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I. Introduction 

1. Introduction 

For macroscopic syEtems) the collection of tho5e q~~~tities which 

are measurable in practice is very much smaller th<m the set of 

microscopic variables. It is an experimental f act that, when .tn 

equilibrium, t'!lacroscopi;:: sys terns admit. a thermodynamical de.:;crip-· 

tion. Their dynamical behavior no t far from equilibrium i s 

well approxirr~ted by the kinetic theory, hydrodynamics, etc . The 

objective of statistical mechanics is to explain these features of 

macroscopic systems on the basis of the underlying microscopic 

mechanics. In particular: to find the basis for the universality 

of the "simple" macroscopic description of sys.:ems which microscopi

cally are describ~d by widely varying interactions) to relate the 

few m'lc:coscopic variables and parameters (s01:r.e of t<lhich are 

"universal") to microscopic quantities, and to explain how the 

approach co equilibrium (in the '\>Jay described by the kinetic theory, 

for example) concurs ~~ith the microscopic (reversible) dynamics. 

The .success has beeu limited, so fa:?:, mainly to the treatfilE't~t of 

cqai.~.ibril1.a1 phenome. 01a. In the realm of the dynamical th~<ny one 

still looks for a general formalism wh:Lch would give physically 

::-elfwsnt inform'"'1tion on the basis of the microscopic dynamics and 

relate the t~o levels of description . 

In this chapter r.:e vlill bt:iefly lay down the frame~vo rk in ·which 

sc;.'l€- properties of (finite.) mech:1nical systems are d.;:::;cr.ibed by 
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ergodic theory . Doing this 'lo.'C are merely touching the tip of an 

iceberg and the in teres ted r eader is r~f •~rrcd to [ 34, 1~- , 26] (whe re 

additional ref~rences are given) for a ~iscus sion of the ergodi~ 

properties of physical systems and their ~aysical r elevance, and 

to [zo,s.~J for a more detailed discussion of the ergedi~ theoretical 

concepts. 

2 . Ensembles 

A useful framework £:.>r a microscopic description of a (finite) 

system is the Hamiltonian dynami~s on the system ·. ::: phas e space. 

This is obtained by a i.:ransformation irom the "Newtonian,. variables, 

positions and veloc~. '::ies , to positions and momerLt:a ~vhich are realized 

as functions on the systems "phase :::pace'',!', [13] . 

A point in f is given by th8 values of (q
1

, ••• ,qdN' p
1

, ••• ,pdN) 

where d is the dimension of the space in which a single particle is 

located, N is the number of particles, q. is a (cartesian) 
~ 

configurational coordinate of a particle and p. its canonically 
l . 

conjugate momentum. Thus f may be identifi2d with a subset of 

RZdN, inheriting a differential structure and a measure 

O'-i l • •• dqdN dp 1 ••• dp dN \vhich in thit> c untext is called the Liouville 

measure . 

The evolution in ti~e of a classical systen is described by a 

11canonical" point mapping il~ r, i.(!. one induced by equ;:n::0n::: 0 f. th<; 

form: 



d q. 
dt ~ 

c! 
d t 

where H = H(21 ·£) is the Hamiltonian f unction. 

3 

The fundamenta l nature. for statisti~al mechanics, of t his des-

cri.ption follows f r om the fact t hat the Liouvi lle r;.ea:;m:-e i s i.r.vari -

ant under t he canonical ma ppi ngs (Li<Duvill ·~ 's theorem) , in pa r t icul a r 

under the t ime evo!~tion induced by any inte racti on. 

This fact i s sometimes me ntioned in a heuristic ju.sti f i cat: i rJn 

of the m~thod of "ensembles" which was introduced by Gibbs ir. 

equilibrium statistical mechanics. An ensenbl e i s the collec t i on 

of independent simi l ar s ys tems which are subj ect to certain 

macroscopic constra ints , equipped t-lith a probabi. lity measure which 

gives the distribution of the ir microscopic quanti t i<!s . I t is 

s ometimes a r gued (very heuris tically) [42 ] t ha t , due t o t he 

propt!rty expres sed i.n Liouville ' s theorem, t hE: s ize of ma croscopic 

23 systems (which contain t!le order of 10 pa rt ic les ) and the. na ture 

of interactions (which are given by piecewis e smooth funct ions on 

the phase space) i t is the Liouvill e me<!. sur.e on the sys t e.'n ' 3 

phase space vlhich , '1-:hcn pr operly n~rmalized , g:.·;es the ~xpe-::-imental 

' 



* probability distribution of a:1 equilib:::ium en!(·cmble Further, 

it is a rgued that, for ensembles whic~ are defined .by con-

straints which experimentally single out a "pure phase" 1 the 

distribution of the intensive variables with respect to the 

4 

Liouville meas~re is sharply picked around a single ·11alue .[28]. Thus, 

iu order to comp'.lte the v;:tlucs of macroscopic cbsP;:vablcs .for ·a 

given system, one may use the ensemble average on a proper ensemble. 

Such an approach is natural in a theory whic~l deal3 with statistical 

predictions; howeve r the boldness of Gibbs was to apply it to the 

description of any given system. 

The method of ensembles, together with the prope~ limit for large 

system~, has been successfully used in equilibrium statistical 

mechanics, The limit which is used there i s the "thermodynamic 

limit" in which the "additive" quantities (volume, number of particles 

and energy) increase to infinity while their densities are kept 

(approximately) constant. Sharp results a~e, of course, obtained 

only in the limit, for "t-:hich formal techniques a~e :1ow being developed . 

Since the problems cf equilibrium and nonequili brium statistical 

*The ";nio.::rocanonical ensemble",whic!l is r eprese:-tted by :::ur:face in r 
of constant energy , should be thought of as a limit of ensembles f or 
which the energy is const rained to a .Emall interval. For such an 
ensemble one should take the cvrface mea sure which is induced, in 
the aoc.ve limi t, by the Liouville measure. 

\ 
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mech<mics are net e!l.c:.r e l y i.ndependent , ont:: cmy ·~,o?c that a formal 

theory of infinH~ systems, which uses the. e a se:r.ble method, may pro ·-

vide a us~ful tool for the study of noneq:.lilibr ium properties as 

well. Among the recent investiga t ~ons ~ l ong this line o~e finds 

the study of the c* al3e bras of observa bles [ 9] end the Btudy of 

ergodic properties of i~finite s ys t ems [17]. f or ca~ tain resultb, 

other directions, wb.ich involve di'::fcrent macros cop~c limits, we r e 

followed (see ~anford [29]). 

3. Ergodici ty 

The dcsc~iption of a ncchanical system in terms of a measure 

space with a measure preserving transform.?. tion, and in pa::ticular 

the attem?t to obtain another, purely dynami cal , explanat~on ~or 

the success of the method of ensemble s, stimula ted the develop-

ment of the ergod i: theory. This has b~nefitte~ both mathP.~~tics 

and physics. The concepts and res~lts obtained are of g reat 

inte rest to t~e study of dynamical properties of pi1ys i cal sys tems . 

In the context of abstract err.:od ic t!le ory, a dynamical 

synterns i s a triple (X, ~. T) of a space X (equipp~d with a C-algeb ra 

which ~1e r-ti 11 l.!Sually Olllit in our notation), a p1·ob.::tbili ty mea sur e 

;;. anJ. c. mt:a~ ure preserv ing poi nt tra nsforma tion T (>.Thich in our 

applications i.s inver t ible) or a mea .:wre pre:; e r \·in;; tlm·1, ;.;hich is a 

measura. b le g ro'.Jf, o f. l:r.ansforma t ir..ns ir I r: R. 
t t ..... -. 

m~asurcs ~v) o~ X by: 



(Tf) (x) == f(Tx) 

(T')) (dx) = 'J (T-\dx)) 

These s~tisfy: 

j"(T£) (x)v(dx) ,;, j'f(x) (TV) (dx) 

Many of the properties of a flovl may. be obtained by studying t:he 

discrete transforrua~ion T T1 . 

Probably th0. first result within the realm of the ergodic 

theory is Poincar&'s recurrence theorem: 

In a dynamical system (X, 1-L, 'l' ) almost any point (me.a~1:i:ng t.1l11t 

the set of the exceptional points has zero measure) of a ny measur

able set A, IJ.(A) > 0, will, under the action of · the iterates of T~ 

return to A infini t e!.y often. 

This, initi.ally surptisin~, r:;:sult seem<J i:.o indicate tha.t it is 

hopeless to e:{plain ~be approach to equi lib rium ~;i thi.t the frame·· 

tvork of the Y.amilto,.1iun dynamics of fi::~ ~ te c'!.ose~ cy~toms . Of 

6 

course, the flcnvs i. ;.-, t his arg umen t arE: t h;..<i: the cim;:; of such a 

recur1·ence is extn!mely l arge and that its dependence ~.m th:- pr12c:.se 

mic-rosc.opic description i s very un r> t able . Tln.~a > on thi.s lir.i2 scdle 

the accumulated perturbations frc-m the er..•Jironment make the micro ·

sccpic dencript:i.on, in tcrrns of a HamiJ. ton iar. l:::..ou~ un::e ali sti.c . 
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Another, more practical, way out o£ this pc.:.tadox i s to assume that 

ma.c-roseop:i.c states are described by prouabili ty measures ('1dynru.1ical 

ensembles") and to s tudy their time e·.;o lution. We will s ay 

no more about the justification of this assumption and ~ake it a s 

the formal definition of a st~tc. 

Another signif i car.t res~lt is von Ne umann' s ~odic theorem : 

If (X, !J· , T) is a dynamical system and f, g E L
2

(1J.) then the 

follo~ing limit exis ~s: 

(for a flotot: 

t-1 j' i 
lim 1/t E f.T g 
t ...... 00 i=O 

r t ;· j' J du J f.T g d!J. = f. Pg d~ ) 
0 u 

t-rher.e P is the orthogona l proj ection ( in L
2

(1J. )) on the subsp.ace 

of functions which are invariant under T. 

It i.s not difficult to see that the subspace of invariant 

functions includes only the constant (a.e.) functions i~ and 

only if X has no nontrivial (i.e. not of IJ. measure 0 or l) 

measurable inva riant subsets. Such systems are called ~die 

and for th~m t~~ :~ bc'ie lirni t t flkes the form 



lim 1/t 
t-1 
l: 

t ... co i==O 
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* 

There is a correspondence between su~h properties of a station-

ary state and t he dynamical properties of a non equilibrium state 

which is ne t s ingular with respect to it. In particular, if the 

initidl state is given by an absolutely continuous measure, ~', 

with respect to an ergodic state ~; i.e. one of the fo=m 

~'(dY) = f(Y) ~(dY), f E L1
(1J.) J~cl~ = 1, 

* A stronger e r g od i c r.heo r e:n , due to ~irkhof£. [6] s':ates that in a . . 

dynamical system,(X) ~ ;rr:) ,for every f E Ll(ii. ) the time average 
exists for almost every point (a.e.) x E X: 

lim 1/t f(T x) dt = ~
t 

........ 00 t 
E(f(x) 1/ ) (a .e) 

nere E(fl)t) is the conditional expectation (function) on the 
~-algebra of inva riant sets. 

This result is often mentioned as another, dynamical, justifica
tion of the use 0£ equilibrium ensembles~ since if one accepts 
the idea that phys ical measurements have long duration \~ith re 
spect to the "microscopic time scale '' and in eife~t are re.sults 
oi ave raging in time then, for e rgodic systems, the result o f an 
observation take.n "at" .<ilmost any point e f t he ensemble i~ the 
'ensemble average . However, while for some phys ica 1 sys t ew.s the 
ergodi~:!.ty (of the rnicrocanonical en sembl e) may be shown cr 
reasonably pos t ulated, t he othe1: assumption is t oo strong at its 
face value. Worse: t he acceptance of such an as sU!:Ipt io~ on 
the na t -ure o£ pnysica l meas:.1rement \-TOuld (for finite sys t e rns) nde 
out the possibility of obser.ling any dynamics, since it impl:i.es 
that E-~11 the ~;uantities which are measurable in practice are given 
by in.vc. ;~iant .(u;:1.c ·:: ions on th~ phase space. 
Nevertheless, ergodicity does imply, even without further dy~aroical 
justif ication , tl·,.:\ uniqueness of an equilibrium ensemble (assuming 
that those g i.ve n by singular mea .sures, with r e spect t o the n,.:_c'J':c• 
canoni cal cnseGo l~, aru uarealiztic). 
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then, the time average of any meas~.;rement wil l e:ds t c. r-.d be equal 

to the value '"hl.ch corresponds to 1-1. 

For H<:mi.ltonian systems the e nergy (i.e. th.; Hamiltonian f:.mc-

tion) is always a constant of the motion. I:!: there are no other 

me~,;v.rable invariants, except f o r functions of the energy, then . 

almost all the microcanonical ensembles are ergodic with respect 

to the time evolution. For such systems the equilibrium measures 

on the micrccanonical ensembles are unique (ass11ming that tho~e 

given by measures \vhich are singula r, with respe<:t to the above 

limit of the Liouville measure, are unrealistic). This follows 

from the fact that an e rgodic system does not aJmi.t another 

in.vc:.riant probability measure ·which is absolutely continuous with · 

respect to the one given. 

4 • !:!ixing_ 

An ergodic system may have a stronger dynamical property: 

mixing. This is defined by the existence of the limit: 

* 

? 
for any f, g E L-(IJ.). 

* In genera~, if 5uch a limit exists then, by the e r godic theorem, 
it i s gh·en b:,..· j f (Pg)d. The existe~tce of s ·..re:h a limit~Vf,g EL2 (1-"), 
l€, by icself, an interesting ~roparty (Pross er mixing). 



10 

Nixing impl~es ergodicity. Its meaning is that a ·.~y two given 

measurements, if performed successivly witt a large tice delay, 

become independent. 

If the equilibrium state (~) of a system is mixing, then if 

one"prepares" the system irt a non stationary state (1-L'), ~Y'hich is 

not singular with respect to the dynamica l sy~tem 

uill approach equilibrium \olith respect to any given finite! !se t 

of measurements (i.e. "weak ly"): 

Jf d(T ~ ') 
-t 

= Jf d~ 

(the state of the sy stem after the timet is given by T_t~'). This, 

macroscopic, approach to equilibrium is eqnsis tent with r eversible 

dynamics and formally occurs backward in time as well {although the 

corresponding physical experiment is almost. unfeasible). 

This coexistence of different features of the rr~croscopic and 

microscopic behavior is related to the instability of the microscopic 

dynamics. Indeed , if a system is mixing then sv i !:l the "product'' 

of two replicas of it, \vt~ich implies that a pair of points chosen at 

random from any small set (of positive me.ssare) wtll , afte.:- sufficiently 

large titc.e, be independently distributed over the phase space. 

Ergodicity and mixing mE.y oe formulate<i as spectrul pro"flerties 

of lhe ur.itar~• transfonnation. i n L
2

(!J.) which is induc ed by 1'. Furth::! r 

propert-ies of a dynamical sys t cr,! a te ob!:ained by s ct.oyi ng its uynamics 

through "coarse gr-'lined" r.~easure1nc-.1ts. 
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5. Process representationuf dynamics 

A physical measurement is always performed Hic:h an appara t~ts of 

some finlte Lesolution. An idealized description, which maintains 

this basic feature, is a discrete valued measurement to which there 

corresponds an ess~ntially finite part:.tion of the phas e space . 

