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ABSTRACT

The classification of composable, finite dimensional,
quantal simple two product algebras yields many different
types only one of which seems to occur in nature. This
suggest the following question: is there a conceptually
instructive way of characterizing the quantum mechanical
two product algebra in relation to all other two product al-
gebra obtained +through the classification? The thesis
provides a positive answer to this gquestion through the
introduction of the set 4 of states as partially defined
morphisms from the algebra onto an underlying it
algebraic field. ( 5= {{ﬁoqu?}P)( e T —a family
of domainslk).

It is shown that:

(*) Transitivity of the automorphism group
of the algebra on the set 4 is the property
of the two product algebra defined, over a
real closed field, by a nonisotropic
involution which distinguishes it from all
other algebras obtained through the
classification.

(++) The condition of transitivity of the

automorphism group on the set A is equi-

valent to the following separability condition:
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Ue ;‘J is separable if for any ¢ {, € o
such that £ # {, there is 3¢ Hom(0,F)

with 2(p) + 4(f)
An algebra is separable iff every U € 7

ig separable.



INTRODUCTION

1. Background and Motivation

This thesis is based on the algebraic analysis of
classical and quantum mechanics undertaken by Grgin and

1)2) Their study centered on the interplay

Petersen
between two concepts which were abstracted from the
algebraic structures present in both mechanics. These
concepts are:

1. A two product algebra over a field F:

where G 1is an unspecified product and « is Lie i.e.

a i = g o f

0= follgoh) + got(hadg) + hot(fhg)
The two products are related to each other through the
"distribution" property of o« with respect to 6 :

fo (geh) = Fo4g)6h + g6 (frh)

In other words the operator f« is a derivation with
respect to 6 . In Classical Mechanics 6 is the commu-
tative,associative product and = is the Poisson bracket
in the set of differentiable real valued functions on

the phase space; in Quantum Mechanics ¢ is the anti-

1)E. Grgin and A. Petersen, "Duality of Observable and
Generators in Classical and Quantum Mechanies," J. of Math.
Phys., 15(6), 764-9 (June 1974).

2)E- Grgin and A. Petersen, Algebraic Implications
of Composability of Physical Systems. (To be published in
Communications in Mathematical Physics.)
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commutator divided by 2 and « is the commutator divided

by 21 in the algebra of hermitian operators on the

Hilbert gpace.

2. A composition class 7 of two product algebras =~

a set of two product algebras equipped with a product

o ITrT—> 7 with properties}

&, (X8, A€ T and A, = A2 A then
%,= ¥ ® ¥, i.e. the underlying linear space
of the product algebra A12 is the tensor product
of the underlying linear spaces of the component
algebras.
b. Ao (Ao A3) = (A eAz)e A;
c. The field F (considered as an algebra (F, € ,x)
with & being the product in F and « =0©) belongs
to J and acts as a unit in it. i.e.
Fo A= AP = A
The composition class satisfying those
properties is a semigroup with a unit.
The authors investigated restrictions which the
semigroup structure imposes on the algebraic structure
of the two product objects belonging to the class. They
showed that:
i All composition classes of two product algebras

over the field F are obtained from a family labelled by

a parameter q ¢ @b‘u {o} (where [ .- F- {o} | e BLE)s



2. If G‘: 2 AL = (jﬁp“j} 6, d.;){:_:i,l then

AI?_ < Ai o A}, :(-j{n& _’;CQ} €i1: 6‘,.6_1"0,9(;@&(;.91“‘-:6:’.{1? d;‘ﬁ-z )
3. Forevery (# 6 ,«) in UJa

f6q = g6 4
L4 g.v]=aly, 3,0?
If a = 0 then 6 is associative and commutative and
we call the algebra ﬁmlﬁ 6,8, a-= o) a classical
two product algebra; if a # 0, then & is special
Jordana) and ﬁﬁjgr 6, ¢ =a + o ) is a guantal two
product algebra.

These results show that the compatibility of the
composition class structure with the structure of its
members leads to the determination of all composition
classes (a global concept) and to the determination of
the product ¢é for each two product algebra (a local
concept). The connection between those two levels of
analysis 1s provided by the parameter a.

Elements of the classification of all simple5) two

product algebras are contained in an unpublished

3i1e (A, T is an algebra then [ 4, T §Tg)Th- £ (gik)
is the associator of 7 .

u)A Jordan algebra (A, 1) is an algebra which fulfills
conditions: [rvly=0, [x, v.«]J70.A Jordan algebra (A, T) is
Special Jordan if there is a monomorphlsms(aﬂ —(uci¥or
some associative ( .

S)A simple two product algebra is an algebra without
simultaneous nontrivial ¢ ,+ ideals.
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paperé):

: 0% There are no finite dimensional classical two
product algebras over the field F of characteristic 0.

24 In a case when the field F is of characteristic p»©
the classification of non-commutative?) Jordan algebras
is incomplete. However, among the known cases there is a
large class of nodal, Lie admissible algebras which
are classical.

3. For any field F there are four series of guantal

algebras
O e ST M CRPCRR) LN T W % OB
bo (¥, & & a=-) = (M) €1, 1)
o (W5 8 BE) = [syEmy ) LT Ju &C1)

where

(*) FWWK and M:&ugare total matrix algebras over
|
respectively, the field K and a division ring A
over the field K ,

(*s) G% =a Fle) is the quadratic extension of

which includes the root @ .

fere) g is an involution of the second kind in Hﬁ)

6)E. Grgin and A. Petersen, Classification of Two
Product Algebras. (To be published.)

7)The classification of classical two product algebras
is achieved by analyzing a noncommutative Jordan product
T= & ¥ »

8)See Appendix 1.
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(iv) SJ(H“J is the set of é;-symmetric elements
of M'with (Fio) = Sy (nlrE)= F_

One sees that the set & of simple, quantal,finite
dimensional two product algebras contains many different
types only one of which seems to occur in nature (the
algebra of the type c. for [ Dbeing equal to R and 3
being a non-isotropic involution).

The question arises: 1is there a conceptually
instructive way of characterizing the guantum mechanical

two product algebras in relation to all other elements of

the set g ?

This thesis gives a positive answer to the question
by exploting the framework suggested by Grgin and Petersen
in their unpublished paper.9) Its main points are the
following: First, the authors assume the existence of
three objects the structure of which is unspecified:

(+) an object Ob whose elements are called

observables

(*+) an object )} whose elements are called values

(***) an object «g whose elements, called states, are
partially defined morphisms Hﬁb*—ﬂaljwith
respect to the unspecified structures.

Second, they impose upon this scheme certain conditions,

the role of which is to induce structures in those objects.

9)Grgin and Petersen: Hamiltonian mechanics, preprint
(unpublished).
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The imposed conditions were as follows:
r i Aut V¥ = {id’i
2. The group AutOb can act in the set -3
through the requirement of the commutativity

of the following diagram:
ob— 50
5“~JP 2
(For every & € Aui(b) and ¢ 5 there exists
a unique 3¢ 8 which satisfies the diagram.)
The outlined program was not carried out in its full
generality.
In the present paper we assume that:
(*) the set Ob is an algebra ﬁfmﬁjwhich is the
substructure of a two product algebra QEHUEF;d\ 3%
(-*) the set V" of values for ﬁﬁﬁgﬁﬂ is the field F
(«++) the -5 of states is equal to {Howw (g, R} | Ce ?S
where 7 is the family of commutative, associative
subalgebras of bzmﬁl Each subalgebra is
generated by an element f¢ ¥ and the unit of
the algebra (¥,6). (Clearly the family F
constitutes the covering of 3¢ .)
The choice of this family as the family of the domains
of partially defined morphisms is suggested by the
following remarks concerning finite dimensional Quantum

Mechanics.
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In the standard formulation of Quantum Mechanics an algebra
of observables is an algebra(ﬁm.l:]kf hermitian operators

N

on a Hilbert space (\/M:f ). Each normalized eigenvector e,
of an operator A is a possible pure state of a system
represented by this algebra. Moreover, if Ae, = @€ lacer)
then ['(e., Ae)) = a..

Let us consider now a particular operator A e #|p:
the collection of its eigenvectors {eJ‘ , and the
subalgebra O (A) generated over reals by the unit
Le (‘Jﬁml[;]*\and all powers of A. As the algebra (jeHR. [,]‘)
is finite dimensional there are #°2 > O linearly inde-

pendent powers of A so that any element Xé O (A)

can be uniquely written in the form:

= ("3 (4
¥ = oL+ % A+ X A%+, .+ %y A + %i

Any eigenvector €, determines a map Pﬂ U —= R
k 2
by letting Pﬁ(x) = i_‘(n,)(eﬂ = Zj *al e R
The map F‘e_ is a homomorphism of ©(A) onto K

i Y = Lo A" then fe (X Y) = T (D xal) (Tym &)=

= [e; (FE: a‘:xp iﬂx, Yaer ) = Tled, (Ff Aréoxv Ypcwlled =
: f)j o e Plee, Wer) = T mepr wl o Tepla) TR
The kernel of this homomorphism Ker (e, is equal to the
set { X (A) € CT(MI a. is a root of the equation X(})-=
= Xg* xXt % o+ R A, T ')\h } The normalization
of eigenstates guarantees Q; [Ty & |E R .

It is clear that (e # T%; & SRR PPy

belong to different eigenvalues. Hence, each eigenvalue
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of the operator A determines a homomorphism from

10) In a case when A is nondegenerate

onto reals.
(i.e., when ©U(A) is a maximal, associative subalgebra

on the generator A), there is a one-to-one correspondence
between normalized eigenstates of A and homomorphisms [%,
It is important to notice that, if A is nondegenerate,
the maps Pﬁ;bear the homomorphic property simultaneously
only on ©(A) ; each particular [; can be extended to

a larger subalgebra ( _(4) 2 5a) by enlarging its kernel.

However, the domain on which all of them are homomorphisms

is equal to CO(A)= f? o(4),11)

lo)In a standard approach the map [% is allowed to
act on the whole algebra 3¢ [} As the algebra Sy L)
is (1. simple no map of this type can be a homomorphism.
Therefore the map [, respects only the linear structure
and ignores [ 1, product. - hence, a connection to the
statistical interpretation of quantum mechanics.

11)To see this more clearly one can consider the
following example: Let (V}@-, "(,)) be 3 dimensional
Hilbert space and the operator A has the representation

(25‘5) in its eigenbasis {c:?.t., &(A) is then
the set of all diagonal matrices in this basis. Ker (%, -
= K%EE) ! x, YeR and it can be extended to {(Efgﬂzfﬁf
so that the domain of [, can be extended to (4] =
=,(€£§)Lﬁ"?eafiﬁﬁj It is clear that (., is a homo-
morphism on O, (4) . Similarly, the domain of [%, can

¥ o

be extended to the subalgebra 0, (a) = K;*;ﬂ)\ﬁv;weﬂ.icf f
G5ca) to Mii %)[ % Y, ueR, 2502}‘
The intersection of these domains is equal to [(a).
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On the other hand any orthonormal basis {e.} in
[ Vﬂ/& j Rl )) determines a maximal associative subalgebra
De (A) which serves as a domain for the homomorphisms
{Pﬂi - Any nondegenerate operator Ae Ue and Te #jp can
serve as its generators. Hence, the set 4= { Hew (6, F)( Be 7~
-the family of maximal associative subalgebras}is isomorphic
to the set of pure states of finite dimensional quantum
mechanics.
Let now {_l_ét— f:. be the set of morphisms on
the subalgebra U. and U be a unitary transformation:
e, ——> r:= Ue, =1, Then, the maps [}, = M(Uel 'Ue:)=
[(e. W Ue;) are homomorphisms on the subalgebra Gy (Be) =
= {UAUT| A€ p. S We see that action induced by the
subgroup of Au+(¥, [1,) on the set of states is equivalent
to the action of this subgroup on the family gﬂ‘ of maximal
one generator subalgebras. Moreover, since any two such
bases are connected by a unitary transformation, Au+(‘$€m; i
acts transitively on the family F
The main conclusion of this thesis consists in
showing:
(") that the transitivity of Aut(%, [],)on the
family of maximal one generator subalgebras is a
characteristical property of algebras (?E{p, 6)
defined, over a real closed field, by a
nonisotropic involution, which distinguishes

them from other elements of the set (? , and
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(++) that this property of an algebra (7 s) is
equivalent to the algebra being separable in
the sense of the following definition.

Oe 7 1is separable iff for every 4 =4{ efB(s)
there is an A e Hom (& P) such that (&) % 4(4)
An algebra (#,6) is separable if every O is
separable.

2. Description of Chapters and the Results

This thesis consists of two chapters: in Chapter I
we deal primarily with questions concerning the properties
of a pair O}#uwﬂfﬁﬂn% while in chapter II we prove
theorems concerning the family gJ;

In section I.1 we construct a subalgebra E(£)
for any fe¢ (%7) 12) phe subalgebra 0(£), being commutative
and associative, belongs to the category {%1 of commutative,
associative algebras with unit (over the field F) on
one generator. It is well known that a free object in
this category is the polynomial algebra F[2] in one
indeterminate 7 , which means that if (4 (g)e ¢, then
there is a unique morphism (] —2.%4) which carries 9
into the generator g and | € F3] into the unit of 4'(y)

This implies, that, in particular, there exists a unique

12)@3p ) is a power associative algebra over the
field All considerations in chapter I are in this,
more general setting due to the fact that every substructure
(#/,,6) is power associative.



xviii

homomorphism %? “ PN ————=. [

2 > 4

‘ 3 T

As the subalgebra 6&) is finite dimensional the map g
has a nontrivial kernel: Ker 9% = { V() | LVfFv(M}= ai.
Ker Y, is an ideal in F'[X1 and as such it is generated

by a unique monic polynomial Mg (A) .13) This polynomial

is called the minimal polynomial of :f .

