
Optimal Allocation of an Indivisible Good∗

Ran Shao†

Yeshiva University

Lin Zhou‡

Shanghai Jiao Tong University

First Draft: October 2007
This Version: September 2016

Abstract

In this paper, we consider the problem of allocating an indivisible good efficiently

between two agents with monetary transfers. We focus on allocation mechanisms that

are dominant-strategy incentive compatible when agents’ types are private information.

Inefficiency of an allocation mechanism may come from two sources: misallocation of

the indivisible good and an imbalanced budget. Unfortunately, as Green and Laf-

font (1979) demonstrate, no allocation mechanism can always overcome both kinds of

inefficiency. We identify allocation mechanisms that maximize the expected total util-

ities of agents, and characterize optimal mechanisms for a large class of agents’ type

distributions. For strongly regular type distributions, we show that the optimal mech-

anisms must be budget-balanced: they are either fixed-price mechanisms or option

mechanisms. The result may not hold for other type distributions. For certain type

distributions, we show that optimal mechanisms are hybrids of Vickrey-Clarke-Groves

mechanisms and budget-balanced mechanisms.
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1 Introduction

In this paper, we consider the problem of allocating an indivisible good efficiently between

two agents when agents’ valuations of the good are private information. A typical example

of such a problem is the bilateral bargaining problem, in which a seller and a buyer negotiate

over whether and how to trade a particular good. Our focus is on dominant-strategy incentive

compatible mechanisms. The research interest in this problem is derived from a fundamental

dilemma of Green and Laffont (1979): When agents’ valuations of the good are private

information, it is impossible to always assign the good to the agent with the higher valuation

without incurring any cost.

There are several methods that are commonly used in practice, including lotteries, se-

niority rankings, auctions. These methods either sometimes assign the good to the agent

with the lower valuation or sometimes incur negative cash outflows from agents.

For scholars, two particular classes of methods have received more attention. The first

class consists of all Vickrey-Clarke-Groves (VCG, henceforth) mechanisms (Vickrey, 1961;

Clarke, 1971; Groves, 1973) that extend the conventional English auction scheme. The

second class consists of all fixed-price mechanisms (Hagerty and Rogerson, 1987), in which

the good is assigned to one agent (the seller) unless both agents are willing to trade the

good at a predetermined price. VCG mechanisms always assign the good to the agent with

the highest valuation, but they may incur outflow of money from agents (money burning).

Fixed-price mechanisms do exactly the opposite.

Although extensive research has been conducted on VCG mechanisms and fixed-price

mechanisms separately, they have never been scored against each other in any formal model,

let alone in a model that allows for more-general mechanisms. Note that VCG and fixed-

price mechanisms share two common features. First, they are dominant-strategy incentive

compatible—i.e., it is always a dominant strategy for agents to reveal their types truth-

fully. Second, they are no-deficit—i.e., they have no need for money injection from outside

to facilitate the agents. In this paper, we shall study all mechanisms that are dominant-

strategy incentive compatible (DSIC) and no-deficit (ND). Our goal is to identify the optimal

mechanisms among them.

To evaluate DSIC and ND mechanisms we assume a known Bayesian prior over the private

types of the agents and look for mechanisms that perform well in expectation over types from

this prior. Note that a corollary of the work by Green and Laffont (1979) is that there exists

no mechanism that is always more efficient than others in every realization of agents’ types.

Our Bayesian objective is a standard one for mechanism design in environments where no

2



mechanism is pointwise optimal.1

In Theorem 1, we present a characterization of optimal mechanisms when agents’ type

distributions are strongly regular.2 An optimal mechanism is either a fixed-price mecha-

nism or an option mechanism, depending on agents’ type distributions. Hence, any optimal

mechanism must be budget-balanced. Both fixed-price and option mechanisms are optimal

if agents are identical ex ante. In an option mechanism, one agent is the temporary holder

of the good, and the other agent is the recipient of a call option that allows him to purchase

the good from the first agent at a predetermined price. The good changes hands when-

ever the option recipient wants to exercise his option. In comparison, under the fixed-price

mechanism, the good changes hands only when both agents agree to the trade at a prede-

termined price. When agents’ types are not strongly regular, the conclusions in Theorem

1 no longer hold. We study several such cases in Theorems 2 and 3 when agents are sym-

metric ex ante, obtaining characterizations of optimal mechanisms. Optimal mechanisms in

these more general cases are not always budget-balanced, as they might be hybrids of VCG

and budget-balanced mechanisms: An optimal mechanism may sometimes assign the good

efficiently and sometimes impose budget-balance depending on the type profile.

We believe that our results make a significant contribution to the literature on mecha-

nism design, as there are very few examples of closed-form optimal dominant-strategy in-

centive compatible mechanisms. Moreover, Theorem 1 highlights the importance of budget-

balancedness for optimality with strongly regular type distributions. On the other hand,

Theorems 2 and 3 demonstrate that the optimal mechanisms need not be either VCG mech-

anisms or budget-balanced mechanisms in other cases. They complement discoveries found

by Miller (2011), Drexl and Kleiner (2015), and Schwartz and Wen (2012) through examples

that either budget-balanced or VCG mechanisms can be outperformed by other mechanisms

on average for different type distributions.

RELATED WORK. This paper considers dominant strategy incentive compatible and ex

post no-deficit mechanisms to allocate a good between two agents to maximize the expected

agents’ utilities when the agents’ types are drawn from a known distribution. Guo and

Conitzer (2010) consider a generalization of our problem multiple goods and multiple agents

and look for VCG mechanisms (which always choose the surplus maximizing allocation) that

1Previous works have considered the same setting but relaxing DSIC to Bayesian incentive compatibility
or strengthening the Bayesian optimization criteria to a pointwise objective (but relaxing the optimality
criteria to one of approximation). A comparison of these works to ours will be given in detail in the related
work section.

2Our notion of strongly regular distribution requires that both the hazard rate and the reversed hazard
rate are monotone. See Section 2 for details.
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minimize the expectation of the outflow of money. This outflow of money can be reduced

by redistributing the VCG payments among the agents (where the money not redistributed

is burnt). Schwartz and Wen (2012) provide an example of a bilateral trade model in which

the mechanism with money burning outperforms budget-balanced mechanisms for certain

distributions. Miller (2011) shows that VCG mechanisms can never be optimal for a general

class of agents’ type distributions. Finally, in a contemporaneous paper, Drexl and Kleiner

(2015) consider a variant of our problem, in which an additional ex post individual rationality

(IR) condition is also imposed on mechanisms. Within this smaller set of mechanisms, they

show that the optimal mechanisms are budget-balanced, a result similar to our Theorem 1.

The advantage of their work is that their result is valid for all regular distributions3, a more

general class of distributions than ours. Nevertheless, when the IR condition is dropped,

the optimal mechanisms are not necessarily budget-balanced for regular distributions as our

Theorems 2 and 3 demonstrate. One must assume strong regularity in order to show that

optimality implies budget-balancedness.