Such an element of structure was introduced by Kolmogorov [23] to the 

study of ergodic properties of abstract dynamical systems . 

A partition Q of X is a collec tion lQ .I of disjoint sets which 
1 

covers X. The partitions of a given set are partially ordered by 

the relation Q < P; P "finer'' t:han Q or, equival<!n.tly, Q coe~.rser 

than P. For a collection of partitions lQ(n) ! one defines the 

lattice operat~cns : 

~ Q(n) - the coarsest partition which is finer than ~ Vn, 

(its elements are intersections of sets in Q(n)). 

~ Q(n) - t~e finest partition which is coar.ser than all the Q(n)' 

The measure spaces which we will conside~ will be Lebesgue spaces 

[19 J. For these, the correspondence between sub-0-algebras and 

partitio:1.s exte.nds to include even those whose typical elements 

(fibe·cs) have zero measura. The correspond i ng rueasurabl~ partitions 

are discuc sNt Lt [40 J, let us only remark here that in such sys terns 
CD 

the suh-0" -!llgebra r,;hich corresponds to '!... CD Q ( ) is the full 
n-- o. 

l I O-algebra if t he p~rtitions tQ, ) l ~epa~ate the points of e full 
•. n 

measure subset of X. 
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The entropy of a countable pu.rtitlon (:;ea [ :+ j il'\d [4o]) is de-

fiiled as 

H(Q) - -E ~(Q.) t n ~(Q.) 
i ~ ~ 

and its conditional entropy, given the partit ion P , is defined by 

H(Q!IP) = H(QYP) - H(F) . 

This turns out t o be equal to the average eiltropy of the partitions 

induced by Q on the e l ements of P (when properly normalized): 

with ~(Q. IP .) = ~(P.AQ. )/~(Q.) . 
1 J 2 J J 

The following pr operties of the ent ropy justify its ir.terpreta tion 

as the measure of "information" contained in a partition (or of the 

average amour.t of "uncertainty" removable by the corresponding t:leasure -

ment): 

1) H(QYP) :: H(P) + H(Q) (T,Jhich i mplies l·l (Q!lP) ::_ H(Q)) wi.th ec;.ual:.:. ty 

holding if and only if P 3nd Q are (pain:isc) independent. 

2) H(QIIP) :: H(RI!P) if Q ::: R 

3) H(Q!iP) > H(QI!R) if P ::_ R 

4) H{PVQ:iR) :: H(Pi!R) + H(Qijp\ 'R) 
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One cenotes (unfortuna t c ly) by TtQ th~ pa r:ition whose e l ements 

are \TtQi i; it corresp.)l~d s to the ":ne.asvre1Ilent of Q" perfonned at thE: 

time -t. 

The s equence of results of a rneasu~ement repeated at int~gral 

times def~nes a pro~, (Q,T), conveniently desc r ibed by means of 

the partition whi ..:.h corresponds to the measurement. The process 

distribution is given by a time invariant measure, determined by 

the dynamical system. In particular, such a process is itself a 

dynamic.al system, where the time evolution is giv~m by a shift of 

the sequence. 

~Je say that Q is a generating partition if to each sequence there 

corresponds at most a single poi.nt in X (possibly, after excluding 

a set of zero measure), equivalently: if~~ Tn Q corresponds to n--

the full cr-algebra. If Q is a generating partition for (X , ~, T) 

then this is isormorphic to the process (Q,T) when it is viewed as 

a dynamical system. 

The entropy of t he process (~!1 is defined as 

(the existence of the limit follm•s from the general properties of 

entropy), a ltd is equal to: 
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(for invertible transformations the same results are obtained after 

-1 
replacing T by .T ). 

Thus H(Q, T) me·asm:es bo th the rate i n which information is gene::-·· 

ated by the process and the process instability. In particular, 
n 

H(Q,T) = 0 iff Q < ~ (~=-~ T~), in which case the proces s is deter-

ministic, i.e. the knowledge of all the, arbitrarily r emote, past 

results of the particular measurement is sufficient to de t ermine all 

the future outcomes. 

TILe en tropy of T is defined as 

H(T) =sup H(Q,T). 
Q 

An interesting r esult is the Ko-lmogorov-Sinai t heorem: 

If Q is a generating partition for (X, ~ ' T) then 

H(Q~T) = H(T). 

6. K-systems 

A. particularly int eresting prope rty is that of a F-system (after 

Ko lmogor.ov) . Its useiulness stems f r om the fac t that it may be 

defined by different cocdi t ions which , as it turns ou t [51], a re 
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equivalent. Among these: 

1) A K-syste Gl ha~ a complete)v positive e~...z. i.e. H(Q,T) > 0 

for any, nontri vial, partition of X whose entrvry i s finite. 

2) tbe ~of any partiti0r. of finite enttc1py, i.e. 

oo n K... 
~=-a:~ (~=-a:~ T ~),is the t~ivia l partition (~~d 0). 

3) '!'here t!Xists a generating partition , for (X, !.~o, T), tJhose 

tail is trivial. 

In fact, one may show [5l J , that any dynamical system possesses 

a T-invariant sub-0-algebre. ( i.Eo. a "factor") which is the tail 

a-algebra for each generaci ng partition of finite entropy (f.e.), 

and which includes the t ail O-al~ebra of any other (f.e.) partition. 

For K sys!:ems this factor (which may be s tudi2cl by means of a single 

generating partitior!) i.s triviaL 

K systems are also highly mixing: 

1J. (A, 1\ a A, 1\ •• • A a A ) 
t 1 tn n . as aan lt .-t.l ... 00 

~ J 

One mey obse rve that certain pr ocess propert i es, like the pt·ocess 

entropy and t he tail 0-algebra: are shared by all the generating 

partitions, a nd c?.r.e therefore of great i n t e rest as properties of the 

dynamical system. 
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7. Bernoulli systems 

The ''stronges t" property of a dy::-t.amica .i. syate::n is the existence 

of a gen~ratiag partition v:hose i.t.:!rates under T are jointly ia

dcpendent (a ~ernoulli ,ec;;rt:itiory . S.,_;ch a systet.1 i s c<lll.:c a 

· Bernoulli-::;ys t cms and is isoooq:r.ic to the dynal'ltical system ob

tained by che shif t on a pcoces$ of indep~ndc:nt ranclum variaoles 

(as the one ~.,hich dE:scribes the sequence of outcomes of a roulette 

wheel). 

A weaker property oi a partition is the "t·wak -Ber.noulli" property 

whose zeneral meaning is that the full future proceSS becomes, ~fter 

certain ':ime c!elay , in:1ependent of the ft.:U past ( see s~c.(III • .5)). 

The existence o£ a generating ~artition which is weakly Bernoulli 

implies that the system is a Bernoulli system. 

Although only exceptional partitions of a Bernoul!i system are 

Bernoulli, there are ether properties which are shared by all tte 

processer. obtained from such a system. One s~ch property is that the 

process muy be approximated by a "fini.te cod5.ng" of a Bernoulli pro

cess~ in the sense that the two differ only very infrequently (another, 

is the very-weak Bernoulli property which will not be discus::;e0. he.re, 

[46,53]). (X,~,~t) is a Bernoulli flow if (X,~,T1 ) is a Bernoulli 

system; iThich~ as it t u:rns out, implies thC!t \" ': E !R (X,!-L,1',.) i s a 

Bernoulli s~stem. 
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The study of Bernoulli systems has advanced only recently and 

owes many of its concepts and ~esults, including those mentioned 

above, to D. Orns tein. In particular, it was shown by him that G\ 

Bernoulli system (discrete or a flow) is completely charac terized 

(i.e. up to an isomorphism) by its ertrop~r, 

These results and a \vealth of other information about Be rnoulli 

s ystems may be foUl-.~ ia [39], [48] aml [51]. 



II. ldeal Gas in the Thermodynawic Limit 

1. Introduction 

In this work we study ergoc!ic properties of certain infinite 

systems of interacting particles. As an illustrative example we 

discuss first the i deal gas in the therm.odyna.mic U.mit r.vhos~ 

* ergodic properties are lvt::l:i. kno\om • This will serve:: both as an 

example of a framework in which infinite systems are studied and 

as a demonstration of the rlifference in origin and in significance 

of ergQdic properties between finite and infinite systems. Some of 

the tools us~d here may be applied to other systems of non interacting 

particles as "Yell [ 16]. 

A more general discussion of equilibrium states of infinite 

systems and the ex~s tence of a time evolution which satisfies require-

ments which correspond to the system being a limit of finite classi-

cal systems 1113.y be found in [29] (see also [7,8,43 ,24,25 ~nd 27]). 

This general fonnalism is much simplified when one deals with systems 

whose particles inte~act with simpler potentials like those which 

wil.l be considered in the coming chapters. 

TI1e system ·;;...hicb we consider here is an idealized model cf the 

dilute ga.s. Its elementary constituente are ass umed to be non inter-

acting identical point particles which move freely on a line. The 

dimensionality of the s?ace \.Jill not play any role in this disc\:'.ssion. 

Tht: formalism which will be described is suitable for a probabilistic 

description of l oc i:li. observables for an infinite sy~tem in which th::! 

den~i!Y _9.f_ P.?J_l~ _ts)~~-!1. fi.n i t~-- --------:--:------:--:--:---
*Ergodi c propc ~ties oi the infini t e ideal gas we r e fi r s t stud ied by 

Si nai ('tfho p!'c-vr:.d i t to be a K-sys tem) .. Her e we follov1 a simpit' r 
representation i n troduced by O.E.Lanfcrd III. 
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A poi~.1t in t he phase space o:: a class~_ca l syste::n corresponds to 

an assign.'Uent of valu2s to aU i': s f" i1.-:>:t ~c.?. 1 C<..H)rdi natr.s ·. We •.vilLno t 

exploit fully th€' ::.anonica l structu rt: of th<: pha .:::e .> p::!ce ar,d it will 

be convenient to usc positions and v~lccity \ r-ather than nomentum) 

as the degrees of f~ee~om of a si~gl~ pa=ticl~. 

I.et f = ~ ®1R denote the phase space of a particle on 

the line. h h f h - d 1 . .., .• ~- rz T e p ase space o t e inrinite i ea gas LS A - ( ) sym. 

A point x .E X 1 may be thought of as an equivalence class, under 

permutations, of sequences 

x. E r Vi E z 
L 

or as an unordered countable c ollection of points in the one particle 

phase space . 

Let us denote by 

a r - r ' at((x,v)) = (x + tv, v) 
t 

the time evolution o: a free particle on the line. Since the i dea l 

gas consists of non interac t i ng particles, the time evolution, 

S t, on X 1 is i nduced by at in the fo llo.-..ring ~•ay 

\I lx.l. E X 1 

L L 

which defines a flmV' S : X 1 
..... X'. 

t 

S dx .l) 
t L 

= \a t(x.) l . 
.t l. 
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Since we are interested in the infinite i deal gas as an approxi-

mation to a la~ge volume gas system it is natural tc confine our. diG-

cussion to the subset X c X' of locally ~inite configurations (i.e. 

X = tx E X I l v bounded 1\ c f': X n 1\ is a finite set h. 

Although X is not invaria!'lt unde:t: st , it contains an in-

variar.t subset which does have the full measure with. respect to 

the states which we will be considering. 

Let F be the set of Borel measurable symmetrical functions n 
rn CD 

on with spacially bounded support, and let F = \tl F n::O n 

Denote by E: F _. RX the linear mapping defined by 

(f.£ ) dx . b = 
n ~ 

f EF,lx.lfx 
Il 11 l. 

Let A c i be a Borel sat. We will denote by NA: X- N 

the "occupational number" function 

(or, extending the definition of i:, NA = 

is the characteristic function of A). 

EX 
A where XA E F1 

The functions Lf, f E F may represent local observables 

\~hose exp~ctation values will be given by a "state" . 

with the weak topology generated by functions of the 

form L:g where g is a continocs fun~ tion vn r of spa cia lly 

bov.nned support. i-/ith res pect tc t hi ::; top·.:>1.ogy: 
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i) X 
..... 

X i.ff X 
..... 

X 0':1 any bocaded domain whose 
n n 

bo:.1ndary does not contail'l a point i!l X 

2) The collection of subsets of X of 

\x E xl NA(x): k}, A c f open set 

and lx E xl N
8

(x) ~ i l , B c f closed 

forms a basis of open sets. 

o::he 

3) For any gn , continuous function on 

support, I: gn is t.~ontinuous • 

f onn: 

of hounded 

4) NA (x) , fo-r a bounded domain A C f is continuous at 

X EX which have no point on the boundary of A 

Denote by B(X) the con·esponding, quasi local, Borel 

cr -algebra. Similarly, for a boi.mded domain A c f , iet BA (X) 

be the local cr- a l geLra generated by func~ions in F with support 

i.n A 

A state is a mensure on B(X). ~otice that the f unctions 

I:£, f E F, are B(X) measurable , their integra l being 

the expectation value of t he corresponding observables i n the 

"ensemble" described by the state. 

In particular we l.rill be intereste d in states t••hic.h are in-

variant under the time evolution St Due to the l.ac.k of inte r-

actions, the ideal gas admits inv~ ri3nt states which have the dis-

joint inde pende nce property, meaning that f or di sjoint A, 3 C f 

and BB (X) are i nder-ende!"tt. 



Examples of such stat~s are: 

1) Let 'Y be a locally finite Bo r e l measure on r invariant 

under et 
t 

We w·ill denote by the s tate un.de r which : 

a) BA (X) and :SBGO .'lre indepe ndent f or a::1y di;:;joint Borel 

t A B c r se s 1 

e 
-Y(A) 

These two conditions art: known to b f! c or.sis teat ( b) is the 

Poisson dis tribution) and they clearly define an s .. i n•mria.nt 

state. We wi 11 refer to the s to. te 1-l·y 

~~ctio~ on (f,y). 

.. 
as the Pois son con-

Fox· one dimensional systems 'Y has to be of the form 

'Y(dqdv) = P dq V(dv) + P
0

(dq) 6(dv) 
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wheore V ( •) is a probability distribution, o ( •) assig ns probability 

1 to lv=Ol and P 
0 

is a locally finite measure on R 

be invariant unde r space translations only if P ( dq ) = C dq 
0 

IJ. will 
y 

for some C :::_ 0 , and the n the second t erm i.n the last eq ua tion can 

be absorbed i n the first one. Such s tate s cor:::espond to particles 

being uinde pe ndenl:ly distributed" on the line, with unifo rm ( t:xpec'.:eu) 

density P and identical velocity distribution ' ' (.) . 

This Gategory includes the Gibos equi!ibriam states 1-.1. 

P ,~ 

parametrized by the de nsity P c..nd the i nve r se t em?era t ure 13 , :fo1· 

which 
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\J(dv) 
1. Q 2 ,., 

- (i'm/2 rl) '2 e - .... mv '"- Jv • 

be a collection of ·:X invariant. 
t 

measu:Cel:i on r s . t. 

co 

k ~ 0 k ·\ cCo,1J ® R) <oo 

One can construct an S t invariant state by J.ett.i..ng clusters of k 

id~ntically placed particles, k = 1,2, ••• , ha.v(~ the Po is son 

distribution ~Jhich corresponds to Yk Such a state will have 

the disjoint indepeudence property. 

In fact, any invariant state en B(X) whid& has the disjoint 

indepc~1dence pro pe;:ty may be obtained by the above construction. 

