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Abstract: We study the static and dynamical properties of isolated many-body quantum systems
and compare them with the results for full random matrices. In doing so, we link concepts from
quantum information theory with those from quantum chaos. In particular, we relate the von
Neumann entanglement entropy with the Shannon information entropy and discuss their relevance
for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different
time scales and the conditions for thermalization. A main advantage of full random matrices is that
they enable the derivation of analytical expressions that agree extremely well with the numerics and
provide bounds for realistic many-body quantum systems.

Keywords: many-body quantum systems; random matrices; quantum chaos; power law decays

1. Introduction

Advances in quantum information science and many-body quantum physics have been closely
intertwined. Quantum computers, for example, are many-body quantum systems. To build the
first, one needs a better understanding of the latter. At the same time, one of the main reasons for
developing quantum computers is to simulate many-body quantum systems [1]. New numerical
methods, such as the density matrix renormalization group employed in the studies of many-body
quantum systems [2,3], rely on notions of entanglement. In particular, the accuracy of these methods
requires a limited growth of entanglement with time and system size [4]. An important task in
quantum information processing is the faithful transfer of quantum states. To accomplish this,
one needs a precise characterization of the dynamics of many-body quantum systems at different
time scales. In turn, studies of nonequilibrium quantum dynamics often touch upon the old quest of
deriving statistical mechanics and thermodynamics from first principles.

Thermalization in isolated many-body quantum systems is caused by strong interactions
between their particles (or quasiparticles) and is intimately related to the notion of quantum
chaos [5–7]. Quantum chaos refers to signatures that one finds at the quantum level, such as
level repulsion, that tell us whether or not the classical counterpart of the system is chaotic [8].
A main feature of a classically-chaotic system is the extreme sensitivity of its dynamics to the initial
conditions. At the quantum level, one can no longer talk about phase-space trajectories, but one can
still expect to find quantum signatures of classical chaos, such as those associated with spectrum
properties [9]. This notion of quantum chaos has, however, been extended to systems that may not
even have a classical limit. In addition to the properties of the spectrum, quantum chaos is also
directly connected with the emergence of chaotic eigenstates, that is highly delocalized states that are
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similar to (pseudo)-random vectors [5,6]. The level of delocalization of the eigenstates is measured
with quantities, such as the participation ratio and the Shannon information entropy [5,6,9].

In this work, we explore the relationship between measures of entanglement and measures of
delocalization [10–15]. We show that the von Neumann entanglement entropy and the Shannon
information entropy provide similar information about the system. The first requires the partial trace
of the density matrix, being computationally more expensive than the second, which deals with the
states of the entire system.

We also analyze the evolution of many-body quantum systems from very short times until the
moment they reach equilibrium. Our analysis is based on the behavior of the survival probability
(probability of finding the initial state later in time), the Shannon entropy and the entanglement
entropy. We show that the short- and intermediate-time evolutions are generic when the system
is taken far from equilibrium, while the long-time dynamics depends on the level of chaoticity of
the initial state. At intermediate times, the decay of the survival probability may be faster than
exponential [16–24]. At long times, the survival probability necessarily shows a power law decay [25].
From the value of the power law exponent, one may anticipate whether or not the initial state
will thermalize.

We start our studies in Section 2 using full random matrices. These are matrices filled with
random numbers. Early connections between the properties of the spectrum of quantum systems
and classical chaos were made in the context of full random matrices and became known as the
Bohigas–Giannoni–Schmit conjecture [26]. Full random matrices are not the most suitable models for
many-body quantum systems, because they imply that all of the particles interact at the same time.
Yet, they allow for the derivations of analytical results that can serve as references and bounds for the
analysis of realistic models. In Section 3, we then investigate the static properties and the dynamics of
realistic many-body quantum systems described by one-dimensional spin-1/2 models. We consider
both integrable and chaotic limits. These models are similar to those employed in experiments that
use cold atoms to study nonequilibrium dynamics [27,28] and thermalization [29,30].

2. Full Random Matrices and Thermalization

Full random matrices are matrices filled with random numbers whose only constraint is to satisfy
the symmetries of the system they are trying to describe. They were used extensively by Wigner to
model the spectra of heavy nuclei, which are very complex systems [31]. In this approach, interactions
are treated statistically, and their details are overlooked. This simple idea led to results that agreed
very well with data from real nuclei and was soon employed in the analysis of other complex systems,
such as atoms, molecules and quantum dots [8]. We discuss some of the static properties of these
matrices in Sections 2.1 and 2.2, and some of their dynamic properties in Section 2.3. In Section 2.4,
we discuss why thermalization is trivially achieved for full random matrices.

2.1. Eigenvalues: Density of States and Level Repulsion

There are different kinds of ensembles of full random matrices defined according to the
symmetries that the matrices satisfy [8,32,33]. When modeling systems with time reversal symmetry,
random matrices of the Gaussian orthogonal ensemble (GOE) are used. These are D × D real and
symmetric matrices with entries from a Gaussian distribution with mean zero,

〈H2
ij〉 = 〈H2

ji〉 = 1 for i < j

〈H2
ii〉 = 2. (1)
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In practice, GOE full random matrices can be obtained by generating a matrix with D2 random
numbers and then adding it to its transpose. The density of states of full random matrices follows the
standard semicircle distribution [34],

ρDOS(E) =
2

πE

√
1−

(
E
E

)2
, (2)

where 2E is the length of the spectrum, that is −E ≤ E ≤ E .
A key property of full random matrices and a main feature of quantum chaos is the strong

repulsion between neighboring levels, as captured, for example, by the nearest-neighbor level spacing
distribution P(s), where s is the spacing between neighboring rescaled energies. The unfolding
procedure [9] guarantees that the mean level spacing of the rescaled eigenvalues is one. For the
unfolded spectrum of GOE matrices, one finds:

P(s) =
πs
2

exp
(
−πs2

4

)
. (3)

