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Abstract

This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting con-
stituents. A variety of physically important systems of intensive current interest belong to this category: complex
atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics
on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum comput-
ers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through
inter-particle interactions, which have two fundamental components: mean field, that along with external conditions,
forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the
actual stationary states. Atfligiently high level density, the stationary states become exceedingly complicated su-
perpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring
in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization,
using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models
with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts
of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a
schematic discussion of the time evolution of such systems to equilibrium.
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1. Introduction

The goal of this review is two-fold. First, we discuss the problem of the emergence of thermalization in isolated
guantum systems, as caused by the interaction between particles (or quasi-particles). Second, we follow an approach
that allows one to link thermalization to quantum chaos, the latter arising when the inter-particle interactions are
suficiently strong. This approach has been developed during the last two decades in applications to nuclear and
atomic physics, as well as for appropriate random matrix models. Here, we show how this approach can be extended
to various models of interacting fermions, bosons, and spins, being therefore relevant for quantum dots, nuclear
magnetic resonance platforms, and the more recent experiments with cold atoms and molecules in optical lattices as
well as trapped ions. Our review can be considered as a complementary viewpoint on the subject of thermalization, to
which many papers have been recently devoted (see, for example, the r@ﬁ\ﬁ l[__iLDZ 3,4,5)]).

Thermalization of isolated many-body quantum systems is a subject that belongs to the branch of science referred
to as mesoscopic physics, the broad field living in between the macroscopic and microscopic worlds. The analysis
of the mesoscopic systems deals both with the physics of complexity on a relatively small scale and the physics of
individual quantum states, which can be studied theoretically and experimentally. The wealth of ideas coming from
these seemingly opposite directions is extremely rich, instructive and promising in applications covering nuclear,
atomic, and molecular physics; condensed matter on micro- and nano-scale; quantum informatics. It can also spread
its achievements all the way to biophysics.

In a generic thermalization process, accompanied by the growth of complexity appropriately defined through
entropy-like quantities, the system acquires typical features of statistical equilibrium. We treat the onset of thermal-
ization in an isolated quantum system as the crossover from a time-periodic (regular) dynamics to a behavior described
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by the standard methods of statistical mechanics. The key pbthis approach is to consider systems of a finite num-

ber of particles on a finite time scale. The problems of the thermodynamic limit as well as infinite time scale, which
are widely discussed in the literature, are only touched upon in the last section of this review. In particular we show
that this approach is applicable to integrable systems of few patrticles.

In classical Hamiltonian mechanics (again, apart from the thermodynamic limit), it is well understood that the
mechanism of statistical behavior is based on the so-called deterministic chaos. This term stresses that the phe-
nomenon of classical chaos occurs in strictly deterministic systems withowt prigri randomness. Deterministic
classical chaos emerges due to the non-linearity of the equations of motion and is related to the high sensitivity of the
motion with respect to small changes of initial conditions. The theory of classical chaos is nowadays well developed
and quite often serves as an extreme limit to be compared with its quantum analog, if such limit exists. In the early
days of the theory of quantum chaos, the main studies were performed for quantum systems with a well defined clas-
sical limit. The simplest example is a billiard-like system where classical chaos has been proven rigorously, based
on the ergodic theory. Nowadays, the notion of quantum chaos is used in a much broader context, due to underlying
generic relations between gquantum mechanics and classical wave mechanics. In both cases the employed tools of
analysis are very similar and one can relate the dynamics to the properties of their energy spectra and eigenstates.

With great success, the notion of quantum chaos has been extended to realistic many-body systems without any
randomness and with no classical limit, as well as to models with some intrinsic randomness or disorder in their
structure. The presence of randomness itself does not guarantee the onset of strong statistical priipedesends
on the disorder strength. The current understanding of quantum chaos is broader and ¢feeght fliom its original
meaning. However, since the underlying mechanism of quantum chaoticity is wave chaos, the methods developed in
the study of quantum chaos are found to be useful in various fields of classical physics, such as acoustics, optics, and
electromagnetism.

With respect to our claim that quantum chaos provides the mechanism driving thermalization in quantum systems,

we would like to comment on the folkloric statement thaintum chaos does not exigthe notion of deterministic
chaos was originally related to the exponential divergence of classical trajectories started at close initial conditions
in the phase space. In guantum mechanics there are no trajectories and no precisely defined initial conditions in the
phase space of canonically conjugate dynamical variables; therefore, quantum chaos was claimedeaitdbdmes.
However, as argued by Chirikov in Ref| [6], the world is governed by quantum mechanics. Therefore, if we accept
that quantum mechanicsrsal then we have to accept that classical chaos is just a mathematical approximation based
on the well developed ergodic theory. One of the main topics of this review is the discussion of manifestations of
guantum chaos in specific properties of the energy spectra and structure of eigenstates.

Another controversial question arises when considering, as in our review, quantum isolated systems. The energy
spectrum of bound systems is discrete and the dynamics is quasi-periodic, formally implying the absence of any
chaos. However, the quasi-periodicity is related to the limi oo, which should be treated as non-physical. Even
though the time scale on which chaotic behavior emerges is finite, it can be much larger than any physical time scale.
This situation has been termed by ChirikoV/ [6]lamear chaosto stress that the mechanism of quantum chaos is
different from that of classical chaos. The physical question is to establish the time scale on which quantum chaos
comes into play. As discussed by Chirikov, the mechanism leading to quantum chaos is due to a large humber of
independent frequencies and random phases that are present in the evolution of a wave packet. Since this evolution is
mainly defined by the structure of the eigenstates involved in the dynamics, the problem of quantum chaos is naturally
reduced to the emergence of chaotic eigenstates, which depend on physical parameters and initial conditions.

Since the mechanism of quantum chaos is directly related to the chaotic structure of the eigenstates, our approach
guantifies chaos in terms of chaotic eigenstates, rather than in terms of local spectral statistics. The latter is a tool
to distinguish between integrable and non-integrable systems, but our interest is in the onset of relaxation rather
than integrability, so we focus on the conditions allowing to treat the eigenstates as random (or pseudo-random)
superpositions of a large number of components. To speak of the structure of eigenstates, one has, first, to define the
basis in which we consider the system evolution. The habitual objection is that the components of the eigenstates are
specific to the choice of the basis, therefore an approach based on the eigenstates rather than on the basis-invariant
spectral statistics might be not appropriate. However the basis representation is quite often well defined and chosen
by the physics of the problem. A typical example is the concept of Anderson localization where the eigenstates
are exponentially localized in the configuration representation so that the basis is naturally chosen by physics. In
many physical systems, such as atoms, molecules and nuclei, the mean field basis, being singled out by the physical
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picture and by the reaction of the system to external pertiors is deeply ingrained in the description of numerous
processes, including that of thermalization.

The concept of the mean field is a key ingredient of our approach to many-body problems. The use of the mean
field allows one to choose the most representative basis where the structure of the eigenstates is analyzed and transpar-
ently related to the dynamics of interactions. In this approach the total Hamiltbiniaily + V of an isolated system
is split into two parts. The patiy (mean field) corresponds to non-interacting particles or quasi-particles, and the
rest,V, describes theesidualinteraction between them. If the residual interaction, even without random parameters,
is suficiently strong, the eigenstates of the total Hamiltorifacan be treated as chaotic superpositions of many-body
unperturbed states ¢fy. The interaction becomestectively stronger with the growth of the excitation energy and
the related combinatorial growth of the level density. Therefore, in an isolated system, thermalization can emerge for
suficiently high energy when the interactiofiextively mixes the simple states.

In this review we demonstrate how this approach works for various Hamiltonians, either described by random
matrices or corresponding to realistic physical systems, such as heavy nuclei, complex atoms, trapped ions, cold
atoms or molecules in optical lattices and interacting spins. An important concept is the scecaltgg shelto
which the eigenstates are compared. The partial filling of this shell is associated with the many-body localization in the
energy representation. Contrary, when the eigenstates fill completely the energy shell, this typically indicates maximal
guantum chaos. We demonstrate that the onset of chaos and thermalization in various models can be predicted by
simple analytical estimates of the width and filling of the energy shell.

The notion of chaotic eigenstates plays a key role in the statistical description of isolated quantum systems. As
mentioned by Landau and Lifshitz in theStatistical Mechanigshe full description of quantum statistical mechanics
can be done on the level of individual states, not only by means of the Gibbs distribution. However, this statement
does not answer the important questionsvbEnor under what conditionthis fact holds in practice, especially for
mesoscopic systems. The answer is: when an individual eigenstate can be treated as a very complicated superposition
of many components, in our words - in the case of chaotic eigenstates. Thus, in order to speak about thermalization
one needs to know the conditions required for the onset of chaotic eigenstates.

Characteristic manifestations of the appearance of quantum statistics in small (mesoscopic) systems are given in
Refs. ﬂ] and|I|7] and where the Fermi-Dirac distributions have been found for individual eigenstates of heavy atom
and nuclei. An actual (and practical) problem is to find the conditions under which the eigenstates can be, indeed,
treated as random (or pseudo-random) ones. Our approach suggests a tool to derive these conditions and we show
how to apply it to various specific cases.

We start our review with a detailed discussion of the general setup for the Hamiltonians in the mean-field represen-
tation (Section 2.1). Few basic models are introduced to be used subsequently. As mentioned above, these models are
characterized by a Hamiltoniath = Ho + V, where the first termly, describes the non-interacting constituents, parti-
cles or quasi-particles, while the interaction between them is embedded intdehm. This approach was originally
used by Wigner in his attempts to describe generic properties of heavy nuclei. The basic idea was that due to the very
complex interactions inside the nucleus, the many-body matrix elements corresponding to the interaction between
nucleons could be modeled as random entries, thus allowing to introduce random matrices. In the first models of such
random matrices, Wigner suggested to tekgeas a diagonal matrix with equally spaced elements\aad a banded
random matrix. In this way we come to what is nowadays known as Wigner banded random matrices (WBRM).

We introduce the WBRM model in Section 2.2 in a more general form wherartherturbedpart Hp can also
have random diagonal elements with a constant spacing on average. In this way, one caiyrelate integrable
Hamiltonian reflected by the Poisson distribution for the nearest energy level spacings.\Adtfoein be treated as
a residual interaction that cannot be embeddedlifidue to its random structure. Such matrices can be considered
as a generalization of full random matrices, described by the well developed random matrix theory (RMT). The full
random matrices can be treated as an extension of WBRM, when the mean-field part is neglected and the band size of
V spreads to the total size of the matrix.

Concerning full random matrices, it is known that their total level density has a nonphysical semicircle form. This
and other facts led to the conclusion that in order to have a closer relation to realistic many-body systems, one needs
to introduce single-particle states. This was realized by fixing a finite number of quantum particles distributed over
a number of single-particle levels. Thé&-diagonal matrix elements carry on an important feature of the dynamics,
namely the rank of the interactions. In many applications one can assume that the inter-particle interaction is two-body.
In this case the rank equals two and the corresponding ensemble of such matrices consisting of both the mean-field
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partHp and the random two-body interactiok’shas been termed two-body random ensemble (TBRE) as discussed

in Sections 2.3. These matrices are not fully random since the two-body type of interaction leads to the emergence of
a large number of zero matrix elements and to correlations between the non-zero elements. Still, many properties of
the spectra, such as the level spacing distribution, are quite close to those known for full random matrices.

In order to show that the general approach, initially derived in terms of WBRM and TBRE models, cfiedse e
tively applied to realistic physical systems, in Sec. 2.4 we introduce two one-dimensional (1D) models of interacting
spins 1/2. Since one of our goals is to compare global statistical properties emerging in integrable and non-integrable
models, we consider an integrable spja-inodel and a non-integrable one. In the same section we also discuss
another physical system, namely, the shell model, widely used in nuclear physics.

In Section 3 we consider the concept of gieength functior{SF) introduced long ago in nuclear physics in order
to characterize the main properties of the relaxation process inside heavy nuclei. Relaxation occurs in nuclei after
the initial excitation of a given many-body statetdf, and develops due to the interactigrbetween nucleons. The
SF is the projection of a particular basis state, defined by the unperturbed HamiliGnianto the exact stationary
states oH. Defined in the energy representation, the width of the SF, in general, characterizes the relaxation time for
the initial state to spread among other basis statd4,o0fThe mathematical definition of the SF is given in Section
3.1, together with the discussion of how it can be computed. The SF can be associated with the local density of states
(LDOS) used in solid state physics. We give examples of the SF obtained numerically for the nuclear shell model and
for the spin-12 models.

In addition to the width of the SF, another important feature is its shape. In Section 3.2 we reproduce the “standard
model” of the Breit-Wigner (BW) shape (or, mathematically referred to as Lorentzian) typical of situations where
the complicated states admixed to the initial excitation are of approximately the same degree of complexity; this
corresponds to the Fermi golden rule limit but is not necessarily related to the weakness of interaction and perturbation
theory. In typical physical systems, however, due to the finite energy range of inter-particle interactions, the tails of
the SF deviate from the Lorentzian. This fact is demonstrated with numerical data obtained for few nuclei in the
framework of the shell model. Furthermore we show that the shape of SF typically changes from Breit-Wigner to
Gaussian as the interaction increases. This crossover is thoroughly studied for WBRM and spin systems. This result
is directly relevant to the onset of chaos and thermalization. The Gaussian shape of the SF implies chaotic states that
fully occupy the energy shell defined By consequently leading to a fast statistical relaxation.

In Section 3.3 we use a nuclear physics example of the situation where the inteNdsovery strong and
one is beyond the Fermi golden rule regime. Such a situation arises for heavy nuclei and leads to the so-called
chaotic enhancement of perturbatiomhis dfect leads to an impressive result of the large parity violation that was
observed experimentally. We show how the enhancement of perturbation, that is directly due to the chaotic compound
eigenstates in the region of high level density, helps to explain the experimental results.

For a long time the onset of quantum chaos was mainly linked to specific properties of fluctuations in the energy
spectrum. These fluctuations were thoroughly studied for full random matrices and the results have served as a refer-
ence for the comparison with the spectral properties of realistic physical systems. The quantities associated with the
eigenvalues, such as the level spacing distribui¢s), can be instrumental in the interpretation of results obtained
with realistic many-body systems in experiments with poor resolution. Important complementary information is con-
tained in the structure of eigenstates, which justifies our focus on the problem of the emergence of chaotic eigenstates
as a function of the model parameters. In Section 4.1 we briefly mention the reasons for shifting our interest from
spectral statistics to chaotic eigenstates and discuss pioneer studies on this subject.

While some of the paradigmatic models for one-body chaos, such as billiard-type systems, are characterized
by eigenstates spread all over the unperturbed basis, this does not typically occur when many-body systems are
considered. This is due to the finite rank of the inter-particle interactions in realistic systems. As a result, the total
HamiltonianH of real systems cannot be associated with full random matrices. Despite having a large number of
uncorrelated components, many-body eigenstates typically span over a finite region of the Hilbert space. One of the
first studies of such chaotic eigenstates was performed by Chirikov in 1985 when he analyzed experimental data for
highly excited states of the cerium atom [8]. In Section 4.1 we compare the chaotic structure of the eigenstates of
the cerium atom obtained by a direaib-initio computation with the results of the TBRE model. We also discuss
the chaotic eigenstates of heavy nuclei, when the dimension of the many-body basis defined by the orbitals of non-
interacting nucleons turns out to be extremely large.

The notion of chaotic eigenstates plays a key role in the statistical description of isolated quantum systems. As
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mentioned by Landau and Lifshitz in theStatistical Mechanicshe full description of quantum statistical mechanics

can be done on the level of individual states, not only by means of the Gibbs distribution. However, this statement
does not answer the important questionsvbEnor under what conditionghis fact holds in practice, especially for
mesoscopic systems. The answer is: when an individual eigenstate can be treated as a very complicated superposition
of many components, in our words - in the case of chaotic eigenstates. Thus, in order to speak about thermalization
one needs to know the conditions required for the onset of chaotic eigenstates.

Due to the importance of the study of individual eigenstates, we discuss in Sections 4.2-4.4 their main statistical
characteristics. We start with ti8hannon, or information, entropjt quantifies the fective number of components
of a given eigenstate in a specific basis and can serve as a measure of chaos or complexity of individual eigenstates.
The value of this entropy characterizes the dynamical interrelationship between the basis vectors of the representation
used and the eigenbasis of the full Hamiltonian. Similarly to the studies of localization in disordered systems, the
effective number of components of an eigenstate can be associated with its localization length in the chosen basis (in
this case, in the many-body basis of the unperturbed Hamiltddg@n As a paradigmatic example we consider in
Section 4.2 thesd-shell model of nuclear physics and study how the localization length depends on energy. In Section
4.3 the statistical moments of the component distribution are discussed. Specifically, the second moment defines the
inverse participation ratipwhich is commonly studied in solid state physics. In Section 4.4 we present results for
theinvariant entropy which, contrary to the Shannon entropy, is basis independent. We show how this quantity can
be efectively used for the description of phase transitions or crossovers occurring in systems described by chaotic
eigenstates. We demonstrate tlieetiveness of the invariant entropy by employing it to the nuctéiy where
there is an interplay between isoscalar and isovector pairing.

Section 4.5 is dedicated to the important question of the relationship between chaotic eigenstates and the energy
shell. The latter defines the maximal energy region that can be occupied by the eigenstates with respect to the unper-
turbed energy spectrum bfy. The width of the energy shell is entirely determined by the interaction¥erwiith the
use of the WBRM and spin models, we show how the width of the energy shell can be estimated, and how it gets filled
as the interaction strength increases. We argue that, for a finite number of particles distributed over a finite number of
single-particle levels, the crossover to chaotic eigenstates filling the energy shell is accompanied by the change of the
strength function from the Breit-Wigner to the Gaussian-like shape. This is used to obtain approximate estimates for
the onset of fully chaotic states and thermalization. In fact, such a crossover from localized to extended eigenstates
with respect to the energy shell can be associated with many-body delocalization, a subject still under investigation.

In Section 5 we discuss how thermalization can occur in isolated finite systems of interacting particles. We start
(Section 5.1) by noting that the idea of thermalization in systems isolated from a heat bath is not usually treated
in standard textbooks on statistical mechanics. There are many possible definitions féé¢heestemperature in
such cases. We show that, in a finite system with a self-consistent mean field and chaotic eigenfunctions, various
thermometers used for defining thextive temperature do agree. In a sense, the system behaves as its own heat
bath and basic notions of statistical mechanics can still be employed. For example, one of the general properties
of thermalization in conventional statistical mechanics of non-interacting identical particles is the emergence of the
standard Fermi-Dirac and Bose-Einstein distributions. From these distributions one can define the single-particle
temperature. In Section 5.2 we demonstrate the emergence of the Fermi-Dirac distribution in the realistic nuclear shell
model. An essential part of this discussion supported by numerical data covers the onset of Fermi-Dirac distribution
seen at the level of individual compound states. We conclude Section 5.2 with the comparison of the single-particle
temperature to the thermodynamic temperature defined through the density of states. Under the conditions of validity
of a single-particle thermometer, the two temperatures essentially coincide, thus indicating that, indeed, one can speak
of genuine thermalization in the absence of a heat bath. We also take the opportunity to briefly discuss the meaning
of a thermometer.

Section 5.3 discusses the relevance and interrelation of the standard canonical distribution. For this, the TBRE
model with a given number of fermions occupying a finite number of single-particle levels is used. We start with the
definition of the occupancies distribution directly involving the structure of the chaotic eigenstates. The key point here
is that when the eigenstates consist of a very large number of statistically independent components, the occupation
number distribution can be evaluated in terms of the shape of the eigenstates written in the unperturbed basis. Thus, we
do not need to know the eigenstates themselvasstead it is sfficient to know the=-function that is the envelope
of the distribution of the projections of exact eigenstates of the total Hamilt¢hiamto the unperturbed states of the
HamiltonianHy. When computing th&-function, we do not need to average over few eigenstates, but can instead use
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the "moving window” method for a single eigenstate. The asialpf theF—function and the strength function allows
one to identify chaotic eigenstates. In this section we also show how the occupation number distribution obtained
from anisolatedeigenstate is related to the canonical distribution.

The explanation of how the Fermi-Dirac distribution emerges in the TBRE model is given in Section 5.4. If the
inter-particle interaction is weak, one cannot speak of the occupation number distribution as a smooth function of
energy. When the perturbation strength exceeds some critical value, the occupation number distribution has a form
close to the Fermi-Dirac function allowing for the introduction of temperature in a consistent way. Rough analytical
estimates allow one to describe this distribution in terms of the model parameters.

Different definitions of temperature are discussed in Section 5.5. We introduce the canonical temperature and
show how, in the TBRE model, this temperature reproduces the energy dependence of the temperature defined by
the global level density. We also provide a detailed analysisftérdint temperatures for a model of two interacting
spins. It is shown that for high values of spins, when the classical limit is approached, the eigenstates turn out to
be quite chaotic in some energy region. Thus, even for two interacting particles one can speak of chaotic states and
thermalization at sticiently high energy.

In Section 6 we come to the description of dynamical properties of isolated systems by relating them to the strength
function and the structure of the eigenstates. This subject is now under close scrutiny due to the experiments with
trapped ions and with interacting particles (fermions and bosons) in optical lattices. We start with the definition of
the survival probability (Section 6.1), which is simply the Fourier transform of the strength function. It is commonly
assumed that in quantum systems the survival probability decreases exponentially in time, apart from a very short
initial quadratic decay. The exponential behavior is a direct consequence of the Breit-Wigner form of the strength
function. If the strength function has a Gaussian form, as happens at a relatively strong inter-particle interaction, the
Gaussian decay can last for a very long time prior to the typical restoration of the exponential behavior. With the use of
the TBRE model we show how these two regimes emerge depending on the intevadtieralso present analytical
and numerical arguments describing the restoration of the exponential behavior after a long Gaussian decay. In the
very long time limit, the time dependence of the decay agrees with the power law defined by the lower boundary of
the energy spectrum.

In Section 6.2 we show numerical and analytical results for the survival probability for the spin models. The same
transition in the strength function from a Breit-Wigner to a Gaussian form as a function of the perturbation strength
is observed and studied for both chaotic and integrable systems. We also analyze how the dynamics depends on the
choice of the initial state. This is particularly important for experiments with optical lattices and trapped ions, with a
relative freedom in the preparation of the system. We also show that on a certain time scale the dynamics in integrable
and non-integrable models may be very similar. Finally, we briefly discuss situations where the decay of the survival
probability is faster than Gaussian.

In Section 6.3 the relaxation process is related to the notion of the energy shell by studying the spreading of
wave packets. In contrast to one-body chaos, the spread of probability in the many-body unperturbed basis is not
diffusive but it can be described by the so-caltedcade dynamiam the Cayley tree. The data for the TBRE model
demonstrate how the dynamics depend on whether the strength function has a Breit-Wigner or a Gaussian form. With
the use of the cascade model, one can obtain simple expressions for dynamical quantities, such as the Shannon entropy
of time-dependent wave functions. In some practical limits, the increase of the Shannon entropy has a simple form,
being linearly proportional to time up to the saturation due to finite stects. This linear dependence is a generic
property of the dynamics corresponding to eigenstates fully extended in the energy shell. We also discuss how the
evolution of the participation ratio and of the occupation number distribution depend on the inter-particle interaction.

In Section 6.4 we show that the linear increase of the Shannon entropy with time can be used to detect the onset
of strong chaos and statistical relaxation. To demonstrate this we consider a one-dimensional model of interacting
bosons. The dynamics is periodic in time for a relatively weak interaction, and when the interaction strength ex-
ceeds some critical value, the Shannon entropy clearly displays a linear time dependence, in correspondence with the
analytical predictions. The crossover from the time-periodic dependence of the Shannon entropy to the linear time
dependence corresponds to the onset of the so-called Tonks-Girardeau regime which was predicted analytically long
ago.

In Sec. 7 we briefly discuss the relevance of our approach to recent studies of the onset of thermal equilibrium
in view of the so-calleeigenstate thermalization hypothese argue that this hypothesis, essentially equivalent to
the classical statement of Landau and Lifshitz, is a natural consequence of the onset of thermalization, but it does not
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define the conditions for it to occur. Our approach suggestsviy to identify these conditions.

