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Onset of quantum chaos in one-dimensional bosonic and fermionic systems

and its relation to thermalization
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By means of full exact diagonalization, we study level statistics and the structure of the eigenvec-
tors of one-dimensional gapless bosonic and fermionic systems across the transition from integrabil-
ity to quantum chaos. These systems are integrable in the presence of only nearest-neighbor terms,
whereas the addition of next-nearest neighbor hopping and interaction may lead to the onset of
chaos. We show that the strength of the next-nearest neighbor terms required to observe clear sig-
natures of nonintegrability is inversely proportional to the system size. Interestingly, the transition
to chaos is also seen to depend on particle statistics, with bosons responding first to the integrability
breaking terms. In addition, we discuss the use of delocalization measures as main indicators for
the crossover from integrability to chaos and the consequent viability of quantum thermalization in
isolated systems.

PACS numbers: 05.45.Mt,05.30.-d,05.70.Ln, 02.30.Ik

I. INTRODUCTION

Random matrix theory (RMT) deals with the statisti-
cal properties of ensembles of matrices composed of ran-
dom elements. It was originally designed by Wigner in
his efforts to understand the statistics of energy levels
of nuclei [1] and was further elaborated by several au-
thors, notably Mehta [2]. RMT received a significant
boost with the discovery of its connection with classical
chaos [3–6]. In particular, it was observed that quantum
systems whose classical analog are chaotic show the same
fluctuation properties predicted by RMT.

The application of RMT was soon extended to the de-
scription of other quantum many-body systems, such as
atoms, molecules, and quantum dots [7–10], and it was
not restricted to statistics of eigenvalues but accommo-
dated also the analysis of eigenstates [11–13]. Important
developments that led to the broadening of the theory in-
clude the introduction of ensembles of random matrices
that take into account the predominance of short range
interactions in real many-body systems [14–16], the inti-
mate connection between quantum transport and spec-
tral properties of mesoscopic systems [8, 17, 18], and the
relationship between chaos and quantum thermalization
[12, 19–24].

It has been conjectured that the thermalization of fi-
nite isolated quantum systems is closely related to the
onset of chaos and occurs at the level of individual states
[19, 20, 25], which has become known as the eigenstate
thermalization hypothesis (ETH). Related work was done
with nuclear shell model calculations and delocalization
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measures [12, 26]. More recently, this subject has re-
ceived renewed attention due to its relevance to ultra-
cold gas experiments. For example, in a remarkable ex-
periment by a group at Penn State [27], it was shown
that, after being subject to a strong perturbation, a gas
of bosons trapped in a (quasi-)one-dimensional geometry
(created by means of a deep two-dimensional optical lat-
tice) did not relax to the standard prediction of statistical
mechanics. In contrast to those results, in another exper-
iment in which a bosonic gas was trapped in a different
(quasi-)one-dimensional geometry (generated by an atom
chip), relaxation to a thermal state was inferred to occur
in a very short time scale [28].
Following those experiments, several theoretical works

have explored the question of thermalization in noninte-
grable isolated quantum systems after a quantum quench
in one dimension [29–37]. After numerically exploring the
nonequilibrium dynamics in finite one dimensional (1D)
systems, thermalization was observed in some regimes
[29, 31, 32] but not in others [29–32], even though in all
cases integrability was broken. Several factors may play a
role in the absence of thermalization in finite 1D systems
after a quench: (i) the proximity to integrable points
[31, 32], (ii) the proximity of the energy of the initial
nonequilibrium state after the quench to the energy of the
ground state [31, 32, 37], (iii) particle statistics and the
observable considered (in fermionic systems, the momen-
tum distribution function may take much longer to relax
to equilibrium than other observables [32]); and finally
(iv) quenching the system across a superfluid/metal to
insulator transition [29, 30, 37]. Recent numerical stud-
ies for bosons and fermions in one dimension have shown
that there is a direct link between the presence (absence)
of thermalization and the validity (failure) of the ETH
[31, 32].
In the present work, we provide a detailed description

of the integrable-chaos transition in the one-dimensional
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bosonic and fermionic systems studied in Refs. [31] and
[32]. These systems are clean and have only two-body in-
teractions; the transition to chaos is achieved by increas-
ing the strength of next-nearest-neighbor (NNN) terms
rather than by adding random parameters to the Hamil-
tonian. Under certain conditions these systems may also
be mapped onto Heisenberg spin-1/2 chains. Several pa-
pers have analyzed spectral statistics of disordered [38–
42] and clean [43–46] 1D Heisenberg spin-1/2 systems.
Mostly, they were limited to sizes smaller than consid-
ered here and, in the case of clean systems, focused on
properties associated with the energy levels, while here
eigenvectors are also analyzed. Our goal is to establish
a direct comparison between indicators of chaoticity and
the results obtained in Refs. [31] and [32] for thermaliza-
tion and the validity of ETH. Our analysis also provides
a way to quantify points (i) and (ii) in the previous para-
graph, which can result in the absence of thermalization
in finite systems.

