ABSTRACT

SOLUTICN OF THE PERCUS-YEVICK EQUATION

Saeyoung Ahn

We investigate the properties of binary mixtures of hard
sphere fluids with non-additive diameters: calling Rij the
distance of closest approach between particles of species i
and j we assume R, = % (Rll + RZZ) + o with @ # 0. We find
the exact solution of the Percus-Yevick integral equation for
this system in both one and three dimensions when R11 = R22 =0,

@ > 0 (Widom-Rowlinson model). We also find the complete
solution in one dimension and a partial solution in three dimen-
sions for the case when Ry =Ry, = R>0and 0 <o <R,

The solution of the P.Y. equation for the Widom-Rowlirson
model exhibits a 'classical' phase transition (corresponding to
a separation of the components) in three but not in one dimension.
This is in agreement with the true behavior of this system.

The solutions of the P.Y. equations are much more complicated
than in the additive diameter case, @ = 0. Graphs of the thermody-

namic quantities, direct correlatica functions, and radial distribu-

tion functions are given for the Widom-Rowlinson model.
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ABSTRACT

We investigate the properties of binary mixtures of hard
sphere fluids with non-additive diameters: calling Rij the
distance of closest approach between particles of species i
and j we assume R12 =% (R11 + R22) + O with @ # 0. We find
the exact solﬁtion of the Percus-Yevick integral equation for
this system in both one and three dimensions when R11 = R22 =0,
@ > (0 (Widom-Rowlinson model). We also find the complete

solution in one dimension and a partial solution in three dimen-

i L= = > <a<
sions for the case when Rll R22 R 0 and O R.

The solution of the P.Y. equation for the Widom-Rowlinson
‘model exhibits a 'classical' phase transition (corresponding to
a separation of the components) in three but not in one dimension.
This is in agreement with the true behavior of this system.
The solutions of the P.Y. equations are much more complicated
than in the additive diameter case, ® = 0. Graphs of the thermody-
namic quantities, direct correlation functions, and radial distribu-

tion functions are given for the Widom-Rowlinson model.



CHAPTER 1. INTRODUCTION

The thermodynamic properties of liquids and liquid mixtures
in equilibrium can be obtained from a knowledge of their distribu-
tion functions as they are ordinarily defined in statistical
mechanics(l). These functions also give information about the
microscopic structure of these systems. Unfortunately however it
is generally even more difficult to obtain exact expressions for
the radial distribution functions than it is to obtain the exact
thermodynamic functions. The only methods we have for computing
these functions exactly are the cluster expansions (in powers of
the fugacity or density) and these are only useful at very low
densities (rare gases).

In the absence of any exact results for the radial distribu-
tion function of dense gases and liquids our understanding and
interpretation of experiments in fluids relies heavily on the use
of various approximate integral equations for these functions. These
equations are usually non-linear and their solution therefore
generally requires the use of a compﬁter which reduces their useful-
ness(z) although they yield many results for comparison with molecular
dynamics or Monte-Carlo calculations. One of the more successful
of these integral equations, the Percus-Yevick (P.Y.) equation(3),
has a relatively simple closed form solution for a system of hard

(4)

spheres . The solution for a single component hard sphere fluid

with interparticle potential

v(r) = (1.1)



_ 2
was obtained by Wertheim(s) and Thiele(e). Lebowitz(7) general-
ized Wertheim's method to get the solution of the P.Y. equation
for mixtures of hard spheres with potential between particle of

species i and j,

V15 (r) = 1] (1.2)

when the diameters are additive

Rij =% (R, + RJ,j) (1.3)

(8)

These solutions have been used extensively in connection with
x-ray and neutron scattering data from simple fluids and from
liquid metals. In the latter experiments it was noted that the
assumption of additive diameters may be grossly invalid for somxe
liquid metal mixtures.

Following this the P.Y. equation for mixtures of hard spheres
with potential (1.2) but without the assumption of additive diaw

(9)

meters was considered by Lebowitz and Zomick . They considered

in particular the case

R, =% (R +Ryp) +¢ (1.4)

where @ satisfies the following inequalities



3
<a < - >
02« Z %(Ryy-Ryy)s Byy ZRyy (s}
They obtained an exact solution in one dimension, and a partial

solution in three dimensions.

Recently Widom and Rowlinson(lo) proposed a model for study-
ing liquid-vapor phase transitions which is isomorphic to a
two component system in which there are no interactions between
particles of the same species and a ha:d core of diameter o
between particles of different species. This model, and some
géneralization of it , were proven(ll) to undergo phase transitions
(in two and higher dimensions) corresponding to a separation of
the components when the density is sufficiently high. These
results follow from very general arguments and do not give any
other information about this system, Such information, apart from
its inherent symmetry so nicely exploited by Widom and Rowlinson,
has so far been obtained either from simple mean field theory or
from low density expansions (via Pade approximations) and from some
machine computations on related systems. This system has the inter-
particle potential (1.2) with the distance of closest approach between
species i and j,

@, (¥

R,. = (1.6)
1] 0, =13,



In Chapter 3 of this paper we deal with this system in
detail and find the exact solutions in one and three dimensioné}Z)
In one dimension, the solution is unique up to a certain density
and becomes non-unique after that. The physical solution can,
however, be found from the continuity of the pressure and is just
the continuation of low density solution. The free energy ob-
tained from this solution of the P.Y. equation remains stable for
all values of the density . We compare the values of pressures
with the exact result., For values of density less than 1, in units
in which 2¢'f i, the agreement is very good. The direct correlation
function is the Bessel function of zeroth order. In three dimen-
sions, a solution is obtained explicitly, by makipg use of the
technique devised by Penrose and Lebowitz 13), in a parametric form.
This solution gives a maximum density, that is, the integral

equation does not yield a solution at a density higher than this

one. Below this, we find a density at which the susceptibility

diverges with 'classical' critical indices. The low density
expansions are given for the pressures both as obtained from
the compressibility relation and from the virial theorem.

The radial distribution functions, correlation functions and
their Fourier transforms are drawn in the graphs at the end.
. . . oo (14)
These results are compared with some rigorous inequalities
on the correlation functions of this system.

In Chapter 4 we consider the P.Y. equation for another case

of hard sphere mixtures with potential (1.2) and R,, in (1.4),



but with different inequalities for Rii and ¢, namely

= F = > >
Rll R22 R, R~Z2a 0 (1.7)

In one dimension we get an exact solution, while in three dimen-
sions we fail to obtain an explicit solution due to the great
complexity of the remaining algebraic equations.! Solutions of
this system reduces to two limiting cases, that is, to the case
of one-component system as @ = 0, and to the case of Widom-
Rowlinson model as R — 0, The latter case is obviously not to

be derived from (1.7), and this suggests that there might be a
general way of getting the solution for P.Y. equations of mixtures
of hard spheres with potential (l1.2) and the distance of closest

approach (1.4) defined with the equality

R.. =R,, =R ' (1.8)

regardless of the value of @(positive) and R.



CHAPTER 2, FORMULATION OF PROBLEMS

In this section we derive the P.Y. equation for a general
binary mixture of hard spheres, in one and three dimensions,
and discuss the general approach to its solution.
i . .. (15) :
The earlier work done by Ornstein and Zernike contributes
to the definition of the direct correlation functions between
particles of species i and j, Cij(r>' These are defined in terms

of the radial distribution functions, gij(r). In a uniform binary

mixture with densities Pl and 92,

2
- = i rt - ---. r!
g;() -1 =c, () +3, fy [ [g,deh -1 oy ddz-r'hart 2.
where P, is the density of species £, assumed spatially uniform.