The minimal polynomial /u{(?\ contains most of
the information concerning the structure of the pair
G?(ﬁ, #IOMn[GWLpﬂs therefore this section is devoted
to its analysis. (The considerations in this and the
next three sections are either based on or are reformu-
lations (suited for our purposes) of certain properties
of the well known concept of a factor algebra.ih)

In section I.2 we analyze the structure of (F(£)
If Se¢ Hom(Otg),F) then Ker 3 is an ideal in Q14).
Moreover, as ((f) is an algebra over the field F, the
15)

Ker 4 must be a maximal ideal of codimension 1.

Thus the considerations in this section are focused on

13)We refer here to the Principal Ideal Domain
property of FQ] i.e., the fact that any ideal in it is
generated by a unique monic polynomial.

Saa )14)Greub. Linear Algebra, (New York: Springer Verlag,
967).

] 1S)Fc_)r any algebra ﬁm1 an ideal < is of codimension 1
1fftﬁ/3 1s a one dimensional linear space over F.
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the characterization of ideals in &(f) and relations between
them. We find out that ((f) has maximal ideals of
codimension 1 iff the minimal polynomial ‘LQ(M has

linear factors in F[1. (The unique factorization of .y (2)
into powers of prime factors i.e., 'jufriﬁ = Winﬁ,_ ﬁ?fﬂ
is discussed in section I.1.)

The next section, I.3, is devoted to the charac-
terization of the set fow ( &1 F) . We achieve it with
the help of the set Hlow [FLIF, It turns out that
the set FHow (B(£), F) is isomorphic with a certain subset

Hery, (PO F) of the set Hom FOx, F).

HOM%(PE}], P) := { @e Hom (PIN,F) | Kev $p ¢ Kev @ ¥
As Ker W% :-(ufﬁn) and [,uffﬂ) = C? ( Wf%?ﬁ

i.e., the intersection of ideals generated by powers of
primes, and as Ker € = @h- “@D' the aforementioned
condition Ker Y%y ¢ Ker ¢ is fulfilled if (A— %9)

is a factor of e ) = We get then the commutativity

of the diagram FIAT id s E

%l . do 4y = €
How (BLE), €
5(¢) 4 € Heo )

We also prove in this section (Proposition I.3) that &)
is separable iff e (D) = [H )5, ol (r- 2s) 2l A%
In section I.4 we introduce the idea of an abstract
subalgebra ( on one generator with the set ‘3; of
generators associated with it. 1In this new language the

subalgebra O(f) is a particular representation of the
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subalgebra O in the basis and multiplication algorithm
provided by the generator f€ fi9

We show (Lemma I.4) that all elements of j;,have the
same degrees of minimal polynomials and the same degrees,

powers and splitting fieldslé) E of their factors. This

Kk _ kg
. = N ¥ e (2)
means that if € and Myl = Bt et
%lf ?9 u?(}“ = ‘[‘_f’(})-__" ‘C: (&)
then s=~ and there exists a permutation 6 of the
set { --. s}  such that 2. = Q{Tanﬁlﬁ, ki= Law
E—“L = Eré(tl .

This lemma is an important tool for proving the theorems
of Chapter II.

Finally, in section I.5 we define an action induced on the
family 9” of maximal one generator subalgebras by the automorphism
group of(ykjﬁ. (The step from the family F to ‘?ﬂof maximal one-
generator algebras is achieved by exploiting the existence of a
partial ordering in 7 given by the inclusion relation and the
existence of maximal elements for every chainl?Jin ?d.)

The content of Chapter II is the application of the frame-
work developed in the Introduction and Chapter I to the elements
of the set @?. It is important to notice that each element of
the set ¢ is characterized by 3 parameters: n, involution J] and
the field F . The theorem II.1 (see below) provides the condition
which stabilizes the involution and the field and places no con-

ditions on n

1‘s)The notion of a splitting field of an irreducible
polynomial is introduced on the page 16.

1?)Chai.r‘.l in a partially ordered set is a well ordered
subset of it.
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Theorem II.1
The necessary and sufficient conditions for

the group Aut htm) is be transitive (for all ny | )

on the family f;dassociated with the algebra

twqp, 6,0, a+0) are the following:

1. The field F has to be real closedls)

with the algebraic closure L = Feo)

2. (Rjp, 6, 020 = S3(Mg)with J: Mj,—> M,

being an involution of the second kind associated
with a nonisotropic hermitian form i

There are essentially two real closed number fields:
reals and algebraic reals P i.e., the maximum subfield of
reals which does not contain transcendental numbers.
(Obviously, reals and algebraic reals have different
cardinalities - algebraic reals are denumerable.)
Algebraically, both of them have the same properties;
they differ topologically: whereas reals are complete
in the topology provided by the absolute value valuation
the algebraic reals are not. In the case of F = R
the theorem distinguishes gquantum mechanical algebras,
in the case of F= P it suggests a new candidate to
support all algebraic components of quantum mechanics.

Proposition II.13 shows that conditions 1 and 2 of

the Theorem II.1 are also necessary and sufficient conditions

18)See Appendix 2.
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for the algebra.@%m,EkL)to be separable.

Chapter II contains another important theorem (see
below) which gives the full characterization of orbits
of Aut (¥ (p) in the family 7 in the case of F being a

real closed field and ] being any involution in H%ﬁu

Theorem IT1.2: Let | = Sa(ﬁab) be given where F is
real closed, F(u):=-ul , and ;J is an involution of the
second kind, and F= S3(«)) . Then Aut(¥p) has a finite
number of orbits in ?‘, uniquely described by the sets
of integers {k“kh_“,ke&,{@ﬂy.ihkwhich are powers
of prime factors of minimal polynomials characterizing
elements of a given orbit:

Sty = B= %) = -)\,,)h_

and T (%) € F(» is an irreducible polynomial of the second

ke kew _ ks
BsRe) Mg A1 - Bsbh)

degree. The integers{kjllfulfill the following conditions:
£ 5
1' ZkL+ zzklzh

L=y (=fri

2, o0tk & 2p+ if L c2. w-2p is a signature of the
involution J , with
ey " ¥ P20
o L k¢ & p b s O

3. ILet ikﬂgaee{ be the set of odd integers > |
(LW

-+
then 7}, iy o e 1p

‘21
b, Let { .y, ..., k%} C'{ku‘-u kel where hj = 2b+ | ,b>|
ky =1 >
L lﬂ [ 3
then E _JE_ +(£=Z;ﬂ LJ P

and n- f(ktd_t) + -Zf'kl = grh

Q! (=l
where h 1is the number of linear primes with k; =
(n ()



CHAPTER I

1. The Minimal Polynomial

1. TLet \%Lo) be a power associative finite dimensional
algebra with a unit over the field F. For any {e (3,0)
let U({) be a subalgebra generated by the unit I of
the algebra and the element f. We are interested in
the set Hom (D), F). 1f 4¢ Hom (®0,F) then
Ker 4 ;= Lxe T 400 = 0§ 45 an ideal in &) .
dxeg)= 4 -43)=0 if Xe Kerd ., By the fundamental homo-
morphism theorem v’(‘f)/mf; F and as F is an algebraic
field, and %©(#) is a linear space over F the Ker 3
is a maximal ideal of ©(#) of codimension 1. It follows
that the existence of such ideals is a necessary condition
for the set LAOW)&H&),FJ not to be empty. This fact
forces one to look into the structure of the subalgebra ©(¢).

The algebra U(4) belongs to the category Cg
of commutative, associative F-algebras with an
identity element on one generator. It is a well known
fact that the polynomial algebra FI[M is a free object
in this category, i.e., if ¢Q(g) ¢ (g then there exists
> A(9)
A —> 9 -

a unique morphism FO»M

In particular there exists a unique map ﬁ% ¢ EEY —— ¥(§)
=T .




Since the subalgebra U(#) is finite dimensional, the map Y
has a nontrivial kernel. Ker ¥ := {vo) e FOT[ Yo (veN) = vip) = o}
is an ideal in FOM . FON is a Principal Ideal Domain:
every ideal in it is generated by one element. IT %
is the set of generators of an ideal J ¢ FO1 and if

pme G then x®)« 1-‘5 iff r(M) = 2P , «eF.
Accordingly, there is a unique generator in 3J which is
a monic polynomial.l) This polynomial (forgJ:Kerﬁ)is called

the minimal polynomial of{ -Ji‘t: is the monic polynomial__,aim

of the lowest degree in A which vanishes when evaluated
at {

The minimal polynomial g (%) will play a fundamental
role in the structure of subalgebra §F) and associated
with it the set Howm (B4),F)  ; thus it is worthwhile
to analyze its properties:

The algorithm for constructing HMy(\) is simple: if £
is nilpotent, i.e., if there is an integer k>0 with fkao

ko

and if k, 1is the smallest such integer, then .« = .

ku_l
Otherwise we have ko linearly independent vectors {I, 28 f }

ko -1 . =
with { e Span LT, 4§, .., §“% 4§ . This implies
that f": Gl + a8+ af'4. *a, {Mw_k_l{“ where not
-\
all a,'s are zero; hence Yo7 " = ‘)\k'-- - - }h R BT I T2 I

l)k monic polynomial is a polynomial with a coefficient
@o=| if p is the highest power of ) occurring in this
polynomial.



is the polynomial of the smallest degree which vanishes
when evaluated at 19 .
The unique map \V'f factors through FIN)
‘ /(M_{ ()
with '1’{-- vo Tl

where T is a canonical projection and ( is an isomorphism.
The canonical map 11 is defined with the help of the following
division algorithm present in FLA .
(+) there exists a map 9 : FON ——> 0§ U N
such that Q(Xx-y) = Mt D)

Dx+y) = max{ D, DNy
This map is called the degree of an element x ¢ PO
(<4} iF %, vye FCQ then there exist unique
polynomials ¥y, 9x € F[  such that X=Y % +9,
and 9(q,] « Q@) : if 2(x) ¢ ?2(y) then m=0
and ::h = X
In our case, Yy = /4,; (x) + so that for any element X(a)
there is a unique remainder o‘,“(*a) of this division
by /(,e,l3 (X) « Moreover, the division by My (x) defines
an equivalence relation in FLM : x () v Xz (A) iff
‘hf'” A c}k?) . The equivalence class of zero is an ideal
(/“‘f () containing all polynomials divisible by M¢M).

Every element x(n) belongs to a unique coset © + [Mg(D)
i 8



The map 1 is defined now:
T XN ——— 9 ) 1t (p ()
The multiplication in the set of cosets is induced
uniquely by T (and therefore dependent explicitly on
the minimal polynomial My() ) so as to assure the

commutativity of the diagram:

al \ \ ...
t‘[] ¥ P[D‘} > FIONV « - product in FLA3

« -product in POX]
h v g g M)

Dy x PO e P[]
\} g () Aq{m) 2 /pu ;_(1‘1)

TOXAY o) = Flym)e W) .
If T = 4, ™ + (MFW).

TN = g+ ()
then WEORY T O 1f g g )< Q)
4™ + ue@) 1z g, 4,) 7 Oug)
(Ctx“’ ¥ (Mf(*}))’ (1::1 + V‘i"”) = ' - - A ) S
] where u'm = qW Lm ﬂm Y

for a unique y™.

The map L : FID? ———> H(f) is defined by sending

ugm)
Q.-*Spi('n) onto a-L for aqef , A+ (o) onto
{ g + (upoy) onto o (f)

( is an isomorphism by virtue of the fact that Y is

a homomorphism and o (KerYy) = g = 0 B10.



Another important property of u{{' N If Ats
factorization into prime factors . ,;*1= '.'T.k'“" S 'I._,kﬂm
with X >C and 1'? ILfm) ke = 2y @) . (Prime polynomials
in F LAl are irreducible monic polynomials.) The factori-
zation is unique because of the Unique Factorization Domain
property of FA1 y fThere are two extreme cases of this
factorization:

(o) Al = A

(=) Wy - irreducible in F (]

In the second case FD]/"(Q# ) is a field which is an
f o~ F&" 5

-

algebraic extension of F ; in the first case FE-"]{’L“N,\
where ¢ is a nilpotent ideal generated by the coset

A+ iw{\""l « & is isomorphic to the ideal of O(4
generated by all F-functions of §{ with a.=0 . 1In
this case ((§) 1is "furthest removed" from being an
algebraic field: only elements with &.# 0 have inverses
in C€(f) . Generally, a(f) has an inverse in (¢ [f) iff

OL(N), kg () are relatively prime, i.e., there are two
polynomials Xx® , xx € FIL37 suech that

X ) ) + K;H}Jufiﬂ = |

In that case, we get MYy e |+ (um) or

xif) e ag) = Le 0P,

2. Structure of the Subalgebra J(4).

(+) bBUY) is a linear space over the field F of the
dimension k. = °( u#pm) . Its points are F-polynomials

in { of the degree & k. -! . This subalgebra is a



e

Principal Ideal Domain as it is a quotient object of F()
and therefore all its ideals are generated by one element -
some polynomial in ¢ . If «H e B¢ then the

necessary and sufficient condition for X4) to generate

a proper ideal is that X({) have no inverse in &(4)
This is fulfilled iff «» | _dygln are not relatively

prime, i.e., when x( and «;(» have a common factor.