Overall, the crossover from integrability to chaos,
quantified with spectral observables and delocalization
measures, mirrors various features of the onset of ther-
malization investigated in Refs. [31] and [32], in partic-
ular, the distinct behavior of observables between sys-
tems that are close and far from integrability, and be-
tween eigenstates whose energies are close and far from
the energy of the ground state. We also find that the
contrast between bosons and fermions pointed out in
Ref. [32] is translated here into the requirement of larger
integrability-breaking terms for the onset of chaos in
fermionic systems. Larger system sizes also facilitate the
induction of chaos. In addition, we observe that mea-
sures of the degree of delocalization of eigenstates become
smooth functions of energy only in the chaotic regime, a
behavior that may be used as a signature of chaos.

The paper is organized as follows. Section II describes
the model Hamiltonians studied and their symmetries.
Section III analyzes the integrable-chaos transition based
on various quantities. After a brief review of the unfold-
ing procedure, Sec.III.A focuses on quantities associated
with the energy levels, such as level spacing distribution
and level number variance. Section III.B introduces mea-
sures of state delocalization, namely information entropy
and inverse participation ratio (IPR), showing results for
the former in the mean field basis. Results for the inverse
participation ratio and discussions about representations
are left to the Appendix. Concluding remarks are pre-
sented in Sec. IV.

II. SYSTEM MODEL

We consider both scenarios: hardcore bosons and spin-
less fermions on a periodic one-dimensional lattice in
the presence of nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping and interaction. The Hamilto-
nian for bosons HB and for fermions HF are respectively

given by

HB =
L
∑

i=1

[

−t
(

b†i bi+1 + h.c.
)
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(
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i −
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)(
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and
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[
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(
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Above, L is the size of the chain, bi and b
†
i (fi and f

†
i )

are bosonic (fermionic) annihilation and creation oper-

ators on site i, and nb
i = b†ibi (nf

i = f †
i fi) is the boson

(fermion) local density operator. Hardcore bosons do not

occupy the same site, i.e., b†2i = b2i , so the operators com-
mute on different sites but can be taken to anti-commute
on the same site. The NN (NNN) hopping and interac-
tion strengths are respectively t (t′) and V (V ′). Here,
we only study repulsive interactions (V, V ′ > 0). We take
~ = 1 and t = V = 1 set the energy scale in the remaining
of the paper.
The bosonic (fermionic) Hamiltonian conserves the to-

tal number of particles Nb (Nf ) and is translational in-
variant, being therefore composed of independent blocks
each associated with a total momentum k. In the par-
ticular case of k = 0, parity is also conserved, and at
half-filling, particle-hole symmetry is present, that is, the
bosonic [fermionic] model becomes invariant under the

transformation
∏L

i (b
†
i + bi) [

∏L
i (f

†
i + fi)], which annihi-

lates particles from filled sites and creates them in empty
ones. The latter two symmetries will be avoided here by
selecting k 6= 0 and Nb,f = L/3. For even L, we consider
k = 1, 2, . . . , L/2−1 and for odd L, k = 1, 2, . . . (L−1)/2.
The dimension Dk of each symmetry sector studied is
given in Table I.
Exact diagonalization is performed to obtain all eigen-

values and eigenvectors of the systems under investiga-
tion. When t′ = V ′ = 0, models (1) and (2) are integrable
and may be mapped onto one another via the Jordan-
Wigner transformation [47]. A correspondence with the
Heisenberg spin-1/2 chain also holds, in which case the
system may be solved with the Bethe ansatz [48, 49].