The symmetry gij(r) = gji(r) also gives

Cij(r) = Cji(r) 7 (2.2)
.. (16) | ; :
The P.Y. approximation is written in the form

=V, .(T
s I S
gij(r) [e 1] Cij(r) e (2.3)
and we see that with the potential vij(r) defined in (1.2) the
right hand side of (2.3) vanishes for r < Rij and the left hand

side does for r > R_,,
1]



= <
gij(r) 0 for r Rij

(2.4)

C..lr) =0 for r > R,
1] 1]

The 'contact values' gij (Rij) are to be understood in the sense

of limit,

g”( lJ) ?;_l_' g J(r)
1j
(2.5)
= lim_
rR,, C,.(1)
ij ij

(One dimension)
We consider the one-dimensional case first since it is simpler
17

yet simifgr)to the three dimensional case. This case also permits

comparison with the exact solution. Instead of manipulating

C..(r) and .(r) (which are discontinuous at |r| = R,.), we intro-
;3(¥) and g . (x) (vhich are di =l =),
duce a new continuous function Uij(r),

--(F’.F’.)'JE 6. .0r) r=<R

o, . (r) = s T

H p ¥ e @ F4 9



Combining (2.6) with (2.1) and (2.4) yields,

2
c =A ., -2 | o} c o
138 = A4 £=1J dy 944 (y) 9y (xy) 2.7)
Iyl 2Ry Iyl <Ry,
where
3 : , !
= - z
Ay (pipj) [1 5 pEJ Czj(r) dr

(2.8)

%
(pi/pj) Ass

for ¥ 2 0. We look for the solutions of eq. (2.7) such that
§ loyskd =1l ar <= (2.9)

This asserts, essentially, that the system is in a single phase
and leads to a boundedness property on the Laplace transform of

Gij(r) which we shall use later. Writing out (2.7) explicitly

yields

-R
“Rit
g . (r) =4A_, -Z{|] o ,(y) 9,.(x=y) dy
-l 13 %) [-R,,.TR,,] it 43
1 J
(2.10)

r
pel X Bl -y () O, (x=y) d
+ J C ] s\ 23 x=y) dy



pilgiig B

Since the right side of (2.10) is of a convolution type, we
look for a solution in terms of the Laplace transforms.
Using (2.10) the Laplace transform of Uii(r), which we

shall denote by Cii(s), can be written in the form

0 =ST
/14 ]
JO e 0ii(r) dr ( )
2 Jm Jr+RiL
A, =-,& ¥ dr ¥ 9, (r-y)dy
_ii  2=1 Y0 S [B TR ] “ie

oli(s)

2 R, - R -
by o TR @ s T em e
L 7t R J R *
s ~ il il

The domain A for the
integration of the
second equality in (2.4)

% 77{,2,?,2’;??/ is shown in (a), and
>y G Ty changes to domain B in
Riy 14%7//C// (b) after the variable r
is switched to x where
(b) x Er-y.

Fig. 1

Eq. (2.11) can be written as

2
0,5(8) = Ay =y 6(e) 1Py (o) + Fys (=)} (2.12)

S
= Fii(S) + Gii(S)
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where
F%j -sT
sz(s) EJO e cﬂj(r) dr , (2.138)
and
_ Lo -sT 4
Giﬂ(s) = JR.£ e Uiz(r) dr . ' (2.13b)
i

The Laplace transform of Uij(r), i # j, generates additional
terms other than Gij(s) and Fij(s), as can be seen from the domain

of double integration shown in Fig. 2. A similar discussion to

(2.11) gives

2
o) =4 F Giz(s)inj(s)+F£j(-s)f

S

-iuij(s)-uij(-s)i (2.14)

. < . .
assuming R11 __R22 without losing

Fig. 2 any generality,

where Uij(s) has one of three possible expressions according to

values of R,.'s,
1]
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v4 " Rey R,
5 . 1) 11 ii
(- ij) '10 e °F ar J’r-Rij cy:i_:i_(Y) Oij(r-y) dy,
for Rj; SRy, SRy (2.15a)
R..-R.. R..
8 ‘l Jl 1] =-sTY d J ij 5 ()9, .( 54
Uij(s) = (1' ij) 0 e r - ij y ij r-y)dy,
i3
for Ry SRy SRy (2.15b)
Ro57Rig R4

=STY .

<R, <R (2.15¢c)

with 6., the Kronecker's delta function,
: ij

1 i=j

6 = (2'16) '

ij 0 i#j.
Eqs. (2.12) and (2.14) with (2.13) and (2.15) provide the whole
set of Laplace transforms for Gij(r)'s and can be rewritten in a

2 x 2 matrix form,

© =

+ *
g(s) ==A - G(s) E (s) - U (s) (2.17a)

or

g(s) = H(s) K™ (s) (2.17b)
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where we have defined

F+(S) = F(s) + E(-s) (2.18a)
g*(s) = I=I(s) - U(-s) (2.18b)
g(s) = g(s) + E(s) (2.18¢c)
E(s) =& sE(s) - sg*(s) (2.184)
+

K(s) =s I+s F (s) (2.18e)
1 =10 (2.18£)
- o 1/. _

To exploit the condition (2.9) we now define the matrices

L(s) and B(s) by the relations,

g(s) H (-s)

L(s) =
= H(s) KN(s) E(-8) = LT(-s)  (2.19a)
and
B(s) =L(s) - = A' ' (2.19b)

where an element of A' is Aj’.j’
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2 . =

] -— - s
Aij = §=1 »/p"ip'z Aj P inpj a (2.20a)
as (All +4,,) (2.20b)

with Aij defined in (2.8). The diagonal components of g(s) are

By, (8) =G, (s) [An + s Fn(-s)l +6,,(s) [A12+ SF,,(-s)-s Ufz(s)]

- A! (2.21a)

B,,(s) =G, (s) [A22 + s F22(-s):| + G, () [A2l + sF,, (-s)-s Ué‘l(s)]

Al
A22 . (2.21b)
s
The limit of. Bll(s),
i = 1i Zg A, - A!
lim Bja(8) = lim g0 Cue(e) Ay ii}
= (2.22)
= X lim Gi‘e(s)-VPiPL Aiﬂ-’
£Ls=0 S———
s
’ -sRi.
is finite due to (2.9). When Rﬁ-s Sk Gij(s) “le J "
sR. . o o B s
.*1le *and Uf.(s) Gl ! es(RlJ Rii) for the system with
lJ . 1J —
. 8 s
< < 1
R,y 2 Ryg SRy Therefore we see that the Bii(s) s are bounded
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and entire on all the rays in the right hand side of the complex
s=-plane. We can say the same about the left hand side of the
complex s-plane since L(-s) = -&T(s), and by the Liouville's
theoreSnl,s)the Bii(s) 's are constants. - By looking at the value
of Bii(s) as s - ® _ we conclude that Bii(s)'s vanish all over

the complex plane, that is,

Lii(s) - ﬁ:"._i-_- 0 : (2.23)

s

We can therefore write Gii(s) more explicitly

(=) =
i]-_(s) L&

- 1 A1 - - %
- §2 Al + G509 [l_Aij F;;(s) Uij(s)]

s

/2]

(2.24)
+6,;(s) E% By Fii(s)], i#j

Taking the inverse Laplace transform of (2.24) yields finally for

< <
Rip SRy 2Ry

= - Al <
Gii(r) Aii Aii r, T = Rii’ (2.25)

since the last two terms of (2.24) die out for large value of
-sR. .,

' ii
Res as, or faster than, order of e .

The off-diagonal components of =B(s) do not give any simple
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relat?onship which gives rise to various complexities for different
values of Rij's. Therefore finding the form of Glz(r) constitutes
the main problem in Chapter 3 and 4. The solution in three

dimensions follows very closely the one dimensional case.

(Three dimensions)
Similar steps are taken in the three-dimensional case as in
the one-dimensional case. Defining

1
=217 2 <
2 (Pipj) r Cij(r) for Rij

Ui.(r) = (2.26)

] 2m (pipj)% T gij(r) for r ~ Rij

we have from (2.1) and (2.4)

2 -
= : K T s 1= =, =iy
cij(r) = Aijr - E.:l J r'znlf-f'l . o‘ifl(lr‘) dzj(lr_r l)- dr

(2.27)

1| > T-rt| <
Ir I RiE’ Ir T l R’ej
- 2
Switching the volume element dr' (=r' dr

sin 9d9d9) to dr' dx d® with r', r, x and

0 shown in Fig. 3 and using the volume

Fig. 3 x=1r

150

in
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converting factor (Jacobian) of -x/r.r', in the integral, (2.27)

becomes,
in [r+y,R, ]
o, . (x) s, -2 [0 crc)dJ'ml'n g o, (x) dx (2.28)
a e = F o, . * . . - - . .
1] 1) 4o Riﬁ 1487 Y dpin [Ir-yl,le] 4j w) R
where

A, o - -y (2.29)
—ii =1-Zp,] Gy (lzly az

2m/p p
1]
From the way of defining Uij(r) in (2.26) we expect that the
first derivative of Gij(r) with respect to r, Uij(l)(r), will have

some similarity to Gij(r) defined in one dimension. Uij(l)(r) is

obtained from (2.28) in the form
c. . =A -2z ' G ,(r-z) 9, (z)dz-
1y DAy Ty ﬂr-zlx{ 14077 g2

4r~zl>R, ’0<Z<RE' Giz(r-z) cﬁj(Z)diS.-Pij(r) (2.30)
-lﬂ —_—4%]

where
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max [sz 5 r+Ri£]

B, (x) = i JI+RM 944(F2) 9, (2)dz (2.31)

The Laplace transform of (2.30 ) can be written in the form

of 2 x 2 matrices

2 a(s) =A +s - g(s) F¥(s) - s U*(s) (2.32a)
or

G(s) = H(s) K (s) (2.32b)

where we have defined

F*(s) = E(s) - E(-5) ‘ (2.33a)
U*(s) = U(s) - U(-s) . (2.33b)
g (s) = G(s) + E(s) (2.33c)
H (s) =A - s° F(s) - sU*(s) (2.33d)
K (s) = s°L - sF*(s) | (2.33e)
10 ‘
I =, 1) _ | (2.33f)
u () = Jg e P, () dr (2.33g)