This contrasts with the level spacing distribution of a sequence of uncorrelated eigenvalues,
where the levels are not prohibited from crossing and the distribution is Poisson, P(s) = exp(−s).
Level repulsion causes the rigidity of the spectrum. As a result, the variance Σ2(`) of the number of
unfolded eigenvalues in an interval of length ` grows logarithmically with `. For the GOE, one has:

Σ2(`) =
2

π2

(
ln(2π`) + γe + 1− π2

8

)
, (4)

where γe = 0.5772 . . . is Euler’s constant. The level number variance of full random matrices is
between the linear dependence Σ2(`) = ` found for uncorrelated eigenvalues and Σ2(`) = 0 reached
by the completely rigid spectrum of the harmonic oscillator. P(s) and Σ2(`) are complementary.
The former characterizes the short-range fluctuations of the spectrum, and the latter characterizes the
long-range fluctuations. Both are shown in Figure 1a,b, respectively.
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Figure 1. We consider a Gaussian orthogonal ensemble (GOE) full random matrix. Top panels:
level spacing distribution (a) and level number variance (b). Bottom panels: Shannon information
entropy (c) and von Neumann entanglement entropy (d) for all eigenstates. Horizontal solid lines
give ln(0.48D) in (c) and ln(0.48DA) in (d). The horizontal dashed line in (d) corresponds to
Srand

vN = lnDA − 1/2. The random numbers of the full random matrix are rescaled so that E ∼ 4.
We choose D = 16!/8!2 = 12870 and DA = 28 = 256 in analogy with the matrix sizes used in Section 3.
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2.2. Eigenstates: Delocalization and Entanglement Measures

There are various ways to quantify how much a state spreads out in a certain basis. One of
them is the participation ratio PR. Given an eigenstate |ψα〉 = ∑k Cα

k |φk〉 written in a basis |φk〉,
PR(α) = 1/ ∑k |Cα

k |
4. A comparable quantity is the Shannon information entropy, defined as:

S(α)
Sh = −∑

k
|Cα

k |
2 ln |Cα

k |
2. (5)

The values of PR(α) and S(α)
Sh depend on the chosen basis. In the case of full random matrices,

where one deals with ensembles of matrices filled with random numbers, the notion of basis is not
well defined, but we can still associate values with the delocalization measures.

All eigenstates of full random matrices are (pseudo)-random vectors. In the particular case
of GOEs, the coefficients are real random numbers from a Gaussian distribution satisfying the
normalization condition. All eigenstates are therefore equivalent and lead to approximately the same
values of the participation ratio, PRGOE ∼ D/3, and of the Shannon entropy:

SGOE
Sh ∼ ln(0.48D). (6)

The latter is shown in Figure 1c. This result can be derived as follows. The sum is approximated
by an integral, ∑k f (Ck) → D

∫ ∞
−∞ f (C)P(C)dC, where P(C) =

√
D/2πe−DC2/2 is the Gaussian

probability distribution of the components. This approach guarantees that the average of the
coefficients is C = 0, the average of their squares is C2 = 1/D, and ∑k |Cα

k |
2 → D

∫ ∞
−∞ C2P(C)dC = 1.

The entropy is therefore:

SGOE
Sh ∼ −D

√
D
2π

∫ ∞

−∞
exp

(
−DC2

2

)
C2 ln C2dC = −2 + ln 2 + γe + lnD ∼ ln(0.48D). (7)

Notice that the Shannon entropy of random vectors is smaller than the maximum value
Smax

Sh = lnD obtained when all weights |Cα
k |

2 = 1/D.
Similarly, there are various methods for quantifying the amount of entanglement in a state.

We focus on the von Neumann entanglement entropy, SvN [35]. Its computation requires the
bipartition of the system in subsystems A and B and the partial trace of one of the two. SvN(ρA)

is the von Neumann entropy of the reduced density matrix ρA = TrBρ, where ρ is the density matrix
associated with the total system. It gives:

SvN = −Tr (ρA ln ρA) . (8)

Maximum entanglement occurs when the reduced density matrix is maximally mixed, that is
when it is the normalized identity matrix. In this case, Smax

vN ∼ lnDA, where DA is the dimension
of ρA. Studies have shown that this limit is nearly achieved by random pure states [36,37].
In particular, Page [37] obtained Srand

vN ' lnDA − DA/(2DB) for a pure random state of dimension
D = DADB andDA ≤ DB. Here, we consider instead thatDADB > D, withDA = DB. Because of this
choice, Srand

vN (dashed line in Figure 1d) is slightly above our numerical results for the entanglement
entropy. The values for D and DA that we select are motivated by the comparison that we later make
in Section 3 with spin systems that have matrices of these same dimensions. We also find numerically
that the results for the entanglement entropy are slightly larger than ln(0.48DA) (solid line Figure 1d).
However, since these differences are minor, when DA is large, we chose to write, in analogy with
SGOE

Sh , that:
SGOE

vN ∼ ln(0.48DA). (9)
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2.3. Time Evolution: Entropy Growth and Survival Probability

To study the evolution under a GOE full random matrix, we assume that a fictitious basis of
product states |φk〉 was used to construct the matrix and that the initial state |Ψ(0)〉 = |φini〉 is the
basis vector in the middle of the matrix, k = ini = D/2. The entanglement entropy at t = 0 is
therefore SvN(0) = 0, but it grows as the state evolves.