III. SIGNATURES OF QUANTUM CHAOS

The concept of exponential divergence, which is at the
heart of classical chaos, has no meaning in the quan-
tum domain. Nevertheless, the correspondence princi-
ple requires that signatures of classical chaos remain in
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TABLE I: Dimensions of subspaces

Bosons
L = 18 k = 1, 5, 7 k = 2, 4, 8 k = 3 k = 6

1026 1035 1028 1038
L = 21 k = 7 other k’s

5538 5537
L = 24 odd k’s k = 2, 6, 10 k = 4 k = 8

30624 30664 30666 30667

Fermions
L = 18 k = 1, 5, 7 k = 2, 4, 8 k = 3 k = 6

1035 1026 1038 1028
L = 21 k = 7 other k’s

5538 5537
L = 24 odd k’s k = 2, 6, 10 k = 4 k = 8

30624 30664 30667 30666

the quantum level. Different quantities exist to identify
the crossover from the integrable to the non-integrable
regime in quantum systems. We consider both spectral
observables associated with the eigenvalues and quanti-
ties used to measure the complexity of the eigenvectors.

A. Spectral observables

Spectral observables, such as level spacing distribution
and level number variance are investigated below. They
are intrinsic indicators of the integrable-chaos transition.
Their analysis are based on the unfolded spectrum of each
symmetry sector separately.

1. Unfolding procedure

The procedure of unfolding consists of locally rescal-
ing the energies as follows. The number of levels with
energy less than or equal to a certain value E is given
by the cumulative spectral function, also known as the
staircase function, N(E) =

∑

n Θ(E − En), where Θ is
the unit step function. N(E) has a smooth part Nsm(E),
which is the cumulative mean level density, and a fluctu-
ating part Nfl(E), that is, N(E) = Nsm(E) + Nfl(E).
Unfolding the spectrum corresponds to mapping the en-
ergies {E1, E2, . . . , ED} onto {ǫ1, ǫ2, . . . ǫD}, where ǫn =
Nsm(En), so that the mean level density of the new
sequence of energies is 1. Different methods are used
to separate the smooth part from the fluctuating one.
Statistics that measure long-range correlations are usu-
ally very sensitive to the adopted unfolding procedure,
while short-range correlations are less vulnerable [50].
Here, we discard 20% of the energies located at the edges
of the spectrum, where the fluctuations are large, and
obtain Nsm(E) by fitting the staircase function with a
polynomial of degree 15.

2. Level spacing distribution

The distribution of spacings s of neighboring energy
levels [2, 7, 8, 10] is the most frequently used observ-
able to study short-range fluctuations in the spectrum.
Quantum levels of integrable systems are not prohib-
ited from crossing and the distribution is Poissonian,
PP (s) = exp(−s). In non-integrable systems, crossings
are avoided and the level spacing distribution is given by
the Wigner-Dyson distribution, as predicted by random
matrix theory. The form of the Wigner-Dyson distribu-
tion depends on the symmetry properties of the Hamilto-
nian. Ensembles of random matrices with time reversal
invariance, the so-called Gaussian orthogonal ensembles
(GOEs), lead to PWD(s) = (πs/2) exp(−πs2/4). The
same distribution form is achieved for models (1) and (2)
in the chaotic limit, since they are also time reversal in-
variant. However, these systems differ from GOEs in the
sense that they only have two-body interactions and do
not contain random elements. Contrary to GOEs and to
two-body random ensembles [15], the breaking of sym-
metries here is not caused by randomness, but instead
by the addition of frustrating next-nearest-neighbor cou-
plings. Notice also that the analysis of level statistics in
these systems is meaningful only in a particular symme-
try sector; if different subspaces are mixed, level repulsion
may be missed even if the system is chaotic [46, 51].
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FIG. 1: (Color online.) Level spacing distribution for hard-
core bosons averaged over all k’s in Table I, for L = 24, and
t′ = V ′. For comparison purposes, we also present the Poisson
and Wigner-Dyson distributions. Bottom right panel: energy
difference between first excited state E1 and ground state E0

in the full spectrum times L, for L = 18 (circles), L = 21
(squares), and L = 24 (triangles).

In Figs. (1) and (2), we show P (s) across the transi-
tion from integrability to chaos for bosons and fermions,
respectively, in the case of L = 24. An average over all
k’s is performed, but we emphasize that the same be-
havior is verified also for each k-sector separately. As
t′, V ′ increases and symmetries are broken, level repul-
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sion becomes evident, the peak position of the distribu-
tion shifts to the right, and the tail of the distribution
changes from exponential to Gaussian. Excellent agree-
ment with the Wigner-Dyson distribution is seen already
for t′ = V ′ > 0.12. The bottom right panels in Figs. (1)
and (2) give the energy difference between first excited
state and ground state times L as a function of t′, V ′.
One can see there that the product is size independent
emphasizing that the ground state of the systems con-
sidered here is gapless in the thermodynamic limit, as
expected from the phase diagrams presented in Ref. [52].
Notice that the particular case of the fermions exhibits
an even-odd finite-size effect that becomes irrelevant in
the thermodynamic limit.
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FIG. 2: (Color online.) As in Fig. 1 but for spinless fermions.