The requirement that gij (r) * 1 as r = ® in such a way that
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[zl o -1l ar <= (2.34)

2
implies that Gij (s)—ZWPin/s can have no singularity in the
closed right half plane of 5., To make use of this condition
more effectively we introduce the matrix L(s) and B(s) in the

same manner as in the one-dimensional case,

L(s) = g(s).gT(—s) (2.35a)
= H(s) K (s) E'(-s) =L (-s)
B(s) = L(s) - é'/s2 (2.35b)
where
; 2
Al wE BMSE Py b, ™ 2rr/pipj a (2.36a)
a=A., +tA, (2.36b)

with A defined in (2.29). The diagonal components of B(s)
. B

are
Byp(8) =6y, [a)) - 52’”"11('5):| + Glz(s)[Alz'stlz('s) '?Ufé(s)]

11

2
s
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Bzz(sj = G,,(s) [ay, - 52F22(-s)] + Gy (s) [A21-32F21(-s)-sU§=1(s)]

A
f..zl ’ (2.37b)
2
s
and can be seen finite as s ~ 0 due to (2.34), that is,
(s) 3 (s) Al
lim B s) = lim¢zG_,(s) A, , = A!,
s—0 11 o ik il —%£
s
=2 1lim Gi,%(s) - Z"VPiPLSAﬂ‘ e, (2.38)
s™0 5
-sR, , sR. .

1 ij 1 ij
- - = - - =
Also when Rygs . Gij(s) S e i Fij( s) 2 = and

s(R. '-Rii)

- l 1] : < <
Uij(s) s for the system with Rll = R22 = R12, where

the last bahavior for 'Uij(s) is obtained from (2.33g) and (2.31).
Therefore the Bii(s) 's are bounded and entire on all the rays in
right hand side of the complex s-plane. Since L(s) = ET(-S),
B(s) = B(-s), so that we can set Bii(s) equal to a constant, 2Bi’
by using Liouville's theorgr}z.s) We then find that

Al

L, (s) - STH- = 2B, (comstant). (2.39)

Now we can write Uii(s) explicitly :
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(o} = ! -
w0, s) md,, AL RIB o+ G, (s) [Fii(s) A ]
s 4 2 2

, S s s

(2.40)
+ Gij(s) [Fij(s) - ﬁi +1 Uzj(s)]

s
S

This yields after taking the inverse Laplace transform

- 2 v LA <
o.;(0) = A, T+ B 10 +AL T forr SR, (2.41)

24

since the last two terms of ( 2.40)die out for large value of

-8R, .
RUs as, or faster than, the order of e -

. To find Uij(r),i#j,
needs different methods according to the system and gives rise to
great complexities,

These direct correlation functions, Cij(r)'s, allow us to
get thg thermodynamic properties of the system as will now be
explained,

(Thermodynamics)

Given the solution of the P.Y. equation for Cij(r) and
gij(r) there are different ways of obtaining thermodynamic quantities
from these correlation functions. These ways would all be equiva-
1en£ if we had the exact functions. They are generally not equiva=-

lent for the P.Y. solution (e.g. in the P.Y. solution for the binary

additive mixture of hard spheres solved by Lebowitz, the compressi-
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bility pressure is slightly above and the virial pressure is

19)

slightly below the'exact'ong in the low density region.)

Thus we may 'get' a thermodynamic; from the virial theore&?o)
which relates the pressure to the 'contact' value of the
distribution function. This pressure from the virial theorem,

—_— v .
so called virial pressure P , can be written for a two component

hard sphere system in the form

- ,
- B b .
BP =Py +].L’j pipjc 8 5 (Rij) (2.42)

where B = 1/(kT) (we shall set B = 1 from now on), and c is Rij

or %‘ﬂ Rij in one and three dimensions respectively. '

Another way of obtaining thermodynamics from the correlation

functions is to use the 'compressibilit relations'(7)
P y

(P, ,p.) . - .
i = 6 - 2.43a
B, TET1rS - pi,l C;;(x) df ( )
op .
J .
- - %5 27 P y) 2.43
- = = ™ b

where u; and Pc are respectively the chemical potential of the ith
species and the pressure, as obtained from the compressibility

relations.



CHAPTER 3. SOLUTION OF P.Y, EQUATION
FOR_WIDOM-ROWLINSON MODEL

3-1. One dimensional solution

The P.Y. equation of this system with (1.5)

a for i # j

i=j,
yields Gii(O) directly from (2.7) or (2.25) in the form

0, K0y =& 3.1)

We also find U,.(s) and L'i(s) for this system from (2.15a) and (2.23)
ij i

U () = -8, ) [ e ar [T, 04,00 oy

= Al
L;;(8) =4,

s

Writing out (2.10) for this system yields

91(0) = - Jmax[o, o] 912 9,y dy Li = 1,2 (3.2)
. _',a . .
cij(r) = Aij - Jr_a oii(y) o,(ry) dy , i # 3 (3.3)
and
C11(®) = % (®) = Ay - Ay |
(3.4)
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Eq. (3.4) gives

G)p(8) = T (s) = (P,-P ) /s 55

GZZ(S) - Gll(s) .

Eq. (2.17a) also yields

By
s S

* * +
U21(s) - Ulz(s) = . Flz(s) (3.6)
where we are uéing the notation introduced in the last section; for

any function f£(s)

f(s) + £(-s) (3.7a)

£7(s),

£(s) = £(s) - £(-3) (3.7b)

For the off-diagonal elements of L(s) in (2.19a), we cannot
find such a bounded and entire function as for the diagonal

elements. L12(s) and L21(s) are explicitly

Ly, (s) = 6y, (s) A11+G22(s)[A12+:SF12(-s)-sUIé(s)] (3.8a)
le(s) = G12 (s) A22 + Gll(s) [A21+3F21k—s)-sU;1(s)] (3.8b)

The difference between L21(s) and le(s), however, yields using

eqs. (3.5) and (3.6)

Ly, (s) = Lyp(s) = (P,=P ) F,(s) (3.9)
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-

Now that the relations between the Lij (s)'s and F-.".(s) 's have
1]
been obtained in (2.23) and (3.9) a relation for F:j (s)'s and Hij(s)'s
is desired since they have the same behavior for largeRLs., For this

purpose, we derive from the definition of L(s) in (2.19a)

H(-s) H(s) = L'(s) K(s) 3+10)

Among the four matrix elements of the above equation, only two
are linearly independent due to the symmetry of the system

between 1- and 2-species. These are

+
Hll(-s) Hll(s) + le(—s) H21(s) =g I.11 + SLZl F12 (3.11a)

Hll(-s) le(s) + H12(-s) H22(s) = Lll(s) K12(S) +L21s (3.11b)

We then can rewrite (3.1ia) and (3.11b) using (3.7 ) in the form,

. ¥ y = * = F 3.12
AT +HE@E, -H,) [FH, +EH, + () L G.12a)
s + * y +
A5t 3, [Ly) () + (0yop)) Fip (s)]

+ PP t g earrtiE0

* s
‘ - + -p )F..] (3.12b
AjqHh, ¥ 22 1 (H, 12 ) = Al Fip T3ty + (PP T ( )
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*
By eliminating L21(s) from (3.12), we obtain a functional re-

lationship of the form

2 N2
+
H - -+ - 2 2 ﬂ= v 2
Glz b2, (s”-4p%) (%P; Al - A, (3.13a)

or simply
¥2¢.) = Bra) 620) =52 (3.13b)

where we have defined

+

¥(s) = M2 -4 FF (s) (3.14a)

= " %1 12
F+ .

®i(s) = "12(s) (3.14Db)

2
2 _ 2
o = Ail-All . (3.14c)
() = 8" = 4%, (3.144)

The right side of (3.l4c) proves to be positive and equal to

ciZQW) . This can be seen by looking at the asymptotic behavior of

SLll(S) as Rfs = ® in (2.19a).
sLll(s) = sGll(s) All + SG12(S) le(-s)
g " ® Az + 0'2 ((1’) (3-15)

—3 %11 T 12

along with (2.23)
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The functional equation (3.13) is of the same form as in the work
of Lebowitz and Zomick. The functions ¥(s) and #(s) are entire
even functions of the complex variable s with the asymptotic

N -1
behavior s = exp L= |R£sl], for large s. The solution to this

functional relation is

Y(s)= +p cosh @ VE(s) (3.16)
§ (s +u sinhle VE(sJVE(s) (3.17)

The signatures of Y(s) and 9(s),i.e., the signs in (3.16) and

(3.17) are to be taken positive with W = 012(01) > 0. This follows

from the behavior of G12(S) as Rbs 4 @ in (2.32b), that is,

Gyp(s) =Hyy(s) KE; + Hy,(s) K;;(S)

+
= "A]_]_ F]_z + le(s) (from Eq. (2.33e)
+2 +2
s(l-Flz ) s(l-FlZ)
-s¥ 2
s~ e s (sign ¥ - sign®)
=28
-411-2 (sign ¥ - % sign Q)} (3.18a)
where sign Y means +1 (or -1) if the signature of Y(s) is positive
s
e

(or negative), so that GlZ(S) should have the behavior K with

K, a positive constant, This asserts that
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e-sO’

GIZ(S) =W for large s ' (3.18b)

confirming the choice of signs in (3.16) and (3.17).