Written in the energy eigenbasis, the initial state is:

|Ψ(0)〉 =
D
∑
α=1

Cα
D/2|ψα〉. (10)

Since the eigenstates |ψα〉 are random vectors, so is |Ψ(0)〉. The Shannon entropy of |Ψ(0)〉 in
the energy eigenbasis (also known as diagonal entropy; see Equation (24)) gives values very similar
to what we find in Figure 1, Sini

Sh = −∑Dα=1 |Cα
D/2|

2 ln |Cα
D/2|

2 ∼ ln(0.48D). We note, however, that to
study dynamics, we consider the spreading in time of |φini〉 over the other basis vectors. In Figure 2a,
we show the evolution of the Shannon entropy given by:

SSh(t) = −
D
∑
k=1

Wk(t) ln Wk(t), (11)

where the probability Wk(t) for the initial state to be found in state |φk〉 at time t is:

Wk(t) =
∣∣∣〈φk|e−iHt|φini〉

∣∣∣2 =

∣∣∣∣∣∑α

Cα∗
k Cα

inie
−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∫ Pk,ini(E)e−iEtdE
∣∣∣∣2 , where

Pk,ini(E) = ∑
α

Cα∗
k Cα

iniδ(E− Eα). (12)

and Planck’s constant is one. We can obtain Wk(t) by taking the Fourier transform of the distribution
Pk,ini(E), if the latter is known. Alternatively, a simpler approach is to separate the contributions to
Wk(t) into those coming from k = ini and those from k 6= ini, as we do next.

2.3.1. Survival Probability and Power Law Decays

Wini(t) is the survival probability of the initial state. It corresponds to the probability of finding
the initial state |Ψ(0)〉 = |φk=ini〉 later in time,

Wini(t) ≡
∣∣∣〈Ψ(0)|e−iHt|Ψ(0)〉

∣∣∣2 =

∣∣∣∣∣∑α

|Cα
ini|2e−iEαt

∣∣∣∣∣
2

=

∣∣∣∣∫ Pini,ini(E)e−iEtdE
∣∣∣∣2 . (13)

Above, Pini,ini(E) = ∑α

∣∣Cα
ini

∣∣2 δ(E − Eα) is the energy distribution of the initial state weighted
by the components |Cα

ini|2. It is often referred to as the local density of states (LDOS) or strength
function. For full random matrices, this distribution is a semicircle [17,18], as the density of states in
Equation (2). This is seen in Figure 2a. The Fourier transform of a semicircle gives:

WGOE
ini (t) =

[J1(2σinit)]2

σ2
init

2
, (14)
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where J1 is the Bessel function of the first kind,

σ2
ini = 〈Ψ(0)|H2|Ψ(0)〉 − 〈Ψ(0)|H|Ψ(0)〉2

= ∑
α

|Cα
ini|2E2

α −
(

∑
α

|Cα
ini|2Eα

)2

= ∑
α

|Cα
ini|2(Eα − Eini)

2

= ∑
k
〈Ψ(0)|H|φk〉〈φk|H|Ψ(0)〉 − 〈Ψ(0)|H|Ψ(0)〉2 = ∑

k 6=ini
|〈φk|H|Ψ(0)〉|2 (15)

is the variance of the energy distribution of the initial state and:

Eini = 〈Ψ(0)|H|Ψ(0)〉 = ∑
α

|Cα
ini|2Eα (16)

is the energy of |Ψ(0)〉. For the initial state considered here, σGOE
ini ∼ E/2 and EGOE

ini ∼ 0.
The agreement between the numerical results for Wini(t) and Equation (14) is excellent, as seen
in Figure 2b.

The asymptotic behavior of WGOE
ini (t) for t � σ−1

ini is a power law and ∝ t−3 [22,25]. This can be
derived from a theorem proven in [38]. For the semicircle, PGOE

ini,ini(E) = (E + E)ξ η(E) with ξ = 1/2
and η(E) = 2(E − E)1/2/(πE2). The theorem says that if 0 < ξ < 1 and η(E) is N times continuously
differentiable for −E ≤ E < E , then for t→ ∞, we have [38,39]:

∫ E
−E

Pini,ini(E)e−iEtdE = −iξeiE t
N−1

∑
n=0

Γ(n + ξ)

n!
e−iπ(n+ξ+2)/2η

(n)
0 t−n−ξ−1 + O(t−N), (17)

where η
(j)
0 = limE→−ε+ η(j)(E) and j = 0, 1, . . . N. The dominant term for n = 0 leads to:

WGOE
ini (t� σ−1

ini ) ∝ t−3. (18)

This inverse power law decay is a manifestation of the Khalfin effect [40], which refers to the
slow decay of the survival probability at long times due to the unavoidable bounds (at least the
ever present lower bound) in the spectrum of any quantum system. Khalfin showed that the usual
exponential decay of unstable states could not persist for long times. Later studies showed that the
decay should become a power law [25,39,41,42] with the exponent depending on the properties of
Pini,ini(E) [23–25].

2.3.2. Entropy Growth

We now come to Equation (11) and rewrite it as [43–45]:

SSh(t) = −Wini(t) ln Wini(t)−
D
∑

k 6=ini
Wk(t) ln Wk(t)

∼ −Wini(t) ln Wini(t)− [1−Wini(t)] ln
[

1−Wini(t)
Npc

]
, (19)

where the use of 1 − Wini(t) in the second line is motivated by the normalization condition
∑Dk=1 Wk(t) = 1 and the ratio [1 −Wini(t)]/Npc by the fact that at very long times, Wini(t) should
be very small and SSh → ln Npc. Npc refers to the number of states that contribute to the evolution
of the initial state. In the case of full random matrices, we would expect NGOE

pc ∼ 0.48D. However,
by doing an average of the numerical values of exp[SSh(t)] at long times, after the saturation of the
evolution, we actually find that Npc is slightly larger than 0.48D. Why this is so still needs to be
understood. The semi-analytical expression above, with the result for Npc ∼ 〈exp[SSh(t)]〉, agrees
extremely well with the numerical results for the Shannon entropy (see Figure 2c). The agreement
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is so good that the curves are indistinguishable. The same occurs for the entanglement entropy in
Figure 2d using Npc ∼ 〈exp[SvN(t)]〉.
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Figure 2. We consider the initial state (10) evolving under a GOE full random matrix. Top panels: local
density of states (LDOS) (a) and the survival probability (b). The symbols in (b) refer to Equation (14),