4. Ergd ic Pr~~rties 

Let us denote c = lCq:v) E f\ v = ol and dehne the 

functio~ c((q,v) = -q/v 0~ r\ c . t is th~ time at 

which a particle at (q,v) will reach the origin under the t i me 

evolution 

such that 

C! 
·... 

of I"\ G 

fq v) E A iff k < t((q,v/) < k + 1 
' ' k 
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r = c U(U A J (a union of disjoint Borel se ts)' therefore X i s 
k =-c;:;l'·k 

isomorphic to the product 

where 1s the space o~ locally finitP conf i gurations in A. 

If 1J. ha::~ the ·..iisjoint inciependcnce property \BA (X) I 
.• k 

are jointly independent and (X,B(X), ~) is isomorphic ~ as a 

measure: space, to the product 
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(X, B (X), ~) 
co 

~(X, ~(X),~)® ® (XA , BA (X),~) 
c c k~-Q k k 

Further, C is invari a :1 t unde~ at and Ci 
1 

(Ak) -= Ak_
1 

(see fig. 1. ) 

therefore the mapping s 
t 

is the identity on the. factor 

acts on 

(X , B (X),~) 
c c 

as an is0morphism or.to 

(XA , BA (X),~). 
k-1 k-1 

We have just shown that the dynamical system (X, S , ~) factori zes 
t 

to a f actor,on which S 
t 

is the identity,and a Be~noulli shif t (of 

infinite entropy). The first factor is trivial whenever~ assigns 

zero measure to configurations which have a particle of zero velocity. 

Therefore: 

Theorem is Bernoulli iff 

Y<\v=ob = o 

If •t d v=O ! ) > 0 the system is not ergodic.., howcv·er s t is a 

Bernoulli flow with respect to almost every ergodi c component of ~y· 
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To sun:marize the ::1 bove proof notice that B, (X), which i~ an 
t.~.~.) 

independent genera.tor for the Bernoulli fac~or, c orresponds to a 

measurable partition of X by the coordinates of the particle:s 

which cross t he origin (q-0) during the t i nte interval [O,l) 

The Bernoulli :!:actor is isomorphic t:o the process obtained by ob-

serving the particles which cross the origin (a hyper-pla ne f o r a 

space of highe r dimensionality) at each time. This process is 

Bernoulli since no particle vis:i.ts the origin twice aud, under !Joy, 

the coordinates of different particles are indepe ndent. 

5 . Relaticn to the P. rgodic properties of finite ideal gas systems . 

In order to clarify the meaning of the ergodic properties of the 

infinite system it may be instructive to compa:Le its ergodic s tructure 

with that of the finite volume systems. 

The finite volume ideal gas consists of a finite number of particles 

in a box (inte rval) A Its phase space is 

rn 
/\ (sym.) 

is the phase space of a parti cle in Under 

the time evolution 
1/\) 

s' • t eac.h particle moves independ~r.tly ~eflect-

ing elastically from the boundaries. 

Notice that the tirr.e cvolut ::.on in the limi t1.ns , infini t e volume , 

system tviU not be alte:red if one changes the nature of tho: 

collision!: with the boundary (tJhile keeFing -chem loc~l) of the finite 

sy~tem. 
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Denote by B(X ) = U B' rn ) t!le na t u1.·al P.n:cel 0-algebra 
1\' n ::Q \ A ( s yu: . ) 

on A giv~n state , jJ. , of the i nfinite system may be ob-

tain.ed by a Yl;:' nk liu:i t of dif.f \!rE:nt sequances of s t a t es ~·· 
A 

i 

on 

B(X,'\ ) ' I \ , c /\ c 
... 2 

No!:ice, h0\o7ever , that under the 

mapping 

IT/\(x) - X n 1\ 

Fur ther, if the 

state ~· hc:.s t he disjoi nt i nde pe nde net~ proper ty, the pr ojected 

measur e IJ.A n-1 i s 
. (A) (*) = • jJ. inva r 1ant under S ' A t 

It seems 1~atural the r efore to consider the systems (XA ' !Jot\ , 
s (/\)) 

t 

a s the finite version of (X,IJ. , St). 

The above finite sys t ems are not e r godic since the numbe r of 
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particles and their individual ene r gies are cons t ants of the mot i on. 

For a given number , N, of partic l es i n the bo~ one may pi ck N function -

2 2 a lly independeL:.t sy!Ilrne tri.caJ. functions of (11, •• ,v )as meas urable 
.... N 

con:otants of the mo t Lm. The motion on the invariant surfaces is 

(") 
". ~"e are conside:r.ing he r e only s tates inva riant under ref tection of 

velocities. In one d imens ion t his restriction . can be remove d by con-

sidering syst;en~ wj. th pe r iodic boundaries. I n higher dimension othe r 

~nnrlitions wculd a~pca r . 



isomorphic (wHh t:he proj .::cted mP.asv.r e) t o a. ::low on t:N (N dimen

sional torus) 'with \'rlccity vecto:- prrporti.ont:d. to (\v
1
1, .. • , lvNb 

(Gee fig. 2). 

211. -- ----, 

--...:? 

,, __________ -----~ 
0 211. 

(fig. 2) 

In order to tmde rstand hctV' such a non ergodic system leads to 

a Bernoulli flew in the thermodynamic limit let u& recall ·that 

we are deeling with a quasi-local state. 
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. The strictly local observables of the :::orm NA 

2 . ) 

where A c f is 

a compact region, generate a dense set in L (~ Now let A c [' 
' 

be a compact set such that A n C = 0 Consider the corre lation : 

r(A, t,/\) = '/\) 
~I\ (NA · S ~ (NA) - [~L.I\ (NA) ]2 ::: 

= ~I\ (NA ·N. (A) - [~./\ (NA)i 
(j lt;. 

t: < 

For a given/\ (large enough) r {A,t/' ) w.i.ll eventually decrease 

t o zero and remain there untii a tim~ T/\(A) , which J.s the miniLl<ll 

t ime 'in which a particle ''inn A retu.rns to it after bouncing fro~ a 
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wall (see fig. 3). TA(A) increases with /\ ::?.n<l is infinite 

in the the rmod ynami ca 1 limit. 

r (A, t, A) 
i 

L~-
(fig. 3) 

Therefore, while de aling with a strictly local ob servable, in 

a large system the non ergodicity exhibits itself cnly after a 

large time. This be comes inf inite in t ile thermodynamica 1 limit in 

which the 3ystem i s mixing ( in f act Be r no ulli). In thi s re-

spe ct the the rmodynamical limit can be taken to rep1.·esent a larg e 

fini te system with some random collisions on the boundary , due to 

interactions with the environment. 

He have s een that strong ergodic prope rt i es of the infinite 

system d o not corres?ond to similar properties of che finite 

syster/*). The;:e j s a way , howe ve r, i n which the non e rgod ici ty 

(*)we have con~idered here a part~cular "na tural ' 'E= equenc e of sta t es J-1/\ 
i 

on x .. \ , which com;e rge on l oc<.l obse r vable s to 1-1 • Ne\'t?. rthl:' l es s , one 

m2.y t:~oo se a seque nce of ~.:Qodic s t a t es on X
1
\ v~i th t he same limi:. 

For example , s tat:e s cha:::acte.rizec by N.~--fl ! A . I i anJ ve locitie s ( v . 
1

, •. ,v . ) 
~ ~ ~, ::., N. 

~ wh-:>se di s tri but i on c onverge s t o \ > (v), convf:r ge t o u. • 
• p , \ ' 



of the finite systems is reflected in properties cf the limit. 

As a result of the "integrability'' of tne finite system it 

possesses a large collection of invariant states at a given 

(approximate) ..:ensity .;md •::: nergy per particle. This, toge ther 

w:tth t.he "consistency" of those states, is closely related to 
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the multitude of invariant states of the infinite ideal gas, 

~~ich have the disjoint independence property and a given density 

and energy per particle. 



III.Ergodic Properties of. an Infinite OnP. Dimens i .on?. i. Hard Rod Svs t ern 

1. IntroJuctio~ 

The explanation of the good ergodic pr.operties of the infinite 

ideal gas is simple: local disturbances 'fly off' unhindered to 

infinity where they are not longe r observable (with respect to 

measures natural from the point of vi ew of statistical mechanics, 

i.e., measures concentrat~d en local oboervables). Formally 

the proof for the infinite ideal gas is obtained by showing that 

the flow is isomo rphic to the process obtained by observing the 

particles which at any moment cross a given hyperplane (a point 

for one dimensional systems). The absence of interactionn play 

there a double role: 

1) 1he fact that ::he "information" "flows" unperturbed guarantees 

that ell of it eventually gets recorded by the local observations 

(on the hyperplaGe), in a way which enab les one t o recons truct the 

phase-spa<.:e descrip tion at the time 

2) The observed "informati oi.111 does not return to t he hyperplane, 

making obs,~rvations at differP.nt times independent. 

It is plausible that some infinite syst':!ms of interacting particles 

will no l onger admit a generating "local observation". This would 

n~t rule out strong ergodic pr0perties; their proof howeve r would 

require different methods which may, in fact ~ lead to stronger results 

[16]. In those systems ~-1hi.d: do odmi t representation by a process 

con3tructed on local observatior;s, the interaction t-1i ll induce a 
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dependence: among the observations at different time~, possibly pre

venting strong ergodic properties (of thP. local oi>setvation). 

It is with an eye to understanding tht: latter behavior that we 

consider the effect of a hard core interaction in an infinit~ one 

dimensional gas. The motion of a "velocity pulse" in this system 

is a corabinar:ion o£ a steady flow with discrete independent jumps 

back and forth. Pulses with effective velocity 0 would reappear 

infinitely often at any place on the . line. It is shown that an 

i1uinite system of hare rods for which the effective velocities 

are bounded away from some neighborhood of 0 is Bernoulli. Th.is 

extends a result of Sina:i [50] 'IVho showed (considering a Gibhs 

state) that ·a one dimensional system of hard rods is a K-systen! . 

\ole also clear up some points in Sinai's proof. 

2. Description of the System and the Main Res'., l t 

Let X denote the phase space of an infinite system of hard 

rods of diameter ct>o • x E X is a countable collE:;c tion of pairs 

, where ~ is the position of the lef t corne~ 

(or ar.y other fixed point c:n it) of a rod and vex i ts velocity. 

Letj..J. denote the translationally invari<>nt measure onX under whir:b: 

1) The free distances between consecutive rods (given that the 

origin is covered) are jointly independent and identically distribnted, 

with an exp~Jmmt;.al distribution of parameter ~ > 0. P = n /(l -nd) 

where n is the ave::age pa::-t:iclc den.si !:y. 

2) The velocities are i.ndepE..:nden t and iC:entically distributed 

with probability measut"e \1 , ;1h:!.ch has a finite fi r.st mom~nt . 



LetS 
t 

xEX 

denote the flow 

moves freely 

on X 

d'\.r 
dt 

under which 2ach perticle in 
dv 

Q' 
- v -= 0 - a' dt except for 

elastic collisions . 
~ ., 

By an argument similar to Sinai's L50J (used 

for systems "Tith a Maxwelli<ln vclccity distribution) it m;~y be 

shown that \s t \ is Hell defined on a set cf full weasure. 

For convenience, reference will be made to ~ity pulse$, 

whofe positions are the pos ~ ~ions of reds but which a-::e understood 

to exchange rods in a collision·. A pulse of vel~city v moves Elt 

this velocity except for moments of collision, when it jumps the 
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distance d in the direction of the other colliding particle. How-

ever, the 11 fre<! distance" between two pulses (obtained by subtract-

ing the total length of rods between them) behaves linearly in 

tin1e. 

Moreove-:: , for a given position of a pulse, the 11free d i stances" 

to other pulses are distributed along the line, with a Poisson dis-

tribution. Therefo~e, for given velocicy and position of a pulse, 

the collisions it undergoes at different times are independent. 

I.e~ (2 .1) There is a measurable set X c X, ~J-6{) = l, 

s uc ~1 tha t V x E X the follo"Ting hc.lds; le t v be the velocity 

of a pulse in x, then: 

1) During the motion in~uced on it by lstxl , the pulse crosses 

tht! origin . 

2) The average velocity of t rte pdse for the t ime interval [o, t], 
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veff(v) - v + Pd(v- E(v)) as t - + co 

The lemma can be proven hy showing th.st propertie~ 1) and 2) 

hold, r..rith probabi l i.ty 1, for each pulse separately (labeling each 

pulse by ia = [ ~/d]) 'rhis ca~ be easily done with the help 

of the pre:vioas remarks. 

Note that for pulses of velocity v :f. 0 1) follows from 2), 

while for pulses of velocity v = 0 l) holds as a result of the 

fluctuations in the number of collisions. 

Let v 
0 

By lemma (2.1), pulses of ··:;elocity V
0 

propagate with the effective velocity (for long times) 0. Since 

the effective velocity contains a part (of positive variance) which 

is due to independent collisions, pulses of this velocity recur 

infinitely often at any place on the line. 

With the help of lemma (2.1) one can gen~ralize Sinai 1 s result 

[5o J to obtain 

Theorem (2.2) : + (X , i-L , S) ( d > 0) is a K-sys:em for any 

velocity probabi~ity distribution v • 

The proof will not be given here. Let us remark however that 

Sinai's proof carries over to systems ~o~ith \l(v = v ) = 0. 
0 

Other systems are covered by a rnodifj_ed argument. 

----·-----·------+ \{e "t-iill write S in pla ce o~ S 
1 



The main result tvhich we prove :i.s 

velocity distribution ~ satisfies 

v(\v ·- v I< 6) = 0, 
0 

fer some 6 > 0 and v 
0 

Pd 
"\+Pd E(v) 

3. Reduced Des cription 

for which the 

is a Bernoulli fl::>w. 

As already indicated, we are interested in a representation 
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of the system by a process g~nerated by local observations. How-

ever, since collisions occu~ at any interval on th<! line, the re-

appe.ar.:m: ~ of a pulse at the origin depends on the distribution of 

particles elsewhere, inducing a complicated dependence amo~g local 

observations taken at different times. In the following "reduced 

description" (which is limited to one dimensional systems) the dis-

continuities in the trajectory of a pulse result from effects which 

take place at the origin. 

For any x EX , let us label the particles so tha t their 

pos~ti ~ns at time t = 0 satisfy 

taking the l.i. mil: t -+0- for each inequality separately. 

Defi.nition (3 .11..:.. Let (x
1

, v
1

) 

the i-th partie le in x E X 

be the position and ve l ocity of 

Its reduced oos~ is given by 



q. :": x. - id 
l. 1. 

Clearly, an equ~valent description of x E X 
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is given by 

y = l(q . ,v . ) ! 
l. 1. 

, the enumerated ccliection of the reduced po ::> i -

tions and. velocities o f the i'nduced partic les. Note that the un-

enumerated collection {(CJa,vu) !may not de termine x EX 

u~iquely. 

Definitio~. 2 ): The reduced piulse s pace, y, is the class of 

enumerated collections 

l) qi :: qi + 1 

2) 0 < q 
- 0 

y = {(qi,vi)}i E Z 

~]. E z 

4) the replacement q. ~ q , +tv., t = 0 
1. l. l. 

for which 

make s each of 

the above inequalities strict (except if vi = v 1 + 1 or v
0 

== 0 ) . 