The contact value ngGI) is obtained in terms of K using (3.18b)

VPP 812(0’)

12

0'12(0'?

]

lim [-s F o (-s) exp (-s7)]

S-om

i

]

o
12

1im Ls exp (s@) Glz(s)]

- @
S

]

" (3.19)

The quantity P in (3.16) defined in (3.l4c) enters as a

parameter in the solution., From (3.17)

3(0) = % sin 2 (3.20)
while from (2.8)

2
= 1 -
boo=4ay -An
- Y(a-p,-p,)°
PPy = 3la-P=¥,

2
PPy (1 -4 2°(0)) (3.21)
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since

Ay =% (@f,-f))

=p (1+/"2 23(0)) (3.22)
1 5—

T
This yields the equation for M,
b= fP]_Pz cos 21 (3.23a)
or simply
q= Tcosq (3.23b)

with q =T glz(a') and the reduced density Tl = 2o @ for the
one-dimensional system. For T = ﬂo:g 2,80, the solution of (3.23)
for B is not unique. The continuity of the pressure, however, makes
it po#sible to choose the solution along the first branch of cos q

L
where q < 7 s that is, along the branch of the low density solution.

We will see this from the expressions for pressure in the next section.

3=-2., Thermodynamic properties in one dimension

Equation of state:

The virial pressure is obtained from (2.42) and (3.19), namely

PV = p + 2« /PP, b " (3.24)

where P is the total density, p1+92’ and p is defined in (3.23a).

From the compressibility relation
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2% 1o [ e () d
e W ], = - r) dr
(3.25a)
=1+ [92/91]% sin (2u)
we obtain
VP1Py
pi=p+2 ], sin(2) d(/P P,) (3.25b)

9
The exact pressé}g may be obtained,for Dl = Pz = %, from

the equation

O

= 1 + 3p/[i+exp (%P)] : (3.26)

The above three pressure are plotted in (Figure 5). From this

we see that for P <1 (in units in which 2¢ = 1), the agreement is very

good, while for p = ® they converge to different values;

P _____,p —— i o L (3.27)
P 4

Pc p - @

. e~ 2 (3.28)

5 E2% (3.29)

' 1!

sl

b
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cij (r) and their Fourier transforms:

Eq. (3.14b) provides the Fourier transform of Clz(r) since

=STr ST

+ - ¥ e + e
¥ Fpy () =], 9,® 7 dr

1,54

=% Ji, Ulz(r) e 5% dr (3.30a)

and therefore

2

144 -ikr
J.a C12(r) e dr

Cpp ()

+
“Fo (ik) / Jplpz
= -2 % (ik) /Jplpz
=2 W sinE;\/EEIZZE / Jﬁi;auz . (3.30b)
PPy

The inverse Fourier transform of Elz(k) yields Clz(r),

Clz(r) = |l JOLZm/v/PlPZ for 0 < r <«
0 for r 2o (3.31)

where JO is the Bessel function of zeroth order. It is seen from

(3.31) that C,.(x) <0 for all |r| <e.

12€x

The Fourier transforms of the correlation functions [gij (r)-1]

is denoted by ﬁij (k). Using the definition (2.1), we find

oy

=

gk
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Hij(k) = Cij(k) +§ Py Hiz(k) cij(k) (3.32)
hence
Hll(k) = 2 “1lv //9192 (3.33a)
(1-F P00 =
~ T (k
H,00 = S2® g  (3.33b)
1-p,P.C 12(k)

Hﬂij (k) were found numerically and are plotted in Fig. 6. The
.numerical calculation of the inverse Fourier transform of ﬁlz(k)
in (3.33b) converges very slowly because of the slow decay of C,,(k)
as k »® . We can, however, combinelalz(k) and'ﬁlz(k) into such
a form that
N " e,
Hip(k) = Cpo(k) = ——=, (3.33¢)
1 B 1-p ()
1 2 12
for which the inverse Fourier transformation is very rapidly con-
vergent.
(3.33c¢) yields not only the radial distribution function but also

automatically checks the accuracy in the region r <@ through the com-

parison with Clz(r) in (3.31).

3-3,. Three dimensional solution

Similar steps are used in the three dimensional case as in

the one dimensional case., The results from Chapter 2 for this
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system yield
Moy =

AI
L, (s) = 2B, + 11 (3.34b)

2

S
Gpp(s) = 911(s) =Gy, ()G, (s)

= 2m(p =P ) /s’ (3.34c)

and

* * %*
Upp () = Upy (8) = Ay oAy + 2P P IEL  (3.34d)

s 2
s

The off-diagonal elements of é(s) in (2.35') yield the following

relations,
251_(3) = G21(s) All +-G22(s) [Alz-s2 F12(—s) -sUlz*(s)] (3.35a)
L, () = G ,(s) Ayy + G, () [a,,-s" Fo(-s) ~sU) ()] (3.350)

Their difference is
*
le(s) - L21(s) = 2T (Pl-Pz) F12 (s) (3.35¢c)

*
which has the ei?S/s - behavior for large R4s in common with U12(S>’

and H12(s).
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From the relation

H(-s) H(s) =L (s) K(s) (3.36)
we get two linearly indepéndent equations

Hy,(-8) B (s) +H,(=s) H, (s) =1L, 2* sFlz* Ly ()  (3.37a)

Hy, (-8) Hy,(8) + Hyp(-s) Hyp(s) = -8 F," L. (s) % g2 L,,(s) (3.37b)

The other two elements of (3.36) are the same as (3.37) after
some manipulation with the help of (3.35). Using the superscript

of "' and '+' to define

Hy, (s) = H,(s) + Hy,(=s) = 2(A12-su12*) o8 Fy, (s) (3.38a)
le*(s) = Hy,(s) = Hy,(-s) - Flz*(s) (3.38b)

(3.37) can be written as

* F *
12 = 12 2n(p2-p1)] (3.39a)
S

& 2

2 *3 [H12+(s) - st
1l o

+
+ % (H12 + s F12

N

Apg = Byy#) =slyy (8) Ly,y(s)

2 ko ' * 2
+ 2T, P1) (B, +8F, ) =-@," +B,) sF, L, (s)

2 s (3.39b)

+
Sy s
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The above equations in (3.39) may be combined into one re-

lation by eliminating Lzl(s). We find

ty u, () + 21 1?12"’(s)}2 - (F12)% 18 - sca

s 2s

2 2
= 1 -
Ay “ A1 T By,

This leads to the equation
¥2(s) - E(s) & (s) = h(s)

where we have defined

= + *
Y(eg) = % « By, '(s) +AF
s
*
2(s) =F;, (s)
2s
_ 6
E(s) = s =~ 4h(s)
h(s) = B11 32 + Pz
W2 =atoh 2

We also see that from (3.34b)

2

Ly1(8) =Gy Ay + 6y, (A = s Fpp(es) - s,

= 1
A11 + ZBll

2
ﬁA11+B

*]

113%}

(3.40)

(3.41)

(3.42a)

(3.42b)

(3.42¢)

(3.424)

(3.42e)

(3.43)
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or
2B, = -0122(0) (3.44a)
h(s) = 2B, (s"-z]) (3.44b)
and
2, = B/0,@) (3.44c)

¥(s) and P(s) are both even and entire functions and have the eigs/s -

behavior for large Rls, with the plus sign if Rgs — +° and the minus

sign if R&s — -®.as can be seen from the way that they are defined.

Solution of the functional equation:

A functional equation of the type (3.41) was solved formally
by Penrose and Lebowitz for the P.Y. equation of the system consid-
i i i < o < =]
ered by Lebowitz and Zomick, i.e. Rll __R12,0 % (R22 Rll)'
The P.Y. equation for that system has not yet been solved explicitly,

though, because of its complexity. Our system, R11=R22=0, has how-

ever a relatively simpler structure. Let us define f(s) by the re-

lation
£(s) = ¥(s) +/E(s) ¥(s). | (3.45)

We can then rewrite the functional equation (3.41) in the form
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f(s) « £(-s) = h(s) (3.46)

Penrose and Lebowitz have show(nnehat if E(s) and h(s) share
no common zero, then a functional equation of the type (3.41) can
be reduced to-a Hilbert problem on the arc, the solution of which
was found by N.I. Muskhe.lishvil(iz.l)

To manipulate this recipe, we observe that E(s) and h(s) do

not share any common zeros since E(s) = 56 - 4h(s) and h(0) # O.