Hence, every ideal in ©1{) is generated by elements

‘#-P. P, ’ 1
.. : ey , lee p ek quf‘h *I‘h)
L= L=t
In particular, if - ~ | , we have the following

inclusion relations among some of the ideals:

() 2 (Wif?ﬁj) > (T . @ s )
The ideal (E,“Q is clearly a maximal ideal since it is
not contained in any other proper ideal of £1f). The
quotient G /(TTL.”-T_) is therefore a field E 2 F
In particular, if G(T., ™)=| then ET{}/IﬂD“1:f F
One can see that the canonical map

S Bl —————x a'f’nl__fn‘cm

1 by th g Y, e BBy B
followed by e map L A&Lﬂ =

is an element of Hecm (ﬁ({}, E) . Hence Hom(0p,F) is

not empty iff _«; () has linear factors. (The "only if"

part of this statement comes from the fact that Ker% has
to be the maximal ideal of codimension 1 for any 4e Hom (G16),F)
(++) The minimal polynomial _ugmy  also serves to

s

obtain the primary decomposition of the algebra (f)




ley

i by o8 _ ky . = I
If e Y = T o) 06 - T, y - g™ let ., = [l »1s
by

: ; -
s a0 . The set } _a ™ }L is relatively

L

prime which implies the existence of a set { V) }ﬁ

b
such that {Z e B v AN R = | « This relation is
S

mapped by the map ‘*‘f onto the relation E U (f) e N LBy =T
in the subalgebra T(!) , where r\l{f& = vf (~o ) |
It is easy to see that if  h (§) := N(4)- .t (4) then

5

M) ¢ b =0 for %, Aot = hié) and I-= Z bkt

Moreover, if { := {eh® then (- 'f: { and if glf'e 7§
then Y= z q(4.) with g (4) - q(f) = O for .+,
This means that 0{4) splits into the direct sum of ideals

C. () each of which is generated by (4 h.(#) .2)

According to our remarks in (-) for each g(f,)
there is an element X (8) e By such that ;) = )

In order to find this element let us notice that for every,

a

Waki W= (0 + Tg) + T ) + T H(4)

Hence, .« ()= o T, () + o by ) 3)

L.:td Y
The conclusion is that ) 1is the generator of (] ({,)
and T,°¢0)  is the generator of o O (4)c Ow. It is

el |

important to realize that the ideal ©;(¢) 1is a commutative,

2)The polynomlal TF "2y is not the minimal polynomial
fo‘:: Hr:ﬂ-\:’ T‘“L‘fch) I“ €)e hif) + g (I- W) = Mhigy e wotd) + o -l'r:.h '!}
where u 1s the coefficient of zero power of 3 in the
polynomlal Moo= Kveves o - AS i) = Tl . i) we get

Ty = M@ bet) + Ul o) = T D) 4 el (F W) = T (0. ugte) + ol fg wyi®) = O+ @l (0
so that the minimal polynom:l.al of 4 ig »-mho.

We have to multiply LIRSy by A to get the va.nlsh:mg

of the term a:'(}h&\_)

3) a; is the coefficient of the zero power of } in
the polynomial r'a



associative algebra with an identity element being =%

It is not, however, the subalgebra of £1¢) nor of (9 ¢):

their identity elements are different. This is the
reason that () is only "almost" the minimal
polynomial of ¢ . The definition of minimal polynomial
refers explicitly to the unit I of O{f) and not =~ ¢ O (f)
50 that Ly = %o

However, if we are interested in the structure of

'@}Mq) independently of ©({), then C(.({) is fully
described by the map &, : FPBl— =B (&) with Kee ¥ = (1,0
A—={
| ——= b (4)

The algebra 0O ({) has several ideals, each of them
generated by Wffﬂ} T LT and fulfilling the
relations (7/.£)) > (")) » This implies that T (4)
generates a maximal ideal in O f). As 0= T {4)
is nilpotent of degree « 7, (TE f»?c)) is a maximal
nilpotent ideal of E({,) .+ The maximality of (T ()
implies the existence of the map €, : (.(f)——= E>F where Ker ¢.-
= (M) and E is an algebraic extension of . By the
fundamental homomorphism theorem we have Ui (§)) = Ker € @ @1({}@' )
Tn the case Tig) = (f- 2),%eF we get O () = @{— ) © -C’I(#}/(m o)
with Dif)sfi= (-2)@ N, ) = Vi) & v
where V({) € §-2).

We will apply now this result to the analysis of ©(I)

.
v

mHenceforth the subalgebra of 0(f) generated by
(2., 7' will be denoted by ©4) , and the algebra
generated by (4., h) will be denoted by & (f)



Suppose again that L 7 | for some v so that (,T:‘m) = o 0i(h)
is an ideal in 0U(f) . It is contained in the maximal
ideal (L w) = © 6;(4,) © (Mcfifhi.

In the linear case, we again have the splitting £ = ¢ ) e B n-

= BUY e (e © Bl e

With 5il)s £= T hily + @b+ Nk

W= LI + V- + WK o, N € F
and () + V- € -2,
a#

3. The Set Hom (B(&),F) .

In order to characterize the set Hom (6, F)
we need to investigate the relation between the ideals
of FOx3 and those of 0 (4). Iet (W) be an ideal
in P03 . This ideal can be mapped by Hj:on‘to :

1. all of algebra ©(§) iff VN , 4,) are
relatively prime, for then ()= Y4;(v®») has an
inverse in (18 ;

2. gero iff VO € [ty B)

3. a proper ideal of CU(f) iff VN, e (R
are not relatively prime. To see the latter, let w™M=
e &5 Al {\)M\I .'({'t(-}\)} iy, VY= w@): X (A)
and Aty () = w) k() . This implies, of course, that

X (N, x ) are relatively prime, so that there are
Y M Y2 with

KAy WO = XA, Vi) or

1

|

VA Y ) + 4 Y, (D) = w®)

which is mapped by fr () onto
V) e YW= wf) e ) (*)
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This implies that Vv ({) = (ww),for @) (wig)
as homomorphic images of the ideals Q”Wﬂ) (o ON)
which fulfill the relation (V) C (W) , and (V(4)2 (o#)
by (*). Consequently every ideal in C(£) is an image
of several ideals in FDX ., 1If () = ( Wiw)ﬁTflRZ ¥
.‘E?ikrfwo, a<ptk is an ideal in O(f) and if
J¥uauf: { J e DY %)= @owDE then each element ?f
J{wu}is generated by a multiple of w() . Hence ¢ﬁﬂﬂﬂ
is partially ordered by inclusion; with the maximal
element being (w®) « In particular, if kg (N) has a
linear factor (A- %) then (2= }Jh) is an image of
ideals ((A- l‘f) L3 ke,
With the help of all those results we will now

characterize the set Hew (T(2), F).

Lemma L1: The set Howm (618) F) is isomorphic to the subset
HOWxtiF@LF} of Flom (FM] F) with the property:

€ e HGWW*(leP) iFE  Ker Y C Kerte .
4

Proof: To prove the lemma it is enough to show that for
every 4 ¢ Howm(B(f),F) there is a unique © ¢ How ( FOI, F)

satisfying the following diagram:

FDJ'--%;;;;?F
4 (*)
erze)/

The necessary conditionsfor the commutativity of this

diagram are: Ker "1"{ C Were | Y(Ker@) ¢ Rers,
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Therefore, we have to find an ideal of F[(% which
satisfies those conditions and which can serve as a
kernel of a homomorphism of F[»} onto F . If
Kees = (f~") then the ideals which fulfill the second
condition are elements of the set \Jn{@‘w
There is a unique element in ]’L&: s which fulfills
also the first condition; it is the maximal element of

j\i& ot equal to (A- %) ¢ FDI | ILet then (‘.\—'&,}]
be the kernel of { . Having defined the kernel of the
homomorphism of [  onto F we have uniquely defined
also the homomorphism itself: if rfer & = E’/\“&D
then € (Vi) = e F (by the uniqueness of the
divieion algorithm).

On the other hand, if Kers = (f-%) c E(P

then Kers = LG;_‘,; b (£) @ @{— ),))o by (by the arguments in
the section I.2). Hence, we get the canonical splitting

of the map 5

A
: //
‘5 _.—’-..
(A
y VE"‘MEJ/HW'-&

with S (@) = V()eh, + Wers
and {(he)y = 1eF | ((Kers) = 0,
We now obtain A0 = e 57w = (I hg + Kers)=

= U(VM)ehy) = ()= V) FOT D) ¢ M + [(A-)
which shows that the conditions above are also sufficient

for the commutativity of the diagram (*).
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Let now Homﬁtpm, F) be given with the
kernel (- %) > WKev 4y .  This can be true iff \'= 2\,

where \ ¢ « £ £ o whereupon Y, (Ke-¢) = Kerz,
1
DefinitionI.2: A subalgebra (C'({) is separable iff for

every 4, f. ¢ () such that (. ¢ F-1 there exists
s¢ Hom (008 F)  with  _g(§) = 4p) . An algebra (2, -)
is separable iff ©ff) is separable for every fe %

Let us notice first that ©7f) is separable iff M Kcv; = @
for if there is § 2 & ¢ e such that «44) = awy) - -
for all 4 then g% {i-f is mapped onto zero by all
homomorphisms: 4(fi-4) = 3HE) -4 =0

Let _£7C &(fHbe the set of elements in a nonseparable
subalgebra () such that if xe " then = (x) = 4,00 (=4
for all s ¢ Howm (E18),F) . It is clear that ¢/ is a
subalgebra of ©({) containing FI and that there
is an equivalence relation in ,+ given by: s~ x 1ff

4(w) = 3(%) « The equivalence relation defines an
ideal d in ' equal to (;1 rersand the set of cosets
fal+~Jdlacfl . The elements of each coset are
"indistinguishable" by the homomorphisms. In this
framework we notice an interesting role that constants play
in such subalgebra: if x ,x  are elements of one
coset+ J +0I then ax , b% Dbelong to different cosets.

In other words if x , %, are indistinguishable then

ay , bx; are always distinguished by homomorphisms.
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The only elements which cannot be distinguished by

constants are the elements of J = Q Kev 4.

Proposition I.3: &(¢)is separable iff it is characterized

by the minimal polynomial s (A) = (A~ A) (- N) . : (A-2s)

AL — Ky

Proof: Suppose that .y ™ = (i DI T el o
where at least one power k., is) | for | ¢ ic<¢e and
ko % | TOT e Jo 2 4
Then the element (f- 2. ) ¢ ;’;‘, Kee 3, 4¢ FHem 8th),F). TO

see this it must be noted that Ker 5. = (- ’AL)) so that

L¥ Lo
L#_ (.-\t:;] - l"t- € 6"-6 {{1:)
which is contained in every Ker 5. . O0On the other hand

Lt Le

Ker 3, = (f-%)e hy @ GC() so that (f- %) e Kers,,
LR la K .
as well. Similarly, the element O # &, (f) = (-2) .0 (-1 b

o K1 n ks £
T, (f-’)'...'éc-, s Tl e f’] @{~ ’,\L) = C} Ker - .

Further, let ¢ (M) = (- 2) G-2,)..:f-2). This means that

e gy then w, ™ = f- 2) for {freBuip)
= Ry
which means that ({fi- A)eh=0 . Hence {= % M h(p
and for'any gt e B i = | giddekag + 48
L
REE &7 = SRR e get 71 Rersc=£. [

4, Generators of a one-generator subalgebra.

The set of vectors {I, il 3 5 fﬁ.' § plays a dual
role in the subalgebra ©(f). On the one hand it provides
a linear basis in the underlying linear subspace; on the
other, it provides,through the minimal polynomial g (%)
an algorithm for the multiplication table in b(£).(See

Section I.1).
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In other words this basis is specially adapted for
the representation of the algebra U(£) as an algebra on
one generator (In this case, the generator 4). There are,
however other bases in &7 which have the same property;
each of them is generated by different generators of the
subalgebra €(f) . This implies that the proper way of
expressing our ideas is to introduce an algebra on
one generator U with the set of generators 3§ attached
to it. To pick a generator h&;ﬁé;is equivalent to picking
the particular representation 0&(h) of the subalgebra
in the basis {I,hlf"w ng and with the multiplication
algorithm contained in .« , ™) . We will show now that

s

the change of generators in ( 1is equivalent to an auto-

morphism in & . Later we will give a generator-invariant
characterization of & and prove that for any two generators

{13 i '39’ Hom (B1E), F) = Howm (Bty), F) = Hom (f}r') F)

let g,{¢ - - Then, in particular g= g(£) = g.I+ g4+ . g ft

with some ¥ 0 o+ let HgR) At (3) be their minimal
polynomials. Obviously J («,c») = o(4ym) since ideals
- b -

generated by both of them have to have equal codimension.

ke kot
Let /““';L‘.‘\.) [ -)' o btow )‘ ¥ o blq“‘ kLI SO that DOI'?' brg-f-___ -+ bk,%kﬁ=a

Let » be the smallest integer for which 1t > k.

