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I. Introduction

1, Introduction

For macroscopic systems, the collection of those quantities which
are measurable in practice is very much sﬁaller than the set of
microscopic variables. It is an experimental fact that, when in
equilibrium, macroscopic systems admit a thermodynamical descrip-

tion. Their dynamical behavior not far from equilibrium is

‘well approximated by the kinetic theory, hydrodynamics, etc. The

objective of statistical mechanics is to explain these features of
macroscopic systems on the basis of the underlying microscopic
mechanics. In particular: to find the basis for the universality

of the "simple' macroscopic description of syscems which microscopi-
cally ére described by widely varying interactions, to rel#te the
few macroscopic variables and parameters (some of which are
"universal') to microscopic quantities, and to explain bow ths
approach to equilibrium (in the way described by the kinetic theory,

for example) concurs with the microscopic (reversible) dynamics.

The success has been limited, so far, mainly to the treatment of

equilibrivm phenomenz. In the realm of the dynamical theory one

1]
[

£ill looks for a general formalism which would give physically
relevant information on the basis of the microscopic dynamics and
relate the two levels of description.

In this chapter we will briefly lay down the framewerk in which

scae properfties of (finite) mechanical systems are described by
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ergodic theory. Doing this we are merely touching the tip of an
iceberg and the interested reader is referred to 234,14,26] (where
additional refcrences are given) for a discussion of the ergodic
properties of physical systems and their phvsical relevance, and

to [20,51] for a more detailed discussion of the ergoediz thecretical

concepts.

2. Ensembles

A useful framework for a microscopic description of a {(finite)
system is the Hamiltonian dyuamics on the system's phase space.

This is obtained by a transformation from the '"Newtonian' wvariables,
positions and velccities, to positiong a2nd momenta which are realized
as functions on the systems ”pﬁase space", T, [12].

A point in I is given by thke values of (ql,...,qu, pl,...,pdN)
where d is the dimension of the space in which a single particle is
located, N is the number of particlcs,-qi is a (cartesian)
configurational coordinate of a particle and P; its canonicélly
conjugate momentum. Thus [ may be identified with a subset of
RZdN, inheriting a differential structure and a measure
dql...dqu dpl...dpdN which in this context is called the Liouville
measure.

The evolution in time of a classical system is described bv a
Ycanonical' point mapping in ', i.e. one induced by equations of the

form:




d q. _ OH s
dt:laﬁi

where H = H(p, q) is the Hamiltcnian function,

The fundamental nature, for statistigal mechanics, of this des-
criptioﬁ follows from the fact that the Liouville measure is ipvari-
ant under thelcanonical mappings (Liouvillae's theorem), in particular
under the time evolution induced by any interaction.

This fact is sometimes mentioned in a heuristic justification
of the method of "ensembles'" which was introduced by Gibbs ir
equilibrium statistical mechanics. An ensemble is the collection
of independent similar systems which are subject to certain
macroscopic constraints, equipped with a pr;bability measure which
gives the distribution of their microscopic quantities. It is
sometimes argued (very heuristically) (42] that, due to the
property expressed in Liouville's theorem, the size of macroscopic

systems (which contain the order of 1023 particles) and the nature
of interactions (which are given by piecewise smooth functions on
the phase space) it is the Liouvillie measure on the system's

phase space which, when properly normalized, gzives the cxperimental



probability distribution of an equilibrium ensamble* + Further,
it is argued that, for ensembles which are defined by con-
straints which experimentally single out a "pure phase', the
distribution of the intensive variables with fespect to the

Liouville measure is sharply picked around a single value .(28], Thus,

in order to compute the values of macroscopic cbseyvables for a
given system, one may use the ensemble average on a proper ensemble.
Such an approach is natura] in a theory which deals with statistical
predictions; however the boldness of Gibbs was to apply it to the

description of any given system.

The method of ensembles, together with the proper limit for large
systems, has been successfully used in equilibrium statistical
mechanics. The limit which is used there is the "thermodynamic
limit" in which the "additive" quantities (volume, number of particles
and energy) increase to infinity while their densities are kept
(approximately) constant. Sharp results are, of course, obtained
only in the limit, for which formal techniques are now being developed.

Since the problems c¢f equilibrium and nonequilibrium statistical

-

#The "microcanonical ensemble',which is represented by surface in i,
of constant energy, should be thought of as a limit of emsembles for
which the energy is constrained to a small interval. For such an
enzemble one should take the surface mezsure which is induced, in
the above limic, by the Liouville measure.
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mechanics are nct entirely indepandent, one may hope that a formal
theory of infinite systems, which uses the eunsemble method, may pro-
vide a useful itoel for the study of nonequilibrium properties as
well. Among the recent investigations along this line core finds
the study of the C* algebras of observables [ 9] 2ad the study of
ergodic properties of iafinite systams (17]. ror cestain results,
other directions, which invelve different macroscopic limits, were
follewed (see Lanford [29]).
3. Ergodicity

The description cf a mechanical system in terme of a measure
space with a measure preserving transformation, and in pa:rticular
the attempt to obtain another, purely dynamical, explanation for
the success of tlie method of ensembles, stimulated the develop=-
ment of the ergodic theory. This has benefitted both mathematics
and physics. The concepts and results cbtained are ¢f great

interest to the study of dynamical properties of physical systems.

In the context of abstract ergodic theory, a dynamical
systems is a triple (X, ¢, T) of a space I (equipped with a C-algebra
which we will usually omit in our notation), a probability measure
1 and & measure preserving point transformation T (which in our
gppilications is invertible) or a measure preserving flow, which is a
measurable group of transformations gT:}t 1 e

A trarsformation T defines also mappings of functions (f) and

measures V) on X by:



(T£) (x) = £(Ix)

(TV) (dx) = V(T " (dx))

These satisfy:

JIE) ()v(dx) = J£(x) (TV) (dx) .

Many of the properties of a flow may. be obtained by studying ithe
discrete transformation T = Tl.
Probably the first result within the realm of the ergodic

; 7, g
theory is Poincare'’s recurrence theorem:

In a dynamical system (X, H, T) almost any point (meaning that
iche set of the exceptional peints has zero measure) of any measur-
able set A, w(A) > 0, will, under the action of the iterates of T,
return to A infinitely often.

This, initially surprising, result szems io indicate that it is
hopeless to explain the approach to equilibrium within thz frame-
work of the Hamiltoaian dynamics of finite closed gystems. Of
course, the flaws in this awgument arve thai the time of such a
recurrence is extremely large and that its dependence un tha praeciss
microscopic description is very unstable, Thus, on this cime scale
the accumulataed perturbations from thé epvironment make the micro-

scopic description, in terms of a Hamiltoniar flow, unrealistic.
E H 3



Another, more practical, way out of this pziadox is to assume chat
macrosacpic states are describad by probability measures ('dynamical
ensembles') and te study their time evolution. We will say
no more about the justification of this assumption and take it as
the formal definition of a state.

Another significant result is von Neumann's ergodic theorem:

1f (X, », T) is a dynamical system and £, g € Lz(u) then the

following limit existe:

t-1 , :
lim 1/t £ [f.7'g du = [£.pg du
g = i=0

(for a flow:

ta 1/t [Sdu | £.7 g du = [£. Pg aw)

L= =

vhere P is the orthogonal projection (in Lz(u)) on the subspace
of functions which are invariant under T.

It is not difficult to see that the subspace of invariant
functions includes only the constant (a.e.) functions if and
only if X has no nontrivial (i.e. not of W measure 0 or 1)
measurable invariant subsets. Such systems are called ergodic

and for them the 2bcve limit takes the form



t-1 o i - L *
lim 1/t £ jf.T'g du = [f du - (g dw .
g = i=0

There is a correspondence between such properties pf a station-
ary state and the dynamical properties of a non equilibrium staie
which iz not singular with respect to it. In particular, if the
initial state is given by an absolutely continuous measure, L',

with respect to an ergodic state J; i.e. one of the form

BV = £(V) BV, £ E€LTG) JEaw = 1,

* A stronger ergodic theorem, due to Birkhofr (6] states that in a
234,50 ) S

dynamical sysﬁem,(x, M,Tt),for avery f € tx(#) the time average
exists for almost every point (a.e.) x € X:

E(f<x>|} ) (a.e)

Hexra E(fl}l) is the conditional expectation (function) on the
U-algebra of invariant sets,

lim 1/t & £(T,x) dt

,-—o&

This result is often mentioned as another, dynamical, justifica-
tion of the use of equilibrium ensembles, since if one accepts

the idea that physical measurements have long duration with re-
spect to the "microscopic time scale" and in eifect are results

of averaging in time then, for ergodic systems, the result of an
observation taken "at'" almoset any point c¢f the esnsemble ig the
ensemble average. However, while for some physical systems the
ergodicity (of the microcanonical ensemble) may be shown or
reasonahlv postuliated, the other assumption is too strong at its
face value. Worse: the acceptance of such an assumption on
the nature of pnvsical measurement would (for finite systems) rule
out the poszibility of observing any dynamics, since it implies
that &«ll the wvantities which are measurable in practice are given
by invariant functions on the phase space.

Nevertheless, ergodicity does imply, even without further d 'ynamical
justification, tihe uniqueness of an equilibrium cnsemble (assuming
that those given by singular measures, with respect to the n.icro-
canonical emsemovle, are uarealicstic). '
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then, the time average of any measurement will ecuist ard be equal
to the value which corresponds to p.

For Hamiltonian svstems the energy (i.e. the Hemiltonian func-
tion) is always a ccnstant of the motion. If there are no other
me2surable invariants, except for functions of the energy, then.
almost all the microcanonical ensemblecs are ergodic with respect
toc the time evolution. For such systems the equilibrium measures
on the micrecanonical ensembles are unique (assuming that those
given by measures which are singular, with respect to the above
limit of the Liouville measure, are unrealistic). This follows
from the fact that an crgodic system does not admit another
ipvariant probability measure ‘which is absolutely continucus with -
respect to the one given.

4. Mixing
An ergodic system may have a stronger dynamical property:

mixing. This is defined by the existence of the limit:

lim [£-T g dp = [£du - [gd

t =

2
for any £, g € L7 (k).

* In general, if such a limit exists then, by the ergodic theorem, :
- - ) n - - o
it ic given by [£(Pg)di. The existence of such a limit,V £,g €L<{p),
ie, by irtself, an interesting nroperty (Prosser mixing).
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Mixing implies ergodicity. 1Its meaning is that any two given
measurements, if performed successivly with a large time delay,
become independent.

If the equilibrium state (L) of a system is mixing, then if
oné"prepares" the system in a non stationary state (k'), which is
not singular with respect to b , the dynamical system
will approach equilibrium with respect to any given finite set

of measurements (i.e. "weakly"):

lim |J£ dT_p") = JE dw

t »®
(the state Sf the system after the time t is given by T_tp'). This,
macroscopic, approach to equilibrium is consistent with reversible
dynamics and formally occurs backward in time as well (although the
corresponding physical experiment is almost_unfeasible).

This coexistence of different features of the macroscopic and
microscopic behavior is related to the instability of the microsccpic
dynamics. Indeed, if a system is mixing then so is the '"product"
of two replicas of it, winich implies that a pair of points chosen at
random from any small set (of positive measurs) will, after suificiently
large time, be independently distributed over the phase space.

Ergodicity and mixing may be formulated as spectral properties
of the unitarv transformation in Lz(u) wnich is induced by T. Furthesr
properties of a dynamical system are obtained by studying its dynamics

through "coarse grained" measurements.
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5, Process representations of dynamics

A physical measurement is always performed with an apparatus of
some finite vesolution. An idealized description, which meintains
this basic feature, is a discrete valued measuremecnt to which there
corresponds ar  essentially finite partition of the phase space.
Such an element of structure was introduced by Kolmogorov (23] to the
study of ergodic propertics of abstract dynamical systems.

A partition Q@ of X is a collection tQig of disjoint sets which
covers X. The partitions of a given set are partially ordered by
the relation Q < 2; P "finer" than 0 or, equivalently, Q coarser
than P. For a collection of partitions iQ(n)} one defines the
lattice operaticns:

\r{Q(n) - the coarsest particion which is finer than Q(nj Vn,
(its elements are intersections of sets in Q(n))'

Q Q(n) - the finest partition which is coarser than all the Q(n)'

The measure spaces which we will consider will be Lebesgue spaces
(19]. For these, the correspondence between sub-O-algebras and
partitions extends tc include even those whose typical elements
(fibers) have zero measure. The corresponding measurable partitions
are discussed iu 540], let us only remark here that in such systems
the sub-9-algebra which corresponds tonz_cn Q(n) is the full
O-algebra if the partitions {Q(n)§ separate the poinis of a full

measure subset of ¥,
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The entropy of a countable partition (se= (47 and [40]) is de-

fined as

H(Q) = -X k(Q,) 4n b(Q,)

and its conditional entropy, given the partition P, is defined by

HQllP) = HE@QVP) - H(®).

