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The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum sig-
nature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This
quantum-classical correspondence has been corroborated for the kicked rotor and the stadium billiard, which are
one-body chaotic systems. The conjecture has not yet been validated for realistic systems with interactions. We
make progress in this direction by studying the OTOC in the Dicke model, where two-level atoms cooperatively
interact with a quantized radiation field. For parameters where the model is chaotic in the classical limit, the
OTOC increases exponentially in time with a rate that closely follows the classical Lyapunov exponent.

Quantum chaos tries to bridge quantum and classical me-
chanics. The search for quantum signatures of classical chaos
has ranged from level statistics [1, 2] and the structure of
the eigenstates [3, 4] to the exponential increase of complex-
ity [5, 6] and the exponential decay of the overlap of two wave
packets [7–9]. Recently, the pursuit of exponential instabili-
ties in the quantum domain has been revived by the conjecture
of a bound on the rate growth of the out-of-time-ordered cor-
relator (OTOC) [10, 11]. First introduced in the context of
superconductivity [12], the OTOC is now presented as a mea-
sure of quantum chaos, with its growth rate being associated
with the classical Lyapunov exponent. The OTOC is not only
a theoretical quantity, but has also been measured experimen-
tally via nuclear magnetic resonance techniques [13–15].

The correspondence between the OTOC growth rate and
the classical Lyapunov exponent has been explicitly shown in
two cases of one-body chaotic systems, the kicked-rotor [16]
and, after a first unsuccessful attempt [17], the stadium bil-
liard [18]. For interacting many-body systems, while ex-
ponential behaviors for the OTOC have been found for the
Sachdev-Ye-Kitaev model [10, 19] and for the Bose-Hubbard
model [20, 21], a direct demonstration of the quantum-
classical correspondence has not yet been made. Studies in
this direction include [6, 22–24] and [25].

Here, we investigate the OTOC for the Dicke model [26].
Comparing with one-body systems, the Dicke model is a step
up toward an explicit quantum-classical correspondence for
interacting many-body systems, since it contains N atoms
interacting with a quantized field. It was originally pro-
posed to explain the collective phenomenon of superradiance:
the field mediates interatomic interactions, which causes the
atoms to act collectively [26, 27]. Superradiance has been
experimentally studied with ultracold atoms in optical cavi-
ties [28–33]. The Dicke Hamiltonian has also found appli-
cations beyond superradiance in various different fields. It
has been employed, for instance, in studies of ground-state
and excited-state quantum phase transitions [27, 34–38], en-
tanglement creation [39], nonequilibrium dynamics [40–43],

quantum chaos [44–47], and monodromy [48, 49]
In the classical limit, the Dicke model presents regular and

chaotic regions depending on the Hamiltonian parameters and
excitation energies [47]. This allows us to benchmark the
OTOC growth against the presence and absence of chaos. The
results in the chaotic region display three different temporal
behaviors: a sinusoidal evolution at short times, followed by
an exponential growth, that holds up to the saturation of the
dynamics. Our approach, based on the use of an efficient basis
for the convergence of the eigenstates, enables the treatment
of systems that are large enough to reveal the exponential part
of the dynamics. We find that the exponential growth rate is
in close agreement with the classical Lyapunov exponent.

Quantum and Classical Hamiltonian.– The Dicke model
has N two-level atoms of level spacing ω0 coupled with a sin-
gle mode of a quantized radiation field of frequency ω. The
Hamiltonian is given by

ĤD =
ω

2
(p̂2 + q̂2) + ω0Ĵz + 2

γ√
j
Ĵx q̂ −

ω

2
, (1)

where ~ = 1; q̂ = (â† + â)/
√

2 and p̂ = i(â† − â)/
√

2 are
the quadratures of the bosonic field and â(â†) is the annihi-
lation (creation) operator; the collective atomic pseudo-spin
operators, Ĵx,y,z = (1/2)

∑N
n=1 σ

(n)
x,y,z , are the sums of the

Pauli matrices for each atom n; γ is the atom-field interaction
strength; and j(j+1) is the eigenvalue of the total spin opera-
tor Ĵ2 = Ĵ2

x+Ĵ2
y+Ĵ2

z . The critical point γc =
√
ωω0/2 marks

the transition from a normal phase (γ < γc) to a superradiant
phase (γ > γc). We set ω = ω0 = 1 in the illustrations below
and work with the symmetric atomic subspace (j = N/2),
where the ground state lies. The models has two degrees of
freedom.