To better quantify the integrable-chaos transition, we
show in Fig. 3 the level spacing indicator α, defined as
follows:

α ≡

∑

i |P (si)− PWD(si)|
∑

i PWD(si)
, (3)

where the sums runs over the whole spectrum. We should
stress that this is a discrete rather than integral sum, be-
cause P (s) as computed by us is a discrete quantity. For
a chaotic system α → 0. The indicator α is comparable
to the quantity η introduced in Ref. [22].
As seen from the bottom panels and insets in Fig. 3, the

values of t′, V ′ leading to the transition to chaos decrease
with the size of the system, suggesting that the onset
of chaos in the thermodynamic limit might be achieved
with an infinitesimally small integrability breaking term,
although the existence of a saturation value cannot be
discarded [45]. A conclusive statement would require
even larger systems or a theory for the behavior of sys-
tems approaching infinite sizes. Interestingly, α decays
faster for bosons, which indicates that the crossover to
the chaotic behavior may depend on particle statistics.
This contrasts studies of the ground state properties of
many-body systems with two-body interactions, where

0 0.1 0.2
0

0.2

0.4

0.6

0 0.1 0.2
0

0.2

0.4

0.6

0.01 0.1 1

0

0.05

0.1

0.15

α F
 -

 α
B

0.01 0.1 1
t’,V’

0.2

0.4

0.6

α

0.01 0.1 1
t’,V’

FIG. 3: (Color online.) Average α over all k’s; t′ = V ′. Top
panel: difference α(fermions) - α(bosons). Left bottom panel:
bosons; right bottom panel: fermions. Semi-logarithmic plot
in main panels and linear plot in insets. Circles: L = 18,
squares: L = 21, triangles: L = 24.

such differences were not found [53]. The top panel in
Fig. 3 shows the difference between the value of α for
fermions and bosons. In general, it diminishes with in-
creasing the size of the chain, and the point at which the
difference attains its maximum value moves toward lower
values of t′, V ′.
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FIG. 4: (Color online) Peak position of the level spacing
distribution averaged over all k’s; t′ = V ′. Top panel: dif-
ference between the peak position of bosons and fermions,
peak(bosons) - peak(fermions). Left bottom panel: bosons;
right bottom panel: fermions. Semi-logarithmic plot in main
panels and linear plot in insets. Circles: L = 18, squares:
L = 21, triangles: L = 24. Dashed line indicates the peak
position of PWD(s).

The findings in Fig. 3 are reinforced in Fig. 4, where we
show the approach of the peak position of the level spac-
ing distribution to the peak position of PWD(s) as t′, V ′

increases. The transition is faster for larger chains and
once again depends on particle statistics, with bosons re-
sponding first to the breaking of symmetries. We should
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add that equivalent results are obtained by fitting P (s)
with the Brody distribution [15],

PB(s) = (β+1)bsβ exp
(

−bsβ+1
)

, b =

[

Γ

(

β + 2

β + 1

)]β+1

,

and analyzing how the increase in t′, V ′ changes β from
0 (in the integrable region) to 1 (in the chaotic limit).
The spectral properties of models (1) and (2) discussed

here are somehow mirrored by their dynamical behavior,
which were studied respectively in Refs. [31] and [32].
(Notice that the analysis of the integrable-chaos transi-
tion performed here uses the same values of t′, V ′ con-
sidered in those works.) The smooth approach to inte-
grability, as shown in the Figs. 1-4 above, is followed by
the breakdown of thermalization observed in Refs. [31]
and [32]. However, an important difference between our
results here and the results in Refs. [31] and [32] is that
in the latter works it was not clear that the values of
t′, V ′ required for the system to thermalize would reduce
with increasing system size, whereas this is the case here
for obtaining a Wigner-Dyson distribution of the level
spacings.
Another interesting feature found in Ref. [32] is that

in the context of quenched dynamics there are differ-
ences associated with the particle statistics. In partic-
ular, it was seen that some observables such as the mo-
mentum distribution function [n(k)] in fermionic systems
may take longer time to relax to equilibrium than their
bosonic counterparts. (A related effect in which a quasi-
steady regime occurs for n(k) before full relaxation has
been suggested for higher dimensional fermionic systems
[54–56].) It was also shown in Ref. [32] that the differ-
ence between the eigenstate expectation values of n(k)
for eigenstates of the fermionic Hamiltonian with close
energies suffer from particularly large finite size effects
when compared to other observables such as the density-
density structure factor [N(k)] and when compared to
n(k) and N(k) for hardcore bosons. Interestingly, here
we find that for these finite size systems the measures
of chaoticity also exhibit differences between hardcore
bosons and fermions, where the former ones respond first
to the integrability breaking terms. Further studies will
be required to explore the relation between the latter
finding and the onset of ETH for different observables
and different particle statistics in 1D systems.