Then the final solution yields
£(s) = + fz"l'ﬂfl'i"(s-»zl) exp 11(s)} (3.47)

with the condition

tdn J(t)dt
75%)— (3.48)
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(@)

Fig. 4
Three integrations along three closed contours surround-
ing the three cuts Cl have the same effect as a single
integration along a path C2 which encircles three branch
cuts, Cl' This is equivalent to integrations along the

paths C;, C, and Cé. tt,,tt, and tt; are the zeros of the

sixth order polynomal E(t). i;l are the zeros of h(z).
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where
I(s) =»§E1gs) Jcl fnJ(r)  dt, (3.49)
VE(E)  (t-s)
. t-zl
J(t) = L (3.50)
t+zl
and C1 is the system of cuts parallel to the real axis as shown in

Fig. 4, branches of 4nJ(t) are chosen so that £nJ(t) is an odd

function, and JE(t§+ means v E(t) along the dotted positive cuts C1

shown in Fig. 4. The integration in the right hand side of (3.49) equals
to one half of the integral around the closed contour surrounding the
three branch cuts, CZ’ By the Cauchy theorem we can change the integra-

tion path into Ci + Cé + Cé where Ci is a contour around the logarithmic

branch of J(t) on the real axis and C§ is a contour around the single

pole in the integrand at t = s. Thus
1(s) =/E(s) % JC Ind(t) dt

214 2 /E(t)+ (t-s)

=/E§'s) %J-C'-*C'-I-C' 4ng(t) dt
274 1 7273 fE(t)+ (t-s)

=/E(s) 2mi g‘j:: dt +J: dt
S5 w2 L VEe)yt @) 1 VEW@T(t-9)

VE(s) (3.5)
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The function LnJgs! has discontinuities 2Ti across the cuts
VE(s) VE(s)

(zl,w) and (-zl,J”). These are cancelled by the discontinuities

in the integral which can be found from the Plemelj formulae

given in Muskhelishvili.(z;)’_(22)

"Let us rewrite I(s) in‘the form
I(s) =i I,(s) + % InJ(s) 18 .52)
where

tdt (3.53)

I.(s) = -¥E(s) |
1 il +, 2 2
VE@) (t°=s7)
Having found f(s) we can write
% (s) = £(s) - £(-s) | (3.54).
Z/E(s)
Y(s) = £(s) + £(-5) - (3.55)
2

The sign of £(s) in (3.47) can be shown to be negative either from the

behavior .of the functional relationship near s=0, or from the
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behavior of G12(S) as & ~ =,

The solutions 2(s) and ¥(s) are, then, on the imaginary

axis, s = ik

2(ik) = sy @) (k2+z§) sin I, (ik) (3.56a)
%
(xS -14612(1( +z 1)]
Y(ik) = -0 2@') (k'2+z‘:)'15 cos I,(ik) (3.56b)
where
1,0 = (8 P4y ]® |7 tdt (3.56c)
[t +4°'12(t2 2]%(1: +%)

3-4. Thermodynamic properties in three dimensions

Equation of State:

Two representations for the pressure are taken in the same
way as in one dimension; from the viriai theorem and compressibility
relation, and their low-density expansion are found.

The virial pressure can be written in a parametric form from

eqs. (2.51) and (3.56)

BpV =p +4 ™3 pp. g @ - (3.57)
3 12 12

On the other hand glzcl) is determined as follows:
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*
F o
$ 12:‘ = - J sinkr 9., (r) dr
(ik) ’[ s=ik g

2s
a .
VP 192 ‘4“1 Dsmkr Clz(r)dx]

> k

2

where Elz(k) is the Fourier Transform of ClZ(r)’ and

C1,(0) = [ ¢ p(®) ar (3.59)

Also from (3.53), (3.54) and (3.56)

0) = iao = -} sin I,(0) (3.60a)
@ =7 _tdt  (from (3.48)) (3.60b)
1 VE(t)
I, =2 [ tdt | (3.60c)
1 z, - 9
VE(t) t

By changing the variable t to z

2 = [0 /1482 0)1%/3 .2 (3.61)

we get
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11(0) = o’ — I (3.62a)

Iy = dz (3.62b)
. e e - &
z
()
2 1 “
I, = 2(1/1-48} 2 dz ___* (3.62¢)
z —
o /23
%
= 2 2/3
z = 1-4§0 (3.624)
3
UL
22 = sin I (3.62e)
We finally obtain the contact value and the density in terms
of the parameter z,
e, @1 =g,@) =cos 1, . (3.63)
/5012/2
M= (1,/2)°
2 (3.64)

cos I1

Therefore, with (3.57) and (3.64)
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ppY =p + %_TTQB Plpz cos I1 (3.65a)
fzo 12/2
or
ppY(me’) = (ma'p) + 14 @ | (3.65b)
3

The compressibility relation and its pressure are written

B 2% = 1- P, 1 c,,(P)dt  (3.66a)
apl
- 1-26,m)% 8 (3.66b)

The pressures are drawn in the Fig. 8 and 9 with respect to the
total density and composition respectively.

Low density expansion of the pressure:

The low-density expansion for pressures is obtained by expanding
I1 and 12 in the parameter z;%, then eliminating z, in favor of T

using (3.64). Let us first expand Il and 12,

= -3n+3
L =i 2 s {-1® P Udes .08 a1y} - z z
e (4n+3) (4nt5) ... 4n+(2n+3) |

2232112 1 +3° 624 1 320246 1 +..1(3.67)
63 3 11-+13°-15 6 15-17-19-21 9
% 2, z_

'y

¥ B T |
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,=2 [1-(a) 1 +6224 1 -202:46 1 +..]
% 33 3 9°11:13 6 13°15°17°19 9
z z . z z
o 0 0
(3.68)
@©
=£ 2. (-1 4" {Lasc@anh 0 32

(4n+3) (4n+5) ... 14n (2n43) §

3
These expansions will converge for z > 16 «
27

Then with (3.62), (3.63) and (3.64) the coefficients are found for

the density expansion of E&z(k) at k = 0 and for 1012@’)1:

/7P, € ,0) =21 [1Dﬂ2+nﬂ‘*-n 10 +...] (3.69a)
3
I'Elz(cr)l =1-¢ i +c, T -... (3.69b)

This yields the following virial expansions for the pressure

v
BP =p_ 4P, + PP, {1 - 24285p:2L

2
12 12 P2

+ .08714 p.pP, - .03908 P

4 4 6,6
12 172

+ .01969 PSPB - .01145 Ploplo

— pizplz % el (3.70a)
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.c _ 2.2
Bp® = PitP, + PP, {1 - .16190 P1Ps

4 4 6.6
+ .04665 9192 - .,01721 9192

10,10

- .00386 Pl Pz

8.8
+ .90732 Plpz

+ .00216 piopgo = s b (3.70b)

The fact that the direct correlation function C12 in the P.Y.
approximation is a function only of T (and not P, and P, separately)

(27)

is a consequence of the fact that only certain types of Mayer

diagrams are summed in this approximation and that the Mayer function

for this system are

fii(r) - 0, 1= 1,2, flz(r) = f21(r) = (3.71)

Our results can be compared directly to the first few terms in the

cluster expansion for the P.Y. direct correlation function, we find

€0 =] c () ar=1 -pp, | £lp-fyg-fay -ty dFp--odE,

+ higher order terms of (P1P,)

h
=

- (34/315) PP, + ... (3.72)

which agrees with the results of our solution.
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Critical indices and the critical point:

Since the temperature does not play any role in hard sphere
systems and may be taken as being fixed, we look into the critical
L (23), . - A2
1nd1ces in terms of the density near the critical point. g
and {07 ¢ vanish together at the critical point, where g is

3x3 P
the Gibbs free energy per volume, X is the percentage of the
species-1,x = pl/p’ p = p2 + p2 and P is the pressure. The

symmetry of this model reduces these conditions to

FPel=o, (a3f) =0 forx=k% (3.73)
3 3
z 3
% /% ® ey

where £ is the Helmholtz free energy per volume and P, is the criti-

cal density.

