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Abstract

In this paper, we study the optimal provision of a costly public good using an

average efficiency criterion. For every fixed cost, we identify a quota mechanism as the

optimal mechanism among those that are dominant-incentive-compatible, deficit-free

and kind. Moreover, we also consider the asymmetric case and demonstrate that a

committee mechanism is optimal for a large class of mechanisms. In particular, this

mechanism dominates all VCG (pivotal) mechanisms.
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1 Introduction

When agents’ preferences are private information, it is difficult for the central planner to

provide public goods efficiently. This well-known free-rider problem has challenged public

officials and scholars for years. There are several related issues. First, how can one solicit

agents’ preferences to determine the proper level of public goods? Second, how can one

design tax/transfer schemes that finance the provision of public goods? Third, how can
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one choose the most efficient method of providing of public goods from among the different

methods?

Many scholars favor the use of VCG (Vickrey-Clarke-Groves) mechanisms (Vickrey, 1961;

Clarke, 1971; Groves, 1973). By introducing proper taxes/transfers among agents, the cel-

ebrated VCG mechanisms induce agents to reveal private information truthfully, which, in

turn, leads to the efficient allocation of public goods. However, VCG mechanisms do not

solve the problem of efficient provision of public goods, as the aggregate tax revenues they

collect often exceed the costs needed to finance the public goods.

In practice, decisions on public-good provision are often made through more straightfor-

ward mechanisms. For example, when a city decides whether to build a new public trans-

portation system, it may put the issue to a public vote, and if the funding of the project

is approved, it is usually in the form of an added tax. There might be variations in the

voting rules: simple majority rule, unanimity rules, committee approval, etc. A common

feature of these voting rules is that, should the project fail to pass, no money is wasted since

no additional tax will be raised. However, there is no guarantee that voting results always

correspond to efficient levels of the public good.

Clearly, neither VCG mechanisms nor voting schemes guarantee the efficient provision

of public goods. This is inevitable since, as Green and Laffont (1977) demonstrate, there

exists no dominant-incentive-compatible (DIC) mechanism that always yields both efficient

levels of public goods and exact budget balance. Thus, to determine which mechanisms are

better than others, one needs a criterion by which to evaluate their performance. But once a

criterion is adopted, a more natural question would be: Which mechanism is optimal among

all DIC mechanisms? That is the main question we address in this paper.

We focus on dominant-incentive-compatible mechanisms since they have the strongest

incentive-compatibility property. Earlier scholars studied efficient Bayesian mechanisms that

may provide partial solutions to the Green-Laffont conundrum (Arrow, 1979; d’Aspremont

and Gerard-Varet, 1979). However, such solutions are highly sensitive to the specification of

prior distributions of agents’ types. If the priors are mis-specified, the proposed mechanism is

not even incentive-compatible, let alone efficient. DIC mechanisms are the only mechanisms

immune to this problem as a mechanism is dominant-incentive-compatible if and only if it is

Bayesian-incentive-compatible for all prior distributions of agents’ types. Interested readers

can find more related discussion in Chung and Ely (2007) and, Bergemann and Morris (2005).

Although we consider only DIC mechanisms, we can use various criteria to evaluate their

efficiencies. The first natural one is the dominance criterion: a DIC mechanism A is better

than a DIC mechanism B if A is better than B for all realizations of agents’ types. However,

as the Green-Laffont classic result indicates, there is no optimal DIC mechanism according
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to the dominance criterion. Hence, we must work with some weaker criteria. Some scholars

propose the minmax criterion (minimizing the maximal welfare loss): a DIC mechanism

A is better than a DIC mechanism B if the worst outcome under A is better than the

worst outcome under B. They use the minmax criterion to study both budget-balanced

and VCG mechanisms in the public-good setting—e.g., Deb and Seo (1998) and Moulin

and Shenker (2001). In this paper, we consider another criterion—the average criterion: a

DIC mechanism A is better than a DIC mechanism B if A is better than B, on average.