2. Hamiltonians

2.1. Basicideas

In this review we consider various models of isolated systems of interacting particles described by a Hamiltonian
that usually can be separated into two parts,
H=Ho+V, (2.1)

with Hq describing a finite number afon-interactingparticles or quasi-particles kept together by some field, external
or self-consistent. Frequently, the paig is treated as the unperturbed Hamiltonian &id considered asesidual
interaction usually of two-body type. The strength of the interaction can be regulated driving the system from the
perturbative regime to that of strong interaction and quantum chaos. By the latter we mean specific properties of
spectra and eigenstates, that allow us to develop a statistical approach. As we demonstrate below, the main property
of quantum chaos can be attributed to a chaotic structure of eigenstates in the unperturbedasis of

In what follows we discuss both the dynamical systems without any random parameters as well as the systems
where the matrix elements of the Hamiltoni@an{2.1) may include random entries or can be completely random and
uncorrelated. In such applications we stagemblesf related Hamiltonians which embodyfidirent realizations of
randomness. It is worth to stress that the randomness of the perturfddtipitself does not guarantee the emergence
of chaos and the validity of a statistical description. On the other hand, realistic interactions without random elements
naturally produce chaotic features in a region of &isiently high level density. The two-body nature of typical
interactions leads to important restrictions, such as the band-like structure of the Hamiltonian matrix and the presence
of many vanishing and repeated matrix elements, which we will discuss later on.

The separation of the total Hamiltonidn {2.1) into two parts is common in the description of many-body systems,
including complex atoms and nuclei, where the starting point isnban field approximationThe mean field can
be introduced phenomenologically or it can be derived self-consistently with the aid of variational principles. In
mesoscopic systems such as cold atoms in trelpSs created by external fields. In these cases, the mean field
generates a “natural” basis, where the most regular part of the dynamics is absohetthus defining the single-
particle states (quasi-particles) with their quantum numbers and symmetries. In contrast, the residual interaction
may include the correlations between particles and fluctuational terms which cannot be embedded into the mean field.
In this way, the system acquires both collective motion on the background of the mean fietthaatiddynamical
features. Although the choice of the mean field is not uniquely defined, one can expect that if the most regular features
of a system are well described by, the main results are not sensitive to the details coming from the specific choice
of the mean field.

Many ideas for a treatment of systems with strongly chaotic properties came frorartdlem matrix theory
(RMT), formulated in 1951-1963 by the works of Wigner, Dyson and others (see, for example, the collection of main
contributions edited by Porte [9]). The original intention of Wigner was to use random matrices in order to describe
statistical properties of complex nuclei and nuclear reactions.

Initially the applications of the RMT were limited to atomic and nuclear physics. According to the suggestion
by N. Bohr Eb] to consider nuclear reactions induced by slow neutrons as proceeding in two separated stages (the
first one related to the excitation of a nucleus caused by the primary interaction of the captured neutron, and the
second one as the decay process after a relatively long internal evolution), the multiple narrow neutron resonances
correspond tawompound statewith a long lifetime that allows for intrinsic equilibration and actual independence
of those two stages. The processes governed by very complicated interactions in compound nuclei can be described
only statistically, and here the random matrices provide an appropriate and powerful instrument. Indeed, if one
assumes an extremely complex character of strong interactions between the nucleons in the excited nucleus at high
level density, one can imagine that in the considered energy region the Hamiltonian matrix is so complicated that
its matrix elements can be treated as random entries. This interaction keeps memory only of constants of motion
(energy, angular moment, parity, isospin in nuclei) creating exceedingly entangled quasistationary wave functions, a
process that can be compared to thermal equilibration in macroscopic bodies. In each class of states with the fixed
values of exactly conserved quantities, the components of the many-body stationary states in the mean-field basis
are practically uncorrelated, and their statistical distribution is typically close to the normal one. Through multiple
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avoided level crossings, the spectral repulsion forms agiercrystal structure of the levels similar to what is known
in simple billiard-like systems which reveal one-body classical chaos in an appropriate classical limittf@iende

is in the mechanism of chaotizatienhere it is governed by the interparticle interactions rather than by the violation
of the billiard symmetry. The complicated interactiorfieetively heat the system, so that the idea of many-body
chaos reveals its connectiongtatistical thermalizatiothat will be one of the main topics of this review article.

Instead of a dynamical description of nuclear reactions, Wigner focused the attention on the statistical aspects of
nuclear spectra revealed by the neutron scattering tﬂ1|1_,_| 13, 14]. This idea is similar to the approach used in
the modern theory of dynamical chaos emergimglassical systenue to a local instability of motion. As is now
well understood, the statistical method, that seems to be an approximation to the “genuine” deterministic description,
is in fact theonly adequate wajo treat chaotic systems. The link between the dynamical (with a deterministic time
evolution) behavior of a large number of constituents of a quantum system and the statistical approach can be justified
by the negligible role of tiny correlations between the “true” matrix elements of the Hamiltonian and the numerous
components of the generic initial wave function.

At a first glance, such an approach to the spectra of real systems looks misleading since every system has its own
specific set of quantum levels forming its density of states. However, the point ls¢hdy the fluctuating properties
of energy spectra may have universal properties independently of the global evolution of the energy spectrum. At the
excitation energy where the level density is so high that the mixing of the mean-field states by residual interactions
becomes #ectively strong, the wave functions expressed in the mean-field basis are inevitably extremely compli-
cated superpositions and their statistical properties acquitersal featuredetermined mostly by the fundamental
symmetry laws. This is the starting point of the RMT. At the time of early works by Widﬁérﬁiﬂﬂ& 14], this
assumption was far from being obvious. Later on, various experiments with heavy nuclei (see Refs[_ih [15, 16]),
complex atoméﬂﬂS] and many-electron moIeCLIEH_L_lb, 20] confirmed the predictive power of the RMT, even if the
chaotic RMT limit is not always fully reached in reality.

2.2. Wigner Band Random Matrices

In the first attempt to establish the relation between statistical properties of complex quantum systems and ran-
dom matrix modeldﬁﬂﬂ@lﬂ, Lane, Thomas and Wigner introduced an ensentialedtsd matricefor the
description of conservative systems like atomic nutléi [21]. Assuming time-reversal invariant dynamics, an ensemble
of real symmetric infinite Hamiltonian matrices was considered,

Hmn = éd0mn+ Vmn, & =ND,  Vmn = Vam, (2.2)

The diagonal part was modeled with an equidistant spectrymckét fenct), en1 — en = D = 1/po, wherepg
is the level density of the “unperturbed” Hamiltoniaty = edmn. In Refs. [11]12[ 13, 14] the absolute values
of the df-diagonal matrix elements were taken equil, = v, while the signs were assumed to be random and
statistically independent within the band of width &ound the main diagonal. In a more general case thoroughly
studied in Ref.[[22], the diagonal elemetsare random entries, the matrix eleme¥s, are distributed randomly
with (Vmny = 0 and(V3,) = v? for [m— n| < b, while Vi, = 0 outside the band (here and below the angular brackets
stand for the ensemble average). The assumption of random character of the “pertuNdatian”a pioneering
step in the statistical description of complex quantum systems. In his seminal paper of 1955, Wigner wrote that the
considered quantum-mechanical systéare assumed to be so complicated that statistical consideration can be
applied to therh

In the model[(Z.R), the unperturbed densityis constant which simplifies the analytical treatment. In modern
presentations of banded random matrices (BRM), it is typically assumed that the unperturbed spekksioorcé-
sponds to thé€’oisson level statistid@], so that the eigenvalues are random entries with the corestardagedensity
po, instead of the picket fence spectrum used by Wigner. The new element here is the presence of large fluctuations
in the unperturbed spectrum.

Two important features of the BRM should be stressed. The first point is that the band-like appearance of a matrix
is not invariant with respect to orthogonal transformations of the basis. The special basis diagohiglstiogld be
thought of as corresponding to the mean-field representation. In this way it is assumed the existence of a physically
singled out basis in which the treatment of tliéal Hamiltoniaris preferential. The second point is that the banded



structure reflects a finite range of interaction in the eneegyasentation that may emerge from the physical selection
rules.

After Wigner’s pioneering work, the BRM were almost forgotten (curiously enough, by Wigner hi@ll, 12,
[13,[14]), apparently because of their mathematical inconvenience, namely the absence of invariance with respect to
basis rotations. Due to this, attention was paid mainly to full random matrices for which a fairly complete mathemati-
cal analysis has been develodeE,@, 15]. However, in real physical applications full random Hamiltonian matrices
can be only used to describe tloeal statistical propertiesf spectra and not the global ones. For this reason, such
matrices were criticized by Dysoﬂ@@ 27] because of the “unphysical” semicircle law of the total level density.

2.3. Two-body random interaction

In order to use the random matrix approach with a more realistic level density, an ensemble of random matrices was
suggestedin Refﬂbla@ 30/ 31, 32] that takes into accounthloely nature of interaction between the particles (for
details and other references, see [15]). Since in the majority of physical applications the main contribution is due to
two-body interactionsn(= 2), this kind of random matrices, knownt-body random interactiofTBRI) matrices,
has been studied in great detail. The ensemble of such matrices, referred to as the two-body random ensemble (TBRE),
is defined in the secondary quantized form as

1
H = Z esalas + > Z Vs,5,505 AL AL 8s,8s,- (2.3)

Here the termHy = Y esalas corresponds to non-interacting particles ahdbsorbs the two-body interaction. In a
more general contexiy can be treated as a regular one-body part of the total Hamiltonian written in the mean-field
basis, and/ represents theesidual interactionwhich, due to its very complicated structure cannot be embedded into
the mean field. The entrieg represent single-particle (or quasi-particle) energies corresponding to single-particle
stategs), while a; andas are particle creation and annihilation operators for fermions or bosons. These operators
define the many-particle bagisn) = all . .aln |0) of non-interacting particles, where the symhkdhbels the whole
n-body configuration. In this basid, is diagonal with eigenvalues, = ) s defined by the single-particle levels
occupied in the many-body stdien).

The matrix element¥s,s,s,s, Of the perturbatiovV describe a two-body process with indicgss,, 3, &4 indicating
initial (s3, 1) and final &1, s») single-particle states connected by this interaction. It is convenientto reorder this basis
according to the growth of unperturbed enerdigsvith an increase of the inddk= 1, ..., N'. The sizeN of the
basis forH depends on the statistics of the particles and practical truncation of the single-particle space. For instance,
in the case of Fermi-statistics, any single-particle state can be occupied by one particle only, and

Ng!

N = NN — Nyt

(2.4)
whereN;s is the number of single-particle levels aNg < Ns is the number of particles occupying these levels. The
total number of many-body states increases very fast with the particle number and the number of available orbitals.

In the TBRI model all matrix elementg s,s,s, are assumed to be random independent variables. However, due
to the two-body nature of the interaction filg > N, > 1, the matrixHy turns out to be band-like, with many
vanishing elements inside the band, see example inFig. 1. The total nimifenon-zero elementsl,, in each
line of H can be estimated a§ ~ %NéNg which is much less than its siz&. Moreover, many non-vanishing
matrix elements turn out to be correlated, even in the case of complete randomness of the interaction matrix elements
Vs s,s5- This is a consequence of thebody character of interactions with<< Np: the interaction matrix elements
are the same for any configuration of spectalty € n) particles occupying single-particle states not involved in the
given matrix elemen¥. As shown in Ref.[[34], this is important when analyzing the statistical properties of some
observables. Apart from the sparsity and intrinsic correlations in TBRI matrices, andtieeece from the Wigner
BRM with the sharp band boundary is that the amplitudes of the matrix elerHgndecrease smoothly away from
the diagonal. It should be stressed that all these peculiarities are quite typical for physical systems such as complex
atoms and nuclei (see, for exampla [|§5, 1)).

Quite specific properties emerge if the Hamiltonian reveals additional symmetries so that the Hilbert space can be
decomposed into separate subspaces of states, and the dynamics within each subspace is either regular or chaotic. For
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Figure 1: Sparsity of the Hamiltonian matrix,, n, for N, = 4 particles and\s = 11 single-particle levels. Black points are non-zero matrix
elements of two-body interaction (after[33]).

instance, an unusual result was observed in a simple simulatibn [36] for few fermions occupying a single level with

a large total angular momentum quantum numpand interacting through all types of two-body matrix elements

of random magnitude but restricted by rotational invariance. The new aspect here is the interrelation between non-
overlapping classes of states due to the dynamics driven by the same Hamiltonian. The unexpected result is a clear
predominance of ground states of total spia 0. Statistical consideratiorﬂ37] qualitatively explain this by assuming

that the wave functions are randomized and prefer maximal or minimal values of total spin (precursor of ferromagnetic
or anti-ferromagnetic order). It is interesting that the obseriateseems to be fierent from the spin glass system

[@], where the ground state spin on average grows as the square root of the Nywhhénteracting spins. Other

regular collective fects also appear with significant probability in such systems with random interaJﬂ)Ej[%, 40],
where a quantitative theory is still absent.

One can also use random interactions in order to study possible landscapes arising in the sectoffereith di
values of random parameters. This was done in the interacting boson models [41], where it was possible to delineate
the parameter space areas correspondingfterdnt symmetries of the system, and in the nuclear shell model [39],
where the random interactions allowed one to find out the sectors of the random parameter space responsible for the
predominance of prolate deformation of the mean field.

2.4. Realistic models

In order to demonstrate our approach to the problem of thermalization, below we consider few realistic models
of interacting spins-12, as well as the nuclear shell model widely used in nuclear physics. Contrary to TBRI, these
models are deterministic since they have no random entries. However, under some conditions their main properties
can be compared with those described by random TBRI Hamiltonians.

2.4.1. Spin-2 models
Spin-¥2 models describe systems experimentally studied with nuclear magnetic resonance, optical lattices and
trapped ions. They also model real magnetic compounds and quantum computers. Two models of interacting spins
1/2 are considered here. One is completely integrable (analytically solvable), and the other is non-in@@le [42, 43].
The Hamiltonian for the integrable case (Model 1) has only nearest-neighbor (NN) interaction:

i i+1 i+1°

L-1 L-1
Hi=Ho+uVi,  Ho= Y J(SISiy+SS!,).  Vi= ) SIS (2.5)
i=1 i=1

whereHg corresponds to the unperturbed part of the Hamiltonian and determines the mean field basis, thed
strength of the perturbation. Above and bel@ws the number of sites, ar§{“ are the spin operators at siteWe

11



assume botl andu positive, thus favoring anti-ferromagnetic order. The coupling paranetetermines the energy
scale and will be set to 1.

The unperturbed paHy, known as the flip-flop term, is responsible for moving the excitations through the chain.
It is integrable and can be mapped onto a system of noninteracting spinless fefmions [44] or hardcoré Hosons [45].
The Hamiltonian remains integrable with the addition of the Ising intera&tipmo matter how large the anisotropy
parametey is. The total HamiltoniarnH,, referred to as the XXZ Hamiltonian, can be solved with the Bethe ansatz

[46].

Model 2 is described by the Hamiltonian,

L-2
Hy = Hi+ Vo, Vo= > J[(SIS!, +SISY,,) + uSISE,|, (2.6)
i=1

that includes both nearest and next-nearest-neighbor (NNN) couplings. Here the mean-field is defipechimh

is the same XXZ Hamiltonian as in Model 1. The parameter O refers to the relative strength of the NNN

exchange determined by the perturbatibrand the NN couplings characterized Hy. The dynamics generated by

this Hamiltonian becomes chaotic when the strengths of the NN and NNN couplings are comparable. In particular,

for finite systems, there is a threshold valuelabove which the level spacing distribution becomes of the Wigner-

Dyson form [47] 48, 49]. The threshold value decreasdsiasreases suggesting that, in the thermodynamic limit,

the Wigner-Dyson distribution might be achieved with an infinitesimally small integrability breaking E[SO, 51].
Both Model 1 and Model 2 conserve the total spin in #hdirection, Sy, The Zeeman splittings, caused by a

static magnetic field in the direction, are the same for all sites and are not shown in the Hamiltonians above. We

note that the presence of random Zeeman splitﬁb@ﬂ& 54] or even a single Zeeman spfithegtdrom the

others[@SE 1] can also led Model 1 to show a Wigner-Dyson distribution. A comparison between the latter case

and Model 2 is presented in Ref. [51].

2509 250/
200 200
150 | 150

=
100 §

100

50

50 100 150 200 250 0 50 100 150 200 250
m m

Figure 2: (Color online.) Absolute values of the matrix elemseof Model 1, eq.[{2]5), left panel, and Model 2, ¢g.](2.6), With 0.5 (right panel)
for L = 12 andu = 0.5. The mean-field basis is ordered in energy. Only even states are considered. Light color indicates large valli€s (after [43]).

In Fig.[2 the structure of the Hamiltonian matrices is shown for both models in the basisfof Model 1 and
in the basis oH; for Model 2, for typical values of control parameters. The global structure of these Hamiltonians
is similar to that emerging for the TBRI Hamiltonidn (R.3), although some peculiarities of the Models 1 and 2 can
be seen. We observe a more regular structure of the Hamiltonian for the integrable Model 1 in comparison with the
non-integrable Model 2. Some kind of symmetries can be detected for Model 1, which can be treated as a fingerprint
of the integrability of this model. In spite of this, many properties of the eigenstates, as well as of the dynamics for
these two models look quite similar and can be compared with those of the TBRI madiel (2.3) with random two-body
interaction.
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2.4.2. Nuclear shell model

Another example of a model describing physical systems with global features similar to TBRI is the nuclear
shell model (frequently calledonfiguration interaction Various versions of this model have similar global features.
Here the nucleons are supposed to move in the mean field (for example, that of the isotropic harmonic oscillator
with added spin-orbit coupling or another potential well) and interact through two-body interactions allowed by the
global conservation laws (angular momentum, parity, isospii,). The orbital space is truncated; one of the best
examples is provided by thed-model that includes, both for protons and for neutrons, only tiuegels,ds,,, dz/»
ands;;», whose energies are taken as parameters. Supposedly, this space should describe all isotopes between doubly-
magic oxygenéﬁog, and caIciumé%Cago. Only 63 two-body matrix elements conserving the constants of motion
are possible here; they are taken from experimental data and renormalized to account for the truncation of the space
[E|]. Thousands of observables corresponding to low-lying nuclear states and transition rates between them are well
described, and this characterizes the reliability of the model as a powerful Workinﬁbol [57]. Varying the input, one
can extract the matrix elements mainly responsible for specific observable frehds [39]. Similar constructions are used
in atomic physics, quantum chemistry, and for cold atoms interacting in dﬂ@ 59, 60].

In models of this type the full large-scale diagonalization of Hamiltonian matrices in 8ah) éector provides
much more eigenstates than resolved experimentally, especially at high energy where the level density increases ex-
ponentially. Then we have at our disposal a good model of interacting fermitimsut any random parametek&lith
an increase of excitation energy and level density, the stationary states become exceedingly complicated combinations
of simple single-particle excitations. Then the fully deterministic system reveals the signatures of quantum chaos,
which, therefore, becomes a generic property of the conglomerates of interacting particles. These signatures are close
to those of band random matrix ensembles even if the distributions of many-body matrix elements are not Gaussian.

3. Strength Functions

3.1. Definitions

The original Wigner’s motivation for utilizing banded random matrices was a physical interest in the so-called
strength function The relation to physical aspects of the strength function was for the first time introduced in appli-
cation to molecular potential energy curves by Ricé [61]; the useful formulation can be found in the Hook [62]. The
strength functior(E) refers to the fragmentation of a basis stf@ver exact eigenstatgs) of the full Hamiltonian

22),

Hia) = E%a). (3.1)
We introduce the expansion of the eigenstates in the form
)= > Clky, k= Cle; (3.2)
k a

here and below, the notations use the low indices for the basis states, and upper indices for the exact eigenstates. The
expansion ofa) depends on the choice of the basis and in our problem the natural choice is the basis of the eigenstates
of Ho: if Ho corresponds to the mean field, the first expangion (3.2) shows the degree of mixing of “simple” mean-field
states in the actual wave function of an eigenstate.
Wigner defined thetrength functior{SF) as the weighted level density [see below Hgs] (3.8)[and (3.9)],
FW(E) = D ICEPS(E - E). (33)
The strength function is normalized,

f dER(E) = ) ICiP =1, (3.4)
and itscentroid Ej, coincides with thediagonamatrix element of the full Hamiltonian in the basis stie
Ex = de F(E)E = Z E?ICZ? = (KIHIK). (3.5)
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The inclusion of diagonal matrix elements\fin Hy eliminates the degeneracy often encountered in the mean-field
picture of non-interacting particles.
The second moment of the SF,

oL = f dE R(E)(E - Ex)?, (3.6)

characterizes the dispersion of the fragmentation. As it is easy to see, the dispersion can be found as a sum of all
squaredff-diagonamatrix elements along theth line of the original Hamiltonian matrix,

of = (H)— (Hi)? = Z IHige 2. (3.7)
7k

It is practically important that both quantities, centroid and dispersion, can be found from the matriwitdfout
actual diagonalization. The higher moments of the strength function can be also defined in a similar way.
With the aid of thedensity of statesormalized to the total dimensiox of the Hilbert space,

p€)= Y dE-ED. [ dEn(E)= N, 38)

the SF[[3.B) can be written as
FW(E) = p(EXIC{Per - (3.9)

where the averaging..) is performed over a number of states with energy cloge.td@ his expression justifies the
term frequently used, especially in condensed matter phyfsical density of stated DOS), for which the lattice
sites are taken as an unperturbed basis thus representing the density of electrons at a specific site.

In theoretical analysis, quite often it is more convenient to treat the avérage (3.9)astmeble averagassum-
ing that it gives the same result. In a numerical approach, it is also possible to use the so-called “moving window
average” when the averaging is performed for a specific eigenstate with deengpothing the functior‘rcgl2 by
changing the indek. Such a procedure is justified if the global structure of eigenstates remains the same under a
small shift of the eigenenerdy. While at high level density the components of individual states can strongly fluc-
tuate, the SF assumes a smooth envelope in the energy representation fokkgdixedhich is the same, along the
scale of the unperturbed energyof Ho associated with the basis staky), see, for example, Ref._[63]). In other
words, the strength function is a smoothed projection of a basis|kfairto the exact statés), given in the energy
representationlf normalized to the mean energy level spacing, the strength funEfii) characterizes arflective
number,cx Of principal components of stationary stal@swhich are present in the basis stie

Alternatively, one can speak of a smooth projection of an exact |atatanto the basis statdls) expressed in the
energy representation, due to the one-to-one correspondence between theandeike corresponding energyof
an eigenstate dflp. Then we come to the envelope of an exact eigenstake iafthe basis oHg, termedshape of
the eigenstatethat will be discussed later in connection to the chaotic structure of eigenstates. The weight matrix of
components,

W = [Ci[” = ICK(EY)P, (3.10)

contains important information about the structurdéoth, eigenstates and strength functions.

It is important to note that the strength function and the shape of eigenstates have a well defined classical limit
in the case of fully chaotic classical motion. If the system under consideration has a clear classical analog, the
unperturbed energl, is not constant along a classical chaotic trajectory of the total HamiltddianE. Instead,
it ergodically fills the volume created by projecting the surface correspondiffy tinto that ofH. The form of
the distribution of the energids, is the classical counterpart of the quantum strength function. Conversely, if one
keeps the unperturbed enerBy fixed, the bundle of trajectories of the total Hamiltonldrthat reaches the surface
Ho = Eo has a distribution of total enerdy. In the quantum case, this distribution is nothing but a smooth envelope
of an eigenstate ofl given in the energy representation. The quantum-classical correspondence for the strength
functions, as well as for the envelopes of eigenstates, has been thoroughly studied EHEIE@BE@@ 68, 69, 70,
E,@EBES] for various models of interacting particles.

From the viewpoint of time-dependent evolution, the strength function shows the spread of excitation initially
concentrated in a specific basis stigeover other basis states due to the residual interadtidfithe interaction does
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not modify the boundary conditions, the unitarity of the stammation implies that the cecients C;)* describe the
spreading of the simple stafle over stationary statda). For time-reversal invariant systems, these amplitudes can
be taken as real. The knowledge of the ma@xfor a given basigk) and of the energy spectruif gives complete
information about the system.

An example of the structure of the matmg is shown in Fig[B for the model of four interacting spin@-bn
a twelve-site one-dimensional lattice. One can see that both the strength functitereidi for a fixedk) and
the eigenstates (dierentk for a fixed) are, globally, quite similar, occupying only a fraction of the bagjsand
|k, respectively. The restricted spreading is due to the finite range of interaction between the particles reflected by
the band-like structure of the total Hamiltoni&hin the chosen mean-field basis. The knowledge of the matrix of
components\; allows one to predict the conditions for the onset of chaos and thermalization, as will be discussed
later.