The inverse susceptibility provides a critical index'vp defined

as
- 2 ¥
xHe) =(£) & ¢ T, for psp,  (3.76)
ax2 P
Differentiating the free enefgy further we find the hyper-
susceptibility index 6%

4 EP
£ )~ (P -P) (3.75)

x* Jo
The critical index for compressibility, dp, is obtained

from
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¥ S \%/
. - o
C (p_-P) P (3.76)

The scaling hypothesis for critical indices implies that

o 4+ Y =2, i
. p+€p (3.77)

The free energy like the pressure can be obtained from the
-correlation function in different ways. For the exact solution
both would give the same free energy. Quite generally, the free

energy can be expressed in terms of the pressure as

£ = [PLe/p®] ap

- + N J'n pAgn) dn. (3.78)
rp 1

where fl, the free energy for an ideal gas, is

fi = Z X, In Xy + 4np (3.79)

-~ A 3
and we have for P =P - Pl

i ﬂz‘ |012(<1')l (virial expression) (3.80a)

[}
(me’y B >

m

-J‘g $ 5 dNl (compressibility) (3.80b)
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wherell =2 1 039 v/(x(l-x)).
First we see from (3.65), (3.66) and (3.76) that

op
% 0 for p< P, (3.81)

for both pressures which yields

" , (3.82)

On the other hand, X-l is obtained by differentiating £ twice
with respect to the composition x by the relation

1 (%] 2 (1 n g
X =——2p-_—’46-+)--‘l n—zd")

Ox

Y

4 +4 Jo

i‘olﬂ - d [from the compressibility] (3.83a)

= 1N
4 -4 Mg @ + ) g @) dl) [from the virial
3 2 @ e theorem] (3.83b)

Now since QO and glz(ﬁ’) are well behaved and approach a constant

value as 1 ~ ﬂc we see that

Yp =1 (3.84)

Also X—l is drawn in Fig. 10.

The hyper-susceptibility is found to be

(]

‘(
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4 3

3 3
a_f = 32 - 12madp =L . aa—ﬁ-}for X=%  (3.85)
dx o1

and with the help of (3.80) and (3.78) we find that

3¢
=< =c¢c,c>0 atN=" (3.86a)
ax (o4
and
Ep =0 (3.86b)

Eqs. (3.82), (3.84) and (3.86b) show this Widom-Rowlinson model ex-

hibits a classical phase transition in the three dimensional Percus-

Yevick approximation(24). A detailed calculation using (3.83) leads

to the values of the critical density for both expressions of the free

/.
energy. They are ‘

Mo = 1.6736 (3.87)

for the compressibility relationship and

| = 1.7876 (3.87b)

(
(25) obtained

from the virial equation. Recently Rowlinson, et al
the critical density for the P.Y. compressibility approximation of

this system

M, = 1.674+ .003 (3.87¢)

by Pade approximant methods. . This is seen to agree with the result

(3.87a) obtained from the exact solution.
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o] and their Fourier Transforms

ij

Eqs. (3.56) and (3.58) provide the Fourier transforms of the

direct correlation function and radial distribution functions,

Ct = 28K
/p P
2 2"% ; ;
- -201261) [; s;n Il(lk)
, 57 27
/o0, Lk *4"12(“ t2);
= =2/ 1+Y sindk VvV z Y +4Y+4J dz —
155/ 3Y3 e L a2z izt
(3.88a)
where
2,2
Y = 4k°/1,. (3.88b)

The Fourier transforms of the correlation functions gij(r)-l 4

Hij(k)’ follow directly from Elz(k) via the original defining

equation (2,1), .
~ 1 (3.89a)
H,, (k) = = -1 /
i 1 -¢/P P50, (0)° /e Py
- _ T, (k) 3.89b
Hy,(k) = 12 ( )

~ 2
1 - ¢/PP,Cy,(K))

Hlj(k)’ Cij(k) and gij(r)-cij(r) are found with the help of

machine computation and drawn in Fig. 1I -and 12.
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It is seen from the graphs that the P.Y. gii(r) is larger

than 1 and glz(r) is less than 1 for 'almost all' values of r.

The exact radial distribution functions satisfy(lh) the inequali-

ties gii(r) 2 1 and glz(r) <1 for all r.



CHAPTER 4. P.Y, EQUATION FOR A MIXTURE

OF HARD SPHERES WITH R,, = R22 = R and

11

R>a >0

4-1, One dimensional solution

The P.Y. equation of this system with Rij

R+ for i # j

R..
1]
R for i = j

yields cii(Rii) directly from (2.25) in the form
o .(R..) =A.. -A! 'R
iivii ii

11

and.

; A, -sR Al -s .
3 - - - -
Fii(s) ii (L -e ) ;1 (L -e ) +-A11

s
S

Also for this system (2.23) holds, that is,

Al _
Lij_(S) = ;.l 0 .

The off-diagonal elements of E(s) in (2.19) yields

(4.1)

(4.2)

R -sR (4.3)

S

‘ *
Ly, (8) = Gy, (s) [A11+SF11(-S)]+G22(s)[A12+sF12(s)-sU12(s)] (4 .4a)

le(s) = Gll(s) [A21+SF21(-S)-SU;i(S>J+G12(S)[A22+SF22(-S)J (4.4Db)
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Combining the above with (2.17) yields

L21(s) -sU21(s) =A21+sG21(fgl_l_—Fll(s))+sG22[A_:g~ -Flz(s) —U:z]
-sclz(s) -sU21(s) (4 .5a)

. A Ry .
L12(s)'SU12("S)"A12+SG12[—§3 -Fzz(s)]ﬁcll[_i_; F,,(s) U21]

-s0 12(S) --SU]_2 (s) - (4.5b)
We introduce X(s)

x(s) =219 -0, (=) - U, (s) -Agl-u_o (4.6)
S S
¢ - 8

where

(=]
!

o = lim G.ncs) . fZ'_L) , %.7)

s~0 5

We then se(gG\?hat X(s) is entire and bounded in the right hand side
of the complex s-plane since X(s) is finite as Rfs * ®, In the left
hand side of s-plane, X(s) also remains finite for 0 <@ <R since
le(s) = -L21(s). Therefore we can say that X(s) is entire and
bounded everywhere in the complex s-plane and by the Liouville theorem
X(s) is constant everywhere, This constant is zero as can be seen by

looking at the value of X(s) at infinite R¥s.

(1

8)

¥

= | e



Hence, we obtain

AL .
21 + U (4.8a)

e 0

LZl(s) = sU21(-s) + SUIZ(S) +
and similarly

L ,(s) = sU,(-8) + sU,(s) + 212 - U (4.8b)

s

0

U0 is found from (2.17) after taking inverse Laplace transform to

be

u - 4,,)/2 | (4.9)

0o = g

012(5) can therefore be rewritten as

A .+A Al A
MO R 2: i 21 = Uyy (8) Uy (8) + Gyy () E% - Fll(s)]
S
A *
+ Gyp(s) (P12 - Fi,(s) =~ Up,(a)d . (4.10a)
S

where, if @ vanishes, this reduces to the additive diameter case
with equal diameters. In the case 0 <@ < R , there will be breaks
s ClZ(r) at r =& and at r = R - @, Eq. (4.10) can be rewritten

in the form
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A A * L
P = 2L - 6y e 5y @] - vyt - 2@
A
+ Gy (5) [_512_ - F,() - U, () (4.10b)

) -g (R
The last term in (4.10b) will contain terms of the form e s(R ).

It is therefore desirable to define a new function V(s) which has the

same behavior as»LlZ(s), that is, ei?s/s at large s;

Fi,(s) = el Ap, + e iy - [L1§(5) + u’;_z(s)] = Fy () (4.11)

Using (4.3), we get for I={(s) defined in (2.18d)
-sR
H () =B.(s) +V.(s) e B (4.12)
where
= J = Al - 1
ﬂi(s) Aii/s and Y, (s) Aii/s + (A, - ALR). (4.13)
Also from (4.5)

Rs

le(s) = -5 e V(s) +L12(S) (4.14a)

Hy (s) = =s "% V(s) = L ,(-5). (4.14b)
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Now if (2.19) is transformed to
T *
H(-s) H(s) = L (s) [sI +H (-s)] . (4.15)
then the diagonal elements in (4.15) yield

L, (s) Ly, (-s) = V(s) V(-s) + u_z_ (4.16)
s

where

w2 =ar

2
- ' -
ii (AiiR Aii) , (4.17)

the off-diagonal elements in (4.15) yield relations for V(s) and

Ly2(s)

le(-s) = {sYl(-s) V(s) - sYz(s) V('S)§/{Srﬁl(s)-32(s)} (4.18a)

or
V(=s) = {Yl(-s) le(s)+Y2(-S)L12(-S)}/5131(8)432(3)} (4.18b)

and two relations are identities. Also
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- Y(8)
= FI_-E; = bls-l—al (4.193)
Y, (s)
BB, ~ 2% (4.19b)
a, = Al /A -AS,) = P/ I-P,) (4.19¢)
a, = A}/l -AJ) =P o/ (Py=P 1) (4.194d)
by = (A} R A/ (B-A0,) = -1/2a(1-8)-{1-§) /2(p 1Po) (4.19e)
b, = (A22R22 22)/(A 13- 22)— 1/2a(1-§)+(1-§)/2(91-92) (4.19£)
§ = (PR
that is
V(s) = (a; + b s) L21(s) + (a, + b, 5) L ,(s) (4.20)