This idea of evaluating the efficiency of mechanisms by an average criterion dates back to

Rae (1969). In more-recent papers, Shao and Zhou (2011), Drexl and Kleiner (2012, 2013)

and Gershkov, Moldovanu and Shi (2014) all carry out the same type of exercise. Agents’

types follow prior distributions. Although agents do not need or have such information

under any DIC mechanism, the planner can and should use this information to evaluate the

average efficiencies of various DIC mechanisms. We do not argue that the average criterion is

necessarily better than the minmax criterion, but, rather, that both are worthy alternatives

that merit serious investigation.

In this paper, we study a public-good model in which one must decide whether to build

a public project—a binary social-choice problem. The public project can be built at a fixed

cost of c. Each agent i’s utility reservation value is zero in the absence of the public project.

If the project is built, each i derives an additional utility of θi. θi is considered agent i’s type

and is privately known to agent i only. One uses the mechanism first to solicit all agents’

types and then to decide whether or not to build the project and how much tax to impose

on all agents.

Our main result identifies the most efficient DIC mechanisms according to the average

criterion. More precisely, we find the best mechanism among all mechanisms that satisfy

DIC, deficit-free, and one kindness condition. The optimal mechanism is a voting system

with equal cost sharing. For each value of c, there is a quota q(c); the public project is built

if and only if the number of agents whose types are higher than the cost per capita c/n

exceeds q(c); and all agents equally share the total cost c. We further prove that the optimal

quota mechanism outperforms all VCG mechanisms.

We want to make a couple of observations regarding our main result. First, we compare

the voting system with VCG mechanisms. In the voting system, there might be under-

provision or over-provision of the public good relative to the fully efficient outcome, but the

budget is always balanced. In VCG mechanisms, the public good is always provided at the

optimal level, but there are wasted funds at many type profiles. Many people who like VCG

mechanisms tend to overlook their inability to balance the budget. Our result highlights the

importance of budget-balancedness, as it is actually a consequence of optimality, albeit in
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our specific model.

Second, although the social choice literature has extensively studied voting systems very

few studies have identified them as optimal mechanisms. An exception is a recent paper by

Drexl and Kleiner (2013), which studies a case in which agents can have negative valuations,

which corresponds roughly to our model with c = 0. With cost c as a parameter in our

model, we obtain very interesting comparative statics about the structure of the optimal

voting system. As the cost c increases, the minimum level of type for an agent to favor the

project increases, and, at the same time, the quota q(c) that is needed for approval of the

project also increases. Undertaking a more costly public project requires more enthusiasm

from more agents.

Our results can be extended to asymmetric cases in which agents’ types may not follow

the same distribution. We demonstrate two important points. First, every VCG mechanism

is dominated by a committee mechanism. Second, some committee mechanism is optimal for

a large class of asymmetric mechanisms that are DIC and satisfy a boundedness condition.

Before proceeding with the formal analysis, we briefly review several related results in

the literature. As mentioned earlier, some recent papers have connected voting systems with

optimal DIC mechanisms in public-good provision. Drexl and Kleiner (2013) study the case

in which agents can have negative valuations with zero production cost and demonstrate that

the optimal DIC mechanism is a voting system with zero transfers. But, as our result shows,

this claim is not robust when the production cost becomes non-zero, which is most often

the case in real situations. In several articles (for example, Schmitz and Tröger (2012) and

Gershkov, Moldovanu and Shi (2014)), the authors consider optimal DIC mechanisms that

maximize ex-ante utilities of agents when choosing from finite alternatives without monetary

transfers. Gershkov, Goeree, Kushnir, Moldovanu and Shi (2013) establish an equivalence

result between Bayesian mechanisms and dominant-strategy mechanisms. However, their

result does not apply to our model, which imposes a budgetary constraint. Focusing on

Bayesian mechanisms, Ledyard and Palfrey (2002) show that any optimal Bayesian incentive-

compatible mechanisms can be approximated by a voting mechanism when the population

grows large. In contrast, our results imply that the voting mechanism with a carefully chosen

voting rule is optimal in the class of DIC mechanisms, regardless of the size of the population.

Finally, Bierbrauer and Hellwig (2012) study a public-good model of a continuum of agents

and prove that the mechanism that satisfies anonymity, robustness and coalition-proofness

must take the form of a voting mechanism. Although our result and theirs are not comparable

formally, both support the use of voting in public-good provision.