The ~.pping '!': X _. Y to the 

enumerated collection of the reduced positions and veloci t ies of 

its particles, ordered as above, is 1 - 1 and onto. By a harmless 

abuse of notation, let ~ and S d enote the measure and the flm-r 
t 

induced on Y by the correspondence cp • 

Le~ma ( 3 .32.....:.. With respect to the measure ~ , the distribution of 

the reduced posi t i ons and velocities ( ignoring the labeling) 0£ the se 

pulses of y E Y which lie in R\ [o,d] is isomo r phic t c the 

Poisson distribution of poi nts, with density P , ov er (:R\ [ O,d],t.)®(R,v ) 

(£ being the Lebesgue measure) ana i s independent of the distribution 

d 1 b l . f • . r, ' ] an a e 1. ng o puLnes 1. n ~~,u • 



Proof: Let q+ 
( -) 

= min 
( 'lk1.X) 

\q. I q. > ct I 
~ l. c<o) 

l'he leo11!la follows f :::-om the observa t ion r.hat t he distributions of 
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both q+ - d and \q_j a:re exponentia l with parame ter P • independ-

ent of the configure: tion in [ O,d ] and of each other. 

We remark that ~ has the foll m•Ting real ization: Le t Y ·- y ® y 
+ -

be the product of two irldependent Poisson distributions of points 

with density P ,Y+ over ([0,00
), t) ® ( R,V ), whose left p~rticle 

is labeled "O"; and Y_ove-;: ((-00 ,d],t) ® ( R,v), whose right 

particle is labeled "-1" . Ct,IJ.) is isomorphic tc ('Y',IJ.'), where 

Y' = \y E Ylq > q I and 
0 - -1 

is the induced probaoility 

measure on Y' . 

Let y E Y . We denote by N(t,y) the directed numter of cross-

,.r. -1 . ) ings of the origin by particles in x = T lY , during the time 

interval [o, t) , counting crossings from left (right) a~ positive 

(negative). K(y ) tvill denote the index of the first particle whose 

redcced pos ition (in s_
0
y) is non negativ~. 

Consider r.ow the motion of the pulses in y E Y induced by 

the flo~" St. The pulses move at their characteristic velocity, 

exchanging inc! ices at collisions., exce pt for moments a t whlch a 

particlf.\ crosses the origin (in 1~), when the r educed posit ions of 

all the pulses are shifted by ~ d and their i ndex values change 

by ± l , j c pending on the direccicn of the crossine. The reddced 

distance trave led by a pulse (q,v) E y E Y Guring the t i!i.le 

interval [o,l) in d m::; equal to tv-c!N{t,y). 



Lemma (3.4): For almost any y E Y 

lim N(t,y) 
t .... <X> t 

P E(v), 
= l+Pd 
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for t E Z 

Proof: Siace our systea. is ergodic, ' Theorem (2.2), ·H: follows 

that, 

t-1 
N(t,y)/t = 

1 
t i~O N(l,Siy) (t _.. co~ E(N(l,y)) almost surely (a.s) 

To compute E(N(l,y)) we observe that the average velocity, in 

the reduced de scription, of a pulse of veloci.ty v is 

[ tv - <i1'l ( t, y) J It (t _.. coJ v- dE(N(l,y)), 

which corresponds to velocity [v-dE(N(l,·))J. (l~d) in terms 

of "r~al" distance. Comparing the above with Lemma (2 . 1) we obtain 

E(N(l, •)) = l~d E(v) 

4. Process Desc·ription 

!?2_finU:Jon '(4.1): We will call a pulse (q,v) Ey E Y 

at time .: if one of the following holds 

a) 0 < q + tv - dN(t,y) ~ d 

h) q + tv - dN(t,y) < 0 and q + (t+l)v - dN(t+l,y) ~ ·o 

c) q + tv - dN(t,y) > d and q + (t+l)v-dN(t + 1~ y) < ci 
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We now define a partition of the phase sp.:.ce which o;..·ill be used to . 

represent our system by a process. In order to ·apply approximation 

techniques coarser partitions will be defined as well. 

Definition (4 .2) :_ 

1) Uenote by ~ the partition of y genurated by: 

a) N(l,y) 

b) K(y) and 

c) the reduced positions and velocitie3 of those pulses of y 

which are marked at the time t ~ 0. 

(k' 2) Denote by il ' ( k E Z) the partition whose typica 1 

element C(k) (y) E 1l (k) is the collection of the phase 

space points y E Y fo;: ,..,hich 

a) N(l,y) = N(J.,y) 

b) K(y) = K(y), and 

c) there is a 1-1 correspondence between the pulses marked 

at the time t = 0 in y and y, such that at the times t = 0,1· the 

corresponding pulses are at the same distances from the origin, 

measured in inte1~als of the size d/2k • 

In essence:, T: partiticns Y (and there fore X) by the cha;:acter-

istics of. the pulses which in the reduced descripti.on appear in 

the inter;al [O,d] during the tlr.1~ [O,l] , disregarding those which 

do appear bet eventually cross back. The pulses hnve to be observed 

in an interval since their i:rajectori.es have discontinuities of t ·ne 

size c .• 
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lt is an advantag~ of the reduced de.;cri?tion that il(~) contains 

the full infonna t ::.or. about those palses of x ;,;hich are in a certain 

reg:i.cn ("...rhich depends on T](x)) of the one particle phase space , and 

is independent of the chara.c teristic.s of the pui~es elsewhere. To 

show this .,.c. need the .f ollm.rine; leiun:ri. 

± 
Denote by ex (n, t) the regions in the one particle phase space, 

defined by 

+ 
a (-) (n,t) = i(q,v)\ q < 0 , q + vt- dn > 

(~ (<) 
o! 

b,.~m.i~£<. ~~ • 3 : Le.t y E y and let m = N(t,y) If y and y E y 
± 

possess the san~ cccup~tion numbers for pulses in the regions a (m 1 t) 
± 

and '::t (m + l,t) , and K(y) = K(y) 

Proof: Denote by ~y (P) 

occupy a given -:-egi on ~ 

the number of pulses in y € Y which 

in the one particle phaoe space. 
+ 

Notice that for m = N (t,y), a (-) (m, t) is the region of 

those pulses whose red~ced positions change from non-positive (non-

negative) in y to positive (negative) in Sty. 

Keeping in mind tlte fact that the index valu~s get r eadjustec! 

each time a pa rticle (in th{:: unreduced description) crosses the 

origin one obtains 
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therefore 

~ + ~ -
Sim:!.larly, K(y) -NY (a (ro+l, t) )+NY (a (m+l, t)) + m is the 

index of th~ first pulse in st-0 y 

smaller than d, therefore 

whose reduced position is not 

K(y) - N (a+ (ro+l, t)) + N (a- (mH, t)) + (m+l) > 0. 
y y 

Consider now the function (defined on Z ) 

~ + ~ -
f (u) = K(~) - N (a (n,t)) + N (a (n,t)) + n y J y y 

Since a+(n,t) :)a+(n+l,t) and ~-(n,t) c 0'-(n+l,t), f(n) 

is strictly i~creasing. Mo reover, by the above inequalities, 

N(t,y) is the. u.nique solution of 

f (n) < o, f (n+l) > a. 
y - y 

Now, by the conditions of the lemma, 

f_(m) = = (m) < 0 and 
y y 

f_(m+l) = f (m+l) > o, 
y 

y 

implying ~1(t ,y) = N(t,y). 

I 

I I 



42 

Corollarv (4.4): Let the region a(n)of the one ?article ?hase 

space be giv~n by 

O(n) = ~+(n,l) U a-(n+l,l) U ([G,d] ® R). 

If N(l,y) = n, 
k 

then 11 (y) is independent of the cha~acteristicG 

of those pulses which occupy Ci(n)c . (the complement of a(n)). 

Notice -that Tl(y) co~tains ::he full information rer;arding the pulses 

in a (n) 

The above independence will be used to establish strong ergodic 

properties for the process defined by n<k) 
5. Tools Us ~d 

In proving the Bernoulli property we will make use of the method 

developed by Ornstein which utilizes the following resul t s [39,48]: 

is Bernoulli if 

is a Bernoulli shift. 

Lemna (5 . 2): If A
1 

< A
2 

< A
3 

< .. · form an increasing sequence 
0:: 

of T-invari ant 0-algebras, if ~ Ak = B and if f or eal:h n, 

(X, ·A , ~ ' T) is a be~noulli shift chen (X, B, ~ ' T) 
n 

is a 

Bernoulli shift. 

This lemma enables- one to use resul t s obtained for processes 

defi:1ed by countable partitions. Given a gener a ting partition P, 

the dyr£mical sys t e.m (X, ~~ T) ls iscmnrpht~ t\J t he proces 5 (T ,P) 
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with the indue,· . .'! mc:11sur e . 

Defini tion_12.: 3) : The partition P = tP i l i s ~-inuependent of 

if there is a class C of s~ ts in Q such ~hat 

a) lJ. (Lie) ~ 1 - e 

b) ~ 1 ~-L (P . rQ .) - 1-L (P
1
. ) l :: s 

' · 1. j 
Q. E c 

J 

Defini t i on (5.4): A partition P is called weakly-Bernoulli f or 

an automorphisM T i f givec ~ > 0 there exists an N such tha t for 

all m > 1 

-N 
v 'l'~ 

-(N+.n) is €-independent of 

Le111I18 (5.5) : If the partition P is weakly-Bernoull i f or t he au to-

mo~phism T then (T , P) is a Be~noulli process. 

6. Proof of the Hain Result 

Let us restate t he main theorem ( 2 .3), us ing the notation of 

the previous sec t:.ons • . 

Theorent ( 1. 6) : The dynamic a 1 system (Y, 1J., S t) 

~ <l v-v I < 5) = 0 
0 

is a BemoulH system. 

for some o > 0 and v 
0 

fo r wh i. ch 

Pd = -- E(·J) 
l+Pd 

The proof wi. tl consis t of several s t e rs . The "timP.s " t mentioned 

throughout this sec~ion a r e t o be u~dcrstood a s intGgr~l. 

Leiil[lla (6 .2): For a given o > 0 , l e t the "good" s e t ,; be giv~n by 
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lcidN(t' 1 y) - t'v I + 
o' 

d) I ! t' II < 0 l 

f . i ._1-) (G-) > 1 - t€'\ 2 
or wnic 1 t-1-\,ut , J.L · t · ~ 

10 
Then V t > 0, .3 t ( e , & ) > J 

Proof: By lemma (3.4) li.m dN(t,v)/t =- v ior almost 
ltl-rcc 0 

f : 

' tht: ;:-etore sa·r· I ( ld'N(t I ,y) 
It• >t 

every y E Y - t'~ I -;- d)/t'}-----+ 0 a.s. 
0 ( t -'CO) 

implying convergenc~ in prob~bility , whi ch i s lerr~~ (6.2) . 

For the systere under consideration 'J ( lv-v I < 5) = 0 
0 

; let us 

assume therefore that there a:-e no pulses of velocity v, lv-v I < 0 
0 

(in fact, we a.re conf ining the discussion to a subset of Y of full 

measure). 

G G+ n G-
J..et: t = t t 

R;m r k ( 6 • 3) : V y E G 
t 

, no pulse of y whose r educed position · 

was i~ [o,d] at a time t'E(-~,-t ] will reappe~r in [ o,d] at 

a time t"E [t,00) or at t" = 0 * This can be easily shown, 

remembering that the reduced distance traveled by a pulse of velocity 

v between tee ti01e s t' to t" is 

v(t n-t ') - d(N(t" ,y) - N(t 1 ,y)) 

~~ni~on (6.4 t£ Denote by ' the parti tion gene ra ted by 

l) K(y) 

2) the number of ve locity pulses in [o , d] fo r ~.,.h ich -* Here the times a ·re not t o be unders tood as necess3rily :i.ntegral. 



v > v + 6 and the>. number. of those for which v < v - o. 
0 0 

We now come to the key step in the argUffient: 

Lenuna (6.5): 

v siTi(t > o) t ' , 

and 'k t ' 

Le t a be a set measurable with r espect to 
·-(t+l) 

b ,,. si-n' be mea.surab le with res pee t to ' I _aJ 

Then 

Ptooi: Note that (by virtue of corollary (4.4) and lemma (4.3)) 

n G+ a t depend on the distribution of p~lses 

in two correspondi ng reglons in the one particle phas~ space, 
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whose intersecti.on (after taking out the slice R ® (v -6, 
0 

v +6)) 
0 

is [O,d] ® R. Further, the dependence of a n G; and of b n G~ on 

the distribution of pulses in [o,d] ® R is only through the 

variabl e s used to define the partition ' (def.(6.4)). Therefore, 

n + n -by lemma (3.3), on a given element 'k e , , a 1 Gt and b Gt 

are independent : 

a) 

In particular, by choosing a = Y and then b = Y, we obtai n 

ar..d 



The lemma fol l of·.rs no\v from a), b) • and c). 

We observe th~refore tha t our systen exhibits an approximate 

Markov property. The proof that ::. tis Be.rn~mll~ will follow in 

e w:J.y sin~lar to a proof that a K .Narkov sy~:tem is Bernoulli 

(actually, for this end., mixing could replace the K property). 

tole thus first considzr the space Y equipped with the 0"-algebras 
(!:) 

1 si11(~•). 
=-=-Q) 

~orem (6. 6): 

For any integer k~ the dynamical system (Y, ~o.> S~(k), ~, S) 

for which the ve l oc i t y distribution ~ s~~isfi~s 

vclv-v I < o) = o , tor some o > o and v 
0 0 

Pd ( . = 'l+Pd E v.) , 

is a Bernoull:i. -shi£ t . 

Proof : By leillffi.:l (5.5) it :i..s enough ;to show that the partition il(k) 

is weakly-Bernoulli under· S. 

I.et .: > 0 

lemma (6.2) and let C ~ 'V\Gt , G~ l 
1 1 

Because of the K-property of our system 

- ~ 
that ' is i"o - independent of 

F..s def ined in 

t, (€) > 0 
"-

such 
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~le now c la. im that V m > 1 

is e-independent of 

-(tl+t2+1) 

v 
i =-= - ( tl +t2 +m) 

l- (m) I ,.,. t 

+ 

, thE:! partition 

To sec this, note t hat by virtue of lemma (6. 5) ( omitting 

and 
·-c; c: G 
k t 1 

an element of C 
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+ r 1 "n ( k ) _ ~-
lhis i s s o (see ~ 6~ ) because the partitions 'I all have fini te entropy 

(since the velocity distribution has a huite fi rst moment). We wish t o 

poir.t out, howeve r , that t:he argument whicn 'tve give dces not de pend j _:; an 

essential way upon the fir.it~ness o f the ent1:opy of 1l(k). We could easily 
(k ) (k) 

find an i ncreasing seq·o.1ence 'll,e 1l of finite partitions whose 

sup;.:ernum i s i](k); our argumen~ c ould be app lied exactly !iS it s tands to 

the '!!lk), so that Theorem (6 . 6) 1wuld be valid witP n.ik) in plac~ of 

il(k) . Theorem (6.6 ) wou ld then , i-.::s e.lf, f ollow from an applicc: tion 

of Lem'!la (5 .2). 

'· 



This implies that 

Therefore 

sets b . whose total measure 
J 

2) ~(G~ ) 
1 

€ 2 
<~ 

10 

-
~(a£1,k) · ~ <,klbj) + 

e 
is small~r than 1o-

3) 2) inplie s t hat ~(G~ lb . ) < 
1 J 

e 
10 , except for a collec-

tion of sets l¥ho::.e total measure is less than 

the above estireates we obtain 

e 
10 Summing 

for a collection of elements b(m) 
j 

whose totel measure exceed~ 

1 - & , proving the claim. 