3. Level number variance

Other quantities sensitive to spectral fluctuations in-
clude measures of long-range correlations, such as spec-
tral rigidity and level number variance [8]. Both are
closely related and measure the deviation of the stair-
case function from the best fit straight line. Here, we
show results for the level number variance, Σ2(l), defined
as

Σ2(l) ≡ 〈(N(l, ǫ)2〉 − 〈N(l, ǫ)〉2, (4)

where N(l, ǫ) gives the number of states in the interval
[ǫ, ǫ+l] and 〈.〉 represents the average over different initial
values of ǫ. For a Poisson distribution, Σ2(l) = l, while
for GOEs in the limit of large l, Σ2(l) = 2[ln(2πl) +
γ + 1 − π2/8]/π2, where γ is the Euler constant. Level
repulsion leads to rather rigid spectra and fluctuations
become much less significant than in the random energy
sequences of regular systems.
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FIG. 5: (Color online.) Level number variance averaged over
all k’s. In each panel, solid lines from top to bottom: t′ =
V ′ = 0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64. Dashed line: GOE,
dotted-dashed line: Poisson.

As expected, the level number variance shown in Fig. 5
approaches the GOE curve as the strength of NNN in-
teractions increases. The proximity to the GOE result
also improves as the system size increases. However,
deviations from the GOE curve are verified for values
of t′, V ′ where the level spacing distribution is already
very close to a Wigner-Dyson, especially in the case of
fermions (right panels). In fact, the distinct behavior
associated with particle statistics becomes yet more ev-
ident when studying Σ2(l). The level number variance
for the bosonic system with L = 24, for example, coin-
cides with the GOE result for a large range of values of
l already when t′, V ′ = 0.32 and 0.64, whereas the same
is not verified for fermions. This further supports the
view that particle statistics may play an important role
in the relaxation dynamics and thermalization of finite
isolated quantum systems. On the other hand, the size
dependence of the results is an indicator that in the ther-
modynamic limit the differences between the quantities
discussed in this paper may become negligible when com-
paring bosons and fermions, a conjecture that deserves
further investigation together with its implications for
the dynamics and thermalization of those systems.

B. Delocalization measures

Contrary to spectral observables, quantities used to
measure the complexity of eigenvectors, as delocaliza-
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tion measures [11, 12], are not intrinsic indicators of the
integrable-chaos transition since they depend on the ba-
sis in which the computations are performed. The choice
of basis is usually physically motivated. The mean-field
basis is the most appropriate representation to separate
global from local properties, and therefore capture the
transition from regular to chaotic behavior [12]. Here,
this basis corresponds to the eigenstates of the integrable
Hamiltonian (t′, V ′ = 0). Other representations may also
provide relevant information, such as the site basis, which
is meaningful in studies of spatial localization, and the
momentum basis, which can be used to study k-space
localization (see the Appendix for further discussions).
The degree of complexity of individual eigenvectors

may be measured, for example, with the information
(Shannon) entropy S or the inverse participation ratio
(IPR). The latter is also sometimes referred to as number
of principal components. For an eigenstate ψj written in

the basis vectors φk as ψj =
∑D

k=1
ckjφk, S and IPR are

respectively given by

Sj ≡ −

D
∑

k=1

|ckj |
2 ln |ckj |

2, (5)

and

IPRj ≡
1

∑D
k=1

|ckj |
4
. (6)

The above quantities measure the number of basis vectors
that contribute to each eigenstate, that is, how much
delocalized each state is in the chosen basis.
For the GOE, the amplitudes ckj are independent ran-

dom variables and all eigenstates are completely delocal-
ized. Complete delocalization does not imply, however,
that S = lnD. For a GOE, the weights |ckj |

2 fluctu-
ate around 1/D and the average over the ensemble is
SGOE = ln(0.48D) +O(1/D) [11, 12].
Figures 6 and 7 show the Shannon entropy in the mean

field basis Smf vs the effective temperature for bosons
and fermions, respectively. The effective temperature,
Tj of an eigenstate ψj with energy Ej is defined as