250
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Figure 3: Matrixw of squared components of eigenstates for Model 1 of interacting syfinsith . = 0.5. Enhanced lightness corresponds to
large values, black points stand for vanishing or very small values (afier [43]).

When the number of significant compone@sin Eq. (3.2) is large, the averaging and the summation can be
replaced by an integration. Strictly speaking, this is correct when these components fluctuate around their mean
values and can be considered as pseudo-random quantities. As discussed below, the condition of a large number of
pseudo-random components in exact eigenstates can be used as a criteliaogsf quantum systems. In the case
of a completely random perturbatidf) the procedure of introducing a smooth energy dependence for the SF is well
supported provided the numbigscx of principal component§y is large enough.

We can illustrate this approach with examples from the nuclear shell model [63]. The exact diagonalization of the
semi-phenomenological Hamiltonian matrix describing the low-energy spectréfiion the orbital space truncated
to the sd-shell allows one to find all energies and wave functions with conserved quantum numbers (in this example
J'T = 070) in the mean-field basis of non-interacting particles. The space dimension in this example is equal to
N = 839 which is sticiently large to extract statistical properties. The left part of Eig. 4 shows nine individual
strength functiong(E — E) in the middle of the spectrum. On the right part of the same figure one can see that
strong fluctuations are rapidly smeared by averaging over 10, 100, or 400 states. As a result, we come to the generic
SF as a bell-shape function around the centEid

The analytical evaluation of the strength function was found to be extrentébudtieven for the relatively simple
Wigner BRM model[(2.R) (for details and discussion, see Ref. [22]). Only in some limiting cases it was possible to
derive an explicit expression. In order to understand how the typical shape of the strength function depends on the
control parameters of the Hamiltoniéh we start with what is often considered astandard modd62,(63].
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Figure 4: Left: the strength functions for individual @basis statesk) in the middle of the spectrum (histograms), versus the energy distance
E — Ex from the centroid of the unperturbed sté¢e Right: the strength function averaged over 10, 100 andJ00 = 0*0 basis states in the
middle of the spectrum, panels (a)-(c), respectively. The bin size is 1 MeV (after [63]).

3.2. Standard model of strength functions

In this approach we single out a specific basis sfigtend assume that the rest of the Hamiltonian matrix is
pre-diagonalized so that we have there an intermediate pasis = 1,..., N — 1, with diagonal matrix elements
as “unperturbed” energies, whereas the original statk) with unperturbed energly is coupled to the states)
through the matrix elements

M = > Hiae (K. (3.11)
k' £k

This construction is playing here the role oflaorwayin the sense that any external perturbation acting on the state
lky will percolate to other states only through those coupling matrix elements. The idea of doorway going back to
Bohr’'s compound nucleus is fruitful in many situations where the action of an external agent on a complex system
can be considered as a multi-step process started at a specific (non-stationary) state; a more general consideration can
be found in Ref.|£7|4]. In our case, all neighboring states are of a comparable degree of complexity. It seems natural to
begin with the assumption that the omission of one “generic” state does not strongly distort the statistical properties
of the dense spectrum, so that the density of statés close to the genuine density of eigenstates of the kbtal

The matrix with diagonal entries,, Ex and of-diagonal elementhy, = h;, can be diagonalized analytically in
order to get the stationary state$ whose energieB” are the roots of the dispersion equation

— h VZ
Xe(E?) = EY — B¢ - E'g"_lev =0. (3.12)

The new root€”, which do not depend on the choice of the excluded $katare located in between the values of
e,, except for a possible spectaollective” state that can emerge at the edge of the spectrum. For a given &ftergy
the squared amplitudes of the wave functi@rsare given by the corresponding residues of the exact Green function
G(E) = (E - H)™in the poles[(3.12),

dX(E) | A
Wﬁ=(CE)2:( ﬁé))EEaz[uZ ﬁ] , (3.13)

The further analysis requires additional knowledge.
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The standard model of strength functions is based on sewdiehtassumptions: (i) the background spectrum
e, covers a large interval of energies that, for a stiiefar from the edges, can be considered infinite; (ii) this
spectrum is rigid with relatively weak fluctuations around the mean value of the level spBgiag,is the case for
canonical random matrices; (iii) the coupling strengtis? are uncorrelated with energiesand fluctuate around
their typical value/h?); and (iv) the spectrum is dense so tB&t/(h?) < 1 which means that the residual interactions
are stficiently strong. We can note that in realistic nuclear calculationstiiformity of the eigenstates is indeed
observed: the dispersidn (8.6) is practically the same for all many-body states originating from the same occupation of
[s;lﬁgle—particle orbitals, both in standard shell-model examEies [1] and in the modern multi-configurational approach
1.
Using these assumptions, one can approximately calculate the sum [A_E¢. (3.12) and come to tiBzeRF of

Wigner shapge
1 Tk

Fk(E) 2r E_E2+ F§/4’ (3.14)
where thespreading widtiTy, (sometimes denoted &3 in distinction toI'" that describes the width with respect to
the decay into continuum) does not depend, in this approximation, on the choice of the typidk} staiteg given by
the Fermi golden rule
I'=2n ) 3.15
=21 =" (3.15)
In spite of the form typical for perturbation theory, the Fermi golden rule result has broader applicability. The original
Wigner model[(Z.R) assumed an equidistant spectrum of the background states which is not necessary. The conditions
for the validity of the golden rule can be formulated! [22] as the double inequality I' < Ay, whereAy is the
bandwidth of the matri¥/ in the energy scaledy ~ bD = b/po, characterizing thefBective energy width of the
interactionV. This means that the interaction igi$ciently, but not excessively, strong.
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Figure 5: The Breit-Wigner fit (solid curves) and Gaussiardfitshed lines) to the central part of the 400-state strength function (histograms), panel
(a), and the same fits on the logarithmic scale, panel (b). The bin size is 100 keV {after [1]).

The result[[3.14) corresponds to a pure exponential decay indira€,, of the survival probability of the initial
uasistationary statk) with the mean lifetimer ~ 4/I". Similarly to the radioactive decay [76], this cannot be exact
], which would lead to the divergent energy dispersfon] (3.68ktively, an infinite energy range of interaction).

17



However, the golden rule might give a satisfactory approgionao the central part of the SF. F[d. 5 shows that, in
a realistic shell-model example, such an average description turns out to be reasonably good away from the remote
wings.

In the case of a full random matrix standing in plac&/othe perturbation mimics an extremely large bandwidth,

b — . Therefore, in this case only the left part of the inequalityk I', comes into play, and the Breit-Wigner form
of the SF emerges for any strong perturbation. In realistic models with one-body chaos, such as quantum billiards, the
dependence of the width of the SF on the strength of interaction with rigid walls may be @@[78, 79].

For a more generic modé[(2.2) with a finite perturbation range (corresponding, for example, to the inter-particle
interaction), the form of the SF changes with increasirand eventually approaches the standard semicircle with the
radiusR = 2vV2b EIZIB 2] determined by the specific interaci@nd the widthb of the band. As
a result, one can conclude that, generically, the limiting form of the SF (when increasing the perturbation strength) is
given by thedensity of statedefined by the perturbatiov only. This fact was discussed when analyzing the SF for
the TBRI matrices, see details in Ref.[81].

It was demonstrated that the shape of the SF in the mbdél (2.3) undergoes the transition from the Breit-Wigner
to the Gaussian. Such a transition is typical for closed systems of interacting particles. For the models 1 and 2 of
interacting spins, Eqd.(2.5) aiid (2.6), this transition is perfectly manifested by the numerical data presenteH in Fig. 6.
Moreover, as shown in Rei:[|82], the change of the SF to the Gaussian corresponds to the predictions for Wigner
BRM. Namely, the transition between the twdtdrent shapes, Breit-Wigner and Gaussian, occurs-atry, where
I" is the Breit-Wigner width[(3.14) andﬁ is the variance of the strength function defined by Eql(3.7). Notelthat
is proportional to the square?, of the perturbation strength, unlike which is proportional tor. As will be argued
below, such a change of the shape of the SF is directly related to the onset of strong chaos revealed both by the chaotic
structure of eigenstates and by the statistical relaxation of an initial excitation to a steady-state distribution. Analytical
attem%stto derive the nanaric farm af QE ~ovarina tha whala trancitinn fram tha R\ tn 2anggign, can be found in
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Figure 6: (Color online.) Strength functions for Model 1 {Jefnd Model 2 (right) for basis states away from the edges of the spectrum of the total
HamiltonianH (as in Fig. 22). Numerical distribution: red shaded area; fitted Breit-Wigner shape in the middle panels: squares. Full curves are
Gaussians with the variancr{ obtained from the Hamiltonian matrix through Eq. (3.2} 18 andS,, = -3 (after 87)).

The “standard” model approximately works also for collective states, as giant resonances in nuclei which indeed
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play a role of doorway states in the processes of excitatioarbgxternal field of corresponding symmetry, or for

any simple mode coupled with the background of complicated states through weakly fluctuating matrix elements. It
can be generalized for the practically important case when the states under consideration do in fact belong to the
continuum IEB]; then the interrelation between the characteristic spreading time and decay time of the background
states, or between the width$ andT, plays the main role. This leads to interesting phenomena observed in the
experiment with an increase of energy: restoration of purity of the collective state and, on the other hand, loss of
collectivity when the excitation proceeds through the background states which decay before feeding the collective
state. Here the main role is played by the competition between the characteristic time of fragmentation of a collective
resonance into background states of a complicated nature and the continuum decay of those states. This physics is
outside of the scope of this review.

3.3. Beyond the standard model

There are variousfiects which restrict the applicability of the golden rile (3.15). In the limit of very strong cou-
pling, adoubling phase transitide expected that can be seen already from the equations of the preceding subsection.
The Breit-Wigner shape corresponds to a spreading width much smaller than thearegs® covered by the back-
ground states. In the opposite limiit,> a, the secular equatioh(3]12) predi@ [63] that the strength is accumulated
in two peaks on both sides of the unperturbed centroid,

1/2
E® ~ Ex =+ [Z hﬁv} : (3.16)

One can note that this limit determines the extremal spreading Widtt2c in terms of the dispersiofi (3.7) of the
original doorway state. Thisflect, also known in quantum optics, was observed in the Mott metal-insulator phase
transition Eb] as transfer of the quasiparticle strength to the so-called Hubbard bands. In nuclear physics it appears, in
the strong coupling limit, in the spreading widths of giant resonafcés [90] and of highly-excited single-particle states
interacting with many phonon modés [91].

The physical mechanism of the doubling transition can be understood by analogy with the formation of collec-
tive modes usually described by the random phase approximation. The background states interact among themselves
through the selected state. If this interaction is sfliciently strong a collective state is formed as a coherent com-
bination of the background states. Having the same quantum numbers, the original state and the newborn collective
mode repel each other and form the two peaks predictédin (3.16) which concentrate the significant fraction of the total
strength [in the limit[(3.16) the whole strength is evenly divided between the two peaks]. If the coherent interactions
responsible for the excitation of collective modes are absent and the system is close to chaoticity, the corresponding
limit of the SF will be a semicircle with radiuR ~ o, whereo-ﬁ is again the average second moménil(3.6) and the
effective spreading width i§ = 2 V3o [1,[80].

As it usually happens, realistic atoms and nuclei are typically between the two limits, and the shape of the SF
evolves from the Breit-Wigner behavior at the center to the Gaussian behavior with faster decreasing wings. In
many practical examples, the spreading width is not proportional to the square of the coupling matrix elements as in
Eq. (3.I5) but it is rather a quantity of the orderxfi.e. dependénearlyon the magnitude of the interaction. Being
a product[(3.B) of the level density and the average weight of simple components, the SF in the Gaussian regime is
rather stable when the interaction is broadening the distribution keeping more or less intact the average shape. In
application to banded random matrices, various limits of the spreading width were studied i Réfs. [92, 93].

The actual manifestations of Breit-Wigner and Gaussian strength functions are seen in the spreading widths of
multiple giant resonances (overtones) observed in nuclel [94, 90]. Such collective excitations can be treated as two-
and three-phonon vibrational levels. In the harmonic approximation reasonable for the qualitative description, the
spreading widti™, of the double excitation is given by a convolution of two single-phonon strength functions with
widthsTI';. In the Breit-Wigner limit this would lead tb, ~ 2I';, while for the Gaussian shape ~ V2T, in better
agreement with experiment. In such considerations it is implicitly assumed that the phonon spreading width does not
significantly change with excitation energy: the density of background states grows with the excitation energy while
the coupling matrix elements are quenched. For the giant resonances, as well as for isobaric analog résdnances [95],
this is a reasonable assumption based on the so-de#ehling{96,197].
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Consider a transition between a “simple” stieand a “chaotic” statée) by a “simple” operatof), let say of
one- or two-body nature,

(KIQle) = > QueCp- (3.17)
k!

Simple operators can change orbits of only one or two particles and, daggelction rulesthe number of non-zero
matrix elementQy. is small, let sayq. For typical mixture amplitude€y of the order 1 VN, whereN is the
number of the principal components of the stafe and for typical single-particle matrix elemewtsve come to the
estimate of suppression,

KAy ~ 22 (3.18)

VN

Similarly, we can roughly estimate the mixing between two chaotic states,
BIQay = > C QueCy. (3.19)
kk

In the same spirit, taking into account the random character of the mixirfjaierts and assuming the same degree
of complexityN of the state$wr) and|3) we find
A 1 1 gQvo

BIQl) ~ VN WOOUR T W (3.20)
that isthe same suppressias in the previous case (3]118). This way of arguing is based mainly on the assumption of
the uniform degree of complexitpf mixed chaotic states, in the same energy region thegk‘the samefrom the
viewpoint of any ‘simplé operator I[EB]. This is, as we will stress later, the root to understanding the thermalization
in an isolated system.

The existence oN-scaling leads to important trends afiaotic enhancemenf perturbations. One of the spec-
tacular d€fects is related to weak interactions which are known to violate parity conservation. Large manifestations
of parity violation were observed in scattering of longitudinally polarized slow neutrinsdous nuclei. Usual
estimates of thisféect as coming from the mixing of single-particle levels of opposite parity predict the relative dif-
ference of total cross sections for left and right neutron helicities on the level6f:1008. The actual ffect is
in many cases much greater, up to 10%, see review artﬂb@mﬁbl, 102]. As mentioned earlier, the narrow
neutron resonances at very low energy correspond to long-lived compound states of a neutron captured by the target
nucleus. The long lifetime of such a resonance allows the intrinsic equilibration (its relation to thermalization will be
discussed later). The presence of maxiys 1, incoherent simple components in the wave function of a compound
nucleus is a signature of quantum chaos. In heavy nuclei at neutron threshold éhezgghes 19 According to
Eq. (3:20), the matrix elements of the weak interaction mix the complicated states of opposite parity, in this case
and p- neutron resonances, are suppressed by a fa¢tgN1 However, in this energy region the combinatorial level
density is increased proportionally to the same fabtoFhen the golden rule estimafe (3.15) showsahbancement
of parity non-conservation by/N, of the order 18. An additional factor of the same order comes from the kinematic
gain in the neutron width for mixed resonandé@,/l“g’) ~10°.

Another related fect is the enhancement of the asymmetry of fission products with respect to the neutron spin
direction in fission of heavy nuclei induced by slow polarized neutrons; here there is no kinematic factor but the
chaotic mechanism again produces the enhancement of the ¢hiler 10% — 10*. As follows from the experiment,
the asymmetry is the same in numerous decay channels wiiiehidithe mass distribution of fragments and kinetic
energy distribution[[103]. This independence confirms that the enhancement is generated in the compound nucleus,
prior to the choice of a certain decay channel by a fissioning nucleus. For more details concerning the violation of
fundamental symmetries and chaotic enhancement we refer the reader to review @IEM 102, 104]. There are
also numerous examples of chaotic enhancement in tunneling or mixing of Viemedt configurations in many-body
systems that occur at close energies, for exampilerént shapes [105] or long-lived isom 106].

One can notice that in the regime Bfscaling the numerator and the denominator of the golden [rulel(3.15)
have approximately the sam¢N dependence. This is equivalent to theturatiorof the spreading width when the
system reaches the chaotic limlsobaric analog resonancgAR) in nuclei are the excited states, frequently in the
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continuum, which belong to the same isospin multiplet as tbamy state of the neighboring nucle@lO?]. A vast set
of data accumulated on the IAE[95] shows that their typical spreading width is indeed of the same order of magnitude
in different nuclei, for very dierent spins, isospins and excitation energy.

Finally, the remote wings of the SF are probably neither Breit-Wigner nor Gaussian. Vast numerical material stored
in the experience with large-scale shell-model diagonalization demonsiraitel [63, 1] that the characteristic behavior at
the tails in such cases is exponential. The exponential regime starts at a distance largeiftbartBe centroid. This
fact, analyzed and mathematically justifiedlin [108], was laid in the foundation of the practical metbxybatential
convergenc@,l]: a regular progressive truncation of large Hamiltonian matrices ordered in a certain way
is performed starting with few steps allowing full numerical diagonalization; after that the exponential regime sets
in and the exact energy levels of low-lying states, first of all of the ground state, can be obtained by straightforward
exponential continuation in a function of the dimension. The steady pressure of many small admixtures of highly
excited chaotic states gradually included by the increase of the dimension brings the low-lying states down. Based on
ideas of quantum chaos, this approach works without exceptions. The exact knowledge of the ground state energy is
necessary for astrophysical reactions, where the level density is a vital ingredient of all calculations. Recently, on this
basis, a successful algorithm for calculating spin- and parity-dependent level density was con[112, 113].

4. Chaotic Eigenstates

4.1. Qualitative discussion and a little of history

The problem of quantum chaos was initially referred to one-body quantum systems, fully deterministic but with
strong chaos in the classical limit. As was discovered numerically, the properties of such quantum models as the
kicked rotor mmﬂm and fully chaotic biIIiar@ﬂ@, , 16] strongly depend on whether the motion is
regular or chaotic in the corresponding classical counterparts. It was understood that, unlike classical chaos that is
due to the local instability of motion, in quantum chaotic systems the properties of spectra and eigenfunctions have
to be compared with those described by full random matrices. It was a 9, 120] that for integrable systems
the nearest level spacing distributiB(s) is generically quite close to the Poisson distribution emerging as a result of
absence of correlations between eigenvalues (see also discussion and references in Ref. [116]).

For a long time the numerical check whether the forrR(s) is close to the Wigner-Dyson distribution has served
as the main tool for the characterization of quantum chaos. On the other hand, it was also numerically dbsérved [117]
that the eigenfunctions of the stadium billiard have a quite complicated structure in the position representation. These
results have led to the conjecture that the eigenstates of chaotic billiards may be compared to plane waves with random
amplitudes@l}. Later, the complex structures of eigenstates were confirmed for many autonomous systems, as well
as for time-dependent systems with external periodic perturbations (for references, see, for e@]ple, [116]).

Initially, the study of quantum chaos was restricted to models of a single particle interacting with external fields.
As aresult of extensive studies, currently the theorgrad-body chaois developed in great details (see for example,
[122,[123] 1244, 125] and references therein). On the other hand, many problemaspbody chaosccurring in
guantum systems of interacting particles are not resolved yet. Recently, the burst of interest in many-body chaos has
been triggered by the remarkable progress in experimental studies of trapped systems of bosons and ions [126]
and large-scale exact diagonalization of Hamiltonian matrices for systems of interacting particles.

It is understood now that the level spacing distributR{s), although serving as a common test for distinguishing
between integrable and non-integrable models, is fiettve in application to many-body chaos. First, this quantity
that requires precise knowledge of relatively long consecutive series of energy levels of fixed symmetry often is
far from being experimentally accessible. Second, the level spacing statistics is typically a weak characteristic of
guantum chaos that appears already in the first stages of the process of chaotization. Third, the presence or absence
of the Wigner-Dyson level spacing distribution cannot be a necessary condition for classical chaos: for instance,
a transition from the Poisson to Wigner-Dyson distribution was found in [127] in the energy spectrum of the
Bunimovich billiard, which is known to be fully chaotic. Finally, in many realistic systems the behavior of various
observables is not directly related to the spectral statistics and continues to evolve with the strength of the perturbation
after the functiorP(s) has been stabilized.

In this situation the knowledge of the structure of the eigenstates turns out to be decisive in understanding regular
or chaotic properties of realistic systems. In what follows, we defiremtum chaos terms of the (chaotic) structure
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of eigenstates, rather than in terms of the level statisiibss idea of shifting the definition of chaos ornitalividual
eigenstates, rather than just on the spectral statistics, has been exploited in Ref. [128]. Specifically, it was suggested
to define quantum chaos occurring in an individual eigenstate by the vanishing correlation function between the
eigenstate components in an appropriate basis.

In Ref. B] the emergence of chaotic eigenstates was found when analyzing experimental data for the rare-earth
cerium atom. It was shown that excited eigenstates of four valence electrons with the total angular momentum and
parity J™ = 1* are random superpositions of a number of basic states. Although this number was found to be relatively
small as compared with chaotic eigenstates in heavy niiclei [62], one can speak about chaotic atomic states. Later on,
intensive analytical and numerical studies [35] have confirmed the onset of chaos in both eigenstates and spectrum
of the cerium atom. With the use of the relativistic configuration-interaction method it was shown that the structure
of eigenstates of odd and even levels of this atom with angular momehten¥ above 1 eV excitation energy
becomes similar to that of compound states in heavy nuclei. It was found that the atomic stationary states are random
superpositions of aboN,. ~ 100 components built of thef46s, 5d, and @ single-electron orbitals. Thus, even
four interacting electrons in the mean field of an inert core create chaotic eigenstates, see few examplégs in Fig. 7. In
this figure the examples of excited eigenstates from the TBRI matrices for four fermions and eleven single-particle
orbitals are shown. One can see that the eigenstates of the random matrix [mddel (2.3) are qualitatively the same
as those of the real atom with no random parameters. These data demonstrate that the TBRI mdiimitivatye
describe generic properties of realistic physical systems which are completely deterministic.

Here and below we discuss the structure of ieny-bodystates presented, as in Hg. (3.2), either in the chosen
basis of the mean-fieltly or in the energy representation corresponding to this field. Being consideob@ais
these eigenstates do not occupy the whole many-body bakig lnécause of the finite range of the interaction. This
is in contrast with one-body chaos where chaotic single-particle eigenstates typically cover the whole Hasis of
Such a situation occurs, for example, for chaotic billiards where the interaction with the boundaries couples all basis
states and, therefore, it can be considered as infinitely strong. Thus, the assumption of fully chaotic and extended
eigenstates as random superpositions of plane waves [121], often used as a justification of quantum chaos, may be
not valid for isolated systems of interacting particles. As shown below, instead, one has to consider the emergence of
chaotic eigenstates in tlemergy sheltefined by the projection of the “unperturbed” Hamiltontdg onto the total
HamiltonianH.
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Figure 7: LEFT: The odd)” = 47, and evenJ"” = 4*, excited eigenstates of the cerium atom. Shown are the comp@eniteigenstates in terms

of basis (mean field) states, given in the energy representation due to one-to-one relation f¢taredh;. RIGHT: Individual eigenstate§;

in the basis oH of the model[[ZB) with random two-body interaction for 4 particles and 11 single-particles levels with the perturbation strength
Vo = 0.12 anddp = 1.0. Heren stands for the level number with= 1 as the ground state (after[35]).

Let us consider, in a more general context, stationary quantum states of an isolated chaotic system in the region of
suficiently high excitation energy and level density. As we argued above, such states in a harrow energy window and
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with the same values of exact constants of motion “look theeé‘,@]. The corresponding wave functions are exceed-

ingly complicated in any “simple” basis, for example in the mean field representation that is natural for a many-body
system separating in the best way regular dynamical features from incoherent collision-like interactions responsible
for the onset of chaos. Any measurement of a macroscopic variable has a typical datatihcovers an energy
interval AE ~ h/At. In this interval we have a large number of orthogonal stationary states. The point is that due

to their complete mixing (in an appropriate basis of the macroscopic devices) and random phases of the components
of the wave functions, the results of such a measurement in practice do not depend on the instantaneous, in reality
random, phase relationships between these numerous components. Otherwise, the whole idea of thermodynamical
equilibrium would not work.