Our paper is organized as follows. In Section 2, we introduce the formal model and our

main result. In Section 3, we generalize our model to deal with asymmetric cases. Section 4
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concludes. We present all proofs in the appendix.

2 The Model and the Main Result

There is a society of n agents. A benevolent planner contemplates whether to provide a

non-excludable public good—a bridge, a park, etc.—at a fixed cost c ≤ n. If the public good

is produced, the cost must be covered by taxes collected from the agents. Agent i’s utility

is θi + ti, in which θi is her benefit (her type) from the public good when it is provided, and

ti is the amount of tax she pays. If the public good is not provided, agents’ benefits are

zero. An agent’s type is privately known only to herself, but agents’ types are independently

distributed on [0, 1] according to a prior distribution function F with a density function f .

We assume that the distribution function is regular:

Regularity. (1− F (θ)) /f (θ) is decreasing in θ; F (θ) /f (θ) is increasing in θ.1

A (direct) mechanism M decides for each agent’s type profile θ= (θ1, ..., θn) ∈ [0, 1]n

whether to provide the public good and how much the transfer for each agent should be. More

formally, a mechanism M = {d (θ) , ti (θ) i = 1, ..., n} consists of a collection of functions in

which d = 0, or 1, and ti are real values. And each agent’s utility is quasi-linear—i.e.,

Ui (θi) = θid (θi,θ−i) + ti (θi,θ−i) .

We consider mechanisms that satisfy three important properties. First, we require that

mechanisms provide incentive for agents to reveal their private type truthfully. In this

paper, as in many others in the literature, we consider the strong form of dominant-incentive

compatibility (a.k.a., strategy-proofness condition):

θid (θi,θ−i) + ti (θi,θ−i) ≥ θid (θ′i,θ−i) + ti (θ
′
i,θ−i) for any θi, θ

′
i and θ−i, (DIC)

where θ−i = (θ1, ..., θi−1, θi+1, ..., θn).

Second, we require that mechanisms do not need outside funding for the public good; in

other words, the mechanism is deficit-free (DF):

n∑
i=1

ti(θ) + cd(θ) ≤ 0, for θ ∈ [0, 1]n. (DF)

1The first part of this condition is also known as the hazard-rate condition, and the second part means
that F is logconcave. For example, all F (θ) = θα with α ≥ 1 satisfies these conditions. Both parts are
commonly used in the literature. The regularity condition can also be implied by assuming that density f
is logconcave. Bagnoli and Bergstrom (2005) have a nice discussion of these assumptions.
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Note that this condition (DF) does not exclude the possibility of surplus when the total

tax revenue exceeds the cost. Many DIC mechanisms, such as VCG mechanisms, do have

surpluses at various type profiles. This is one source of inefficiency of a mechanism.

Third, we require that mechanisms treat agents fairly and equitably. As we are working

with a quasi-linear model, it is sensible to make interpersonal utility comparisons. Differences

in agents’ types may lead to differences in agents’ utilities. A “kind” mechanism should

respect differences in agents’ types but should not amplify such differences. Formally, a

mechanism is kind if

0 ≤ Ui (θi, θj,θ−i,j)− Uj (θi, θj,θ−i,j) ≤ θi − θj for θi ≥ θj. (K)

LetM denote the set of all mechanisms that satisfy (DIC), (DF), and (K). Our objective

is to find the “most efficient” mechanism in M.

Ideally, the most efficient mechanism would provide the highest sum of agents’ utilities

at all type profiles. Unfortunately, such a mechanism cannot satisfy (DIC) (Green-Laffont,

1977). Thus, we have to find a different criterion for efficiency. As mentioned in the intro-

duction, we propose to evaluate the performance of a mechanism according to the average

criterion, with the goal of finding a mechanism in M that maximizes the sum of agents’

utilities ex ante. Specifically, we try to find an optimal solution for the following problem:

max
M∈M

∫
θ

[(
n∑
i=1

θi

)
d (θ) +

n∑
i=1

ti(θ)

](∏
dF (θi)

)
.

For any type profile, define index set I =
{
i|θi ≥ c

n

}
and index set J =

{
j|θj < c

n

}
.

Sets I, J are the agents whose valuations are greater or smaller than the per-capita cost,

respectively. We refer to agents in I as high-type agents.