There is a line of research that considers a similar question but relaxes the DSIC re-

quirement to Bayesian incentive compatibility. With this relaxation the mechanism of

d’Aspremont and Ǵerard-Varet (1979) obtains the first-best welfare and, consequently, the

no-deficit condition imposes no loss. There are two reasons to consider our mechanisms over

these mechanisms. First, the proper working of Bayesian incentive compatible mechanisms

is dependent on a strong common prior assumption.4 Second, mechanisms with complicated

transfers, like the AGV mechanism, tend not to be seen in practice.5

There is another line of research that strengthens the Bayesian optimization criterion to

achieve guarantees for all types of the agents (i.e., pointwise) when there are many agents

and units. Most of these papers focus on VCG mechanisms that aim to redistribute most of

the agents’ payments (and burn the remainder). Cavallo (2006) considers VCG mechanisms

that minimize the outflow of money in the worst case. Guo and Conitzer (2009) consider

VCG mechanisms that minimize the worst-case ratio of the outflow of money over the total

Vickrey auction revenue. Moulin (2009) proposes another worst-case ratio measure and

derives the optimal VCG mechanism. Non-VCG mechanisms were subsequently considered

3The hazard rates of the type distributions are monotone.
4Readers interested in the topic of dominant-strategy vs Bayesian incentive compatibility are referred to

Chung and Ely, 2004; d’Aspremont and Gérard-Varet, 1979; Bergemann and Morris, 2005; and Jehiel et al.,
2006.

5In recent work, Gershkov et al. (2013) derive an “equivalence” result between Bayesian and dominant-
strategy incentive compatible mechanisms. For any Bayesian incentive compatible mechanism, they show
that one can find another dominant-strategy incentive compatible mechanism that mimics the allocation of
the Bayesian incentive compatible mechanism. However, their construction does not preserve the no-deficit
condition, which is at the heart of our inquiry.
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by Moulin (2009), Guo and Conitzer (2014) and de Clippel et al. (2014), who showed that

they can outperform VCG mechanisms under the maxmin criterion. When the number

of agents is large, the mechanisms from this literature are nearly optimal (in comparison

to first-best); however, in the two-agent one-unit setting that we consider they tend to be

trivial and provide only trivial guarantees.

2 Model and Main Results

We consider a model in which an indivisible private good is to be allocated between two

agents. We refer to agent i’s valuation of the good, θi, as his type, where i = 1, 2. We assume

that each agent’s type lies in a bounded positive interval, and without loss of generality, we

normalize it as the unit interval [0, 1] . We also assume that agent i’s utility is quasi-linear

in the monetary transfer—i.e., the agent’s utility function is:

Ui(xi, ti; θi) = θi xi + ti for i = 1, 2.

This says that agent i obtains the good with probability xi and receives ti.

An allocation mechanism, or simply a mechanism, M = {xi, ti}i=1,2 , consists of four real

value functions x1(θ1, θ2), x2(θ1, θ2), t1(θ1, θ2), and t2(θ1, θ2). In this paper, we restrict our

attention to deterministic mechanisms—i.e.,

xi(θ1, θ2) ∈ {0, 1} , and x1(θ1, θ2) + x2(θ1, θ2) = 1, ∀θ1, θ2.6

A mechanism is allocation efficient if xi = 1 whenever θi > θj, i 6= j. In words, the good is

always given to the agent with the higher type.

Since agents’ types are private information, they must be solicited. In order for a mech-

anism to work properly, it is important that agents are given an incentive to reveal their

types truthfully. The strongest incentive property is the dominant-strategy incentive com-

patibility. It is required that it is always a dominant strategy for agents to reveal their true

type—i.e.,

θ1x1(θ1, θ2) + t1(θ1, θ2) ≥ θ1x1(θ̃1, θ2) + t1(θ̃1, θ2), ∀θ1, θ̃1, θ2
θ2x2(θ1, θ2) + t2(θ1, θ2) ≥ θ2x1(θ1, θ̃2) + t1(θ1, θ̃2), ∀θ1, θ2, θ̃2.

(DIC)

The best known DIC mechanisms are Vickrey-Clarke-Groves mechanisms. In a VCG

mechanism, allocation efficiency is always achieved through the clever choice of monetary

6Because of some technical difficulties, we do not allow the designer to withhold the good, so the good
must be assigned to one of the agents. It is a natural condition in the bilateral trade model in which the
seller originally owns the good.
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transfers. However, VCG mechanisms are less specific regarding the monetary transfers to

the agents. It is of less interest to us whether agents’ utilities are inflated because of positive

subsidies from outside. Hence, we will also impose the condition of no-deficit,

t1(θ1, θ2) + t2(θ1, θ2) ≤ 0, ∀θ1, θ2. (ND)

Moreover, if the equality in (ND) holds at all (θ1, θ2) , we say that the mechanism is budget-

balanced. For a mechanism to achieve full efficiency, it must be both allocation efficient and

budget-balanced. But Green and Laffont (1979) have already shown this cannot be true for

any DIC mechanism.

In this paper, we use an average criterion to evaluate the efficiencies of various DIC

mechanisms. We assign some probability distributions F1 (θ1) and F2 (θ2) to individual

agents’ types, and then we identify mechanisms that yield the highest total efficiency among

all mechanisms that are (DIC) and (ND). For our full efficiency results, these distributions

reflect agents’ true type distributions. More generally, these distributions can reflect useful

information available to the designer about agent’s type distributions, that is, the designer’s

subjective beliefs. Here is our formal optimization problem.

For probability distributions F1 and F2, the average total utilities of both agents of

mechanism M are

TU (M) =

∫ 1

0

∫ 1

0

(θ1x1(θ1, θ2) + θ2x2(θ1, θ2) + t1(θ1, θ2) + t2(θ1, θ2))dF1 (θ1) dF2 (θ2) .

Denote the class of all feasible mechanisms that satisfy both (DIC) and (ND) by M. Our

task is to identify optimal mechanisms M∗ ∈M that yield the highest TU value:

TU(M∗) = max
M∈M

TU(M).

To find an optimal solution to the problem above, we must impose certain restrictions

on F1 and F2. Borrowing from the existing literature, we consider the following conditions

in this paper:

IFR: A distribution F has an increasing failure rate if f (θ) / (1− F (θ)) is increasing in θ.

DFR: A distribution F has a decreasing failure rate if f (θ) / (1− F (θ)) is decreasing in θ.

IRFR: A distribution function F has an increasing reversed failure rate if f (θ) /F (θ) is

increasing in θ.

DRFR: A distribution function F has a decreasing reversed failure rate if f (θ) /F (θ) is

decreasing in θ.

The most commonly used distributions satisfy one or two of the above conditions. While
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some conditions are incompatible, it can be shown that IRFR implies IFR, and DFR implies

DRFR.

IRFR DFR

IFR DRFR

strongly

regular

Strong Regularity. A distribution is strongly regular if both IFR and DRFR hold.

IFR is also known as the hazard rate condition, and DRFR means that F is log-concave.

The IFR and DRFR are commonly assumed in the mechanism design literature. The uniform

distribution, truncated exponential distributions and truncated normal distributions are all

strongly regular.7

Before we present our formal results, let us calculate TU(M) for some well-known mech-

anisms. For simplicity, we carry out such calculations for the uniform distribution only.

First, the canonical pivotal mechanism (or the second-price auction mechanism) MSP

has the total utilities TU(MSP ) = 1
3
, which is not very large. It is not even the best one

among all VCG mechanisms. In a separate paper, we find the best VCG mechanism M∗
V CG

with TU(M∗
V CG) = 7

12
(Shao and Zhou, 2008).