The classical Hamiltonian is built by employing Bloch co-
herent states and Glauber coherent states [47, 50, 51]. The first

are given by |z〉 =
(

1 + |z|2
)−j

ezĴ+ |j,−j〉, where z ∈ C

and |j,−j〉 is the ground state for the atoms, and the Glauber
coherent states are |α〉 = e−|α|

2/2eαâ
† |0〉, where α ∈ C and
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|0〉 in the photon vacuum. The canonical variables (p, q) and
(jz, φ) are given in terms of the coherent state parameters

α =
√

j
2 (q+ip) and z =

√
1+jz
1−jz e

−iφ, respectively. Deriving
the classical Hamiltonian is basically equivalent to replacing
the operators with the canonical variables (q, p) and (jz, φ) as
q̂ →

√
jq, p̂ →

√
jp, Ĵz → jjz , Ĵx → j

√
1− j2

z cosφ. It
reads

Hcl
D = j

ω

2

(
p2 + q2

)
+ jω0 jz + 2jγ

√
1− j2

z q cosφ. (2)

Since the classical limit is reached for j → ∞, the effective
Planck constant is ~eff = 1/j.

We denote the energy per particle as ε = Hcl
D/j, which is

independent of j. Since the number of bosons in the field is
unlimited, the range of values of ε is only limited from below.
The ground state energy is given by ε0(γ) = −ω0 for γ ≤ γc

and by ε0(γ) = −ω0

2

(
γ2
c

γ2 + γ2

γ2
c

)
for γ > γc.

With the classical Hamiltonian, we solve the Hamilton
equations of motion and obtain a map of the degree of chaotic-
ity of the system as a function of the energy ε and the interac-
tion strength γ, as shown in Fig. 1. The task of drawing the
map is quite demanding. For each value of ε and γ, we con-
sider a large sample of initial conditions distributed homoge-
neously in the energy shell. The largest Lyapunov exponent
λcl is evaluated for each initial condition. If λcl > 0, the
initial condition is chaotic and for λcl = 0, the initial con-
dition is regular. The percentage of chaos is defined as the
ratio of the number of chaotic initial conditions over the total
number of initial conditions in the sample. This percentage is
shown in Fig. 1 with a color gradient: dark indicates that most
initial conditions are regular and light indicates that most are
chaotic. (Notice that one should look only at the results above
the thick solid line that marks the ground state.) Regularity
predominates for γ/γc < 0.6, while for γ/γc > 0.6, most
regular trajectories have low energies and large energies are
associated with chaos. This map guides our analysis of the
OTOC below.

Figure 1. Percentage of chaos over energy shells as a function of
energy and coupling strength. The thick solid line follows the ground
state energy and the diamond marks the critical point. The vertical
dotted line indicates the coupling γ = 2γc and the circle marks the
energy chosen for the studies below.

Method.– The OTOC quantifies the degree of non-
commutativity in time between two Hermitian operators with
small or null commutator at time t = 0. In terms of position
and momentum, it is written as

Cqpn (t) = −〈Ψn| [q(t), p(0)]
2 |Ψn〉, (3)

where |Ψn〉 and En are the eigenstates and eigenvalues of
ĤD. In Ref. [17], Cqpn (t) is called microcanonical OTOC.
In the semiclassical limit, substituting the commutator by the
Poisson bracket, one gets for a classically chaotic system,
{q(t), p(0)} = ∂q(t)/∂q(0) ∼ eλclt, where λcl is the clas-
sical Lyapunov exponent. This suggests the connection be-
tween the exponential growth rate ΛQ of the OTOC and λcl,
and justifies referring to ΛQ as the quantum Lyapunov expo-
nent.

Using the temporal evolution of the operator q̂(t) =
eiHtq̂e−iHt, Eq. (3) can be expressed as [17]

Cqpn (t) =
∑
l

bnl(t)b
∗
nl(t), (4)

where the matrix elements

bnl(t) = −i〈Ψn| [q̂(t), p̂(0)] |Ψl〉,
= −i

∑
k

(eiΩnktqnkpkl − eiΩkltpnkqkl),

with qnk = 〈Ψn|q̂|Ψk〉, pnk = 〈Ψn|p̂|Ψk〉, and Ωnk =
En − Ek. Since the Dicke Hamiltonian is of the form ĤD =
ωp̂2/2 + V (q̂) and [ĤD, q̂] = −iωp̂,

bnl(t) =
1

ω

∑
k

qnkqkl(Ωkle
iΩnkt − Ωnke

iΩklt), (5)

which simplifies the calculations. The OTOC is obtained by
evaluating numerically only the matrix elements of q̂ in the
energy eigenbasis. For this, instead of employing the usual
photon number (Fock) basis, we resort to an efficient basis that
guarantees convergence of the eigenvalues and wave functions
for a broad part of the spectrum (see [52]).