We define a quota mechanism: The public good is built with equal cost-sharing if and

only if the number of high-type agents exceeds quota q; otherwise, agents pay nothing—i.e.,

ti (θ) = − c
n
d (θ), and d (θ) = 1 when |I| ≥ q; otherwise, d (θ) = 0.

Our main result is:

Theorem 1. The optimal solution for the problem is a quota mechanism in which the quota

q∗ (c)+ for the voting mechanism is determined by

q∗ (c) =
nE
[(

c
n
− θ
)
|θ ≤ c

n

]
E
[(
θ − c

n

)
|θ ≥ c

n

]
+ E

[(
c
n
− θ
)
|θ ≤ c

n

] ,
and q∗ (c)+ is the smallest integer that is greater than q∗ (c) ∈ [0, n] , which is weakly in-
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creasing in c.
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θ1(0, 0)

(1, 1)

c
2

c
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d = 1

d = 0

c < 1 and q∗+ = 1

θ2

θ1(0, 0)

(1, 1)

c
2

c
2

d = 1

d = 0

c ≥ 1 and q∗+ = 2

Figure 1: A graphic illustration of the mechanism for the two-agent case with different costs.

Let us make several important observations about our result. First, it implies immediately

that one must keep the budget balanced at all profiles in order to achieve efficiency ex ante.

This is in sharp contrast with VCG mechanisms and the like. The loss of efficiency of any

mechanism can come from two sources: either the public good is not provided at the right

level; or there is a budget surplus due to an over-collection of taxes. While VCG mechanisms

cleverly prevent the first source of inefficiency, they have no effect on the second. Although

one might reasonably conjecture that efficiency ex ante might require a compromise between

these two sources of inefficiency, our result surprisingly asserts that keeping a balanced

budget is the top priority.

Second, we should note that the quota for the optimal voting system is a weakly increasing

function of c. This is quite intuitive. When the cost is small, the chance that the aggregate

valuation of the public good exceeds the cost is quite high ex ante. If a certain number of

agents have types greater than the per-capita cost, the public good is provided. The risk of

over-provision of the public good is small, and the inefficiency of over-provision is also small.

When the cost goes up, both the risk of over-provision and the inefficiency due to over-

provision will be higher. Therefore, more high-type agents are needed to achieve efficiency

ex ante. Depending on the cost c, the quota can be any number between 0 and n. For

example, when agents’ types are distributed uniformly, one can easily show that q∗ (c) = c.
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Third, for ease of exposition, we make the assumption that agents’ type space is [0, 1].

Our result is still valid for any bounded type space [a, b] , where a might be negative to

allow for economic bads. In this sense, Drexl and Kleiner (2013) is a special case of ours.

Their conclusion that there is no need for monetary transfers holds only when the cost of

providing the public good is zero. Nevertheless, we have shown that the necessary monetary

transfers in the optimal mechanism are quite simple, as they are merely equal-cost sharing

if the public good is provided. Whether or not the public good is provided depends on the

quota determined by the distribution of types, but the monetary transfers would be the

same. This is much simpler than their counterparts in VCG mechanisms.

Fourth, in addition to (DIC) and (DF), we have imposed (K) in order to derive our main

result. But we can relax (K) further to allow for a larger class of mechanisms. The optimality

of the voting system still holds. A key implication of (K), in conjunction of (DIC) and (DF),

is that all agents’ transfers are properly bounded:

ti ≤ −
c

n
d, for all i. (B)

Condition (B) means that nobody gets any subsidy if the public good is not built, whereas

everyone pays at least the per-capita cost if the public good is built. It is a strengthening of

(DF), as we can derive (DF) when we sum inequalities in (B) over all agents. We actually

will prove a result stronger than Theorem 1.

Theorem 2. The quota mechanism identified in Theorem 1 is optimal among all mechanisms

that satisfy (DIC) and (B).