Then 'ﬂka({:) = 5‘:(‘){&;(“ + a"';o (1)

g = @) we) + ¥
I = E) with (¥ ™) < ke

90 = &(p)
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WE ge.t 0= -Ih:_l__“ b'LJT'--_'—bkpgkc'__
= gl @D L aF D) 4 Bl b 4 b KD

This is satisfied iff b.JI+ b ot + -+~ by ¥ . =0
. =)
Hence, if B&0) = ?1"— + g R4 e ﬂ,_..'x + 49 ;\‘ then e (@) = ’_ug{([‘.’nﬂ‘\ 2
prIgh (= ¢£ﬂ:’M or (.t.'g X)) & ,(“{ ) .

Let us now consider the following diagram:

3 € F] ————= P03 5 5
j‘i' ¥,
J’g ! i} j
g ¢ T-——m-tominp g
where Ly 7 FIxT - (] is an injection into FG3
: A —> 3(%)
! > |
We see that Ly (Ker Yy) € Ker Y, 85 L(kgm) = glion) = wg(a) =

= uy®e(wn) and that there is a unique i(: &——— O

( p= gy , LID)=T ) which makes this diagram

commutative. ((hmehs)=e fhorho) = (o Loth e ki) > (Feoiglhod el <igdlhien) = Lo fo)h e ) hia)
=L(hgletny), wherety U.is a . homomorphism;: since (thg)= h'(H)=C Iffhif)= w8

¢ is an automorphism of U . The proof is symmetric with

respect to the exchange of { with g ; of course, the

direction of the arrows of ., [ changes accordingly.

In a more general case, i.e., when {e ff& , 9¢ i

so that when g generates a proper subalgebra 'of o "

the above diagram gives us an injection of & into & .

We will now prove



16

Lemma I.4: (The generator-invariant characterization of
). All elements of 9, have the same degrees of minimal

polynomials, the same degrees and powers of their

irreducible factors and the same splitting fields;5) -

if g, 4 ¢ 3&, and Adgn) = W,K'm: ) L W:Stﬂ

it A £y
Mg )= T, =T

Then v=95 and there exists a permutation 6 on the

set {1,2,3,...,5% sSuch that 9(T®) = D(Tey™)
ki = 'E’GCL')
ElT._ = Etcm

Proof: ILet ©&(§) = é}@twd be the primary decomposition
of the subalgebra & in the representation &) with
e f]h.w) . We have shown before that the
mingﬁal polynoﬁial of i in Uu(fd) is TANCY so that
Ol = F'f.?\'/-*muk.wD with Wr; ;PO ———= ()
Y — e

| ———— b.(f)

Since ge  , we also have a unique decomposition: g = 53 9¢
Let  uq“be the minimal polynomial of g e DBu({:)
Then ©(ug®) & 2( ug») and as ge'j&j/}xga}:
=1l. c. m. | /Ag;ﬂ\} 6) we obtain gi+ g, for v#4 and
VW uq w) = (M ) . Hence, what is left to

prove is that for every (= ,1,.,% there is a polynomial

5)A splitting field E; >F of an irreducible polynomial

Tme Fx1 1s the smallest overfield of F containing all roots
of T ; equivalently, it is the smallest field in which T®
splits into powers of linear factors.

6)N- Jacobson, Linear Algebra (New York: D. Van
Nostrand Company, Inc., 1953), Chapter III.
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T ) e FI¥  such that 7(F ») = 9F W) with

== L
Ep, = Bx, . This will show, of course, that «, & = T.™
L ~ k¢ r
Let //L{‘rl o) = Tl-,_k o ;- ("Lﬁa, ey = Lp ¥R with AII_‘L >0 and T ()
unspecified. ILet (% .. §.) be the splitting field of
. QR “ky
@ so that F(§, .&.)I"] 2 I 3 Ay, 1R = (%) - T (A_gmja:, K
Since a:;l Uy, m) = o £t g (%) both of fi, qi€ ﬁq— and
” e ! 4" i
O lgy) = Clug)
It
{
F 3 ————= FIa s 1 FIN > Oilf)
| b=
% | % | = s
! . e P > M40
Dilg) =~ ===~~~ = Bug) A —— g
| ———— o,

is the diagram giving the automorphism ¢, let Ly ) = BcO) =
= ge+ghe. o gV Hlag® = gl = ug = VA LR

We have

/4

Bidy = BelAsR)(A-T) +

where _T. ¢ F(} ... 5. is unique by the division algorithm.
§.23;) is a function of X and §f.

Hence, (5. m=3)= 8 (25 (A-§).
BilA, ) might be a multiple of some other factors of
M) SO that generally if T := {02, keatig) we have a
family of subsets I, of I such that I; NL;= ¢ and
i Ele, &
(.3,_' - Iw) = B (A ) _Fw.-;"" E“’p(a!) (% - g‘-"-) A E“an}-)

where o, & Tie € & omyk, and prw) is the cardinality

it

of I.. . Let us take (i‘or every w ) dhy 1= mju: {q(a,e.; )}

where Gy k. (if it is an integer),
Eu‘
nl %k <y 9k \ = the smallest integer , 4 %
A Ay = B e,
)

(if =24 is not an integer).
e =

4



18

k., with equality iff
6L M= K ) I 'I‘- '; H}rg"“"‘) /L(fl (:1‘}

Obviously _«g (3) contains all factors (4:0)-3.) .,

One notices that A (a LT ) 58
R

w =1 , Tt follows that

!

because f}iii*\f ~J(M ug'a) «  Moreover it has to contain
the powers kﬁL?\- {h:)““ , for only then it is a multiple
of g (by construction).

On the other hand A (BN) is the polynomial of
the minimal degree which vanishes when evaluated at g= 574).
Hence || (8. — I)mu: airmﬁ. This implies that Eq 2 E¢

&
and by symmetry with respect to g, {c we get Ep = E

o

The degree of ¥ ="

\OL-\_ I =

o —

is equal to

= Ej max A( ;‘E: E;.g 6w _ E:(H sk,

The second 1nequa11ty becomes an equallty iff €wy = |

&

&1

for all «,< : the first inequality becomes an equality

1 Gip g si)= | for every w . Hence Z ol = f{; g, (B%) = d (”r o)
3 oy oo T
iff oy, = d; = a,+ S0 that ‘ﬂ (8-J.) = IL (B~ Y]
k‘ - 3 e -
= ‘lfg "‘I.B""“\; with oﬁ{g \ {ll) e 0'1 ¢ ﬁl. m).

1
Corollary I.5: Let ffgt'?g and ey, €(¢) be the
representations of the subalgebra ¢ in, respectively,
{14 generated bases. Then for every i ¢ Hows (B8, F)
there is a unique 44 € How ( &gy, P) Buch that the

diagram .
Gi) «——— e(q

-~
:>\\1 Koo
& ]

&
commutes.
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Proof: The existence of a homomorphic map 4, is trivial.
BPF= AR I8k KEes, = @-AQ . Then 4 {gw) = g@)eF
and  Ker Sy := (j-—g~h@ which by Lemma I.4 exists and
is unique. Moreover L(g - gtag) = (et — g @) = (98- gm&):
(9'(9(4-%) + 4 -gag)= go$-2) , By Lemma I.4 g'(a)
and () are relatively prime so that (gin (4~ 2) = (f- %)
(by point 3 in sectionl3 of this chapter).
This way one arrives at the generator-invariant
characterization of a one-generator algebra &: &
is characterized by the degree of the minimal polynomial
of any of its generators, the degrees, powers and splitting
fields of its prime factors. With each algebra U
there is associated a set Hom (8, F) which again, does
not depend on a particular generator. Every generator
¥e’ﬁe defines a particular linear basis and a multipli-
cation algorithm which is designed explicitly to exhibit &
as an algebra C[(f) on the generator £ . (In other words,
to choose a generator "means" to give a particular name
to the algebra U .)
The global picture we are now obtaining is that of
the algebra (gpgj completely covered by the family %
of subalgebras on one generator. Each element {€ ?
belongs to at least one such subalgebra and it might be
mapped into the field F with the help of the elements of

How (6, P) (if this set is not empty)}
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P (,{' = P P = U
, pes
3 £ce Howm [ 67, B).
The family 5 is partially ordered by the inclusion
relation: £ ¢ & iff there is an element yeB, such that
geTe  and dugo) < oty
The finite dimensionality of the problem tells us
that every chain (a well-ordered subset of 7) of 7
has a maximal element. Let 7 be the family of maximal
subalgebras in that sense; i.e., the maximal one-generator
subalgebras of (%, ) . With the help of this family
we will discuss now the action on # induced by the Aut(F).

5. Action Induced on ¥ by the Automorphism Group Aut (P)

Given the algebra (%Pyﬁ the set of all possible
motions of an observable is given by the automorphism
group. We are interested here, however, in those possible
motions of the elements of the sets tom (€, F) which are
given only in terms of the already introduced concepts.
Again, we can look to quantum mechanics for a hint:

Let (g, i &;Cflj-a quantum mechanical algebra

be given together with its automorphism group Aut (¥j4),
and the positive definite hermitian form ['(':*)on the
space V?( . Let A be a nondegenerate operator and {e;{;
be its eigenbasis. Then, as we know from the Introduction
the map [¢ = [(ei - e) is a homomorphism from & (A)

onto '+ Iet U be a unitary transformation so that
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Aut () =6, is given by G, (A)= U AYy® . The map

(e 1=l tiec - lie))= MM(ei, U*Ue.) is a homomorphism of the
subalgebra £(8)= (UAU) = Gy(0W) . In terms of com-
mutative diagrams [,,, is defined by the commutativity

of the diagram:

e E(A)
o f{’_’ where [ ¢ Hom (Ca),F)
¢ Me & Hom (B, F)

This example shows that the motion of states under-
stood as homomorphisme on certain domains -- subalgebras
of }¥ induces the movement of these very domains.

We can formulate this abstractly:
et 0, ¢ 2 and (e Aut (?) such that

G(G)= & .

Let 4, ¢ Howm (& F)s Then there exists a unique 35 ¢ How (5, F)
such that the following diagram commutes:
G0
and % = 4,0

The existence of 3 1s obvious. To show unigueness
let us notice that if 3&’3& then G(3) € "ffq because the
automorphism group preserves all <-relations in the
algebra (?,r) and the dimensions of its subspaces. This

means that not only ©(uyn)= 79| ,L(sm.,,.g, but also that
v )

Mg = Z “&mm « If Kers, = ({r(g} - -}) then there is



a unique ideal (3 - ’Aﬂ))c Y such that & (- %) = (Grf;n~ %) &

If Kews, := (3- %) then 4 is specified uniquely.

We see therefore that F./'#)] generates motion in the

set | Hewm(E,p) [Fe#' via the motion in the family 5 -

Thus we can restrict our attention to the action of
Aut(3) on 7 .

If Te ¥ then the subset {G(8)| G & AUT) is an
orbit of Aut Y)in % . Generally ¥ does not constitute
a single orbit; in fact the distinguishing feature of

|

quantum algebra is transitivity of Aut (@) on 7', All
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&,

other cases we are going to investigate (except the finite

dimensional algebra of hermitian operators over a real
clogsed field) have families 7 with the multitude of

orbits.



CHAPTER II

1. Proof of the Sufficient Condition for Aut(}£] to Be

Transitive on the Family 5 of the Algebra tﬁkgfglﬂ>

Theorem II1.1: The necessary and sufficient conditions

for the group Aut [}€} to be transitive (for alln»|)

on the set ¥ which is associated with a finite dimensional

algebra iTQﬁp- & , & ¢=I€T} are the following:

l-(j’e/P 6,d:3'=53(ﬁ/wqg)i[ l'ﬁ[:ji)?ith _|" Ir‘f,:::![;-——'a r?;m)being an

involution of the second kind associated with a non-

isotropic hermitian form.
B.FzsngmHESﬂgL)is a real closed fieldz).
Let us first consider the sufficient condition. It is

the corollary to a following more general theorem.

Theorem II.2: Let |- SJ(ﬁZm) be given where F is

real closed, F(i)= L , and g.is an involution of the
second kind, and F- SECQL). Then Aut(lﬁp)has a finite
number of orbits in 7, uniquely described by the sequence
of integers ( k... k¢ &, ,..., kg ) which are powers

of prime factors of minimal polynomials characterizing
elements of a given orbit:

Q) = (}«—’}«,)k': . fk-’ke)h ngT'm‘_ L T|';°m ! A € F

and T7;® ¢ FM1 1is an irreducible polynomial of the second

l)See Appendix 1.

2)Sec-:' Appendix 2.
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degree. The integers !k] fulfill the following conditions:

2, D ¢ k £ 2Zp+ if 1+ 4. w»2pis a signature of the
involution 7%, with
RS g a5 1F 124 2% %0

i T {kLa |, be the set of odd integers > |

r*.-'a‘:t

4
then Y, k. 7 h=2p
47 :

4, Tet | Ry, 4 weo s 4 Ma"'f»{k-. ., k¢) where k"a = J ] g B
3
then k.- |/ T, ki) e
Y kela [BR) <

S
and n - (i b, =) 2, ka) = g+h
é:r =€
where K is the number of linear primes with ke=1om 1)

Corollary II.3: (The sufficient condition of the Theorem II.1)

Let ‘3 be the nonisotropic involution of the second kind,
M.'lp = 51 ( H-F'd-_\ , and F-a real closed field be given.

r 7 » - » G_
Then the group Aut(¥y)is transitive on the set ~ .