The description in terms of chaotic wave functions in fact agrees with the argumentation used in the foundations
of equilibrium statistical mechanics. Similar properties of equilibrated systems are strestadstical Physicby
Landau and Lifshitz@g]: It may again be mentioned that, according to the fundamental principles of statistical
physics, the result of the averaging is independent of whether it is done mechanically over the exact wave function
of the stationary state of the system or statistically by means of the Gibbs distribution. The fberigrdie is that
in the former case the result is expressed in terms of the energy of the body, and in the latter case as a function of
its temperature Close ideas were put in the foundation of statistical mechanics by Kr@ [130] who used the term
mixingfor the process of equilibration. Each generic wave function of a complicated system has essentially the same
macroscopic properties as a thermal ensemble for the same values of global conserved quantities. As we understand
now, the mechanism responsible for the mixing is provided by many-body quantum chaos. Even the pioneering idea
by Boltzmann was based on the “molecular chaos” that is required to justify the kinetic approach to the equilibrium.
Similar ideas form the basis for the practical truncation of the formally exact infinite sequence of many-body correla-
tional functions (Bogoliubov-Born-Green-Kirkwood-Yvon hierarchSl]). In a modern language, one needs to have
phase incoherence of the components of the initial state. The decoherence can come from the surrounding or, even
in a closed system, from the presence of many degrees of freedom coupled through their interaction. The interaction
will create such complicated superpositions of simple states that the advent of quantum chaos is unavoidable.

From this viewpoint, the concedﬂlO] of the compound nucleus has the same spirit; the famous photograph of
Bohr’'s wooden model with an incoming “neutron” shows that the equilibration comes from strong intrinsic interac-
tions. If the lifetime of an open system is of the order of or greater than the Weisskopf tbn@vith D as the mean
level spacing) of the typical periodic motion inside the system, the intrinsic degrees of freedom in a nearly closed
system mix, creating compound states which practically serve as representatives of quantum chaos similarly to the
predictions of the canonical Gaussian ensemble. Early studies of many-body quantum chaos mainly used the so-called
“nuclear data ensemblef neutron resonance da@ 33]. Later a broad material from large-scale atomic and
nuclear many-body calculatior@@l@ml%] was added to the discussion that gave an impulse to retlirn [1, 136]
to the problem of interrelation between quantum chaos and thermal equilibrium.

Coming on a new level to the above statement of Landau and Lifshitz, we can claim that properties of individual
chaotic eigenstates are essentially equivalent to those of the equilibrium thermodynamic e@@[@ 138, 139,
134,[81[h @m]. In the recent literature, this idea sometimes is calledgtvestate thermalization hypothesis
Below we shall discuss some of the problems related to the time-dependent equilibration ﬂocess [3]; here, we have
to stress that the actual problem is to understand the conditions under which the statistical approach works (i.e. the
conditions for the onset of chaotic states), rather than the statement of Landau and Lifshitz itself.

A prototypical system of interacting constituents is the gas of hard spheres, where the classical chaoticity was
rigorously established [141]. The exact results were obtained since the interaction was actually reduced to the excluded
volume of the spheres. The quantum analog of the hard sphere gas was consideréd in [139] where it was shown that
a chaotic initial state leads to the statistical equilibrium corresponding to the type of statistics (bosons, fermions
or distinguishable particles). Similar results, not limited by the gas of hard spheres, were derived earlier by Van
Hove | 143, 144]. In general, the main properties of the equilibrated system do not depend on the details of the
initial state; as in statistical thermodynamics, they are defined by the constants of motion while the time required for
equilibration is determined by the strength of the interactions.

Below we present the results of the detailed analysis of exactly diagonalizable matrix models which describe real-
istic systems of interacting quantum particles. The essenttardihce with the standard thermodynamics formulated
in the textbooks for large systemthérmodynamic limijtis that here we considdinite systems without an external
heat bath. The equilibration occurs as a result of internal interactions leading to many-body quantum chaos. There-
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fore, one can introduce (not uniquely) analogs of usual thelymamic characteristics entropy, temperature, ete.
which however may depend on the type of the measuring detheenometer

4.2. Information entropy

The simplest characteristic of a chaotic stajeelated to the statistical interpretatiortfe information (Shannon)
entropyS® defined in terms of the compone@$, see Eq. [(3]2), of this state with respect to a certain idsis

1= = > wyInWwg), W =Gy (4.1)
k

This quantity can be found for any individual stationary st@[134]; it can change from zero, when the selected
representation basje) coincides with that of stationary states of the Hamiltonianwhiet oy, to the maximum value

of In N for a “microcanonical” state when all basis states are represented with equal probabiityt/ N, whereN

is the total dimension of the Hilbert space.

This basis dependence can cast doubt on the significance of the information entropy as a physical indicator of the
complexity of the state. On the other hand, here we express the interrelation between two bases and this aspect carries
an important physical knowledge. In practice, selecting the tigsis the many-body problem as that of the mean
field in a system like a complex atom, nucleus, molecule or nanostructure, we separate the regular dynamics from the
chaotic features and the information entropy is an additional useful tool for quantifyimg/ttarecomplexity [134].

In condensed matter applications, especially in the presence of disorder, the appropriate representation basis can
be that of lattice sites when the information entropy describes the degree of localization of stationary electron states.
Alternatively, the Bloch wave basis can be more convenient, in particular for problems of electron-phonon interactions
or quantum signal transmission. As a characteristic of information, the same definitibn (4.1) can be applied to any,
not necessary stationary, quantum sfate The process of quantum evolution of a generic state will show irreversible
equilibration with growth of entropy. An originally excited stakg has zero entropy in the original basis, but the
interactions will lead to the fragmentation of this state corresponding to a simple analog léfttiemrem or the

second law of thermodynamics.

In the Gaussian random matrix ensembles all eigenstates have a similar degree of complexity. In the Gaussian
orthogonal ensemble (GOE) of large dimensidn,> 1, the real components® of a generic eigenstate have a

Gaussian distribution,
Y(oay _ ﬁ _ ﬂ )2
P‘(C)—\/zﬂexp( 2(0)), (4.2)

with the variancéC?)? = 1/N, compare Eq.13.18). The information entropy of such a state i$ [116]
S = In(0.482N) + O(1/N). (4.3)

For a realistic system, this value serves as an upper limit of complexity.

The spectral properties typically reveasacular behavioas a function of the excitation energy so that it makes
sense to introduce lacal characteristic of complexity for the state$ in a given spectral interval. Such an interval
is characterized by the local number of significant componéitsthat determines, according to EQ.(4.3), the local
information entropy5¢ for the chaotic eigenstates. Insteadéfone can use the correspondibgalization lengtfin
the Hilbert space,

S = exp@"), (4.4)

that defines the local number of principal component§ as0.482N°.

Fig.[8 shows the localization leng{h#.4) for All = 3276 states with the same quantum numbers of spin, parity
and isospinJ''T = 2*0, found in the exact shell-model diagonalization for tf@i nucleus. The model contains an
inert core of'®0 and twelve valence nucleons moving in théshell in the mean field of the core and interacting
through the full Hamiltonian consisting of all 63 independent two-body matrix elements allowed by the conservation
laws of angular momentum and isospin in this orbital space. The strengths of the matrix elements were earlier fit
by shell-model practitioners using the data for low-lying states individually resolved in the experiment; some of the
matrix elements cannot be defined from the data so that their values were assigned more or less arbitrarily within
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Figure 8: Localization length, EJ_{4.4), of all 3236T = 2*0 states in thesc-shell model[[lL] for8Si. Left panel uses the actual scale of excitation
energy; in the right part the states are uniformly listed in order of increasing energy. The horizontal line shows the GOE limif, Eq. (4.3), equal to
1578 (after([iL]).

reasonable limits. The results for all states are presented in two equivalent scales, as a function of excitation energy
and in the unfolded form for levels uniformly ordered by increase of energy. The shape of the distribution, being
similar to that of the level densitﬂ[l], is typical for a system with finite Hilbert space (of course, for realistic nuclear
physics, only the part of the left branch can be juxtaposed to data because of the space truncation). In the mean
field basis, the stationary states rapidly become more and more complicated (delocalized in the Hilbert space) as the
excitation energy grows; the maximum of the distribution is already close to the GOE[value (4\8)%oN. For our

purpose here, the most important feature is the fact that the information entropy or the localization length are smooth
functions of the excitation energy, with rather small fluctuations. In this sense the characteristics of individual states
becomehermodynamiguantities.
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Figure 9: Localization length, ed.{3.4), of 1183T = 2*0 states in the four major oscillator shell modé! [1] 8€. The right branch corresponds
to the spurious states with excitation of center-of-mass motion separated by the energy shift (after [1]).

The direct physical meaning of information entropy is emphasized by a consideration[df Fig. 9 where this quantity
is calculated for a dierent type of the shell model. The carbon isotdf@ is analyzed in a bigger space of four
major shells. With enriched interaction, the information entropy of the states in the centroid of the distribution already
reaches the GOE limit. However, the shell model with cross-shell transitions includes unphysical excitations of the
center-of-mass. These spurious states have to be eliminated, in particular for determining the physical level density
used in the theory of nuclear reactions, especially in astrophysics. There are special methods of statistical spectroscopy
for doing this mmﬂ based on the correct counting of possible center-of-mass excitations for a given scheme
of active orbitals. In the shell model, alternatively, the separation of spurious states might be done by adding to the
actual Hamiltonian special terms of global kinetic energy with a large positiviicieat; then spurious states are
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artificially pushed up in energy from real excited states. Big the ordered energy scale clearly shows these states
as a separate branch with a similar behavior of the information length. This means that the information entropy (or
the length) is smart enough to discriminate the states of comparable complexitftergrtiphysical nature.

4.3. Moments of the distribution of components

A role similar to the information entropy or information length can be played by other structural moments of
stationary wave functions,

Mg = > W% M§ =1 (4.5)
k
For a local Gaussian distribution of the components this leads to
.  (@n-=1)N
Mn = W (4.6)

The quantityM$ determines the so-callédverse participation ratioThis allows for a complementary definition of
the localnumber of principal componeritsrough the average square of the probabilly, = (Mg)*l = N%/3.

From those definitions we see that the information entropy and the number of principal components depend on
complementary characteristics of the structure of the eigenstates. Namely, the information entropy is more sensitive to
small components of the wave function, while the inverse patrticipation ratio emphasizes large components. However,
if we can speak of a universal distribution of the components, thdBerelt characteristics have to be interrelated.

For the “microcanonical” wave functions, both definitions give the same vijue,1/M, = N. In the case of the
Gaussian distribution a universal value of the ratio emerges,

a

= =144 4.7)

As a matter of fact, in many atomic and nuclear examples of shell-model calculations, the ratio is close to this number
for the states far from the edges of the spectrum.

The momentd(416), similarly to the information entropy, are not basis-invariant (except for the normalizgtion
We can repeat the arguments given above that the representation dependence can provide an additional information
concerning the nature of stationary states and the dynamics in the system; examples can be foundlin Ref. [1]. 1t
was also shown there that it is possible to study the behavior of complexity as a function of the strength of residual
interaction with respect to the characteristic scales for non-interacting particles in the mean field. In degenerate
models, for example if the mean field is taken as that of an isotropic harmonic oscillator, the residual interaction is
effectively very strong, so that the majority of eigenstates even at relatively low excitation energy reveal the complexity
on the GOE limit. A too strong interaction eliminates the process of chaotization bringing immediately the eigenstates
into the chaotic regime. One can say that under such conditions the “thermometer” using such measures of complexity
is not working properly- the system is “too hot” to start with, and the chaotic dynamics destroys the remnants of
regular motion.

The measures of complexity given in this and in the previous subsections reflect only the absolute values of the
components of eigenfunctions. As in statistical equilibrium, the detailed information concerning the relative phases
of the componentsis lost. A collective non-chaotic state, like that of a nuclear giant resonance, in principle can appear
with a large localization length beingc@herentombination of many basis states, for example of simple particle-hole
excitations in a system of interacting fermions. However, such states (i) have a very low statistical weight and (ii) as a
rule are not stationary as waves in continuous media they are damped into genuinely stationary states of complicated
nature as we mentioned earlier in relation to the growth of entropy. The practical manifestation of such states is usually
a broad bump in the energy dependence of the system response to some excitation process (see Section Il on strength
functions). This response has usually a large spreading Widihat, in the case of nuclear giant resonances, is much
bigger than the decay width into continudih The presence of such collective waves is similar to the phenomenon
of scardan simple models of chaotic mechaniEIMG]. A possible tool for discriminating collective and chaotic states
through the phases of their components is given by the phase correlator to be briefly discussed below.
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4.4. Invariant correlational entropy

Although we have argued that the basis dependence of the usual measures of complexity could be useful for
gaining supplementary physical information, one should be careful in the interpretation of results obtained with the
aid of such measures. A simple example mentioned in [1] shows possible dangers. In a routine tight-binding model
of a particle in a periodieV-well potential, the number of principal components found in the lattice site basis is
Npc = (2/3)(N +1) for all standing Bloch waves. In the absence of any chaotic interaction, this exceeds the GOE limit
but has nothing to do with chaos or thermalization being generated just by the choice of the representation. Another
crucial problem is related to the possibility phase transitionsuch as magnetic spin alignment, restructuring of a
crystal, or nuclear shape deformation at a certain excitation energy (temperature). Then the mean field basis has to be
correspondingly changed. It would be useful to have a measure of complaxatyant with respect to the choice of
basisand still reflecting possible phase transformations. In this casefthse relationshigsetween the components
can be taken into account as well.

One possible constructio@ﬂ] using titensity matrpof individual eigenstates can be introduced in the follow-
ing way. Let the statelk) form an arbitrary complete orthonormal basis of many-body states. This determines the set
of amplitudesCy’ for stationary statejr). We assume that the Hamiltonian of the system, and therefore eigenstates
and their components in any basis, depend on a random parameter (or parameters). The role of such parameters can
be played by the coupling constants of the same Hamiltonian varying in small intervals. For a given distribution of
these parametersg@iseapplied to the system), the averaging (shown by the overline) defines the density matrix found
for a given statéw) that is assumed to adiabatically follow the change of the parameters,

e = CrCrrs (4.8)

normalized as T®D*) = 1. The expectation value of a physical observablaver the ensemble characterized by the
density matrix[(ZB) is given by T@D"). Let us stress again that we still consider here a single eigensatéall
states under consideration belong to the same global class with fixed constants of motion, the corresponding energy
terms evolving under a continuous change of the noise parameters do not cross, so the:sgfeb®to the evolution
of a given energy level.

This construction naturally leads to the entropy of a given state,

S = — Tr(D" In D). (4.9)

All such expectation values are expressed by traces and are therefore basis independent. Moreover, the result depends
on the phase relationships and correlations between the components of the wave function, which justifies the term
invariant correlational entropy

If the neighboring states are strongly mixed and “look the same”, the above averaging can be performed over these
neighboring states of approximately the same energy, instead of noise parameters. This leads to the thermodynamic
description characterized by the corresponding entropy and temperature. Further, if the mixing is chaotic and the
components of the wave functions are uncorrelated, the averaging preserves atiggirealcomponentsk = K'.

Then we come to the information entropy and the corresponding thermal interpretation. In the canonical Gaussian
random matrix ensemble all eigenstates are similar, while in realistic systems one has to choose only the completely
mixed neighboring states. The absence of correlations in general is a property of a consistent choice of the mean field
(the basis) and the residual interaction (mixing agent) as we discussed earlier. From this viewpoint the equivalence of
descriptions shown in the preceding subsections is quite natural. Similar arguments were giveéfeneiat diontext

in Ref. [148].

Now let us consider the case when we indeed average a given energy level over the noise parameters. In particular,
we can take some parameters of an actual Hamiltonian as fluctuating in certain, usually small, limits. The strength of
a specific term in the interaction Hamiltonian can be responsible for a phase transition. This happens, for example,
for the pairing strength. In macroscopic superconductors, the Cooper instability of a normal Fermi gas with respect to
the particle attraction near the Fermi surf 149] occurs at an arbitrary weak strength. In a finite system, such as an
atomic nucleus or atoms in a trap, the discreteness of the single-particle spectrum near the Fermi surface requires that
the pairing attraction be stronger than some critical value [150]. At weaker attraction, the standard BCS theory being
asymptotically exact for macroscopic superconductors gives zero correlation energy when applied, for example, to
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Figure 10: (Color online.) The invariant entropy of the grdisiate of?*Mg computed on the plangér—; — Ar—. The three panels show the
evolution of the phase diagram depending on the overall scale of non-pairing matrix elemenibe averaging interval af = 0.05 was used,
and the entropy is scaled (divided) by 05 (after [152]).

semi-magic nuclei liké®Ca; the presence of significant correlations can be revealed by the exact diagonalization of
the pairing Hamiltonial].

Let the parameter in the interaction Hamiltonian responsible for the phase transformation fluctuate around its
critical value. Due to the phase transition, the wave functions and observables will be noticeably fluctuating between
the two phases. This should lead to the maximum of the corresponding entropy as a function of the noise strength. In
this way, the invariant entropy serves asimadicator for the phase transition regidnghe phase diagram of a finite
system.

As an example, in Fig._10 we show the phase diagram for the nuiBlgswhere two types of pairing, isovector
(T = 1 of the pp,nn, andnp pairs) and isoscalafT( = 0, quasideuteronp pairs), can compete. The variable
parameters here are the interaction strengths of these two types of pajtinépr the main isovector pairing known
to prevail in ground states of nuclei, ang-o for the hypothetical neutron-protoh = 0 pairing. Three panels
correspond to dierent valuesl,, of remaining, non-pairing, parts of the two-body interaction. Each panel shows
a contour map of the invariant correlational entropy calculated for the ground state wave function that is subject
to random changes ofr within small intervals used for averaging the density matrix. In the actual ground state
of 2*Mg, the standard isovector pairing dominates while the phase transition to the isoscalar phase (the black spot
corresponding on the first and second diagrams to the maximum of correlational entropy) could be possible if the
corresponding interaction strengthwere stronger by approximately a factor of 3. This estimate agrees with another
one derived from a dierent perspectivé [153].

For a realistic strength of pairing in the usual isovector channel, the majority of states do not feel the pairing
phase transition that influences only the few low-lying states in the classiith= 0*0 quantum numbers. This
is seen as well in the Fermi-liquid analysis: the presence of pairing is noticeable only at the low edge of the energy
spectrum while at higher energy the normal Fermi-liquid descriptionfiscgent. The role of non-pairing interaction
components is important in mesoscopic systems as seen from the map atigy;otiiyd panel of Fig. 10; such
incoherentinteractions are capable of removing or weakening correlations and enhance chaotic trends of the dynamics.
These parts of interaction are playing a key role in smoothing the total density of Staids [112, 113] while in the mean-
field approach this level density shows unphysically strong oscillations.

We can mention here that the pairing interaction by itself is incapable of chaotizing the system. In a large system
it is essentially a part of the mean field introduced by the Hartree-Fock-Bogoliubov method when new quasi-particles
are based on the existence of the macroscopic condensate. The situation is slitgréydior small systems with
pairing (nuclei[[154], atoms in traps [155]) where the regular properties of the ground and few low-lying states coexist
with some chaotic features of excited states. Having only pairing interaction we cannot bring the system to full chaos;
increasing the pairing strength we just return thetient but still reqular dynamics. Only intermediate values of the
pairing strength introduce the elements of a non-fully developed chaos and the corresponding trend to thermalization.

In such situations, another related quantity can be useful in the analysis, namplathe correlatasf a given
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eigenstatelES],

1
= > Cece, (4.10)
N kk’

that represents the average of all matrix elements of the density nirbor a given eigenstati). If the wave

function components are not correlated, their signs could be more or less random, and the main contribution to
this quantity originates from the diagonal terms giviy ~ 1/N. Collective states are usually characterized by
strong correlations between the signs of components (we can repeat here that the discussion of collectivity as well as
chaoticity only makes sense with respect to a certain basis). Such correlations are recorded by the phase correlator,
giving values larger than/. For a unique super-correlated “microcanonical” state, where all the amplitudes are
equal to ¥ VA and of the same sign, the extreme limit of the phase correlaf@risl. This allows one to distinguish
between chaotic and collective states both being delocalized in the selected basis.

4.5. Eigenstates versus energy shell

As we already noted, in isolated systems of interacting particles, chaotic eigenstates, as a rule, occupy only a part
of the available (unperturbed) basis. Therefore, the definition of such states involves two requirements, a large number
Npc of “principal components” (practically\/N_pc 210, see Ref@l]), and the absence of correlations between these
components. The first condition can be mapped onto a large value of the localization length defined via either the
Shannon entropy or the inverse participation ratio. As for the second condition, to justify the absence of strong
correlations in the structure of eigenstates is not a simple task. Instead, a semi-analytical approach has been suggested
[@@@ESEE@E? 42) 43] that allows one to predict the conditions under which chaotic eigenstates
emerge depending on the model parameters. This approach is based on the coanemyoshellvith respect to
which the structure of eigenstates should be compared.

The properties of eigenstates in connection to the energy shell have been firstly analyzed @[157, 158] with
the use of the Wigner band random matrix mo@ell(2.2). The approach developed there is given in general form and
can be fectively applied to realistic physical models. Based on numerical data obtairled in [92], it was understood
that the global structure of eigenstates can be described by a relatively simple theory with the only scaling parameter
ﬂloc [Iﬁ],

Bioc = /lmax,  Imax= 800Ae,  Ag = 2R=4vV2b, (4.11)

which is the ratio of actual localization lengtho its maximal value|nax. HereR is the radius of the semicircle
determined by the density of states of the interactiob is the width of the band, analis a constant of order unity
which depends on how the localization length is measured. It is important that the localization length cannot be larger
thanlnhax and the latter is determined by the numbgpglof basis states occupying the energy sigll Thus, the
parametep is restricted by the valug = 1; it is increasing with an increase of interactidn For isolated systems
with a large number of particles, the density of states defined hgis typically a Gaussian shape (see examples in
Refs. [ 4] 43]). Therefore, the widi can be also associated with the square root of the variafod the
density of states defined by the interaction term in Hgs| (2.2)[and (2.3), see alka Eq. (3.7).

As discussed above, the localization lengtbf an individual statéx) can be defined through its Shannon entropy
S or the inverse participation ratigl. Depending on this choice, the fac@mm Eq. (4.11) is diferent, however it
remains of the order unit|L_J|58]. In order to reduce fluctuations, in[Ref. [157] the localization li¢ingtlenters
Eq. [411) was obtained by averaging the Shannon en®pyr (M3)~* over all eigenvectors from an ensemble of
Wigner BRM [2.2) with fixed parameters’, po, b, V. The detailed analysi8] of the structure of eigenstates in
the Wigner BRM ensemble has revealed a transition from localized to delocalized states with the increasing scaling
parametepioc(1) whered = b¥2/(pv). It should be stressed that here the notion of localizadielocalization refers
to the “energy shell” which means a corresponding segment of the whole unperturbed basis. This can serve as the core
of the many-body localization occurring in both disorde@[@ 160, 81] and regular isolated systems of interacting
particles @3]. Due to the finite range of inter-particle interaction, the part of the unperturbed many-body basis
occupied by the eigenstates of the total Hamiltonian can be much smaller than the basis dimension (sometimes,
infinite). On the other hand, the number of components in chaotic eigenstates can be very large, thus, allowing one to
treat them as pseudo-random ones. In what follows, we assume that the localization length is smaller than the available
set of basis states defined by the width of the energy shell. Correspondingly, by delocalized states we mean chaotic
eigenstates that densely fill the whole energy shell provided by the strength and type of the inter-particle interaction.
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In fact the energy shell determines the shape and the widtheo$ttength function when it reaches its limit on
increasing the interactiod. Indeed, for relatively small (however, non-perturbative) value¥,ahe SF is known
to have the Breit-Wigner shape with the half-widthThe latter parameter is proportionaktbwherev is the mean
value of the matrix elements &f directly participating in the creation of the SF. On the other hand, the wigdtbf
the energy shell is given by which is the square of the variance of the interactiQrihereforel” < Ag for small
v. With an increase of, the shape of the SF changes from Breit-Wigner to Gaussian. In thif'dasels too, and
the latter fully defines the shape of the SF. This crossover is clearly demonstrated by the data in Fig. 4, where for the
Models 1 and 2 the strength functions are shown as a function of the interaction strengths, in comparison with the
shape of energy shells (solid curves). As we show below, this crossover corresponds to the onset of delocalization of
chaotic eigenstates with respect to the energy shell.