The advantage of Theorem 2 is that it allows us to demonstrate the superiority of the

voting mechanism over many other mechanisms, as (B) can be derived from alternative

sets of conditions in the literature. For example, Moulin (1986) considers two conditions

– distribution axiom (DA) and no positive transfers (NPT). In our context, (DA) means

that when one agent can potentially benefit more from the provision of the public good, this

additional gain should be shared with all other agents—i.e.,

If d (θi,θ−i) = 1, then θ′i > θi implies that Uj (θ′i,θ−i) ≥ Uj (θi,θ−i) for all j 6= i. (DA)

We can easily show that (DA) and (NPT), together with (DF) and (DIC), imply (B). An-

other important application of Theorem 2 is that the optimal voting mechanism is more

efficient than the “canonical” VCG mechanism, or the pivotal mechanism. We use the term

“canonical” since there are several ways of setting up a pivotal mechanism in this model,

depending on how the cost is distributed among agents. The canonical setup splits the cost

8



equally among agents. In the canonical setting, our public-good model becomes a costless

binary choice model: d = 0 or d = 1, in which d = 0 represents the decision that the public

good is not built, and d = 1 represents the decision that the public good is built, and the

cost is shared equally. (We discuss non-canonical cases fully in the next section.) In this

binary model,

Ui =
(
θi −

c

n

)
d+ Ti, for all i.

Now, we consider the pivotal mechanism for this model. It is well known that it satisfies

Ti =

(∑
j 6=i

θj

)
d∗ − max

d∈{0,1}

(∑
j 6=i

θj

)
d, and

d∗ = 1 when
n∑
j=1

θj ≥ c, otherwise d∗ = 0.

Therefore,

Ti ≤ 0, for all i.

Since ti = − c
n
d+ Ti, Ti ≤ 0 implies that ti ≤ − c

n
d. Hence, we have:

Corollary 1. The optimal quota mechanism is more efficient than the “canonical” pivotal

mechanism.

3 Asymmetric Mechanisms

In this section, we continue our investigation of asymmetric mechanisms. Asymmetry may

arise for at least two reasons. First, the model may be intrinsically asymmetric. In what

follows, we assume that agents have independent but non-identical type distributions that

satisfy the regularity condition. Second, for some unspecified parameters (say incomes), we

may also want to ask some agents to pay higher shares of the cost when the public good is

built.

The most prominent examples of asymmetric mechanisms are ”non-canonical” pivotal

mechanisms in which agents share the cost unequally. Take any fixed division α = (α1, ..., αn)

of c with
∑

i αi = c and αi ≥ 0. Suppose that agent i always contributes whenever the public

good is built. (An additional incentive tax can be imposed separately.) Analogous to the

construction in Section 2, we can construct a costless binary-choice model, in which the

utility function of every agent is given by

Ui = (θi − αi) d+ Ti.
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We call the pivotal mechanism of this model a non-canonical pivotal mechanism. It is

dominant-incentive-compatible. It is also well known that

Ti ≤ 0, for all i.

Hence, a non-canonical pivotal mechanism satisfies both (DIC) and (DF).

Since a non-canonical pivotal mechanism is not symmetric, it is not guaranteed that

the quota mechanism identified in Theorems 1 and 2 is more efficient. As symmetry is

removed from the canonical pivotal mechanism, symmetry in quota mechanisms should also

be removed in order to restore our earlier results. This leads us to consider committee

mechanisms introduced by Barbera, Sonnenschein and Zhou (1991) in a different setup.

A committee is a pair C = (N,W ), where N = {1, ..., n} is the set of agents, and W

is a collection of coalitions (subsets) of N that satisfies monotonicity—i.e., [M ∈ W and

M ′ ⊇M ]→M ′ ∈ W. Coalitions in W are called winning coalitions of C.

For any cost division α = (α1, ..., αn) and any committee C = (N,W ) , we can define a

committee mechanism M (α,C): The public good is built with cost division α if and only

if the set of agents who value the public good more than their cost shares form a winning

coalition—i.e., {i|θi ≥ αi} ∈ W.
Many decision mechanisms are special cases of committee mechanisms.

Example 1. A quota mechanism with quota q is a committee mechanism in which N ∈ W
if and only if |N | ≥ q.

Example 2. A dictatorial mechanism with dictator i is a committee mechanism in which

N ∈ W if and only if i ∈ N .

Example 3. More generally, a legislature mechanism with L as the legislature is a committee

mechanism in which N ∈ W if and only if L ⊆ N .

Introducing these (asymmetric) committee mechanisms also allows us to deal with hetero-

geneous agents. In what follows, we assume that agents have independent but non-identical

type distributions that satisfy the regularity condition.

