it
0 0

which is a contradiction, since b < 1. Hence condition (e)

is verified, and the result follovrs from our introductory argu-

ments.
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The next theorem gives us more informatj.on on the size of Bt

of Theorem 3.2.7.

Theorem 3.2.8. Let B = {xl llx-all< r}, F: B + Ycc' (B) and

F'(x) is invertible VxeB. Let M = sup llr'(x)/l and

![ = sup litr' (x) ] -rll . rhen .h.J:-?[ "l ao*.in B., e B so
ilx-l,t <r rr I -

that a€B and F maps B, one-one onto D -'{Vltlr(a)-yll .:}
M

Furthermore, Bf 2 B(a,
f

Prgof: Since I inf
'o ll*-tl/

{l = {*l tt

MM1

Thus B, > B(a, L').
MM

1
Jt

Ii: r w€ conclude
M

So with P(t) = P(L(t)),

x- a[<

d

,r
I,lM

t>
rr /ltil tx)I-

from Theorem 3.2.7 the existence of. 81 which is mapped in

a one.-one way onto D by F. It remains to show that

B, , g(a, j). Let L(t) = (1-t)a+tx, llx-al/ . l- Ue any radiusJ'- MM -l,Ir4
of B(a, * l.

MM
We show that.P (t) = r(L(t)) is in D. This is enough,

there is a path i fti in B, so that

if ol = a and Ftittl I = P (t) . From Theorem L.4.2,

ittl = L(r).

because as P (0) = F(a),

then:

1le tt) -F (a)ll I I llr' (r, (r) ) L' (t)ll at
t

0

<I
-m<t: r[lr' (L (r) ) Il 1ir' tttll

We remark that for X - ! = Rtr, Theorem 3.2.8 was

originally due to Wazewskj- t301.

Mr

MM
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We remark that the proofs of Theorems 2.2.2 and 3.2.2

show us that these theorems remain valid when D is pathwise

and IocalIy pathwise connectpd and F(D) is localIy convex.

Thus Theorem 3.2.4 is also valid with the above modifications.

In view of this we can now apply Theorem 3.2.4 to prove two

theorems of Miranda's [31c, p. L42) which have interesting
applications to nonlinear partj-al differential equations

[see 31d, pp. 46L-465].

Theorem 3.2.9 Let F be a map between two Banach spaces

X and Y. Let Z c_Y be closed, connected and 1ocal1y convex.

Suppose that:

(i) F j-s a local homeomorphism at each point of r-1 (z).

(ii) The preimage of a compact set i-n Z is a compact set

in Y.

(iii) There is a point Z e Z which is the image of
exactly one point.

Then F is a univalent map on r'-1(z).

Proof:

As f-I(z) is closed, (ii) implies that F is a relatively
proper map between F 1(z) and z. Thus if we show that r'-1(z)

is pathwise and locaIly pathwise connected we can then apply

Theorem 3.2.4 which yields the desired conclusion. Since

f | -i is a Local homeomorphisn, this and the 1oca1 convexi.ty'F-a (Z )
of Z gives us the local pathwise connectedness of f-1 (Z) .

It now suffices to show that f-l (Z) is connected. Let

A g F-l(z) be a component. r-1(z) 1oca1Iy connected implies
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-1that A is both open and closed (relative to F (z)).

However (i) and (ii) gives us that F is both an open and

closed map and so F.(A) is an open and closed subset of Z.

Thus the connectivity of Z implies that F (A) = Z, and in
particular, that every component A contains a point of r-1(Z).

-lHowever r ^(z) contai-ns exactly one polnt and so the disjoint-
ness of the components implies that there is only one component.

Thus Z is connected.

Theorem 3.2.10 Let X and Y be Banach spaces, ZCY closed,

connected and 1ocal1y convex. Suppose f': Xx[0,1] is a map

with the following properties:
(i) Each point (;,L) e r-1(z) has an open neighborhood

about it so that F- = F(*,!-) is a homeomorphism on it
1r-

whenever lE-trl is sufficiently sma11.

(ii) The preimage of a compact set in Z is a compact set

of Xx[0,I].
(iii) For some particular tO, there is a point of Z which

is the image (under F" ) of exactly one poj-nt.
"o

Then Fa is a univalent map on raltzl for each t e [0,1].