Proof: 1If Otis nonisotropic then p=0C. Point 2 of the
Theorem II.2 gives that 0 ¢k, ¢ |  (ted)

kp= 0 R . 4 (8
2
On the other hand, by Point 1, 3 k. = n , which can be

L

now fulfilled iff 4f-, and each k =| . So there is only

L

one sequence of Theorem II.1, namely (/, .!). As each
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gsequence (x,. ,x) characterizes an orbit uniquely (i.e.,
there is only one orbit for every sequence) we have

proven the corollary.

Theorem II.2 will be proven with the help of several
lemmas, the main ideas of which are:

1. to show that for every sequence (k, ,k) there is
g« 7 the generators of which are characterized by the
described type of minimal polynomial. (Due to Iemma I.4
it is enough to show that there is one [¢ Jo the minimal
polynomial of which is characterized by (k, ,k) fulfilling
conditions 1-4.

2. to show that all elements of 7 are characterized
this way.

3. to show that any two elements of 7 characterized
by the same sequence of integers are on the same orbit
i.e. that each sequence is an invariant of elements on
the orbit.

The main idea of the proof consists in establishing
a relation between elements of the family 7 and a collection
of bases (in the space Vﬁ;) in which the form [' associated
with a given involution 3 has a canonical representation.j)
We will show that any two subalgebras 7 B;e?f characterized

by the same sequence of integers contain elements {ie ib.which:

ol B)L canonical representation of the form " on the space
Vi is a direct sum of hyperbolic planes (7s) and lines (2iy .
T.Y.Tam, Algebraic Theory of Quadratic Forms (Reading, Mass.
W.A. Benjamin, Inc., 1973).
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1. determine two different bases {%ﬂ;ﬁ '{eTS;' with
exactly the same orthogonality properties, |

2. have the same representation in their respective
bases, so that there exists a (-~ unitary transformation Y
which carries {eig onto {e?} . This transformation
induces an automorphism of the algebra which carries (;
onto O

The method for establishing the relation between an
element f{e¢¥ and a canonical basis of the form M is the
generalization of the diagonalization procedure in the
case of the positive definite form. The diagonalization
consists of two conceptual components:

a. finding a set of bases in which { has the
representation exhibiting its minimal polynomial

b. finding in this set a unique basis in which [
has the canonical representation.

Qur method is the application of those two components
to, generally, nondiagonalizable elements of the algebra.

Let 3 be an involution in ﬁ&m and let G be the set
[:} & ] 3= C‘J:'O 3G 6efut @}U}(a class of involutions
cogredient to} ).4)

Similarly, let (,be the set | e G | ['(xy) = [(en 5v), 6e bl
where [' is a hermitian form associated with J . By the

Witt theorem’’ the class Cn contains a form [; which in a

Q)See Appendix 2.

5)Nathan Jacobson, Linear Algebra (New York: D. Van
Nostrand Company, Inc., 1953), Chapter V.
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basis {q}fhas the following representation:

=~ I’ -
: [
0 4
. \L’ 2_ '
sl 2yl b (i)
] \
| v
T Y I
™. 0
e C :-‘-"IJ}W‘
where "= 2psw =oxmtps gep | (hn2p = miS a signature
of the form)
B.nd I:l 21 i Bd\j — .:I:JL ;__p_,,.-d I‘L"id 'EZ{?
P.-f_€. ‘eﬂ = ] (€Ledp d>,lp4l
N2y Lp+ ey «2p
r’c’ ':.eLI j ea" = CS“LG V\){, [ P 2\31!

We can now represent the involution Jbecaas a mapping

Uﬁmkb9’A*‘—“*JJ“7=E;fFQk‘“hare (PQELL is the representation

of the algebra FELin the basis{«} and the map A ——> AT
6)

is the hermitian conjugation in this basis. It follows

that Sa:(anmLJ = {AeM, | l=aYy 1is given by the conditions:

alp*l-d 2pHi- L if L&L) g€ 2psl
o a-‘llp-r'-i if teleag n g % Lo+l
() g 18
| d Aap+i-y o if »n2 L 72px ey ep
Ol ye if nyLy Y e

6)See Appendix 3.
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One knows that if Hlms-{ then the order of its

minimal polynomial /O is smaller or equal to n;

hence, as SQinﬂ) = Pﬁﬁl the same applies to the

elements of 3}|[mlﬁ) . Moreover, as the algebra b}_(mlm)

is an F:-algebra. ui{n can have irreducible factors only

of the degree 1 and 2 since only such primes exist in F[A .

Therefore, if sg(N) is of maiimal degree then «,m)= (3-)):.

A=) T, o TP with ke = 25k, =

Let's consider the subset ﬁy(;f'?'thelzlements of which

have generators of maximal degree?). If Te ¥ and {e ﬁb.

then we have 5 primary idempotents h (f) which define s
[-orthogonal subspaces V, of %&, so that V=@ V. and

ﬁw = b f)r f= 4 v hThe minimal polynomial of f < U (§)
for ic.ed is (A-?JJ&ﬁFand giws V= k; B0 that V| 1is

cyclic.a) This implies the existence of a vector X, ¢ V.

with:

(ﬂ: - '-.)‘L} J‘kk—l = Xk‘l
(3)
\
[_{L = }._) ‘KQ = 7(1
= )k = 0

and with the set (s .5 |being a basis in\/.

?)The degree of a generator is equal to the degree
of its minimal polynomial.

8)N. Jacobson, op. cit., Chapter III.
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Lemma II.4: Let / be as above with k.> (. Then:

) . P kly
1. the subspace V. has a basis {fagh such that
y ! . Il A
c :'I O 4 L3
o), = ! if<=2b oy B ! if k=
, i b i , b o ki=2b+
!'ﬁ_ ..1 O L il oy IV, "l G { it |

2. there is an element of '9& which in the basis Jn}‘
L 4=
has a representation (3)(after appropriate re-

numeration of the basis).

Proof: From (3) we obtain:

a) Mioxox) = PG, B-0) = T(@F-9)x, %) =0
b) Pb‘*l. i’h‘n) = F("u,u f{' lL)l‘Lm-hJ = P((’(‘- "M)K:_;xwm) =0, {‘M": ly 2, : k;'-*)

!'1((4‘- 1"):(‘15 x"""‘rl)} = P(XH xmﬂh) =
P(qa 'r)‘n)"‘{;?‘«mu) = (waz |, . iy = 2)

P(“u X\M) = (%2, (-{L ~ % Kn’H-t)
= (’*1: (f'.. == )'x) erﬂ.)

I_I(KI:."H XW!).:'— P(?‘K;"i J xm-rl] = = . = ;‘"(x., Xm-;k'-L*Z}:o G =4)
~
c) RASY ) ‘M) = | (kkL'lrxnw:]:'—" dhs 25 rl(!” x"L) = P(kk‘J RI)

so that the elements on the antidiagonal are
real and equal to ['(x, 6 x)
d) FL,XK,_ J 3‘1] = PEXK‘ ) Eﬁ"}‘)x\(;) = r‘(xk;'i 4 XS) =S

- I xs Xq-r) = P("IJ f) = M%) x2)

F\‘Ak‘.l Kk‘_') S [_I(ch\, ('{I;— )\_) J(i:‘_) = p(Xkd—lJ }(g‘) — Iﬂ("’”“.‘l x;:_:_)
which means that all other entries are real.

% g 5 v v BRI
oA = % =8 ﬂ_ﬂk
' e Bu
Hence, F I‘x“? xb\ = i 1, £ ("f)
)0 MR R
D j?u‘ ‘E“L . . . Ell,--‘.l-h‘ﬂk-t
.l-'l“t C—ﬂ‘ I:h‘ T R l:r,..l.,ni.h_
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N 1‘\ & .
Claim: There exists a basis {xd}d: in Vv in which ¢,
has the representation:
(fk“}\n) rftk‘ = & ;-c;'
(-gf ‘)\c) -)Zkl_-i g R 7& 2
3 (5 *)
B "M ¥y = 2 R
U.. ¥ )‘I.) il = L&
%)%, =0
and which reduces (4) to
|
0y
T O

Proof of the Claim: Iet the ;-+n (4= 2)3%... k) sequence

of transformations &; be given by

Lvd(h'l = Gy iw) (G ) = ¥,

Gi%) = Gp (W)

Gy () = 6y (k)
L’é |»“‘3] — (J‘é_q(.y‘d) 7 Sl G‘J*'I (;')
Gy (Xj) = G—A-\U\p!) + 4Gy ()

Gy (Ric) = Gy b Xog) + A6 (X ju)

where = is obtained by the condition ['(i wx) G, (X)) =0 =

= M(6y-00%) 6k, ) + T {6y (8, Gy Gl + o (G Axmy} G, (xy)
and C’d(x"} is the image of x, under C,° (., ° """ °

transformation. One notices that (1) G,(x,..) = ({-2) G- (Kerk) +
g ":{.f..' '}H) 6;_, {)"‘1::’ =
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ugﬂtnﬂﬂ)+sﬁq{xl) so that (3) is preserved under every
transformation G, . Also, as FR@HUA,%Uum):f%@ﬂmnjﬂalgﬂ(hn

we get 0= (2 +2) (G gl J)-T— Pit}d ), Gulx))s Hence, % can

be chosen real since /«» s are real.

The = sequence of transformations (performed
as the last one) is: Xa
G, (xa) ;
P(x” 1\.,‘)
In the above, u=|, , * and Mix, X)?¢, Hence,

Gy, Gil¥y-aq))= [(Xa, *«-as) = 1 as a result of

s XKL)

Fid =
Liike, Beeal = [TCRy. 2.

Since this transformation again preserves (3) we have

proven the claim (with the "+" sign in (5)).

If [(x,x,)<C then the ,-| transformation
is given by
G‘ l\ ..(n._ } = —XE'_
P(x'j xlr‘)
\_,'-'l i?ﬁh -‘] = ?" =1
(.7‘ N x'ln / = :‘q

This transformation changes (5) to

({L = X;) y-u.( = = Xkb—l
g{ — )‘L] y‘kfi = = R k=2
(2 - Yy ="
but I_' ( xk‘ : i ({' r)n,,) Kl) = r.'((:[; _11.) Kgl_ i iy x]_) = P(—- "(kl-l 7 - XZJ =

Phtuary d) = e PER B
so that the antidiagonal elements are nonetheless equal
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and as | G(w), GY) = M=%, 3)= = Tlr x) =7l
we get the desired representation of ['.

Suppose now that %Vf{thas the representation (5-)
in the final bases {_qil. Then one notices that if
we take the element [ which has the representation (5+)
in this basis we have (|, f'J=¢. As both [, j are cyclic
transformations on V., /{ is also an element of ﬁ&. If we

now renumerate the basis vectors in the following way:

\,‘, = N = Ky
"f: = .\‘[ Yl e ((2
. iy %** and i LiEE B
'\Ifkl_, 2= ey "Ift‘-', rhom }(kt-?_
e % e V‘R""
NI!"; ki {k'l —5-,1—-

we get the desired representation (3) of the form [, .

We will show now that a similar procedure can be carried
out if the minimal polynomial of $Lis irreducible. Let

{(=n.+{ be the projection of { on V with > .L . Its
: r _ ki : ;
minimal polynomial on\, is 1, O\ which is a power of

an irreducible in F0] polynomial of the second degree.

By virtue of [(J)=./L being complete we can split T, ™

K [ sy =
in FOIY) so that V, = V'@ V'

into (A 5y (e o8
where V_ v, V. are cyclic subspaces of V. (It is
important to notice that (v, V)2 0; \/,V. are not
orthogonal to each other.) This implies the existence of

vectors %, € V., % € V. such that:
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N = Ry = ki = R w + X
@ gy "'(*m."' Pz (,g-i) R v G TR
e BRI R B=Nx = D)y +x
SO R E=2x = B2
\-{ =N Fak, = Yag= (ﬁ ~A) Y, = (=% Xau, + %ol
B oMayey "= Hanse E-Magmi = (0 -Nagey + Kanez

u‘-'})xkl'ﬂ. = (i")s)ﬁk‘-fl + m‘-'l“‘I
(*r“' )) Xg»t =L (j;-'}.) (—kdl = ["_)\~)) Kikex

Lemma II.5: Let ; y Dbe as above. Then, there exists a

basis {V, ,v}in V. such that ['(v.,v,) has the form as

in the Lemma II.4 and the relations (6) are fulfilled.

Proof:
Claim: !_'i (Yo, %,) has the following representation in
= < v,
the basis {x, .., k¢
X Xy o T ] F-n.‘ . YI.‘;J_ """ 2z N=l X3 e
A : I-‘uq
- *y ‘ r:u..-l
where [/, = ‘ O ek
% . .jgg'K
= r;.:l.n.-‘:---: _3 C, ; o y
= rl:t "] T LIC I Y 5 ¢ ' - ) .I
?"q—i -
= = P < _r;-llu. p}!v:
ES T xg‘ L ; x = - .
xh‘fi }:“1
S 0
xlh."l EL"I i ..l
Zl'h E“i i t—;:q_ - B
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Proof of the Claim:

s P(M],ﬁ.} - r’(\“-k;l,"k‘ﬂ)

because '(x, , 4x )= M(x, ax)=

= Pk = T lbom w) = 3% %) ( Ae FLo)

Phis implies (B.-%) Mix, %) = 0 Hence [k, x)=0

ar]d P(X‘HT‘ | XKI-HJ = (

2« &) 0= Phmpwd = Dl @=2%) = PE- 5%, ) = @=0 D0 %)=

by =~|

— {S\‘L” Tr\;) r‘{NJ *«J so that P(x_};-d:(l

B) 1 CKawsiy )= I (Rowe=1, B-2)%) = T(L4-N; %) = P e RE

O — P(h,.l ’ ?(l-.-‘) - P((f ) Kips i hh,,‘) = 0

5
A Ragoa o) = [ (Xzees , %) = - -

I

P (‘hw: J ){k“_z) =

B (({'ﬁ?-’ftku, '}(3) =1

« el

I1{X5L11, ?\‘} = P{‘*‘ lek‘j‘l ; 5‘-2) = rl(xtlﬂsz) =
— r‘(l£_a))‘khﬂ] 53} = O
go that 0 = ["(x x,) for

L - B S (& & 2%
and their conjugate elements.