and the dashed horizontal line is WGOE
ini ∼ 3/D from Equation (26). Bottom panels: evolution of

the Shannon entropy (c) and von Neumann entanglement entropy (d). Dashed lines correspond
to the expression in Equation (19) with Npc = 〈exp[SSh(t)]〉 in (c) and Npc = 〈exp[SvN(t)]〉 in (d).
The dashed lines are indistinguishable from the numerical results (solid lines). Dot-dashed lines are
Equation (20). Circles represent linear fits, SSh,vN = aSh,vN + bSh,vN t, with aSh = −1.65, avN = −0.87
and bSh = 16.6, bvN = 9.97. The random numbers of the full random matrix are rescaled so that E ∼ 4;
σini = 2. We choose D = 12870 and DA = 256 as in Figure 1.

The entropies in Figure 2c,d initially grow nearly quadratically, as can be verified by expanding
Equation (19). This gives:

SGOE
Sh,vN(t� σ−1

ini ) ∼
[

1− ln

(
σ2

ini
Npc

)
− 2 ln t

]
σ2

init
2, (20)

which matches the numerical results well for very short times. Subsequently, the data are very well
fitted with a linear curve, as shown with circles in Figure 2c,d. This makes a connection with the
linear behavior, SSh,vN ∝ t, studied theoretically in realistic systems [4,43–47] and also observed
experimentally [30].

2.4. Relaxation and Thermalization

We say that an isolated finite quantum system equilibrated if, after a transient time, the initial
state simply fluctuates around a steady state, remaining very close to it for most times (revivals may
occur, but they take exceedingly long times to happen for large system sizes). Consider, for example,
a few-body observable O evolving according to the equation,

O(t) = 〈Ψ(0)|eiHtOe−iHt|Ψ(0)〉 =
D
∑
α=1
|Cα

ini|2Oαα +
D
∑

α 6=β=1
Cβ∗

iniC
α
iniOβαei(Eβ−Eα)t, (21)
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where Oβα = 〈ψβ|O|ψα〉 and Oαα is the eigenstate expectation value of O. If the system equilibrates,
there will be only fluctuations around the infinite time average O. In the case of systems without
degeneracies, as in GOE matrices, this average is given by the first term in Equation (21),

O =
D
∑
α=1
|Cα

ini|2Oαα, (22)

with the second term leading to the fluctuations.
The size of the fluctuations is crucial to determine whether the system indeed reaches

equilibrium [48–56]. For this, the fluctuations need to be small and decrease with D. Small
fluctuations certainly occur when the energy spacings are not zero and the products Cβ∗

iniC
α
ini and

the off-diagonal elements Oαβ are small. This is evidently the case for full random matrices,
but also for realistic many-body quantum systems with interactions, where the fluctuations decrease
exponentially with system size [55]. We have found that the exponent of this decay depends on the
level of delocalization of the initial state in the energy eigenbasis, with maximum exponents being
found for full random matrices [55].

One can then talk about equilibration (or relaxation) without the need to invoke an environment.
The loss of the initial coherence is, for all practical purposes, irreversible, because the recurrence time
for systems with chaotic eigenstates is extremely long and increases with system size [57–59].

2.4.1. Infinite-Time Averages

The evolution of the Shannon entropy (11) can be written in terms of the energy eigenbasis as:

SSh(t) = −
D
∑
k=1

{
∑
α

∣∣Cα
k
∣∣2 |Cα

ini|
2 ln

[
∑
γ

∣∣Cγ
k

∣∣2 ∣∣Cγ
ini

∣∣2 + ∑
γ 6=δ

Cγ∗
k Cδ

k Cγ
iniC

δ∗
inie
−i(Eγ−Eδ)t

]}

−
D
∑
k=1

∑
α 6=β

Cα∗
k Cβ

k Cα
iniC

β∗
inie
−i(Eα−Eβ)t ln

[
∑
γ

∣∣Cγ
k

∣∣2 ∣∣Cγ
ini

∣∣2 + ∑
γ 6=δ

Cγ∗
k Cδ

k Cγ
iniC

δ∗
inie
−i(Eγ−Eδ)t

] .

Since on average ∑γ

∣∣Cγ
k

∣∣2 ∣∣Cγ
ini

∣∣2 � ∣∣∣∑γ 6=δ Cγ∗
k Cδ

k Cγ
iniC

δ∗
inie
−i(Eγ−Eδ)t

∣∣∣, the infinite-time average of
SSh(t) is approximately:

SSh ∼ −∑
k

[(
∑
α

|Cα
k |

2|Cα
ini|2

)
ln

(
∑
γ

|Cγ
k |

2|Cγ
ini|

2

)]
. (23)

For GOE full random matrices, SSh is close to SGOE
Sh (6). It is also similar to the diagonal entropy

Sd, defined as [60–62],
Sd = −∑

α

|Cα
ini|2 ln |Cα

ini|2. (24)

Equivalently, the infinite-time average of the entanglement entropy is close to SGOE
vN (9).

The infinite-time average of the survival probability is the inverse of the participation ratio,

Wini = ∑
α

|Cα
ini|4 + ∑

α 6=β

|Cα
ini|2|C

β
ini|2ei(Eβ−Eα)t ∼ 1

PRini
. (25)

For GOE full random matrices,

WGOE
ini ∼

3
D , (26)
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which is reached in Figure 2b. The size of the fluctuations decreases as 1/D. This is obtained from:

σ2
Wini

= |Wini(t)−Wini(t)|2 = ∑
α 6=β

γ 6=δ

|Cα
ini|2|C

β
ini|

2|Cγ
ini|

2|Cδ
ini|2ei(Eα−Eβ+Eγ−Eδ)t. (27)

On average, this term cancels out, except for Eα − Eβ = Eδ − Eγ. Since there are no degeneracies
of the energies or of the energy spacings in full random matrices, this equality requires that Eα = Eδ

and Eβ = Eγ, which gives:

σ2
Wini

= ∑
α

|Cini
α |4 ∑

β

|Cini
β |4 −∑

α

|Cini
α |8 =⇒ σWini ∼

1
PRini

. (28)

The standard deviation of the temporal fluctuations of Wini coincides with Wini.