S S

On the other hand, SLlZ(S) is an analytic function and canr be

written in the form

sle(s) =l [zéél-- (s) ] (4.21)
s s



with two even and analytic functions, P(s) and 2(s), of s.
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Finally we obtain, from (4.16) with (4.20) and (4.21), the

functional relationship

¥2(s) - E(s) ¥(s) = A

with

¥(s) = AP(s) + B%(s)
E(s) = (s2-4u?) /a” (PP )
2 1
A= (bH)% =
1) T T

2
= . _ P, -a(1-§)
B = Z(alb2 aZbl) L2

a(1-§)(pz-pl)

(13)

The solution of (4.22) is obtained in the following form

. ¥(s) _'*_'\/A coshle »/sz—lm ]
8(s) = +v/A__ sinhla VARG

E(s)

(4.22)

(4.23a)

(4.23b)

(4.23c)

(4.23d)

(4.24a)

(4.24b)

Comparing these solutions with (4.8) and (4.21) we can determine
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that the signature of ¥(s) and 2(s) are both positive. The

compressibility of this system is found from the definition (2.8)

with (4.2)
A =p -p. +al(-p R)-p R (4.25)
11 - 1 2 2 1 )
2(1-8)
where a = A, +A ;. The value of ¥(s) yields using (4.13)
Jop. 8(0) = - .
20 VPP, 2(0) = (P,4P) Ay - P2 (4.26)

(4.25) and (4.26) give a and A_. in terms of I,

11
a=p+2 Vplpz sin 2 (4.27)
(1-§)°
A, =F1 % =0 1 + YP1Py sin 20 {0 s yRi| (4.28)
11 kT op 1 3 > 12
1 (1-§) 91(1-5)

The contact values of gij(r) and Cij(r) are seen from (2.23) and

(4.3)

gii(R) = -Cii(R) (4.29a)
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that is,
g, () = == + YPyPy sin 22 (4.29b)
‘/— .
8y, (R) = e gk L S (4.29¢)
1-§ 92(1-5),
and
_ 2 Osg
\/plpz glz(Rlz) = l.lf . sGlZ(s) 2 (4.30)
= 0 (R, )
12 12+
= l1lim sF 2(-5) eq:s
g @ 1L
= TRy )
= W
where P is related to 2(0), using (4.17) by
2
v 2
w2 = VPPo (1-sin” 2pa) (4.31)
1-5*
Defining
21 = q (4.323)

(4.31) can be rewritten

q =17 cos q - (4.32b)
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Here again we find the non-unique solution of the P.Y. solu-
tion, as we did in the Widom-Rowlinson model, for T > . no‘: 2.80.
We note however again that only one branch of (4.32b), that is, O
< 2 <TT/2, yields a continuous pressure.
We can also verify thermodynamic stability of this solution.

o
This requires that the matrix sz =_2L_ be positive. In fact,

S,
J

(P, det o) = LAy 000 fer, (0ard = Layyi000, fe)) (1)axd

- pipg [Jblz(r)drlz >0 (4.33)

The equation of state for two different ways of getting

thermodynamics are

v 2 2
P o4 +P1™2 o+ YP1P2 € sin () (4.34)
KT e i i
1-§ 1-§

+2(RH@) VPR, W

and gi from (4.28).
kT

As shown in this section, our system yields the same relation
for all thermodynamic quantities with those obtained by Lebowitz and

Zomick(g) regardless of the different distances of closest approach

between particles.
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4-2. Three dimensional solution
This system resembles very much the system considered by

Lebowitz and Zomick. The results from Chapter 2 for the three

dimensional case yield for this system

2 4
[e) = 1
ii(r) A, R+ B, K #* AlR (4.35)
24
and
_ i -sR 2 ¢ ol
F,(s) =A, +2B, +Al -e i_;_[AiiR-i-BiiR + 5L R
2 3 5 24
S S S

+1 [A +2B R+ A'.RO)+1 [28, 44! R%]
— 11 11 11 — 11 11

52 6 s3 2
+A' R +A' | (4.36)
ii i d
4 5
s s
The off-diagonal elements of (2.44) are
(4.37a)

2
Ly,(s) = G () [a,-s"F, (=) =505 046, (s) [yyms Fpp(-5)]

2

s)-sU:2]+621(s) [A11+s Fll(-s)] (4.37b)

Ly, (s) = Gy, (s) [Alz-stlz(-

—
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or in terms of O, . (s)
1]

Ly, (8)=G,, (s) [A21-SU;1(S)] % G12(s)Azz-l-szclz(s)-sAlz-szcn(s)Flz(s)

-2 G F, + s2U.
B CG1aFas 12 - (4.38a)

)

L21(s)=G22(s) [Alz-suié(s)] + GZl(s)A11+33021(s)-sA21-32G22(s)F21(s)

2 2 _*
-s G12F11 + s U21 (4.38b)

which make L21(s) and L12(s) related to bounded functions in such
a way that

L ,(s) + 57U, (-s)+s°U, () ————y-sh +s°U. (s)

12337 T 8 Uygl=d ZI>" 1270 Y12'\®

4-32021(s)+s°](_§) (o)  (4.39)

(for R > @)

““"where the super script (n) means the nth derivative with respect to

the argument r.

On the other hand from the first derivative of (2.28) we get

v 225 A 0P @ (4.40)
2s




Noting .- the boundedness of [Lij(s) - Aij/szj as s 0, the
Bij(s) 's (i#j) are bounded and entire(26) everywhere in the com-

Plex s-plane since L12(s)=L12(-s),etc. Hence using the Liouville

theorexgls.) we get

"2 2 |
le(s) + s U12(-s) + s U21(s) - A'l2 -on =2 Bl2 (4 .41a)
2

s

2 2
L21(s) + s U21(-s) + s Ulz(s) - A

l —-—
12 + on =2 B12 (4 .41b)
2
S
where Uy = (A21 - A12)/2
and
A A * 1
Tiple) = 212 - 6y () [2L - Uy ad- 5 ) - 3 Gy, (s)
s s . 2
S
2 * \
X [a),-s"F,p - vy +1),(5) (4.42)
s 53

In the first bracket in (4.42) there is a term with the asymptotic

form e-( ) and this prompts us to define a new-function V(s). hzving
. s '

the asymptotic form e~ as |R£s I“ ®, The second bracket doesn't

o o < .
contribute to the ij(r) (r < R12) or Fi'(s)

* -
Let us write Flz(s) in terms of V(s), U12(s) and L12(s). which

have the asymptotic behavior e~ aisZSI* =
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*

A snll
Fi,(s) = fz 4 e3S V(s) - U;z + legs) = F,, (s) (4 .43)

S S

Using the notation of (2.44) this can be transformed to

) %
H(-s) H(s) = L(-s) [s’L + u(s)] /s (4.44)
where
H (s) =B (s) +¥ (s) e} (4.45)
ii i i k
-Rs
e L :
le(s) =-3 V(s) - li(s) (4.46a)
-Rs
Hy (s) ==< V() - Loy {5 (4.46Db)
S
1
B, = - 2Bii - Aii (4.47a)
i _1i
s 3
S
2 ar g A'. 3
Y. =s [a, R+B, R +7 11" ]+ [A,, +2B,.R +ii R”J
1 11 251 — 11 11 ——
24 ' 6
(4.47b)
] 1 ]
oy (2B, +‘iR2] +%53 netiy
s 1 2 SZ 33

Very similarly to the one-dimensional case in the previous section,

we get the diagonal components of (4.44) to yield

L ,(s) Ly,(-s) = V(s) V(-s) - & Ba) (4.48)




where
_ 3
h(s) = - ivi(s) Y;(-s) +B.(s) [s” + Bi(s)J}
_ 2 3 3 4 1..2 6
— Al - + = 1 B 1 = 1
i1 A TFA AR TEB ALR t A B
+s2 {28, +[a R+B R2+L ar ’*1%}  (i=1,2)
ii ii ii 24 “ii 2
= h, +h. .
= 2 i1 S (4.49)

The off-diagonal components give two identical relations

V(-s) = - Cl(-s) le(-s) - Cz(-s) le(s) (4.50)
where

C (-8) = = Y,(-s) [B (-s) + Iaz(s)J’1 (4.51a)

Cy(-s) = Y,(-s) [B (-s) +B, ()] (4.51b)

Also from (4.41) 52 le(s) proves to be an analytic function
which can be decomposed into an odd and an even part. Using the

two even analytic function P(s) and ¥(s) we can write

Ly, (s) =T_ s¥(s) - B2 (4.52)

S
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where
= 3 =
M_=2ma (B - P,) (4.53)

and we have used the fact that the odd part of le(s) vanishes when

Pl = Pz or when @ = (0,

In fact 2(s) and P(s) are more explicitly

8(s) = Lp,(s)

2s _
. R+R
Ay A, ts Jg (-sinh sr)dr £+R = %;(r-y)clz(y)dy
21 11 -
= (from (4.41)) (4.54a)
P(s) = - & le(s)
Al 2 % 2 %
= 2312++2- 3 (s Up(s) +s U21(s)] (4.54b)