This turns out to be equal to the average entropy of the partitions

induced by Q on the elements of P ( when properly normalized):
HEQIP) = Z p(P,) HQIP,) = -Z p(@,) ¥ NEY & AP) (0
@le) =% w@) 5@le) = FueE) ¥ e le) mwle) o

with B(Q; |2 = w2 Q) /M@y,

The following properties of the entropy justify its interpretation
as the measure of "information" contained in a partiticn (or of the
average amount of "uncertainty" removable by the corresponding measure-
ment) :

1) H{@QVP) < H{P) + H(Q) (which implies H{QIP) < H(Q)) with equality
holding if and only if P and Q are (pairwise) independent.

2) u(qllp) <H(EP) ifQ <R

3) HQIiP) > H@IIR) ifP <R

4) H(PVQIIR) = H(®liR) + H(liPVR)
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Opve denotes (unfortunatezly) by TtQ the partition whose elements
are ‘TtQii;it corresponds to the '"measurement of 0" performed at the
time -t.

The sequence ol results of a measurement repeated at integral
times defines a process; (Q,T), conveniently described by means of
the partition which corresponds to the measurement. The process
distribution is given by a time invariant measure, determined by
the dynamical system. In particular, such a process is itsalf a
dynamical system, where the time evolution is given bv a shift of
the sequence.

ile say that Q is a generating partition if to each sequence there

ccrresponds at most a single point in X (possibly, after excluding
a set of zero measure), equivalently: ifnz_OD T Q corresponds fo
the full O-algebra. If Q is a generating partition for (X, i, T)
then this is isormorphic to the process (Q,T) when it is viewed as
a dynamical system.

The entropy of the process (Q,T) is defined as

HQ,T) = lim 1/n HQVT XV...vr (™~lig)

nee

(the existence of the limit foilows from the general properties of

entropy), aud is equal to:
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= H@ll Y 1)

(for invertible transformations the same results are obtained after
replacing T by_T'l).

Thus H(Q,T) measures both the rate in which informaticn is genexr-
ated by the process and the process instability. In particular,
H(Q,T) = 0 iff Q < g (§=_w TKQ), in which case the process is deter-
ministic, i.e. the knowledge of all the, arbitrarily remote, past
results of the particular measurement is sufficient to determine all
the future outcomes.

The entropy of T is defined as

H(T) = sup H(Q,T).
Q

An interesting result is the Kolmogorov-Sinai theorem:

If Q is a generating partition for (X, K, T) then
H(Q,T) = H(T).

6. K-systems
A particularly interesting property is that of a K-system (after
Kolmogorov) . Its usefulness stems from the fact that it may be

defined by different conditions which, as it turms out (51, are




equivalent. Among these:

1) A K-system has a completelv positive entroov. i.e. H(Q,T) > 0

for any, nontrivial, partiticn of X whose entropy is finite.
2) tbe tail of any partition of finite entropy, i.e.

@
TKQ),is the trivial partiticn {(mod 0).

A S
3) There exists a generating partition, for (X, , T), whose
tail is trivial.
In fact, one may show [51}, that any dyramical system possesses
a T-invariant sub-O-algebraz (i.e. a "factor") which is the tail
O-algebra for each gemerating partition of finite ecntropy (f.e.),
and which includes the tail O-algebra of any other (f.e.) partition.
Fer K systems this factor (which may be studied by means of a single
generating partition) is trivigl.

K systems are alsc highly mixing:

n
B@, Ao A AN A » 0 m@p.
1 n as min |t.-t.| =%
S
One may observe that certain process properties, like the process
entropy and the tail O-algebra, are shared by all the generating
partitions, &and are thercfore of great luterest as properties of the

dynamical system.
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7. Bernoulli systems

The "strongest" property of a dynamical system is the existence
of a generating partition whose itaerates under T are joincly in-

dependent (a Bernoulli partition). 3uch e system is called a

Bernoulli-systems and is isomorphic to the dynamical system ob-

tained by che shift on a process of independent random variables
(2as the one which describes the sequence of outcomes of a roulette
wheel) .

A weaker property of a partition is the "weak-Bernoulli' property

whose general meaning is that the full future process becomes, after
certain time delay, independent of the full past {see szc.(IIL. 3)).
The existence of a generating partition which is weakly Bernoulli
implies that the system is a Bernoulli system.

Although only exceptional partitions of a Bernoulli system are
Bernoulli, there are cther properties which are shared by all the
processes obtained from such a system. One such property is that the
process may be approximated by a '"finite coding" of a Bernoulli pro-
cess, in the sense that the two differ only very infrequently (another,

is the very-weak Bernoulli property which will not be discussed here,

[46,53]). (X,M,Tt} is a Bernoulli flow if (X,H,Tl) ie a Bernmoulli

system; which, as it turns out, implies that¥ 7T € R (X,M,TT) is a

Bernoulli system.
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The study of Bernoulli systems has advanced only recently and
owes many of its concepts and wesults, including those mentioned
above, to D. Ornstein. 1In parti;ular, it was shown by him that a
Bernoulli system (discrete or a flow) is completely characterized
(i.e. up to an-isomorphism) by its ertropy.

These results and a wealth of other information about Bernoulli

systems may be fourd in [39], [48] and [51].




II. ldeal Gas in the Thermodynemic Limit
1. Introduction

In this work we study ergodic properties of certain infinite
systems of interacting particles. As an illustrative example we
discuss first the ideal gas in the thermedynamic limit whose

rgodic properﬁies are well known*. This will serve both az an
example of a framework in which infinite systems are studied and
as a demonstration of the difference in origin and in significance
of ergodic properties between finite and infinité systems. Some of
the tools used here may be applied to other systems of non interacting
particles as well (161,

A more general discussion of equilibrium states of infinite
systems and the existence of a time evolution which satisfies require-
ments which correspond to the system being a limit of finite classi-
cal systems may be found in [29] (see also [7,8,43,24,25 and 27]).
This general formalism is much simplified when one deals with systems
whose particles intevact with simpler potentials like those which
will be considered in the coming chapters.

The system whichh we consider here is an idealized model of the
dilute gas. Its elementary constituents are assumed to be non inter-
acting identical point particles which move freely on a line. The
dimensionality of the space will rot play any role in this discussion.
The formalism which will be described is suitable for a probabilistic
descriptior of local observables for an infinite system in which the
density of particles is finite.

*Ergodic properties of the infinite ideal gas were first studied by

S8inai (whc proved it to be a K-system). Here we follow a simpler
representation introduced by O.E.Lanford iIi.
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2. Phase space and time evolution

A point in the phase space of a classical system corresponds to
an assigunment of vaines to all its rnanfcal coordinates. We will not
exploit fully the canonical structure of the phace space and it will
be convenient tb usc positions and velscity (rather thar momentuum)
as the degrees of freedom of a siugle particle,

Let I =m @R denote the phase space of a particle on
the line. The phase space of tﬁe infinite ideal gas is X'= r%sym.)
A point x € X' may be thought of as an equivalence class, under

permutations, of sequences

ixiii N €ET Vi €z

or as an unordered c¢ountable collection of points in the one particle
phase space.

Let us denote by

ag bl at((x,v)) = (x + tv, v)

the time evolution of a free particle on the line. Since the ideal
gas consists of non interacting particles, the time evolution,

St’ on X' is induced by @ in the following way
j ' e by = o
Vil ex' , s dx b =t xpl;

which defines a flow St: D, i 4
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Since we are interested in the infinite ideal gas as an approxi-
mation to a large wvolume gas system it is natural tc confine our dis-

cussion to the subset X & X' of locally finite coafigurations (i.e.

X =1ix €X'| Vbounded A ST x NA is a finite set 3P

Although X is not invariant undex St , it contains an in-
variant subset which does have the full measure with respect to
the states which we will be considering.

Let Fn be the set of Borel measurable symmetricai functions
on e with spacially bounded support, and let F =£§0 Fn .

g 2l
Penote by Z: F~ R the linear mapping defined by

 f ¢ = I : e
) xh (1, <1, <219 fn(“il""’xin} » £, € F_n'ixii‘x
Let ACT be a Borel set. We will denote by N,: X = N

the "occupational number" function

ﬂp(x) = card. (A 1 x)

(or, extending the definition of X, NA ; z XA whare XA € F1
is the characteristic function of A).

The functicns Z£, £ € F may represent local observables
whose expectation values will be given by a “state".
3. States

Equip X with the weak topology generated by functions of the
form g where g is a continous function on [ of spacially

hounded support. With respeet te this topology:
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i) X =+ % iff X ik on any bounded demain whose
boundary does not contain a point in =x .
2) The collection of subsets of X of Fhe form:
{x € Xl NA(:vr) > k}, A €T open set
and {x € Xl NB(x) < i}, BS T closed

forms a basis of opzn sets.

3) For any g, , continuous functicn on = of bounded
support, B g, is continuous.

4) NA(x) , for a bounded domain A © [ , is continuous at
x €% which have no point on the boundary of A o

Denote by B(X) the corresponding, gquasi local, Borel
U-algebra. Similarly, for a bounded domain A T | let B, {X)

be the local O-algebra generated by functions in F with support

in A .

A state is a measure on B(X). Hotice that the functions
Zf, f € F, are B(X) measurable, their integral being
the expectation value of the corresponding observables in the
"ensemble' described by the state.

In particular we will be interested in states which are in-

variant under the time evolution St . Due to the lack of inter-
actions, the ideal gas admité invariant states which have the dis-

joint independence propeity, meaning that for disjoint A, B cr

ga(x) and BB(x) are independent.
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Examples of such states are:

1) Let Y be a locally finite Borel measure on I inmvarient
under Gt . We will denote by uY thé state under which:

a) BA(X) and BB(K) are independent forrany disjoint Borel

sets A, BT

13
and b) uy(ix € x| ﬁA(x) =k!) = _ié%lm” o~ YA

These two conditions are known to be consisteat ( b) is the

Poisson distribution) and they clearly define an S, imvariant

L

state, We will refer tc the state HY as the Poisson con-

structicn on (I',v).

For one dimensional systems Y has to be of the form

Y(dqdv) = P dq V(dv) + Po(dq) $ (dv)

where V{*) is a probability distributiom, 8{-) assigns probability
1 to lv=0! and 90 is a locally finite measure on R . uv will
be invariant under space translations only if po(dq) = C dq
for some C 2 0 , and then the second term in the last equation can
be absorbed in the first one. Such states correspond to particles
being '"independently disﬁributed” onn the line, with uniform (expected)
density P  and identical velocity distribution v(.),
This category includes the Cibbs equilibrium states up,ﬁ
parametrized by the density P and the inverse temperature B, for

which
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A -ﬂmvz 1’2

V(dv) = (Bm/27)* e v,
2) Let in,Yz,-.-f be a coilection of ﬂt invarianc

=
measures on L s.t.

E I & < @
B o W (Lc,1] ® r) ’

Q

One can construct an S, invariant state by letting clusters of k
identicglly placed pariicles, k = l,é,... 3 have the Foisson
distribution which corresponds to Yk . Such a state will have
the disjoint independence property.

In fact, any invariant state cn B(X) | whick has the disjeint
independencé propevty may be obtained by the abové construction.

4, Erecdic Properties

Let us denote C = i(q,v) €T| v = 0} , and define the
function t((g,v) = =q/v on F\ C. tis the time at
which a particle at (gq,v) will reach the origin under the time

evolutien & .

B, (q,v)) = E(q,W)) - 1

s A { T ~
Consider the partltlnn{...,A‘I,AO,AI,...S of 1\\L

such that

(q,v) €A iff k2 £((q,v)) <k +1
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I'=¢ U(@ wAk} (2 union of disjoint Borel sets), therafore x is
Al @

isomorphic to the product

X

=@ Ak

XmX ®
C

=~@8

where X, is the space of locally finite configurations in A.