Ej =
1

Z
Tr

{

Ĥe−Ĥ/Tj

}

, (7)

where

Z = Tr
{

e−Ĥ/Tj

}

. (8)

Above, Ĥ is Hamiltonian (1) or (2), Z is the partition
function with the Boltzmann constant kB = 1, and the
trace is performed over the full spectrum as in Refs. [31]
and [32] (see the Appendix for a comparison with effec-
tive temperatures obtained by tracing over exclusively
the sector k = 2). The figures include results only for
Tj ≤ 10; for highEj , the temperatures eventually become
negative. By plotting the Shannon entropy as a function

FIG. 6: (Color online.) Shannon entropy in the mean field
basis vs effective temperature for bosons, L = 24, k = 2,
and t′ = V ′. The dashed line gives the GOE averaged value
SGOE ∼ ln(0.48D).

FIG. 7: (Color online.) As in Fig. 6 for fermions.

of the effective temperature, we allow for a direct com-
parison of our results here and the results presented in
Refs. [31] and [32].
As seen in Figs. 6 and 7, the mixing of basis vectors,

and therefore the complexity of the states, increases with
t′, V ′, but it is only for Tj & 2 that the eigenstates of our
systems approach the GOE result. Similarly, in plots of
Smf vs energy (see Figs. 11 and 12 in the Appendix), it is
only away from the borders of the spectrum that Smf →
SGOE; in the borders, the states are more localized and
therefore less ergodic. This feature is typical of systems
with a finite range of interactions, such as models (1)
and (2) and also banded, embedded random matrices,
and two-body random ensembles [13, 15, 57].
The analysis of the structure of the eigenstates hints

on what to expect for the dynamics of the system. In
the context of relaxation dynamics, not only the den-
sity of complex states participating in the dynamics is
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relevant, but also how similar these states are. In close
connection, but from a static perspective, it is the on-
set of chaos that guarantees the uniformization of the
eigenstates. According to Percival’s conjecture [58], the
complexity of chaotic wave functions adjacent in energy is
very similar, they essentially show the same information
entropy. A further extension of this idea is Berry’s con-
jecture [59], which assumes that energy eigenfunctions in
a time-reversal invariant and ergodic system is a super-
position of random plane waves. The Eigenstate Ther-
malization Hypothesis (ETH) [20] can be related to the
validity of Berry’s conjecture. ETH states that thermal-
ization of an isolated quantum system occurs when each
eigenstate already exhibits a thermal value for the ob-
servables, that is, the eigenstate expectation values do
not fluctuate between eigenstates close in energy.
In Figs. 6 and 7 (see also Figs. 11-16 in the Appendix),

the structure of the eigenstates close in energy reveals
fluctuations throughout the spectrum as we approach in-
tegrability, whereas in the chaotic regime, fluctuations
are mostly restricted to the edges of the spectrum, with
Smf being a smooth function of energy (or temperature)
away from the borders. A related result was seen in
Ref. [41], where a clear relationship between an entangle-
ment measure and a delocalization measure for a clean
Heisenberg model appeared only in the chaotic limit (two
dimensions), being absent in its integrable counterpart
(one dimension). Fluctuations imply that eigenstates
very close in energy have different degrees of complexity
and localization properties; these states may therefore
not entirely comply with the ETH. This explains the ab-
sence of thermalization in the integrable limit. In fact,
a similar conclusion was achieved in Refs. [31] and [32]
based on plots for the momentum distribution function
vs energy (Figs. 4 and 7, respectively). There, it was
observed that fluctuations between expectation values of
states close in energy increase toward integrability.

FIG. 8: (Color online.) Shannon entropy in the mean field
basis vs energy when the system is close to integrability (top
panels) and in the chaotic limit (bottom panels), k = 2, and
t′ = V ′. Panels on the left: bosons; panels on the right:
fermions. Curves from bottom to top: L = 18, 21, 24.