Example 1. Hagerty and Rogerson (1987) consider fixed-price mechanisms: Assuming that

agent 1 is the seller and agent 2 is the buyer, a trade will take place at some fixed-price p if

and only if both the seller and the buyer agree. Formally, the fixed-price mechanism MFP

with price p is defined as follows (see Figure 1):
x1(θ1, θ2) = 0,

t1(θ1, θ2) = p,

x2(θ1, θ2) = 1,

t2(θ1, θ2) = −p,

when θ1 ≤ p and θ2 ≥ p; and


x1(θ1, θ2) = 1,

t1(θ1, θ2) = 0,

x2(θ1, θ2) = 0,

t2(θ1, θ2) = 0,

otherwise.

Among all fixed-price mechanisms, the mechanism with the price p = 1
2

yields the highest

7A nice discussion of these conditions can be found in Bagnoli and Bergstrom (2005).
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θ2

θ1(0, 0)

(1, 1)

p

p

x2 = 1

x1 = 1

Figure 1: Allocation rule of a fixed-price mechanism

total utilities TU(MFP ) = 5
8
. (The same holds for the fixed-price mechanism in which agent

2 is the designated seller.)

Example 2. In this paper, we also consider another type of budget-balanced mechanisms,

called option mechanisms, which are related to, but different from, fixed-price mechanisms.

An option mechanism MO gives the good to agent 1 conditionally and, at the same time,

issues a call option to agent 2 that allows him to buy the good from agent 1 at a fixed exercise

price of p. Obviously, agent 2 will exercise the option if and only if θ2 ≥ p. Formally, it is

defined as follows (see Figure 2):
x1(θ1, θ2) = 0,

t1(θ1, θ2) = p,

x2(θ1θ2) = 1,

t2(θ1, θ2) = −p,

when θ2 ≥ p; and


x1(θ1, θ2) = 1,

t1(θ1, θ2) = 0,

x2(θ1, θ2) = 0,

t2(θ1, θ2) = 0,

otherwise.

Among all option mechanisms, the mechanism with the option price p = 1
2

yields the highest

total utilities TU(MO) = 5
8
. (The same holds for the option mechanism in which agent 2 is

the conditional owner of the good and agent 1 is awarded the option.)

There are two interesting observations from these examples. First, the best fixed-price

mechanism and the best option mechanism yield the same level of total utilities. Assuming

that agent 1 is the designated seller of the good, these two mechanisms differ only in the

region θ1 ≥ 1
2

and θ2 ≥ 1
2
, where both agents’ types are greater than or equal to 1

2
. The

fixed-price mechanism favors agent 1 by giving the good to agent 1 in the whole region,
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θ2

θ1(0, 0)

(1, 1)

p

x2 = 1

x1 = 1

Figure 2: Allocation rule of an option mechanism

whereas the option mechanism favors agent 2. The total utilities are the same since agents’

types are distributed symmetrically in these examples. Second, the numerical comparison

also indicates that the budget-balanced mechanisms outperforms VCG mechanisms. In fact,

our first result shows that both observations hold for more general distributions.

Theorem 1. When F1 and F2 are strongly regular, the optimal mechanisms are either

fixed-price mechanisms or option mechanisms with optimally chosen prices p∗. Hence, op-

timal mechanisms must be budget-balanced. In addition, when F1 = F2, both fixed-price

mechanisms and option mechanisms are optimal with the same p∗ equal to the mean of F1.

Note that agents’ distributions in the first part of Theorem 1 need not be identical.

Whether option mechanisms or fixed-price mechanisms are optimal depends on probability

distributions F1 and F2. By Theorem 1, it is sufficient to find the optimal mechanisms by

restricting attention to fixed-price mechanisms and option mechanisms alone, which dramat-

ically simplifies the actual optimization problem. We can even find closed forms of optimal

mechanisms.

Example 3. All fixed-price mechanisms MFP are of the form given in Example 1. Since

such mechanisms are budget-balanced, t1 + t2 = 0. When agent 1 is the designated seller,

TU (MFP ) =

∫ 1

p

∫ p

0

θ2dF1 (θ1) dF2 (θ2) +

∫ p

0

∫ 1

0

θ1dF1 (θ1) dF2 (θ2)

+

∫ 1

p

∫ 1

p

θ1dF1 (θ1) dF2 (θ2) .
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Using the first order condition with respect to p, we can find the optimal price p∗1. We

denote such a mechanism as MFP (p∗1). Similarly, we can solve for another candidate optimal

mechanism MFP (p∗2) when agent 2 is the designated seller.

Example 4. All option mechanisms MO are of the form given in Example 2. When agent

1 is the designated seller and agent 2 is given the option,

TU (MO) =

∫ p

0

∫ 1

0

θ1dF1 (θ1) dF2 (θ2) +

∫ 1

p

∫ 1

0

θ2dF1 (θ1) dF2 (θ2) .

Using the first order condition with respect to p, the optimal price p∗1 = µ1, in which µ1 is the

mean of F1. The mechanism is denoted as MO (p∗1). Similarly, we can find the last candidate

optimal option mechanism MO (p∗2) when agent 2 is the designated seller with p∗2 = µ2.

By choosing from among the four candidate mechanisms those that yield the highest

TU value, we can identify the optimal mechanism(s). It is clear that if F1 = F2, all four

mechanisms have the same total utilities and p∗ = µ1 = µ2.

Theorem 1 highlights the importance of budget-balancedness for optimality. While both

misallocation and money outflows are sources of inefficiency for a general mechanism, it is

imperative for optimal mechanisms to eliminate money outflows completely. Consequently,

whenever distributions are strongly regular, VCG mechanisms can never be optimal.

When F1 and F2 are not strongly regular, optimal mechanisms may no longer be budget-

balanced. In the next two theorems, we obtain optimal mechanisms when probability dis-

tributions satisfy other conditions. It turns out that optimal mechanisms are neither VCG

mechanisms nor budget-balanced mechanisms.

Theorem 2. Suppose that agents are ex ante identical, F1 = F2 = F, and IRFR holds for

F ; an optimal mechanism is

x1 (θ1, θ2) =

{
1 if θ1 > θ2 and (θ1, θ2) ∈ [0, 1]× [0, c∗)

0 otherwise

ti (θ1, θ2) = −c
∗

2
if xi (θ1, θ2) = 1

ti (θ1, θ2) =

{
θj − c∗

2
for θj ∈ [0, c∗]

c∗

2
for θj ∈ [c∗, 1]

i 6= j, if xi (θ1, θ2) = 0,

in which c∗ ∈ (0, 1) is determined optimally. Another optimal mechanism is obtained by

switching the roles of agents.
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θ2

θ1(0, 0)

(1, 1)

c∗

c∗

x2 = 1

x1 = 1

Figure 3: Allocation rule of the optimal mechanism when F is IRFR

Theorem 3. Suppose that agents are ex ante identical, F1 = F2 = F, and DFR holds for

F ; an optimal mechanism is

x1 (θ1, θ2) =

{
1 if θ1 > θ2 and (θ1, θ2) ∈ [d∗, 1]× [0, 1]

0 otherwise

ti (θ1, θ2) =

{
−d∗

2
for θj ∈ [0, d∗]

d∗

2
− θj for θj ∈ [d∗, 1]

i 6= j, if xi (θ1, θ2) = 1,

ti (θ1, θ2) =
d∗

2
if xi (θ1, θ2) = 0,

in which d∗ ∈ (0, 1) is determined optimally. Another optimal mechanism is obtained by

switching the roles of agents.