If B has the disjoint independence property igA )t
k

are jointly independent and (¥X,B(X), W) is isomorphic, as 2

measure space, to the product
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X, BX), #) ¥ (X, B.(X), ) & @ X, » By 00

Further, C is invariant undesr Gt and WICAk) = Ak-l (see fig. 1)

therefore the mapping St is the identity on the factor

(X, B_(X),H)
and 81 acts on

(X, » B, (X), W)
Ak Ak

as an isomorphism onto

X, -8B (X, H.

We have just shown that the dynamical system (X, St’ b)) factorizes
to a factor,on which St is the idenrity,and a Bernoulli shift (of
infinite entropy). The first factor is trivial whenever U assigns
zero measure to configurations which have a particle of zero velocity.

Therefore:

Thecrem The dynamical system (X,4.,5.)  is Bernoulli iff
Y(‘v=0}) =0
if Y(iv=0§) >0 the system is not ergodic, however St is a

Bernoulli flow with respect to almost every ergodic component of MY.



To summarize the above procf notice that Bﬁ (X), which is an
independent generator for the Bernoulli factor: corresponds to a
measurable partition of X bv the coérdinates of the particles
which cross the origin (q-0) during the time interval [0,1) .
The Bernoulli tactor is isomorphic to the process obtained by ob-
serving the particles which gross the origin (@ hyper-plane for a
space of higher dimensionality) at each time. This process is
Bernoulli since no particle visits the origin twice and, under “y’
the coordinates of diiferent particles are independent.

5. Relaticn to the ergodic properties of finite ideal gas systems.

In order to clarifv the meaning of the ergodic properties of the
infinite system it may be instructive to compare its ergodic structure
with that of the finite volume systems.

The finite volume ideal gas consists of a finite number of particles

in a box (interval) A ., 1Its phase space is

L. n
XA n=0 A(sym.)

where TA=A @ R is the phase space of a particle in A . Under
")

¢ each particle moves independently reflect-

the time evolution §
ing elastically from the boundaries.

Notice that the time evolution in the limiting, infinite volume ,
system will not be altered if one changes the nature of the

cellisions with the boundary (while keeping them lecz2l) of the finite

syctem.
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2 2]
Denote b )= U i ) the natural Porel C-algebra
o y BX\)= 2y BC T & g
on X, . A given state, B , of thz infinite system may be ob-
tained by a weak limit of diiferent sequencee of states Ko cn
i

S AR Morice, however, that under the

B(X'N.f} ’ "\}- 2 . .

mapping

HA(X) =x N A

B(X,) is homomorphic to B,(x). Further, if the
state p has the disjoint independence property, the prbjected
measure uA = ﬂ;l ") is invariant under SEA) (*).
It seems patural therefore to consider the gystems (XA’ Beas SéA))
as the finite version of (X,M,St).

The above finite systems are not ergodic since the number of
particles and their individual energies are constants cf the motion.
For a given number, N, of parrticles in the box one may pick § function-

ally independent symmetrical functions of (vf..,vﬁ)as measurable

conztants of the motion. The motion on the invariant surfaces is

()

“we are considering here only states invariant under reflection of
velocities., In one dimension this restriction . can be removed by con-
sidering systems with periodic boundaries. In higher dimension other

conditions would agpear.
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isomorphic (with the projected measure) to 2 Zlow on EN (¥ dimen-
o 5 y |
sional torus) with veleciiy wector preportional to (Ivls;...,ivml)

(see fig. 2).
i‘l;

- P = -

- o -

- e

(fig. 2)
In order to understand how such a non ergodic system leads to
a Bernoulli flew in the thermodynamic  limit let us recall -that
we are dealing with a quasi-local state.

.The strictly local observables of the form Né , where A & I is

2 —
a compact region, generate a dense set in L (k) . Now, let A&
be a compact set such that A Nc=¢9 . Considexr the correlation:
r(A,t,A) =, (N -S(A)(N y - [p, (o )]2 =
e AYA Tt A AMA B

2
- pA(NA-N&(A}i - Luv)1°
T

For a given A (large enough) r{A,t,") will eventually decrease
tc zero and remain there until a time TA(A) , which is the minimal

time in which a2 particle "in" A returns te it after bouncing from a
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wall (see fig. 3). T,(A) increases with A and is infinite

in the thermodynamical iimit.

!

r(A,t,A)

-

e W e

TA (A)

(fig. 3)

Therefore, while dealing with a strictly local observable, in
a large system the non ergodicity exhibits itself conly after a
large time. This becomes infinite in the thermodynamical limit in
which the system is mixing (in fact Bernoulli). In this re-
spect the thermodynamical 1limit can be taken to represent a large
finite system with some random collisions on the boundary, due to
interactions with the environment.

le have seen that strong ergodic properties of the infinite
system do not correspond to similar properties of che finite

-

*
system( ) Thexre is a way, howsver, in which the non ergodicity

* .
( )We have considered here a particular "natural''sequence of states U

: . i
on X, , which converge on local vbservables to y . Nevertheless, one

may choose a sequence of ergodic states on X, with the same limit.

For example, states characterized by N ~P1A1| *and veleocities (v, 1Y b

s
i 1,
|

whose distribuftion converges to ¥({v), converge to Ap 5 ¥
]

4 glN .

1
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of the finite systems is reflected in properties of the limit.

As a result of the "integrability" of tine finite system it
possesses a large collection of invariant states at a given
(approximate) density and snergy per particle. Tkis, together
with the "consistency" pf those states, is closely related to
the multitude of invariant states of the infinite ideal gas,
which have the disjoint independence property and a given density

and energy per particle.



III.Exgodic Properties of an Infinite One Dimensionai Hard Rod System

1. Introduction

The explanation of the good ergodic properties of the infinite
ideal gas is simple: local disturbances 'fly off' unhindered to
infinity where they are not longer observable (with respect to
measures natural from the point of viewrof statistical mechanics,
i.e., measures concantrated cn local observables). Formally
the proof for the infinite ideal gas is obtained by showing that .
the flow is isomorphic to the process obtained by observing the
particles which at any moment cross a given hyperplane (a point
for one dimensional systems). The absence of interactions play
there a double role:

1) The fact that the "information'" "flows' unperturbed guarantees
that 2ll of it eventually gets recorded by the local observations
(on the hyperplane), in a way which enables one to reconstruct the
phase-space description at the time .

2) The observed "infermatica'" does not return te the hyperplane,
making observations at different times independent.

It is plausible that scme infinite systems of interacting particles
will no lenger admit a generating '"local observation'. This would
not rule out strong ergodic properties; their proef however would
require different methods which may, in fact, lead to stronger results
{161, In those systems which do admit representation by a process

constructed on local observatioms, the interaction will induce a
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dependence among the observations at different times, possibly pre-
venting strong ergodic properties (of the local observation).

It is with an eye to understanding the latter behavior that we
consides the effect of a hard core interaction in an infinite one
dimensional gas. The motion of a "velocity pulse” in this system
is a combination of a steady flow with discrete independent jumps
back and forth. Pulses with effective velocity 0 would reappear
infinitely often at any place on the line. It is shown that an
infinite system of hard rods for which the effecgive velocities
are bounded away from some neighborhoo& of 0 is Bernoulli. This
extends a result of Sinai [50] who showed (considering a Gibhs
state) that a one dimensional system of hard rods is a K-system.

We also clear up some points in Sinai's preof.

2, Description of the System and the Main Resulti

Let X denote the phase space of an infinite system of hard
rods of diameter d*0 ., 2 € X is a countasle collection of pairs
X = i(xu, vb)%a , Where x,  is the position of the left corner
.(or any other fixed point n it) of a rod and Vg its velocity.
Let b denote the translationally invariant measure on X under which:
1) The free distances between consecutive rcds (given that the
crigin is covered) are jointly independent and identically distributed,
with an exponential distribution of parameter # > C. P =n/(l -nd)
where n 1s the average particle density.

2) The velocities are independent and icentically distributed

with probability measure ¥ , which has a finite first moment.




Letst denote the flow on X under which each particle in

dx(r dva
rEeEX movas freely 73 s = = 0 except for

elastic collisicns. By an argument similar to Sinai's (501 (used
for systems with a Maxwellian velccity distribution) it may be
shown that {Stl is well defined on a set ¢f full weasure.

For convenience, reference will be made to wvelocity pulses,

whose positions are the positions of reds but which are understood
to exchange rods in & collision. A bulse of velocity v moves at
this velocity except for moments cf collision, when it jumps the
distance d in the direction of the other colliding particle. How~
ever, the ”fre; distance' between two pulses (obtained by subtract-
ing the totél length of rods between them) behaves linearly in

time.

Moreover, for a given position of a pulse, the "free distances"
to other pulses are distributed along the line, ﬁith a Poisson dis-
tribution. Therefore, for given velocity and position of a pulse,
the collisions it undergoes at different times are independent.

Lemna (2.1) There is a measurable setX © X, p(X) = 1,
such thatV x €X the following hclds; let v be the velocity
of a pulse in x, then:

1) During the motion induced on it by iStx} , the pulse crosses
the origin.

2) The average velocity of tuhe pulse for the time interval [O,t],

approaches
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= fo] o hY q — -]
veff(V) v +Pd(v - E{v)) , ast ™%

The lemmna can be proven by showing that properties 1) and 2)
hold, with probability 1, for each pulse separately (labeling each

pulse by & = iqy/d]) . This car be easily done with the help

2

of the previous remarks.
Note that for pulses of velocity v # O 1) folilows from 2),
while for pulses of velocity v=0 1) helds as a result of the

fluctuzations in the number of collisions.

=1E§h E(v) . By lemma (2.1), pulses of velocity V

propagate with the effective velocity {(for long times) 0. Since

Let v
o

the effective velocity contains a part (of positive variance) which
is due to independent collisions, pulses of this velocity recur
infinitely often at any place on the line.

With the help of lemma (2.1) one can generalize Sinai’s result

1 s
(50] to obtain

Theorem (2.2): (X,M,S)+ (d = 0) is a X-system for any

velocity probability distribution V .
The proof will not be given here. Let us remark however that

Sinai's proof carries over to systems with V(v = Vc) = 0.

Other systems are covered by a modified argument.

We will write S in place of Sl
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The main result which we prove is
Theorem (2.3): The dynamical system (X,P,St) for which the

velocity cdistribution V satisfies

v(lv-v | <& =0,

for some 8 0 and v, '1§§h E(v) , is a Bernoulli flow.

3. Reduced Description

As already indicated, we are interested in a representation
of the system by a process generated by local observations. How-
ever, since collisions occur at any interval on the line, the re-
appearance of a pulse at the origin depends on the distribution of
particles elsewhere, inducing a complicated dependence among local
observations taken at different times. In the following '"reduced
description" (which is limited to one dimensional systems) ths dis-
continuities in the trajectory of a pulse result from effects which
take place at the origin.

For any x € X , let us label the particles so that their

positions at time £ = 0 satisfy

ek & < <po<x <
XpSx,S0=Zx <x

1---

taking the limit t -0~ for each inequality separately.

Definition (3.1): Let (xl, v be the position and velocity of

1

the i-th particle in X €X . Its reduced position is given by




; ™mx, - id .
ql i
Clearly, an equivalent description of x € X is given by
vy = i(qi,v,)! , the enumerated ccliection of the reduced posi-
i _—

tions and velocities cof the induced particles. Note that the un-
enumerated collectieon {(qa,vb}gmay not. determine x € X
uniquely.

Definition (3.2): The reduced phase space, Y, is the class of

enumerated collections y = {(qi,vi)}i €z for which
Da, Sa, Vi €z '
2) 0 f.qo
3)q,=4d
4) the replacement q; - q4; + tvi, t =0 3 makes each of

the above inequalities strict (except if v, SV, q0rvV = o ).

The mepping ¥: X 7 ¥ which carries x = i(%,zﬁy)} te the
enumerated collection of the reduced positions and velocities of
its particles, ordered as above, is 1 - 1 and onto. By a harmless
abuse of notation, let k and St denote the measure and the flow
induced on Y by the correspondence ¥ .

Lemma (3.3): With respect to the measure b , the distribution of

the reduced positions and velocities (ignoring the labeling) of these
pulses of y £ Y which iie in R\\[O,d] is isomorphic tc the
Poisson distribution of peints, with density P , over (R\‘[O,d],£)®(ﬂ,v)
(£ being the Lebesgue measure) and is independent of the distribution

: 3 R
and labeling of pulses in L0,dJ.




Proof : Lﬂq+ = min M,lq,>d1
- ) (max) * ' (<o)

The lemma follows from the observation that the distributions of
both q, ~-d and |q_1 are exponential with parzmeter P, independ-
ent of the configuration in [O,d] and of each other.