Two additional points need to be made here. First,

even in the chaotic regime one sees that states in the
edge of the spectrum remain “localized” in the mean-field
basis. This is accompanied by a failure of ETH in that
regime [31, 32], and hence thermalization is not expected
to occur when the energy of the time-evolving state af-
ter the quench is close to the ground-state energy (low
effective temperatures). This is an important feature of
isolated quantum systems that will need to be considered
with more care when dealing with ultracold gases ex-
periments. Second, in comparing bosons and fermions,
larger fluctuations are verified for the latter, offering a
further justification for the deviations between statisti-
cal mechanics predictions for observables after relaxation
and the exact time-averaged result of the quantum evo-
lution observed in finite fermionic systems [32]. Note,
however, that fluctuations appear to decrease with sys-
tem size, as shown in Fig. 8 (specially noticeable in the
bottom right panel). This may be a simple reflection of
better statistics, but may suggest also that in the thermo-
dynamic limit some of the differences between fermions
and bosons may eventually disappear.

IV. CONCLUSIONS

We have presented a detailed analysis of the transi-
tion from integrability to quantum chaos for gapless one-
dimensional systems of interacting spinless fermions and
hardcore bosons. Here, the onset of chaos was dictated by
the enhancement of next-nearest-neighbor hopping and
interactions.
Our comparisons for different system sizes suggested

that in the thermodynamic limit an infinitesimal inte-
grability breaking term suffices for the onset of chaos,
although further studies are necessary for settling this is-
sue. Also, this may not warrant that thermalization will
occur for infinitesimal integrability breaking terms since,
at least for our finite systems, we could not establish a
one to one correspondence between the two effects.
We have found differences in behaviors associated with

particle statistics. The transition to chaos in fermionic
systems, as measured by level spacing indicator, peak po-
sition of level spacing distribution, and level number vari-
ance, required integrability-breaking terms larger than in
the bosonic case. With respect to delocalization mea-
sures, larger fluctuations were also verified for fermions.
We studied wave function complexity using different

delocalization measures and choices of underlying ba-
sis. Our results have shown that the similar structure of
eigenstates close in energy is a primary feature of chaotic
systems. This finding reinforces the proposal to elevate
Berry’s conjecture to the status of the best definition
of quantum chaos [20] and suggests that the onset of a
smooth dependence of delocalization measures with en-
ergy be used as an indicator of quantum chaos and a
condition for quantum thermalization.
Finally, we have shown that even when the systems

are chaotic in terms of the level spacing distribution and
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the level number variance, there are still regions in the
edges of the spectrum in which the states are less de-
localized and their structures less similar. As shown in
Refs. [31] and [32], those states do not satisfy ETH and
hence, whenever one performs a quench in a system so
that the energy of the time evolving state is close to the
ground state energy [or in other words, when the effective
temperature of the system as defined by Eq. (7) is very
low], relaxation of observables to the thermal distribution
prediction is not expected.
The analysis and findings described here are intimately

reflected by the studies of thermalization pursued in
Refs. [25], [31], and [32] and provide strong support to
those works. Moreover, the lattices we considered may
also be mapped onto other one-dimensional systems, such
as spin-1/2 chains, which indicates the broad range of ap-
plicability of our results for gapless systems.
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Appendix A: Complexity of the wave functions

We provide here further illustrations for the complex-
ity increase of the wave functions with the onset of chaos
for models (1) and (2). This is based on the computation
of Shannon entropy, Eq. (5), and the inverse participa-
tion ratio, Eq. (6). We compare results in both repre-
sentations, mean-field- and k-space-bases. Overall, the
approach to chaos is followed by the reduction in fluctua-
tions in the results for S and IPR close in energy, with the
decrease in fluctuations being slower for fermions than for
bosons.

1. Effective temperature

Figures 6 and 7 gave the entropy in the mean-field basis
vs the effective temperature. There, each temperature
Tj, for an eigenstate of energy Ej , was obtained by means
of Eq. (7) and performing the trace over the full spectrum
(let us call it Tall here). In Fig. 9, we compare Tall with
the eigenstate energies.
One may also wonder what would happen if one uses

only the spectrum of the k = 2 sector to perform the trace
and hence to compute the temperature Tk=2. Actually,
for the system sizes employed here, the values obtained
in this latter way do not differ much from temperatures
calculated considering the energies of all k-sectors [60].
Figure 10 shows that the largest disagreements between
Tall and Tk=2 occur at low energies; but even then, they
are usually not higher than 5%. Exceptions are the first
two or three lowest temperatures, which do not appear

FIG. 9: (Color online.) Tall vs energy, where Tall stands for
the effective temperature computed considering the eigenval-
ues of all symmetry sectors; L = 24. Curves from bottom to
top: t′ = V ′ = 0.00, 0.02, 0.03, 0.04, 0.06, 0.08, 0.12, 0.16,
0.24, 0.32, 0.48, 0.64, 0.96, 1.28.