Given any cost division α, the corresponding pivotal mechanism satisfies Ti ≤ 0 for all i,

or

for all agent i, ti ≤ −αid. (Bα)

We say a mechanism satisfies (B’) if there exists an α such that Bα holds. Apparently, (B)

is a subclass of (B’) corresponding to αi = c
n

for all i.

Applying the same technique for proving Theorems 1 and 2, we can prove that for every

α, there is a committee mechanism M (α,C) that is more efficient than all the mechanisms

that satisfy (DIC) and (Bα). Then, by optimizing over α, we can find an overall optimal
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committee mechanism. Hence, we obtain the next results, which generalize Theorem 2 and

Corollary 1.

Theorem 3. There exists some committee mechanism M (α∗, C∗) that is optimal among all

mechanisms that satisfy (DIC), (B’).

Since all VCG (pivotal) mechanisms are defined through some cost division α, Theorem

3 implies that that there exists some committee mechanism that is more efficient than all

VCG mechanisms.

Corollary 2. The optimal committee mechanism M (α∗, C∗) in Theorem 3 is more efficient

than all pivotal mechanisms.

4 Conclusions

In this paper, we study the problem of optimal provision of a costly public good by dominant-

incentive-compatible mechanisms when agents’ valuations are private information. Since no

first-best mechanism exists for this problem, we study it via a second-best approach. By

introducing an average efficiency criterion, we identify a quota mechanism as the optimal

one among all symmetric mechanisms that are dominant-incentive-compatible, deficit-free

and kind. When symmetry is dropped, we identify a committee mechanism as the optimal

mechanism for a large class of mechanisms. Since the class of mechanisms under consideration

includes all VCG (or pivotal) mechanisms, we show that there is a committee mechanism

that can outperform all VCG mechanisms.

Even though we focus on deterministic mechanisms only, the main results can be extended

to include stochastic mechanisms—i.e., d ∈ [0, 1]. Specifically, Theorems 2 and 3 still hold

without changes of proofs.

Finally, from a pure theoretical perspective, our results still fall short of a complete answer

to the ambitious inquiry, which is to find optimal mechanisms among all mechanisms that

satisfy dominant-incentive-compatibility and deficit-freeness without additional restrictions.

In the two-agent case, we can prove through brute force that there is a committee mechanism

that is optimal among all mechanisms satisfying (DIC) and (DF).2 Whether the result is true

in general remains a challenging open question.

Appendix

Proof of Theorem 1:
2The proof of this result is rather long, so we will not include it in this paper.
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The strategy of the proof is as follows. We divide the interval [0, 1] into two subintervals—

[0, c
n
] and [ c

n
, 1]—and subsequently partition the type space [0, 1]n into 2n “blocks.” On each

such block, we estimate an upper bound of the aggregate of agents’ utilities of any mechanism

in M. It turns out that this upper bound depends only on the number of high-type agents

on each block. We then construct a mechanism for which the aggregate of all agents’ utilities

achieves this upper bound on each block. Hence, this mechanism is an optimal one. The

public good is provided on each block if and only if there are enough high-type agents. This

cut-off number constitutes the quota of the optimal voting mechanism.

Before we proceed with the estimation, we first derive some useful lemmas. Some are

well known for the general case, and some are specific to our model.

Following Myerson (1981), we can show that Lemma 1 holds for all M in M:

Lemma 1.

Ui (θ) = θid (θ) + ti(θ) =

∫ θi

0

d(s,θ−i)ds+ hi(θ−i), and (1)

d (θ) is increasing in all θi.

Next, we show:

Lemma 2.

ti (θ) ≤ − c
n
d (θ).

First, consider d (θ) = 0. Suppose that ti (θ) > 0 for some agent i. When we decrease

the value of θi to zero, Lemma 1 implies that

ti (θi,θ−i) = ti (0,θ−i) > 0.

By (K),

0 ≤ Uj (0, θj,θ−i,j)− Ui (0, θj,θ−i,j) = tj (0, θj,θ−i,j)− ti (0, θj,θ−i,j) , for all j 6= i.