Proof:

Let S { (x,to) | r (x,tr) e z} The hypotheses implyt
0

that the map F* and the set S+ satisfy the conditions of'o "o
Theorem 3.2.9. Thus F- is univalent on S-"o "o

Let fr e Z and let c - {(x,t) | r'(x,t) =;i. we define

the map P: G -) [0,1] by P(x,t) = t. We shall show that P

satisfies the hypotheses of Theorem 3.2.4. First, P is a
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Ioca1 homeomorphism on G for if (I,E) e G, then by (i) we

c.rn find an open neighborhood (of (I,€) ) , w(i,E) = ux(E-e,E+e)

so that Fa is a homeomorphism on it for each fixed

t e (t-e,t+e). Hence w(I,t) n G is an open neighborhood

of (i,E) in G on which P is a homeomorphism. AIso P is a

proper map for if C c [0r1] is compact, then it is, in
particular, closed. Thus p-I (C) is closed in G and,

by (ii), it is compact since G is compact. Since F*to
is univalent on S* , there is exactly one point of G

"o
whose image under P is the point tO. In order to apply

Theorem 3.2.4r w€ must show that G is pathwJ-se and localIy

pathwise connected. This, however, follows by the same

arguments used in Theorem 3.2.9. Thus by Theorem 3.2.4,

P is univalent ori G and this in turn implies the desired

conclusi-on.
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Section 3. Global Univalence Once Again.

Throughout Section 3 we concern ourselves once more with

the problem of giobal univalence and globa1 homeomorphisms.

Howeverr w€ add a slight twist, whereas in Chapter II and in

Section 2 of this chapter we always assumed that our maps were

local homeomorphisms, in this section we shall try to remove

this assumption. In other words if D c X is

open and connected and F: D + Y is continuous (or continuously

differentiable), when is F globally univalent or when is it

a homeomorphj-sm of X onto Y? Since we do not a priori assume

that F is a Ioca1 homeomorphism, the techniques of Chapter II

and of Section 2 do not, in general, work. Thus we must use

specialized methods which suit the problem at hand,

Theorem 3.3.1. Let D a X be open and convex. Let F: D + X*

be a gradient map, where F - Vf. If f is convex, then F is

globalIy univalent on D if and only if f is strictly convex.

ProoE: If f is strictly convex, then by Theorem 1.3.5

(F(x)-F(y) ,x-y) > 0V x,yeD. Thus F is one-one on D. Conversely,

suppose f is not strictly convex. Then ] x, I xZ and

(1) i = (1-t)x.,+Exr, 0 . I < I so that r(x)=(1-E)f(x.,)+tr(*) .

It suffices to show

is sor

that f (i) r (xi)+ (r {I) ,I-xr) , i=L,2. For

suppose this then for any zeD

t (z) f(x
1

t (z) -t (x) +f (x) -f (x
1

(r' (;) , z-A) + (F (f) ,I-* 1) (by convexity)

(F (I) tz-x1

Let ygX. Then for ). sma11 enougih, z = xr.+).yeD. Thus

)
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f (x., +ly) -f (xr ) _f(x,+ly)-f(x,)>(F(;),^y).Hence#:(F(r),y).

r(xl) = r(f), a contradiction since F is one-one. We now

shor,r that f (i) = f (x1)+(F(f),f-xr), i = 1,2. Let

t(t) = (1-t)x,+tx2, hence f = r,(E). Let g(t)=f til-t(L(t) )

-(r(;) ,i-r,(t))< 0 by convexity from (4) of Theorem 1.3.5.

However, by (1), g(O) = Et-tf (xt)-f (xr))+(F(i),xr-xr)J and

9 (1) = (1-E) tf (xt) -f (xr) - (r 1f; ,xr-xr) J . Thus g (o) and g (1)

have opposite signs. However g(t) r O and 0 <E < 1 imply

g(0) = g(1) = 0, which is what was to be shown.

The following corollary is related to Theorem 2.3.2.

Corollaqy 1,3.2, Let H be a Hilbert space, F = H + H be a

gradient map where F = Vf. If t is convex then necessary and

sufficient conditions for F to be a homeomorphism of H onto H

is that (i) f be strlctly convex and (ii) F is proper.

Prool: The necessity follows from Theorem 3.3.1 and the fact

that a homeomorphism is a proper map. The sufficiency follows

from Theorem 3. 3.1, Corol lary 3. 5.9 (Section 5) and the continuity

of the inverse comes from the fact that a proper map is a

closed map.