We remark that b has the following realization: Let ¥ = M @ Y;
be the product of two independent Poisson distributicns of points
with density P Y, over ([0,”), L) ® { R,V ), whose left particle
is labeled "0"; and Y_over ((-® ,d],8) ® ( R,Vv), whose right
particle is labeled "-1", (¥Y,l) is isomorphic tec (§',p'), where
Y = {y € flqo Z_q_l} and ' is the induced probability
measure on Y' .

Lety € Y . We denote by N(t,y) the directed number of cross-
ings of the origin by particles in X = ¢-1(Y), during the time
interval [O,t) , counting crossings from left (right) as positive
(negative)., K(y) will denote the index of the first particle whose
reduced position {in S_oy) is non negative.

Consider now the motion of the pulses iny € Y induced by
the flow St. The pulses move at their characteristic velocity,
exchanging indices at collisions, except for moments at which a
particle crosses the origin (in u), when the reduced positions of
all the pulses are shifted by ¥ 4 and their index values change
by # 1, dcpending on the directicn of the crossing. The reduced
distance traveled by a pulse (q,v) €y €Y during the time

interval [0,1) is cthnus equal to tv-dN(t,y).
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Lemma (3.4): For almost any y €Y

lim N(t,y) _ P E(W), for t €2
£ -t t 1+Pd

Proof: Siace our system is ergodic, Theorem (2.2), it follows

that,

t-1
1 , -
N(t,y)/t = T [E, N(1,5.%) —(t ==} EN(,y))  almost surely (a.s)

To compute E(N(1,y)) we observe that the average velocity, in

the reduced description, of a pulse of velocity v is

Ltv - an(e,y) 1/t T‘n‘)* v - dE(N(1,y)),

which corresponds to velocity [v-dE(N(1,-))]. (11Pa) in terms

of "real" distance. Comparing the above with Lemma (2.1) we obtain

P

E(N(1,°)) = Trod E(v)
4, Process Description
Definition (4.1): We will call a pulse (q,v) €y €Y marked

at _time ¢ if onre of the following holds
a) 0 < q+ tv - dN(t,y) <d
b) g + tv ~ dN(t,y) < 0 and q + (t+l)v - dN(t+l,y) 2 0

¢} q + tv = dN(t,y) = d and q + (t+l)v-dN(t + 1, y) £ d
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We now define a partition of the phase space which will be used to.
represent our system by a process. In order to apply approximation
techniques coarser partitions will be defined as well.

Definition (4.2):

1) Denote by 7| the parctition of Y gencrated by:
a) N(1,y)
b) K(y) and
c) the reduced positions and velocities of those pulses of-y

which are marked at the time t = 0,

o
2) Denote by'ﬂ(k’ ( k €2 the partition whose typical
k = 1
element C( )(y) € ﬂ(ﬂ) is the collection of the phase
space pointsy €Y for which

a) N(L,y) = N(L,¥)

b) K(y) = K(y), and

c) there is a 1-1 correspondence between the pulses marked
at the time t = 0 in y and y, such that at the times t = 0,1 the
corresponding pulses are at the same distances from the origin,
measured in intervals of the size d/2k :

In essence, |, partiticons Y (and therefore X) by the character-

istics of the pulses which in the reduced description appear in
the interval [O,d] during the tinme £0,1], disregarding those which
do appear but eventually cross back. The pulses have to be observed
in an interval since their trajectories have discontinuities of the

size 2.
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It is an advantage of the reduced description that N(x) contains
the full inforsation about those pulses of x which are in a certain
regicn (which depends on TI(x)) of the one'particle phase space, and
is independent of the characteristics of the pulses elsewhere. To
show this we need the following lemma.

Denote by‘xi (n,t) the regions in the one particle phase spaée,

defined by

)
« " (n,t) = {(q,v)| ¢ 0, g+ vt -dn> o}

2 )
Lemma 4.3: Lety €Y  and let m = N(t,y) . If yand y €Y
possess the same cccupation numbers for pulses in the regions at(m,t)
and*’i(m + 1,t) , and K(y) = K(y) then N(t,y) = m.
Proof: Denote by ﬁ”(ﬁ) the number of pulses iny € Y which
occupy a given regggn B in the one particle phase space.
Notice that for m = N{t,y), ﬁ(t)(m,t) is the region of

those pulses whose reduced positions change from non-positive (non-
negative) in y to positive (negative) in .y

Keeping in mind the fact that the index values get readjusted
each time & particle (in the unreduced description) crosses the

origin one obtains

R(s,y) = KOy - R @ @m,0) + §,07@,0) +




41

therefore
K(y) - :?:y(oz"(m,c)) + ﬁy(a‘(m,t); +m <0,

N~ 4" ~ M - .
Similarly, K(y)-Ny@W (m+l,t))+Ny03 (or+l,t)) +m is the
index of the first pulse in St-O ¥y whose veduced position is not

smaller than d, therefore
a .+ o .
K(y) - Ny(@ (m+l,t)) + Ny(ﬂ‘ (m+l,t)) + (al) = O.
Consider now the function (defined on Z)

£(n) = K(y) - ﬁyca’”(n,t)) + 8@ (n,8)) +n

+ +. - -
Since @ (n,t) =2 & (n+l,t) and ¢ (n,t) & @ (ntl,t), f(n)
is strictly increasing. Moreover, by the above inequalities,

N(t,y) is the unique solution of

fy(n) < 0, fy(n+1) > Q.

Now, by the conditions of the lemma,

f(m) =£ (m) <0 and f (wtl) = £ (mtl) > 0O,
; Y - ; y

implying N(t,y) = N{(t,y).
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Corollary (4.4): Let the region @(n)of the cne particle phase

space be given by
@(n) = 0f+(n,1) Uea(n+1,1) Y (Lo,d] @ R).

If N(1,y) = n, thenrnk(y) is independent of the characteristics
of those pulses which occupy a(p)c _ (the complement of @(n)).
Notice that T|(y) contains the full information regarding the pulses
in a@(n) .

The above independence will be used to establish strong ergodic
properties for the process defined by ﬂ(k)

In proving the Bernoulli property we will make use of the method

developed by Ornstein which utilizes the following results [39,48]:

Lemma (5,1): The dynamical system (X,H, {Tki) is Bernoulli if
(X,M,Tl) is a Bernoulli shift.

Lemma (5.2): If Al < Az % AB [ee form an increasing sequence
of T-invariant C-algebras, if E Ak =3B , and if for each n,
(X"An’ kb, T) is 2 Bernoulli shift then (X, B, #, T) is a

Bernoulli shift.
This lemma enables one to use results obtzined for processes
defined by countable partitions. Given a generating partition P,

the dynamical system (X, , T) is iscmorphic to the process (T,P}
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with the induccd measure.

Definition (5.3): The partition P = iPi} is ¢~-independent of
Q = iQi} if there is a class C of sets in G such chat

a) pc)y 21 -¢
by T lwee lo,) - @)l <s Q. €¢
i i ™} - L j
Definition (5.4): A partition P is called weakly-Bernoulli for
an automorphism T if given € > 0 there exists an N such that for

all m=21

-N ] m
Vv i 3 =i o v
- (N+m) TP 1is €-independent of E TP

Lerma (5.5): If the partition P is weakly-Bernoulli for the auto-
morphism T then (T,P) is a Bernoulli process.

6. Proof of the Main Result

Let us restate the main theorem (2.3), using the notation of
the previous sections.

Theorem (1.6): The dynamical system (Y, K, S ) for which

t

<Pd .
o “11pd E(

V(lv-vol <8) =0 for some 8 > 0 and v
is a Berunoulli system.
The procf will consist of several steps. The "timee" t mentioned

throughout this section are tc be undzrstood as integral.

Lemma (6.2): For a given § > 0, let the "good" sets be given by



) ‘
¢ = ly €l sup  (lan(et,y) - erv |+ @y/let ]} < ¢

e
(£'<-t)
Ve > e.8) > § 3 vt Ty > 2
Then 0,4t (¢,%) > 0 for which R{G ), H(CD 21 - (¢)
10
Proof: By lemma (3.5) _1Tm dN{t,v)/t = L for almost
lt - ) )
everyy €Y , therctore sup i(idN(t',y) - t'v | +-d)/t'} —r 0 a.s.
e ° (£ =)

implying convergence in probebility, which i3 lemma (6.2)}.
For the system under consicderation V(IV"Vol <8) =0 ; let us

assume therefore that there are no pulses of velocity V, |v-vo| %: 0

{in fact, we are confining the discussion to a subset of Y of full

measure) .
=gt N
Lec G, =6, TG,
Remark (6.3): V y € G, , no pulse of y whose reduced position

was in to,d] at a time t'€(-®,-t ] will reappear in [O,d] at
a time "€ [t,2) or at t" = 0 * . This can be easily shown,
remembering that the reduced distance traveled by a pulse of velocity

v between the times t' to t" is
V(t”-t') s d(N(t",Y) = N(t‘ﬂf))

Definition (6.4): Denote by { the partition generated by

1) K{y)

2) the number of velocity pulses in [o,d] for which

Here the times are nmot to be understood as necessarily integral,
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v > v, + & and the number of those for which v < v 0.

We now come to the key step in the argument:
Lemma (6.5): Let a be a set measurable with respect to
® 1 j(t+1) i
{ S°T(t > 0), b be measurable with respact to ¥ s,

and ck € { . Then
p(a !bsgkacc) = l(a lck’Gt)

Proof: Note that (by virtue of corollary (4.4) and lemma (4.3))
al G: and b N G; depend on the distribution of pulses

in two corresponding regions in the one particle phase space,
whose intersection (after taking out the slice R ® (vo-5, v+ 8))
is [0,d] ® R, Further, the dependence of a G: and of b G; on
the distribution of pulses in [O,d] @ R is only through the
variables used to define the partition  (def.(6.4)). Therefore,
by lemma (3.3), on a given element Ck €, al Gi and b N G;

are independent:

a) w@Nel ¢, bne) =uanelle).

k’
In particular, by choosinga =Y and thenb =Y, we obtain
+' - = +
ST 1 =
B) w(C 1¢, M 6) u(GtIQk)
and

) B(6le) = @il , ¢,



The lemma follows now from &), b), and c).

We observe therefore that our system exhibits an approximate
Markov property. The proof that it is Bernoulli will follow in
a2 way similar to a proof that a K Markoev system is Bernoulli
(actually, for this end, mixing could replace the K property).
We thus first consider the space Y equipped with the U-algebras

@ ()
=T,
V. ST,

Theorem (6.6):

<]
. 1
For any integer k, the dynamical system (Y STHY ", U, S
F i k, the dynamical sy i 2, G

for which the velccity distyibuticn V satisfiss
y

! pd .
- < § = £ 5 > = e—
v(lv v, ) =0, for some 0 and v, T90d E(v),
is a Bernoulii-shift,

k
Proof: By lemma (5.5) it is enough ito show that the partition n( )

is weakly-Bernoulli under S.

Let € = 0 be given. Take t, = t,(€,8) s defined in
1 1
lemma (6.2) and let € = &Vig , 6 | :
1 1
Because of the K-property of our system t2(€) >0 such

25 €
that € is 10 -indepeundent of
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+1) , +

-(t, +t
1 Slﬂ(k) F me i |

p

i=-(t +t2+m)

1

We now claiw thatV m 2> 1 » the partition

T 4w
v siq@ o i (m)y
1

is €-independent of
=(t 4, H1)
v sin o @y,
1= -(t +t,4m) J

To see this, note that by virtue of lemma (6.5} (omitting

the superscript m)
; & -
Blaglby, §) = keaglop

Vi,4 and CkCG an element of L.
t) _

n (k)

(since the velocity distribution has a finite first moment). We wish to

+This is so (see [6]) because the partitions all have finite entropy
point out, however, that the argument which we give dces not depend in an
esseutial way upon the firiteness of the entropy of ﬂ(k). We could easily
find an increasing sequence ﬂﬁk) ﬂ(k) of finite partitions whose
supremum is n(k); our argument could be applied exactly as it stands to
the ngk), so that Theorem {6.6) would be valid with ﬂék) in place of
1% | Theorem (6.6) would then, itself, follow from an application

of Lemma (5.2).
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This implies that

k(aglb.) = EE o baglt) « v lby +

k t:1

+kagivy, 67 - u(cillbj).

