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A diagonal entropy, which depends only on the diagonal elements of the system’s density matrix in the

energy representation, has been recently introduced as the proper definition of thermodynamic entropy in

out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-

core bosons and spinless fermions, and after a local chemical potential quench in a system of hard-core

bosons in a superlattice potential. The former systems have a chaotic regime, where the diagonal entropy

becomes equivalent to the equilibrium microcanonical entropy, coinciding with the onset of thermaliza-

tion. The latter system is integrable. We show that its diagonal entropy is additive and different from the

entropy of a generalized Gibbs ensemble, which has been introduced to account for the effects of

conserved quantities at integrability.
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The notion of entropy was first used by Clausius in the
mid-19th century and was soon put in the context of statis-
tical mechanics by Boltzmann and Gibbs. Generalized to
quantum mechanics by von Neumann in the 1930s and
incorporated by probability theory by Shannon in the
1940s, entropy has manifested itself in different forms
over the years. Despite the diversity, the consensus is that
any physical definition of entropy must conform with the
postulates of thermodynamics [1,2].

An appropriate definition of entropy, suitable also for
isolated quantum systems out of equilibrium, is fundamen-
tal for advances in nonequilibrium statistical mechanics
and for a better understanding of recent experiments with
quasi-isolated quantum many-body systems, such as those
realized with ultracold atoms [3]. von Neumann’s entropy,
defined as SN ¼ �Trð�̂ ln�̂Þ, where �̂ is the many-body
density matrix (the Boltzmann constant here and through-
out this Letter is set to unity), complies with the laws of
thermodynamics when describing isolated quantum sys-
tems in equilibrium and quantum systems interacting with
an environment, but it becomes problematic when dealing
with closed systems out of equilibrium. Since in an isolated
system SN is conserved for any process, this entropy is
not consistent with the second law of thermodynamics.
This motivated the recent introduction of the diagonal (d)
entropy [4], which is given by

Sd ¼ �X
n

�nn lnð�nnÞ; (1)

where �nn are the diagonal elements of the density matrix
in the instantaneous energy basis. In equilibrium Sd
coincides with the von Neumann’s entropy. In addition,
Sd was argued to satisfy the required properties of a
thermodynamic entropy: it increases when a system in

equilibrium is taken out of equilibrium, it is conserved
for adiabatic processes, it is uniquely related to the energy
distribution (and as such satisfies the fundamental thermo-
dynamic relation), and it is additive.
More specifically, it was indicated in [4] that Sd should

be equivalent to the equilibrium microcanonical entropy
when the energy fluctuations are subextensive and the
energy distribution is not sparse, assumptions expected to
hold in nonintegrable systems. For integrable systems, the
existence of a complete set of conserved quantities [5]
invalidates those assumptions and precludes thermalization
in the usual sense. However, it has been shown that few-
body observables after relaxation can still be described by
a generalized Gibbs ensemble (GGE) [6], which is a
grand-canonical ensemble accounting for the conserved
quantities [7].
Here, we study the d entropy in isolated quantum sys-

tems after a quench in both integrable and nonintegrable
regimes. We consider two kinds of quenches in one dimen-
sion (1D): an interaction quench for hard-core bosons
(HCBs) and spinless fermions, which have a nonintegrable
regime [8], and a local chemical potential quench for HCBs
(or spinless fermions) with a superlattice potential, which
are integrable [6]. In the first case, as the system transitions
to chaos, we show that the distribution function of energy
becomes Gaussian-like and Sd approaches the thermody-
namic entropy. This indicates that thermodynamically the
system becomes indistinguishable from a thermal state. In
the second case, Sd is shown to be additive and different
from the entropy of the GGE. This difference scales line-
arly with the system size, suggesting the existence of addi-
tional correlations not captured by the GGE [9].
Quench and entropies.—We consider a particular initial

state jc inii which is an eigenstate of a certain initial
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Hamiltonian. At time � ¼ 0, the Hamiltonian is instanta-
neously changed (quenched) to a new one with eigenstates
j�ni and eigenvalues En. The initial state then evolves
as jc ð�Þi ¼ P

nCne
�iEn�j�ni, where Cn ¼ h�njc inii and

jCnj2 correspond to the diagonal elements, �nn, of the
density matrix, �̂ð�Þ ¼ jc ð�Þihc ð�Þj.