The finite dimensional case of Corollary 3.3.2 was first-

proven by Rockefel:ler [23, p.260J using technical results in

the theory of convex functions.

In the last two resulls F was the gradient of a convex

functional and so in particular F was a monotone map. Since

a strictly rncnotone rnap is ah.:ays one-one, one may ask what
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can be said if r is just monotone?

Theorem 3.3.3. Let F: D + X* be a monotone map, DcX open.

Suppose B is continuously differentiable and Ker [Ft (v) ] * = 0

Vxep (equivalently F' (x) has dense range). Then F is g1obally

univalent on D.

Proof: Suppose P(xt; = F(xr)

x-x,) > 0. Then inf g(x) = 0r-x€D
V9 (x) = [F' (x) ] * (x-xl) +F (x) -F

are in one-one correspondence

g (x) . In partlcular inf g (x)
x€D

x = X. is a critical point of
z

Hence Q = Vg (xr) = [F' (x2) ] * (xr-xr) . By hypothesis we con-

clude that *2 = x1.

Recalli-ng Theorem 2 . 3. 5 we prove:

Corollary 3.3.4. Let F: X -+ X:r be a monotone map. Suppose

also that F is continuously differentiable and satisfies

Ker [F' (x) ] * = 0. Then a necessary and sufficient condition

for F to be a homeomorphism is that F is a closed map.

Proof: The necessity is obvious. For the proof of. the

sufflciency it is enough to show that F maps H one-one onto

itself . Then since F is a cl-osed il&p, F-I is continuous.

The fact that F is one-one follows from Theorem 3.3.3. The on-

toness follov;s from a Eeneralization, due to Browder [6], of

a theorem of Pokhozhaev.

We are now in a position to prove Corolla-ry 2.3.4 which

states: Let F: X + X*eC' (x) be a monoto;re Fredholm map of

index zero. rf (i ) Ker [r' 1x; 1 't = 0 and (ii) tir' (x)ll * * as

= a. Let g (x) = (F (x) -F (x1) r

is attai-ned at x = fr.. Also

(xr). Now the zeroes of Vg

with the critical points of

is a critical value , thus

g and so it is a zero of Vg.
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llxll * *, then F is a diffeomorphism of X onto X*. Since F
is monotone, F satj-sfies condition (E) by Theorem 1.3.4. By

the remark following Theorem !.A.7, condition (d) and (ii)
imply that F has closed. range. since F'(x) is a linear Fred-

holm map of index zero, (i) and the closed graph

theorem imply that F'(x) is invertible, and so by Theorem 1.2.1
F is a locaI diffeomorphism. rn particular, F is an open

map and thus has open range. since the rangle of F is both
open and closed, it is all of x*. F is also univalent by

Theorem 3.3.3. since F is a 1ocal diffeomorphism, F-I is
differentiable and so F is a diffeomorphism of x onto x*.

Theorem 3.3.3 is a direct generalization of the following
theorem of Berger 12, p.139 Theorem 4.412

Let F (xI be a continuously differentiable mapping

of a convex open bounded set D in nti into rRN. suppose that
det F' (x) > 0 and that Fr x + F' (x) *

has non-negative prlncipal
minor determinants. Then F(x) is univalent in D. This theorem

follows from Theorem 3.3.3 if we observe that the hypothesis
on F' (x) rk+F I x = i implies that (iy, y) : o. However

(F'(x)y,y) = (iy,y) : 0, and so F is monotone. Al-so

det F'(x) > 0 implies Ker(F'(x))* = 0.

Corollary 3. 3. 5. Suppose F: R2 * R.2 is continuously
differentiable and laet f'(x)l > o > O. If F is a gradient
map then F is globally univalent on R2.

P.r,oof: Case f. det F'(x) ) s > O

Let F (xry) = (u (x,y) ,v (x,y) ) . By Theorem 1.2.1, F' (x) is a

symmetric matrix and so det F'(x) = UxVy-Vi > o > 0. Hence
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U*/ 0. By continuity either U* > 0 or U* < 0. If Ux > 0,

then the principal minor determinants of Fr(x) are positive

and so by the remarks preceding the corollary on Theorem 3.3.3,

F is gIobally one-one. If U* < 0, we aPPIy the above arguments

to the map F(x,y) = (-U(xry),-V(xry) ).
Case II. det F' (x) < -0 < 0.

This is a theorem of Efimov t121.

Our next theorem is related to Corollary 3.2.6 and

Theorem 3.5.3 of Section 5.