2.4.2. Thermalization in Full Random Matrices

After relaxation, the observable is said to have thermalized if its infinite-time average coincides
with a thermodynamic average. Equality can only happen in the thermodynamic limit, but
thermalization is already suggested if the two averages are close and further approach each other
as the system size increases. The comparison between the two averages is made explicit with
the equation,

O =
D
∑
α=1
|Cα

ini|2Oαα

?︷︸︸︷
= OME ≡

1
NEini ,δE

∑
α

|Eini−Eα |<δE

Oαα (29)

where OME is the thermodynamic (microcanonical) average and NEini ,δE is the number of energy
eigenbases in the window δE taken around Eini. Equation (29) is valid when Oαα for eigenstates close
in energy agree with the microcanonical average, an idea that is at the heart of statistical mechanics
and has recently become known as the eigenstate thermalization hypothesis (ETH) [7,21,63–69].
Notice that the ETH is not a condition for thermalization, but a statement of what one means by
it.

Equation (29) is trivially satisfied for the GOE full random matrices. Since the eigenstates are
random vectors, Oαα is approximately the same for any eigenstate |ψα〉, so it can be taken out of the
sum and each Oαα ∼ OME. The condition for thermalization is therefore quantum chaos, not only in
the sense of level repulsion, but also in the sense of chaotic states [5,6,44,45,61,68,70–73].

We stress that thermalization does not require an equal distribution of all probabilities, that is
we do not need to have |Cα

k |
2 = 1/D, S(α)

Sh = lnD and S(α)
vN = lnDA for all eigenstates, but the

eigenstates that take part in the evolution of the initial state should be statistically close to these
limits. We emphasize also that, contrary to full random matrices, not all eigenstates of real systems
are chaotic, even when the Hamiltonian shows level repulsion. This is further discussed in Section
3. Therefore, the prerequisite for thermalization in real systems is to have equivalent values of Oαα in
the energy window sampled by the initial state. This is satisfied if the eigenstates in that window are
very similar to random vectors, closely fulfilling Equations (6) and (9). These two elements, energy
window sampled by |Ψ(0)〉 and chaotic states, make evident the key role of the interplay between
initial state and Hamiltonian in the analysis of thermalization [68,69]. The third important element is
the observable, as discussed also in [74]. The observables considered in the studies of thermalization
in realistic systems are few-body observables.

As Dyson had already anticipated, the development of random matrix theory marked the
beginning of a “new kind of statistical mechanics” [75], but at those early stages, the link between
equilibrium and nonequilibrium dynamics, as put forward by Equation (29), was not yet well
established. Current studies analyze Equation (29) for specific few-body observables, take into
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account the properties of the initial state and consider realistic systems that may not even be
disordered, but in which strong interactions lead to stochastic behavior.

In the cases of the particular quantities studied here, quantum chaos guarantees that in realistic
systems, SSh ∼ ln(aD) and SvN ∼ ln(aDA), with a being a constant. The fact that these entropies
saturate to values that follow a volume law imply that they approach thermodynamic entropies as
the system size increases [61,62]. For chaotic initial states, we also have Wini ∼ D−1, which assures
thermalization.

3. Realistic Integrable and Chaotic Models

Full random matrices do not model realistic systems. The Hamiltonian matrices
describing realistic systems are usually sparse and banded, due to the presence of few-body
(often only two-body) interactions, and in various cases, they do not even have random elements.
Attempts to bring random matrix theory closer to realistic systems started already with Wigner, with
the introduction of the so-called Wigner banded random matrices [34]. In these matrices, only the
elements within a bandwidth around the diagonal are nonzero. Other similar approaches include
two-body random ensembles and power law banded random matrices [76–79].

To bring the discussion of Section 2 down to earth, we consider a one-dimensional spin-1/2
model, which is similar to the systems studied experimentally with cold atoms, ion traps and nuclear
magnetic resonance platforms. It is described by the Hamiltonian:

H = ε1 JSz
1 + dJSz

bL/2c + HXXZ + λHNNN, (30)

where:

HXXZ = J
L−1

∑
n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1 + ∆Sz

nSz
n+1

)
, (31)

HNNN = J
L−2

∑
n=1

(
Sx

nSx
n+2 + Sy

nSy
n+2 + ∆Sz

nSz
n+2

)
. (32)

Above, h̄ = 1, Sx,y,z
n are the spin operators on site n; L is the total even number of sites in

the chain; J is the coupling strength; and ∆ is the anisotropy parameter. The Hamiltonian contains
nearest-neighbor (NN) couplings and next-nearest-neighbor (NNN) couplings if λ 6= 0. We always
include a small defect ε1 = 0.1 (Zeeman splitting 0.1 larger than that of the other sites) on the first site
to break parity and spin reversal symmetries. A defect of amplitude d may also be included in the
middle of the chain, on site n = bL/2c. We consider open boundary conditions. The total spin in the
z-direction, Sz, is conserved. We study the largest subspace, Sz = 0, so D = L!/(L/2)!2. In all of the
figures below, except for Figure 7, we consider L = 16, so D = 12870 and DA = 256. This explains
the choices of D and DA made for the figures for full random matrices in Section 2.