1
Therefore
> - < = C - w(E
2 lucagiv) - wapl < E e | b ib) - @l +
k t
1
+ 16 b)) + ks )
tl i tl "
Now, 1) the above sum is smaller than ) except pessibly for
sets bj whose total measure is smaller than E%_ -
2y (et ) < =52
€
3) 2) implies that u(Gz lbj) < o ° except for a collec-
1
e
tion of sets whose total measure is less than =T- . Summing

10

the above estimates we obtain
7 u(a(f)lb(’;)) - w(ag )| <e

for a collection of elements b(?) whose totzl measure exceeds

1 -¢ , proving the claim.

Since tl(s) s t2(€) are independent of m, ﬂ(k) is weakly-

Bernoulii.
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In order to apply thecrem (6.6) to the proef of (6.1) we need
the following lemma

Lemma (6.7): T is a generating partition.

Proof: Observe that knowing N(t,y) and the characteristics of a

pulse in Sty enables one to find the (reduced) position of the

pulse in y € Y . Since, by lemma (2.1), each pulse is marked
==} :

at some time (with probability l)i\__/__,m s separates points

in Y(mod 0).

Proof of theorem (6.1):

By the previous lemma, the processes considered in theorem
(5.6) have the property required for application of lemma (5.2),

by which (6.1} follows.
Q.E.D.

Conclusion
In summary, the essential ideas of the proof are:

1) The infinite hard rod system admits a representation by genera-

ting K-process obtained by cbserving the pulses close to the origin

(in the reduced description, for convenience).

2) Rods which cross the origin terd te draw back pulses which crossed

before them. dN(t,+)/t is the random velocity with which pulses

3

are "pursued" by the origin (this has a clearer meaning in the reduced

description).
3) Due to the random character of the above velocity (which tends

to v, in the limit £~ +2)%é, e>0,3t>0 for which,
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with probability > 1-% , no pulse which appeared at the origin
before -t zould reappear after the time t with the exception of
those whose velocity is 6 closze to V.

4) When viewed as a process, systems from which pulses slow relative
to v, are excluded exhibit an approximate Markov property.

5) A generating familv of processes, which are constructed cn
countable partitions and have an approximate Markov property, can
be found. The Bernoulli property for these is proved in a way
similar to the preocof for a Markov K-process.

7. A Clarification of the Proof of Sinzi's Result

Sinai [1] coustructed a K-partition (Qo in his notation) for a
cne dimensional hard rod gas with an infinite number of degrees
of freedom, However, Remark 4 in his article is incorrect as
stated, leaving the proof of the generating property of the parti-
tion incomplete.

t is called there a moment of intersection of zero of the

trajectory of point x € X , if either

1) xi(t =0 for some i (there is a pulse in Stx which
is crossing the origin), or

2) t is a moment of cellision of two rods which at this time are
cn opposite sides of the origin (and therefore two pulses in Stx are
jumping across the origin).

The intersection time, velocities and positions of the pulses

involved are called the characteristics of the intersection.
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One still has to show that the generated partition (¥ S, Co) .
which corresponds to partitioning by the characteristics of all the
intersections, completely Separates the set of phase space points
for which any pulise has z moment of intersection of the origin
(which was shown to be a subset of full measure). This can be done
using the reduced description.

The reduced pusition of a pulse in x can be obtained from its

reduced position in Stx by

q(o) = gq(t) - tv +d N(t,x).

Further, by lcoking for the first, in terms of lowest |t|, iuter=-
section of zerc of a pulse in x one can determine whether itz index
is positive or negative. In this method, provided each pulse eventu-
ally crosses the origin, one can reconstruct the reduced description
of x from the characteristics of all the intersecticns, which there-

fore determine it uniquely (mod. 0).



IV. Mixture of several components of equal masses

1. Introduction

As a first step towards understanding fhe ergodic properties
of svstems which contain 2 mixture of interacting particles of
several types, we will discuss now the consequences of a
particular type of "constants'" of the motion which are present in
such one dimensional systems of non penetrating particles.

The simplest system with the above properties is a random
mixture of several components of equal mass particles,
which are marked by different colors. The point particles move
freely ezcept for elastic collisions by which, upon impact, they
exchange velocities.

One immediately notices that under this dynamics the order of
the colors of particles, to the right and left of a given particle,
is invariant. Such "invariants" appear in any one dimensional
random mixture of non penetrating particles, for example in a mix-
ture of two types of hard core particles of different mass.

While for finite systeme the order of colors is a valid constant
of the motion, it is not clear that in an infinite system it gives
rise to measurable invariants which are non trivial with respect
to a state which has good clustering (mixing under space translations)

properties. A special feature of infinite systems is that there is

no time-invariant measurable way of picking a reference particle
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(except if there are particles which are effectively confined to

é certain region). Any function on the phase space may he approxi-
mated by one which depends on the colors of only those particles
which are in some bounded volume. Since the local combination of
colors keaps changing (while globally the sequenca cf colors is

just shifting randomly),one is led to expect good mixing properties.
In fact, it will be shown that the time evolution of such infinite
systems is a K-flow.

The recurrence of particles whose colors were observed in the past
leads to a kind of long memery which poses difficulties in deciding
if the system has the Bernoulli property. We will mention a "simpler"
dynamical K-system (of finite entropy), with some similar features,

fur which the Bernoulli property is still an open question.

Z. The phase space

The degrees of freedom of a single particle consists now of a

triple
(q,v,i) €' ® K

where ¥ = {1,2,...,h! is a finite collection of 'colors". The
"natural" phase space of the infinite system, Y , consists of
locally finite collections of points inl @ ¥, It will be convenient,
however, to separate the color degrees of freedom from the positions

and velocities,whose time evolution is independent of colors. Further,




54
the one dimensional system of non penetrating identical particles
of equal mass is indistinguishable : from the ideal gas (Ch.IIj.

We will consider a point in the phase space Y to be given by
a point in X , the phase space of the ideal gas, and a double
infinite sequence

' 2
d = (ll.’ d"l’ do, dl,-.-) E D =y

which describes the colors of particles. These ara orderad by
their positiéns with respect to the origin (gq=0) sc that do is
the colox of the first particle to the right of it. In case of
ambiguity in the order if is defined to be "continuous frem below"
under the time evolution (see gec. (III.3)).

Therefore ¥ = X8 . It can be easily seen that the guasi local
topology on Y, when it is defined as at the beginning of this
section (with the discrete topology on¥), is the same as the
direct product of the quasi-local topology on ¥ with the product

topology on D .

Time evolution
We will denote by Ut the flow on Y which corresponds to the
evolution in time of the system, as described in the proceeding

seciions.



Let (x,d)&¥=X ® D  and let U (x,d)=(x',d") - As already

mertioned, x'=Stx where St is the tinme évolution of the ideal
. gas definad on X .

Collisions of particles do not alter the order of colors on

the line. This is changed only wh2n a particle crosses the
"~ erigin (q=0) increasing, or decreasing, the "index" of ali the
particles by 1.

Let us denote by m(t,x) the '"net" number of crossings of the
origin during the time interval [G,t), counting those where a
particle crosses from right (left) as pcsitive (negative). Then
d' = Tm(t’x)d , with the shift T being defined on D

by

(TCovesd sdpsen)), =d 0 o

The flow Ut: Y =i has therefore the skew product

structure [51];

U (x,d) = (5%, (%) 4y

The group property of {Ut}tER is guarantead by:

= - << <
m(t,x) m(tl,x) + m(t tl,Stlx) , O __tl .
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3. Invariant states

Definition: Let V() be a probability measure on R and f a

measure on ¥ = il,..,ht given by the weights(Pl,...,Ph) . We

will denote by M. the measure on 5(Y) which corresponds to the
p’v % ~

Poisson construciicn sul: © ¥, y @ ) s where Y is

the measure on [ given by "

Y(da dv) = dq V(dv).

The Poisson construction was discussed in sec.(ZI.3) . 1In the
state given by {_ the particles are "independently' distribut-
P,V
ed on the line, with the uniform (average) densitert for the i-th

color, and have independent velocities of identical distribution »

Claim: The measure P (as above) factorizes to a
p’vh
' = z
product cf Pp,v on X , P = Pi . being the to;al
density, and the product measure, p , on D = &% induced by the

probability vector(p Lysws ,f_l) on ¥ ,

P P
We will omit the proof of the claim which is quite straightforward.

An imporiant consequence is

Corrollary: The state (i.e. measure) K_ is invariant
P,V
under the time evolution St .
Proof: Ut is & skew product of St on X , which presarves

the measure K , with the shift T on D = wZ under

P,V

which any product measure is preserved. Therefore Ut preserves



w
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the product of the above measures on X ¥ D = Y

4. Ergodic Properties

Using the notation introduced iIn the proceeding sections, our
main result is:

Theorem: For any P and v(+; which is continuous at zero

( v({o}) = (), the dynamical system

(Y’ u.., 3 Ut)
P,V
is a K-flow.
Proof: To prove the theorem it is enough to show the existence

of a measurable partition ﬂo such that

def
n Um o £ >
B Mg M no for t >0,
ii) ﬂm =té? ﬂt partitions (mod. 0) to single points.
and iii) T =t2R ﬂt is a trivial partition.

The following properties of the above system will be used in
the prooi:
a) The system is a skew product

*
(b, )= (X 1y )@ 0,0

P,V
and
t,3
U, Gx,d)= (5,3, T D)
b) The "base" system (x,up 3 St) 7 is a Bernoulli fiow
3

(ses sec.{ 1I. 4)).

)t >0 the function m(t,:) is measurable with respect
s : ?
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to an independent generator for the discrate transformation St

and
2
Etlm(t, <) - ECm(t,-)I11>0 .
s
We will dencte by %th the partitioan of X according
i
to the velocity pulses in x € X which cross the origin in

tha time interval itl,tz). It follows from our discussion

2 t

in sec.(II.4)that §° is an independent gererator for St' m(t,*),
which is the "net'" number of crossings of the origin, is clearly

t
weasurable with respect to 50 , hence the above statement

holds true.

%
d) (o,p ,T) is a Bernculli shift, as fcllows from the
*
product structure of P .
Now, let “o be the partition of D = i(...,do,dl,...)ldi g ﬂ)f
n
generated by d . “ndgf T, is then generated by d__
ief . "
and @“8° ¥« is the fully separating partition of D.
vz n
&
§t was defined above. Nctice that
1
E t,=t
Ut§2 = gczt :
ky 1
We will denote by & =Y gt the partitica of X eneraked
7 "0 t?o o pa S &
the future crossings of the origin. Clearly, ¢ is 2 generating

(o)

K-partition (i.e. it satisfies the above i) - iii) )with respect to St.
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dgf.

We claim now that ﬂo Go @ o is a generating K-partition

of Y with respect to Ut'

i) In a harmless abuse of notation we will define St:Y = Y and

T: Y7 Y by

St(x,d) = (Stx,d) and T(x,d) = (x,Td).

Notice that ¥Vt > 0

-

-1 sx)7-1
U £ = [Ut] = [St Tm(t )] =

. m(t,S_tx) -m(t,S_tx)

-1
= [T s, =8 T .
Let us consider an atom of the partition ﬂt s fox & # 0
nt(xsd) tno( _t(xad))
-m(t,S x)
= t -
Ut’ﬂ (s_.x,T d)
-nf{t,5 _x)
P ¢, _x ®aq ]

= StT

m{t,-) , for £t > 0, is measurable with respect to CO therefore on
all the points of the akove set it assumes the value m(t,S_tx).

Hence

m(t,S_tx) -m(t,Stx)

x}] @ [T o(T d)

A (x,d) =Ls € (s_,
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and,since the partition @ is invariant under T,k :

M (x,d) = 6 ) ®a(a

It follows that

whizh proves ij.

ii) By i):
T = Y = Y { ® i
b = e nt tER ‘Qt %2
hence
N, = ;m Qo ,

!"h geparates points in X (mod.0) as doesa inp , therefore T]@
is the full parcition of Y,
iii) In order to prove that T , is a trivial partition it is

enougn te show that

(*) p(clﬂ_m(x))= w(C) , at almost every (a.e) (x,d) € Y, for any
measurable set € © X (for convenience we will drop the subscripts of !J-p v)'
]

In fact it is encugh to show (¥*) for any C whiich is measur-

=M
able with respect to 5_ @« for somem » 0 . Since the

partition 'l _o is invariant under Ut

Helt oxa) = v @ ¢l 1 U_x,0)))

It is sufficient,therefore to show (*) for any ¢ measurable with
s ‘ U (Fm ®C’) f c T AWV E by
respect to " ® i or seme @ > Q . However, by
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an argument similar to that used in i)
UE® 8o ° Qu
m\g-m ) = g:--21':1
In conclusion, it suifices to prove (*) for any C = B @ A where
A €D is measurable with respect t:olU @ and B € Xis measur-
) 1k|<n
able with respect to §‘:m , for scme n,m ~ 0 ,
For this end one may use Doob's theorem [ 6] from which follows

that (since Ti-t 4 'n_,)_-

p @M o) 2% 1 w(clN_ (x,d)).

t—’d}

Let E®ACY be as above and deacte 4 = X ® A and B = B & D.