Theorem 3.3.6. Let DcmN b" continuous on D and continuously

differentiable in D and det F'(x) I 0 (/ 0). Suppose that the

solutions of F(x) = p are isolated and F(D)nf (3o) = 0. If

(F(x),x) > O on ED then F is g1obalIy univalent in D.

Proof: (x,F(x)) > 0 implies that d(F,0,D) = 1. Also

F(D)4r(Eo) =0 implies that F(D) s rRN-r(aD), thus d(F,F(x) ,D)

is defined and is constant. Hence d(F,F(x),D) = 1 VxeD.

Suppose f (xr) = f'{xr) = a, *1 and xr€D. Then since the

solutions of F(x) = a are isolated in D and since F(D)nF(aD) =0,

then there are only a finite number of solutions, say

-1*1r...*rr€F -(a) . Let B, be disjoint open nelghborhoods of
n

x=. Then 1= d(FrarD) = f- d(F,arBi). However: from.r- i;I f
Theorem 1.4.6 d(F,arBr) ) 0. Thus there can be only one

solution, and so F is gi.obally univalent on D.
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4. Surjectivity

In this section we shall consider the problem of
determining when a given map between Banach spaces is surjec-

tive. Throughout this section we only consider those

classes of maps I'between Banach spaces that are described

in Chapter f, Section 38, i.e., for which one can associate

a certain integer valued function called the degree d(F,P,B)

which satisfies properties (i)-(iii) of Sect. 38.

Fj-rst of all we observe that if F maps X onto Y, then

..1+m sup llr{x) ll = 6. For if not then Range F isll"ll * t
bounded and so F cannot be surjective. However this necessary

cond,ition is far from being sufficient as the example

p(xl,...,*r,) = e?,,...,4) shows. rn fact F is proper since

llr(x) ll -"+ m as ll"ll * @.

In our search for sufficient conditions let us for the

moment consider a polynomial P(x) as a function of R' into

itself. Since every polynomial is proper, under what

conditions does it map u.1 onto n'1? rf P(x) is of odd order,

then this is certainly true. Taking a closer look at our

polynomial of odd order we notice that it has the property

that if lUl is sufficiently 1arge, then d(P(x),b,I) I 0

whenever I is chosen so large that p-I(U) C I. Surprisingly,

this conditj-on along with properness, is sufficient to

guarantee surjectivity for more general mappings, i.e.:
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Theorem 3.4.1 Suppose F: X -+ Y is proper. If 3 p e Y

/ 0 whenever B 3 r-l(p), then F mapsso that d (F,p,B)

X onto Y.

Proof:

Since F is proper, F has closed range. Also by

property (i) of Section 38, Chapter I, F(X) / 0.

Thus it suffices to show that F has open range.

So 1et q e y and 1et L(t) = (1-t)p + tq, 0 < t 1 1,

where p is a point which satisfies d(F,p,B\ y' 0 when

r-l(p) c B. since L(t) is a compact set in y, F-I(L(t) )

is a compact subset of X. Choose r large enough so that
r-1(r,(r)) d B(o,r) = {x ll"l I < r]. Hence d(F,L(t),B)
is defined, and is a continuous function of t e [0,1].
Since d is integer valued, d(P,L(t) ,B) = Const. = d(FrprB)/0.

In particular, d(Frqre) = d(F,p,B) / 0. Also F' (aB) is a

closed set since a proper map is also a closed mep. Thus

Y F.(aB) is open and so it is tfre union of open components.

Let C- be the (open) component containing q. We show thatqJJ

C^C Range F, and so F has open range. However d(Fry,B)
Y

= d(Frq,B) whenever y 
" aq. Thus d(F,y,B) / 0 and so

aq C F(B) C, Range F by property (i) of Section 38, Chapter I.

A direct analog of the case of an odd order polynomial is

Corollary 3.4.2 Let F: X -> Y be an odd ffidp, i.e.,

Suppose d(F,0,B) is an odd integerF (-x) = -F (x) .

whenever B is a ball about the origin. If F is proper,
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then f' maps X onto Y.

Proof:

This follows from Theorem 3.4.1.

))
The example F(xl ,...,xn) = (*;,...,*;) shows that the

hypothesis concerning the degree of F cannot be removed

f rom Theorem 3. 4.1. For d (F,p,B) = 0 whenever F-l (p) C B

since F always omits negative directions. F is proper but

not onto.