S

Both the diagonal and off-diagonal elements of (4.44) yield
a functional relationship, that is, from (4.48) and (4.50) using

(4.52) yields,

¥%(s) - 8%(s) E(s) = - h(s) a(s) (4.55)




where

¥(s)

a(s)

m

n

= a(s) P{s) + b(s) ¥(s)
53 B(s)

= - Y_(s) V_(-s) - B(s)
nZ

n

52(5)-51(5)
1]

n

bls4+b252+b3= §;_[v+(-s)v_(s)+v+(s)v_(-s)]

n

- R%(B.A L"BA) /n_-R4b3/8+R5 (BAJ-BAN/M_

= 2(B;A+-B+A_)/ﬂ_-b§+R3(B;AL-B+A:)/3n_

= 2(A:A+-A_A_;_)/'ﬂ_ = - 4Ai2§(0)

s6 {Y+(S)Y+(s)+[ﬁ2(s)-ﬁl(s)Jz}

8 6 4 2
Cls +Czs +C3s +C4s +C5

a(s) G(S)=s6 {32(8)-91(8) }2 E(S)/ﬂg

1]

= s6 - 4h(s)
cz_/’ﬂf = (A_R+B_R2 + A_-' R")Z/ﬂ%
24

. 2
-2+ -:2; AA'R + % A'BR* + %2 a? gHm?

- 02 =T a +(B,-h))

(4.56a)

(4 .56b)

(4.56¢)

(4.56d)

(4.56e)

(4.56f)

(4.56g)

(4.56h)

(4.561)

(4.563)

(4 .56k)

(4.561)

(4 .56m)
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C, =T_a, +2a} - tn, (4 .56n)
- _ a2 2

C, = - 16 B,B, = 4B_ - B, (4.560)

'04 = - 4(B+AL - BA') (4 .56p)

c,=a® - a? = —4arn (4.56q)

The formal solution to (4.55) can be obtain(g'd”in the same way
as was done in the case when R = 0. Calling the two zeros of h(s)

and a(s) + z4 and t z, respectively we have

3(s) = - °12(R) (s-2;) (s-z)) sin [1¢s)] , (4.57a)
Y v g
¥(s) = - 9,(R) (s-2;)(s-z,) cos [1¢s)] , (4.57b)
where
I(s) = -

-1n Jgsz
VE(s) (4.58)

and .
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I(s) = (s-2;) (s-2,) y B E/;__Z and z, era__;_ (4.59)
(s+2,) (s+2,) vy . :

Except for s in the intervals, z, > s> z; and -z; > s> -z, we

can write the above in the form

8(s) = - 0, (® [(s>-22) (s>-22) ] %sinl1, (s)] (4.60)
[s6-540'i2(32-zi)]
Z
I, =-1 [s6+40‘i2(s2-z§)3%‘['22 tdt )
k [t6+4°212(t2-zi)]%-(t2-!-k-)
(.61)

Just as in 3-3, our purpose is to get a parametric solution

in terms of zy. 2, can be determined by considering the asymptotic

behavior of the L(s) matrix together with BlZ' What we get immediately

is
2
= c 4.62
h) =2B;; +9;;(R;;) b2
1
_ (1)2 (2) s aV2_ 56 (2
h2 -Ail.i = cii +20ii crl 012 2 12 %12 (4.63)
. = = Y ar_p & 4.64
112 P(s) Al, oA lP3 ( )
s==8 ~ =,
2
' 4,65
C4/8 A12 ( )




7d

In addition, we can derive the following relationms,

B 2 2
A 1 = -
&hy A"/ = 1] - a, C, (4.66a)
-4 a?n M + 163 A'h, =a, C_ +a,C,-2b_b (4.66b)
i L -T2 72 7 %1 s T 92047037 ¥
nm
16 B A' h.+16 B> h, = - b2-2b.b_+4a.C, 4a.C (4 .66c)
- %. TP S M 2 71°37717677273 . '
T 2
_— n°
A% - 16 B, B° =8h. By ~ 5.Cu~dC (4.664)
- 1~ 172 1737922 .
% n?
4LA' B =b>=a, O, ~a @ .
- B =b a6 -0 (e=0he)
T T
48'2 = -a_ ¢ (4.66£)
- 1" :
n?
From these equations we can, in principle, solve for B_, B+,A_and A+

=

which will then determine zy uniquely. Because of the complexity of

(4.66) we have not:been able to obtain an explicit solution of these

equations but hope it will be solved explicitly later.
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APPENDIX 1

Graphs for Widom-Rowlinson Model
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Fig. 5.

-+ 2 3 4 S
One dimensional pressures for the Widom Rowlinson Model
vs. the total density P = Dl+02, where P1=92 and 2o=],

px is the pressure from the exact result by J. Lebowitz

and D. Zomick, P’ the virial pressure and P° the
ex,. - n c
compressibility pressure. P /p ™ 1 + ;and P7/p — 2

when P = ®, while they are in good agreement for P < 1,
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Flg. 6A . One dimensional Fourier transform of [ the radial
distribution function -1] between like particles

for the Widom-Rowlinson model.
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Fig. 6B. One dimensional Fourier transform ofl the radial distri-
bution function -1] between distinct particles for the

Widom-Rowlinson model.
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One dimensional Fourier transform of the direct
correlation function between distinct particles

for the Widom-Rowlinson model.
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Fig. 8.

Disconnected points

compositions for Widom-Rowlinson model.

correspond to the compressibility pressure and connected points

They are drawn for five values of

to the wvirial pressure.

0.4,

composition ratios,x, = Pi/P , that is, x = 0.5, Xy

= 0.05.

e

0.2, Xy = 0.1 and x
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Fig. 9. Three dimensional pressures vs. composition at fixed

densities for Widom-Rowlinson model. The virial and com-
v c .

pressibility pressures, p and p are shown with connected

and disconnected points respectively for four densities;

P, = 1.6725 p, =0.9031, P, = 0.5262 and P, = 0.1915 where

213 is set equal to unity.
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[1-0.25 X-l.lvs. composition at fixed demnsities in three
dimensional Widom Rowlinson model. The susceptibility, X ,
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APPENDIX 2

WIDOM-ROWLINSON MODEL

Widom and Rowlinson(lo) proposed the following model system
of a fluid; sometimes called the penetrable sphere model. Each
particle has a voluﬁe v and the potential energy.of a N particle
system is given ?y

'

U(El,...EN) = [wcil,...,EN) - Nvol €/v, (A.1)

Where W(;l,...,;N) is the union of the mathematical and penetrable

volumes of all the N particles in Euclidean space,and € is a positive

constant. U(El,...,;N) is always negative and is zero when none of
the volumes overlap. It has the lower bound U(;l”"’;N> > -(N-1)E.
This lower bound is proportional to N and therefore satisfies the
stability property necessary for the existence of thermodynamics.

The grand canonical partition function of this system is

exp(PV/kT) = F L(2/v ) exp 61" /n!

x Jg o J'v exp [-W(El,...,EN) 9/vonfl...d§N '(A.Z)

where © = €/kT.




On the other hand the two component Widom-Rowlinson model
discussed in this thesis has the interparticle potential vij(r)

given in eq. (1l.2)

o, = |® _(F=R, )
(x) = H

v.
i3 0 (>R (A.3)
@ (i # j)
R =
13 0 (i=31 (A.4)

where Rij is the distance of clégest approach between particles of
species i and j. Consider now the two component system consisting
of Nl particles of species 1 and N, particles of species 2 in a volume

V, For any fixed configuration ;1""’;N of the N2 particles of
2

species two, the free volume accessible to the N1 particles of

species one in the total volume V is

V - W(;lpnol’;

N 05.5)

2
where W is the volume excluded by the particles of species two.
Summing over all particles of species one in the grand canonical

partition function then yields, with proper boundary conditions,

- N
_ 2
exp (B . V/kT) = §2 [zzlvo] /N, !

x Jy e Jy exp i[v-W(El,...,ENZ)]zllvoidfl...dENz (4.6)
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where zy and z, are the dimensionless activities of the two
species normalized so as to be asymptotically equal to the dimen-
sionless densities P, = Vv _ N1/V and P, =v_ NZ/V’ v = % T as
in three dimensions.

The grand partition functions (A.2) and (A.6) for the onme
and two component systems provide the transcription rule from two to
one component systems. The pressure P(z,9) in the one component

system is related to the pressure Pmix (zl,zz) in the two component

system by the relation
] 8y = -8 ] ] e
¥ P(z,9) +vD Pmix (®,z exp 9) A.7)
Thermodynamic identities for the one component system P = z X

[3¢6p) /321y, us€v = [3(8p) /28] and p, =z, [3(p . )/3z 14

enable us to get further transcription rules
=p s (A.S)

P./z

/2 =1-P -v U/& (A4.9)
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