3 0 = Py, %)= PUE-Fre, %)= Tileyr) (A2 + Trg )
implies that ['(xn, %) = O.
et 1" )= 0 202 { towtk

Then C’ = i_'ihl P-m.) = r‘{y‘lj -I‘Ln.n“) (1.-)1\1 o r‘(*‘l) r“\ﬂ)

so that T (xy, ruwy) =0

M( %, , %, ) is the last element of this type that we can

prove to be equal to zero by this method. We can similarly

prove that [(x,x,) vanishes for 1< a, bt k
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4., The repetition of the steps 2. and 3. for
ﬂxb3 K+l &£9a be2ywith the application of the equation
0 = F(xkchxwﬂ gives us the vanishing of this part of

the matrix.

Js P hwng %) = P({f'm?‘lk”xl) = rl(xl“t","l) P03

=5 Uk Ea) = P(*-k; y KFL'H) =40 EEE PC’“U X1 ki )
6. T(%y %ae ) = M@ %, xaw) = (s, @~ Wxar) = Mxs, Xz )=
‘iz f—‘(xkk_," Khoayd = 0BG 4 X Egei)
by, Bk Jesn= HETTPRTIESY
Pl o e e 170 g Riggon )

This establishes relations in the triangle I and the
conjugate triangle II. In order to prove the lemma we

have to reduce those triangles to zero.

Let us introduce a similar sequence of transformations

Gg (j=23, &k )as in the proof of the Lemma II.4 (the elements
in the triangles I and II fulfill the same relations as

(4))- G.d [x.} = 6'3-1 (‘N) G'}_ (“N) . ks
G'J (7‘-,1) : CTA-I (-"‘ﬂ

Gd (XJ-I).:- G'd-l ('Fé-;)
GA (Xd) = (D’-n (7‘5.) + ol 6’,,(_1!)

6_3 (RK‘;) :'—' G’d—l (xg‘) + G’d-l (Xk‘:-d +1)

I—I(Gé'(‘ﬂd)) xlkl) = ‘:!2.?'-; = I—I(Gg_l('ﬂdj —+ O-{G‘dq (_'&)J Xllc,.) =
P(GJ (%) ) th‘.) + oL rI{ G—dq (), Xlk() -
Hence F(G](x”} ¥z, ) =0 ¢ ol = EEEQ;LEEQJ_E&EL)

P(.GJ_‘ (%) ) %.uc.')
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Clearly, each GJ preserves (¢) so that all relations in
the triangles I, II are preserved except those elements of

which are reduced to zero by the application of &' .

The last step consists in getting [,, = -+ = [, =)
on the antidiagonal.
) A S L - 4
Iet Kau, = Xz € where re =Thnejso that [M(x/, x5 )= |
E e
i i - Lok
Azpeep = B2ki—l &
- L%, 28
. -l
XK‘.+1 = xk + 1 e
e
Kl,-\l_ = Xr..{'
Ky < ®

As this transformation also preserves (6) we have proven

the Lemma.

Iemma II.6: Let { has a minimal polynomial which
contains a linear factor in the first power. Then
there exists a vector ye\*’fsuch that [(y,y)=1| and
(7). { =R
Ll
Proof: If v, is the cyclic subspace of Y , then V,is one
dimensional and any vector in it satisfies f, -2\.)y=0©

Let L (¢) be the projection operator on V\, defined as
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previously. h [{)e 93 (M],) and accordingly [ (Ve V) = (av b, y)-=
= TV, ik, ) = O so that V. is orthogonal to all other
subspaces ¢ . Hence ['ly,y)*# U due to the nondegeneracy

of 7 and there is y'= ﬁ%:; such that .YV ::}[]

These three Lemmas show that an element [ - .
characterized by a power «» | of any prime polynomial
of FDlcan be given a representation exhibiting this
power of the prime in the basis which respects the form
I" . We have to show now that the conditions 1-4 of the

theorem describe all possible types of minimal polynomials.

Definition II.7: Let &e T fcﬁ9 with «; ™ = (3="%) =

A ; ‘:A_( ; kes . ? i Ky 5 < .
B U S % Rl PSR (41 T The generalized characteristical

basis (g.c.b.) |[y@{ in \ﬁk is a basis obtained through
the stringing together the collection of vectors {ﬁffﬂu,
determined in each subspace V.through the construction

presented in the Lemmas II.4, II.5, II.6.

Corollary II.8: Conditions 1-4 of Theorem II.2 are

characteristic of the elements of §ﬁ p

Proof: Let 0ef f¢ Jo be given.If k>| for every i :.¢

then the form (, has the representation

iI'l the g-c-b.l{{‘.u} O -_|I
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If «% has «» linear factors (with ho=1) and g linear

factors with «, =2z-' =z>0 then . has the representation
! [ ~ \ ‘ T
J g . Y | 4 gem
2 < f, m -g =# of linear primes with
(57) 1 N vectors of positive length
g o ot h-m-9) =# of linear primes with
L, T tg = = ) length = -
"
“r% { G i o 'J,.I'
= U

in the g.c.b. {0 .

Due to the theorem of inertia of the signature we
9)

ra

get that <a = 2p and ¢ =2p+wm-h-g
The possible numbers ¢ of hyperbolic planes (¢) and the
possible numbers h+g of lines <> determine the distribution
of #.s in the sequence {, ..., ks{ , because the powers of
primes in u ) have to distribute themselves in such a

way as to always give one of the representations @)
cogredient to (1). The number t+ of odd powers kd(xjax)
has to be at least » to produce at least m < ?-subspaces.
It can be more, however only at the expense of hyperbolic

planes (7o) which always can split into <t (» subspaces.

This way we get the point 1 & 3 of the Theorem II.Z2.

9)If g¢m then m - g is the number of linear primes
with characteristical vectors y such that I'(vy) =
and h-(m-g) is the number of linear primes with charac-
teristical vectors y such that (Y y) = -1 ;
if g2m then {-» is the number of hyperbolic planes
split due to the odd powersk: (c:c € and h » L-m
All characteristical vectorsy of h linear primes have [y, y) =|
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Also all k- (v 4.€) fulfill the condition 0 £ ki &2 pe)
for (1—‘kfhl gives p hyperbolic planes and one line <7
and pis the maximal number of hyperbolic planes of [].
Similar argument applies to the case of ks when (7 L.
This proves the poin'b-zo of the Theorem. One notices,

of course, that a particular value of any of s restricts
possible values of others in accordance with the point

1, 2, 3, of the Theorem. Point 4 expresses this very

fact. 0

Corollary I1I.9: For every sequence |k. , k} satisfying

conditions 1°-4° there is 9’ characterized by it.

Proof: a) Let us assume that . ~i for all .</.

And, let us take the canonical basis { ¢} of F

(in which [, has the representation (1)) and subdivide it
into the bases of s orthogonal subspaces V. composed of
the number of hyperbolic planes and lines <y accordingly
to the rules 1-4. 1In each of them, we can take { .-/, ,s
defined by the relation (5), (6), (7) so that /= ¥ {,
and u, = fft%:m where uﬂm)is a minimal polynomiél of
{t . If we compare now the matrix form of / in
this basis with (2) we notice that {e€ S;(rﬁl} so that
otd) e F
b) Suppose now that there are some «, = ((<4£) . By the
method described in the proof of the Corollary II.8

we find out the number of hyperbolic planes and <+ (=
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lines associated with the sequence {¢ | k) subdivide

J oo
the basgis {{} (in which (I has a cogredient form [ equal
(#9), define an appropriate { through the relations (5),
(6), (7), and by inspection we find that fe 5¥ (Him)'
By the Lemma 2 in the Appendix 1 there is an element

i SQU;H}Q\ with the same minimal polynomial.

i1
To finish the proof of the Theorem II.2 we have to
prove the uniqueness of the characterization by the
sequence | k. ~{ and to show that &g This is the

content of the next three lemmas.

Lemma IT.10: Let [ 1, ¢ ‘539[”:‘;&} 406 Ts , 1 ¢ ﬁt’; (c# 4)

JEEY

and let the sequences|)k, ., ko{ 1« &'} be identical.

Then & (-2 lie on the same orbit of Aut CSJ (H,2)

Proof: ILet i« mbe the minimal polynomials of . 's
By the Lemma I.4 and the fact that #(/)is algebraically
closed we can assume gy (N = g ).
Let {wgf,|vin] be g.c.b. obtained via the construction of
the Lemmas II.4, II.5, I1II.6 in which [ has the repre-
sentation (8). The representation of 45 in those bases
might differ in the following ways:

a) if k7! by the "-" sign as in (5)

b) if k,=! by the fact that the same eigenvalue

might be associated with vectors of different "length™: ['(y y)=:|
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We can however, choose (by the Lemma II.4) such [« Te
which will have exactly the same representation in the
respective bases.

Let U be a linear transformation such that Uy = &',

Since [, (v v')= (", y*) then T, (uUx,Ux) = [ (xx) for every

Xe Vo i hence G,=U-U is an element of Aut 5y (M), )and

:f";' = Gy (£)-U4U(by the uniqueness of the matrix represen-

tation of {i in {Yy®] ). Hence ¥ = G, (&) z

Lemma II.11: There is only one orbit of separable

subalgebras [ < F

Proof: By the Proposition I.3 ¥ is separable iff the
Mg = (-A):-de) for every fe G - Iet B(f) =iz

be separable subalgebras and ] Y,;m};;. be the appro-

-1
priate g.c.b.'s. Obviously, [ (y/,y)= [ PI.; by the

0
nondegeneracy of the form and the inertia theorem. Again,
we can choose 1. ¢ ﬁﬂi such that the eigenvalue ) 'has a
eigenvector v, with I (v, ,y,) = iff )] = 12}) has an eigenvector
y" with [L(y) vf)==] - If we define a transformation
Us v/ —— v by Uly) =y then K (Uyx, u il = Te (v, ¥,
= gké for 4= beqm  k=nomp TUz Uy = Uk y)
(Pg (% y) = ol Tobwn vor T Be4”) = —3; L 8L ¢ é‘:{g B, R {Ux uy) = R(T s g™ T by
B )G o, o ) 98 U
or G (§)= 4 . This implies G, (&)= &
O



L2

- |

Lemma II.12: § = &

Proof: To prove this lemma one has to show that if e 7,6 fc4

then there is®<¥ 4<% such that (-{y t'>T and & is maximal.

] L, g ik ! ’ L2
Tet fe §p,(f),) and = u )= (oafh ., fodd e T 2 T WD
<L i # -

It follows that the characteristical polynomial 9{{))

of £ is equal to . &) o :.: g

with U ) diViding L{ e 35 1 0 ) S0 tha-t
»\_,k" kl.“
LU CA) = ' ImS e qu

¢
Hence, V= @ W,

(&
We can choose a basis

where 7, 1is one of the primes in Gy -
5 y
and V.= ® Vi with V,, cyclic.

in each of those subspaces in which { has the form:

r—

fi

where fj = y M= o)
C ;l‘l—\
: Il My 1
Ll
N, A G {
: : 0 ¢ . 0 L
3. = bt 0 ‘ if 9(t)=l | and $is” 5 3 Ik,
: wis k\ O e .L.
; 3 A
5 » &
| Nl
if ﬁlTu)=.1
such that

We can define now g ﬁ“/u,L

10)

N. Jacobson, op. cit., Chapter III.
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£ =
3
g C X
y 4
& a1l
¢ ¢ " o s
L 9l 4 R X
4 A.I
-*le \MJ i‘ -!
| 4 : A
g5 t- 4 = A
L : g ' i A4
5ie! =
X, A4
§atJ | 33\
= +
where ha, # y’td(::;} and A"h is not a root °f_.-“{ (%)

We see that: 1. [f;a{=f

\ el kt, = ~ T
2 {.—(a (A} —'> O' }“'J 41 = '.3 (™) L i e tgd}:i
” ‘} h_
4 vk
Yo+ (X o+ ; ‘): Tq ' if Viry =2
(A + (?\[d + FM.;) X \ ,)‘hi 3{& &) -
& "
- = Y O ~ 1" o A My
3- L{.J ) = Tl‘ 5, e T.E“(M Ll, I L L‘_,:‘{- ) “y (N

This point requires some elaboration: 1let &5 (¢) Dbe the
projections defined as previously. h_ 's are [forthogonal
J-symmetric operators. ZLet W be the set { veVI{h [f)r=y, xev}
It is obvious that «i | w,for v+ Land V= @ W, « One also
notices that W = cri\fﬁ i.e. it is the direct sum of those
subspaces v, in w}Plich { has as its minimal polynomial

a factor of A 1A s However, \fﬂ 's are not [Forthogonal in Wy |
Nonetheless, one can choose a basis in \/'pL in which [ will
have canonical form) Ve L ¥, and in which g will be J-
symmetric as well. The procedure for finding such a

basis is similar to the one described in Iemmas II.4-II.S5.