Thus, ti (0,θ−i) ≤ tj (0,θ−i) for all j 6= i. Then,
∑n

i=1 ti (0,θ−i) ≥ nti (0,θ−i) > 0, contra-

dicting (DF).

Now, consider the case d (θ) = 1. Suppose that ti (θ) > − c
n

for some i. When we increase

the value of θi to one, Lemma 1 implies that

ti (1,θ−i) = ti (θ) > − c
n
.
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By (K),

Ui (1, θj,θ−i,j)− Uj (1, θj,θ−i,j)

= 1 + ti (1, θj,θ−i,j)− θj − tj (1, θj,θ−i,j) ≤ 1− θj, for all j 6= i.

Thus, ti (1, θj,θ−i,j) < tj (1, θj,θ−i,j) for all j 6= i. Then,
∑n

j=1 tj (1,θ−i) ≥ nti (1, θj,θ−i,j) >

−c, contradicting (DF).

Finally, as Lemma 1 implies that Ui (θi,θ−i) = Ui

(
θ̃i,θ−i

)
+
∫ θi
θ̃i
d(s,θ−i)ds, and Lemma

2 implies that Ui
(
c
n
,θ−i

)
≤ 0, we immediately obtain:

Lemma 3.

Ui (θ) ≤
∫ θi

c
n

d (s,θ−i) ds.

Lemma 3 allows us to estimate the upper bound of the aggregate of agents’ utilities. We

divide the type space into 2n “blocks” determined by c/n—i.e., θJ×θI =
[
0, c

n

]|J |×[ c
n
, 1
]|I|

—

and Lemma 3 on each block:∫
θJ

∫
θI

(∑
(θid (θ) + ti(θ))

)(∏
dF (θi)

)
≤
∫
θJ

∫
θI

(∑
i∈I

∫ θi

c
n

d (s,θ−i) ds−
∑
j∈J

∫ c
n

θj

d (s,θ−i) ds

)(∏
dF (θi)

)
=

∫
θJ

∫
θI

(∑
i∈I

1− F (θi)

f (θi)
+
∑
j∈J

−F (θj)

f (θj)

)
d (θi,θ−i)

(∏
dF (θi)

)
. (2)

The last equality is obtained by integration by parts. We then apply Chebyshev’s sum

inequality3 to the right-hand side of (2) to continue our estimation:

∫
θJ

∫
θI

(∑
i∈I

1− F (θi)

f (θi)
+
∑
j∈J

−F (θj)

f (θj)

)
d (θi,θ−i)

(∏
dF (θi)

)
≤

(∑
i∈I

1

1− F
(
c
n

) ∫ 1

c
n

1− F (θi)

f (θi)
dF (θi) +

∑
j∈J

1

F
(
c
n

) ∫ c
n

0

−F (θj)

f (θj)
dF (θj)

)

×
∫
θJ

∫
θI

d (θi,θ−i)
(∏

dF (θi)
)
. (3)

3If α (s) and β (s) are increasing, then∫ b

a

α (s)β (s) dF (s) ≥ 1

F (b)− F (a)

∫ b

a

α (s) dF (s)

∫ b

a

β (s) dF (s) .

See, also, Mitrinović, Pečarić and Fink (1993).
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It is easy to check

1

1− F
(
c
n

) ∫ 1

c
n

1− F (θi)

f (θi)
dF (θi) = E

[(
θ − c

n

)
|θ ≥ c

n

]
, and

1

F
(
c
n

) ∫ c
n

0

F (θj)

f (θj)
dF (θj) = E

[( c
n
− θ
)
|θ ≤ c

n

]
.

Let q denote the cardinality of index set I. The cardinality of J is n−q. Together, inequalities

(2) and (3) can be further written as∫
θJ

∫
θI

(∑
(θid (θ) + ti(θ))

)(∏
dF (θi)

)
≤
(
qE
[(
θ − c

n

)
|θ ≥ c

n

]
− (n− q)E

[( c
n
− θ
)
|θ ≤ c

n

])
(4)

×
∫
θJ

∫
θI

d (θi,θ−i)
(∏

dF (θi)
)
.