The illustration of two diferent kinds of eigenstates is given in Higl 11. The energy shell is shown by the thick
smooth curve, in accordance to the semicircle shape of the density of states covered by the perirtsseon
eq. [Z2). Each circle in both panels refers to the averageof (C2)* taken over a humber of eigenstates
Thus, the distribution of points gives the average shape of eigenstates in the original basis. When the value of the
scaling parametgsioc is small (left panel), the number of principal componeisis smaller than the total number
of basis levels inside the energy shell. Since in this case the position of the centroid of an individual eigenstate is
strongly fluctuating inside the energy shell, the average was performed after shifting the eigenstates to their individual
centroids. In this way, the full curve on the left panel manifests the localized structure of eigenstates. Contrary to
that, the circles are obtained by the averaggoutsuch a shift. The comparison of the distributions with and without
shifts allows one to detect whether the eigenstates are localized or extended in the energy shell.
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Figure 11: Structure of localized (left panel) and ergoditdalized (right panel) eigenfunctions for the Wigner band random matrices. Here

N =256Qv = 0.1,b = 16,pg = 40 on left panel, an®l = 240Qv = 0.1,b = 10, oo = 300 on right panel. Thick curves stand for the semicircle, and

thin curves are obtained by the average of 300 eigenfunctions with respect to their centers. Circles denote the average of the same eigenfunctions
with respect to the centroids of their energy shells. For the ergodic eigenfunctions all distributions look the same, apart from fluctuations. For the
localized eigenfunctions witfj,c = 0.24, the average with respect to their centraidshows the localization inside the energy shell, while the

other average remains close to the semicircle Bith= 0.99 (after [158]).

The second situation shown on the right panel of Eig. 11 refers to the eigenstates that fill the whole energy shell;
this filling is practically ergodic with no big éierence between the two types of averaging. A small deviation of the
distributions (of both types of averaging) from the semicircle can be attributed to thfééresutly large value of the
scaling parameter. These data clearly demonstrate the transition from localized to delocalized states with respect to
the energy shell. In Refﬁb?] it was shown that when the scaling parapigtepproaches 1, the statistics of level
spacings tends to the Wigner-Dyson distribution revealing that the filling of the energy shell by chaotic eigenstates
corresponds to the onset of quantum chaos.

The relevance of the eigenvalue statistics to the chaotic structure of eigenstates has led[in Ref. [157] to an un-
expected result: a one-to-one correspondence was numerically found between the rescaled localizatifg.length
and the repulsion parametgiin the parametrization of the nearest level spacing distribuBis). The latter was
obtained by the fit oP(s) to the Brody distributionml] that approximately interpolates between the Poisson and
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Wigner-Dyson statistics of level spacings. The relationmeeing,c andg was found to be lineagi,c = B with a

high accuracy (the deviation is less than 1%). Being qualitatively natural since both quantities reflect the process of
chaotization, this intriguing result still has no quantitative explanation. Indeed, unlike the level statistics which is
basis-independent, the localization length is defined with respect to a certain basis. A similar result has been recently
obtained for the one-dimensional tight-binding Anderson mdfizi 162], and the same relation h@twandps was

found over a large range of the model parameters (Se@dm 4, 165]).

The onset of chaos due to delocalization of eigenstates in the energy shell is a generic scenario for many-body
isolated systems, both random and deterministic. As an illustration, we refer to the results [42, 43] concerning the
study of two modeld(2]5) anfl (2.6) of interacting spif2particles. The data in Fif. 112 demonstrate the spread of
eigenstates on increasing the perturbaticemdA. For the non-integrable Model 2, the critical strength of perturbation
resulting in a complete filling of the energy shellig ~ 0.4. For the integrable Model 1, at > u, ~ 0.5, the
eigenstates may be treated as delocalized and chaotic-like, however, they do not fill completely the energy shell. This
lack of ergodicity can be attributed to the integrability of this model. Even for the integrable model the individual
eigenstates look quite chaotic, see detail$ ih [43]. As we discuss below, quench dynarath foodels turn out to
be quite similar, and the statistical description of the dynamics works well for both models. It should be stressed that
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Figure 12: (Color online.) Structure of eigenstates for Mdd¢2.5) (left) and Model 2[{2]6) (right) in the energy representation, obtained by
averaging over five even states in the middle of the spectrum. Histograms correspond to the avefagel@f|? after shifting the centroid to
the center of the energy shell. Solid curves correspond to the Gaussian form of the energy shellg stéeds for the unperturbed energy (after

43)).

for the non-integrable Model 2 the same critical valye~ 0.5 emerges when exploring the level spacing distribution

P(s). A clear transition from the Poisson to Wigner-Dyson fornP¢f) was detected numerically in Ref 42| 43] for

Model 2, while for Model 1 the distribution remains Poisson for anfhese data indicate that although the spectrum
statistics helps to distinguish between integrable and non-integrable models, the global properties of eigenstates with
respect to the energy shell are quite similar.

As shown in Refs@ﬂﬂﬂ the simplest analytical estimate for the emergence of chaotic eigenstates filling the
energy shell can be obtained by exploring the structure of the Hamiltonian matrix without diagonalization. To do this,
one has to compare th&aliagonal matrix element,, that couples the selected basis statgand|m) to the energy
differenced; between the levels corresponding to these states. This spactngns out to be much larger than the
mean level spacin® betweerall states, since the two-body nature of the interaction imposes some restriction to the
coupling between many-body states. This fact is reflected by a high fraction of zero matrix eleméptsesien in
the TBRI model (1) in which altwo-bodymatrix elements are non-zero (see Elg. 1 and details in Re's. [81]). For this
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reason, one has to exclude those states that are coupledamighingmany-bodymatrix elementdmg]. Numerical

data obtained for the TBRI model as well as for the physical Models 1 and 2 (seeHgs.(25)hnd (2.6)), indeed, give
the correct values for the interaction strengths above which the eigenstates of the total Hamiltonian look random and
extended in the energy shell. For example, the above approach gives the same criticalyyalu@d andue ~ 0.5

as numerical datﬂh 3].

5. Thermalization

5.1. Emergence of thermalization in isolated systems

As discussed above, in many physical situations the eigenstates of an isolated system of interacting particles can
be treated as chaotic superpositions of their components in an appropriate many-particle basis. This fact has been
used in Ref.ﬁm 81] for developing the statistical approach to the description of various observables,
based on two key ingredients, the notion of the strength function and the shape of eigenstates in the basis of non-
interacting particles (or quasiparticles). In this way a natural question arises about the possibility of thermalization
in isolated systems in spite of the absence of a heat bath. In the canonical description of conventional statistical
mechanics, thermalization is directly related to the temperature defined by the heat bath; any definition of temperature
(for example, through the kinetic energy of an individual particle, statistical canonical distribution, or via the density
of states) gives the same result. Contrary to that, in isolated systems of a finite number of particles, these temperatures
can be dfferent, and the dlierence increases with the decrease of the particle number. This is also known for classical
systems; the detailed study oftidirent temperatures has been done for interacting classical spins moving on a ring
[@]. With an increase of the particle numibérall definitions of temperature tend to the unique value, corresponding
to the standard result of the thermodynamic lihit— oo. In this limit (both in classical and quantum mechanics),
the statistical behavior of systems emerges irrespectively of whether the system under consideration is integrable or
non-integrable, (see, for example, Réfs.[168] @) 172)).

Thus, the definition of “thermalization” in application to isolated mesoscopic systems is obscure; for this reason
we prefer to speak of thermalization in a broader context, namely, as the existence of statistical relaxation to a steady
state distribution. As rigorously shown in Refﬂll173], in the thermodynamicNmit co even for a completely
integrable system an infinitely small subsystem (probe) exhibits statistical relaxation, e.g. the emergence of the
Gibbs distribution. With the motion not even ergodic, one can wonder how statistical relaxation can occur since this
requires mixing. In the system considered by Bogoliubov this is explained by a perturbation spectrum of the probe
oscillator that becomesontinuousin the limit N — oo, a condition necessary for mixing (see discussion inl[172]).

For finite N > 1 the spectrum is discrete which implies a quasi-periodic behavior for any observable. However, the
characteristic time for revivals is typically so large that on a finite time scale (which, however, could be larger than the
lifetime of the Universe) a perfect relaxation occurs. In this sense, quantum chaos can be considered as “temporary
chaos”, however, indistinguishable from that occurring in classical mechanics on a finite time scale.

A new situation emerges for isolated systems consisting of a finite number of particles. Although in this case the
energy spectrum is discrete, the behavior of a system can reveal strong statistical properties, and the adequate theory
is based on the notion of quantum chaos. First of all, such a theory has to give an answer to the basic ghestion:

(or under which conditions) the statistical description is possible and practically useful for a quantum isolated system.
To answer this question one has to know the mechanism responsible for the onset of statistical behavior. In classical
mechanics this problem was solved by the concept of local instability of motion leading to chaotic behavior in spite of
completely deterministic equations of motion. In quantum mechanics the Schrodinger equation is linear which means
absence of local instability for the time-dependent wave function. For this reason, the chaos that emerges in quantum
systems was termed “linear chaos” by Chirikov [6], in order to stress the princif@latice from deterministic chaos
occurring in non-linear classical systems.

The situation is somewhat easier when a quantum system has a well defined classical limit and the corresponding
classical motion is strongly chaotic. Such a situation was originally referred to as “quantum chaos”, the term that is
nowadays used in other applications such as optics, acoustics, etc. In contrast to classical mechanics, the description
of a quantum system is based on the energy spectrum of stationary eigenstates, so that the emergence of quantum
chaos in a closed system has to be quantified in corresponding terms. This allows one to speak of quantum chaos in
a more general context, namely, including either systems without a classical limit or disordered systems, in contrast
with deterministic ones.
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As argued in Refﬂﬂh@l], for an isolated system of agfinitmber of particles (that can be quite small), the
mechanism of thermalization is due to the interaction between particles. When the interaction strength exceeds some
critical value, or the level density becomedtitiently high, the many-body wave functions become extremely com-
plicated (“chaotic”) and this leads to thermalization. In a broad sense, this is understood as emergence of relaxation
to a steady-state distribution allowing for a statistical description. In fact, at such complexity of stationary eigenfunc-
tions expressed in the appropriate basis, the statistical description seems to be the only one reasonable. A direct link
between chaotic eigenstates and the conventional statistical distributions (Boltzman, Fermi-Dirac and Bose-Einstein
ones) was analytically established in Rﬂlw] for the billiard models. Concerning the conditions for the onset of
many-body thermalization due to the inter-particle interaction, the basic ideas and their implications were reported in
Refs. Ei] demonstrating that the role of a heat bath is played fieisntly strong interaction between particles.

5.2. Fermi-liquid description

According to Landau, a non-superfluid system of interacting fermions can be considered as a result of an adiabatic
transformation of the perfect Fermi gas when we switch on the residual interaction and gradually convert this gas into
a Fermi liquid. If so, the energy spectrum of the system can be classified in the gas-like way although the quantitative
characteristics, such affective mass, susceptibilities etc. can change. We can expect that the actual excited states
of the system, including very complicated ones, can be reasonably described with the language of a Fermi gas of
dressed quasiparticles distributed over single-particle lduglwith effective mean-field energieg according to
the meanoccupation numbens,. For our purposes, this brings in the idea o$iagle-particle thermometéhat
measures theffective single-particle temperatufg_, of individual eigenstatef) in terms of the grand-canonical

Fermi distribution,
1

fy = o (5.1)
For a given many-body state) and all single-particle levels, the distribution function (5]1) should work with the
same values offéective temperaturé® and chemical potential* determined, up to fluctuations, by the positieh

of the state under consideration in the energy spectrum.
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Figure 13: Single-particle occupancies found for exactasiaty wave functions in thed-shell model calculations f&i®Si. Three panels refer to
different classes of states with quantum numB&fE equal to 00, panela), 20, panelb), and 90, panelc). Three thick lines (in fact, points for
all individual states) for each panel correspond to the occupanc®g,0fds» andds;, orbitals, from bottom to top on the left-hand side of each
panel (after[[1]).

Atomic and nuclear calculations show that the Fermi-liquid model indeed describes well the single-particle oc-
cupation numbers for exceedingly complicated stationary many-body eigenfunctions. The chemical potential varies
very little along the spectrum while thefective temperature again manifests the average behavior that we have al-
ready seen in the description utilizing the detailed information on the wave functions. In the example of the nuclear
spherical shell model, when single-particle quantum numbers are orbigald total,j, angular momentum, Fig. 113
demonstrates that the occupancies of each orh;ga# fg’j(Zj + 1), with the exception of a small number of states at
the edges, smoothly evolve along the energy spectrum. At the lowest excitation energy, the pairing interaction would
require a BCS-like parametrization of the occupation numbers; the nucleus close to its ground state is rather a small
drop of superfluid matter. This will not play a considerable role at energies above the pair breaking threshold (energy
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gap). In the center of the spectrum, all occupantﬁﬂebecome equal to/2 as expected for infinite temperature in a

system like?®Si with the half-occupied orbital spacsg-shell in this case. Dierent classes){'T) of global quantum

numbers for a system as a whole behave nearly identically although, becaus&erfeantiotal number of many-body

statega) in each class, the fluctuations are slightlffelient. This is another example of the correlations between sep-
arate subclasses of the Hilbert space induced by the interaction (earlier we mentioned andfegtsusfe random
interaction). A similar calculation fo¥*Mg (1/3 of orbital space filled) confirms the same conclusions. In the original
Landau’s theory of a normal Fermi-liquid, only the weakly excited states were classified in analogy to a Fermi-gas.
Here we see that in a closed mesoscopic system, the self-consistent interaction between constituents creates compli-
cated states where the single-particle occupancies evolve as in a Fermi-gas witkedtieestemperature smoothly
changing along the entire spectrum of excited states.
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Figure 14: Comparison offiective temperatures for the set of many-body stafé§ = 070 found in thesd-shell model calculations fo#Si.
Solid curves: thermodynamic temperatures found from the level density according fo Eq. (5.2). fipotszestemperaturesy , extracted from
the single-particle occupancies, Ho.{5.1), for all individual states (&fter [1]).

It is instructive to compare the single-particle temperafiffg of individual many-body states with the conven-
tional thermodynamic temperatuvehich can be defined via the thermodynamic entr§pk) of the microcanonical
ensemble found as a function of energy averaged over a small energy window rather than for individual eigenstates.
In statistical mechanics the entropy is determiried< 1) as logarithm of the statistical weigl8(E) = In Q(E), and
the corresponding temperatureof the ensemble is

T= (2—2)_1. (5.2)

In this language, for an isolated system with a finite number of particles and single-particle states, the growing level
density (the left half of the spectrum) describes the temperature raising from zero to infinity, while the right half
corresponds to negative temperature for the states with the inverse population of mean-field orbitals. Assuming that
the level density(E) in a finite space can be modeled by a Gaus@r{_% 2 5.0, 111] with the centtoidag
and widthog, we obtain )
S(E)=—INp(E) ~ T(E)= —E—. (5.3)
Eo-E

The data in Fig_14 clearly show that the thermodynamic temperatures essentially coincide, both in the regions of
positive and negative temperatures, with the single-particle temperatuireafiualmany-body states determined
from the actual single-particle occupancies of each orbital. A view through a magnifying glass would show deviations
at the edges of the spectrum for a small number of eigenstates. One reason is the presence of pairing correlations; the
level density may carry the remnants of pairiifgets resulting in phase transitions. However, the correct microscopic
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calculations of the level densitmlﬂm] show that, exdepthe very edges of the spectrum, the incoherent
collision-like parts of the interaction smooth out in a small system the pairing modulation of the level density; as
discussed earlier, phase transitions in such systems are also significantly washed out.

The anaIysisI]l] reveals that thefiiirent measures of complexity of individual eigenstates are practically equiva-
lent to each other and to the thermodynamic consideration based on the level density under the important condition:
an appropriate thermometefThis is the point where the choice of the representation for the measures using the
components of the wave function in a certain basis becomes important. As we have already argued, in a many-body
system of interacting particles, the mean field representation separates in the best way regular and chaotic features
of dynamics. The solution of the many-body problem should be self-consistent. Taking arbitrarily weak or arbitrar-
ily strong residual interactions, we would introduce the discrepancy betwéenedit parts of the description. The
information entropy of the majority of states would become either uniformly low or very high (everywhere close to
the GOE limit) without demonstrating the spectral evolution. The single-particle thermometer still works at weak
interaction but becomes useless in the limit of too strong residual forces when all available orbitals along the spectrum
are occupied uniformly as for infinite temperature.

5.3. Microcanonical versus canonical distribution

An approach to thermalization in isolated systems of interacting particles based on the ground of chaotic eigen-
states was suggested in ReB.LL_;LJ 166, 81]. The main object is the set of single-particle occupation myhelfieed
by the standard expression,

n2 = (el Asla) = . [Ce|” (KIRslky (5.4)
k

with fAs = alas the occupation number operator for the mean-field orisithht has (for fermions) eigenvalues (occu-
pation numbers) equal to 1 or 0. We remind that l&}ere the components of a specific many-body dtgtéexact
eigenstate of the full HamiltoniaH) presented in the basis by, see Eq.[(3]2). The actual occupamty= ng(E®)

is the sum of the probabilities of filling the basis states used as the elements constructing the exagt stae

typical regular evolution of the occupancies along the spectrum of stationary states in a closed many-body system of
interacting fermions is illustrated by Fig. 13.

The key point of the approach is that for a chaotic eigenstatthe occupation numberg are given bysmooth
functions of the total energlg = E* of the system, due to a large numberstiongly fluctuatingcomponent<y
contributing to the stationary wave functi@w). In this situation one can safely perform an averagimgidethese
eigenstates (for example, with a moving window), or, equivalently, over neighboring states with the same values of the
global constants of motion within a small energy interval centerétf aEquivalence of dferent kinds of averaging
is in the spirit of conventional statistical mechanics for systems in contact with a thermostat. As we have already
argued, the role of the thermostat is played by the interaction producing a complex structure of eigenstates. Such an
average is similar to the microcanonical one since it is done at fixed total eBefidyus, we have

ny(E) = ¥ [Cef (K Aslky = > F2(E) (KiRgk). (5.5)
k

k

where the—function (also called shape of eigenstates),

F(E) = (C¢ e (5.6)

is introduced similarly to the strength functidn (3.9). As discussed earlieF tfienction and the strength function
Fk(E) originate from the same matrix of componews = |C‘k’|2 obtained by the diagonalization of the total Hamil-
tonianH in thek-basis: the strength function is the average projection ldisisstate onto the exact ones, and the
F—function is the projection of aexactstate onto the basis states. Both these projections are considered in the energy
representation rather than in the basis representation, an important point for the analysis.

Apart from the condition of a large number of components in an eigenstate, one has to be sure that these compo-
nents are fectively uncorrelated [compare the discussion of the correlator](4.10)]. Otherwise, the averaging is not
justified, and the distribution afs will depend on tiny details of eigenstates instead of being a smooth function of
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the total energy (and possibly of other exact constants ofomptFrom Eq.[[5.5) one can also see that the distribu-

tion ng depends on two ingredients: tkefunction and the mean single-particle occupan¢igis [ny which absorb

the requirements of quantum statistics (a similar approach works for bosons as well). A special remark should be
made for systems with a well defined classical limit. In such a casd; Hfienction can be found from the classical
Hamiltonian, and the problem of the shape of this function, which is central for the following analysis, is consider-
ably simplified (sedﬂO] and references therein). It is instructive to compare the microcanonical distribution (5.5) of
occupation numberns;(E) with the standardanonical distribution

2o Ns expCE*/T)

0= =S eprEm

(5.7)

HereT is the temperature of a heat bath and the sum runs over exact eigenstates. The imgiatantdibetween

the distribution[(5.6) and the canonical distributibnl5.7) is that in[Eqgl (5.5) the occupation numbers are calculated for
the fixed total energf of a system and not for the fixed temperatUiri@ Eq. (5.T). Their interrelation comes through

the identification of the running ener@with the canonical mean energy at the temperatyre

> E® exp(E*/T)

E=(Ey= S oxpCET) (5.8)

The arguments are essentially similar to those traditionally used in statistical mechanics to demonstrate the equiva-
lence of canonical and microcanonical ensembles for large systems. Here we replace the summatiday dher
integration over the density of exact energy leve(&?),

Z ng exp(—E“/T) = fn‘s’p(E”) exp(-E*/T)dE" (5.9

~ > f F*(Ep(E) exp(—E*/T) dE” = > nld F(T, B,
k k
wheren! = (k| As|ky. Here the functiorF (T, E) is the canonical average Bf ,
F(T.Ey) = f Fo®r(EW) dE (5.10)

with another canonically (thermally) averaged function,
®1(E) = p(E) exp(-E/T). (5.11)

In standard statistical mechanics, the product of an exponentially growing level density and an exponentially decreas-
ing thermal excitation factor produces thifeetive microcanonical windowr. As a result, one can transform the
canonical distributior (517) into the form similar to thg- distribution [5.7),

> nd F(T, B

K
Ng(T) = ————. 5.12
«(T) S (5.12)
This distribution can be used, for example, in the calculation of occupation numbers and other mean values for a
guantum dot in thermal equilibrium with environment.
In a large system, the positidf, of the maximum of the distributiof (5.112) is defined by

dinp(E) _ 1
HE =T (5.13)
and the width is given by
d2In p(E)| 2
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For isolated systems of interacting particles the densistaies is typically described by a Gaussian with centigid
and variance?, compare Eqs[{5.2) and (5.3). This leads to a Gaussian form of the thermal averaging f@n¢Epn

with a shifted centroid, )

g’
Em=Ec- ?, (5.15)
and a widthAt = o. For a large number of particles the narrow functibnis close to a delta-function & = Ep,
and theng— distribution is close to the canonical one, see 5.10). For isolated systems with a small number of

particles, one should use the- distribution [5.6), see details i @81].

5.4. Onset of the Fermi-Dirac distribution

Here we illustrate the emergence of Fermi-Dirac distribution with the use of the TBRI-niadel (2.3). If the interac-
tion V is relatively weak, the many-body eigenstates cannot be treated as chaotic. It follows that (i) the fluctuations
of the component€? in Eq. (5.4) do not obey the standard central limit theorem, (ii) the averaging procedure is not
supported and (iii) the fluctuations of the occupations numbges a function of the enerdy® are strong, so that
they do not decrease with the number of principal componaigts,

This can be illustrated by the results of Reé 156, 81] in the TBRI-model for just four fermions occupying
eleven orbitals, see Fi§. 115. ForfBciently weak interaction, the numerically obtainegddistribution is clearly
different from the Fermi-Dirac distribution (full diamonds on left panel), being even not a monotonic function of the
orbital energyes. In this case the averaging did not wash out the fluctuatiomg aBnd the whole picture strongly
fluctuates when changing the enefgfyof an eigenstate (see left panel in Fig. 15).

1.0 — T T T T v T T T T L0 — .

n ! Fermi-Dirac

0.8

o gY

Figure 15: Thens-distribution for strongly interacting particles in the TBRI-model12.3) for 4 fermions on 11 orbitalssaads + 1/s as single-
particle energies. The histograms are obtained by averaging over a number of eigenstates withEerergied3 > Eg = 6.08 which is much
higher than the energiy of the ground level. Left: weak interaction with = 0.02. Full diamonds correspond to the standard Fermi-Dirac
distribution and stars stand fag computed by Eq[{5]5) with thE—function [5.8) taken in the Breit-Wigner form. Right: strong interaction with
V = 0.20. Open diamonds correspond to the shifted energy ifEql (5.17) with the total €&asgyre energy of eigenstates; the shift is defined by
Eq. [5.19). Circles stay for the Fermi-Dirac distribution obtained from[Eq.15.17), however, without théssaifter [81]).

However, for strong interaction resulting in a large vaNg > 1, the equilibriunms-distribution emerges (see
right panel in Fig. 15). In this case the fluctuations of the eigenstate comp@@’ntﬁave a Gaussian shape with
respect to an envelope which is a smooth functioB&f This leads to small fluctuations of the occupations numbers
ns in accordance with the central limit theorem for the stiml(5.4), namely, Aviting ~ N,;cl/z < 1lforng~ 1. In
this region the value dfi,. can be estimated d¢,c ~ I'/D whereD is the mean level spacing for many-body energy
levels. As a result, thes—distribution evolves smoothly when changing the energy of the system. Such a situation can
be associated with the onset of thermal equilibrium and the emergence of the Fermi-Dirac distribution [Sée Fig. 15.
The data shown in Fi§. 15 can be compared with the canonical form of the Fermi-Dirac distribution,

1
1+ exp(a+Bes)
37

(5.16)
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In Eq. (5.1), the parameters equivalenit@nd 8 in (5.18) were found for each individual many-body stiateof
a strongly interacting small nuclear system as local equivalents of the chemical potential and temperature which are
smooth functions of energy. According to R[81], the parameteand3 can be found by solving the following

system,
dins=n, > ens=E + o, (5.17)
S S
where the shifég is given by by
din ol
0e = (Ey) - E* = déooof ~ —;(Ec - E). (5.18)
(o

0

Hereo? is defined by Eq[{3]7). is the centroid of the energy spectrum, arfis the variance of the unperturbed
density of states for the Hamiltonia#y. The parametefg represents the flerence between the energy of an indi-
vidual stateE” and the mean energy of the system, taking into accountEgat— E* # 0 away from the centroid

(E)) = f Fi (Ex, E")p(E")dE". The correctioe emerges since the interaction shifts asymmetrically the unperturbed
levels that are lower and higher than enekgy In this way we take into account the modification of the energy spec-
trum due to the interaction between the particles; for details, see@@l, 156]. The datd1d Fig. 15 are compared
with the results given in Eq[{5.1L7) with and without the energy shift. One can see that when the influence of the
interaction is quite strong the energy shift should be taken into account in order to get the correct results.