. (k) 
are :tndependent of m, TJ is weakly-

Be rnoulli. 

48 



In orcer to apply theor~m (6.6) to the prco£ of (6.1) we neeu 

the fo llowing lemma 

Lemma (6. 7): 1l is a gene!:"ating partition. 

l!:,oof: Observe that knowirtg N(t,y) and the characteristics of a 

t pulse in S y enables one to find the (reduced) position cf the 

pulse in y E Y Since, by lemma (2.1), each pulse is ~arked 
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at 3ome time (with probability l) .~ ~ si1l 
:L--

separates points 

in Y(mo~ 0). 

Proof of theorem (6.1): 

By the previous leuma, the processes considered in theorem 

(5 .6) have the property required for applicaUon of lemma (5 .2), 

by which (6.1) fo llows. 
Q.E.D. 

Conclusion 

In s~~~ry, the essential ideas of the proof are: 

1) The i~finite hard rod system admits a representation by genera-

ting K-process obtained by cbserving the puls~s close to the origin 

(in the reduced description , for convenience). 

2) Rod3 which cross the origin te~d to draw back pulses whi~h crossed 

before them. d.N(t,·)/t is the random velocity with which pulses 

are "pursued" by the ori gin (this has a clearer nteaning in. t he reduced 

de::;cription). 

3) D:.te to the 'l:andom character of the above velocity (w·hi~h t ends 

to v 
0 

:i..n the liatit t _. + 00)v' 6 ~ € > 0. 3 t > 0 - . .tc.n: which , 

" 
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with probability > 1-S , no pulse which appeat·ec! at the o dg!n 

before -t .:o•.~ld ~eappear af ter the ·r:.me t with the except iot~ of 

those whose: velocity is 6 clos e to v • 
0 

4) WheL!. viewed as a process, sys cems f ·: om '.Vhich pulses slow r e lative 

to v .?.re excluded exhibit an ·approximate N.arkov property . 
0 

5) A generating family of p·rocesses, •Jhich are ..::cns t:ructed en 

co~ntable partitions anJ h~ve an approximate !1a~kov property, can 

be fou~d. The Bernoulli (n:ope rty for the se is p;;oved in a -way 

similar to the proof for a Markov K-process. 

7. A Clarificatic'J. 'Jf the Proof of Sinai's-~lt 

Sinai [1] constructed a K-partition (' i n his notation) f or. a 
0 

cne dimensional hard ::od ~as with an infinite number of degree s 

of freedom. However, Remark 4 in his article is i ncorrect as 

stated, l eaving L:he proof of the generating property of the parti-

tion in~omplete. 

t is calleJ there a moment of intersection of zero of the 

trajectory of point x E X if either 

fer some i (there J.s a pulse i n Stx wh~.ch 

is crossing th~ origin), or 

2) t is a moment of collision of t wo rods which at t h i:; ti.me .s r e 

or. Oi>posite sides of t he origin (and ther efor e t\<lC t-mls~e in Stx are 

jumping acros3 the o~igin). 

The intersection time, velocities a nd !Jositior.s: oi t he pulses 

involved are called the charactel"i.st:ics of the i ntersection. 
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One still has to show that the genereted partition (~ St ,
0

) 

which corresponds to partitioning by tne characteristics of ell :he 

inte rsections, ~ompletely separates the set of phase space tJOints 

for which any pulse has c rr.o:nent of intersection 0f the origin 

(~·hich was shown to be a subset of full measure). This can be done 

using the reduced descri?tion. 

The reduced positior. of a pulse in x can be obtained from its 

reduced pos ition in S X by 
t 

q(o) = q(t) - tv+ d N(t,x). 

Furt:he r, by looking for the first, in terms of lowest ltl, iilter-

section of zero of a pulse in x one can de.termine whether its index 

is positive ur ~egative. In this method, provided each pulse eventu-

ally crosses the origin, one can reconstruct the reduced description 

of x from the characteristics of all the intersect:tons, which there-

fore determine it uniquely (:nod. 0). 



IV. ~ure of several cor:tponencs of equal masses 

1. .1!!!!2d uc tion 

As a first step towards undentanding the ergoc!ic properties 

of systems which contain e mixture of intera~ting particles of 

seV.eral types, we will discus:; now the consequences of a 

particular type of "constcints" of th~ m-:>tion wh~.ch are present io. 

such one dimensional systems of non penetrating particles. 

The simplest system with the above properties is a random 

mixture of several components of equal mass particles, 

which are marked by different colors. The point particles move 

freely except for elastic collision.> by which, upon impact, they 

exch~nge velocities. 

One immediately notices that under this dynamics the order of 

the colors of particles, to the right and l eft of a given particle , 

is invariant . Such "invariants" appear in any one dimensional 

random mixture of non penetrating particles, for example in a mix

ture of tl-'O types of hard core particles of different mass. 

While for finite system~ the order of colors is a valid constant 

of the motion, it is not clear that in an infinite system it gives 

rise to measurable invariants whi ch a re non trivial with respect 

to a state which has good clustering (mi:ldng under space tr~nslati.ons) 

properties. A special featu·ce of infinite systems is t hat there is 

no time ·invariant xneasurable ~,,ay of picking a re ference particle 
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(~~capt if there are particles which are effectively confined to 

a certain region). ~ny function on the phase spa~e may be approxi-

mated by one ~;hich depends on the colol:'s of only those pa-rticles 

which are in s ome bounded volume. Since the local combination of 

colors keeps changing (while globally the sequencz of colors is 

just shifting ranc!omly),one is led to expect good mixing properties. 

In fact, it will be shown that the ti~ evolution of such infinite 

systems is a K-flow. 

The recurrence of particles whose colors were observed in the past 

leads to a kind of long mzmory which poses difficulties in deciding 

if the system has the Bernoulli property. · tole wi J.1 mention a "simpler" 

dy:ta!nical K-system (of finite entropy), with some similar features, 

fur which the Bernoulli property is still an ope:t question. 

2. The phase space 

The degre~s of freedom of a single particle consi.sts now of a 

triple 

(q,v,i) E r 181 'II 

···l1ere 'II = 11 2 hI ,. I , , ••• , 1.s a finite collection of "colors". The 

"natural" phase space of the infini t~>. ~sys te:n, Y , consists of 

locally finite collections of points in r ® 'JI. It will be convenient, 

ho~,·ever, to separate the color degrees of free dom from the pos i tions 

and velocities,whose time evolut i on is iadependent of colors. Fur.:her, 



the one dimensional system of non j?enetrating idf:nt~._ccll particles 

of equal mass is indistinguishable : from the ideal gas (Ch.II). 

tie will cons ider a point in thE! phar;e space Y to be given by 

a point in X , the phase space of the i deal gas, and a double 

infinite sequence 

d c ( ••• , 
'I 

d ,, d , d
1

, ••• ) ED=~ 
-L 0 

which describes the colors of particles. These are ordered by 

their positions with respect to the origin ( q=O) so that d is 
0 

the colOl: of the first partiele to the right of it. In c<:&se ~£ 

ambiguity in the order it is defined to b~ 11continuous frc;:n belm1 11 

under. the time evolution (see a~c. (111.3)). 

Therefo~e Y = ~ It can be easily seen that the quasi local 

topology on Y, when it is defined as at the beginning of this 

section (with the dj screte topology on 'fl), is the same as the 

direct product of the quasi-local topology on X with the product 

topology on D 

Tine evolution 

We will deno te by U t the flow on Y wh1.ch corresponds to thE: 

E!Volution in time of the system, as desc:o:-i bed in the proceeding 

sec lions . 



Let (x,d) EY=X ® D and let U f •• c!)=(v 1 d') t, .• , ··" ' . As already 

mentioned, x'=S x where S is the ti~e evolution of the ide~l 
t t 

gas defined on X 

Collisions of partit:les rlu not alter the order of colors on 

th~ line. This· is changed only wheh s particle crosses the 

crigin (q=O) increasing, or decreasi-ng, the "index" of all the 

particles by l. 

Let us denote by m(t,x) the "net" number of crossings of the 

origin during the time interval [o, t), counting those where a 

particle cross~s from r.ight (left) as positiv~ (negdtive). Then 

, with the shi.f t T being defined on D 

by 

(T( ••• ,d ,d1 •••• )). == d ,-ll 
0 • l. 1.-

The f low U : Y -+ Y 
t 

has therefore the skew 

s tr·.tc tun: [ 5il : 

U (x,d) = (S x, Tm(t,x)d) • 
t t 

The group property of tu tItER is guaranteed by: 

product 
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m(t,x) = m(t
1
,x) + m(t-t

1
,st x) 

1 
0 < tl < t. 
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3. ~arian: s tates 

Definition: Let \' (•) be a probability :neasure C'n R and P a 

measure on 'II= h, .. ,h ! given by the i<Teight:;(P
1

, .•• ,P'h) ~Je 

will denote by ~~ 
P,v 

the u1eaeure on .B (Y) Hhich corresponds t o the 

- ~,~ /C", 'J / I 10. '::') Poiss on c onstruc t ion oa\~ "" ~, '; 'CJ ; • , wh.~ re y is 

the m~asure on r given by 

Y(Jq dv) = dq V(dv). 

The Poisson cons truction was dis cussed in sec. (II. 3) • In the 

state given by 1-1__ the particles are "independently" distribut-
P,v 

ed on the line, tvith the uniform (average) density - P. for th~ i-th 
- 1. 

color, and have indep~ndE-mt velocities of identical distribution 

Claim : The ~ensure 

produce of ~~ v on X , . ' 

~~ (as above) factori ze s 
P_, vh 

P = I: p 
i=l i 

to a 

density, and the product neasure, * p 

being the t o tal 
i! t Z on D = Fl- induced by the 

probability vec tor(: 1, •• , '~-l) on 

We will omit the proof of the claim which is quite s tra i ghtforward. 

An important consequence is 

Cor~2}~: The state (i .e. mea s ure) 1-1~ 
P,V 

i s invari ant 

under the ti~c evolution 

Proof.: u is a sket-: product of 
t 

the measure ~0 \) .,., , with the shift 

which any p r oduc t rr.easure is f-re.se rved . 

,.. 
.::. 

T 

t 
on X 

on D :=- 'liZ 

The refo.:-e U 
t 

which pres~rves 

under 

p:ceserves 
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the product of the above measures on X ® D = Y 

4. Eraodic. Prope rties 

Usi.ng tb.e notation int:.:oc!uced in the: proceedir.g sections, ol~r 

ma1n result i 3 : 

"' 
Th~ore~ For any P which is continuous at zero 

( v(\o }) =C), the dyna~i~al 5ystem 

ls a K-flow . 

Pr.oof: To pr ove the theorem it is enough to show the exis tence 

of a measurab le ?artition I] 
0 

such that 

i) T] d~f u 11 :::) Tj 
t t u 0 

for t > 0, 

• • ) '!'\ v 11 
1.1. I let' = t E.J? •' t partitions (mod . 0) to single points. 

and iii) n = ~ Tj 
' -Q tER t 

is a trivial partit i on. 

The following properties of the above system will be used in 

the prooi : 

and 

a) The system is a s!<ew product 

* (Y, ~~ ) ~ (X, ~p v ) ® (D:P ) 
p, ~ , 

(Ut(x,d) )= (S x, Tm(t,x) d ) 
t 

b ) The "ba::>e " syl:item (X,~p v ' S t) , !.s a Bernoulli f.lotv 

( sea s c .:: .( II. 4)). 

c) V t > 0 ~ the f unc t i on m( t. ·) is meas urable Wlth re s pec t 



58 

to an independent generat(•r for the rl i sc-cate t r ansformation st 

and 

..., 

El[m(t,·) - E (m(t, · )) J ~ !> 0 • 

t 
We will denote by F:" 2 the parti.tion of X according ::> 

L 
.l 

to the velocity pulses ir. X Ex wh~_ch cross the origin in 

the time interval Lt
1
,t2). It follows from our di scussion 

in aec.(II.4)U~t ~~ is an independent generator for St. m(t,·), 

which is the "net" number of crossings of the origin, is clearly 

measurable t.;ith re spect to 

holds tr-ue. 

* 

, hence the above stat~ment 

d) (O,P ,T) is .3 Ber~culli shift, as fellows .fro::n the 

* product structure of P 

Now, let C( 

0 
be the partition of D = \( . •. , d

0
,d1, .•. )! di EU')l 

genera t ed by d 
0 

and atl~f v et 
- v~Z n 

i s then generated by d_n 

is th~ fully separating partition of D. 

t 
~ 2 

t 1 
~as defined above . No t i ce that 

We will denote by ' = Y o t>o 

= 

~t 
:> 

0 

t -t s 2 
t -t 

1 

the partition of X generated 

the future crossings of the origin . Clearly, 
0 

is c:. generating 

i'.-partitfon (i.e. it satid i es the above i) - i ii) )-..rith respect to 



u 1 h ~ def. r ~~ . we c aim now t at 11 .., '01 .... 1s a generating K-parti tion 
0 0 

of y with respect tout. 

i) In a harmless abuse of notatio£' \ole will define St:Y _, Y and 

T: Y ... Y by 

' I 

S t (x,d) ··- (S tx,d) and T(x,d) = (x, Td). 

Notice that Y t > 0 

u = [u J-1 = [s yn<t,x)rl >= 
-t t t 

m(t,S tx) 1 • [T - S ]- = 
t 

59 

Let us consider an atom of the partition ·~ 
t 

, for t > 0 • 

;:n( t, • ) 

~t(x,d) = Ut~0 (U _t(x,d)) = 

-m( t,S x) 
= U ~. (S x,T -t d) = 

t 0 -t 

-lll (t,S x) 
= S Tm(t,·) [' (S x) ® a(T -t d)] 

t 0 -t 

, for t > O, is rneasura~le with respect to G ther~fore on 
0 

all the points of the above set it assumes the value m(t,S -tx). 

Hence 

= rs 
- t 



and,since the partition a is invariant u.nde.r '!, 

It follow·s that 

'llt(x,d) = C (x) ~ a(d) 
t 

t> o~ 1l =' ® O:· :J' ®a = ll 
t t c ·o 

llhich pj:·oves i ) . 

ii) By i): 

Tl - v ·n = V , r ®a) 
oo - t~ t tER "'Ot 

hence 

' ~ 

~ £eparates points in X (mod .0) as does a in D 

is the full partition of Y. 

, therefore Tl (X) 

iii) In order to prove that il_(X) is a trivial partition it is 

enough to shew that 

(*) ~I.(C lil_~(x)) = J..l.(C), at almost every (a .e) (x,d) ~ Y, for any 
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measu:::able set C c X (for convenience we will drop tl:e subscripts of !J.p ,) • 
' 

In fact it is enough to shm-1 (*) [or any c 
.-m ® 

able Hith respect to S · · 0! -m for some m > 0 

Ti pattition ' -a:> is invariant under u 
t 

~tich is mea sur-

Since t he 

It is s ufficient,therefore to show (*) for any C me:asurablc lvith 

r.e::pcct to U (Sm 0 Ct) 
Ill . -m f o r some ro > 0 r~OWt!V<:!r , by 
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an argument similar to that used in i) 

In conclusion, it sul:fices tc prove (*) for any C "" B ®A where 

A ED i3 !I•easurabl e with r e£; pect to U a 
',1.ko k 

L\. I 

and B E Xis measur-

able with respect to , for some n ,m > 0 . 