in the scale of Fig. 10 due to significant discrepancies
between Tall and Tk=2.
More generally, for larger system sizes, the tempera-

ture is expected to be computed by means of quantum
Monte-Carlo simulations or other better scaling numeri-
cal approaches. This means that in general all sectors will

FIG. 10: (Color online.) Temperature difference vs Tall.
Tdiff = 100|Tall−Tk=2|/Tall, where Tk=2 is computed consid-
ering only the eigenvalues from the k = 2 sector. Left panels:
bosons; right panels: fermions; t′ = V ′. Negligible differences
are seen between the curves for L = 24 [light gray (green –
online)] and L = 21 [dark gray (red – online)] when Tall > 2,
while the curve for L = 18 (black) saturates at a higher level
(especially noticeable for fermions).
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be considered when computing T . Our results here show
that the differences with considering specific momentum
sectors are small and decreasing with the system size.

2. Results in the mean-field basis

Figures 11 and 12 show the mean-field Shannon en-
tropy vs energy for all the eigenstates of the k = 2 sector.
Notice that the whole spectrum for the k = 2 sector is
presented and not only the energies leading to T ≤ 10
as in Figs. 6 and 7. The typical behavior of banded ma-
trices is observed: larger delocalization appearing away
from the edges of the spectrum, although not as large as
the GOE result SGOE = ln(0.48D) +O(1/D), and lower
complexity at the edges [13, 15, 57].

FIG. 11: (Color online.) Shannon entropy in the mean field
basis vs energy for bosons, L = 24, k = 2, and t′ = V ′. The
dashed line gives the GOE averaged value SGOE ∼ ln(0.48D).

FIG. 12: (Color online.) Same as in Fig. 11 for fermions.

A similar behavior is seen in the plots of the in-
verse participation ratio in the mean-field basis vs en-

ergy (Figs. 13 and 14). The IPR values increase sig-
nificantly with t′, V ′, but do not reach the GOE result
IPR = (D+2)/3 [11, 12]. IPR gives essentially the same
information as S, although the first shows larger fluctua-
tions.

FIG. 13: (Color online.) Inverse participation ratio in the
mean field basis vs energy for bosons, L = 24, k = 2, and
t′ = V ′. The GOE result IPRGOE ∼ D/3 is beyond the
chosen scale.

FIG. 14: (Color online.) Same as in Fig. 13 for fermions.

3. Results in the k−basis

Identifying the mean-field basis may not always be a
simple task. For example, some 1D models may have
more than one integrable point. It may also happen that
one is so far from any integrable point that there is no rea-
son to believe that such a point has any relevance for the
chosen system. The latter case may be particularly ap-
plicable to higher-dimensional systems where integrable
points are, in general, the noninteracting limit or other
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trivial limit. Working on the mean-field basis also adds
an extra step in the computations since the diagonal-
ization of the system is usually not performed in that
basis, i.e., one needs to perform a change in basis when
computing S and IPR in the mean-field basis. This ex-
tra computation step may become very demanding when
dealing with large systems. In addition, depending on
the studies being performed, it may be of interest to an-
alyze the structure of the eigenvectors in another basis.
The problem of spatial localization, for example, calls for
the use of the site-basis.

FIG. 15: (Color online.) Shannon entropy in the k-basis vs
energy for bosons, L = 24, k = 2, and t′ = V ′. The dashed
line gives the GOE averaged value SGOE ∼ ln(0.48D).

Motivated by the discussion above, we include here
the results for S in the k-basis in which we diagonalize
our Hamiltonians. Those are shown in Figs. 15 and
16. Large entropy values are now simply related to
high delocalization with respect to the k-basis and
have nothing to do with the onset of chaos. They are
found in both integrable and non-integrable regimes

and may even surpass SGOE. Other differences between
the mean-field and k bases include: (i) the localization
increase expected for both edges of the spectrum in
banded matrices is not so evident in the k-basis, some
high energy states remaining as delocalized as the
central states; and (ii) the distinct degree of fluctuations
between bosons and fermions, even though still higher
for fermions, is not so visible anymore. In spite of these
deviations, the k-basis may still be used as a signature of
the integrable-chaos transition. The reason being that,
just as in the mean field basis, the dependence of Sk
with energy becomes smoother only in the chaotic limit.
Therefore, since reduction in fluctuations in S and IPR
for states close in energy has been pointed as a main
cause for the validity of the ETH, the k-basis may still
be used to determine where the onset of thermalization
is expected.

FIG. 16: (Color online.) Same as in Fig. 15 for fermions.
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