An instructive example of the emergence of Fermi-Dirac distribution in a realistic physical system, namely, for
multicharged gold ions A&¥" near the ionization threshold, is given in Réf. [7]. With the use of an appropriate mean
field, the authors were able to relate excited eigenstates and spectra to the radiative capture of low-energy electrons.
Moreover, the enhancement of the recombination over the direct radiative recombination was found that explains
experimental data. The situation is quite similar to the radiative neutron capture by complex nucleinmhe (
reaction, where the resonance mechanism emerging due to chaotic compound states is also much stronger than the
direct capture [174].

A typical example of the structure of a highly excited eigenstate PS8 presented in Fi§._16. This eigenstate is
obtained by the diagonalization of the Hamiltonian matrix of $ize 1254 forJ™ = (13/2)". Its shape in the energy
representation was found to have good correspondence with the Breit-Wigner formula. For such kind of eigenstates,
the statistical approach is expected to give reliable results fonduistribution in the Fermi-Dirac form. This is
confirmed in FigZIl7 where fews-distributions obtained frorindividual eigenstates oAu?> are shown, as well as
by similar results for the nuclear shell model, see Fig. 13. Note that, similarly to the earlier discussed nuclear shell
model, the calculations are performed for fully deterministic systems with no random parameters in the Hamiltonian,
so that the validity of the statistical description is based exclusively on the chaotic structure of the eigenstates.

5.5. Djfferent temperatures

For a relatively small number of particles the temperafudefined by the Fermi-Dirac distribution according to
Eqg. (5.17) can be dlierent from both thehermodynamic temperaturgn] Egs. [5.2) and(5.13) and tleanonical
temperature Ta, defined by the canonical distribution (b.7). fieirent temperature scales andelient appropriate
thermometers already appeared in relation to Fig. 14.

Let us discuss the problem offtirent temperatures in more detail. Assuming a Gaussian density oftajes
the thermodynamic temperature is given By(E) = 0%/(E¢ — E) whereE, ando are the centroid and the width of
the distributiorp(E). In Ref. @] it was found that the canonical temperaflyg can be expressed as

0_2

E._E+ A (5.19)

Tean=
where the shiftA is proportional to the width of the functiobr(E) defined by Eq.[(5.11). The fierence between
these two equations of stat&,(E) and T.o{E), disappears for highly excited eigenstates, or in systems with a
suficiently large numben of active particles. In finite systems, such as quantum dots, atoms, or nuclei, the number
of active particles (particles in an open shell) is not large. For example, for the cerium atom Wezha@] and in
the nuclear shell model f@fSi [@Dlh = 12. Therefore, the correction to the thermodynamic temperature can
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Figure 16: Top: components of the 590th eigensfiite- 13/2, and the least-square fito‘E(E) to the Breit-Wigner formula (bottom) (after [7]).

be significant, especially at low energy. The energy dependence of the tempeFgtaratT .., for the TBRI-model
with four interacting fermions occupying eleven orbitals is shown in[Eiy. 18. The comparison of the two temperatures
reveals a noticeableftiérence for all rescaled energjes (E — Etermi)/(Ec — Efermi)-

In the TBRI-model the inter-particle interaction is assumed to be completely random. As was argued, this model
demonstrates generic properties that typically emerge in many-electron atoms, nuclei, and in other mesoscopic sys-
tems of interacting particles. In atomic and nuclear systems one can use realistic interactions as it was done, for
example, in Figs. 11 and 12. Due to the complicated character of the interaction between particles at high level den-
sity, it is plausible to expect that the genuine deterministic interaction can be substituted by random matrix elements.
Now, it is quite instructive to see what is going on if the interaction is deterministic and the number of particles is very
small. In this case the emergence of thermalization, especially, the notion of temperature, is far from being obvious.

A detailed studym& however, shows that one can speak about thermalizatiorffanenditemperatures even
for a system of two interacting particles. The model here describes two coupled rotators with angular momenta vectors
L andM and a simple Hamiltonian,

H=Ho+V =(L;+ M) + LyMy. (5.20)

A similar model is also considered for two interacting quasi-spins in the pairing problem of nuclear physics. The
classical analog of this model thoroughly studied in R [ 178, 179] shows strongly chaotic motion when the
absolute values of both spins are large~ M > 1. Therefore, one can expect that in this regime the quantum
counterpart reveals the properties of quantum chaos.
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Figure 17: Occupation numbers in & calculated numerically according to Hg.(5.4) at high excitation enefgji¢khe temperatur@ and the
chemical potentigk are obtained with the best fits of the data to the Fermi-Dirac distribution (after [7]).

The numerical studmﬂm] was restricted by the vaMes L and 1< L < 10. Typically, when the energy
|E| is close to the maximal valuEnax = L? + 1, the classical trajectories are regular, whileFor 0 (at the center
of the energy spectrum) the islands of stability become very small and chaotic motion dominates. In the quantum
problem the angular momenta are quantized accordihg to M? = 12(¢ + 1) wheref is integer. The Hamiltonian
matrix is more sparse than in the TBRI-model, even if its size can be lafge @¢? + 2¢ + 1). The properties of
the eigenstates and the strength function were studied in great detail in_Ref. [65], showing the emergence of chaotic
eigenstates in the region of classical chaos. [Eify. 19 shows few individual eigenstates and the distribution of occupation
numbers obtained for these eigenstates. The Hamiltonian was presented in the symmetrized two-particle basis of non-
interacting particles. As a result, the-distribution has to be compared with the Bose-Einstein distribution.
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Figure 18: Diferent temperatures versus the rescaled enerfyy the TBRI-model [ZB) with 4 particles in 11 orbitals. Triangles stand for the
thermodynamic temperatuilg, and circles for canonical temperatufe,n. The data are obtained f&f = 0.12 and the mean spacing between
single-particle levelsly = 1 (after [81]).

As seen in Figl_19, the ground state eigenfunction, pamél éven if characterized by a large number of com-
ponents, has clear correlations which do not allow for a statistical descriptiof dfideed, the actual distribution
of occupation numbers, panel | has a very specific form. The same happens for the energylgyetee panels
(a2) and p,). With an increase of the enerdy the structure of eigenfunctions becomes complicated, and the Bose-
Einstein distribution emerges (and becomes close to the Boltzmann distribution due to the large values of quantum
numbers). These results are important in view of two points. First, in correspondence with the basic principles of
statistical physics, the conventional statistical properties of observables (in our case, the occupation nhumber distri-
bution) emerge on the ground of individual eigenstates. Second, even for a simple model of two particles with a
deterministic interaction and well defined classical limit, the statistical description works quite well as expected from
the quantum-classical correspondence.

Now, in view of our previous discussion offtérent temperatures, let us look at the data presented if_Big. 20.
One can see that the thermodynamic inverse tempergyi@,ll curve) computed by Eq[(5.1.3) with the use of the
Gaussian density of states (that is well confirmed numerically), is véligrdnt fromgge (crosses). The latter was
found by solving two equations,

{ {
dinE=2 N nsBF=g, (5.21)
s==( s=—(
for temperature and chemical potential. Here the enérgy>. isns is computed from the numerical values of the
actualns. The ng—distribution found in accordance with E@._(5121) fully takes into account ffeeteof the inter-
particle interaction. The fact that the canonical temperatysgdoes not correspond to the actmgldistribution is
not surprising since for two particles one cannot expect the coincidence of microcanonical and canonical averages.
The temperaturége found from Eq.[(5.21) turns out to be close to that defined from the one-parameter fit to the
Bose-Einstein distribution with the only constraint of a finite number of partiglésn® = 2. The corresponding
inverse temperaturg;; (full circles), is close t@Bge = 1/Tge. This supports, on one hand, the significance of the
fitting procedure with the Bose-Einstein distribution, and, on the other hand, the validity of this distribution for isolated
systems via a proper renormalization of the en&ggee previous Section.
An interesting observation in Refl__L1|76] refers to the “randomized” model created by replacing norizero o
diagonal matrix elements in the Hamiltonian by random variables with the same mean and variance as in the original
deterministic mode[(5.20). In this way we destroy the inherent correlations between matrix elements, however keep-

41



04 —~
L [
4 (01) = | (b1)
c s
Q.2 4]
jod -0.3
-10 0 10 0 100 20C 300 400
n
0.4
2
L
e
[d
et
0.2
8
-10 a 10 0 100 200 300 400
S n
04 03
- -
u CHIC) (bs)
= B
Q.2 0
o -0.3
=10 0 10 0 100 20C 300 400
B n
,.30.4 ,.50.3
A (o)« (b4)
< >
0.2 0
] -0.3
~10 0 10 0 100 200 300 400
S n

Figure 19: Eigenfunctions (right column) and the correspumnaccupation number distribution (left column) for= 3.5, £ = 19. The panels

(a1, by) are for the ground statea, by) for the 10th state (classically integrableps(bs) are for the 49th state (with a chaotic phase space in the
classical limit), anddy, bs) correspond to the 54th state (with fully chaotic phase space). Full curves on left panels are obtained by the best fit to
the Bose-Einstein distribution (aftér [176]).

ing the positions of the zero matrix elements that are due to the selection rules. For such a modified model, the inverse
canonical temperatur@.a, (open circles) did not practically change, while bgh, andBge ~ Bt considerably
change and come closer to the canonical inverse tempergtyse, This indicates that the conventional canonical
distribution of occupation numbers may appear even in isolated systems with a small number of particles, provided
the dynamical correlations are weak due to a complicated interaction.

As for the standard thermodynamic inverse temperature definggd byd In p/dE with p as the density of states
of the total Hamiltonian, the dependermg&E) (dotted line) is diferent fromBca,;, however, it comes closer near the
center of the energy spectrum. This result was attributed in Ref) [176] to the small number of particles. For the
randomized modefy is close tq3s:(E) at high temperature whefa, andB.antend to coincide; however, it deviates
significantly at lower temperature. Note that near the edges of the spectrum the density of states is small, and the
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Figure 20: Diferent inverse temperatures versus rescaled energy¥/Emax. Full curve: Bean = 1/Tcan, dotted curveBy, = 1/Ty, full circles:
Biit = 1/Tsit, and crosseBee = 1/Tge. Open circles stand fg = 1/Ty;; for random model, (aftelT:L’VG]).

eigenstates are not chaotic any more.

6. Statistical relaxation

Above we have discussed the interplay of chaoticity and thermodynamics applied to the set of stationary states
of a many-body Hamiltonian. We now turn our attention to the theoryasf-equilibriumphenomena that was ex-
tensively developed during the last decades, being particularly influenced by the availability of new experimentally
accessible systems, such as optical lattices with a small number of atoms, and by the progress of quantum informat-
ics. The notions of quantum fidelitm80] quantum quer@ 181 182,[188, 184] and quantum améaiiﬂl%, 186]
require time-dependent descriptions, where echo-like returns 7, 188] and possible quantum phase transitions dis-
play interesting physics/[3]. The method most closely related to our description operates with the so-called diagonal
entropy that is a cousin of the information entropy. Many physical problems here are still not fully resolved. It was
noticed long angQ] that, under an adiabatic evolution of the interacting systems, the characteristic time scales are
much shorter than the Weisskopf tirh¢gD corresponding to the inverse distance between the microscopic many-body
energy levels and therefore to the characteristic periods of wave packets in this Hilbert space. Our previous consid-
erations allow to hypothesize that the Weisskopf time describes the closest return of the wave packet, while it is not
needed for statistical equilibrium: indeed, if all states in a given energy window “look the same”, the system does not
need to probe every one of them.

Advances in the theory of non-equilibrium quantum dynamics have benefited from new experiments with highly
controllable interacting quantum systems, where the evolution remains coherent for a long time. They include solid-
state . 191, 192] and quuid—sta@%] NMR platforms, ultracold atoms, and molecules in optical lattiCes [194,
(195, @00]. In the first case, the experiments are performed at room temperature and the dynamics
is controlled with magnetic pulses. In the latter case, selected initial states can be prepared, and the strength of the
interactions and the level of disorder can be engineered. In parallel to experiments, new numerical methods, such as
those based on matrix product states and density-matrix renormalization group (DI@E@OZ, 203] as well as
linked-cluster approach@04], have made possible the simulations of the dynamics of large quantum systems and
the analysis of infinite time averages in the thermodynamic limit.

Non-equilibrium quantum physics is a highly interdisciplinary subject. It reveals, for example, a symbiotic rela-
tionship with quantum information science. Some illustrations include the growth of entanglement as a justifier for
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the limitation to short times of the time-dependent DMRG mdtm]; the manipulation of the dynamics of inter-
acting quantum system@dﬁ.__imm] that emerged from the need to transfer and store information for quantum
communication; and the further advances of quantum simulators for adiabatic quantum computation and quantum
annealing[[185, 186]. Non-equilibrium phenomena are also highly connected with the characterization of quantum
transport behavior, whether it is ballistic offidisive @BQ]; with new physics emerging at the points of quantum
phase transition@hmtﬂ, 3]; and with the viability of thermalization, sed 5ec. 7.

In this section, in order to study the statistical relaxation of observables, we concentrate on the dynamics of
isolated quantum systems prepared in an eigenstate of an initial (unperturbed) HamHigaiaeh evolving by a full
HamiltonianH = Hg + V. This scenario is often referred to ggenchedlynamics; it corresponds to an (almost)
instantaneous perturbation that convétgsnto the final HamiltoniarH during a time interval much shorter than any
characteristic time scale of the system. We will also discuss the case, relevant for recent experimental studies, when
the initial state is not an eigenstateldf. In our context, this means that the initial state is not an eigenstate of the
mean field basis, even if analytical results are mainly available for this situation.

6.1. Survival probability: theoretical background

As a simple case of quench dynamics, we consider the situation where the initial state is a bgkis,statean
eigenstate of the unperturbed Hamiltonkdgin Eq. [2.1). The evolution of the state vector is described by

(1) = Z C¢ |y exp(-iE“t), (6.1)

where the coﬁcientscgO = {alko) are obtained from the expansion of the initial state over the stationary states
the total HamiltoniartH = Ho+V andE“ is the energy eigenvalue corresponding to the eigenatat€he probability

Wido = Aol = [ (KI¥ (1)) 2 (6.2)

to find the system at timein the statek) is determined by the amplitude

Ao (1) = (Kl expiHt)lko) = Z Cy Ci, eXpIE™). (6.3)
A quantity of particular interest is theurvival probability W(t) to find the system at timiein the initial statgko),

Wo(t) = Wigke (1) = [Agio )] (6.4)

where we come to the Fourier image of the strength function,
Ao (t) = Z ICy. |2 exp(iEt) = f Fi, (E) exp(-iEt)dE. (6.5)

As seen earlier, for chaotic eigenstates the strength funEiigi) is a smooth function of energy which is the key
point in the analytical evaluation of the time dependenc@/sit).

Numerical and analytical results for the survival probability in the TBRI model are considered [0 $ec. 6.1 and for
spin-12 models in Se¢. 6.2 . This quantity, also known as return probability and quantum fidelity, formally coincides
with the Loschmidt echo (see revievis [188,1211]) when the two Hamiltonians involved in the echo are taken as
andHg + V.

According to perturbation theory, at short times the general result is valid,

Wo(t) 1 - o t%, (6.6)

whereo? is the energy variance of the initial stakg) projected onto the basis generated by the total Hamiltodian

see Eq.[(3]7). This variance defines the width of energy shell, and can be determined, prior to the diagonalization, by
the sum of squares offediagonal matrix elements of the matrix ldfin the basis oHg, namely, assrﬁ0 = Yksko Vlfok.

. This expression is universal in the sense that it is exact for any kind of perturhﬁ@j. The initial time scale
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for the perturbative expressidn (b.6) to be valid is very $raald the main interest is in the time-dependence/s(t)
beyond this time scale, which is entirely determined by the form of the strength function. A similar initial stage is
formally present in the usual description of irreversible radioactive decay but in such applications, as a rule, the initial
moment of creation of an unstable state cannot be known precisely e h[212, 77].

As discussed above, in generic systems of interacting particles the strength function takes the Breit-Wigner form
(3.I2), provided the interaction is relatively strong. The half-widglof the BW is given by the Fermi golden rule
and in our case reads as

To(E) = I'(E, ko) = 2n|Vig| 1 (E). (6.7)

Here |Vk0k|2 is the mean square value of many-body matrix elements obtained by the averaie anveos (E) is
the density of the basis states directly coupled to the $tgtdy the interactiorV. For TBRI, this density can be
roughly evaluated as follows: the basis stighasNg non-zero matrix element&y’|V|ko) for k" # ko. Let us define
kn = Min[ko'] andky = Max[ko'] taken over theNp values for giverky. The valueky, andky determine the width
of interaction in the chosen unperturbed many-body basis. One can associate with these two values the corresponding
eigenvalues of the total Hamiltonidf,, andEy_; in this way we have);l ~ (Ey, — Ex,)/No. It should be stressed
thatp¢(E) is much smaller than the total densitfE) of all many-body states due to many vanishing matrix elements
(ko’'IV]ko). As mentioned earlier, this is attributed to the two-body nature of the interaétion
Assuming the Breit-Wigner form of the strength function, the survival probability is described by the exponential

time dependence,

Wo(t) = exp(-Tot), (6.8)

apart from a short-time reginte< to when the quadratic decrea§e {6.6) occurs. This situation is similar to what is
known for radioactive decay into continuum, when the short initial stage is changed by the conventional exponential
decay, see the recent short review article [77] and references therein.

For a long time it was assumed that the exponential decrease of the survival probability was the only regime which
is physically relevant to the dynamics of systems with many interacting particles. However, as discussed in Section
[ll, now it is understood that in many situations the form of the strength function can be close to a Gaussian. This is
related to the finite width of the interaction in the energy space reflected by the band-like strusturekyd. (Z.3).

For the TBRI model it was show13] thatlif < Ag, the form of the strength function, is, indeed, Breit-Wigner.
In the opposite limitl'y ~ Ag, of a strong interaction, the leading dependencé/s(f) is Gaussian,

Wo(t) = exp-o t2). (6.9)

This occurs on some scale<0t < t; [m], after which an exponential dependence may emerge, see below.

Different functions have been suggested to describe the shape of the strength function in the transition region
between Breit-Wigner and Gaussian, for example Studestistribution {85, 86], interpolation of the two func-
tions [83)21B], and Voigt distributior [2/14]. Although the rigorous analytical description of this crossover is quite
complicated, in order to evaluat#(t), one can use the phenomenological expression suggested in REf. [213] for the
strength function that depends on two key parameigrandoy,, see also Ref_[82]. For the TBRI model willy,
Fermi particles irNg active orbitals, one h 1],

V2
o2 = 1_02Np(Np — 1)(Ns = Np)(Ns = N + 3), (6.10)

where Vo, \p] is the range within which the two-body matrix elements are distributed randomly with a constant
probability. The variance2 turns out to be independent of the specific basis skaieas already mentioned, the
same property is practically well satisfied in various versions of the nuclear shell rhbel [1, 75], where one cannot
directly apply eq.[(6.10) because of the presence of exactly conserved constants of motion dividing the Hilbert space
into non-overlapping domains.

Thus, in the case of a not too strong perturbation, the decrease of the survival probability is exponential, and with
an increase of the interactidfy one should expect a long time scale where the Gaussian forin (6.9) occursfor
These predictions are confirmed by numerical data in[Fiy. 21. Here and below theisimeasured in unita/dg
wheredy = (es;1 — €5) IS the mean spacing between single-particle lewglsThe calculations were performed for
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Np = 6 fermions andNs = 12 single-particle states resulting in 924 many-body states. The fit to the exponential
dependencé(d.9) determinigs~ 0.97 that can be compared with the rough estimate (see details in Ref. [82]),

2
ﬂ'O'kO

" do(Ns = Np)’

wheredy is the mean level spacing between single-particle levels. With this estimate one dlgt&irisO3 which is
very close to the numerical data, see Eig. 21, left panel;Rgiemeasured in unitdy/ 7.

I'o (6.11)

w,t) W, wa
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Figure 21: Survival probability\p(t) for TBRI model [Z38) with 6 particles and 12 single-particle levels. Full circles correspond to numerical
data. LEFT: Weak non-perturbative interactiop,= 0.12, the strength function has the Breit-Wigner form. The straight line shifted for a better
visualization is the linear fit. MIDDLE: Intermediate situation with = 0.25 when both regimes, Gaussian and exponential, are characteristic
of the dynamics. Solid curve is the theoretical expresdiod (6.9). RIGHT: Strong interagfien0.5, with the Gaussian shape of the strength
function. Solid curve is the analytical dependerice] (6.9) Wﬁchdetermined by Eq[{6.10) (aftér [82]).

In the intermediate regime between Breit-Wigner and Gaussian, there are two time scales, [s€e Fig. 21, middle
panel. Whert < t;. ~ 0.3, the decrease ®/(t) has the Gaussian forfa (6.9), whereastfort. the time dependence
changes to exponential. The critical timgehat divides these two regimes can be estimated as

te ~ r—g (6.12)

ko

In fact, t; is the time to resolve the widtiAg ~ o7, of the energy shell. If this width is very large, the exponential
decrease starts on a short time scale. Such a situation is typical for one-body chaos, for example, for a particle in
a billiard: since the interaction is due to the hard walls, the energy range of interaction is extremely large (actually,
infinite), and the interaction couples all unperturbed states apart from the origin of the energy spectrum. That is why
in such models the typical shape of the strength function is Breit-Wigner, independently of the interaction strength,
see Ref.|_[_1|9]. Contrary, for isolated systems of interacting particles, such as the TBRI model, for relatively small
values ofAg, the Gaussian decreaseWf(t) starts fromt ~ 0 and lasts for a long time. According to this estimate,
we havet. ~ 0.5 which roughly corresponds to the data. The critical tigis not a well defined quantity and can
be determined up to a numerical factor of the order unity. Remarkably, the time of the correspondence of the data to
Eg. [6.9) turns out to be independent of the perturbation strength.

Finally, for a relatively strong interaction resulting in the Gaussian shape of the strength function, the numerical
data reported in Fid._21 (right panel) manifest a long Gaussian-like decrease of the survival probability up to very
small values of\p, in contrast to the intermediate regime. The deviation from the Gaussian dependence towards the
exponential one (linear slope after 0.4) begins at small values ¥f(t). Therefore, practically the decrease of the
survival probability is described by the dependeiice (6.9). The detailed analysis performedef. [213] has revealed
an unexpected result. It was analytically shown that, having an exponential tail for the time after which the Gaussian
decay ends, aon-conventional decagmerges asymptotically for a large time, givenWiy(t) ~ C exp(-T'ot), where
the constanC can be very largeC ~ exp[%l{l"g/(AE)z}]. Such a strong deviation from the conventional decay,
Wo(t) = exp(-T'ot) can be important in realistic physical systems. It should be noted that the exponential decay cannot
last to arbitrarily long time because then the energy uncertainty of the initial state would be infinite. The long-time
regime should be of power law or something like that being defined by the threshold, the lowest end of the energy

spectruml[77].
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6.2. Survival probability: spin/2 systems

Here we focus on realistic, completely deterministic, spibslystems [see Eq$.(R.5) afd (2.6)]. We show that
the analytical approach developed for the TBRI model works also for deterministic models provided the eigenstates
of the total HamiltoniarH can be treated as chaotic. Since the survival probability is the Fourier transform of the
strength function, the shape and filling of the latter regulate the decay of the first. This allows for the following
conclusions@ﬁzw], which are illustrated below: (i) the decay for integrable and chaotic
Hamiltonians may be very similar; (ii) it may be exponential, Gaussian and even faster than Gaussian, the fastest
behavior being limited by the energy-time uncertainty relation; (iii) it slows down as the energy of the initial state
moves away from the middle of the spectrum.