Corollary 3.4.3 Let X,Y be a complex Banach spaces,

F: X'-+ Y complex analytic which is also a Fredholm map

of index zero. If F is proper, then F is onto.

Proof:

Since F is properr w€ can define an oriented degree

for F as in Section 38, Chapter 'I. By Theorem 3.4 .1

it suffices to show that d(F,p,B) > 0 whenever r-1 (p)C B

for any bounded domain B. However, bY Theorem L.4.5,

d(F,p,B) > 0 whenever p e F(B) - r(ae).

fn the same manner we give a simple proof of a result

of Nijenhuis and Richardson 1221.

Coro1Iary 3.4.4 suppose F: tsN -* tsN e c'(rN). rf F is

then F maps BNproper and det r'(x) > 0 (and I 0) ,

onto itself.
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Proof :

The proof is the same as Corollary 3.4.3, except we

use Theorem L.4.6. d(F,p,g) > 0 whenever P e F(B) F(0:B).

In Section 5, Corollary 3.5.10 we sha1l

Hilbert space analog of Corollary 3.4.4, for

Again r(xt,...,Xn) = e?,,...,"i1 serves

example for this corollary, if the condition

is not fulfiIled. Also we cannot remove the

condition as is seen from the map f (xrrxr)

For this map det F'(xrrxr) > O, however F

lim r(xr,xr) = 0. Since F(x1 ,xr\/O,
:-'x2*-*

4t * Qt i= analytic, we know

prove a

monotone maps.

as a counter-

det F' (x) > 0

properness

= "*t 
(.o" xr rsin *z)

is not proper

since for fixed x.,rx
F is not onto.

In the case where F

that det F'(z) : 0. Thus it suffices to show that an

analytic map is proper in order to show that it is onto.

If n = L, proper (=) F being a polynomi-al. Thus

Corollary 3.4.3 is equivalent to the Fundamental Theorem

of Algebra in this case
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5. Preservation of Univalence and Surjectivity Ul4gq

Normal Convergence.

Suppose Frr, n = L,2r... is a sequence of univalent

or surjective maps from one Banach space into another and

they converge (in some sense) to a map F. Under what

conditions does F inherit the properties of univalence

or surjectivity from the F*rs? The Hurwitz theorem for

functions of a single complex varj-abIe tells us that F

is univalent provided the 
"*'= 

are analytic and univalent

and converge to F uniformly on bounded sets of +1. One of

our aims is to see how this theorem can be generalized to

non-analytic functions defined on any space tsN.

Definition 3.5.1 We say that F., converges to F normally

(or r can be normally approximated by Frr) if and only if

Fn converges to F unj-formly on any bounded subset.

In view of the Hurwitz theorem we shal1 always assume

that the convergence of our seguences is taken to be normal

convergence. Of course just the fact that we have normal

convergence'j-s not in itself sufficient to guarantee the

univalence or surjectivity of the limit as is illustrated

by the sequence rrr(x) = * ". This is a sequence of homeo-

morphisms which converges normally to F(x) = 0 which is

of course neither univalent nor surjective.

Restating our problem, we ask: If FN converges to F

normally and if the Frrt= are uni-valent or surjective, under

what conditions does F also have these properties?



74

To be consistent with the approach used in previous

sectionsr w€ first establish a certain necessary condition.
(for details in the finite dimensj-onal case, see Cartan t8l).

Lemma 3.5.1 Let F j, x -) x be maPs such that tj * t
normally in Xr where F, and F are of the form I+C. Let

p e D where D is any open bounded set. If F is a

loca1 homeomorphism at p, then J R and U so that
Bp = B(F(P);R) < Fn(D) for all n > N-

Proof:

Let B(p;r) = B be such that f'l' is a homeomorphism;

since Er, -> F uniformly on B, then Ur, = FrrF-l -r I
uniformly on F(B) . Choose R so that 6 = B(r(p);Zn) cr(B).

Let B^ = B(F(p);R) €F(B) . Then Jm so that
P

f furrtx) "ll 
<Rforalln:Nand fora11 xe ai. Let zeBO

Then 6(Un,r,i1 = d(f ,z,i) = 1 for alt z e Bn. Hence U, maps

B onto B^ for all n > N, or by definition of U-, F-F 1 *rp=p -n' -n-
; onto Bn for all n > N. Thus Fn(D) ) an"-1 tEl f B^=B(F(p) ;R).v

From Lemma 3.5.1 we ean now derive necessary and suffi-
cient conditions for the limit (in the normal sense) of a

sequence of univalent maps to be univalent.