All of the parameters are taken as positive, and J = 1 sets the energy scale. When λ, d = 0 and
∆ 6= 0 (we fix ∆ = 0.48), the Hamiltonian is integrable and known as the XXZ model. (XXZ refers to
models where the coupling strengths in the x and y directions are the same and different from that
in the z direction. The isotropic version is known as XXX.) The inclusion of NNN couplings or of a
defect away from the borders of the chain breaks the integrability of the XXZ Hamiltonian [21,80].
Level repulsion occurs for the parameters considered here: λ = 1 (d = 0) and d = 0.9 (λ = 0). We
refer to these two cases as the NNN model and the defect model, respectively. In common with the
XXZ Hamiltonian, the first is clean, and the second has only NN couplings.

For any value of the parameters in H (30), the density of states is Gaussian, as is typical of
many-body quantum systems with two-body interactions. The Gaussian shape is a consequence of
combinatorics and the central limit theorem. This is the first crucial difference with respect to full
random matrices that is worth emphasizing. The distributions are shown in Figure 3a–c for the three
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considered spin models. The Gaussian energy distribution is symmetric when ε1, d, ∆, λ = 0, while
defects, anisotropy and λ make it asymmetric.
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Figure 3. Top panels: density of states for the XXZ (a), defect (b) and next-nearest-neighbor (NNN) (c)
models. Middle and bottom panels: level spacing distribution (d–f) and level number variance (g–i),
respectively, for the same models in (a–c). Open boundaries, ε1 = 0.1, d = 0.9, ∆ = 0.48, λ = 1,
L = 16, Sz = 0.

Level spacing distribution and level number variance are shown in the middle and bottom
panels of Figure 3, clearly distinguishing the integrable model from the chaotic ones. The XXZ model
presents additional symmetries when the anisotropy reaches the roots of unity, ∆ = cos(π/µ), where
µ ≥ 2 is an integer. The largest amount of degeneracies occur for µ = 2, but significant amounts exist
also for µ = 3 [55]. This explains why we chose ∆ = 0.48 instead of 1/2, even though the presence of
the small defect at the border, ε1, also prevents too many degeneracies.

The initial impression is that there is not much difference between Figure 3e,f and Figure 1a.
However, visibly, the spectrum of the GOE full random matrix is more rigid than those for the chaotic
spin models, as evident by comparing Figure 1b with Figure 3h,i. This reinforces the importance of
considering different signatures of quantum chaos when comparing models.

3.1. Delocalization and Entanglement Measures: Basis Dependence

The Gaussian density of states implies that there are more states in the middle of the spectrum
than at the edges. The states away from the borders are then expected to be more delocalized. This
energy dependence on the level of delocalization of |ψα〉 is another crucial difference between realistic
systems and full random matrices.

To compute S(α)
Sh , we need to choose a basis representation. This choice is made according to the

problem we are studying. If one is interested in localization in real space, the site basis (known in
quantum information as computational basis) is the natural choice. It corresponds to states where on
each site, the spin points either up or down in the z-direction. However, if the interest is in the level
of chaoticity of the states, the mean-field basis is the most appropriate one. The mean-field basis is
defined by the integrable (regular) part of the Hamiltonian. In the case of the NNN and defect models,
a good choice for the mean-field basis is to use the eigenstates of the XXZ model. We also verify that
the differences obtained when we consider the eigenstates of the XX model are not significant. For
the XXZ model, we use the eigenstates of the XX model [44,45] as a way to analyze how the level of
complexity of |ψα〉 increases with the Ising interaction.

In Figure 4a–c, we show the Shannon entropy for the XXZ, defect and NNN models in the site
and mean-field basis. Independent of the basis, larger fluctuations are observed for the integrable
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model [70–72], where the eigenstates are further from random vectors than in chaotic models. The
values of S(α)

Sh for the XXZ Hamiltonian are also smaller overall than those for the chaotic models.

Figure 4. Top panels: Shannon entropy in the site basis (black symbols) and in the mean-field
basis (red symbols) for the XXZ (a), defect (b) and NNN (c) models. Bottom panels: normalized
entanglement entropy (black symbols) and normalized Shannon entropy in the mean-field basis (red
symbols) for the same models as in (a–c). Parameters for all panels are the same as in Figure 3.

In the mean-field basis, one clearly sees that the eigenstates of the chaotic models close to
the middle of the spectrum are very complex, with S(α)

Sh approaching the full random matrix value
SGOE

Sh (6). As we move towards the edges of the spectrum, the states become more localized. This is
why thermalization is not expected to take place close to the borders of the spectrum [68,70–72]. We
note that the somewhat large values of S(α)

Sh obtained for the NNN model at low energies occurs only
when λ is large, but they are small when λ ∼ 0.5 [21,45]. This may suggest that in that region of the
spectrum and for λ→ 1, the basis considered is not the best mean-field basis.

In the site basis, the energy dependence is not so obvious, and S(α)
Sh even surpasses SGOE

Sh .
Values above SGOE

Sh indicate that the chosen basis is not a good mean-field basis. For the models
considered, the site basis is therefore not the correct one to evaluate the proximity of the eigenstates
to chaotic vectors.

In Figure 4d–f, we compare the normalized entanglement entropy S(α)
vN /SGOE

vN with the

normalized Shannon entropy S(α)
Sh /SGOE

Sh for the same three models. The behavior of the two entropies
is quite similar, so either one could be used in the analysis of the complexity of the states. Each entropy
has its own advantages and disadvantages. In contrast to S(α)

vN , the basis needs to be carefully chosen

when computing S(α)
Sh , but the latter is computationally less expensive, since no partial trace needs to

be performed.

3.2. Dynamics at Intermediate Times: Generic Behaviors

The dynamics of the spin model is initiated after its preparation in an eigenstate of a certain
Hamiltonian Hini. The state is then left to evolve according to H (30), where H = Hini + νV and ν is
the perturbation strength.