For generic systems, with nondegenerate and incom-
mensurate spectra, the expectation values of few-body

observables (Ô) relax to the infinite time average hÔðtÞi ¼P
n�nnOnn, which depends only on the diagonal elements

�nn and Onn ¼ h�njÔj�ni [10,11]. Thus, the d entropy
(1) is the entropy of the diagonal ensemble. It resembles
the Shannon entropy, but with no arbitrariness in the basis.
For sudden quenches, Sd is equivalent to SN for the time
averaged density matrix. The difference between Sd and
thermodynamic entropies can help to quantify additional
information contained in the diagonal part of the density
matrix and not in the equilibrium ensemble.

One can write Sd as the sum of a smooth Ss and a
fluctuating Sf part Sd ¼ Ss þ Sf [4], where

Ss ¼
X
n

�nn ln½�ðEnÞ�E�; (2)

Sf ¼ �X
n

�nn ln½�nn�ðEnÞ�E�: (3)

Here �ðEnÞ is the density of states at energy En: �ðEÞ ¼P
n�ðE� EnÞ and �E2 is the energy variance: �E2 ¼P
n�nnðE� EiniÞ2, where Eini ¼ hc inijHjc inii is the

expectation value of the quenched Hamiltonian with
respect to the initial state. In the continuum limit, Ss ¼R
dEWðEÞSmðEÞ and Sf ¼ �R

dEWðEÞ ln½WðEÞ�E�,
where WðEÞ ¼ P

n�nn�ðE� EnÞ is the energy distribu-
tion. In Ss, the microcanonical entropy, SmðEÞ ¼
ln½�ðEÞ�E�, is the logarithm of the total number of acces-
sible states in the range of energy [E� �E=2, Eþ �E=2].
If the system is large and finite-size effects become
negligible, then up to nonextensive corrections, Sm
becomes equal to the canonical entropy, Sc ¼
�P

n½Z�1e�En=T lnðZ�1e�En=TÞ�, where T is the tempera-

ture related to the energy of the system and Z ¼ P
ne

�En=T

is the partition function (see Ref. [12]).
When WðEÞ is narrow, so that �E is subextensive, Ss

becomes equivalent to the equilibrium microcanonical en-
tropy. Moreover, if in addition WðEÞ is a smooth function
of energy, then Sf is also subextensive. These features

are expected to be generic for the nonintegrable (chaotic)
regime, where the eigenstates (away from the edges
of the spectrum of systems with few-body interactions)
become pseudorandom vectors [8,13].

In the integrable limit, on the other hand, conserved
quantities reduce the number of eigenstates of the
Hamiltonian that have a nonzero overlap with the initial
state [11,14], so �nn becomes sparse and Sf extensive. In

this case, both terms Ss and Sf are expected to contribute to

the d entropy. It then becomes appropriate to compare Sd
with the entropy of the GGE introduced in Ref. [6], which

accounts for the integrals of motion. The many-body

density matrix of the GGE is given by �̂GGE ¼
Z�1
GGEe

�P �mÎm , where ZGGE ¼ Tr½e�
P

�mÎm�, fÎmg is a

complete set of conserved quantities, and �m are the

Lagrange multipliers fixed by the initial conditions �m ¼
ln½ð1� hc inijÎmjc iniiÞ=hc inijÎmjc inii�. Since the GGE is a
grand-canonical ensemble, which can suffer from large
finite-size effects for small systems, in addition to the
entropy in the GGE, SGGE, we also compute the entropy
in its canonical version (GCE) as the trace SGCE ¼
Tr½�̂GCE lnð�̂GCEÞ�can where only eigenstates of the
Hamiltonian with the same number of particles contribute
to the trace.
Chaotic systems.—We consider periodic 1D chains with

nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hopping and interaction, with the following Hamiltonian

HB¼
XL
j¼1

½�tðb̂yj b̂jþ1þH:c:Þ�t0ðb̂yj b̂jþ2þH:c:Þ

þVðn̂bj �1
2Þðn̂bjþ1�1

2ÞþV 0ðn̂bj �1
2Þðn̂bjþ2�1

2Þ� (4)

for hard-core bosons and similarly for spinless fermions

(with b̂j ! f̂j, b̂
y
j ! f̂yj , and n̂bj ! n̂fj ), where standard

notation has been used [8]. L is the lattice size and we
take the number of particles to be N ¼ L=3. We use full
exact diagonalization to compute all eigenstates of the
Hamiltonian, taking advantage of conservation of total
momentum k due to translational invariance. The initial
states considered are eigenstates of Eq. (4) with parameters
tini, Vini, t