Theorem 3.5.2 Suppos. 
"j: 

X * X form a seguence of

univalent maps converging normally to a map F where E and F.

are of the form I+C. The following condition.ls both necessary

and sufficient for F to be univalent:
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(U) If D is any open bounded set in X and a e X then

Fn(x)/a on o for all n implies F (x) y' a on D.

Proof:

First suppose F is univalent. Then the invariance

of domain theorem tells us that F is an open map and so

in particular, F is a local homeomorphism. Thus by

Lemma 3.5.1,F (x) I a in D implies FB)y'a in D for if Ip e D

so that f(p) = a, then we conclude that there are points
pn e D for which Fr, (prr) = a for n suf ficiently large

a contradiction

Conversely, suppose condj_tion (U) and suppose

5(x1) = F(x2) = a. If x, y' xZ let O, and O, be disjoint
open sets about x, and x, respectively.

By (U) , there is a subsequence Fr, , and points pJ e O.,tjI
so that rrr. tnl .) = a. Similarly in 02, there is a subiequence"j nj
of the Fr,. rs (which we renumber and call Frr.) and points
. J -> "j

pi. 
" 

02 for which F.r.(nf,.) = a. From the Oisiointness of
l--lll 2Ot and O, we have that pfi. / p'". which contradicts the

l)
univalence of F,j

We now proceed to find suitable conditj-ons which insure

that condition (u) of Theorem 3.5.2 are satisfied.

Theorem 3. 5. 3 Let r'* be a sequence of maps of RN inton

itserf which converge normally to a map F. suppose furthermore

that F is continuously differentiable and satisfies:
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(f ) det

isolated

either F

F'(x) :0 and

for every p.

univalent

CoroI lary 3.5.4 Suppose F

RN RN are univalent.

and satisfies det

(ii) the solutions of F(x) = p are

Then if' the F 's are univalent, then
n

or det f '(x) = 0.

n convergies Lo F normallY and

If F is continuouslY differ-

r" (x) > 0 then F is univalent.

1S

Proof:

Suppose det F'(x) 7 0, then it suffices, by Theorem

3.5.2, to show that condition (U) is satisfied. Thus let

D be a bounded open connected, set of x.N so that Fr, (x) I a

for all x e D. Suppose 3i e D so that F'(i) = a. Let a e B

be an open ball in D so that i is the only solut,ion of

F(x) = a in E. Thus d(F,a,B) > 0 by Theorem 1.4-5, and

since F' converges to F unj-formly on B, we have that

O < d (F ra,B) = a (Fn, E,B) for n suf ficiently large. Hence

Fr, (x) = a has a solution in B (for n large) -- a contradiction.

If in the proof of Theorem 3.5.3 we use Theorem 1.4.5

instead of Theorem 1.4.6 we could just as easily prove:

ff X is a complex space, Fn -+ F normally where F' and F

are complex analytic and of the form I * C, then if f has

isolated zeroes, F is uni-valent if the Frr'" are.

tI
n

..-..>

entiable

Proof:

This

that F is

follows

a local

directly from Theorem 3.5.3 arrd the fact

homeomorphism and thus has isolated zeroes r



In general we cannot remove the condition that the

solutj-ons of r' (x) = p are j-solated from Theorem 3.5.2

and sti1I retain the conclusion of the theorem. This is

shown by the following example:

tx>1

77

l"l <1F(x) =

(x-t) 2

0

- (x+t) 2-1 1
,

,x<-1

Then f'(x) > 0, F is not one-one and F can be

approximated by rr.(x) = F(x) * * " which converge normally

toF. Infactrrr(x) > Oand lrrr(x)l**as l"l ->o, thus

Frr'= are homeomorphisms of E' onto E,r r

Let F, 0N* 0* U. analytic where

F(21,,.. rrN) = (F1(21 z*) , ... , F*(2, t... ,z*) ). we

introduce the following notations:

Let F' (z) =
a(Fl'...'FN)

andA(zL,...rrN)
p'(x,y) = Jacobian of F considered as a map of

2N -2N
-+K

It is well known that det F'(x,y)

R

laet E' (z) 12 ,

and in particular, det F'(xry) > 0. With this i-n mind

we prove:
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ro11a 3.5.5 Let Frr, +N -* +N be analytic and

suppose F' convergfes normally to a map F. If the Frr's are

univalent then either F is univalent or det F'(x,y) = 0.