As discussed in Section 2.3.1, the behavior of the survival probability is determined by the LDOS,
Pini,ini(E). As ν increases from zero, the LDOS broadens [18,19,21]. When the couplings (elements
of νV) become larger than the mean level spacing, the envelope of the LDOS acquires a Lorentzian
shape, and its Fourier transform leads to the exponential decay of Wini(t). By further increasing ν,
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the LDOS eventually becomes Gaussian, causing the Gaussian decay of Wini(t) [17–25]. This is not
the mere quadratic decay observed for very short times for any perturbation strength, which emerges
from the expansion:

Wini(t << σ−1
ini ) ∼ |〈Ψ(0)|1− iHt|Ψ(0)〉|2 ∼ 1− σ2

init
2, (33)

but a true Gaussian decay holding for larger times (see also [16] and the references therein). The
Gaussian LDOS reflects the Gaussian density of states and corresponds to the maximum spread in
energy of the initial state. This limiting scenario is reached by strongly perturbing the many-body
quantum system, and it does not matter whether or not there is level repulsion.

Several examples of Gaussian LDOS and Gaussian decay of Wini(t) have been shown for the
clean XXZ and NNN models in [17–22] and also for disordered models [23,24]. In Figure 5, we
compare the integrable XXZ model with the chaotic defect model. As the initial state, |Ψ(0)〉 = |φini〉,
we consider the Néel state, | ↓↑↓↑↓↑↓↑ . . .〉, where the z-polarization of the spins alternates from one
site to the other. This state is often prepared in experiments with cold atoms. The evolution under
both models is equivalent to having had a very strong perturbation, where ∆ is changed from ∞
to 0.48.

The envelopes of the LDOS in Figure 5a,c agree very well with a Gaussian of width:

σini =

√
∑

k 6=ini
|〈φk|H|φini〉|2 =

J
2

√
L− 1, (34)

centered at:
Eini = 〈φini|H|φini〉 =

ε1

2
+ (−1)

L
2

d
2
− J∆

4
(L− 1), (35)

with d being zero for the XXZ model and 0.9 for the defect model. For both models, the chosen
initial state is further from the middle of the spectrum and, therefore, less filled than for the NNN
model, where:

Eini =
ε1

2
+

J∆
4
[−(L− 1) + (L− 2)λ]. (36)

Comparing Figure 5a,c, we also see that the LDOS is better filled for the defect model than for
the XXZ model, since the first is chaotic and has Eini slightly closer to the middle of the spectrum. We
also note that the width of the initial state is sub-extensive, σini ∝

√
L, so the initial state is narrow in

energy. This is a necessary condition for thermalization in real systems [64,65].
In Figure 5b,d, we show the evolution of the survival probability. The numerical results are very

close to the analytical Gaussian decay, Wini(t) = exp(−σ2
init

2), until the curves cross the saturation
line 1/PRini (25). In this limit of strong perturbation and initial states with energy Eini away from
the edges of the spectrum, the behavior of the survival probability is general and equivalent for both
integrable and chaotic many-body quantum models. For the intermediate time scales considered in
Figure 5, level repulsion does not play any important role.
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Figure 5. Néel state under the XXZ model (a,b), and defect model (c,d). (a,c) Numerical results for
the LDOS (shaded area) and Gaussian envelope (solid line) with σini from Equation (34) and Eini from
Equation (35). (b,d) Numerical results for the survival probability (solid line), analytical expression
Wini(t) = exp(−σ2

init
2) (dashed line) with σini from Equation (34) and saturation value (horizontal

line) given by 1/PRini = ∑α |Cα
ini|

4 [Equation (25)]. Parameters as in Figure 3.

In Figure 6, we compare the evolution of the Shannon entropy (top panels) and the entanglement
entropy (bottom panels) for the Néel state under the XXZ (a,d), defect (b,e) and NNN (c,f) models.
At very short times, t � σ−1

ini , the entropies increase nearly quadratically [18]. Later, as in full
random matrices, the entropy growth becomes linear in time and remains as such until close to
saturation. This linear behavior is expected for initial states far from the edges of the spectrum and
seems independent of the presence or absence of level repulsion. What one observes, however, is a
dependence on the energy of the initial state [20] and on the connectivity of the Hamiltonian [18]. For
the NNN model, σini is still the same as in Equation (34), but since Eini from Equation (36) is closer
to the middle of the spectrum, where there are more eigenstates and they are more delocalized than
those from the XXZ and defect model (cf. Figure 4), the slope of the linear entropy increase is larger
in Figure 6c,f than in Figure 6a,b,d,e.

The saturation values of the entropies for the GOE full random matrices are indicated in Figure 6
with horizontal dashed lines. For the XXZ model, the entropies saturate to values smaller than SGOE

Sh,vN .
For the defect model, SSh surpasses SGOE

Sh . For the NNN model, both SSh and SvN are above the results
for full random matrices. This is in contrast with previous studies for the evolutions of the Shannon
entropy under the NNN model that start with mean-field basis vectors and analyze the spreading
over other mean-field basis [44,45]. In these cases, the saturation values are not larger than SGOE

Sh,vN , but
very close to it.

Another difference between the results for site basis initial states and mean-field initial states
is the agreement with Equation (19), which occurs for the latter [44,45], but not for the former [18].
The approximation in Equation (19) seems appropriate for initial states that are directly coupled with
many other basis vectors, that is their connectivity is ∝ D. This is not the case of site basis vectors.
The Néel state, for instance, is directly coupled with only L− 1 states.
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Figure 6. Evolution of the Shannon entropy (top panels) and entanglement entropy (bottom panels)
for the Néel state under the XXZ (a,d), defect (b,e) and NNN (c,f) models. Numerical results (solid
lines) and fitted linear growth SSh,vN = aSh,vN + bSh,vN t (green dashed lines) with aSh = −1.04,−1.04,−1.31
and bSh = 8.67, 8.67, 9.47 from (a–c) and avN = 0.17, 0.21,−0.06 and bvN = 0.43, 0.30, 0.80 from (d–f).
Horizontal dashed lines indicate SGOE

Sh ∼ ln(0.48D) (top panels) and SGOE
vN ∼ ln(0.48DA) (bottom

panels). Parameters as in Figure 3.