0, V0 belonging to the k ¼ 0 subspace. The final
Hamiltonian (after the quench) has t ¼ V ¼ 1 and the
same initial values of t0 ¼ V 0. The initial states are selected
such that their energies Eini in the final quenched
Hamiltonian are the closest to E at a chosen effective

temperature T, computed as E ¼ Z�1
P

nEne
�En=T . When

t0 ¼ V0 ¼ 0 the system is integrable, while the addition of
NNN terms eventually induces the onset of chaos [8].
Full exact diagonalization of the models above limits the

system sizes that can be studied to a maximum of 8
particles in 24 sites and thus prevents proper scaling studies
of the entropies with increasing system size. This is left to
the integrable quenches where larger lattices can be ex-
plored. Here we compare Sd, Ss, Sf, Sm, and Sc for the two

largest system sizes available and for various Hamiltonian
parameters as one departs from the integrable point.
The main panels in Fig. 1 depict Sd and Ss for systems

with L ¼ 24 at different effective temperatures as t0, V 0
increases. An agreement between Sd and Ss can be seen
as one approaches the chaotic limit, improving with tem-
perature and system size [cf. insets in Figs. 1(a) and 1(c)].
(By comparing the left and right panels, particle statistics
does not seem to play much of a role.) Lower temperatures,
for which Sd and Ss are seen to depart, imply initial states
whose energies are closer to the edge of the energy spec-
trum. For finite systems, thermalization has been argued not
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to occur in those cases [8], and, from our results here, we
expect that the idea of a thermodynamic description will
break down if the temperature is sufficiently low. Increasing
the system size is expected to increase the region of tem-
peratures over which a thermodynamic description will be
valid. Figure 1 also shows that different initial states give
slightly different quantitative results (top vs bottom panels),
although the overall qualitative behavior is the same.

The insets in Figs. 1(b) and 1(d), depict a comparison
between Sd and the equilibrium entropies in thermody-
namic ensembles whose energy has been chosen to be
the same of the initial state after the quench. Explicit
results for the microcanonical entropy with �E determined
by the energy uncertainty are in surprisingly good agree-
ment with those of Sd. Up to a nonextensive constant, the
canonical entropy Sc can also be written in the same form
as Sm (2) if we use the canonical width �E2

c ¼ �@�E.

Results for Sc are shown for three different sets of eigen-
states: (i) all the states in the N sector, (ii) only the states in
the N sector with k ¼ 0, (iii) only the states in the N sector
with k ¼ 0 and the same parity as the initial state. The
latter, as expected, is the closest to Sm (also computed from
eigenstates in the same symmetry sector as jc inii) and Sd.
In the thermodynamic limit, all three sets of eigenstates
should produce the same leading contribution to Sc, but for
finite systems it is necessary to take into account discrete
symmetries in order to get an accurate thermodynamic
description of the equilibrium ensemble.

The fact that Sd=Sm ! 1 in the chaotic limit and that the
agreement improves with system size provide an important
indication that Sf is small and subextensive. Information

contained in the fluctuations of the density matrix becomes
negligible in chaotic systems and only the smooth (mea-
surable) part of the energy distribution contributes to the
entropy of the system. Also, the close agreement between
Sd and Sm in the insets of Figs. 1(b) and 1(d) suggests that
Sd is indeed the proper entropy to characterize isolated
quantum systems after relaxation. Results for the energy
distribution WðEÞ in Fig. 2 further support these findings.
Figure 2 shows WðEÞ for HCBs for quenches in the

integrable (left) and chaotic (right) domains. The sparsity
of the density matrix in the integrable limit is reflected by
large and well separated peaks, while for the nonintegrable
case WðEÞ approaches a Gaussian shape similar to