Hence e ‘53 { MJ;_Q,)-
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5. {= f1g because as g is cyclic the only operators

which commute with 9 are PO -functions of 9 . If {= L iy
with ¢ Ay then (4= T (¢ )=Td 9= £ . This gives
L € F. =

The Theorem II.2, apart from giving the sufficient
condition of the Theorem I.1, has the interest of its
own. It gives for any real closed field f, the full
characterization of the action of Aut@q [M?HHD on the
set ?I. It's interesting to notice that for any p>c
there is a unique separable orbit - all other orbits have
elements containing operators which can be mapped
nontrivially only into zero. Whereas for p<? there
are no orbits of subalgebras with rtlom (&,F)=¢, only for p=c¢
we have the unique orbit in ¥ . It is the orbit of

separable algebras.

2. Proof of the Necessary Condition for Autfﬁﬁqto Be

Transitive on the Family 7 of the Algebra [?QQ,G,&J

The Necessary and Sufficient Condition for the Algebra

# e 5s) to Be Separable.

We turn now to the necessary condition of the
Theorem II.1.

In order to prove it one has to show that unless the
field F is real closed and the two product algebra is

given by a nonisotropic involution there always is n>|
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such that the family - associated with the algebra

characterized by n has more than one orbit.

construction of the family 7 for the algebra (M% [, 3. [ 1)

Let the family > of H% be given by the general
construction described in Chapter I. Then, through the
introduction of the inclusion relation, and because of
the finite dimensionality of the problem we can find the
family > of maximal subalgebras.

Let ?Jbe the set of subalgebras which are characterized
by minimal polynomials of the degree »n . It is clear that

F €9 ., 1Is it true however, that # = ¥ ? Or, in
other words do all elements of 7 have the same dimension?
Obviously a positive answer to this question is a necessary
(though not sufficient) condition for the transitivity

of Aut Zf)on 7 .

Let O¢ 7 with Avg (3) = ﬁl"'m: L ﬁ:’m for some {fe¢ "'_-}e,
snd ¥ J{i)x, &n Dbe given. If ( := 4if1ef then V= f Vi
The minimal polynomial of {l(fEtL;L) is W:W%J . There
is at least one (& {2 --.,55 such that dim v > ¢(dk
otherwise we have Sjutnv= w + This implies that vi= Vv, & &V

where [, =-
Gt {‘a

(considered as an element of the algebra of linear

The minimal polynomial «, i\ of L&
# :‘I 1

kL-
transformations on Vi) is .Y with k, dividing k.
In order to prove that there exists géfﬁp such that - {ry

and J ugt)=n it is necessary and sufficient to find
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- - t i
for each v; , an element ¢ ¢ U (£,) with (g o= MY
&l e |

but with J({u%_): ST ) ke,

s j i
ﬂ % If p%;{uj has such an

T
L

(T4 4

element then by the Lemma I.4 we get that g, 0 =
with @:_dhﬂ = 2(M)a » After finding 9 of this type

for every 4 for which dim Vi 7 2(TJk we set a:= € yy
This construction gives an element g with 2( «ygm)=n

g
if and only if g, =+ g, for tsk 4=« . Hence, the necessary
and sufficient condition for 7 to contain only subalgebras
of the same dimension is the existence of a big "reservoir"
of irreducible polynomials in FDXJ . In the case of
infinite fields the following procedure indicates that

we can always find enough polynomials to perform the
described imbedding of Uf)into B9 :

Let Wilh\: N+ ap N eeovadre and let - ga'-
Since the linear substitutions constitute a set of auto-
morphism in '], T (Wis irreducible iff HQ()U = Ty (x)
is irreducible. If Wﬁ (N) = Xuik* 4 u%+ o with i &

unknown we can find them through the solution of the

- "'"‘Ir 3 !
equation rn&ﬂawu = T,

% + and x, expressed in terms of 25 and A,B. It is easy

(%) . For our purpose, one only needs

to see that y .-fA, ¥eqy = @, AT+8 B. This means that by
putting A=A. and changing B to our wish we can produce
any number of irreducible polynomials of the degree .

In the case of finite fields the reservoir of
polynomials is clearly limited; therefore a "subreservoir"

of irreducible ones is also limited. This means that for
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every irreducible polynomial po)= FX there is nv¢ such
that the family - of fﬂrcontains & characterized by the
minimal polynomial of the degree ¢n. (It is enough to
take n= (L0 +) ¢ (p) where (/s is the finite number of
irreducible polynomials of the degree equal to /p@)
Hence if ly (3)=p» for some f¢%,, € can be imbedded only

in such €(g) which is characterized by «,m with g ) = tMp).
- M<y)  Clearly, in this case, the structure of the

family 5 is very complicated due to different dimensionalities

of its elements.

Action of Aut M:on 7 .

On the basis of the previous considerations one
obtains'if F is finite there exists n70such that for
every n >n the group Aut (N})can not be transitive on the
family 7(M),) . However, the same observation can be
made if the field r is infinite for it is easy to see
that any polynomial p0)¢ FOJ can be taken as a minimal
polynomial of a generator of some e, However, any
two subalgebras [, &5 which have generators 4, I,
characterized by the same minimal polynomial (3 are on
one orbit of the automorphism group. In order to show
this one can use the fact that any linear transformation /[

on the space -& with the minimal polynomial p(y) of the

U [-TT- I
3= o

degree n is cyclic, i.e. there exists a basis | %rn}

such that { has the following representation in it:
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If { , {, belong to different subalgebras then we have

two different bases {hi}{‘in which [ have the same
representations. If we define now a transformation ./ by
setting Liﬁilr v d=h o we get Gy (4) = U U= £l U,
by construction belongs to &L(v F) and since G/(~ F)

is the automorphism group of Gfp. C,3,,0.1) we get =,(®) =C
This, in particular, implies that for any sequence of
integers |« k;ysuch that £§f¢:u\ we have an orbit

the elements of which are characterized by minimal poly-
nomials of the type « (1]= @—152._ﬁ1+lgf . If the field F
is algebraically closed then these are the only orbits
present in % ; otherwise there are additional orbits
characterized by minimal polynomials which have irreducible
factors of the higher than one degree. 1In all cases there
is a unique orbit of separable subalgebras characterized

by the minimal polynomial uj}%={1-xf_:m-hf%here 8= mmjp
number of elements in the field 7{ , and for every n>|

this orbit is not the only orbit in 7 .

Orbits in the families 7 associated with two product algebras

given by an involution of the second kind.

V;He)* kaﬁ >Fi® be a hermitian form

associated with the involution 3 . By the Witt theorem

Lot ! 4
11)

=0 e, V'=v"& V' °', where [[ is the hyperbolic part of

11)N. Jacobson, op. cit., Chapter V.
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and [ is the definite part. This decomposition implies

that
- y *|“: L = f 2
5;- QU7 M= H,'PIF\)

- O e
o0 b el

L s PRI
where 5. (M ;) is an algebra of ]-hermitian elements

'

of HL‘E@ and ©Op QH‘I";.;') is an algebra of J, hermitian
el i 3 - : 3 2

elements of 1" o (6) (]h is the involution in M py
LT F y »

associated with the form [| and J;is the involution in M" 7

associated with the form [,/. It is important to notice

that I, = I, -1, where L is the unit in 53 (Mjpy) Iy
) and I, is the unit in S (M} "

_ o - L
is the unit in bp“( H;p,,g\ Y]

It follows that if 5y(Mpe)s{= i+ 4, - Boe g L die S ( Ko
'bhenf Ly ) = L& v { (e O Uk, Clearly, there always
is at least one orbit of separable subalgebras in 7 .
Therefore, any additional orbit will be obtained if we
can find J¢ Srh(ﬁ_;’gm‘; e SQ(H/"P":) the dimensions of which
are, respectively, 1+ - and -2+, and which are not separable.
Then the set | & (6@ &) & € Awt (5y(Mg,) | constitutes
an additional orbit.

The considerations of Section II.1 suggest that the

family 9_’13&( {ffpmﬂ contain subalgebras characterized

by minimal polynomials of the type:

P ik kel _.,_.ki
/.-'f..(., (A) = (7\‘ M) S ()\‘ )ki) 2 Regy M 2 02 Iy iy
£
where lz_jkL - Qi'kl = dmr,Ac P and Ty () is an irreducible

L2l

in P[0 polynomial of the second degree which splits

in F(e)LX] :
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One also knows that there is a basis (¢t in v/

in whieh 1

. has the following representation:

L

where .« ¢ P;ﬁm . We will show that as long as there

are at least two different elements w1, on the diagonal

of this representation the family % (9, [”};ED
has nonseparable elements. The proof of this claim has
two steps:

1. the pair (%Mﬁiq}is not equal to (a, () where a = *
If w,=a, w,=! then there exists {¢ 5Q{Pw?w])with

v = (N —a)(d-2)ir (A3, )which in the basis {¢j}has the

representation i'l
2

Qg ¢

N

L .’?\h-lv-l

But this means that there are two eigenvectors e & of ¢

such that (e =@, fe=-fe'and [ le, $e) 2 6 Mle &)=
=3 e/ €e)=3Mec)eHence [lel,ei)) = O which is impossible
by the definition of [},

2. ILet now a pair (4, ,t,)# (a,!) be given. Then

there exists 4¢Efﬁﬂfﬁﬁ; ) which in the basis {el&

(properly renumerated) has the following representation:
(7]

|
B By 12

0 i }n-l-v a

Clearly the minimal polynomial J&rgmof_h is equal to
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(3}_ t;";.)u- A): L c-2,.,,). Its degree is v-:+ and it has
L\Ju i
an irreducible factor of the second degree.

Let now -{e bJ\H?PGJ be given such that f=f +4

i Lle .
where | ¢ :'p iH,;. L) with wp = Q= A) (Lo % el 0)rL e 12)
and  fie 9y (H75,) with g ) = (N %) (A- 2l (- hucawas )
Then, 1f we choose ), w=l;- ., ¢ #n, . 6 h-2v-1 in such a

way that all of them are different we get «y/\) = g™ pn)
Hence the set | G(ee)| Ge Aut(Sy | is the additional orbit.

These remarks suggest the following formulation of
the necessary conditions the fulfillment of which will

exclude the described types of orbits:

(*#) For every rn»| there exists a sequence iuﬁk;l of

v

elements of ﬁ;such that for every sequence { x;} x; € Fig)

431
W
Z Loy X %5 =+ 0
a:‘

3 u ul . - = (R} ] al
(3F e e gxp o, e 7 then X = e

(**) For every n. a diagonal representation of the
definite form I' has to have the property that «, =
for Ay .

Both these conditions imply that for every nv|

the field - has to have the following property:

e ) =ik iml‘: -
T - aR 20

e

for any two sequences {xf};. -, K?L;

In particular if x;LO for all , , we get that

Wil o
L Z, Xa % ¢
4
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which is equivalent to the condition
=N
| 2 Eﬁ EﬁJ
This means that in order to exclude the described types
of orbits the field F has to be formally real.
Now we can make use of the following theorem of

Krakowski.lz)

Krakowski Theorem

Let « be a formally real field and ” its real closure;

let A.c P be a root of some irreducible polynomial p()e kO
o

Then there exists a K- symmetric matrix the minimal

polynomial of which is equal to aﬂ\.

If P is formally real and F is not real closed then
there always exists an element ). of the Krakowski theorem.
Let n be the degree of pir)« If (M, 5 x) = S3(Mjp,)
with ~> 0 and ] is an involtuion associated with the form
fulfilling the condition (*#¥) then there always exists
an element [ ¢ SJ{HTHSJwith the minimal polynomial ¢,/
of the degree nwconfaining q?‘as an irreducible factor.
Hence the set | G[&)| & € AulS,)} constitutes an additional
orbit.

All considerations up to now concerned the algebras

of the type 51 (M7, %[']higcliy They are, however, also

12)'vr:m Fred Krakowski, "Eigenwerte und Minimal polynome
symmetrischer Matrizen in kommutativen Kopern," Commentariil
Mathematici Helvetici, vol. 32 fasc. 3, 1958.
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valid in the case of algebras of the type

Sy Misepen + #0001 35 L k)

Vv

Due to the fact thathbg;f‘tiﬂﬁmﬂ we have S3i'MﬁLWMﬂ) D)
S5: (Mipe) where | is an involution induced in T o/g
] | P& ¢ {
by the involution 3 of Hgﬁ;mﬁ. Since there are no

division rings over an algebraically closed field no

"/ neen) €8N have a unique orbit

algebra of the type 5 (M
because F never can be real closed. This last remark

proves the Theorem II.1.

Proposition II.13: The conditions of the Theorem II.1

are also necessary and sufficient conditions for the

algebra Gkﬁn 6 + axtv! to be separable for every n>!.

Proof: The Proposition I.3 asserts that Ui is separable
iff it is characterized by the minimal polynomials of
the type (M= A-%)"- - (A3) . Hence, in order to prove
the necessary condition one has to show that unless -
is real closed and the algebra H{mjs,iﬁ is given by

an unisotropic involution for every other type of a

two product algebra there is n>! such that this algebra
contains a nonseparable subalgebra or in other words,
it contains a subalgebra characterized by the different
type of the minimal polynomial. But the existence of
additional orbits of automorphism group explicitely

depends (because of Lemma I.4) on the presence of such
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nonseparable elements in a given algebra. Hence, both
the separability of the algebra and transitivity of the
group are explicitely dependent on the same concept.