The allocation rules of the optimal mechanisms in Theorems 2 and 3 are illustrated in

Figures 3 and 4. They are hybrids of VCG and budget-balanced mechanisms. However,

at each type profile, either allocation efficiency or budget-balancedness is achieved. When

IRFR holds, the good is allocated efficiently in all regions except where θ1 ≥ θ2, and θ2 ≥ c∗.

In that region, we have t1 (θ1, θ2) + t2 (θ1, θ2) = 0. When DFR holds, the situation is similar.

Although the possibility that optimal mechanisms are neither VCG nor budget-balanced

mechanisms has been illustrated by Schwartz and Wen (2012), Miller (2012), and Drexl and

Kleiner (2012) through some numerical examples, Theorems 2 and 3 are the first general

results that derive closed-form optimal mechanisms for irregular probability distributions.

Finally, let us discuss the individual rationality condition. We do not require that feasible
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θ2

θ1(0, 0)

(1, 1)

d∗

d∗

x2 = 1

x1 = 1

Figure 4: Allocation rule of the optimal mechanism when F is DFR

mechanisms should satisfy (IR). Drexl and Kleiner (2015) study a variation of our model

in which they also impose (IR) in addition to (DIC) and (ND). Hence, the class of feasible

mechanisms is smaller in their paper than in ours. For the bilateral bargaining model, they

show that any optimal mechanism for all mechanisms that satisfy (DIC), (ND), and (IR) must

be budget-balanced. The imposition of (IR) allows them to reach their conclusion without

any assumption on agents’ type distributions. For our larger class of mechanisms, whether

optimal mechanisms are budget-balanced depends crucially on agents’ type distributions.

When type distributions satisfy both IFR and DRFR, we find that the optimal mechanism for

all mechanisms satisfying (DIC) and (ND) must be budget-balanced (Theorem 1). However,

if type distributions do not satisfy DRFR, the conclusion no longer holds. Theorem 2 presents

such a case in which type distributions are IRFR; the resulting optimal mechanism is no

longer budget-balanced (even though IFR still holds, as IRFR implies IFR). Theorem 3

presents another case. Hence, with more information on underlying type distributions, we

derive optimal mechanisms for a larger class of feasible mechanisms than those considered in

Drexl and Kleiner (2015). For some distributions, the optimal mechanisms may be budget-

balanced or even satisfy (IR), and for some distributions, they are not. In the latter case

without (IR), our optimal mechanisms achieve higher efficiencies. When (IR) is imposed, no

such distinction exists.

The general technical difficulty to further generalize our result to more than two agents, is

the same as that is encountered in the optimal transport problem (a.k.a. ”Monge-Kantorovich

problem”),8 which is well known in the mathematical programming literature. In fact, our

8The reader is referred to Villani (2008) for an introduction to this literature.
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optimal mechanism problem is a specific variation of the optimal transport problem. As

there is no general technique for solving this problem directly, we adopt an indirect approach.

We first establish an upper bound for TU values of all mechanisms that satisfy (DIC) and

(ND). Then, we construct mechanisms, for which the TU values can achieve this upper

bound. These mechanisms, by construction, must be optimal. The details of our proofs are

presented in the appendix.

3 Conclusion

The main contribution of this paper is the development of a general framework that can be

used to evaluate the efficiency of dominant-strategy incentive compatible mechanisms. In

earlier work, many authors focus their attention on VCG mechanisms whenever dominant-

strategy incentive compatible mechanisms are concerned. While other authors study fixed-

price mechanisms in the bilateral bargaining literature, they cannot relate their work to

VCG mechanisms, as they usually impose budget-balancedness a priori. Since we soften the

budget-balanced condition to the no-deficit condition, we allow for all sensible dominant-

strategy incentive compatible mechanisms.

We have identified optimal mechanisms under alternative assumptions of the underlying

probability distributions. While two sources might have contributed to the inefficiency of a

dominant-strategy incentive compatible mechanism—misallocation of the good and money

outflows necessary to induce truth-telling behavior—they hardly mingle with each other

in any optimal mechanism. When probability distributions are strongly regular, optimal

mechanisms are always budget-balanced. Although the results are not as striking in two

other cases, it is still true that misallocation and money outflow do not co-exist at any

profile for an optimal mechanism. Optimality entails budget-balancedness at all profiles

(in the strongly regular case) or over a substantial region (in other cases). We conjecture

that budget-balancedness still holds as long as the good is not efficiently allocated when

probability distributions are non-degenerate.

The model becomes more complicated when non-deterministic mechanisms are also in-

cluded. With the uniform distribution, we demonstrate that optimal mechanisms must be

mixtures of fixed-price mechanisms and option mechanisms (Shao and Zhou, 2007). Although

we believe this result should hold with identical strongly regular probability distribution, this

remains an open question for further research.
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Appendix

Before we prove Theorems 1 to 3 separately, we first derive two common lemmas that will be

used in all proofs. The first lemma is a detailed characterization of mechanisms that satisfy

both (DIC) and (ND). The second lemma is an inequality that facilitates us in finding upper

bounds of TU values of optimal mechanisms. Throughout the appendix, whenever we see

expressions involving both i and j, it is always assumed that i, j ∈ {1, 2} and i 6= j.

Lemma A1. (i) For any deterministic mechanism M = {xi, ti}, M satisfies (DIC) if and

only if both allocation rule xi (θ1, θ2) is (weakly) increasing in θi, i = 1, 2, and transfers

are given by

t1(θ1, θ2) = −θ1x1(θ1, θ2) +

∫ θ1

0

x1(α, θ2)dα + h1 (θ2) , (1)

t2(θ1, θ2) = −θ2x2(θ1, θ2) +

∫ θ2

0

x2(θ1, β)dβ + h2 (θ1) ,

in which hi (θj) is an arbitrary function of θj.

(ii) Define

φ1 (θ2) = inf {α|x1 (α, θ2) = 1} , and

φ2 (θ1) = inf {β|x2 (θ1, β) = 1} .

For any M satisfying (DIC), φ2 (θ1) and φ1 (θ2) are increasing functions. Then, (ND)

can be re-written as

h1 (θ2) + h2 (θ1) ≤

{
φ1 (θ2) if x1 (θ1, θ2) = 1

φ2 (θ1) if x2 (θ1, θ2) = 1
, and equivalently (ND’)

h1 (θ2) + h2 (θ1) ≤ θ1x1(θ1, θ2) + θ2x2(θ1, θ2)−
∫ θ1

0

x1(α, θ2)dα−
∫ θ2

0

x2(θ1, β)dβ.

(ND”)

Proof.(i) This can be proved using the standard technique as in Myerson (1981). The

first two terms of the right-hand side of (1) are the generalized pivotal-taxes. The third

term hi (θj) specifies rebates to agent i: hi (θj) is the amount of money agent i receives when

agent j’s type is θj. Since hi (θj) is independent of agent i’s own type, hi does not affect i’s

truth-telling behavior. Moreover, since x1 + x2 = 1, xi is decreasing in θj.
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(ii) Using (1), we can rewrite (ND) as (ND”). By definition of φi (θj), we have

θ1x1(θ1, θ2)−
∫ θ1

0

x1(α, θ2)dα =

{
φ1 (θ2) if x1 (θ1, θ2) = 1

0 if x2 (θ1, θ2) = 1
, and

θ2x2(θ1, θ2)−
∫ θ2

0

x2(θ1, β)dβ =

{
0 if x1 (θ1, θ2) = 1

φ2 (θ1) if x2 (θ1, θ2) = 1
.