Quantum Lyapunov Exponent.– In this Letter, we concen-
trate our analysis on chaotic eigenstates. They are chosen
along the vertical line in Fig. 1, where the coupling param-
eter is strong, γ = 2γc. This line exhibits regular and chaotic
regions. From the ground state ε0 = −2.125 to ε ≈ −1.6,
the dynamics is regular. From ε ≈ 1.6 to ε ≈ −1.2, reg-
ular and chaotic trajectories coexist. For larger energies,
ε > −1.2, chaos cover almost the whole energy shell. We
select a group of sixty eigenstates in the chaotic energy region
with En/(jω0) ∈ (−1.11,−1.09). They are indicated with a
circle in Fig. 1.

In Fig. 2 (a), we show that even for a single representative
eigenstate, the behavior of the OTOC is clearly exponential
from t & π/ω0 up to the saturation of the dynamics. The
growth rate ΛQ = 0.1389 is obtained by fitting the curve with
a straight line indicated with stars in the figure.
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The exponential behavior is robust with respect to two dif-
ferent probes:

(i) It holds when we use the commutator for the operator q̂
at different times, Cqqn (t) = −〈Ψn| [q(t), q(0)]

2 |Ψn〉, as also
shown in Fig. 2 (a). The associated fit, indicated with circles,
provides ΛQ = 0.1394. Both exponential fits lead essentially
to the same quantum Lyapunov exponents.

(ii) The exponential growth rates are very similar for the
sixty different states selected in the chaotic region.

(a)

(b)

Figure 2. Panel (a): Exponential growth of the OTOC for an eigen-
state with En/(jω0) ≈ −1.1; numerical results (solid line), fit for
Cqp

n (t) (circles) and for Cqq
n (t) (stars); saturation times (square and

triangle). Panel (b): Log-log plot for the evolution of the OTOC and
saturation value (dotted lines). Inset: short time behavior compared
with sin2(t) and cos2(t) (dotted lines). We used j = 100, n = 1625.

The log-log plot in Fig. 2 (b) makes evident the appear-
ance of different behaviors at different time scales. For
t < π/ω0, the dynamics of Cqpn (t) [similarly for Cqqn (t)]
is controlled by the diagonal matrix elements in Eq. (5),
bnn(t) = (2/ω)

∑
k q

2
knΩkn cos(Ωknt), with few states con-

tributing significantly to the sum, all with energy differences
Ω ≈ 1.0. The short-time evolution is therefore approximately
described by the square of a cosine function [sine for Cqqn (t)].
The two sinusoidal curves are shown with dotted lines in the
inset of Fig. 2 (b).

At long times, the quantum dynamics saturates to the
infinite-time average,

Cpqn =
1

ω2

∑
k,l

q2
nkq

2
kl

(
Ω2
kl + Ω2

nk

)
, (6)

which is obtained from Eqs. (3) and (5) using that

exp[i(Ωij − Ωkl)t = 0 for Ωij 6= Ωkl. Cpqn and Cqqn are
shown in Fig. 2 (b) with dotted lines. These averages are
related with the square of the size of the available phase
space [17]. For the Dicke Hamiltonian, it scales with j2 and
with the number of bosons in the system, which grows with
the excitation energy.

After the exponential growth, the OTOC fluctuates around
its asymptotic value, as seen in Fig. 2 (b), with a standard devi-
ation σ. We define the saturation time tS as the time when the
OTOC reaches for the first time the value Cpqn −σ. The values
of tS for Cqpn (t) and Cqqn (t) are marked in Fig. 2 (a) with a
triangle and a square, respectively. The saturation time marks
the point beyond which quantum effects are strong and the
quantum-classical correspondence no longer holds, therefore
the association between tS and the Ehrenfest time. The satura-
tion of the dynamics for finite quantum systems is in contrast
to what one finds for classical systems, where the spectrum
is continuous. As j increases and the system approaches the
classical limit, Cpqn grows and tS increases with it.

Figure 3. Panels (a), (b) and (c): Poincaré surface of section of
the Husimi functions for three eigenstates with energies close to
ε/ω0 ≈ −1.1 projected on the plane (jz, φ) for p = 0. Panel (d):
map of chaos over the same Poincaré surface in terms of the classical
Lyapunov exponents.

Quantum-classical correspondence.– To associate a classi-
cal Lyapunov exponent to each particular Hamiltonian eigen-
state, we employ the Husimi functions, which are the square
of the overlaps of the eigenstate with the coherent states used
to build the classical description. They are defined as

Qk(q, p, jz, φ) = |〈q, p, jz, φ|Ψk〉|2. (7)

The subtleties of the evaluation of the Husimi functions, in
connection with the efficient coherent basis used to get the
eigenstates [52], are detailed in Ref. [46].