Proof:

Since Fr, * F normally, then F is also analytic and

so det r'(x,y) is defined. Suppose det F'(x,y) V 0, then

by Corollary 3.5.4 it suffices to show that det F'(x,y) > 0

in order to conclude that F is univalent. However by our

preceding remarks this is equivalent to showing that

det F'(z) / O. Suppose det r'(Z) = 0. Let z, be such that

det F'(zr) I 0. For lll < I let gn(l) = det Fn( (1-I)Z+I z1l ,

g(l) = det F'((1-f); + ),21). we observe that gn and g are

an'alytic functions of ), and gn -+ g uniformly on lll < l.

Also since F. is univalent, gn(I) l 0 and since g(1) / 0,

g(I) 7 0 on lll < 1. However since 9 is analytic, it has

isolated zeroes on I ll < 1 and so the argument of Theorem

3.5.4 is applicable and shows that condition (U) is satisfied,

i.e., gn I 0 implies g / 0 on lll < 1 a contradiction

since g(0) = 0. Thus det F'(z) / 0, and the corolIary follows.

We sha1l now investigate the limit of a sequence of

surjective maps and impose conditions which guarantee that

this limit is also surjective. As before, our convergence

wilI meaJr normal convergence.

For F: X *+ Y we have already introduced in Chapter I

the following conditj-on which is satisfied by a large class

of nbnlinear differential operators:
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(E) If xr, -' i weakly in X and F(xn) t strongly in Y,

then r (i)

Theorem 3. 5. 6 Suppose X is reflexive and F: X -+ Y satisfies

condition (E). Furthermore suppose that F can be normally

approximated by a seguence tj with the following Properties

(i) Fi is onto for each j = 1,..., (ii) Fn(xn) = d =)1 lxrrl I.J

j M. for every a, whereMais a constant depending on a.

Then F maps X onto Y.

Proof:

--+

v

Let y e Y. By (i) and (ii) Jxrr, n = 1,..., so that

Fr.(xrr) = t and il"r, ll :Mt . since X is reflexive a

subsequence *rr. --+ I in the weak sense. Thus it suffices
l-

to show that F(xn.) * y since F satisfies (E). However
)

I I xn. I I 1 ,t and the normal convergence of tj to F implies

that ;lrtxrr.-vll = llF(*rr-.)-Fn.. (xr, ) li -> 0 as n' -* co.

llll

Definition 3.5.2 Let F: X -* Y. then F-l is Iocally bounded

if and only j-f each point y e Y has an open neighborhood N

about it so that f -1(N) is bounded. (r-t(*) may be empty. )

Notice that r-1 locally bounded is a weaker condition

than llrtx) ll + 6 as ll"ll -+ co , which is equivalent to r-1

being bounded, i.e., the inverse image of a bounded set in Y,

is a bounded set in X.
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Theore,m 3-5.7 Let X be a reflexive Banach space, F: X *+ y

satis&ing condition (E) and r-1 is locally bounded. Suppose

Frrt X + Y r fl = LrZ,... is a sequence of surjectj_ve maps

such that F rifts any line in y. rf F_ converges to Fn --r -n
norrnally, then F maps X onto y.

Proof:

We show that every boundary point of F(X) is an interior
point. Thus F(X) has empty boundary and thus F(X) = y by

connectivity. Let y e aF(X). Let N be an open nelghborhood

of t so that f-l (m) is bounded. Choose r so large that-:----
r-'(w) c e(0;r) = t"lll"ll < r] and choose 6 so thar
s(i;46) c N.

Since I e aF(x) , ivr e F(x) n e(i;6) and F(xr) = y1

where x, e B(0;r). From the normal convergence J M so that
llrrrtx)-F(x) ll 4 6, for all n > M, and for all x e B(0;r).