Since xi is decreasing in θj, then function φi is increasing in θj. And, (ND) can be rewritten

as,

h1 (θ2) + h2 (θ1) ≤

{
φ1 (θ2) if x1 (θ1, θ2) = 1

φ2 (θ1) if x2 (θ1, θ2) = 1
. (ND’)

Note that the right-hand side of (ND’) is always between zero and one.

Geometrically, the type space [0, 1] × [0, 1] is divided into two regions {x1 (θ1, θ2) = 1}
and {x2 (θ1, θ2) = 1}. The union of the graphs of φ1 (θ2) and φ2 (θ1) forms the boundary

between these two regions. (See Figure 5.)

x1 = 1

x2 = 1

(0, 0)

(1, 1)

θ1

θ2

φ2 (θ1)

x1 = 1

x2 = 1

(0, 0)

(1, 1)

θ1

θ2

φ1 (θ2)

Figure 5: Boundary defined by the allocation rule

Given Lemma A1, we can reformulate the optimal mechanism design problem

max
M∈M

∫ 1

0

∫ 1

0

(θ1x1(θ1, θ2) + θ2x2(θ1, θ2) + t1(θ1, θ2) + t2(θ1, θ2))dF1 (θ1) dF2 (θ2) . (P)
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It now becomes

max
{x1,x2,h1,h2}

∫ 1

0

∫ 1

0

(
1− F1 (θ1)

f1 (θ1)
x1(θ1, θ2)+

1− F2 (θ2)

f2 (θ2)
x2(θ1, θ2)

)
dF1 (θ1) dF2 (θ2) (P’)

+

∫ 1

0

h1(θ2)dF2 (θ2) +

∫ 1

0

h2(θ1)dF1 (θ1)

s.t. (ND’) and xi(θ1, θ2) is (weakly) increasing in θi for i = 1, 2.

In this reformulation, it is clear that a major task is to estimate integrals of “rebate” functions

hi. Even though hi can be any functions from the incentive perspective, we need assume the

integrability of hi so that (P’) is well-posed.

Lemma A2 (Ironing). Assume that A1 (θ) and A2 (θ) are decreasing, defined on an arbi-

trary interval
[
θ, θ
]
⊆ [0, 1]. Consider any functions x1 (θ1, θ2) and x2 (θ1, θ2), where xi (θ1, θ2)

is increasing in θi for i = 1, 2 and x1 + x2 = 1. Then,

∫ θ

θ

∫ θ

θ

(A1 (θ1)x1 (θ1, θ2) + A2 (θ2)x2 (θ1, θ2)) dF1 (θ1) dF2 (θ2)

≤ max

{(
F2

(
θ
)
− F2 (θ)

) ∫ θ

θ

A1 (θ1) dF1 (θ1) ,
(
F1

(
θ
)
− F1 (θ)

) ∫ θ

θ

A2 (θ2) dF2 (θ2)

}
.

The maximum can be achieved by letting either x1 (θ1, θ2) or x2 (θ1, θ2) be 1 for all (θ1, θ2) ∈[
θ, θ
]2

. When F1 (θ) = F2 (θ), the maximum can be achieved by any constant x1, x2 with

x1 + x2 = 1.

Proof. Since x1 (θ1, θ2) is increasing in θ1 and A1 (θ1) is decreasing in θ1, fix θ2, by

Chebyshev inequality9,

∫ θ

θ

A1 (θ1)x1 (θ1, θ2) dF1 (θ1) ≤
1

F1

(
θ
)
− F1 (θ)

∫ θ

θ

A1 (θ1) dF1 (θ1)

∫ θ

θ

x1 (θ1, θ2) dF1 (θ1) .

Similarly,

∫ θ

θ

A2 (θ2)x2 (θ1, θ2) dF2 (θ2) ≤
1

F2

(
θ
)
− F2 (θ)

∫ θ

θ

A2 (θ2) dF2 (θ2)

∫ θ

θ

x2 (θ1, θ2) dF2 (θ2) .

9For increasing functions m (x) , n (y),

1

F
(
θ
)
− F (θ)

∫ θ

θ

m (x) dF (x)

∫ θ

θ

n (y) dF (y) ≤
∫ θ

θ

m (x)n (x) dF (x) .
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Hence,

∫ θ

θ

∫ θ

θ

(A1 (θ1)x1 (θ1, θ2) + A2 (θ2)x2 (θ1, θ2)) dF1 (θ1) dF2 (θ2)

≤ 1

F1

(
θ
)
− F1 (θ)

∫ θ

θ

A1 (θ1) dF1 (θ1)

∫ θ

θ

∫ θ

θ

x1 (θ1, θ2) dF1 (θ1) dF2 (θ2)

+
1

F2

(
θ
)
− F2 (θ)

∫ θ

θ

A2 (θ2) dF2 (θ2)

∫ θ

θ

∫ θ

θ

x2 (θ1, θ2) dF1 (θ1) dF2 (θ2)

≤ max

{(
F2

(
θ
)
− F2 (θ)

) ∫ θ

θ

A1 (θ1) dF1 (θ1) ,
(
F1

(
θ
)
− F1 (θ)

) ∫ θ

θ

A2 (θ2) dF2 (θ2)

}
.

The last inequality is obtained by assigning xi = 1 on
[
θ, θ
]2

for i that is associated with

the larger value of 1

F1(θ)−F1(θ)

∫ θ
θ
A1 (θ1) dF1 (θ1) and 1

F2(θ)−F2(θ)

∫ θ
θ
A2 (θ2) dF2 (θ2).

Similar results can also be found in Hartline and Lucier (2015).

Proof of Theorem 1. We already explained the basic idea of our proofs in Section

2. Conceptually, the proof consists of two steps. While the first step is to find an upper

bound for TU values of all mechanisms that satisfy (DIC) and (ND), the second step is

to construct mechanisms that can achieve this bound. It is difficult to find a tight bound

directly. Instead, we use a parameter r ∈ [0, 1] to index mechanisms that are potentially

optimal, and we find an upper bound for TU values of these r-indexed mechanisms for each

r ∈ [0, 1]. Then, an overall upper bound is obtained by optimizing over r.

The parameter r is introduced as follows. For each mechanism M = {xi, ti}, we can

make a constant transfer τ between agents—i.e., t′1 = t1 + τ and t′2 = t2− τ , with no change

of incentives or total budget. Moreover, the TU value remains the same. Hence, we consider

only mechanisms that are normalized with maxθ1 h2 (θ1) = 0, and we use r = maxθ2 h1 (θ2)

as the parameter to index all potential optimal mechanisms. From (ND’) in Lemma A1,

r ≤ 1. Also, any mechanism with r < 0 is never optimal, as a superior mechanism can be

obtained by increasing the value of h1 over all types (albeit with a different r′). Thus, we

focus on r ∈ [0, 1] for the optimization exercise.

Let us demonstrate another property that any optimal mechanism must satisfy.

From (ND’), suphi (θj) exist for both i = 1, 2, as both hi (θj) are bounded from above. In

the following proofs, we will assume that maxhi (θj) exists for both i = 1, 2, in other words,

suphi (θj) can be achieved. (This assumption is made mainly for simplicity of exposition.