For £ > 0:

b ® Bl (x,d) = w@AIN_(x.)) - pGIAN_ (x,d)) =

= p,(ﬁ} » L‘n(é-_ln_t(x:d)) »

since A and 'ﬂ_t(x,d} are measurable with respect to 'ﬂo whichk
o
is independent of g_‘ - . It remains to show that

1im w@EN_ (x,0)) %% w@).

t—-i@




(o))
i~

Now, for t > 0,

- (a.e.) e
BATT_ God)) == AT (U Gx,d)))

- am{t %)
= ) B w Tm\ i
(U AT (5,x) B a( d))
This is to be understood as a relation between two diffeient
fuanctions on Y. It follows from the relation
. o T]
M (6,d) = U_ 7 (U, (x,d)).
Let us define
@ = {1 €z|T™" ¢ €4}
oo A o () , o £ed

Since UtA =T A, a valid version of the ahove conditional
expectation is given by

z

coew (ly € ¥lm(e,y = sHlc_ (5=
J & At m(t,x -

Bo .y

which may formally be written as

) - 7
bp y (e, ) - m(e,x) € ZHC (s.3)).
Therefore, using the above formal notation, (the existence of

the limit follows from Doob's theorem)

lim @M (x,4)) =

£’ .
“ B by y(ine, ) m(e,x) € G\ [-4,411]C_ (50)
i LB B X e N ._-‘2, / ;1 S x
t1:mm pp’\,(im(t, y-m(t,x) € @ 0 I4,2]HC_ (8.x)

for any £ € Z,. The second summand is easily seen o converge to zero,

for almozt any {x,d) € Y. The first, when viewed as a fucction oa D, is

measurable with respect to V &k, for any x € X. Since the "bilateral
il > £ -
tail” A ! |V ﬂk is trivial, it follows that p(élﬂ (x,d} does not
L>0 k> -

depand on d, Thus for almest every (x,d) € Y:

w—y ) . =1 i . . *"\
u(ﬁlﬂ_mlx,a)) - f A&AIH“W\X,G}) df (d) =

,. —r ke . "
= lim %(A!”_th,d)) dp (d) = lim | w(U

t o t"GJ

i " i L o \ * 2)
¢ (s,00@ ™ Fayya™ @)

.

(o]

~t
N~



= lim W(U A0 (5,x))= lin piA} §_ (x)) = u(@) ;
e t "ot P t
which concludes the proof of iii).
Q.E.D.

An extension of the result:

The proof of the K-property was based on the properties a)-d)
of our system. This, however, was not a very economical way and it
may be cbserved that the same result would hold under more reliaxed
conditions than b)-d)}.

In particular the same proof may be applied to systems with the
properties a) and d) for which

b') the base is a K-flow

¢') m{t,.) is measurable with respect to gs (which transform
under Ut as above) such that
Co = U §§ is a generating K-partition and
t=0
P(“m(t,.) - m(t,:{)] <44 ig_t(x))("-—-")){), ¥4 >0 and a.e. x € X.
t - 0

This set of conditions seems to have wider applications to infinite
systems. For example, b') and c¢') are satisfied by the hard rod
systems discussed in Ch.III (even without the restriction on V(-)
used fer the Bernculli preoperty, see Th., (2.2)).

We observe again that the existence of constants of the motion
in the finite svstems (here thz sequence of colors) does not exclude,

for reasons discussed in the introduction, strong ergodic
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properties of the thermodynamic limit. However, those invariants
lead to the non uniqueness of the macroscopic state. In fact, every
T invariant measure on D may be used in the comnstruction of a

Ut invariant measure on Y .

5.Bernoulli pcoperty, an open question

Whether che system (Y,p ,Ut) is always a Bernoulli flow is still
P,V
an open question. In the less interesting case one may prove:

Proposition: The dynamical system (Y, ’Ut} (as above)
- p v
for which ’
Iv vidv) # 0

is a Bernouili flow.
The detailed proof will not be given here, let us remark however

that
jﬁ V(dv) = Im(l,-) ap
P,V
and in the above svstewm the "random walk' described by m(t,x)is

transient. It is not difficult to show that the partition

m.(]- 3X)

1
%4 9

generates and is weakly Bernoulli uuader Ul .
In the symmatrical case,

.j'm(ls') g, =0,
o,V
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the partition (of finite entropy) generated by m(1l,-) and ¢

1
is easily seen not to be weakly Bernoulli. While this does not
exclude the possibility of its being veryVWeakly Bernoulli, it
points to a longer memory of the system with respect to '"matural"
local partitions,which results fxom the recurring property of the
symmetrical random shift.

The question of the Bernoulli property in such situations (which
occur in other systems as well) may be clarified if one would under-

stand the properties of the skew product of a Bernoulli shift (i,T)

with itself

¥Y=X®x (with the product measure)

n(xl)
U(xl,xz) = (TX]_:T X2)

where E{n(.)) =0 and n(x) = + 1 defines a generating
Bernculli partition of (ﬁ,T).

Such a system 1is K,by a proof similar to that given in sec. 3,

and differs from (Y,n_ , Ut) (perhaps not significantly) in
P,V
that  u(s) does not have an infinitely divisible distribution

as m(i,.) does. The question of the Bernoulli property for {¥,T)

is still open.
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6. Some Corcluding Remarks on Krgodic Properties of Infinite

Systems of Interaciing Particles

Within the [ramework in which we have been working, prohabilis-
tic descriptivn of quasi local observabies of infinite systems, the
ergodic properties depend on the mechanism of dissipation of local
information. In general, one may expect two types of such mechanism
to be present: one by which the locél information 'wanders'" off to
infinity and that of local dissipation.

In the two examples which were studied here the local mechanism
was essentially absent. This vague statement may be supported by
the fact that the corresponding finite systems have poor ergodic
properties, in particular their Kolmogorov-entrcpy is zero. Yet,
these examples may be helpful for the understanding of the role
played by the first mechanism. While in the ideal gas local
information is steadily flowing to infinity, the interactions which
we considered cause some of it tc "wander'" off to infinity in a
"random walk' fashion. In this sense there is a similarity between
the system of hard rods and the mixture which was considered in
this chapter. In both the time evolution may formally be deacribed

as carried in two steps: fi

s

st a simple steady flow, like the time
evelution of the ideal gas, and then a shift in a random direction.
In the mixture nf several ccmponents the shkift acted on a separate
factor - (i.e. the space of colorz) while in the system ¢f hard rods
it was represented by jumps of the "origin'" in the reduced descrip=-

tion. In a more geiieral interacticn (like the one cbtained in a
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mixture of particles of different masses)‘the informaticon will also
get locally dissipated or ''spread" over neighboring particles.

In both systems'which we have considered thic mechanism leads to
the K~property but pnsses somewhat simiiar difficulties in deciding
if the systems are Bernoulli. The conditions which we imposed on
the volocity distribution in the h.r.s. in order to obtain the
Bernoulli property amount to requiring that the above '"random
wall" of local information be transient. In this respect it is
worth mentioning that the "randbm walk systems" considered in 16]
whichk also have a simiiar mechanism, and may be constructed in
different dimensions, are Bernoulli in dimensions 2 3 in which the
random walk becomes transieunt.

For systems in which the space translations have good ergodic
properties with respect to local partitions (which might be the
general case for systems with interactions of finite range, [11])
the existence of a generating partition constructed on lccal
observations may be an indicator of the strong presence of the
first mechanism of dissipation of the lccal informatiom. Although
the examples which have been studied are not sufficiently general,
one is tempted to speculate that such systems will have the K-property
(or even the Bernculli property in three dimensional systems).

With respect to the abstract ergodic properties of the time evolu-
tion, the ‘escape tc infinity of local inférmation may screen the
existence of a local mechanism of dissipation which might be even more

interesting for the explanation of '"good thermcdynamical behavioxr™
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of the system. In this respect (ard in face of the isomorphism

theorem of Bernculli systems) it may be more rewarding, from the
physical point of view, to study the ergddic properties of the
time evolution with respect to strictly local partitions or, as
was suggested by S. Goldstein, to study the ergodic properties of

the combined group of space and time translatious, see [15,17].



V . On Stability of Equilibrium States

1. Intreoduction

Physical systems may have many stationary states. These are de-
scribed by measures on the phase space which are invariant under
the time evolution. However, it has been widely accepted,
fcllowing the fcunders of statistical mechanics, that equilibrium
phenomena of a large system can be described by assuming that it is
in one of its thermodynamical equilibrium (Gibbs) states (these are
parametrised by only few macroscopic quantities such as energy per
particle, density, etc.).

For large systems the equilibrium states were shown [22,43] to have
maximal entropy under the proper conditions and it was heuristically
argued thet small perturbations, due to interacticns ﬁith the environ-
ment, will bring a dynamical system close to equilibrium. This suggests
another, dynamical,characterization of the equilibrium states as
those which are stable under small local perturbations of the
dynamics.

in the case of infinite quantum systems, Haag, Kastler and Trych-
Pohlmeyer (HKP) showed (18] that the equilibrium (K.M.S.) staies may
indeed be characterized by a condition of '"stability" under arbitrary
local perturbation. Motivated by this result, we discuss the

applicability of stability to the characterization of equilibrium
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states of finite and infinite classical systems. The argument of
HKP may be adapted to prove a similar result fcr ‘nfinite classical
systems [1]. For the ideal gas however we chtain a positive result
under weakér assumptions than those used in the general case.

2. Lguilibrium States as Special Scatiomarv States

Macroscopic states of physical systems are assumed, in statistical
mechanics, to be given by probability measures (%) on the rhase space
(I ) appropriate to the system. To describe a stationary state the
measure must be invariant under the time evolution. Since the energy
(Hamiltionian) E eof a finite system of particles is always a constani
of the motion, a measure whose density with respect to the Liouville
measure (which is invariant under any Hamiltonian dynamics) is given
by a function of energy will always be stationary. A state of this
form is complately characterized by the distribution of energy. In
the heuristic justification of the validity of thermodynamical des-
cription for large systems it is usually assumed that equilibrium
states are of the above type.

If the time evolution is ergodic* on almost all the energy sur-
faces, equipped with their natural (micrccanonical) measures, then,
indeed, any non singular (with respect to the Liouville surface measure)
stationary state is an equilibrium state in the above sense. How-

ever, if the system possesses additional 'smooth' constants of the

* This application of ergodicity should not be confused with the
different question of justification of the use of ensembles,
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motion then thére will also be stationary states whose densities de=-
ﬁend on those invariants, This is the case with integrabtlie systems;
for example, the ideal gas is a ﬁox (sec.(I1.5)) where the individual
energies are invariant, or the one particle system of an elastic
ball constrained to move in a round disc, where both the energy and
the angular momentum are constants of the motion.

It will be shown here that, in the generic case, amcng the
stationary states of a finite system only the equilibrium states
(in the above senée) are stable under small perturbations of the
dynamics.

As we have seen in the infinite ideal gas (sec.If ), the non
uniqueness of a staticnary state with given density and energy per
particle may persist in infinite systems, even if one requires
the state to be translationally invariant and have good clustering
(i.e., mixing under space translations) properties. The quasi
local states of infinite systems are suitabie for description of
local phenomena for which the surrounding gas acts as heat and
particle reservcir. Thus one would expect, and indeed it was shown
(Lanford [28])s that different (pure*) equilibrium ensembles (in the above
sense) of a large system would preduce, in the thermodynamical
limit, the Gibbs grand canonical ensemble for strictly local observ-
ables (with preper boundary depeadence). Accordingly, stability
under local percturbations may be expected, in the case cof infinite

systems, to single cut the Gibbs states., This will be demonstrated

¥ i.e. for wnich the distribution of energy is ccnceantrated around a
single valce.
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here Eor the ideal gas.