6.2.1. Integrable vs Chaotic Regime

The gradual broadening of the strength function as the perturbation increases for the integrable Model 1 and for
the chaotic Model 2 was shown in Fig. 6. Here, that figure is translated to the non-equilibrium scenario. The initial
states are the basis states of the unperturbed Hamiltéhiahhey are evolved b being labeled by the energies

Ex, = (kolH ko) (6.13)

chosen away from the edges of the spectrum of the total Hamiltdthiakote thatlikO is equal toEy, = (ko|Holko)
only at the center of the energy band (see discussion iril__Qlef.[Sl]). The corresponding decay of the survival probability
is illustrated in FigC2R. When the perturbation is weak=( 0.2, 1 = 0.2), the strength function is close to a delta

Figure 22: (Color online) Survival probability for Model Jeft) and Model 2 (right). Numerical results are represented by circles; the analytical
Gaussian decay, see EQ.{6.9), is given by solid curves; the exponentials in the middle panels correspond to squares. The infinite time average
is given by dot-dashed horizontal lines. The eneﬁw of the initial states is away from the edges of the total energy spectrum and closest to

Er = Yo E.€5/T/ 3, e B/T whereT = 4.4J. This choice and the parameters are the same as in Rig=88 andS%, = 3 (after [87]).

function and the decay of the survival probability is very slow [top panels ofFig. 22]. As the perturbation increases
(u = 0.4, 2 = 0.4) and the strength function becomes Breit-Wigner, the decay at very short times is quadratic, as
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expected from perturbation theory, and then it switches pmegntial [middle panels of Fif.22]. When the regime
of strong perturbation is reached € 1.5, 1 = 1.0) and the strength function becomes Gaussian, the decay is also
Gaussian [bottom panels of FIg.]122] until saturation. Eig. 22 confirms that the behavior of the survival probability is
similar for both models, integrable and chaotic.

In the same figure, the horizontal dot-dashed lines correspond to the infinite time average. After the saturation, the
survival probability fluctuates around the value

Wo = > ICk I = Ma(ko) (6.14)

indicated by the dot-dashed horizontal lines. Comparing with[Eq. (4.5), one sees that the Valjueoofesponds to
the inverse participation ratil, of the unperturbed basis stdkeg) projected onto the total energy basis-bf As for
the variance of the temporal fluctuations, it is given@[il_ﬁj 217]

By = 3 ICLRICE PICy PIC) P B EER
a#f
y#S

2
[Z |c<k;|“) - D ICkP ~ [Mko)I?. (6.15)

The second equality here holds for systems without too many degeneracies of energies and also of spacings, that is
E.—-Es = E,-Es = E, = E, andEg = E;. Systems that fall in this category are those without level clust [219].
They include chaotic models and those with the Poisson level spacing distribution, known to be a fingerprint of
integrable systems, but obviously exclude systems characterized by a picket fence spectrum. Definingtthesime,

the time it takes for the survival probability to first reach the saturation value, a simple expression can be obtained for

the cases where the Gaussian decay holds\gtiR15,216],
4/In M';"

Ak,

exp(—AﬁOté) =M = g = (6.16)

The lifetime of the initial state is therefore determined by its level of delocalization in the energy eigenbasis and by
the widthA, of the strength function.

6.2.2. Experimentally accessible initial states

Above we have studied the survival probability for initial states with average elﬁaggp}ose to the middle of the
total energy spectrum. We restricted our focus to the dependence of the dynamics on the strength of the perturbation.
We now fix the strength and analyze the role of the enE}g.ySpecifically, we consider as initial states the site-basis
vectors. They correspond to tensor products of the states of each site, where the spin is either pointing up or down
in thez direction, such as in||T]). They are configuration basis vectors and not the eigenstates of the unperturbed
HamiltonianH,. These states can be prepared experimentally with cold atoms in optical lattices [220, 195, 221, 222].
The perturbation strength required to evolve a site-basis vector according to the total Hamiltonian of Model 1 or 2 is
strong, because we are basically quenching the paraméiam infinity to a finite value. Thus, a Gaussian strength
function is expected.

Itis straightforward to calculate the centgg and the width\,, of the strength function for such initial statés [215,
]. The values are given in Talile 1 for two examples typically investigated in magnetic systems. The first, referred
to as the domain wall statldW), has two well separated regions, in the first half of the chain all spins point up and
in the second half all spins point down. The second state, called the NéelN&tepccurs in materials exhibiting
antiferromagnetism. Note that the widlly, does not depend on the anisotropy parameter

The two states of Table 1 showfidirent dependence @n A, andL, with consequences further explored in the
figures below. For example, contrary|@W), the width for the Néel state is independeniidieing the same for the
integrable Model 1 and the chaotic Model 2. For the domain wgllis independent of the system size. Asicreases
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Table 1: Energy ofkg) and width of its strength function.

Ei Ay,
DW) =111 1) BL-3)+(L-6] JVI+2p
NS = 110 I - +L-20 V-1

(0 < A £ 1), the energy of théNS) state approaches the middle of the spectrum being zero wkefh — 1)/(L — 2),
whereas, for thiDW) stateEk0 moves away from the middle.

In Fig.[23, the left panels show the Gaussian strength function for the Néel state projected onto the integrable
Model 1 and chaotic Model 2, and on the right panel the corresponding behawldgg(t). The energy shell is
overall well filled, leading to the Gaussian decay up to the saturation line for both models. The curves fall on top of
each other, sinc&s, is the same for both systems, and they agree well with the analytical expression. The saturation
point, indicated with the horizontal dashed line in FFigl. 23, depends on the filling of the energy shell, which improves
asEs approaches the middle of the spectrum.
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Figure 23: (Color online) Strength function for the Néeltstéeft) and the corresponding survival probability decay (right)ifor 1,4 = 0
(circles),u = 1,4 = 0.4 (triangles), angi = 0.5,1 = 1 (squares)L = 16, L/2 up-spins. Solid lines: Gaussian envelope of the strength function
(left) and Gaussian decay (right) fagys, from Table[l. Dashed horizontal line from top to bottom: saturation point for the integrable, weakly
chaotic, and strongly chaotic case (after [415] 216]).

Figure[24 shows the strength functions and survival probability for the sharp domain wall. The same Hamiltonians
as in Fig[2B are considered, but the results are quiferdint. In comparison with the Néel state, the decayiuv)
is much slower due to its low connectivity, and therefore narrow and poorly filled energy shell. Apart from short time,
the behavior ofA\pw(t) is neither Gaussian nor exponential. The nonmonotonous behawinath the apparent
transition to another exponent indicates the interference of two competing relaxation processes taking place with the
increase oft; similar efects are seen in the theory of radioactive decay with several interfering decay ins [77].

6.2.3. Decays faster than Gaussian

Decays even faster than Gaussian are expected in at least two situations: (i) in the limit of very strong interaction
not necessarily limited to two-body or (ii) when the strength function involves more than a sing| ak [214]. The first
case is less realistic, but serves to provide a lower bound. The extreme scenario occurs when the final Hamiltonian
coincides with a full random matrix. Here, not only the density of states, but also the strength function approaches the
semicircular shape, as shown in Higl 25 (a). This leads td | 216, 214]

[T1(2A,, 1))
Aﬁotz
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Figure 24: (Color online) Strength function for the domairilstate (left) and the corresponding survival probability decay (right)ferl, A = 0
(circles),u = 1,2 = 0.4 (triangles), angt = 0.5,4 = 1 (squares)L = 16, S, = 0. Solid lines (left): Gaussian envelope of the strength function for
Apw) from Table[l. Dashed horizontal line from top to bottom: saturation point for the weakly chaotic, integrable, and strongly chaotic case (after

[218)).

where 71 is the Bessel function of the first kind. The agreement between this expression and the numerical results in
Fig.[23 (b) is excellent.
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Figure 25: (Color online) Strength function (left) and theresponding survival probability decay (right). Top: Initial state from a GOE matrix
projected onto another GOE full random matriX, = 12870. The random numbers are normalized soARat= 1. Bottom: Quench from the

XXZ model to a Hamiltonian with an excessive on-site enaigy 8.0 on siteL/2; u = 0.48,L = 16, 8 up-spins. The initial state is in the middle

of the spectrum. The centroid and width of the two Gaussians are respeéively-3.98, E; = 3.90,¢; = 0.48, andé; = 0.54. Numerical results

are shown by shaded area (left) and circles (right). Solid lines correspond to the analytical expressions. Dot-dashed horizontal lines indicate the
saturation point (aftef [216, 214]).

Since for full random matricesM'z‘O ~ 3/N, whereN is the dimension of the matrixy may be obtained from the
relation,
201R)> 3
[Jl(AZ k‘; RIS _ ~ (6.18)
R
After reaching the saturation point for the first time, the survival probability still shows some small oscillations de-
caying ag3 1
The second case of faster than Gaussian decay occurs if the strength function is bimodal (or multimodal). It can

50



happen, for example, when the system is initially prepareghieigenstate of the total Hamiltonian of Model 1 and
the evolution is started by abruptly turning on a strong static magnetic field that acts only on a single site of the chain.
When the amplitude of this field is very large, inducing a large on-site Zeeman splitting, the density of states and
consequently also the strength function splits in two separated Gaussian|p__e_éks [214]. An illustration is provided in
Fig.[23 (c). Another case of the double structure was discussed in relation to Eq. (3.16).

For initial states with energy close to the middle of the spectrum, both peaks have similag vadththe survival
probability is approximately given b{j_T2|14],

Wo(t) = co (yt) exp£2t?), (6.19)

wherey is half the distance between the two peaks. A good agreement between this expression and the numerical
results is seen in Fidg. 25 (d). Note that fox 7n/(2y) the probability decay coincides with the ultimate bound
established by the energy-time uncertainty relatiéh(t) > cog(yt) [|£3 b@@?} After reaching the
saturation point for the first tim&\o(t) still shows large oscillations that decrease according to the Gaussian envelope,
Wo(t) ~ exp(£2t?).

6.3. Relaxation in the energy shell

The knowledge of the strength function, and, therefore, the survival probability, allows one to estimate the
time evolution of observables that can be directly associated with experimental data. In the approach developed in
Ref. ], it was suggested to consider the dynamics of wave packets in the TBRI-model in the following way. The
projection of the wave functio¥(t) onto the statéko) is given by Egs.[(GI2.63). By writing,(t) = Wlfko + Wfk“kf‘(t)
and assuming, as always, that in the long-time limit the fluctuating \téjtﬁ‘(t) vanishes, one obtains

o » dE
W, = D ICWAICY = 5 EFE). (6.20)

The ingredients here are the two strength functiéigE) andF(E), for the initial and final basis state, respectively.
The integral in Eq.[(6.20) can be easily evaluated when the strength functions have either the BW or Gaussian shape.

a

The similar expression folg contains|C|(<Z)|4. For Gaussian fluctuations of the components we ob@jﬁﬂl“ =3

(|C|(<‘;)|2)2. Therefore, if the number of principal componens. of the eigenstates is very large, the probability of
return to the initial statéko) in the long-time limit is, at least, three times larger than the probability to find the system
in any other stat), see Figl.26. This is the sam@ext as the one known as tefastic enhancement factarthe ratio
of fluctuational cross sections in elastic and inelastic channels in the processes going through the complex compound
systemsg].

In Fig. 26 the distribution of probabilities, in the TBRI-model is shown after a very long evolution tirhe, 40,
for two different strengths of interaction; the tirnis measured in units/dy, whered, is the average spacing. Initially,
only one basis statiy = 462 was populated at the center of the energy spectrum in order to avoid the asymmetry
of the distribution in the basis representation. The two characteristic valugsaoé chosen in such a way that the
strength function have the BW or the Gaussian shape in the energy representation. The data shown in Figure in the
basis representation demonstrate a strong dependence of the dynamics on the shape of the strength function. The
transition between the shapes is fast compared to the small change of the interaction grength

In order to study how the survival probability decays due to the perturbatiahis convenient to introduce
sub-classes for all basis states in the following way. fifs¢ classcontainsN; basis states directly coupled to the
initial state by the matrix elementsy,,. Thesecond classonsists ofN, basis states coupled with the initial one
in the second order of the perturbation and so on. For large times['o/(AE)?, assuming the BW shape of the
strength function, the time dependence of occupancies of the statékenenli classes can bé&ectively described by
kinetic equations, similar to what is used in the theory of compound nuclear reactions going through the hierarchy of
intermediate states of various degree of comple@[ZSO],

d dw. dw,
d—VYO = —T'oWh, d—tl = ToWo — ToW4, ... , d—t' = ToW,_1 — ToW,, ..., (6.21)
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Figure 26: Asymptotic distributiow, = wn, for the TBRI-model with 6 particles and 12 single-particle levels. As initial state we cligosd62.
Left: v2 ~ 0.003 I'p ~ 0.50, Ay, ~ 1.16, and the strength function is of the Breit-Wigner form; the average is performed over 10 matrices with

dlfferent realization of disorder. nghir2 0.083,Tp ~ 105, Ay, ~ 5.8, and the strength function is close to a Gaussian. The average is taken
over 50 matrices (aftel [228]).

whereW; is the probability for the system to be in a state of classHere we consider a system far from the
equilibrium. If the system is at the equilibrium, the probabilities of all states within the energy window defined by
|Ek - Ekol < Iy, whereEy, is the energy of the initial basis state, are of the same angler, N2, with N,c estimated
as the total number of states inside the energy shell. In order to neglect the return flux, one needs the condition
Wi = W, /N; > 1/N, to be fulfilled.

The solution of the infinite set of equatiofs(8.21) is given by the Poisson distribution,

Wo = exp(-Tot); W = (rot) (Tot)

exp(-Tot) =

Wo. (6.22)

The maximum probabilityV; = (ji/j) exp(-j) ~ 1/ \/ﬁj to be in thej-th class is determined by the condition
dW;/dt = 0 and occurs fot = j/T’s. The solution[(6.22) can be considered asacaden the population dynamics
of different classes. At small times< 7 = 1/T, the system is practically in the initial state; at tintes = the
flow spreads into the first class, foe jr it spreads into thgth class, etc. For an infinite chain, the normalization

condition Z W, = 1 remains valid.
j=0
A quantity of special interest is the Shannon entropy of wave packets in the many-body basis,

S(t) = —Zwklnwk ~ _Zwj In W] (6.23)
3 j=0 !

wherewy ~ W;/N; stands for the population of basis states of the clasith N; states in this class. In fact, for
t ~ jr one needs to count only the states inside the energy shell since the population of the states outside the energy
intervaI|Ek - Ek0| > T is small [228]. Using\; = K! (whereK is the number of basis states directly coupled by the

perturbation) andy, j(It)!/j! = ot expCot), one comes to the following expression,
=0

i i
S(t) ~ TotINK + Tot — et Z (Co? ) (Tet)! (6.24)

= J!
The two last terms in the right hand side of Hg. (6.24) turn out to be smaller than the first one, therefore,
S(t) ~ TotInK[1 + f(1)], (6.25)
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where the functiorf (t) < 1 depends weakly on time.

Neglecting the second term in Ef.(6.25) we obtain the linear increase of entropy which means that the number of
principal componentlsl,c(t) increases exponentially with time. This behavior can be compared with a linear increase
of the dynamical entrop$.(t) in classically chaotic systems wheBg(t) is known to be related to the exponential
divergence of close trajectories in the phase sp8ggt) « At whered is the Lyapunov exponent, see, for example
[Iﬁ,b,@ls@q. The non-trivial point is that the linear increase of entropy also occurs for systems without
classical limit @], therefore, the produciIn K may be treated as describing the “quantum Lyapunov exponent”.
It should be stressed that for short times l"o/Aﬁ0 , the entropy increases quadratically in tirS¢t) ~ Aﬁotz, which
is an universal result valid for any shape of the strength function.

The cascade model assumes an infinite number of “classes”. In systems with a finite number of many-body states,
any basis state can be reached dynamically in several “interaction steps”. For example, in a sigtent@farticles
andNs = 12 single-patrticle levels, three steps are needed in order to have all 924 basisfiate®ly populated
if all eigenstates are fully delocalized. If the number of classes is finite, the dynamics saturates and one can expect
the emergence of a steady-state distribution of population in the unperturbed basis. A simple expreSstpwés
suggested for the systems with a small number of classes [228],

1-W
S(t) = —Wo(t) InWo(t) — (1 — Wo(t)) In (%) (6.26)
pc
This expression takes into account the normalization condifipav, = 1 — Wy, and has a reasonable behavior for

k#ko
both small and large times, except for very short times when the quadratic depend&fteonf time dominates.

SinceW(t) is entirely defined by the strength function, the key parameter ifEq] (6.26) is the nNigaleéiprincipal
components, or the degree of delocalization of eigenstates in the unperturbed basis.

We can now compare the obtained analytical expressions with numerical data for the TBRI[mddel (2.3). For the
strength function of BW shape, the time dependence of the entropy is shown [nlFig. 27. The kuoflike basis
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Figure 27: Entropy versus time for the TBRI model with pararei, = 6, Ns = 12 vg ~ 0.003Tg ~ 0.50, Ay, ~ 1.16, when the SF has the
Breit-Wigner shape. Circles stand for numerical data, solid curve iEQ] (6.26), and dashed line is the linear defgendence (6.28). In the inset the
same is shown for a smaller time scale (after [228]).

states directly coupled by the random two-body interaction, is deterniined [34] by
Np(Np — 1)(Ns — Np)(Ns — Np — 1)
4 >

where the first term gives the number of one-particle transitions, and the second stands for two-particles transitions.
In the case o, = 6 particles andNs = 12 orbitals, considered above, the total number of basis stafés=€924
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(6.27)

K = Np(Ns — Np) +



andK = 261. Theeffective number pof classes in the cascade model can be determined from the refdtienN.
This givesn. = In N/ InK ~ 1.2. Thus, we can use the simple expression (6.26) to describe the time dependence of
the entropy. The data in Fig.27 demonstrate an excellent agreement between the numerical resultgant Eq. (6.26).

A good approximate description of data on the whole time scale depends dfeitieze numbeN, of principal
components in the stationary distributiog(t — oo) relating to the limiting value of the entropi,c = InS(t — o).
This number can be estimated as discussed above from the width of the energy shell; when plotting the solid curves
in Fig.[27 we have used the value Nf. found from numerical data. Thectual numberof classes in the case of
Np = 6 particles andNs = 12 orbitals is equal to 3 so that all basis states can be populated in the third step by the
two-body interaction. However, the amount of states in the sedoad?, and thirdk = 3, classes is much smaller
than what follows from the exponential relatibly = KX (in practice, this relation may be justified for a large number
of particles only). For this reason the one-class formula, Eq.](6.26) works well. It is also instructive to compare the
entropy with the linear time dependence,

S(t) =Tot InK (6.28)

that stems from Eq[(6.19) if the only first term is left. On some time scale, the data {oFig. 27 roughly correspond
to Eq. [6.2R), but a clear fierence ofS(t) from the linear increase is seen in the inset. As we already noted, at short
time the universal dependence is quadratic.
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Figure 28: Time dependence of entropy for the TBRI model wimenstrength function is Gaussian: (d) = 6,Ns = 12vp = 0.083T¢ ~
105,Ax, ~ 5.8, and (b)Np = 7,Ns = 13 vp ~ 0.12T¢ ~ 14.6, Ay, ~ 8.13. Circles are numerical data, solid curves stand for the approximate
expression(6.40), and dashed lines represent the linear deper{dente (6.22) (after [228]).

Results for the strong interacting case, when the SF is close to a Gaussian, are reportédlin Fig. 28. The interaction
strength is chosen to have the same rBgic\, ~ 1.8, as in Fig[2l7. For such a strong interaction, the half-width of
the strength function is determined by its second moment rather thBg Byhereforeo in the expressiong (6.25)
and [6.28) has to be substituted by the width ~ o,. In both cases shown in Fig.128 the numerical data give strong
evidence of the linear entropy increase,
S(t) = At InK, (6.29)

before the saturation. This estimate gives a correct value for the slop@)ofThe linear dependence f&(t) has
been shifted in the figure for a better comparison with numerical data outside the initial time scale where the time
dependence is quadratic.

The linear dependence 8ft) in Fig.[28 is much more pronounced than in the BW-region, sed Flg. 27. Thus, we
confirm the diference between the two cases (Breit-Wigner and Gaussian shape of the SF). This pointis supported by
the recent result@@ﬂﬂ] that for not very strong interadiipsr, Ay, resulting in the Breit-Wigner shape of
the SF, there is no detailed quantum-classical correspondence for the evolution of wave packets in the energy space.
On the other hand, for the Gaussian shape of the SF, this correspondence is observed. The strength function in the
energy representation has a clear classical analog in the cases when the Hamiltonian has its well defined classical
limit. The results presented in Refs. [64] 65, 66, [67,68] 70l 69, 72, 71, 73] give evidence for a quantum-classical
correspondence of the strength function. In the classical limit, the meaning of the strength function is just a projection
of the energy surface dfiy onto that ofH, the fact that simplifies the analysis of quantum systems having a well
defined classical limit. In such a case, the strength function can be found directly from classical equations of motion,
at least numerically.
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The above analysis, applied to the Shannon entropy, can bg @dended to other dynamical observables. For
example, the expression for the inverse participation rlslti¢t) that can be associated with afieetive number of
components in the wave packg(t) related to the initial statgg), becomes

2In(W:1)
Ma(1) =WSIO[TK°], (6.30)
where lo(2) stands for the modified Bessel function. Numerical data confirm well this estimate, see details in

Ref. [228].

With the approach we discuss here, one can also describe the evolution of occupation my(t)ltersards the
steady-state distribution emerging after a long ti@[238]. Assume that in the TBRI rhodel (2.3) the systeid at
is in a basis statfk) with the occupation numberg(0) equal to 0 or 1. In the Breit-Wigner regime, the first class is
populated within the time ~ 1/Tg [@], or,t ~ 1/Ay, in the Gaussian regime. At that time the occupation numbers
ns already strongly deviate from their initial values since the two-body interaction can move any two particles to
new single-particles levels. Thus, the characteristic time for an initial stage of thermalization is determined by the
population timer for the first class. Note that this time is also a characteristic time for the “decay” of the probability
Wo(t). The population of alh; classes in a particular system requires a longer tigne ncr [@]. Thus, in the case
of nc > 1 (e.g. in a mesoscopic system) the thermalization of the occupation numbers may roughly occur on a time
scale smaller than the onset of a complete statistical equilibrium.

This suggests a simple derivation of the time dependag(tefor occupation numbers. From the normalization
conditionzr“;0 W; = 1 one can find the population of all classes wijiti 0 aszngl W; = 1-Wy. Now we assume
that the thermalization of the occupation numbers occurs on the timeqsciljeis assumption leads to the simple
expressior@S],

N(t) = Ns(0)Wo(t) + ns(eo) (1 — Wo(t)) . (6.31)

where the occupancieg(co) determine an equilibrium distribution after a long evolution.

In Fig.[2Z9 we compare numerical data faft) with the estimate (6.31). Two situations are studied, corresponding
to a strength function close to a Breit-WignEs, < Ay,, and close to a Gaussiaiy ~ Ay,. For numerical simula-
tion, the TBRI model has been used with six fermions occupying twelve single-particle levels. Since the analytical
expression foy(t) in general is quite complicated, the numerical valued/gft) have been used in simulations.

Overall, there is a good agreement between the analytical estimate and numerical data, apart from fluctuations
that are neglected in the theory. In order to simplify the analysis, the initial basigkgjatas taken from the middle
of the many-body spectrum of 924 levels. In this case the final values of the occupation numbers are expected to be
ns(co) = 1/2 corresponding to an infinite temperatdre

The data reveal a fierence between the cases of weak and strong interparticle interaction. For a weak interaction
(left panel), the transition to equilibrium values f has a character of damped oscillations. As the number of
principal componentdl,c ~ T'oo~t in this case is not very large, there are considerable fluctuationgt)reven at the
equilibrium. On the other hand, for strong interaction (right pangbhows fast and monotonic decrease to thermal
valuesng(oo) with relatively small fluctuations, see al 28]. These results also indicate that one can speak of two
time scales in the onset of thermalization. The first one is determinedibgharacterizes an “initial thermalization”
(or pre-thermalizatiol, and allows one to use Ed.(6131) for the time dependence of occupation numbers. For larger
times, damped quantum oscillations (with peribd- n.r) may occur in the transition to the complete equilibrium

[228).