ð ffiffiffiffiffiffiffi
2�

p
�EÞ�1e�ðE�EiniÞ2=ð2�E2Þ, as shown with the fits. The

shape ofWðEÞ is determined by the product of the average
weight of the components of the initial state and the density
of states. The latter is Gaussian and the first depends on the
strength of the interactions that lead to chaos, it becomes
Gaussian for large interactions [15]. A plot of �nn vs
energy, on the other hand, does not capture so clearly the
integrable-chaos transition [12].
Integrable systems.—We consider a 1D HCBmodel with

NN hopping and an external potential described by

HS ¼�t
XL�1

j¼1

ðbyj bjþ1 þH:c:Þ þA
XL
j¼1

cos

�
2�j

P

�
byj bj: (5)

This model is exactly solvable as it maps to spinless non-
interacting fermions (see, e.g., Ref. [16]). The period P is
taken to be P ¼ 5, t ¼ 1, and the amplitude A takes the
values 4, 8, 12, and 16. We study systems with L ¼
20; 25; . . . ; 55 at 1=5 filling. For the quench, we start with
the ground state of (5) with A ¼ 0 and evolve the system
with a superlattice (A � 0) and vice versa. Open boundary
conditions are used in this case.
We first study how the deviation of Sd from Ss, as

quantified by Sf=Sd, scales with increasing lattice size
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FIG. 1 (color online). Entropies vs t0 ¼ V0. Left: bosons; right:
fermions; top: quench from tini ¼ 0:5, Vini ¼ 2:0; bottom:
quench from tini ¼ 2:0, Vini ¼ 0:5. Filled symbols: d entropy
(1); empty symbols: Ss (2); � T ¼ 1:5; h T ¼ 2:0; 4 T ¼ 3:0.
All panels: 1=3 filling and L ¼ 24; insets of panels (a) and (c)
show Sd=Ss for L ¼ 24, thick (red) line, and L ¼ 21, thin
(black) line for T ¼ 3:0. Solid lines in the insets of panels (b)
and (d), from bottom to top: microcanonical entropy; canonical
entropy Sc for eigenstates with k ¼ 0 and the same parity as the
initial state; Sc for eigenstates with k ¼ 0 and both parities; and
Sc for all eigenstates with N ¼ 8.
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for different quenches. As shown in Figs. 3(a) and 3(b),
Sf=Sd does not decrease as L increases, rather, we find

indications that Sf=Sd saturates to a finite value in the

thermodynamic limit. Hence, for these systems Sd is not
expected to be equivalent to the microcanonical entropy.

In the lower panels of Fig. 3, we study the scaling of Sd
with increasing system size for the same quenches. A clear
linear behavior is seen, demonstrating that Sd is indeed
additive. In these panels, we also show the microcanonical
(with �E determined as for the interaction quenches [17])
and canonical ensembles. The latter two can be seen to
increase linearly with L and with a similar slope. These
two entropies are clearly greater than Sd indicating that the
diagonal ensemble in this case is highly constrained.
Finally, we show results for the GGE and GCE entropies.
They also increase linearly with system size and with a
similar slope, showing that in the thermodynamic limit
their difference should be subextensive. Interestingly, the
slopes of the GGE and GCE are greater than the slope of
the diagonal entropy. This suggests the existence of addi-
tional correlations not fully captured by the generalized
ensemble. The diagonal entropy in this case is a clear
observable independent measure of such correlations.
This finding opens an important question as to which
ensemble should be appropriate to characterize the ther-
modynamic properties of isolated integrable quantum sys-
tems after relaxation following a quench and for which
observables these additional correlations are relevant.

Summary.—Wepresented a study of the diagonal entropy
following quenches in integrable and nonintegrable iso-
lated quantum systems. In the nonintegrable regime, we
showed that Sd has the properties expected from an equi-
librium microcanonical entropy. In particular, the fact that

Sd coincides with Sm up to subextensive corrections and is
thus determined only by the energy of the system implies
that basic thermodynamic relations can be applied to non-
integrable isolated systems (see also discussion in Ref. [4]).
In the integrable limit, we demonstrated that Sd is additive
and smaller than the entropy of generalized ensembles
(recently shown to properly describe observables after re-
laxation following a quench). Our results open further
questions as to how to characterize the thermodynamic
properties of isolated integrable systems, and also motivate
further studies for nonintegrable systems, in order to verify
the scaling of Sd with system size and compare it to the one
of the entropy in conventional statistical ensembles.
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