The Poincaré surface of section of the Husimi functions
for three eigenstates with energies close to ε/ω0 ≈ −1.1
are shown in Fig. 3 (a,b,c), projected on the plane (jz, φ) for
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p = 0. The bright structures indicate large overlaps. For
comparison, we also show in Fig. 3 (d) the classical map of
chaos for the same energy and plane. The color code repre-
sents the values of the classical Lyapunov exponent for each
initial point in the phase space.

With the Husimi function, we compute the average Lya-
punov exponent for the corresponding eigenstate. To this end,
we assign weights Wk, given by the discretized and normal-
ized Husimi function, to each point k in the phase space,
where k = 1, ..,M and M is the number of points in the
phase space over the plane (jz, φ) with p = 0. The weighted
average is

λ̃〈ln〉 =
M∑
k=1

Wkλk = lim
t→∞

1

t

M∑
k=1

Wk ln(eλkt). (8)

The purpose of writing the last term above is to emphasize
that λ̃〈ln〉 is the average of logarithms, while the maximum
value λmax of the Lyapunov exponent over the region where
the Husimi function is not null is the logarithm of the average,

λ̃ln〈.〉 = lim
t→∞

1

t
ln

[∑
k

Wk e
λkt

]
(9)

= λmax + lim
t→∞

1

t
ln

[∑
k

Wk e
(λk−λmax)t

]
→ λmax.

In Fig. 4, we compare the quantum Lyapunov exponent
ΛQ (circles), the average classical Lyapunov exponent λ̃〈ln〉
(squares), and the maximum Lyapunov exponent λmax (stars).
Obviously, λmax > λ̃〈ln〉 and both exponents are very stable
for the sixty states. This is because the classical Lyapunov
exponents λk in most of the Poincaré surface of section in
Fig. 3 (d) have very similar values. The quantum exponent, on
the other hand, fluctuates much more, due to the oscillations
that modulate the exponential growth and finite size effects.
Increasing the value of j would reduce this uncertainty.

Figure 4. Comparison between the exponential growth rate ΛQ

for Cqp
n (t) (circles), the average classical Lyapunov exponent λ̃〈ln〉

(squares), and the maximum Lyapunov exponent λmax (stars) for
sixty states of different energies around ε/ω0 ≈ −1.1.

In general, ΛQ is larger than λ̃〈ln〉, since the latter is the
average of logarithms [see Eq. (8)], while the quantum Lya-
punov exponent is obtained from the logarithm of the fit, as

discussed in [16]. For this reason, the quantum Lyapunov
exponent is closer to λmax. It is worth to mention that the
average value of λ̃〈ln〉 for the energy region in Fig. 4 is ap-
proximately 0.11, while for both ΛQ and λmax, we find 0.13.

Discussion.– We showed that for the Dicke model in the
chaotic region, the OTOC grows exponentially fast in time
with a rate comparable to the average classical Lyapunov ex-
ponent and very close to the maximum classical Lyapunov
exponent averaged by the Husimi function. These results con-
firm that the quantum-classical correspondence established by
means of the OTOC is not exclusive to one-body systems, but
is valid also for interacting systems with more than one de-
gree of freedom. This work provides a proof-of-principle and
should motivate similar studies in other interacting systems.

We stress that to clearly identify the quantum exponential
growth and extract its rate, we need to have access to large
system sizes. This was possible here, because we resorted to
an efficient basis to construct the eigenstates.

The instrument of our analysis was the microcanonical
OTOC [Eq. (3)] corresponding to the eigenstate expectation
value of the commutator of two operators. Its use in stadium
billiards [17] prevented the observation of the quantum expo-
nential growth, which was only possible with the introduction
of Gaussian states [18]. In our case, however, the eigenstates
were excellent probe states for revealing the OTOC exponen-
tial growth. This is a very important result for future studies of
interacting systems, since the eigenstates are essential build-
ing blocks for thermal averages.

We conclude that it is possible to employ only quantum
tools to characterize chaos in the phase space. Just as the
Husimi distribution function can be associated with regular
or chaotic sectors of the classical Poincaré surface of section,
the exponential growth rate of the OTOC works as a quantum
equivalent of the Lyapunov exponent.
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CyT project CB2015-01/255702, DGAPA- UNAM project
IN109417 and RedTC. MABM is a post-doctoral fellow of
CONACyT. PS is supported by the Charles University Re-
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