Therefore the proof of the Theorem II.1 is also the proof

of this proposition.

—



55

APPENDIX 1

Algebraic Theory of Real Fields

The algebraic theory of real fields was developed
by Artin and Schreier.l) The main goal of their work
was to establish purely algebraic foundations of real
numbers and to analyze their conseguences in an algebraic
setting.

The theory rests on two concepts, those of ordering

and formal reality.

Definition 1: A field F is ordered if the property of

positiveness (70)is defined for its elements, and if it
satisfies the following conditions:

1. For every element a in F , just one of the
relations o =0 |, a0

is valid

2. Ifone and pyOthen o +b> O} ab >0

Definition 2: A field F is formally real iff -[is not

expressible in it as a sum of squares.

A field r is real closed if F is formally real but

not extension of it formally real.
The immediate consequence of this definition is that
a real closed field [ is not algebraically closed for the

polynomial x*+| cannot have a root in f[¥. One can show,

1)E. Artin and 0. Schreier, "Algebraische Konstruktion
reeller Kopper," Abh. Math. Sam. Hamburg, vol. 5, 1926,
pp. 83-115.
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however, that the extension () where _ is the root of
X+ y is already algebraically closed.
The interplay between the ordering idea and real

closedness is contained in:
Lemma 3: Every real closed field { has a unigue ordering.

The proof of this lemma consists in showing that every
element 0O+ a ¢ F is a square or -ais a square (but not
both simultaneously). Since for any ordering squares
have to be nonnegative the unique ordering is given by

postulating a>ciff ¢ is a square.

-

This lemma implies that Aut (F) where f is real
closed equals | (o.{. It is important to notice that a
formally real field which is not real closed might have
several possible orderings. Important examples of
formally real fields are rationals (with a unique order-
ing induced by the ordering of the ring of integers)
and the extension of rationals containing the square
roots of all pogitive elements.

To prove the existence of a real closure P for a
formally real field F one needs to assume the countability
of the field F . (One might also use a weaker assumption
of well-ordering.) The proof is based on the fact that
the algebraic closure of a countable field is countable.

If 0, is the algebraic closure of a countable formally

real field F then one can define a denumerable sequence
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of extension fields % 1, ... of F as follows:
o= F
Lye = Lof@)if L,(was) is formally real
Tl Ty if ¥, (w.) 18 not formally real
is the set of elements of «i. If

W, Wy, - ) kDigy

P= i?EL then by induction P is formally real. Since
algebraic extension of ¥ cannot be formally real P is
real closed. Obviously P is countable as a subfield of
countable field ,0.. If F is an ordered formally real
field then P is unique up to isomorphism. This results

in the field of real algebraic numbers as the real closure

of rationals.
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APPENDIX 2
Connection Between Involutions in Nl_and Sequilinear Forms
il
on VT_ i

—

1. The concept of an involution in the associative
algebra ( over a field F is a special case of a more
general idea, namely that of an antiautomorphism. Any
antiautomorphism of U can be discussed conveniently
with the help of an opposite algebra U of U/ .

An opposite algebra U of U is an algebra over F
such that there exists a linear one-to-one, onto map

G U—su given by ({ae)= iy, C(A+D3) = cim+am , C(ABR) = R CCA)

For any J its opposite U is givenly the canonical con-

1)

struction.
Any antiautomorphism ¢ U—U such that ¥ (F) = F
can be now factored through the canonical map ¢: U— L

and an isomorphism .,

C =

—_—
o /L!
¥

3

X

! A

b Sy
L ¢

2. Let a division ring [l over a field F be given and
let #: L —=JL be an antiautomorphism in .2 . (Since the
division ring .l is an associative algebra over F , the

previous discussion applies here.)

I)A. Albert, Structure of Algebras (Providence, R.I.:
Am. Math. Society, Colloquium Publications, 1961), vol. 24.
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Let \;/?n be a right vector space over J. . With the
help of the antiautomorphism & this vector space can be
considered as a left vector space \ over .(L by setting

a N = V(s for every acjl, vey . One may check that

b (@) = (@ \)e™e) = (Y &)X () = ¢ (#1a) &) = ¢ &lpu) = (bu) v,

Any bilinear form [ . v'»y —> 0, , F(av.} bv) = o Mwnlb

induces a sequilinear form (" on ' by allowing
Py b ) == Cr v, wb) = € Mww)b= &l Ml b .

Let then ['(y,x) be a sequilinear form on VsV with
respect to the antiautomorphism & oL ——=n. , and let
the map dp: V-———=V" be given by a,(y) := I'ly, ).
The map d, is a sequilinear map from the space Vv
into its dual V': dp(ya) = Mya,”) = oy My,7) = &® dp(Y)
If the form [' is nondegenerate (as we continue to assume
in the sequel) then 4, is one-to-one and onto.

3. If (= m 1s an algebra of linear transformations
on the vector space V},;.L then, by remarks in point 1.
of this Appendix there exists a canonical opposite
algebra U of U , which in this case is isomorphic to the
algebra of linear transformations sz;l.\ on the dual
apace V' . Tet. £ ¢ My ———Mg | r = aF
(if ¢ v*® then pf:=fen for Ae M/g ).

With the help of the canonical map C and the map dp
(which explicitly depends on the form " ) we can construct
an antiautomorphismg of ﬁ;‘ﬂ; by the demand of the

commutativity of the following diagram:
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L 1 S

vV
|

g | Idp
\

WV ds 22z we M
A
where | is the following map: H:’iﬁ.-} h——7l 8] = ‘*r-'l" AT o an € Mg
The antiautomorphism property is induced in ;] by the anti-
automorphism property of the canonical map ((&) = A" : ClAm= BT A
In the case when a belongs to the center of 41 we have
JC‘U = £a), This way we have shown that every nonde-
generate sequilinear form on the space \f;:i induces an
antiautomorphism in the algebra |"i£_&. We will show that

the converse also holds.

L., Let 14 M=t

be a canonical antiautomorphism c(a) = a*

be an antiautomorphism and
L3 s =
The demand of the commutativity of the following

diagram oy 3

7
cl e
Pt
D=
induces an isomorphism Y : H}:{L-—————} H;:Jb

where ‘t.cC = ]
By the isomorphism theoremz) there exists a sequilinear
transformation ¢:\v*——y (where V' is considered as a right

vector space V'a :=¢#«)v with ¥ being an antiautomorphism

2)N. Jacobson, Linear Algebra, Chapter IX, Section II.
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of the ring ., ) such that J(M = ¢ Re ¢
If s: V' *W—= .0 is a canonical bilinear form (¢ v) = £(v)
then we can define a form (v, x) := S(€ x) on the
space V/:jL' The form is clearly sequilinear:

Miya, &) = §( €y, xb) = s(EW &, Vb = S(F= 5 €W, b=

= [te 5y 5(Cy), ¥ b= we(a) My, ¥)b.
The map & u.—). is an antiautomorphism of [ associated
with the sequilinear map ¥ , and b——= w(®
ig an antiautomorphism in .. .

Moreover, [1(y, Ax) = S{€, AX) = S(A™€M ¥ = s(€Gmy),x) = M(FMy,

The nondegeneracy of ' implies the existence of a

unique sequilinear map @ : V——>V | ¢lex) = (@) {0

such that My x) = w(M(@y, ) and .s*is a square of an
inverse of the antiautomorphism w: L —dbL . With the

help of ¢ one finds out that @A g = J°(A) so that p

is an involution (}’=d) iff QA¢ = A i.e. if ¢ is a scalar

multiplication on the left or equivalently if (v, x) = ¢ o ([x,y)
(€= 1) We also get then s = a which means that -
in an involution in the ring (. .

5. The above remarks establish the existence of
a correspondence between the set of nondegenerate sequi-
linear forms j{‘{:,i;l) on the space V/;l and the set of
involutions I{%“dn the ring of linear transformations

on this space.
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Lemma 1: The correspondence T—@*fj‘ induces a well defined,
one-to-one, onto map . =% , where ~ is an equivalence
o L4"

relation given by: "~ 0 ifFf M = a [,

Proof: Tet [ (y, % be another hermitian form defined as
in point 4 of this Appendix, * —= . be a second involution
and - N'.'p—‘*?fp be the involution to which both of those
forms are assécia‘bed. If we denote JW as A’ then

Dy A% = [[{Ay,x) iff Ty, ax) = MlA'y,»
Iet y—— x \h{‘{;‘f” be the map A= g vy,
Then X »y) = Y *X so that

[} («.-'L, , eyl d’) = [T(Cy»x] W, b
=iy % P{‘fl;ﬁ“)} = [lw %) Mly,e) = D Pxw), 8) = W Mx, w) My, &),

This implies that [l (% y) = T(uy) 5.

™ s = Y w
Also Mlx ,ety) = [(%y)le)= 1 (%y) § L) PL%Y) X

80 that ') = § ) § = w) because F is a field.

This lemma implies that if [/(xy)is a skew hermitian form
associated with automorphism «—> &lujzathen ('(xv)s is hermitian,
so that both of them are connected with the same involution.

It follows that the map { (M")— Qg(v;)is one-to-one
. J o

Sl
and onto.
6. Cogredience of forms in the set ‘f\ \f':u‘].fﬁ = ‘?v_,:m\
One knows that the set ‘-i\\.’;_.} has another equivalence

relation given by the cogredience of forms: | ~ [} iff
there is G ¢ Gl{wd)guch that 116y, 69 = LvY) . ILet 12

be an involution connected with [} and 7 with [J . We have

-
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then:
g AN = T G 3
—11 Ly, M) = f_'l(gl(;),‘}yrx>

NGy, 60 = 0 (y, ¥

which implies that [} (v Ax) = [ (Gy, GAX

- &

N{Gy, CAGEY) =

e |

Cly') GAE'Y) = LZAY, x)= N(G3my, x) =

(GLMEEY, Gx) =

- i?(G}J {A?(,‘:l'u‘f: \) = l_I'(]I ':-(TP\ "‘I.«II \r J KI)

and },i\{vn ) = '_;?_‘LA}(-,--J and 7!= E;hl & 1.0

: : (where & is
d2 ¢

Gy

' induced by G & & s 1))

LR

an automorphism of ™

so that the cogredience relation in ﬁf(fijintroduces in

this way a cogredience relation in ['M| and tltﬁlgfé_ﬁﬁa %(ﬁ&J;

Let 7] , 7. be cogredient involutions and § (M), S7. (M%)
o o J.' ' 3),

be respective algebras offL-symmetric elements. Let

2 i
Lo LR i) .:"'l_‘-\ 5 L K s -7 : _.\_-r- L - | - - =1y 4 -
A€ ‘p“—: , H,'L_L ) then = \.-*.\_‘ = :;1 SLRY/AY N R | '\\»"'LMJ"UJ’Ogu"&oG ] (A)=

This way we proved

Lemma 2: Let Sl(ﬁfg*iﬂg be two algebras defined by the
cogredient hermitian forms [} . T (6y, 6% =N(xy). Then S;L
are isomorphic where isomorphism is given by

S5~y 83 = G5y

S O

There are three kinds of involutions possible in the
algebra M

a.é]:.d (and then 5Jlméﬁ: ﬁ%l)

b. ;¢'d in Mleut %mf'd' It is the involution of the
first kind.

Cu_;?ld in Eﬁ nor in J, . It is the involution of the

second kind.
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APPENDIX 3

Let the sequilinear form I have the following

representation in the basis {c ” of the space VIF’J '

r -
o \
! | | e i ) =
2p L ) q (j 0'.. 2p+1-4 if ¢ d,LE L
Il1 (. : = : . ;
. = ! L& L& nept!
d Wiy oy Lé if f B

T i = [ -__L L3 2pt I gty
L e L'y - .

- i W | "\):, 5:& if &' '-.(I; > 1,(:«'

Let T be the involution in ¥ associated with this
f+ g
form. Then if Ac¢ Qﬁfpiﬁ‘jeb
(Fem), = (7 A
[y ; - ' s
(\'H/F’{HJQ is the representation of M, in the basis {ei}m
4T is the hermitian conjugate of A with respect to a
positive definite form on Vq/PIG) )
We are going to find out the conditions for the

matrix (a,)=A to be J- symmetric i.e. to satisfy A= J(A).

If (u;,) is matrix of A then (t, )= (d4«) is the matrix
of Al and
fj(M) = i 55 %,
t; €y . Ak tk.. vy -

This results in
-:L:,pq -y zpti-2 if e gc2p £ 4 €2p
l(a’ﬂ‘)ga U\; Ii& LD+ £ h s ¢ 1L €Lip " g > 2p+
L 3 i %641 A )
Gse Aapsi~y € if w2 xpt Vel 7

- if N

7

” |

iﬂrj Q_E. .fr& 7 1'3‘{'
¢

Coe
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Therefore the condition J(A) = A 1is equivalent to

(a?-?*'—a 2p+i-e ir VEeER 4 E2p

wd a«é 204 ~£ k(5 i A ZP no 2 Zpt!
/

QJJ = <-: éga—zpn-d L 1f ln‘),/(z.ip-n, BHE

2 Oye if Wy £,y » 2pt!

e

g

'.
|
4

e
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