3. Stability Conditions

The notion of stability which we wish to use is similar to that
used by HKP and may be described roughly as follows: Let w?  pe
the staticnary state given by the fuaction £ = £(H). If we perturb
H slightly to obtain & new Hamilconian Hy = H + Ah, we obtain a
new time evolution Tth (ETt) for which there exists a measure

A

<
w h (=

"

) (given by the function £(H + Ah)) which is stationary
unde v Tt and "close” to WO, Ve will say that any state @
stationary under 'I‘t is stable if there exists such a family wMh
which ig close to ¥ for all (sufficiently nice) perturbations h.

A state ¥ which fails to be stable in this sense should nct be re-
garded as '"physical™ because an arbitrarily small error in our
knowledge of H could imply that @ does not even approximate a
state stationary under the actual Hamiltenian time evolution.

To obtain & precise formulation of stability we must decide exactly
how u} is to be close to w. Since the only use of the measure (or ensemble)
is to obtain expectation values of physical obsexvables, i.e. of functions
A(x), which (by the very nature of physical cbservations) may be assumed
to bz smeoth functicns of x,x € I', closeness should refer to such expectation
values. We shall write w (A) and u?(A) for the expectation value cof A,

with respect to the measures (W and u}, and will assume throughout that H and

P 1 o ) = 2 ¥ 1
all perturbations are £ C (') and that h is hounded. Some prusibilities are:



~!
W

i) u} = () in norm, 1i.e.
& @y - e <o lall,

where lim e()) =0, A€ C(), the bounded continuous functions on the

A=0
phase space I" of the finite system, and ||A]l = sup |A(x)],
x €T
ii) u}—--—# w weakly, i.e. LJ“(A)__.-) w @) for all A e c).
A~0 A=0

Clearly i) impiies ii). It is also worth noting that there is a
natural dynamical formulation of stability which is equivalent to i)

1) Tih w remains clese (in nerm) to w uniformly in t, for any
perturbaticn h, when ), is sufficiently small, i.e.,

Lt} 8) - w @) < eq) (Al
for a1l A & ¢(ID) and all t.
To prove equivalence we note that i') follows from i) because
wmhs) - @) < ) - S| + @ - war} <2 e 4l

since u}“('l‘tA) = (}(A) by the stationarity of u} under the perturbed
evolution and HT}QAH = |lall. Conversely, if i') holds we may comstruct u?

norm close to W as a weak limit point of the time averages Z&, of the

T

P r)‘. -A' - 1 m f‘ (.. ‘A 3
measures I‘t w (U‘I‘ = 1/T Jo it 'ltm).

Condition i') may be called dynamical stability: Suppose a
perturbation Ah is added to H at some time, say t = 0, then ¥ will
change with time for t > 0. If however ® satisfiea i') and A is
small then the expectation values oi physical observables will alsc
be changed only slightly even after chy loug times. (This remains
true also if the initial state is not exactly ¥ but some state *

which is close to W in porm.)
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These conditions have quzntum counterparts; one replaces C(I') in
the above by the C*-algebra B(¥) of bounded operators on the Hilbert
space N corresponding to the finite quantum system - of a finite
number of particles in a finite volume. W and WA cérrespond to normal
states on B{¥) (i.e., positive linear functionals 9 of the form
A~ tr (AP), A € B(¥), where P € B(¥) is positive and tr(f) = 1)
which are invariant ﬁnder the one-parameter groups Tt and Tth
generated by the Hamiltonians H and H + Ah, h € B(¥), respectively.
For finite systems H has discrete spectrum and corresponding to
states of the form f(H) for classical systems one has the invariant
states given by P = f(H) {(e.g., P = e-BH / Tr e-ﬁH)for quantum
systems.

For both the classical and quantum finite systems, a state given by
a (reascnable) function £(H) will satisfy i) eand ii) and thus, also i'). In
the quantum cace a state is stationary if and only if [P,H]
(= fE - HP) = 0, so that if H has nondegenerate spectrum P must
clearly be of the desired form. Even if H is degenerate the restriction
of P to each energy level must still be the identity if ii) is to be
satisfied, since any splitting of an energy level may be achieved by
the apprepriate choice of perturbation [18]. In the classical situation
we need stronger conditions thani) and ii) to obtain a general result. Before
introducing such a condition, in sec. 5, we shall, in the next section,
investigate scme consequences which foilow solely from the '"weak stability"

condition 1ii).




4, Some Consaquences of the Weak Stahility (Finite Swetems
>£a1 VAN

Stability ii), which is the weakest conditiocn wentioned, has
already strong implicaiions. We study them first on the
finite systems, which are the subject of this and the following

section.

Proposition 1: Let @ be weakly stable under the perturbation h as in ii),

i.e. there exists a coilection whh of states invariant under the
dyramics generated by H + Ah which converge weakly to %. Then
u*‘}Lh(Q) is differentiable at A = 0 on observables of the form

Q = iH,B}(the Poisson Bracket (P.B.) of H with B) for some B € Ci(r)

(Cl functions of compact support) and

d A :
& dusy - = -ecinsh. (3.1)
A=0
In particular jf B is a coastant of the motion, iH,Bi = 0, then
w ([h,B}) = 0. (3.2)

Proof: For any B € Ci(r) the perturbed states satisfy

| ho A A .
0=4d u>?“('rt13) = o™iy 4+ wn, 8l
dt £=0

or

¥ This collection includes ohsé:vables of the”fbrm.dt A - A, for t €R and
A =k . i L A e .
AC uo(r) (slncej:t A - A= (H, Jo*u(AJ du}) and is, thereiore,dense
on the orthogonal complement (in Lz(pw)) of the measurable constants

of the motion.




Ah .
The weak continuity of W  at A = 0 implies thev2fore the existence

of the limic:

({H,B) = -lim (4,51
A0

= -w({n,Bl).

Since, by stationarity,
w(in,sl) = o,,

X
the above limit is the weak derivative of @ B on Q0 = iH,BE.

Proposition 2: If W satisfies stability ii) and is given by a

Cl(r) density #, then
to,B} = 0 (4.3)

for any B € Ci(r) such that {H,B} = 0.
Proof: By Prcpousition 1 iH,B% = 0 implies W({h,E?) = 0 for any
. "

h € CO. in terms of P we thus have, using well known properties of

the P.B.,
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Jdx Pih,B}

o
[l

Jax ten,3} - [dx nie,} =

-de nir,st

Since h is arbitrary this implies (4.3).

We have thus cbtained a simple condition on (9, (4.2) and (4.3),
necessary for stability ii).

Thé above arguments can be reproduced for quantum systems, with
the understanding that { , } stands for the commutatcr. According to
(4.3) a state éf a quantum system, given by a density operater g, is
stable ii) only if p conmutes with all operators which commute with
the Hamiltonian H. Since H has discrete gpectrum.it follows simply

that p is a function of H.

No such general result can be expected for classical systems as
may be seen be considering integrable systems for which the Kolmogorov-Arncid-
Moser (KAM) theorem EBS,&] is applicable. It can be shown, sez remark st
end of sec. 4, that for such systems even the stronger stability condition
i) is not sufficient to insure the desired result p = £(1).
The difference between classical and quantum systems appears to
be due to the lack of a sufficient number of global censtants of |
the motion in the classical case. This prevents fuller expioitation ©of
Propositicn 2 whose usefulness depends on the existence of an abundanc

of invariants. Even integrable systems, if they satisfy the conditions
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of the KAM theorem, have onlv a "limitad' nusber of such constants (i.e.
n constancs when I is a 2n dimensional space). This shows up in the
requirement for the KAM theovem that the frequencies be incommensurablel 4]
which reduces the number of smooth invariants, e.g., for twe uncoupled
oscillarors there exists a function of the two phases which is a
(smooth) invariant iff the frequencies are commensurable. Indeed, we
shall now prove that in the sxtreme case of a perindic system weak
stability alone implies that P = £(H). We shall consider this case
explicitly, daspite its limited applicability, to illustrate the method
used in the next section for more "typical"' systems.

Prcposition 3: Let wbe a state of a periodic system, given

by a leI) densiry p. If w iz weakly stable (i.e. satisfies stability ii))

then locally (awvay from fixed points) ¢ is a function of H, i.e.
grad p is parallel to grad H. (&4.4)
Prcoi: Derote by T che period of the system. Then, for any A € CS,

Ax) = J‘; dt A(T x)

T . T
is a constant »f the wotion. (Since iH,A} = j dt {H,TtAk = f dt %E (TtA)
o ]

¥]
TtA - A =10.) Proposition Z now implies that
& . 3 ; T
0 =ip,Al =lp,[ deTAl =[ drip,m Al = de1{p.Af,
e ° G 0 (4.5)

where we have used the invariance of p under Tr' Assume now that grad p
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is not parallel to grad H at some pcint ¥. One could then find on

observable A,with support in a neighborhood ¢f x,in which {p,A} > 0 along
the orbit of x. This would contradict (4.5).

The typical (generic) integrable system is not periodic. Nevertheless
its periodic points are dense in the phase space [42). In the next sectiom we
show how to obtain a positive result for such systems at the price of
imposing & somewhat stronger, and not so physical, requirement of

stability on the equilibrium staces.,

5. A Stronger Stability Condition

As we have seen in propositions 1 and 2, the weak stability of a
state  enables one to define, for each smcoth perturbation h of compact
support, a functiomail Lh,in whose domain sre observables of the form
Q = {H,B}, by

L ({E,3D) = - w ({h,8}).

9 A
Lh was shown there. tc be the weak derivative of the perturbed states W h.

Definition; A state ( satisfies stability iii) if it is weakly
stable and if, for each h € Cg, the functional Lh is given by a CZ(I')
function fh’ i.e.

L, (5} = [ ax £ () {1,8},

When % hacs & density F then

| ax £ [H,B} = - J dx p {h,B}.
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This gives after integration by parts, assuming p & CL(Iﬁ,

- [ ax B {,£] = [ dx B {h,p}.

Since this holds for, essentially, any B it implies

- {8,£} = [h,0}. (5.1

Thus, for states given by a density, stability i{ii) implies that
for each perturbation h, there exists a Clcrj function fh which satisfies
(4.1). This condition is satisfied by p of the desired form, i.e.
= f(H), f € Cl, since
{h,p} = {h,£(®)} = £'(H) {h,H} = {£'(H) h,Hd]}

and one may choose fh = f'(H) n

We will now show that in the generic case, the converse of the above

statement is zlso true.

Proposition &4: Let ( satisfy stability iii) and be given by

i B : . : . . ;
& C” demsity p. 1If periodic orbits (under Tt) are dense in I and if the
energy surfaces SE are cornected then p is a function of H.

Proof; Let y € I' be a periodic peint with period 7. By stability iii),

2

g @ Cl(I) function £, such that

there correspoads to each h € ¢ Y

{psh} = {u,£}.

Therefore, using the periodicity of the orbit through v, we obtain

It

T T
{ 1 e vy o= [ { r oy
';0 du {Psf‘} (luyj ‘10 du tHsfh} ('lu.Y)

]
o

f du { g_; £, cruy> £ @) - L &)
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for any h € Cg. By the same argument as in the proof of Proposition 3,
we conclude that gzrad p is parallel to grad ¥ at vy.

Since the pericdic points are dense,thz gradients of p and of H are
paraliel everywhere. The connectedness of energy surfaces now impliecs
that p is a function of H.

Remark: The aésumptions made in Proposition 4 cannot easily Ee weakened
2s may be seen by considering stability in integrable systems to which

the KAM theorem is applicable [35,4]. (The ideal gas in a tcrus is such a
system.) In these systems the phase space is decoumposable into invariant
(under Tt) tori "most" of which are stable under small (sufficiently
smooth) perturbations h: i.e., except for a family of tori of total
measure € () ), there corresponds to each Tt - invariant torus M a uniformly
close Tth - invariant torus MA (on which the T%h time evolution uniformly
approximates the Tt evolutioa on M). Here ¢(Q) = G as ) = 0 and Mﬁ is
"differentiably close'" to M. Hence for any Tt-stationary measure which

is given by a smooth "function of the invariant tori" (i.e., a function

of the "action variables" parameterizing the tori) onme may use the

A

t-staticnary measure u} which is

correspendence M + MA to construct a T
norm close to W and even differentiably closz., Thus, unless the use of
perturbations to which KAM does not apply is allowed - in our argument

h could be arbitrarily smooth - the Proposition will not hold if we replace
in it stability iii) by stabilityii) or even stabilivy i). Stability 1ii),

on the other hand, will rule ocut these cases because the derivative of ¥ at

A =0 may fail to be even a funstion and will certainly not be Cl. A positive
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o ;
result may however be possible if the W are required to be given by
smooth functions, since this is almost certainly not the case for the

wl which can be constructed by the use of the KAM theorem.