For this end one !Ili:IY use Doob 1 s theore m r 6] from wt.i,:h £allows -
that (sir.ce 11 ~- 'I' ) 

-t ' -~ . 
(!: -> _c:::-) 

Let B ® A c Y be as a b o·ve and :ienc t e A = X ® A and B "' B '8· D. 

For t > 0: 

~ cili,~ Cx,d)) = 
-t 

"' ~(B) • !.!.( ·ll ·~ ,rx d)) . ·- . ·t ' 

s ince A and 1'\ _t(xj d) are meas u :-a b le with res-pect to T\ 
0 

~ 0 
is independen t · of ~ 

··n 
It r emains t o show· that 

liw ~(ii.\ il _ ._(x,d) ) a=e . ~(A). 
t - · co -



Now, for t > 0, 

(a.e.) 
p.(Ali1_t(x,d)) a= ~cui'I110(Ut(x,rl))) 

= <~.(u Als (S x) ® a(Tm(t,x)d)) 
I'"' t 0 t . 

This is to be understood as a relation between t~o diffeLent 

f '.mctions o n Y. It f c llm-1s from the !:elation 

Let us define 

a = !i E z lr-i a e A 1 
iJ. 

Since UtA= Tm( t, ~ )A, a valid version of the above condition&l 

expectation is given by 

wh1.cn may formally be written as 

6
,, 

" 

:'here±:ore, using the above formal notation, ( the existence o f 

the limit follows from Doob 's theorem) 

+ lim 1-LP,v({m(-c,·)-m(t,x) E Cd 1\ f:~~,J,J \ ! ,_ t (S tx)) 
t .... (I) 

fo r u.ny i E Z+. The second sUliiiil3nd is easily seen <::o converge t o zer o, 

for. alii~ost any (x,d) E Y. The first, when v :i.ewed al'l a funct ion Ocl D, is 

measurAbl-e t1ith re.spect to V Q' , for .<1ny x E X, Since the "bil a teral 
lkl > i k 

ta l.l 11 

2 > 0 
dep~i.1d on d . 

V a is trivial, it. f ollows tha t !-"(AITl (x~d) does not 
\k\> t k 
Thu& fo~ almos t ev•; ry (x,d) E Y: 

r - * ~-NCA" ! 11_c:o (x,d)) == J p.(A \TI_00 (x , d)) JP (d) ··· 

::: li.m .]' 1-L(A\ 'll_t(x,d)) dp\u):: lim J l1 (D/ \C
0

(Stx)0a(Tm(t,x)d)) dp'\u ) 
r-• c.o c·-tw 
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= lim f.l.(U AI( (S x))=" ll1t' ,1-.t.!_A[ ' (x)) = !-l.(A) 
t ..... ~ t 0 t t ..... ~ -t 

, 

which CC'ncludes the proof of iii). 

Q.E.D. 

An extens ion of the rese1lt: 

The proof of the K .. prope!'ty r...-a s bas~d c.n the properties ~)-d) 

oi our system. · TP.is, however, was not a very e:conomical way and it 

may be observed that the .<>arne result· \v'ould hold under more ·relaxed 

conditions than b)-d). 

In particular the same proof may be applied t.:> systems r,;ith the 

properties a) and d) for which 

b') the base is a K-flow 

E.: t c ') m(t, .) is measurable with respect to -
0 

under u 
t 

as above) such tha. t 

' = 0 
u 

t>o 
is a generating K-partition and 

(which transform 

P(\lm(t,.)- m(t,x)l <.t:l is (x)) --~ O,V.t > 0 and a.e. >:Ex. 
-t . (t _, ~») 

Thi·s set of conditions seems to have wi der applications to i nfinite 

systems. For example, b') and c') are satisfied by the hard r od 

Rystems discussed in Ch.III (even r.Yit:hout the rest.:-:i.ction on \1 ( ·) 

used for the Bernoulli property, see Ih. (2.2)). 

We observe again that the existence of constants of t he motion. 

in the finite systems (he re th?. sequence of colors) d0es not excJ.ude, 

for reasons discusse~ in the in t~oduction , strung ergodic 
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properties of the thetillodynamic limit. However, those invariants 

lead to the non uniqaeness of ·che macroscopic stc.te. In fact, every 

T invariant meas1.1re on D may be used in. the construction of a 

ut invariant measure ou y 

S.~ulli p.con~:rty, an open cruest1.on 

Whether chc system (Y ,11"' ,U ) is ah7.:lye~ a Berno·tlli flow is still 
p) \) t 

an open question. I n the less interesting case one may prove: 

Proposition: The dynamical systl~m (Y .11 .U ) 
, "' , t' . 

P,v 
(as above) 

for which 

Jv V(dv) :f 0 

is a Bernoulli flow. 

The detailed proof will not be given here, let us remark however 

that 

Jv \l(dv) = 
,. 
Jm(l, ·) 

and in the above system the "r.andom walk" described by m( t,x) is 

transient. It is not di££icul t to show that the partition 

generates and i.s ~_..eakly Be:-noulli u·ader U1 

In the symm2trical case, 

j'ffi( l, •) dl-0..,.. = 0 ' 
P,V 



the partitio~ (of finite entropy) generated by m(l ~ ·) and a 
1 

is easily seen nQC to be weakly Bernoulli . Whi:e this 'does not 

exclude the po&sibi.lity of its 'being very weakly Bernoulli, it 
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points to a longer memory oi the system with respect to "natural" 

local partitions,which results . fr~m the recurring property of the 

symmetrical random shift. 

The question of the Bernoulli property in such situations (which 

occur in other systems as well) may be clarified if one would under

stand tha properties of the ske\-J product of a Bernoulli shift (X,T) 

with itself 

(with the product measure) 

n(x
1

) 

= (Tx17T - x
2

) 

where E(n(•)) = 0 and n(x) = + 1 defines a generating 

Bernoulli partition of (:K, T). 

Such a system is K,by a proof similar to that given in sec. 3, 

and differs from (Y ,1-L,._. , U t) (perhaps not significantly) in 
p,v 

that n(•) does not have an infinitely divisible distribution 

a.:: m(l, .) does. The q~estion of the Bernoulli property for (i,T) 

is sti!l open . ...., 



6. Some Concluding R'?marks on Jo; ;go(iic Pr.oper.ll£~_S~f. T~fil""Lte 

SysteMs of l!lte_~cing Paf!iclcs 

G6 

With:i.n the f ramel·lOrk in which we have been r.;orking , pr.ohs.bili&

ti.c descriptiun of quasi local oost!rvabl.es of inf:..nite systems ~ th e 

ergodic properties depend on the mechanis~ of Ciissipat!.on of l ocal 

information. In gener.al, one may expect two typ~s of such mechanism 

to be present: one by wh:!.c!-1 the local i:~fo"!:mdtion "wanders" off to 

infinity and that of local diss ipa t ion . 

In the two examples which were studied here the l ocal mechanism 

was essentially absent. This vague stat:ement may be supported by 

the fact that the coLresponding finite systems have poor ergodic 

properties, in particular their Kolmogorov-ent:r:opy i s zero. ·Yet, 

these exa1!1ples may be helpf ul for the understanding of the role 

played by the first mecha nism. While in the i deal gas local 

information is steadily flo·iling to t!lfinity, the interactions ¥ihich 

we co~sidered cause some of it tc "wander" off to infinity in a 

"random walk" fashion. !.n this sense there i s a s imilarity be tween 

the system of hard rods and the mixture which was conside red in 

this chapter. In both the time evol•.1tion may forc~ally be described 

as carried in two s t E: ps : f.i r st a simpl·~ steady f l o~;~ , li~e the time 

evolution of t h{! ideal g'ls , and t hen a shift in a y;ar.dom direction . 

In the mixture of several ~cmponents the shift acted on a. separate 

factor · (i.e. the space of c olore} \vhile in tl:~ system of hard rods 

i t was -ce pro2sented by ju.nps of the "originu in the reduced des c.rip 

tion. In a more geueral inceractiGn ( like thP. one. ob ta ined in a 
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mixture of partic l e s of diffe rent masses) the i nfo r.r.a t .:.-:: c. will al.so 

get locally dissipated or "spread" over neighboring particles. 

In both systems whi ch we have conside red this mechanism leads to 

the K-propcrty but pnsses somewh!lt similar diff i c 1.tlties in deciding 

if the systems are Bernoulli. The conditions which we imposed on 

the velocity d istribution in the h.r.s. in orde r to obtain the 

Bernoulli prope rty amount to requiring that the above "random 

walk" of local information be transient. In this respect it is 

worth ::n~ntioning that the "random ~,•alk systems" considered in l l6] 

which also have a similar mechanism, and may be c onstructed in 

different dimensions, are Bernoulli in dimens ions > 3 in which the 

randon1 walk becomes transient. 

For systems in which the ~ p~ice translations have good ergodi c 

prope:cties .,.1ith l"e s p~ct to l ocal partitions (which might be the 

gene:ral case for s ys t ems with intera ctions o£ finite range , [11]) 

the existence of a gene rating partition constructed on local 

observations may be an i ndicator of the strong pres ence of the 

first mechani sm of dis3ipation of the l ocal ir~ormation. Although 

the example s which h..?.ve been sturlie:i a-re no t sufficiently ~eneral, 

one is tempted to spe culate that s u.ch systc:ns will have the . K-prope t·ty 

(or even the Be rno ulli property in three dime ns ion&l s ystems). 

rlith respec t to the abstrac t e r godic properties of the time evo l•J

tio~, the ·escape tu infinity of local infor~ation ~3y sc=ee n the 

exis t ex1ce of a l ocal mechanism of d :;.ssipation t.,hich mi ght bt even more 

interesting fo r th<:: cxnlanation o f "good thenncclynamical t cha-vior" 
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of the system. In this respect (apd in ·face of che isomorphism 

theorem of Be=noulli systems) it ~~y be ~ore rewarding; from the 

rhysical poiut oi view, to study ~he ergodic p~operties of the 

time evolution with respect to strictly local partitions or, as 

was suggested by S. Golcst~in, to study the ergodi c properties of 

the combined group of space a~d time translations, ~ee [15,17]. 



V • On Stabili ty of Equi librium States 

1. I ntr oduction 

?hysical sys tems may have many stationary sta tes. These are de 

scribed by measures on the phase space which are invariant under 

the time evol ution. However, it has been wide ly accepted , 

f ollm·1ing the f ot;nders of s tatis tical mechanics, tha t equilibrium 

phenomena of a large system can be described by a ssuming that it is 

in one of its thermodynamical equilibrium (Gibbs) states ( these are 

parametrised by only few macroscopic quantities such as energy per 

particl e , density , e tc.). 

For large sy3 t ems the equilibrium states were shown [22,43] t o have 

maximal entropy under the proper conditi.ons and it was heuristically 

argued tha t small perturbations, due to interactions with the environ

ment, will bring a dynamical syslem close t o equilibrium. This suggests 

another , dynamical>characterization of the equilibrium &tates as 

those \~hich are stable unde r small local perturba tions of 'the 

dynamics. 

In the case of infinite quantum systems, Haag, Kastle r and Trych

Pohlmeye r (HKP) showed [18 ] tha t the equilibrium (J:< .M.S.) states may 

indeed be characterized by a condition of 11stability 11 under arbitrary 

local perturbation. Motivated by this re sult, we discuss the 

applicability of stability to the charac t e rization of equilibrium 
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s tates o£ fini te and infin:i.t~ clas sica~ s ystews. T'he argument of 

HKP D'.ay be adapt.ed t o prove a similar r E>sitl t fe r .;_r.f. ini,te classical 

r-yst~ms [ 1]. For the ~.deal gas howe·Jer ~>'e · obtain a pos iti ·Je r e sult 

under weaker assumptions than those used in the general ~asc. 

2. Eq.t:ill.brium States as Sp~cin l Stationarv Statel:l 

Macroscopic states of physical Sj•ste~ are as ~umed, in stati~tical 

mechanics) to be given by probabi lity measuras (W) on thE; Fhase space 

(f ) .:lppropriate to the sys tem. To d~scribe-. a stationary state t he 

measure mus t be invariant under the time evolution. Since the energy 

(Hamiltionian) E of a f inite system o:!: particles is ahvays a constant 

of the motion, a measure whose density with r espect to the Liouvi.lle 

measure (which is invariant under any Hamiltonian dynamics) is giveu 

by a function of ener gy will always be stationary. A state of thi s 

form is compl~tely ch~racterized by the distribution of energy. In 

the hcur:.s~ic justification of the va lidity of thermodynami cal des -

cription :ior l arge systems it is usually assumed that equilibrium 

states are of the aoove type. 

* If t he tiu1e evolution is ergodic on almost all the energy sur -

faces, equipped wi th their r.atural (microc.?..nonical) measu res , t hen , 

indeed, a.ny non s i ngular (with respec.t to t:he Liouvi lle surf a ce I!lf~asu.:: e) 

stationary state ts a~ equil:!.brium state in t he above sense . J:!m,,-

eve r, if the system fvSSC S$eS additiona l 1 smooth' c ons t ants of tha 

------
*This ap;_:>Hcation of e~godi~i:.:y sh0ul d no t be ccn[us~d with the 

diffe t c.> nt q ues t"ion o f ju:> tif j c a tion of t:he use of enserr.bles. 



71 

mot:ion then there will also be s tationacy states whose densi.ties de-

pend on those invariantR. This is the case with integrable systems; 

for example, the ideal gas is a box (sec.(II.5)) where the ind ividual 

energies are invariant, or the one pa!'ticle system of an elastic 

b& 11 cons traine.d to move in a t'O\tnd di.sc, where hath the energy and 

the angular momentum are constc:mts of the motion. 

It wi.ll be shown here that, in the generic case, amc.ng the 

statior.ary states of a finite system only the equilibrium states 

(in the above sense) are stable under small perturbations of the 

dynamics. 

As we have seen in the infinite ideal gas (sec . II ), the non 

~~iqueness of a stati~nary stat~ with given density and energy per 

particle may persist in infinite systems, even if one re~uires 

the state to be translationally invariant and have good clustering 

(i.e., mixing under space translations) properties. The quasi 

local states of infinite systems are suitable for description of 

local phenomena for tv-hich the s urrounding gas acts as heat aud 

particle reservoir. Thus one would expect, and indeed it was shown 

* (Lanford [2.8]), that different (pur e ) equilibrium ensembles (in the above 

sense) of a L'i·cge sys t em V.'O'.Jld produce , in the thermodynarr.ica 1 

limit, th~ Gi bbs grand canonical ensemble for strictly local obser~r-

ables (with orq,er boun.jary dependence) , Accordingly, stability 

under local perturbations may be expected , in the case of infinite 

sys tems , to zir..g l e 0ut the Gi!Jb!; states, This will be demonstr ate<! 

* i.e. fo r w'nich tht\ distrilmtion of energy is concentrated arou11.d a 
single valt.:t!. 



here for the idc3l gas. 

3. Stability Cor~i~~ 

The notion of stability which c~e w:i.sh ·to use :i..s simil£.r to that 

used by HKP a::-,d may be described 1~oughly as follows: Let be 

the statio~"la!). s tate given by the function £ = f(H). If we perturb 

H slightly to obtain a new Hamilc.o:J.ian HA = H + ~h, We obtain a 

Ah A 
new time evolution T~ (=Tt) fer which there exists a measure 

wX.h (:ai) (given by the function f(H + Ah)) •-V"hich is stationary 

1\ 

u.ndf;r T 
t 

and "close 11 0 to w \ole will say that any state w 

f wAh 
stationary under Tt is stable if there exists such a ·amily 

•11hich is close tow for all (sufficiently nice) perturbations h. 