3.3. Dynamics at Long Times

At long times, the evolution of Wini(t) slows down. The decay of the survival probability
becomes necessarily a power law, Wini(t � σ−1

ini ) ∝ t−γ. It is the tails of the LDOS that determine
the value of the power law exponent γ. Good filling implies that, despite the discreteness of the
spectrum, the LDOS can be treated as a nearly continuous function. The behavior of Wini(t) at long
times can then be obtained from the Fourier transform of the Gaussian Pini,ini(E), but taking into
account also the unavoidable energy bounds Elow and Eup of the spectrum [25],

Wini(t) =
1√

2πσ2
ini

∫ Eup

Elow

e−(E−Eini)
2/(2σ2

ini)e−iEtdE =⇒Wini(t� σ−1
ini ) ∝ t−2. (37)

The above power law decay with exponent γ = 2 can be seen in Figure 7a
and also in other chaotic initial states studied in [25]. The exponent is smaller than
that for full random matrices, where γ = 3 (see Equation (18)), but larger than
what we obtain for systems undergoing localization, where the LDOS is very sparse and
γ < 1 [23–25]. In many-body quantum systems, exponents γ ≥ 2 indicate that the LDOS is very
well filled and that the components Cα

ini are close to random numbers from a Gaussian distribution.
In this scenario, we should expect thermalization to occur [25].

In Figure 7b, we show the evolution of the Shannon entropy. The symbols represent a fitted
linear curve. The log-log plot makes it very clear that the linear growth holds only for times that
are not too short. The dot-dashed line corresponds to Equation (20). It is parallel to the numerical
data nearly up to the point where the linear behavior develops. For the curve of Equation (20) to
actually coincide with the numerical data, we would need to substitute Npc by a small value, ∼ 20.
This happens when the initial state is a site basis vector, not when it is a mean-field basis vector.

In analogy with the onset of the power law decay for Wini(t), we might wonder whether at long
times, Figure 7b actually detects a behavior different from the linear growth. Right before saturation,
between t ∼ 1 and t ∼ 3, a small oscillation is visible. This is also noticeable in Figure 6, especially
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in Panel (c). This time interval coincides with that for the survival collapse observed for the survival
probability. The collapse [25,81,82] corresponds to an interference between the Gaussian decay and
the emergence of the power law decay, which pushes Wini(t) very much below the saturation line
(see Figure 7a and also Figure 5b,d). Thus, even though the small oscillation requires further studies,
it may be an indication of an interference between two different behaviors, as in the case of the
survival collapse.
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Figure 7. Survival probability (a) and evolution of the Shannon entropy (b) for the Néel state under
the NNN model with the parameters of Figure 3, but L = 22. In (a), the numerical result is given by
the solid line and the power law decay ∝ t−2 by the dashed line. In (b), the numerical result is given
by the solid line; Equation (20) by a dot-dashed line; and the linear increase, SSh ∝ t, by the symbols.

4. Discussion

We compared the static and dynamical properties of GOE full random matrices and finite
isolated many-body quantum systems described by one-dimensional spin-1/2 models with two-body
interactions. This comparison is useful, because for full random matrices, analytical expressions can
be derived and then used as references and bounds for the analysis of realistic models. Our main
findings are itemized below:

1. The results for the von Neumann entanglement entropy SvN , which is a concept employed in
quantum information science, and for the Shannon information entropy SSh, which is generally
used as a measurement of the degree of delocalization of quantum states, were very similar. Thus,
either one can be used to measure the level of complexity of the eigenstates. The advantage of the
Shannon entropy is that it is computationally less expensive than the entanglement entropy. The
disadvantage is that it is strongly dependent on the basis chosen.

2. For full random matrices, all eigenstates are pseudo-random vectors and therefore lead to the
same values of S(α)

Sh , but the results for realistic systems depend on the region of the spectrum and
on the basis selected.

3. An analytical expression was given for full random matrices for the time evolution of both
entropies. It agrees extremely well with the numerical results. For the spin systems; this
expression gives an upper bound for SSh(t) and SvN(t).

4. At short times, SSh(t) and SvN(t) show a nearly quadratic behavior. It is only at longer times that
the linear increase, SSh,vN(t) ∝ t, develops. These two behaviors seem to be independent of the
presence or absence of level repulsion.

We also reviewed some of our previous studies and discussions. They include:

1. In realistic chaotic models, the spectrum is not as rigid as that of full random matrices. When
comparing different chaotic models, it is appropriate to compare different signatures of chaos,
such as those that detect short-range and also long-range correlations.
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2. Analytical expressions for the decay of the survival probability, Wini(t), were given for full
random matrices and for the spin systems. For realistic models, integrable or chaotic, the decay at
short times is Gaussian when the perturbation that takes the system out of equilibrium is strong.
The decay is faster for full random matrices.

3. At long times, the decay of the survival probability becomes a power law, Wini(t) ∝ t−γ, with
γ = 3 for full random matrices and γmax = 2 for the spin systems. The emergence of a power law
decay at long times should have interesting consequences for problems associated with quantum
information science and foundations of quantum mechanics. One should expect, for example,
that external actions on the system, such as measurements, performed at long times may change
the power law decay and recover Gaussian or exponential decays. This idea was explored in [83]
for a one-body system interacting with an environment. It would be worth extending it also to
many-body quantum systems.

4. Equilibration and thermalization are trivially reached under full random matrices. In realistic
models, the absence of degeneracies and the presence of chaotic states in the energy window
sampled by the initial state are both key elements for achieving thermal equilibrium.

5. Materials and Methods

The numerical methods used include exact diagonalization and Expokit [84,85]. Exact
diagonalization was used for Hamiltonian matrices with D < 20,000, and Expokit was employed
for the dynamics of systems with larger D.
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