6. Stable States of the Infinite Ideal Gas

We turn now to the application of stability conditions to states

of a simple infinite system: the ideal gas. As expiained in section 2,

one may expect a stability comdition to single out, among the ''pure"”
stationary sta;es, the Gibbs equilibrium states. This, indeed, will
be shown.

The content of this section is independent of the previous two:
the setup cof an infinite system differs from the finite systems
and the stability condition will be mcdified, essentially by re-
stricting the perturbations to be local. However, there will be
some similarities in the approach and in the results.

Notation: We will denote by ' = Rd‘g Rd the one particle phase
space and by @ the free time evolution on it {generated by

t
i, = m ‘pllz). Correspondingly:

Mm=rere,,or,
B

Ct'n.—-d' k.,_,@d

t t t

neas
]
-
"
S~

and B_((x) ) =




Ki is the space of ct symretric functicns on ™ with compact
support and Ki =£§1 Ki .
The phase space of the infinite system, ¥, is the collection

of-locally finite configurations in I'. For fn € Kz,z fn will

denote the function

(Efn): ol

&) (dx b RO LT

2
For v € K, 4 + Zy (with H = EHI) is the generator of the

H+v
time evolution St on X,with respect to which

d H+lv _ s :
o S, Bt o= lm+2v, Zel .
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It is understood that the P.B. is to be taken with respect to only

those particles which lie in the common support.

X is equipped with a O-algebra 5(X) described in sec. (II. 2)

with respect to which functions in ZK® are measurzhle. A state @

; . o ..
is a linear functioral on ZK~ which corresponds to & measure b oM

B(x):

wEe) =

_ 4 G0 (B) B,y(df)
)

X

M-,

1£, for a state W, Zf is integrable for all f € K, then




Pu(f) = W(Zf)

defines a positive linear funccional on K and hence 2 measure On
=Tl A .

onl ', n=1,2,... . If all the Pn are absolutely continuous

with respect to the Lebesgue measure,we have, for n € Z

A =1/latNpo £ .
dPn -(lfn.)pn \xl,...xn) dxl...dxn

for some ''correlacion functions' Dn((x)q) with
¢

*esstdx dp te.tdp

=4
dx, % i,d 1,1

i 1,1 i,d °

Now, aay state given by correlation functions of the form
n
P () ) =T £(p,) £ent (&Y
n n i=i By

; ; , H _ )
is invariant under St(=St) and possessesz the space ciustering

property:

Fn((ql,p]),a--,(qn,pu)) - Pl((qlepl)) e Pl((qn,pn)) (weakly)

as min !qi = qjl e



One would like, however, to single out the Gibbs states mD,B’

characterized by corrzlaticn functions of the form
il -BH. (x.) .

pn((x)n) =i£1 pa * * , as those proper for the description
of a system which is in equilibrium while subjected to weak local
perturbations by the environmernt. The fcllowing is an adaptation
of the weak stability coadition to infinite systems, where it is
reasonable to require it with respect to local perturbations only.

Definition: We call a state ¥, of an infinite
system,weakly stable (under local perturbations) if for each(repul-
sive) local smooth perturbation Zvw 20, v € K2 *, there exists a
collection of states W, (for 0 £ A <4 with some & > 0) which:

1) are invarianc under the perturbed dynamics "generated" by
E+ NIy

2) corverge weakly, on XK, to @

3) "relax" under the free time evolution, i.e. the limits
lim “ (5, £)) , fEK

exist (in which case they are equal).

* We restrict the allcwed perturbations in corder to avoid a null
definition: %@ attractive potentials will result in a collapse
of the infinite system under which no state is stable. A more
physical restriction would be tec allow cnly the so called "stable
potentials' [43], Technically those restrictions would have no
influence on the proof (in cne direction) and would be ignored.
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Notice that 2) is satisfied iandependently of 1) and 2) if the
dyaamical system (K? o St) is mixing (or even '"Proscer-mixing', see
sec.(I.4)) and @R are absolutely continuéus with respect to W.

We will show now that, due to the transient character of the one
particle time evoluticn, the ideal gas possesses a large class of
"canonical" transformations which commute with the free time evolu-
tion. As we have seen in the previous sections, for such systems
the weak stability is already a strong condition. Althcugh the
"generators" of these transformations are nc longer functions on
the system's phase space, they still satisfy similar equations as
far as their P.B. with strictly local observables are concerned.

Let's denote by Ki the subspace of functions in Ki whose support
is tounded away from the fixed points of Qt (i.e. p= 0). For

g € YS

<~ denote
n n

g.(G)) = Tadr g @ ().

a . 2 n
. (5 & Blad . ; T
It is easy ro see that gn((x)n) is finite C function of —
although not of ccmpact support. Further, it has the following
properties:
1) é((x)n} is invariant under 02 .

2) The functions é((x)n) obtained in the above way may locally

A E n, . .
{away from fixed pointe of Qt) be any constants of the motion.
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Tc see this,notice thar (for the I.G.) if 8, € K; and if
£ € cz(r“ ) satisfies {f B } =0 along tiie orbit of the support
n sym. “n’'n

of g, then

3) For any v_ € K and g EKS, the formal P.B.
n n m o om -

&0

(=, 2gt = [, dt {Zv, 5_Zg

is given by a finite function on X. Further, it satisfizs the

usual rule if one applies the same convention as in {SV,H}:

n
N - 5 (m "K.) : - § " ~
“Vin? zgn} hKél Ki(a-K)!(n-K)! = lv:n((“)K’(Y)m--K)’ gn((x)K(z)n-l{)E

(P is the normalized symmetrization operator). Notice that the
summands are functions of compact support.

Using techniques reminiscent of propositions 1 and 2, we shall
obtain now useful conditions necessary for the weak stability of a
state ¥,

Proposition 5: = Let ® be a weakly stable state {of the I1.G.).

s o
Then, for each v € K and 8, € Ki,



w(izvm,zég) = (0
Proof: By stability with resrect to Zv:
0 = whv({a + Ay, 5, Zagh).
Thus

(im,s, Zghy at = [T o @,2 gy ac

w
' v T

or
- 1L - i L 5T o(nd
%<.ka (8.2) hy (Sop8) = (E;,ZJ_Tgt g dtl)
By the "relaxation" rroperty, this converges to

0 =u_ (1Zv,Ig}).

By a previcus remark we may apply now the weak convergence of W, to
F 7 arply g %

obtain:
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Lemma 6:Let ® be a weakly stable state of the I.G.. If W possesses
Cl correlation functions then, locally, these are functions of the
energy.

Proof:Tt is sufficient to show that, for each n € Z, grad Pﬂ is
parallel to grad Hn. To show this,it is enough o prove that when-
ever lfn,Hng((i)n) = (0 at some (:-:)n € rn’ then ifn,Pni((i)n) = (),

By a previous remark, this certainly follows from the following
claim:
‘ S

If K< m and gy € K. then

(*) 1P ()00 )y BORp,enesx )t =0,

We shall now prove (%), under the assumptions of the Lemma,by

induction on K.

1) Let n > 1, Since ¥ is a weakly stable state, proposition 5

2
implies that, for each v € K and g, € Ki 2

W(izvn,2§1!) = 0.

Expressing it in terms of the n-th correlation function we obtain:

0= Ja@m P () v (=), gt =

= -Jam v e (), B
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S8ince the only essential restriction on v, is its symmetry, we

obtain
A y
= ple_ (@), 8l ==X e (), ax))

If £11 the momenta of (x) are different (which implies

1 . . oy Bt
oL X # xj Vt, i # j) then g(xi) is independent from g(xj); thersfore

(), 8@t =0 1Z1Zn.

By continuity, this holds for any x € I'".
2) For a givern m > 1 assume (*) to hold for each nand X < m

and let & € Kz. For any Y g K;

0= w(zvn, Eém} =

m
k*l k! m-k).\n k)

A d(y) L (D) (@ O s (D)

m-k m+m -k n-k

b (), )0 8,() . (@ P
m

s b l i
&1 Tl Y 10 dE g Yy (e 00

e (O O s D0, 8 (@, @ 2




w7 N
The subseript on {,ﬁ(t> irdicates that the P.B. 15 to be taken with

respect to (x)k only. Bv the induction assumption the P.B.

vanishes for k “~ m, leaving us with

. , "
0= Jd@)_dy)_ _ v (@, o ) b, o ), g ()}
The arbitrariness of vy and the continuity of ip,gi imply (as ia 1))

e (=), ), g ()} =0,

The above claim {*) follows now by induction.

; 0 "
Since the energy surfaces in I are connected, with the exception

of I'' in one Jdimensional systems, it follows that the correlation
functions are globally functions of the energy only, with the possible
exception ofsgl,which in one dimension may depend on P (rather than
on lPl),

The stability condition which we are considering is linear in ¥,
therefore it is clear that it does not single ouvt Gibbs equilibrium
states. However, we will see now that among the "pure' states ithey
are,indeed ,characterized by stability.

Proposition 7: A state, W, of the ideal gas which:

1
1) possesses ¢ correlation functions
2) is weakly stable under V = E(K? U K%) (smooth lscal external

perturbations and (repulsive) local pair interactions)
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and:3) is ergodic with respect to the time ¢volution (equivalently,
space translations)

is a Gibbs state.

Proof: Let us use the 'purity" of the state ¥ combined with
a result of the previcus lemma, to obtain a relation between
correlation functions of different orders.

Ergodicity with respect to the time evolution implies,

™4 v € Kg f1 € K?,

1 T
3 -
lim Jo

L o

= WL ¢ I = W(I w(
d' ( v‘.’l Gt fl) (1-'}'[1) ( fl)

Or, in terms ¢f correlation functions

lim 1/T [ dt ')fl/n! Jo e wv (@) cr]; £, (x)

T-—rm

T . i §
+ 1/ (k) ! Jd(x) ntl) v ((x) ) 2 fl(xn+1¥

-

ntl pn+1((x)n+l) (
= 1/n! JaGo)_ P_(G) ) v () ) + [dy p,(y) £,(5)

T 5 L
Notice that, since the supports of Yo and Ut £, separate, the

i

1

first integral vanishes ag t =™ ® (beunded convergence th.).

Moreover, by a result of lemma 6




Pmn(x)m) = Pm(xl,...,at xm) i £ Z

implying that the second integral is independent of t. Therefore, for any
n € Z; s

pn+1((x)n+l) = Pn((x)n) pl(xn-r-l) z

which implies

Pn((x)n) = I Di(xi) s

The same result would follow from ergodicity of W with respect to
g y P

space trarslations.)

Now, by the previous lemma

iﬂl(x),Pa§ =0 for 1 <o <d (d-the dimensionality of the system)

from which it follows that Fl(x) = $1(E).

. 2 : v s
The energy surfaces on I are connected (which is not the case

1 . ’ - B : ;
with I'" for d = 1), so lemma 6 implies that



P, (x x)=¢’(lp|2+|n|2‘l .
22 2 1 £20 -
Combining these results:
. wwtle 12 1. 12

whick can be satisfied only if

-5|P|2

P lx) =P e for some P > 0 and B > 0

B > 0 since the correspondirg measurz on X is concentrated on locally

finite configurations. Therefore

#* Alternatively, one could argue that (by lemma 6)
12, pyx %)t =0

. A
for any component of the "mixed angular momentum" in [, i.e.

=, -
Pi,e) %1y, P19, Y4,
with soae -f_‘l',lsiz<2 and 1% als‘xzf d.

However, P2 = Pz(pl,pz) (as above) and we have just concluded that

g
In the product momentum space this is 2 rotation which for il = iz
corresponds to a change in the dirvection of motion of one particle

is invariant under the canonical transformation generated by £.

and for il # 12 corresponds to a coupled change of the momenta of the
two particles,which preserves the total energy. Since Fz(pl,pz) is
invariant under a general rotation in the product momentum space,

it is of the form

92{31 9x2) = 9(p
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and W is a Gibbs state,
Q.E.D.

With respect tc the converse of this proposition, it is easy to
see that the Gibbs states are stable under local perturbations givew!

by "stable'" poteuntials £431; i.e. those for which

Ev) (X,5++:3% ) 2 -nB , with some B > 0.

By

“BAZ i =
For_these e Pk €1t (&) and the states u-‘7\(-) = W(e + ) satisfy

the requjirements.
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