The main argument is to show the existence of the upper bound of total utility of any given

mechanisms. For the optimal mechanisms, suphi (θj) always exists. If suphi (θj) cannot be
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achieved, we can replace it with suphi (θj) − ε, which can be achieved. We then can carry

out the subsequent proof with the same argument.) For any optimal mechanisms, the total

efficiency subtracting, at most, ε is bounded from above by the same upper bound. Hence,

it is the upper bound for any mechanisms.For any mechanism M with maxθ1 h2 (θ1) = 0 and

maxθ2 h1 (θ2) = r, let

θ′1 = argmax
θ1∈[0,1]

h2 (θ1) and θ′2 ∈ argmax
θ2∈[0,1]

h1 (θ2) .

a

b

r

r(0, 0)

(1, 1)

θ1

θ2

φ2 (θ1)

Figure 6: Definition of a, b

Then, h1 (θ′2) + h2 (θ′1) = max(θ1,θ2) [h1 (θ2) + h2 (θ1)] = r. We want to show that if M is

an optimal mechanism, then there exists some pair of maximizers (θ′1, θ
′
2) with θ′1 ≥ r and

θ′2 ≥ r.

Without loss of generality, we assume that (r, r) lies below the curve θ2 = φ2 (θ1) in the

type space. (If (r, r) lies above the curve θ2 = φ2 (θ1), then we may switch the identities

of agents. In this case, (r, r) lies below θ1 = φ1 (θ2) and the same proof applies.) Denote

a = sup {α|φ2 (α) < r} and b = sup {β|φ1 (β) < r}. Then, a ≤ r and b ≥ r, as illustrated in

Figure 6.

According to (ND’), (θ′1, θ
′
2) cannot belong to [0, 1] × [0, r) or [0, a) × [r, 1] as h1 (θ2) +

h2 (θ1) ≤ φi (θj) < r.

If (θ′1, θ
′
2) ∈ [a, r]× [r, 1] , then θ′2 > φ2 (θ′1) . Otherwise, h2 (θ′1) + h1 (θ′2) ≤ φ1 (θ′2) < r.

We now construct a new mechanism that yields a strictly larger TU value than the
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original mechanism. We reset the allocation rule by letting x′2 (θ1, θ2) = 1 on [0, r) × [r, 1]

(see Figure 7). With the modification, we have

a

b

r

r(0, 0)

(1, 1)

(θ
′
1, θ

′
2)

θ1

θ2

φ2 (θ1)

a

b

r

r(0, 0)

(1, 1)

(θ
′
1, θ

′
2)

θ1

θ2

φ′2 (θ1)

Figure 7: Local improvement

φ′2 (θ1) =

{
r if θ1 ∈ [a, r)

φ2 (θ1) otherwise

φ′1 (θ2) =

{
r if θ2 ∈ [r, b)

φ1 (θ2) otherwise

We also change the values of h2 (θ1) to h′2 (θ1) = 0 for θ1 ∈ [a, 1], and h1 (θ2) to h′1 (θ2) = r

for θ2 ∈ [r, 1]. That is, we increase h2 and h1 to their maximum values on [a, 1] and [r, 1].

Clearly, the new mechanism increases the allocation efficiency. However, does it always yield

a higher aggregate transfer—(t1 + t2)? Since the value of h1 + h2 always increases, and

t1 + t2 =

{
h1 + h2 − φ1 if x1 = 1

h1 + h2 − φ2 if x2 = 1
,

we need to check where either xi changes or xi does not change, but φi increases. These

happen only in the regions [a, 1]×[r, b], where the budget is balanced for the new mechanism.

Hence, the new mechanism always yields higher aggregate transfers. It’s not hard to verify

that the new mechanism satisfies (ND’). Hence, it is, indeed, an improvement of the original

mechanism. So we have shown: if some r-indexed mechanism is optimal, there must exist a

pair of maximizers (θ′1, θ
′
2) with θ′1 ≥ r and θ′2 ≥ r.
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Now, we can show that

h2 (θ1) ≤ −
∫ r

0

x2 (θ1, β) dβ (2)

h1 (θ2) ≤ r −
∫ r

0

x1 (α, θ2) dα (3)

For any θ1 ∈ [0, a], we pick θ2 = θ′2. Then, x1 (α, θ′2) = 0 for all α ∈ [0, a), and

x2 (α, β) = 1 on [0, a]× [r, θ′2] (see Figure 8). (ND”) implies

a

r

r

θ
′
2

θ
′
1

(0, 0)

(1, 1)

φ2 (θ1)

Figure 8: Illustration of x1 (α, θ′2) with α ∈ [0, a), and x2 (α, β) on [0, a]× [r, θ′2]

h2 (θ1) ≤ θ1x1 (θ1, θ
′
2) + θ′2x2 (θ1, θ

′
2)−

∫ θ1

0

x1 (α, θ′2) dα−
∫ θ′2

0

x2 (θ1, β) dβ − h1 (θ′2)

= 0 + θ′2 − 0− (θ′2 − r)−
∫ r

0

x2 (θ1, β) dβ − r

= −
∫ r

0

x2 (θ1, β) dβ.

For any θ1 ∈ (a, 1], h2 (θ1) ≤ 0 by normalization, and x2 (θ1, β) = 0 for all β ∈ [0, r] .

Therefore,

h2 (θ1) ≤ 0

= −
∫ r

0

x2 (θ1, β) dβ.
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Similarly, we can prove

h1 (θ2) ≤ r −
∫ r

0

x1 (α, θ2) dα.

We now return to the optimization problem (P’)

max
{x1,x2,h1,h2}

∫ 1

0

∫ 1

0

(
1− F1 (θ1)

f1 (θ1)
x1(θ1, θ2)+

1− F2 (θ2)

f2 (θ2)
x2(θ1, θ2)

)
dF1 (θ1) dF2 (θ2) (P’)

+

∫ 1

0

h1(θ2)dF2 (θ2) +

∫ 1

0

h2(θ1)dF1 (θ1)

s.t. (ND’) and xi(θ1, θ2) is (weakly) increasing in θi for i = 1, 2.

Using (2) and (3), we can estimate the mean value of agents’ total utilities

TU (M) ≤
∫ r

0

∫ r

0

(
−F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

−F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

+

∫ 1

r

∫ 1

r

(
1− F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

1− F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

+

∫ 1

r

∫ r

0

(
−F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

1− F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

+

∫ r

0

∫ 1

r

(
1− F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

−F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

+ r.

We can apply Lemma A2 to optimize the first two terms of the right-hand side,∫ r

0

∫ r

0

(
−F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

−F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

+

∫ 1

r

∫ 1

r

(
1− F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

1− F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

≤ max

{
F2 (r)

∫ r

0

−F1 (θ1)

f1 (θ1)
dF1 (θ1) , F1 (r)

∫ r

0

−F2 (θ2)

f2 (θ2)
dF2 (θ2)

}
+ max

{
(1− F2 (r))

∫ 1

r

1− F1 (θ1)

f1 (θ1)
dF1 (θ1) , (1− F1 (r))

∫ 1

r

1− F2 (θ2)

f2 (θ2)
dF2 (θ2)

}
.