A state ~~ which fails to be stable in this sense should net be re-

gar.ded as "physical:' because an arbitrarily sntall ~rror in our 

kno~ledge of H could imply that w does not even approximate a 

state statione ry under the actual Hamiltonian time evolution. 
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To obtain a precise fo:;:mulation of stability we must decide exac tly 

how ~ is to be ciose to ~ Since the only use of the measure (or ensemb l e) 

is to obtain expectation values cf physical obse1:vables, i.e. c.f. functions 

A(x), which (by the very nature of physical observations ) m'-'ly b::! assumed 

t (l b~ s~ooth iunctions of x,x E r , closeneGS should refe:;: to sudt expectatior. 

values. We shall "'ri.te w (A) and J..(A) for the ~1-.pectation v11i.ue cf A, 

~itt! respect to the measures :.:J and r.:f, -"!nd wil l assume throughout that n and 

'i 
all perturbati.ons a re ~ C-(f) a nd t:!w. t h is bounded. Some p->. 3ib:i.lities are: 
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,_·) ?-. . . '"' .... 'l.l 1n norr.1, 1 , e, 

i J (A) - w (A) I ~ c (X) I!Ail , 

where lim c ()._) = 0, A E C (I) , the bounded continuous functions vn the 
A_ ... Q 

phase space r o f the finite system, and IIAI! - sup 
xer 

I A (x) I' 

H) J ----+ w "'1eakly, i.e. 
/..-tO 

'\ 

w(A)~ W (A) for all A c C(T). 
X ... 0 

Clearly i) impiies 1.:.). It is al8o worth noting that there is a 

natural dynamical formulation of stability which is equivalent to i.) 

i 1
) T~h w remains close (in norm) to w uniformly in. t, for any 

perturbation h, when A.~ is sufflciently small, i.e., 

1 w{T~ A) - w (A) I < c (\) HAll 

for all A ~ c<n and all t . 

To prove equivalence we note that i 1
) follows from i) because 

I W{T~A) - u:{A) I ~ I W{T~A) .. J- (T~A) I + I J (A) - ui,A) ! ~ 2 f. 0..) \iAji , 

by the stationarity of ) under the pertt;rbed since ~(T~A) = J-CA) 

evolution and \\T~AI I = 1\A\1· 
.) 

Conversely' if i I) hol~s we may cons t :cuct w· 

norm close to w a:; a \~eak limit point of the time averages '4 o f the 

T 
mee.sures TX w <ii = 1/T J rlt TAW). 

t l 0 t 

Condition i 1
) 1~y be called dynamical stability : Sappose a 

perturbation Ah is a dded t o H at some time , say t : 0, the~ w will 

change with t i me for t > 0 . If ho·Hever w satisfieli i ') and A. i s 

~mall the ::1 the expec ta t 1.on va l ues o i physical obse rila~les will e:ls o 

be cl-.anged only s l~ghi::!.y eve n a £ i:c:r very long times. (This remains 

true also i f t he init:ia l .:> t ace i s not exactly W bu t :;ome state UJ: 

'1-Ih i ch is r. l ose t eo w i n florm. ) 
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These conditions have qu::.ntum counterparts; one replaces C(f) in 

the above by the C*-algebra B(Y.) of b~unded 0pcrators on the Hilb~rt 

Rpa.cE:! 'JI correspondi!lg to t:1e finite quantum system - of a finite 

A. 
number of particles h1 a ficitt:: volume. w and w correspocd to normal 

stat:es on B(U) ( i.e., po.sitive linear f~mctionals w of the form 

A - tr (AP), A E BtW-), where P E B(Ar) is positive anc tr (!') ::: 1) 

which are invari&nt under the one-oarameter grouDs T and TA.h . . t t 

generated by -che r..<lmilt:mians Hand H + 'Ah, hE B(~t) , respectively. 

For finite syste.ms R has discret:l:'! spectrum and co rresponding to 

states of the form f(H) for classical systems one hos the invariant 

states given by P = f(H) (e.g., p = e-{m I Tr e-flli)for quantum 

systen~e5 . 

For both the classical and quantum finite systems, a state given by 

a (reasenable) function f (H) will satisfy i) c.nd ii) and thus, also i 1
). In 

the quantum case a st.'ite is stationary if and only if [ P,HJ 

(= ~P. - HP) ::: 0, so that if H has nondegenerate spectrum P must 

clearly be of th~ desired form. Even if H is degenerate the restriction 

of P to each energy l eve l must s till be the identity if ii) is to be 

sati~fied, sine ~~ any splitting of an energy level rr.ay be achieved by 

the approp riate choice of perturbat~on [ 18]. In t h<:: classical situation 

we !leed st::onge r condition:; than i) and ii.) to obtain a general result. Before 

introducing suc!'l a condition, in sec. 5, we shall, i n the next sect:!.on, 

in,Testigate scme consequent.es t·7hich follow sol ely from the "weait stability 11 

condition ii) . 
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4 , Sorr.e Ccnse,ucnces d the Hea~~- Sta hili ty (1<'i.n5. •.·.:: ~;.._,~CQS) 

Stability ii) , which is the weakest con.dl t~on H!enclcmed , has 

already strong implications. We study them f i r st on the 

finite systeUis, ~.;hiGh are the subj.=:c t: of thL; and the following 

sE!ction. 

~I..£E..O_sition 1..:.. Let w be lve akly stable unde r the perturbation h as in ii), 

/,h 
i .e . there exists a collec tion w of states ir.variant under the 

dyr..amics gene ra ted by H + /,h which converge weak ly to w. Then 

w~11 (Q) is dif fere nt ia ble at ~ = 0 on observables of the form 

Q = lH,B}(the Poisso n Bracket (P.B.) of H wi th B) for some B E c1
(f) 

0 

(C
1 

functions of compact supportf and 

L 1/ 'h d n,B}) -- -we ih,B\). 
d ) 

~=0 

In particu l a r i.f B is a cons tant of the motion, IH,B I = 0, then 

(3 .1) 

W ({h , B} ) = 0. (3,2) 

Proof: For aGy BE c1(f) the perturbed states satisfy 
0 

o = ~ w~h(T~B) = w~h(IH + ~h, BI) , 
dt t-=0 

or 

-------- --- ----··---- ---------- - -----· 
.lt This c ~-:-l lectio.1 i nclude s ohservables of the f (n-m 0' A - A, for t E lR and 

t 

A E c1(f) ( r,inc<>.T t A- A= tH, j''t"' 1 \ ' o o.J..u\-1"-' du l) anrl is, there~ore,dense 

on the. orthogon::tl complement (in 1
2

( 1-Lw)) of the roeasur~bl~ constants 

of the. motion. 
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Th k . . £ ,, hh . 0 . 1 . • f h . e wea c ont:;,.r:.u1.ty o .. v st A = 1..rnp~1e~ t ~~~ ·.:~-ore t e ex1ster.c£, 

of the J. i :ni t 

lim 
A. - 0 

Since ~ by stationarity, 

-lim 
')... .... 0 

Ah l I the above limit is che I·Jeak der:!.vative of w on Q = lH,B . 

Propos~ttc~n ]...:_ If UJ satisfies stability ii.) and is given by a 

c1
(f) density:, then 

for any BE. c1
(I') sac.h that tH ,B l = 0. 

0 

(~ .3) 

Proof: Ry Prc·position 1 \n,B l = 0 imp lief' W( lh, i3 b = 0 fo r any 

2 
h E C • ::.n t e tms of P we thus have , us ing ~<~eli k r.own properties of 

0 

the P.B. ~ 
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0 = j ·dx P \h,B l = 

= ('dx iPh,B I - J dx h \P,Bl = 
" 

= - Jdx hlP ,B \ . 

Since his arbitrary this implies (4.3). 

We have thus obtained a. simple condition on (J)~ (4.2) and (4.3), 

necessary for stabil~ty ii). 

The above arguments can be reproduced for quantum systems, with 

the understanding that [ , } stands for the coannutatcr . According to 

(4.3) a state of a quantum syst:.m, given by a det~sity operator p, iG 

stable ii) only if p con·anutes with all operators which conlillu t e with 

the Hamiltonian H. Since H has discrete spectrum it follows simply 

that p is a function of H. 

No such general result can be expected_for classical system..s as 

may be seen be eo\"~S ide ring integrable sys terns for w!lich the ~olmogorov-Arnold-

Moser (KAM) theoram L3S,4] is · appLi_ce.3le. It can be shown> see ~ema 1·k a t 

end of sec . 4, that for such systems even the stronger sta'oility condition 

i) is not sufficient to insure the desil:ed result p = f (H). 

The differeno:::.e between c!.assical and c;uantum syste·ms appea:::s to 

be due to the lack of a sufficient numbe r of glohai ccnstants of 

the motion i n the classical case. This prevents fuller exploitation of 

Propositicn 2 H·:-lose usefulr:ess depends on the exi.r.tence of an abundance 

of :!.nvariam:s. Even integ:::able s ystems , if they sati.5fy the conditions 
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of the KP..M theorem, have only a "limit~d" r:m~t·er of such constants (Le. 

n· cor.s::am:s when r is a 2n dimensional space). This sh~-IS up in the 

requirement for the KAM theorem that t he frequencies be incornrnensural>leL4] 

\Jhich reduces the numbt!r of smooth in•:a:riants , e.g., for two uncoupled 

oscillators there exists a funct i on of the n.ro phases which is a 

(smooth) invariant Hf the freC!uencies are comme nsurable. Indeed, we 

shall now prove that in the extreme case of a peri0dic system weak 

stability alone implies tr.a 'C P = £(H). We shall consider this case 

explicitly, despite its limited applicability, to illustrate the method 

used in the next section for more "typical" systems. 

Prcpositio~_,l: Let w be a state of a periodic system,. given 

by a c1 •1l density p. If w is weakly stable ( i.e. satisfies stabili.ty ii)) 

then locally (a~·.-3.y from fixe d points) P is a function of H, i.e. 

gre.d p is parallel to grad H. (L~ .4) 

Prcof: --- Denote by 1 .::he period of the system. 
1 

Then, for any A E c
0

: 

'i 
A(x) = J dt A(T x) 

0 t 

is a constant ')f t he u:otion. (Since {H,A} = J: dt t H,TtAI = J: dt ~t (TtA) 

T.tA -A = 0.) Pt:opositioo 2 now implies that 

o = \,p,A! 
I 

~ r dt lo,T AI .! . • t 
0 

wher~ we hal:(;:. ;;.sed t1·,e invar iance of p und;r T . Ass..un\! now that grad p 
1: 
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is not parallel to grad H at some po int 1c O!l.e c ou.!.d t:ten find on 

observable A,wi.th s~pport in a neighhorho,: d o f x~ in which {p ,A} > 0 along 

the orbit oi x. Th i~ would contra d ic t (4.5). 

The typical (generic) i ntegrable sy::;tem is not periodic . Ne vertheless 

its periocic points <lr e dens e in t he pha se s pG.::e [ 4] . In t he n e:.'<: t section ~-a 

show how t o obta in a pos i t ive r e sttlt f o r such s ystems at the price of 

i mpos ing a somet·:ha t stronge r, and no t s o physical, r equ irement of 

sta bility on the equ ilibrium s tates . 

5. A Stronger Stability Condition 

As we have s een in propositions 1 and 2, the weak stability of a 

state w enable s one to define, for each smcoth perturbation h of compact 

support, a func tional In, in whose dox:Il8 in :.r e o bs e rvables of the f orn 

Q = {H, B}, . by 

In ([H,B}) = - W ( [ h,B}). 

In was sho>·m "there . tc be t h e wea k derivative o f the pe rtu rbed s tates u/-·h 

Definitioq: A state w sat i sfies stability iii) if it i s we~kly 

stable and if, f or each h E C~, t he f unc t i ona l Lh is 

function fh, i.e. 

given 

I.. (fH,t:';l ):.: r d ~ (' r ~I B} 
0 , o ~ x rh x J t · , . 

When ~ has a ce nsity ~ then 

J dx fh fH,B} =- J dx p [h, B}. 

2 
by a C C[) 
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This gives after integration by pa-r-ts, assuming p ~ c1 (D, 

- J dx B ( H, fh} = s dx B { h , p} . 

Since this holds for, essentially, c;.ny B it implies 

<s-1) 

Thus, for stc:ttes given by a density, stability iii) implies that 

for each perturbation h, there ex.i.sts a c1 m function ~ which satisfies 

(4.1). This condition is satisfied by p of the desired form, i .e. 

p = f(H), f € c1
, since 

{h,p} = {h,f(H)} = f'(H) f.h ,H} = (f '(H) h,H} 

and one may choose ~ :: f' (H) h . . 

We will n~~ show that in the generic case, the converse of the above 

statement is .'l lso true. 

Proposition 4: Let w satisfy stability iii) and be giver. by 

a c1 
deusity p. If period~c orbits (under Tt) are dense in r and if the 

energy f:lurfaces SE are connected then p is a f unction of H. 

Pro·of: Let y E r be a periodic point with period T· By stability iii), 

th d t each h E •··
0
2 

a C liT'\ - · f h th ere correspo;:J. s .o -.. ,~, tunct~on h sue at 

Therefore: u:;ing the periodic:.ty of the orbit through .. i ole obtain .i , 

T :, r f' du (p,h} (TuY) du (H,f } (T y) = 
.; 0 0 h u 



for any h E ~ . By the S ~ll'.e argument as i n the p~·oo ::: oi Propos it ion 3, 

we: conclude th.:tt g rad p is parallel to grad E at y . 

Since the periodic po i nts are dense, ~he gradients of p t>.r..d of H are 

parallel everywhe=e. The colrr.ectedness of energy s urfaces now implies 

that p is a func t i on of H. 

Remark: --- The assumptions made in Proposition 4 cannot easily be weakened 

es may be seen by cor~idering stability in integrable sys ten~ to which 

r ] thP. KA.."l theorem is applicable ' . . 35,4 • (The ideal gas in a t o r us is such a 

system.) In these s ys t ems the phase space is dec~mposable into invariant 

(under Tt) tori ''mos t" of which are stable under small (sufficiently 

smooth) perturbations h~ i.e., except for a family of tori of total 

measure c (A), then~ co=responds to ec>.ch T - invariant torus M a uniformly 
t 

close T~h - invariant torus ~ (on wh ich the T~h time evolut ion un i f 0 rml y 

approximates the ·Tt evolutioa on M). Here e(A) ~ 0 as A~ 0 and ~, is 

"differentiably close" to M. Hence for any Tt -sta tionary measure 'N'hicl:. 

is given by a smooth "function of the invariant tori" (i.e., a function 

of t he "ac tion variables" pararnet:erizing the tori) one may u.:::;e the 

corresponden::e M ++ ~ to construct a T~-stat.i.cnary measure J. which i s 

norm close to \U and even differenUably close . Thus, un1es s the us e of 

perturbations co whi ch KAM does not appl y is allowed - i n ou r argum~nt 

h could be arbitrarily smooth - the Proposition wi. ll not hold if ue r e:·place 

in it sta bility iii) by stability ii ) or ev.en atab!tt~. tty i) . Sta bility ::Lii) , 

A 
on the o ther hand , will ru le out thes~ cases because the ae r ivaci ve of W at 

A = 0 may fe.il to be even a fun~tio n and will certainly not be c
1 • A pos.:..t j ve 
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A. 
result may hm.rever be possible if the ;.u a,re r e quired to be given by 

smooth functions, s1nce i:his is almost certainly hot the case for the 

,.,A. • d • h f . KAM th w which can ~e constructe oy t e use o · the eorem. 