We claim thar e(f ;26) C F(X) and thus ! e aF,(x) is an

j-nterior point. so 1et yo e B (i;2d ) and let Lr., (ty = 11-t) yg

+ t Frr(xr). Since Pn, 11 = 1,2,... lifts lines , J paths
Pn (t) so that Pn ( O) = *1 and Fr, (er, (t) ) = Ln (t) . Now pn (t)
c B(0;r). rf not, then pn(t) passes out of B(0;r) and

since Pn(t) is continuous .Jtr, 3 *r, prr(trr) e a(B(O;r) ).
Therefore dist (F(xn), S(i; 26)) < 6 and so r(xn) e e(V;36)

C N. Hence *r, e F-I(N) C B(0;r) and in particular
*n I DB(0;r), a contradiction. Thus pn(t) € B(0;r) and so

pn (1) e n (0;r) . (Remember that Fn (pn (I) ) = y0" ) Let



0Xn

0xn

ll

0Pn(I). As *r,

* *O weaklY '

"fllvsll = llrt"fi .,-rnjt"fl .lll + o

e B(0;r) for all n there is a subsequence

However
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(y) ,x-y)

12 , p. I05l .

j
F( AS n. -+ @

l
and soBy condition (E) we conclude that r'(xO) = y0

B(tr26) C F(x) as was to be shown.

Coro11 3.5.8 Suppose F: EN --t BN is such that r'-1 is

locally bounded. Also suppose that Fr: RN -* fr'N is a

sequence of maps each of which lifts any line in BN.

If Fj -+ f norma1Iy, then F maps RN onto EN'

Proof:

This follows immediately from T ]eorem 3.5.7 by observing

that for finite dimensional spaces condition (E) reduces to

the continuity of F.

Corollary 3.5.9 [5, p. 16]. Let F: H -+ H be monotone'

If F-I is 1oca1ly bounded, then F is onto.

Proof:

In vi-ew of Theorem 3.5-7 and Theorem 1.3.4 it suffices

to show thatthere is a seguence F:H-+HsuchthatFn n

lifts lines and Fr, -+ E normal1y. Let l'rr(x) = F(x) * * "'
Then F- -+ p normally and we claim that Fn, 11 = L,2,...

n

I=-n

are homeomorphisms of H onto H- In fact, (Frr(x)-F,

I I"-vI 12. Thus F, are 1-1 and F, maps H onto H

I

-'lUence flt is continuous and so F, is a homeomorphism of H onto

H. In particular Fr. lifts any line in FI.

Thus Fn
is defined and satisrj.es *t tu;'(x)-r-1(v) ll2=ll*-vll2.
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We now have the following Hilbert space analog of

Corollary 3.4.2.

oroIl 3.5.10 Suppose F: H -+ H is continuously

dif ferentiable and satisfies (r' (x) y,y) I 0 , Vx,Y e H.

rf llr(x) ll --' @ as ll"l I --> @, then F maps H onto H.

Proof:

(r(x)-r(y) rx-y) = (r'(x(E) ) (x-y) ,x-y) : 0 by the

mean value theorem, where x(E) is a point on the line

joining y to x. Thus F is monotone and llrtxlll -|o as

I l* I I -+ 6 is equivalent to r-I(N) is bounded whenever N

is bounded. rn particular F-I is locally bounded. Hence

f'maps H onto H by Corollary 3.5.9.

One may ask if the properties of univalence and

surjectivity are preserved in the limit of a sequence

which converges uniformly on the whole space x. Coro11ary

3.5,12 shows us that in fact the homeomorphism property is

preserved in this situation.

Lemma 3.5.11 Suppose Frr, nN --> nN converges

uniformly to F, If the Frr'" are proper, so is F.

Proof:

Since F is a compact perturbation of the identity,
by Theorem 1.4.7 it suffices to show that llrtxt ll - 

@ as

ll"ll --> o. [Iowever the uniform convergence implies, for n
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large enough, that llrr,(x)-Ftx) ll <. 1 for all x e x.

l lrr,(x) l l 1 : l lrtx) l l ror all x e X.

Thus

(1)

Since the Frr's are proper, llrrr(x) ll + o as ll"l I -+ @

and so from (1) the result fol1ows.

Corollar:r 3. 5.12 Suppose F is a

local homeomorphism on RN. rf F can be

uniformly approximated by homeomorphisms, then F is also

a homeomorphism of BN onto itself.

Proof:

Since a homeom.orphisr,r is a proper map (Theorern 2-3.2) ,

the coroIIary follows f rom Le;nma 3.5.11 and Theorem 2.3.2.

we remark that by virtue of Theorem L.4.7, Lemma 3.5.I1

can be extended to Banach spaces if we require that F* and F

are compact perturbations of the identity and that F'

satisfies the coercive condj-tion I lrrr(x) I I @ as I lxl l*-'

We can then extend Corollary 3-5.12 accordingly.
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