The third term is maximized by letting x2 = 1, and the fourth term is maximized by letting
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x1 = 1—i.e.,∫ 1

r

∫ r

0

(
−F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

1− F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

+

∫ 1

r

∫ r

0

(
1− F1 (θ1)

f1 (θ1)
x1 (θ1, θ2) +

−F2 (θ2)

f2 (θ2)
x2 (θ1, θ2)

)
dF1 (θ1) dF2 (θ2)

≤ F1 (r)

∫ 1

r

1− F2 (θ2)

f2 (θ2)
dF2 (θ2) + F2 (r)

∫ 1

r

1− F1 (θ1)

f1 (θ1)
dF1 (θ1) .

Hence, the upper bound of TU (M) for r-indexed potential optimal mechanisms is

max

{
F2 (r)

∫ r

0

−F1 (θ1)

f1 (θ1)
dF1 (θ1) , F1 (r)

∫ r

0

−F2 (θ2)

f2 (θ2)
dF2 (θ2)

}
+ max

{
(1− F2 (r))

∫ 1

r

1− F1 (θ1)

f1 (θ1)
dF1 (θ1) , (1− F1 (r))

∫ 1

r

1− F2 (θ2)

f2 (θ2)
dF2 (θ2)

}
+ F1 (r)

∫ 1

r

1− F2 (θ2)

f2 (θ2)
dF2 (θ2) + F2 (r)

∫ 1

r

1− F1 (θ1)

f1 (θ1)
dF1 (θ1) + r.

This upper bound is achieved by x1 = 1 on [r, 1]× [0, r], x2 = 1 on [0, r]× [r, 1] , and either

x1 = 1 or x2 = 1 on [0, r]2 and [r, 1]2 . While values of x1 and x2 are definitive on the

off-diagonal regions, there are four possible combinations for values of x1 and x2 on the two

diagonal regions. In each case, we can find corresponding transfers that, together with x1

and x2, form a mechanism that satisfies both (DIC) and (ND).

Consider the case in which x1 = 1 on both [0, r]2 and [r, 1]2 . If we let t1 = −t2 = r when

x2 = 1, and t1 = t2 = 0 when x1 = 1, we obtain the fixed-price mechanism with agent 1

being the seller (see, also, Example 1 with p = r). Consider another case, in which x1 = 1

on [0, r]2 and x2 = 1 on [r, 1]2. If we let t1 = −t2 = r when x2 = 1 and t1 = t2 = 0 when

x1 = 1, we obtain the option mechanism with agent 1 being the seller (see, also, Example 2

with p = r). The other two cases are similar.

When we choose one of the cases that achieves the upper bound, either a fixed-price

mechanism or an option mechanism, we obtain the (conditional) optimal mechanism among

all mechanisms that are indexed by r.

When we finally choose the best among all conditional optimal mechanisms, we have the

overall optimal mechanism for (P’).

A simple calculation shows that when F1 = F2 = F , for all index r, all four mechanisms

yield the same total utilities, and the overall optimality is achieved at r = µ, in which µ is

the mean of F .
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Proof of Theorem 2. Although Theorem 2 is about deterministic mechanisms, for

technical reasons, we work with some non-deterministic mechanisms with xi ∈
{

0, 1
2
, 1
}
. A

mechanism M = {xi, ti} is symmetric if x1 (θ1, θ2) = x2 (θ2, θ1) , and t1 (θ1, θ2) = t2 (θ2, θ1) .

Given any deterministic mechanism M = {xi, ti}, let

x′1 (θ1, θ2) = x2 (θ2, θ1) , x
′
2 (θ1, θ2) = x1 (θ2, θ1) and

t′1 (θ1, θ2) = t2 (θ2, θ1) , t
′
2 (θ1, θ2) = t1 (θ2, θ1) .

The mechanism M ′ = {x′i, t′i} is also feasible and has the same TU value as M. We construct

a symmetric non-deterministic mechanism M̃ =
{
x̃i, t̃i

}
:

x̃i (θ1, θ2) =
1

2
xi (θ1, θ2) +

1

2
x′i (θ1, θ2) and

t̃i (θ1, θ2) =
1

2
ti (θ1, θ2) +

1

2
t′i (θ1, θ2) for i = 1, 2.

It is straightforward to see that M̃ is feasible, symmetric and xi ∈
{

0, 1
2
, 1
}
. Moreover,

TU (M) = TU
(
M̃
)

due to F1 = F2 = F. Hence, for any optimal mechanism for the original

program, we can find another symmetric non-deterministic mechanism with xi ∈
{

0, 1
2
, 1
}

that achieves the same TU value. On the other hand, if we find the optimal mechanism for

all symmetric mechanisms with xi ∈
{

0, 1
2
, 1
}

and then find a deterministic mechanism that

achieves the same TU value, this deterministic mechanism must be optimal for the original

problem.

The basic proof strategy is the same as above. We derive an upper bound of the objective

in (P’) first, and then construct a feasible deterministic mechanism, which achieves this upper

bound.

Define a function g (θ) through the following equation:

F (g (θ)) = 1− F (θ) , or g (θ) = F−1 (1− F (θ)) .

The function g (θ) is strictly decreasing with g (0) = 1, g (1) = 0. Let G be the graph

of g (θ) , and it is symmetric—i.e., g (θ1) = θ2 if and only if g (θ2) = θ1. Also, F
(
θ̂
)

=

1− F
(
g−1

(
θ̂
))

. Hence,

∫ 1

0

h1 (g (θ1)) dF (θ1) =

∫ 0

1

h1 (θ2) dF
(
g−1 (θ2)

)
=

∫ 1

0

h1 (θ2) dF (θ2) .
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Then we have∫ 1

0

h1 (θ2) dF (θ2) +

∫ 1

0

h2 (θ1) dF (θ1) =

∫ 1

0

(h2 (θ1) + h1 (g (θ1))) dF (θ1) .

Integrating both sides of (ND”) with respect to θ1 along G, we have∫ 1

0

(h2 (θ1) + h1 (g (θ1))) dF (θ1)

≤
∫ 1

0

∫ g(θ1)

0

(
− 1

f (θ1)
x1 (θ1, θ2)−

1

f (θ2)
x2 (θ1, θ2)

)
dF (θ2) dF (θ1)

+

∫ 1

0

(θ1x1 (θ1, g (θ1)) + g (θ1)x2 (θ1, g (θ1))) dF (θ1) .

Now we derive an upper bound of (P’). For any mechanism M with xi ∈
{

0, 1
2
, 1
}

,

TU (M) ≤
∫ 1

0

∫ g(θ1)

0

(
−F (θ1)

f (θ1)
x1 (θ1, θ2) +

−F (θ2)

f (θ2)
x2 (θ1, θ2)

)
dF (θ2) dF (θ1) (4)

+

∫ 1

0

∫ 1

g(θ1)

(
1− F (θ1)

f (θ1)
x1 (θ1, θ2) +

1− F (θ2)

f (θ2)
x2 (θ1, θ2)

)
dF (θ2) dF (θ1)

+

∫ 1

0

(θ1x1 (θ1, g (θ1)) + g (θ1)x2 (θ1, g (θ1))) dF (θ1) .