6. Stable States of the Infinite Ideal Gas 

We turn now to the application cf stability conditions to states 

of a simple iJlli!!i:te systex:,: the ideal gas. As explained in section 2, 

one may expect a stability condition to single out, among the "pure ' ' 

stationary states, the Gi~Jbs equilibrium states. This, i:Jdeed, t.rill 

be shown. 

The content oi this section is independent of the previous two: 

the setup cf an iQfinite system differs from the finite systems 

and the stability condition will be modifi~d, e ssentially by re-

stricting the perturbations to be local. J.{owever, there will be 

some similarities in the approach and in the resul ts. 

N t · T.' • 11 d by r = Rd .o. Rd h · 1 h _oat~~: ~e w1 enote ~ t .e one part1c e p ~se 

space and by (X t the free time evolution on it (gP.11er.a ted by 

2 
H1 = ~ IP 11 ). Correspondingly: 

n 

rn :: r ® r ® ••• 0 r J 

~-..-/ 
n 

cand Hn((x)n) =iEl Hl(x)· 



i i ~n K is the space of C symreeLric functicns on ! with compac t 
n 

i ~ i support and K =i~l Kn . 

The phase space of the infini te system, X, is tha collection 

of locally finite ccnfigurations in f. For f E K0 ,k f will 
n n n 

denote the function 

2 

(I:f ) : X -+ R 
n 

(I:£ ) dx . }) =(i ~. < · )f (x . ·, 
n 1 1 ~2 .•. 1~ n 1 1 

X . , • •• ,X . ) • 
12 1n 

For v E K , H + I:v (t,yi t h H = t:ul) is the genera tor of the 

time evolution 
H~ s v 
t 

d 
dt 

on "A,wi th res pact to which 

SH~v~f 1 ~ ~ l "" = tH + "-v , -'-f • 
t t=O 
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It is understood that the P.B. is to be taken with respect to only 

those particles which lie ~n the common support. 

X is equipped with a 0"-algebra. B(x) descrioed in sec. (II. .2) 

with r (!spect to wh i ch func tions in I:K0 are measure.hJ.c. A sta te W 

is a linear functional on I:K0 which corresponds to a measure ~~ on 

B(X): 

W(I:f) = (Ef) (S) ~w(dS) 
s E X 

I f, for a state U.' , E£ is 1ntegrable fo r all £ E K, then 



.. 
. defines a positive linear funccionol on K and hence a mE:asure P 

ll 

rn -on , n- 1,2, . . . If all the P are absolutely continuous 
n 

with respect to the Le.b~sgue measu1·e,we hav~ , for n E Z+ , 

dP -=( 1 / n!) P (x
1

, . • • x · ) dx
1 
.•• dx 

n n n n 

for some "correlation functions" P ((x) ) with 
n · n 

Now, &uy state given by correlation functions of the form 

n 
p ( (x) ) = n 

n n i=l £(~) 

is invariant under S ( ==S11) dnd p0$!3esse.: the space c ·tusteri r.tg 
t t 

property: 

as min ! q. - q .I .... .:Q 

~ J 
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One would like, however, to single out the Gibbs states W c' P,.., 
characterized by corr.;lation funct~ons of the form 

n -PH
1 

(x . ) 
"' ( (x) ) ·- rr p 1?. ~ as tho~e p!·ope-... 1=.or the des cription '" n n - {= 1 · ' ,J -
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of a system vrhi c;h is in equilibrium while subj£cted to weak local 

perturbations by the znvirorur..er.t. The f o llowing is an edaptation 

o:: the we-:.k stability coctdi tion to infinite systems , where it i~ 

reasonable to requi ·L'e it with res;:>ect to loca l perturb'ations only. 

Definition: We call a s tate ~ of an i~finite 

system,weakly stable (uncie::r local perturbat :i.ons) if for each(repul-

2 
si-ve) local smooth pe r turbation 'Lv ::_ 0, v E K *, there exists a 

collection of s tates WA (for 0 ::_ A < 6. wi th some 6. > 0) which: 

1) are invariant under the perturbed dynamics "generated" by 

I! + A I:v 

2) converge weakly, on ~K, to w 

3) "relax" under the froae time evolution, i.e. the limits 

lim WA(S t (I:f) ) 
t-t+CX) ' 

£ E K 

c:;dst. ( in which case they -'i re e qual). 

'1: We restrict the allowed pe rturba t i onE in orde r t:o avoid a nu::. l 
definition: t;c;,'l2; attrac t ive poten t i.aJ.s t-.rill r esult in a collaps e 
of the lnfinite systefi:! unde r which no s tate is s t ab l e . A mere 
phys ical r estriction wou ~d be t c al10w onlv the so ca l l ed "s t&ble 
potentia l!>" [43 J. Technic~lly !:hose restrictions would helve no 
influe nce on t he p't'o0£ (in one d irec tion) a~<l would bt.: ignored . 
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Notice that 3) is satidied ~ndepencently of 1) and 2) if the 

dy.-1ami.cal system (X, UJ, St) is mixing (o.r even "Pross er-~i~fng", see. 

sec.(I.4)) a~d WX are a bso lutely continuous with resFect tow 

We will show now that , due to the transient character of Lhe one 

parLi.cle time evolution, the ideal gas po3sesses a large class of 

l!ca.nonicnl': transfo r•:~ati ons which commute with the free time evolu-

tion. As we have seen in the previous sections, :fot· euch system!S 

the t~eak stability is already e strong condition. Althcmgh the 

"generators" of these transformations are r.o longer functions on 

the systerr. 's phase space, they still satisfy similar equations as 

far as their P . B. with strictly local observables are concerned. 

~ 2 
I.et's denotl'~ by K"' the subspace of functions inK whos e support 

n n 

is tounded 3\'lay from the fixed points of a~ ( i.e • .P- .-: 0). For 

__ s 
E K d e note 

n 

g ((x)) = Jm~ dt g (Cl'nt (x) ). 
n n - n n 

h " ( ( ) ' - f - - c2 f . f f 11 
It is easy to see t at g x ) J.S a . l.nJ.te unctJ.on o. 

n n sym. 

although not of ccmpact support. Fu:;:-ther, it has the .following 

properties: 

l) g((x ) ) is invarianL under an . 
n t 

2) The functions g ((x)
0

) obtained i n the a bove way may locally 

from f ixed p:Jint<: o f C(n) he any cor!s tants of the motiot!. 
t 



Tc see this,notice t har (for the I.G.) if g E K
3 

and if 
n n 
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f E c2(fn ) satisfies tf ,H l = 0 along ti:~ orbit of the support 
n sym. n n 

of g then 
n 

f . g 
n n 

~Ks 
""'" n 

3) For any v E K
1 and g 

n n Ill 

and 
/\ 
f .g n n 

.. 
;:: f (7 

n °n 

the formal P.B. 

is g:i.ven by a finite function. on X. F:1rthcr, it satisfi·~S the 

usual rule if one applies the same convention as in tl:v ,H l: 

or\n 
\Ev , ~g l = ~ 

m n K=l 
.LmiE.:lQ..L __ 
K! (m-K)! (n-K)! 

(.Pis th~ normali zed sy1m1etrization operator). Notice that the 

summands are functions o£ compact support. 

Using techniques reminiscent of propositions 1 and 2, Ye shall 

obtain now us&ful conditions necessary for the weak stability of a 

state :v. 

Pro~osition 5 : ~ Let w be a weakly stable state (of the I .G .). 

Then, for each v E K2 
and gn E K8 

n' 
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Proof: By ::;tabi1.ity witl. rc~~cct t o 'f..v: 
------ .1. 

Thus 

1 I·T '" I \' l .., (IH,s ... _ ~gl) d t 
·- .J -'~"' 'Av , 
"' -

Ot' 

By the "rel;:.x.l-::ivn" Frope r-.:y , tr_is conve rges to 

By a previous r e;:r:a r k we IT'.ay app l y !lOW the ~·!eak convergence of w to /1. 

obtain: 
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Lenrna 6:Let w be a weakly stable state of the I.G •• !f w possessef' 

c1 
correlation functions then, locally, these C.r2 functions vf the 

energy. 

suffic.i.ent to f.hc·w that, for each n E ~+· , grad P is 
n 

parallel to grad ll • To show t:rtls,it is e nough .:o prov·~ i:hat ~.;hen
n 

ever 1 ! - - n ' t -lf ,H ((x)) = 0 dt some (x) E r' then tf ,P I((x)) = 0. 
n n n n n n n 

By a previous remark, this certainly follows from the following 

claim: 

If K < d r KS ~ · m an gK o:: n t .• en 

We shc::.ll nu·w prove (i•), under the ass~"lptions of the LellllW~by 

induction on K. 

1) Let n :::_ L Since w· is a weakly stable state, propos:i.tion 5 

implies that, f o r each vn E K! and g 1 E K~ 

Expressing it in tenns of the n-th correlation funct ion we obtain: 

0 = j~(x) P ((x) ) i~ l(x) ) , g(x
1
)1 = 

n n n n · n 

= - j'd(x) v t P ( (x) ) , g(x
1
)!. 

n n n n _ 



Since the only essential restriction on v is its symmetry , we 
n 

obtair.. 
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1 n 
0 = PlP ((x) ), g(x.)} =- ~ lP ((x) ), g(x.) I 

n n l n i=l n n 1 

I£ ell the momer.ta of (x) are cliff.:rent (w;:tich implies 
n 

1 
a x. 'I' x \{t, i :f j) then g(x . ) is independent fr~m g(,~.); ther.efore 

t 1 j l. J 

lP ((x) ) , g(x
1

) I = 0 
n n 

l < i<n .. 

By contir.:-.\ity, this holds for any X E rn. 

2) F0r a give~ m > 1 assume (*) to hold fer each n and K < m 

and let g 
m 

,. .. s 
t: l'\. • 

m 

0 = W(r.v :S.::fi. ' n' -~:n' 

m 
~ = -~ .. 

l 

For any v 
n 

k=l k ! (m-k)! (n-k)! 
d (x) 1 d(y) k d(Z) , v ((x)k , . (y) k) 

1< n- · ro-1< n n ·· 
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The subseript on\,, , ir,dicates that: the P.B. is to bE' taken with 
~x, 

respect to (x), only. Bv the induction assureption the · P . B. 
K 

vanishes for l~ <:: m, leaving us wi th 

The arbitrariness of v and the continuity of IP,gl imply (as in 1)) 
n 

The above claim (*) follows no>v by induction. 

Since the energy surfaces in rn are connected, with the exception 

of r• in one Jimensional systems, it follows ti:l.at the correlation 

functions are globally functions of the energy only, with the possib l e 

exception o£ ~ 1 ,which in one dimension may depend on X c~ather than 

on I:J?j) • 

The stability condition which we are considering is lin2ar in w, 

therefore it is clear that it doez not single out Gibbs equillbTium 

states. Hov1ever, r..re will se e now that among the " pure" stat~.:s t hey 

are,indeed,characterized by s tability . 

Proposition 7: A state, w, of the ideal gas .t-1hich: 

1 
1) possesses C correlation functions 

2) is weakly atable u nde r. V = I:(Ki U K~) (smooth b c.al externa l 

perturbations and (repulsi ve ) l ocal pair interactions) 
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and:3) is ergodic with re~pect to the tiwe (:volut:ion (equivalently, 

space transla~tons) 

is a Giabs s tc1. te. 

f!_gcf: I.et us use the "purity'! of the st2te iil combined with 

a result o[ tr.e p~.:evious leii'Jn<i, to l)btain a relation bett.reen 

correlation f unction& of different orders. 

Ergodici ty \-h. th respect to the time evolution implies, 

v 

lim 
T -• :» 

O·r: in t e rms c f correlation functions 

lim 
T....,a;) 

f (x ) 
l n 

+ 1/(n+l)! J d(x) . 1 P +' ( (x) +l) (n+l) v ((x ) ) a
1
t f 1 (xn+l}(~ = n-r n .L n . n n 

oil 

·- 1/n! j 'd(x) P ((x) ) v ((x) ) · ldy P
1 

(y) f
1
(y) 

nn n n n" _ 

Notir:e that, the supports of v 
n 

:>cpera t e , 

f.irst integral vanishe s as t-+ a:~ (bo•mded ~;onvergence th.) . 

Ho ·reover, by a r e sult of l en-.ma 6 

the 
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, t E IR p ((x) ) 
m m HI 

imply ing that the second integral is inciepende;: t of t. Therefore, fo!.' any 

p n+l ( (x) n+l) p ((~{) ) p l (x +1) 
n ::1 ::1 

t.Thich implies 

p ((x) ) 
n n 

- n p. (x.) • 
i ~ l. 

(The same result t,·ould follm\· 'from et'godicity of w with respect to 

space tr&csla tions .) 

Now, by the previous lemma 

for 1 < o: < d (d-the dimensionality of the system) 

ft:om which it follmvs tha t P
1

(x) = r.p
1

(E). 

The energy surfaces on f
2 

ar.e connected (,..Jhich is no t th<:: case 

1 
rllith f for d = 1)~ s o 1eL"'rl""C: 6 impHes o::hat 
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* 

Combining these r~sults: 

~hich can be satisfied only if 

pl (x) for some p > 0 and e > 0 

S > 0 since the r.o.crespondir:.g measure on X is concentrated on locally 

finite configurations. Therefore 

*· Alternatively, one could argue that (by lemma 6) 

lt, P2 (x1 ,x2) l = 0 

for any component of the "mixed angular momentum" :i.n rn,i . e. 

t = p. a q. a 
].1' 1 ].2' 2 

P . a q. a 
].2, 2 1 1' l 

'id th sm1:e _,....-<i
1 

, i
2

<2 and l < a o· < d 
~ ' - 1' 1- . 

Ho¥rever, P.z = P
2

(p
1

,p
2

) (as abcve) a nd l.re have just concluded !:hat 

p
2 

i~ invariant under the canonical trar,sformation generated by X. . 

In t he product momentum space this is a r otation ~.rhich f o r i 
1 

= j_
2 

corres ponds to a change in the direc tion of mo ~ion nf one particle 

and for i.
1 

<F 1.2 corresponds to d coupl ed ch:mge of t he m0m~nt:a of .tb.e 

two par ticlc.;,r.•hich pre s erves :::ht:: t o tal energy. Since P2 ( p{,p2) is 

inva riant 1mde r a g<?n err~l r otation in t c1e pToduct T.Omf~nt:~ s pace .. 

it is of the for~ 
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p n ((x) n)"' i~l p 

and w is a Gibbs state. 

Q.E.D. 

With respect: tc the conve rse of this proposition, :i.t :i.s easy to 

see chat the Gibbs s tates are stable under local perturbations ~~tr1 

by "stable" potentials [!+JJ; i. e . those for which 

(Ev) (x1, •• • ,x) > -nB , with some B > 0. . n 

For -~ALv 1 -~~v 
these e E L (W) and the states WA(· ) = W(e • ) satisfy 

the requixements . 
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