The first term of the last expression is negative when q = 0 and positive when q = n. The

unique number

q∗ =
nE
[(

c
n
− θ
)
|θ ≤ c

n

]
E
[(
θ − c

n

)
|θ ≥ c

n

]
+ E

[(
c
n
− θ
)
|θ ≤ c

n

]
solves

q∗E
[(
θ − c

n

)
|θ ≥ c

n

]
− (n− q∗)E

[( c
n
− θ
)
|θ ≤ c

n

]
= 0.

It is easy to see that, for any integer q < q∗, the maximum of the last term in (4) is achieved

when d is set to 0 on the block, and for any integer q ≥ q∗, the maximum is achieved when

d is set to 1 on the block. Hence, inequality (4) not only finds an upper bound for the

aggregate utility on each block, but also identifies a mechanism that achieves these upper

bounds, which is the simple voting mechanism with quota q∗ (c)+ and equal cost sharing

(when the public good is built). We can easily see that this mechanism satisfies (DIC), (DF)

and (K). We can also calculate its aggregate utility and verify that it achieves the upper

bound on each block.

Proof of Theorem 3:

Lemma 1 still holds, as it is true for all DIC mechanisms. Since condition (Bα) directly

assumes the inequality in Lemma 2, Lemma 3 also holds when αi replaces c
n

as the lower

bound in the integral:

Ui (θ) ≤
∫ θi

αi

d (s,θ−i) ds.
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We divide the type space into 2n “blocks” determined by αi—i.e., θJ×θI =
∏

j∈J [0, αj]×∏
i∈I [αi, 1]—and Lemma 3 on each block:∫

θJ

∫
θI

(∑
(θid (θ) + ti(θ))

)(∏
dFi (θi)

)
≤
∫
θJ

∫
θI

(∑
i∈I

∫ θi

αi

d (s,θ−i) ds−
∑
j∈J

∫ αj

θj

d (s,θ−i) ds

)(∏
dFi (θi)

)
=

∫
θJ

∫
θI

(∑
i∈I

1− Fi (θi)
fi (θi)

+
∑
j∈J

−Fj (θj)

fj (θj)

)
d (θi,θ−i)

(∏
dFi (θi)

)
. (5)

The last equality is obtained by integration by parts. We then apply Chebyshev’s sum

inequality to the right-hand side of (5) to continue our estimation:

∫
θJ

∫
θI

(∑
i∈I

1− Fi (θi)
fi (θi)

+
∑
j∈J

−Fj (θj)

fj (θj)

)
d (θi,θ−i)

(∏
dFi (θi)

)
≤

(∑
i∈I

1

1− Fi (αi)

∫ 1

αi

1− Fi (θi)
fi (θi)

dFi (θi) +
∑
j∈J

1

Fj (αj)

∫ αj

0

−Fj (θj)

fj (θj)
dFj (θj)

)

×
∫
θJ

∫
θI

d (θi,θ−i)
(∏

dFi (θi)
)
. (6)

It is easy to check

1

1− Fi (αi)

∫ 1

αi

1− Fi (θi)
fi (θi)

dFi (θi) = Ei [(θi − αi) |θi ≥ αi] , and

1

Fj (αj)

∫ αj

0

Fj (θj)

fj (θj)
dFj (θj) = Ej [(αj − θj) |θj ≤ αj] .

Together, inequalities (5) and (6) can be further written as∫
θJ

∫
θI

(∑
(θid (θ) + ti(θ))

)(∏
dFi (θi)

)
≤

(∑
i∈I

Ei [(θi − αi) |θi ≥ αi]−
∑
j∈J

Ej [(αj − θj) |θj ≤ αj]

)
(7)

×
∫
θJ

∫
θI

d (θi,θ−i)
(∏

dFi (θi)
)
.
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In the same spirit as the proof of Theorem 1, on the block θJ × θI , d = 1 whenever∑
i∈I

Ei [(θi − αi) |θi ≥ αi]−
∑
j∈J

Ej [(αj − θj) |θj ≤ αj] > 0;

otherwise, d = 0. As the above inequality determines if a coalition I is winning (d = 1 on the

block), the collection of winning coalitions satisfies monotonicity and, therefore, constitutes

a committee.

The total efficiency is a continuous function of α. Since all cost divisions constitute a

compact set, we can find an optimal committee mechanism M (α∗, C∗) with the optimal cost

division α∗ over all α with its corresponding committee C∗.
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