Since x1 (θ1, θ2) is increasing in θ1 and decreasing in θ2, and g (θ) is decreasing in θ,

x1 (θ1, g (θ1)) is increasing in θ1. Due to xi ∈
{

0, 1
2
, 1
}
, the value of x1 (θ1, g (θ1)) must

change from 0 to 1
2

and then to 1 as θ1 changes from 0 to 1. Denote the value of c =

inf
{
θ1|x1 (θ1, g (θ1)) = 1

2

}
. We use c as the parameter to index all mechanisms under con-

sideration. By symmetry, d = g (c) = sup
{
θ1|x1 (θ1, g (θ1)) = 1

2

}
. (See Figure 9). When{

θ1|x1 (θ1, g (θ1)) = 1
2

}
is empty, let c = d such that c = g (c). Without loss of generality, we

assume
{
θ1|x1 (θ1, g (θ1)) = 1

2

}
is non-empty in the following argument.

First, we claim that values of x1 and x2 along the curve G are fixed. Consider (θ1, θ2) ∈
[0, c)×(d, 1]. By definition, x1 (θ1, θ2) = 0, x2 (θ1, θ2) = 1 for (θ1, θ2) on the curve θ2 = g (θ1).

Applying monotonicity of x1 to (θ1, θ2) below the curve G and applying the monotonicity of

x2 to (θ1, θ2) above, we conclude that

x1 (θ1, θ2) = 0, x2 (θ1, θ2) = 1 for all (θ1, θ2) ∈ [0, c)× (d, 1].
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Figure 9: Estimation along off-diagonal curve θ2 = g (θ1) when F is IRFR

Similarly, we conclude that

x1 (θ1, θ2) =
1

2
, x2 (θ1, θ2) =

1

2
for all (θ1, θ2) ∈ (c, d)× (c, d) , and

x1 (θ1, θ2) = 1, x2 (θ1, θ2) = 0 for all (θ1, θ2) ∈ (d, 1]× [0, c).

As a consequence, the values of the integrals on the right-hand of (4) on these three regions

are fixed: they are functions of c only.

We estimate the upper bound in the remaining type space ”region” by ”region.”

First, we consider region [0, d]× [0, c] ∪ [0, c]× [c, d], on which the integrals on the right-

hand side of (4) are∫ c

0

∫ c

0

(
−F (θ1)

f (θ1)
x1 (θ1, θ2) +

−F (θ2)

f (θ2)
x2 (θ1, θ2)

)
dF (θ2) dF (θ1)

+

∫ c

0

∫ d

c

(
−F (θ1)

f (θ1)
x1 (θ1, θ2) +

−F (θ2)

f (θ2)
x2 (θ1, θ2)

)
dF (θ2) dF (θ1)

+

∫ d

c

∫ c

0

(
−F (θ1)

f (θ1)
x1 (θ1, θ2) +

−F (θ2)

f (θ2)
x2 (θ1, θ2)

)
dF (θ2) dF (θ1) .

Since IRFR means that F/f is decreasing, the above is maximized by xi = 1 for θi > θj.

Next, consider region [d, 1]× [c, d], on which the relevant integrals are∫ d

c

∫ 1

d

(
1− F (θ1)

f (θ1)
x1 (θ1, θ2) +

1− F (θ2)

f (θ2)
x2 (θ1, θ2)

)
dF (θ1) dF (θ2) .

Recall that F/f decreasing (IRFR) implies that (1− F ) /f is decreasing (IFR). Since θ1 is
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always greater than θ2 on [d, 1]× [c, d], then 1−F (θ1)
f(θ1)

≤ 1−F (θ2)
f(θ2)

. Hence, the values of x1 should

be minimized. As x1 = 1
2

in the region to its left, the monotonicity of x1 implies that x1 = 1
2

on it, as well. Hence, it is best to set x1 = 1
2

and x2 = 1
2

on this region.

Similarly, it is best to set x1 = 1
2

and x2 = 1
2

on region [c, d]× [d, 1].

Finally, by Lemma A2, x1 = 1
2

and x2 = 1
2

also maximize the relevant integrals on region

[d, 1]2.

Hence, for the given parameter c, we have found an upper bound TUc for TU values of

all symmetric non-deterministic mechanisms with xi ∈
{

0, 1
2
, 1
}

. This bound is given by the

right-hand side of (4) with the allocation rule: xi = 1 for θi > θj when (θ1, θ2) ∈ [0, 1]2 \ [c, 1]2

and xi = 1
2

for all (θ1, θ2) ∈ [c, 1]2.

Can we find a mechanism that actually achieves TUc? Note that this upper bound is

derived by relaxing
∫ 1

0
h1 (θ2) dF (θ2) +

∫ 1

0
h2 (θ1) dF (θ1) using (ND”) along G. Hence, if we

can find a feasible symmetric mechanism with the allocation rule given above, and (ND”) is

binding along G, this mechanism must achieve TUc.

Let M(c) be a deterministic mechanism defined by

x1 =

{
1 if θ1 > θ2 and (θ1, θ2) ∈ [0, 1]× [0, c)

0 otherwise

ti (θ1, θ2) = − c
2

if xi = 1 and

ti (θ1, θ2) =

{
θj − c

2
for θj ∈ [0, c]

c
2

for θj ∈ [c, 1]
if xi = 0.

It is straightforward to verify that M (c) is feasible. (ND”) is binding along the curve

θ2 = g (θ1) since t1 + t2 = 0 on (θ1, θ2) ∈ [0, 1]2 \ [0, c]2 . By switching agents’ identities

in M (c), one can derive another deterministic mechanism M̃ (c) . The equally weighted

combination of M (c) and M̃ (c) is the desired symmetric mechanism.

To find the overall optimal mechanisms for the original problem, we need to first deter-

mine the parameter c∗ that maximizes TUc. Then, both M (c∗) and M̃ (c∗) described above

are optimal for the original problem. Because of symmetry, c ≤ θ∗ < 1 where θ∗ = g (θ∗).

Apparently, c∗ = 0 means that the good is always assigned to agent 2, which cannot be

optimal. Hence, c∗ is strictly greater than 0 and less than 1.

Proof of Theorem 3. The proof is similar to that of Theorem 2; we will focus on the

non-deterministic symmetric mechanisms with xi ∈
{

0, 1
2
, 1
}

.

Inequality (4) in the proof of Theorem 2 still holds. Adapting the proof to the case

when F satisfies DFR, we can show that TUd where d = g (c), the upper bound of all c-
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Figure 10: Estimation along off-diagonal curve θ2 = g (θ1) when F is DFR

indexed mechanisms, is achieved by the following allocation rule xi = 1 for θi > θj when

(θ1, θ2) ∈ [0, 1]2 \ [0, d]2 and xi = 1
2

for all (θ1, θ2) ∈ [0, d]2.

The upper bound is achieved by the deterministic mechanism M (d):

x1 =

{
1 if θ1 > θ2 and (θ1, θ2) ∈ [d, 1]× [0, 1]

0 otherwise

ti (θ1, θ2) =

{
−d

2
for θj ∈ [0, d]

d
2
− θj for θj ∈ [d, 1]

if xi = 1,

ti (θ1, θ2) =
d

2
if xi = 0.

By switching agents’ identities of M (d), one can derive another deterministic mechanism

M̃ (d) . Once we determine the optimal value of d∗ that maximizes TUd, then, both M (d∗)

and M̃ (d∗) described above are optimal for the original problem. Moreover, due to symmetry,

d∗ ≥ θ∗ > 0 where θ∗ = g (θ∗). If d = 1, it means that the good is always given to agent 2,

which cannot be optimal. Hence, 1 > d∗ > 0.
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