6.4. Linear entropy increase as an indicator of thermalization

In this Section we apply the analytical estimates derived for the Shannon entropy to the fully deterministic spin
Models 1 and 2 (see EqE.{R.5) ahd12.6)), as well as to the model of interacting bosons in a[LDlrap [239]. Fig. 30 serves
as an illustration of the linear increase of Shannon entropy for deterministic spin systems. Here the initial state has
been chosen far from the edges of the energy spectrum, for tlifeeedt values of the perturbation strength. Similarly
to what has been observed for the survival probability, we verify again an analogous behavior for the integrable Model
1 and the chaotic Model 2.

In the top panels of Fi§._30 (weak perturbation), the growtB(f is slow, and it is not described by the analytical
expressions given in Eq§.(6126), (6.28), dnd (6.29). In the middle panels, where the values of the perturbation strength
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Figure 29: LEFT: Time dependence of occupation numbeg(ts for the Breat-Wigner regime (weak interaction). Thin curves with dots present
numerical data, thick smooth curves correspond to the analytical exprdssidn (6.31), see the text. Computations are made for the model with random
two-body interaction, wittNp = 6, Ns = 12 Tg ~ 0.50, A, = 1.16. Right: Time dependence of occupation numivg(g for the Gaussian shape

of the strength function witliy ~ 10.5, Ay, ~ 5.8 (after ]).

give rise to the Breit-Wigner strength functions for both models IEIZ 43], the entropy increase, after the short-time
quadratic behavior, is linear and well described by Eg. {6.28). In addition, the entire dynamics, from short times all
the way to saturation, show good agreement with the semi-analyticd Eql. (6.26). A similar scenario emerges for the
parameters in the bottom panels which induce Gaussian strength functions. In this case the dynamics agrees with
Eq. (6.26) and the linear increase is captured by [Eq.1(6.29). Notice thdi Ed. (6.23) depends only on the dGantities
andAy, obtained from the elements of the final Hamiltonian matrix written in the basily afo the dynamics can be
anticipated prior to the diagonalization of the total Hamiltortian

We stress that the expressions in Es. (6.46), [6.28),[and (6.29) apply only for initial Hamiltbhiaosre-
sponding to the unperturbed partldf Also, the initial states are taken far from the edges of the spectrum where
the eigenstates dfly are known to be non-chaotic. For comparison let us notice that the initial states discussed in
Sectior 6.2 and in Re16] are not the eigenstatéty@nd the analytical predictions for the increase of Shannon
entropy are not known.

The time dependence of the Shannon entropy can serve as a good indicator for the onset of statistical relaxation in
realistic systems. Below we follow Remi%g] where the relatively simple model of interacting Bose-particles has been
considered in view of a possible experimental realization. The model is specified by the deterministic Hamiltonian,

A= emfim+ 2—9L > ahaiapasme - p-r). (6.32)
m

m,q.p.r

The bosons are confined to a one-dimensional ring of lebgémd the single-particle energy levelsare defined by

the standard quantizatios, = 47°n?/L2. Thesingle-particle stategn) are labeled by the angular momentum num-
bersm = 0, +1, +2.... The interaction between bosons is defined by point-like forces characterized by the parameter
g that is inversely proportional to the 1D interatomic scattering le [240] and can be experimentally controlled.
The 1D regime can be achieved in optic@gnetic traps when the radial degrees of freedom are frozen by the tight
transverse confinement.

Experimental achievements iffective one-dimensional harmonically confined quantum systems (see, for exam-
ple, E_%U_Z__Aﬁﬂi%]) have stimulated several attempts to understand their main prjﬁ[iaZM, 245]. The Hamiltonian
(6.32) corresponds to the Lieb-Liniger model; its thermodynamical properties and the excitation spectra have been
calculated analytically in Refmdéjﬂ]. An unexpected feature, predicted by Girardeblu [248, 249], is the onset of
fermionization whem/g — 0 wheren s the particle density. In this Tonks-Girardeau (TG) regime, the density of the
interacting bosons becomes identical to that of non-interacting fermions, while, of course, the wave-function keeps
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Figure 30: (Color online) Shannon entropy vs time for Modeleft) and Model 2 (right). Circles stand for numerical data, dashed lines show
the linear dependence [EqE.(8.28) ahd (6.29)], and solid curves correspond o El. (6.26) with the average performed after the saturation for
t € [100, 200] in order to obtaiMNpc = (€%). The horizontal solid lines represent the vafiteoe ~ 6.58 of the Shannon entropy for a GOE (after

3.

the bosonic symmetry. On the other hand, in the opposite limt,— oo, the system is described in the mean-field

(MF) approximation as a weakly interacting Bose gas. The crossover between these two regimes ocelgs-nkar

In this region the MF approach breaks down and more complicated two-body correlations become crucial. Below we
show that the crossover between the two regimes is signaled by the presence or absence of a linear time evolution of
the Shannon entropy for wave packets that evolves linearly in time.

Let all bosons initially occupy the single-particle level with angular momentumO0. Thus, at = 0 the system
is in the unperturbedy(= 0) ground stat¢¥y); note that the total angular momentum is conserved in time. Our main
interest is in the evolution of the system foffdrent values of the control parametég. Many-bodybasis statefk)
are defined by the occupation numbgts} of single-particle levelsm).

Numerically, the finite number of particlé, occupyingNs single-particle states cannot be taken very large. The
numbersN, andNs should be chosen in a consistent way in order to have the possibility to extrapolate the results to
a large number of atoms. In a 1D geometry on a ridgparticles define the smallest spacing, which corresponds to
the largest value of the momentum~ Np,; this relation was satisfied in the numerical study [239] when charlging
andNg = 2m+ 1.

The crossover from the MF to the TG regime can be understood using the following arguments. Having all par-
ticles initially in the lowest state witlm = 0, we can estimate the strength of the interaction necessary to move
two particles from the unperturbed ground state to the upper (and lower) single particleslavelBhis interac-
tion will result in an ergodic filling (in time) of all single-particle states. The energy required for this excitation
is approximatelyn?/L? ~ N3/L? and the matrix element of the interaction between the corresponding states is
Vi ~ g+/Np(Np — 1)/L. Equating these values we obtair= Np/L ~ g that is associated with the crossover from
the bosonic to fermionic regime. Dynamically this crossover is reflected by a rapid depletion of the occupancy of the
single-particle state wittm = 0. Note that ah/g ~ 1, the ratioNg/N, ~ 1/2, with Ny = (Eo"dp).

We define the Shannon entrofyt) = — 3, [Pk(t)1? In [Pk(t)|? of the wave packet, whem(t) = (k|¥(t)) is the
projection of the wave function onto the noninteracting many-body basis. After switching on the interaction, the wave
function evolves|¥(t)) = e H{|¥(0)), and spreads over the unperturbed basis. This spread is shown [mlFig. 31 for
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Figure 31: Entropy as a function of the rescaled tighdor fixed m = 6 and diterent values of/g. Data are given foN, = 6 number of the
bosons. The crossover from the oscillating saturatidB(t)ffor small values ofi/g manifests the onset of the Tonks-Girardeau regime. The dashed

line corresponds to the theoretical predictibn (6.28) (affter] [239]).

different values of the control parameigg > 1. The numerical data clearly manifest that figg > 1 the entropy
oscillates in time, while fon/g < 1 there is a generic linear increaseSit) followed by a saturation. On a short
time scale, the time dependenceStf) is quadratic rather than linear. As discussed above, the quadratic growth of

the Shannon entropy is a generic property for any system, and out of our interest.
The onset of a linear increase of Shannon entropy can be used to mark the crossover to the Tonks-Girardeau regime

of statistical relaxation to a steady state momentum distribution. This transition can be observed experimentally by
studying the interference fringes obtained after releasing the trap and letting the boson system expand ballistically (for
details, see ReﬂIzisg]). Similar crossover for the Shannon entropy has been also numerically observed for the case of

effectively attractive interaction between bosdns [250].

6.5. Relaxation of Few-Body Observables

Experimentally, information about the dynamics of the system is obtained via obser@afilet as magnetiza-
tion, spin-spin correlations, and the number of atoms on a site or a region in space. The equation for the evolution of
observables contains explicitly the survival probability as

O(t) = Wo(H)O(0) + > <kole™!1k) O (K e ™! fko), (6.33)
k.k’
whereOy = (klO|K’), |k) are the eigenstates of the Hamiltonian that defines the initial state, and the sum involves the

states wher& andk’ or both are dierent fromkg.
In general, the dynamics of the observables is very fast. After a transient time, they equilibrate in a probabilistic

sense, fluctuating around the infinite time average,

O= Z ICt |20, (6.34)

whereO™ = («|Ola). In systems without an excessive number of degeneracies and for initial states away from the
edges of the spectrum, in other words wiieh has a chaotic structure, the temporal fluctuations decrease exponen-
tially with the system sizdﬂg]. It has been shown that this holds not only for models with a Wigner-Dyson level
spacing distribution, but also for integrable models with interaction, such as Model 1.

The size of the temporal fluctuations of observables in isolated finite systems has played an important role in
the studies of relaxation. Earlier semiclassical ar%ents based on full random matrices were used to describe the

exponential decay of the quctuatio@l@ 253, [254, 255]. More recently, analytical upper bounds for
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the fluctuations were derived ih [256, 257]. Analytidal [2%8{d numerical [259, 260, 261] studies also exist for

noninteracting integrable models, where the size of the fluctuations decreases much slowét,.as 1

7. Thermal Equilibrium

Once verified that the observables equilibrate, one can ask whether a statistical approach can be used to obtain
the same result as the infinite time average. In particular, the question is about the agreement between the infinite
time average and the standard statistical ensembles of conventional thermal equilibrium. Here, we discuss under what
conditions this scenario can hold.

The question to be addressed is represented by the following equation (see, for e@dEtmo, 138]),

1 o™, (7.1)
NEkO ,§E a

|Ey, —E?|<6E

2
0= ICPO™ "< Oue =

The infinite time average, on the left hand side, depends on the initial staj@2Jfa which is made explicit with
the subscripky. The right hand side corresponds to the microcanonical ensemble (ME), N@g;@ stands for the

number of eigenstates in a small energy wind@centered aﬁko = (ko|H|ko). We would like to specify when, for a
finite system, the relatio® ~ Oyg holds, and what guarantees that thetience between the two averages goes to
zero in the thermodynamic limit.

Recently, it became a widespread trend to relate the conventional thermalization with the so-called eigenstate ther-
malization hypothesis (ETH) [1B8, 139, 253, 1140]. The statement is that for an initialkgiatevering a sfiiciently
small energy window, the value @ will be independent 0|K3§0|2 if the eigenstate expectation values of the observ-
able,0", is a smooth function of energm53]. In this case, a single eigenstate inside the microcanonical window
suffices to comput® and the result agrees with the microcanonical average.

As we have already mentioned, the equivalence between an observable corresponding to an individual state and
the statistical average over a small energy window is basically a restatement of the fundamental principle of statistical
mechanicsjmg]. The ETHer sedoes not clarifywhenthis equivalence should hold. Below, we discuss the condi-
tions for the proximity betwee® and Oy in realistic systems using our approach based on the notion of energy shell.
These conditions are intimately connected with the concept of quantum chaos, but not chaos associated uniquely with
level repulsion; instead the focus should be on the existence and properties of chaotic eigenstates.

In the extreme case of full random matrices, the eigenstates are completely delocalized in the whole basis, that
is Cy, are simply random numbers. For these (pseudo-)random vectors, the res@t§ {éor any observable) are
obviously independent of the particularly chosen energy eigenatatén this case, more than just being a smooth
function of energy,0** is actually constant throughout the spectrum apart from small fluctuations that decrease
exponentially with the dimension of the Hamiltonian matrix. But full random matrices do not describe isolated
systems of interacting particles; typically, an exact eigenstate occupies only a fraction of the mean-field basis.

As shown above, in realistic systems strongly chaotic eigenstates have their widths comparable to theyvidths
of the strength function, defined ag, = (X, |Hko|?)*? and of the same order as the width of the energy shell
We remind that the strength function is defined by the projection of the eigenstates of the initial Hamiltonian onto
those of the final one. Thus, we may expect that only for those chaotic eigenstates of the final Hamiltonian which
belong to this energy windowgy, ~ Ay, their expectation valueS** become nearly constant so that they can be
taken out of the sum of the left hand side of Eq.|(7.1). This part of the equation will then have a single v@ttie of
multiplied by ¥, |C§O|2 = 1. When this happens, we will have an approximate equality with the right hand side of the
same Eq[{7]1) only if the chosen small energy wind@ns smaller than the energy shelE < Ay, . In this case the
microcanonical average will approximately agree with a single valu@'éf just as the left hand side. As one can
see from Eq.[{7]1), this equality holds onIyl(II‘ki)l2 = 1/N, namely, it is constant and does not depend on the total
energyE®. Since this is never true, another possibility could be @&t does not depend am. In this second case
the equality is always satisfied since it becomes trivial due to the normaliz@];jt(tm2 =1.

In summary, the prerequisites for conventional thermalization are:

(1) there is a region of the energy spectrum where the eigenstates are chaotic which is given by the equality of
the width of the strength function and the width of the energy sbejl~ A,, both being dependent on the initially
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chosen basis. This results in the existence of observabiagioh O* is nearly constant and therefore uncorrelated
with |c;;o|2;

(2) the width of the energy window for the microcanonical averaging should be smaller than the energy shell,
OE < oy, ~ Ay,

These conditions clarify that the approximate validity of EEq.1(7.1) is strictly dependent on the following parame-
ters: the width of the strength function in connection with that of the energy shell and the microcanonical energy win-
dow. They also make evident that the viability of thermalization depends on the chosen initial stdte [262,1263, 264, 51]
(specifically, close to the edges of the energy band this approach might be not valid). Conventional thermalization is
therefore not expected to occur for initial states whose widths of strength functions are smaller than the energy shell.
Note that an ergodic filling of the energy shell by eigenstates can emerge independently of the character of the level
spacing distribution (Wigner-Dyson or Poisson).

The analysis of how the energy of the initial stafieats the viability of conventional thermalization was performed
in [262,[263 1]. In particular, it has been shown that thermalization may happen even in quenches where the
final Hamiltonian is integrable provided the initial state spans over chaotic-like states of the total Hamiltonian. In
this case the initial state samples at randoffedént symmetry sectors of the integrable system, allowing for thermal
features to emerge. One can observe that, for isolated integrable systems of a finite number of particles , the energy
of the initial state needs to be closer to the middle of the spectrum than for chaotic systems to ensure the proximity of
6 to OmE.

Several studies have shown that quenches to an integrable final Hamiltonian lead to an equilibrium described by
the generalized Gibbs ensemble (GGE) [265] or generalized microcanonical ensemble @IE) [259]. Very close to
the middle of the spectrum both ensembles give approximately the same values for average observables, but away
from the center deviations have been seen even in the thermodynamimﬂt [204]. The generalized ensembles take
into account the symmetries associated with the integrability of the model. While for integrable systems composed
of non-interacting particles it is clear which conserved quantities should be taken into account, for integrable systems

with interacting particles, such as the XXZ model, this is still an open questiohl[266, 267, 258, 269, 270, 271].

8. Concluding remarks

In this review we presented a summary of our approach to the problem of the onset of chaos and thermalization in
isolated systems of interacting quantum particles. The approach was developed by the authors and their collaborators
during the last two decades. For a long time, the generally accepted viewpoint was that an isolated system of a finite
number of particles cannot be treated by conventional statistical mechanics if this system was deterministic, especially
if the intrinsic dynamics was integrable. Indeed, in contrast to classical mechanics that allows the emergence of
deterministic chaos caused by local instability of motion, in quantum systems this mechanism of chaos is absent due
to the linearity of the equations of motion. This point is also reflected by the fact that the energy spectrum of a bounded
isolated quantum system is discrete, thus indicating that dynamics is periodic or quasi-periodic. This is in contrast
with classical mechanics where the spectrum of the motion can be either discrete or continuous depending whether
the motion is regular or chaotic. Yet, as our approach shows, chaos and thermalization can take place in isolated
interacting quantum systems.

At the early stage of the studies of quantum systems that were strongly chaotic in the classical limit, it was
understood that quantum chaos could be essentially quantified by specific properties of energy spectrm Ref. [118]
it was conjectured that quantum chaos should be characterized in terms of the statistical theory of spectra developed
originally for the description of billiard-like systems and compound nuclear reactions. Since the mathematical tools of
this theory were related to random matrices, it was claimed that the properties of quantum chaos had much in common
with those of random matrices. This conjecture was numerically confirmed in/R2f. [16] and since then it has been
accepted that the strongest properties of quantum chaos are manifested by local fluctuations of the energy spectra and
by the chaaotic structure of the eigenstates, as predicted by random matrix theories.

For a long time, the Wigner-Dyson distribution of spacings between nearest energy levels was the main tool
for detecting quantum chaos. In this way, one-body chaos was found, both numerically and experimentally, for a
hydrogen atom in a strong magnetic field or for an electron in a quantum dot. For many-body systems, such as Bose-
particles in optical traps or Fermi-particles on a lattice, chaotic properties emerge due to the manfjdutslyetated
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to inter-particle interactions. Thus a proper charactégnasof many-body quantum chaos is in terms of the chaotic
(exceedingly complicated) structure of many-body eigenstates. This structure can be properly quantified and used
as a powerful instrument in theoretical studies and in the analysis of experimental data. A particular problem is the
many-body localization, currently a subject of extensive studies (see, for example[HEfs. [3, 4] and references therein).

As shown in Ref.@g], the chaotic structure of individual many-body eigenstates is directly related to the con-
ventional statistical distributions (Fermi-Dirac, Bose-Einstein and Boltzman). For isolated systems, an impressive
demonstration of the emergence of the Fermi-Dirac distribution for an isolated atom was reported in Ref. [7]. This
fact is in a correspondence with the remark given in the book by Landau and Lifshits [129], stating that conventional
statistical mechanics can appear not only due to ensemble average but also with the use of a single typical wave
function.

In this review we demonstrated how the thermalization mechanism is related to the chaotic structure of many-
body eigenstates. The crucial point here is a proper choice of the basis used for evaluating the complexity of the
eigenstate structure. For example, a discussion of the Anderson localization of electrons in a disordered potential
always assumes the configuration basis. For many-body systems in atomic and nuclear physics the mean field basis
that defines interacting constituents, particles or quasi-particles, naturally separates regular features of dynamics from
incoherent collision-like interactions responsible for quantum chaos. In specific models, it is sometimes useful to
go from one mean field representation to another in order to better understand the role of inter-particle interaction
[272,273]. In many-electron atoms or heavy nuclei, the residual interaction written in the basis of non-interacting
particles is typically quite complex. In our review, we also discussed the analogous picture for the case of lattice
models, both integrable and non-integrable. The emergence of chaotic features depends on the strength of interaction
and the energy of the considered eigenstates. The conditions for the crossover from non-chaotic to chaotic eigenstates
have been obtained by means of the concepts of energy shell and strength function. An instructive example of a proper
choice for a mean field is given in Ref@h@ﬂq where two models of quantum computers have been studied
in view of the onset of chaos and many-body localization emerging due to interaction bejiResgir.

The notion of energy shell was discussed for the first time in terms of band random matrices ih Refs. [157, 158].
On increasing the interaction strength, the eigenstates of the total Hamiltonian, presented asHhe siym V of
the regular (mean-field) and residual part, begin occupying a region of the bajstbe size of which depends on
the form and strength of the interaction te¥¥nThe maximal energy range that can be filled by the exact eigenstates
is defined by the width of the energy shell. The latter can be estimated from the structure of the Hamiltonian matrix
in the unperturbed basis without any need to diagonalize the total Hamiltbinian

The strength function is a quantity of special interest. It is the expansion of an eigenstgtia tfie eigenbasis of
the total HamiltoniarH, written in the energy representation. It gives the energy spreading of the chosen mean-field
basis vector. At weak interaction, when perturbation theory is valid, the SF is a narrow peak around the unperturbed
energy, with small admixtures of other basis states due to the inter&ttifith an increase of interaction, the Breit-
Wigner form of the SF emerges, the width of which is defined by the standard Fermi golden rule. This fact has been
known since early times of application of random matrices to the statistical description of energy spectra of heavy
nuclei m,EB]. Unlike chaotic billiard-type problem that can be modeled by full random matrices, isolated many-
body systems with finite interparticle interaction are described by banded random matrices. This was first understood
by Wigner, who introduced an ensemble of such matrices (WBRM). This allowed to find an analytical form of the
SF depending on the model parameters. As shown in many studies for interacting particles in isolated systems, as the
interaction strength increases, the SF typically shows a crossover from the Breit-Wigner form to a Gaussian-like. In
our review we show that this crossover can be used to identify the emergence of chaotic eigenstates filling the energy
shell.

The knowledge of the form of the SF is crucial for the description of quench dynamics. The Fourier transform
of the SF determines the return probabiltg(t) for finding the system in its initial state. For the Breit-Wigner SF,

Wp(t) decays exponentially, apart from a short time scale where the standard perturbation theory predicts the Gaussian
decay. On increasing the interaction strength, the form of the SF changes and for the Gaussian SF, the Gaussian decay
of Wp(t) lasts for a long time. The tails of the SF cannot follow the exponential decay that would correspond to a
diverging second moment of the SF. There is always a characteristic time after which the dynamics of a system is
non-standard, and the decay\Wf(t) becomes algebraic. This time scale is associated with the lower bound of the
spectrum and is not discussed in our review.

With the form of the SF known, one can predict the dynamic properties of the wave packet in the mean-field
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representation. The appropriate analytical method to doishthe so-called “cascade model” of proliferation of
excitations developed in ReEZS]. Relatively simple expressions allow one to find the time dependence for such
important quantities as the Shannon entropy associated with the packets and and the inverse participation ratio (the
second moment) of wave packets in the unperturbed basis. Obtained analytically and confirmed numerically is the
linear increase of the Shannon entropy for the Gaussian SF. This means that in the region of strong quantum chaos
the number of excited many-body states increases exponentially in time. This may be treated as another fingerprint of
guantum chaos and compared with the exponential instability of motion in classical systems with strong deterministic
chaos. As shown in Refi_[2B9], the crossover from a time-periodic behavior of the Shannon entropy to the linear
increase for interacting bosons in one-dimensional optical traps corresponds to the crossover between the mean field
and the Tonks-Girardeau regimés [248,1244]. A similied, namely an exponential increase of the number of
harmonics in the time-dependent Wigner function of the Ising model, has been found in Ref. [275].

We considered isolated systems with a relatively small numbef interacting particles whose dynamics was
analyzed on a finite time scale. We did not discuss the problem of thermalization in the thermodynanitdimib,

However, few remarks are worthwhile here. When the number of particles is infinite, the system can be, in essence,
treated as a heat bath itself. According to 276], in such a case the behavior of a particle follows the standard
statistical predictions even if the system is integrable. It is known that the mechanism for the onset of the statistical
behavior in the thermodynamic limit is related to an infinite number of non-commensurate frequencies in the system
dynamics and random phases of the density matrix. As shown by Bogoli@@& 173] (see also the discussion
in Ref. [172]), conventional statistical properties emerge even in an integrable system of linearly coupled oscillators
under quite modest mathematical assumptions. The energy spectrum of such a system, being discreteNfor finite
becomes continuous in the thermodynamic limit. It was demonstrated irl Ref. [276] that the time scale on which there
is a clear exponential relaxation to the equilibrium, strongly increases with the number of particles and tends to infinity
in the thermodynamic limit.

As argued by Chirikoﬂ 6], quantum chaos s, in essence, chaos on a finite time scale. However, this time scale
can be extremely large, thus allowing to treat the dynamics as occurring in a continuous spectrum. The situation is
somewhat similar to that in classical mechanics where, before the development of the concept of chaos, the old known
mechanism for the onset of standard statistical properties was the thermodynamic limit itself. Then it is practically
irrelevant whether the considered system is integrable or not. For instance, the computation of the Lyapunov exponent
on a very long time scale in the integrable Toda lattice with a large number of particles gives the same non-zero
result as for the chaotic Fermi-Pasta-Ulam model, [277]. Along similar lines, we can think about computers.
They make computations with finite precision which means that fieetese phase space is discrete, therefore all
trajectories are periodic. Strictly speaking there are no chaotic trajectories in computation. However, the time scale
on which one can detect the periodicity of the motion is extremely long. That is why any numerical manifestation of
classical chaos is nothing but chaos in the discrete spectrum, observed on a finite time scale. This very fact can be
compared with the meaning of quantum chaos.
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