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Abstract
Using coherent states as initial states, we investigate the quantum dynamics 
of the Lipkin–Meshkov–Glick (LMG) and Dicke models in the semi-classical 
limit. They are representative models of bounded systems with one- and two-
degrees of freedom, respectively. The first model is integrable, while the 
second one has both regular and chaotic regimes. Our analysis is based on 
the survival probability. Within the regular regime, the energy distribution 
of the initial coherent states consists of quasi-harmonic sub-sequences of 
energies with Gaussian weights. This allows for the derivation of analytical 
expressions that accurately describe the entire evolution of the survival 
probability, from t  =  0 to the saturation of the dynamics. The evolution shows 
decaying oscillations with a rate that depends on the anharmonicity of the 
spectrum and, in the case of the Dicke model, on interference terms coming 
from the simultaneous excitation of its two-degrees of freedom. As we move 
away from the regular regime, the complexity of the survival probability 
is shown to be closely connected with the properties of the corresponding 
classical phase space. Our approach has broad applicability, since its central 
assumptions are not particular of the studied models.
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1. Introduction

Highly controllable experiments with cold atoms [1, 2], ion traps [3, 4], and nuclear magn-
etic resonance (NMR) platforms [5], where coherent evolution can be investigated for long 
times, are in part responsible for the renewed interest in non-equilibrium quantum dynamics. 
Alongside with several paradigmatic models of many-body quantum physics, simple but rich 
ones like the Lipkin–Meshkov–Glick (LMG) [6–8] and the Dicke [9–11] models have become 
experimentally accessible. They were realized with Bose–Einstein condensates in [12–14] and 
[15, 16], respectively.

To better understand and control many-body quantum systems out of equilibrium, in addi-
tion to experimental and numerical studies, one can exploit the advantages of analytical results 
to identify and explain the causes of different behaviors at various time scales. However, ana-
lytical results are challenging in systems that approach chaotic regimes.

The present work focuses on the analytical description of the equilibration process of the 
LMG and Dicke models. They are representative models of bounded systems with one- and 
two-degrees of freedom, respectively (the number of degrees of freedom defined through the 
classical limit). The LMG model is integrable, while the Dicke model presents both regular 
and chaotic classical trajectories. Our analysis concentrates on the regular regime, which ena-
bles the derivation of analytical expressions that cover the entire dynamics of the two systems. 
In the case of the Dicke model, by gradually moving the initial state away from the regular 
regime, we are able to identify the source of the increased complexity of the dynamics.

The quantity that we select for our studies is the survival probability (SP), that is the prob-
ability of finding the initial state later in time. The SP is a simple dynamical quantity that 
encodes the structure of the energy components of the initial state, making it a valuable tool 
to detect and study critical phenomena in the energy spectrum, such as quantum phase trans-
itions (QPT) [17], excited-state quantum phase transitions (ESQPT) [18–21] and dynamical 
phase transitions [22, 23]; correlations in the energy spectrum that distinguish between regular 
and chaotic systems [24, 25]; decay of unstable systems [26]; metal–insulator transition [27]; 
and quantum speed limit [28], among other subjects.

The survival probability (also known as return probability) and the Loschmidt echo  
[29, 30] are particular cases of the fidelity between two pure states. While the survival proba-
bility measures the overlap between the initial state and its evolved counterpart, the Loschmidt 
echo evaluates the overlap between the initial state evolved under two different Hamiltonians. 
In the scenario of small perturbations, where the two Hamiltonians are only slightly different, 
analytical expressions for the Loschmidt echo have been obtained [31, 32]. We stress that our 
focus is on the survival probability and on very strong perturbations that take the system far 
from equilibrium.

As discussed in previous works, at short times the SP shows a universal quadratic decay 
with rate determined by the energy variance of the initial state. Its subsequent decay is con-
trolled by the shape of the energy distribution, Gaussian and exponential behaviors being 
common for strong perturbations [33–36]. At later times, the SP behavior is rather complex, 
depending strongly on the details of the energy components probed by the initial state [24, 
37, 38]. For finite-size systems the SP eventually saturates to its infinite-time average at the 
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equilibration time, showing fluctuations whose temporal dispersion is of the order of the satur-
ation value.

In the present paper, the SP is used to describe in detail the different temporal scales in 
the equilibration process of regular quantum systems with few-degrees of freedom and with 
a well defined classical limit. To gain insights from the classical dynamics, we use coherent 
states [39, 40] as initial states and consider a small effective Planck constant [41–43].

Our approach finds inspiration in the study of multilevel quantum beats in [44]. We identify 
the relevant properties of the initial state and the energy spectrum responsible for the dynamic 
behaviors observed at different times. This analysis enables us to provide a precise definition 
of the equilibration time. We stress that our approach can be extended to other similar models 
where the spectrum has a regular part. It was indeed recently employed in [45] for the analysis 
of the quenched dynamics of the integrable two-degrees of freedom Tavis–Cummings model 
and in [46] for a one-dimensional quartic double-well potential in the semi-classical limit.

In the LMG model, the analytical expression that we obtain for the SP(t) is a sum of 
products of cosine and Gaussian functions. It depends only on three parameters that can be 
estimated analytically and semi-classically. The decay rate of the oscillations of the SP(t) is 
proportional to the anharmonicity of the spectrum probed by the initial state. In the Dicke 
model, since the regular part of the energy spectrum is organized in invariant subspaces asso-
ciated with the quantum numbers of approximate integrals of motion [47, 48], instead of a 
single sum, the analytical expression for the SP(t) consists of different sums and interferences 
between them. The number of sums grows as the energy and parameters of the initial coher-
ent state approach chaotic classical regions. This causes the decay time of the oscillations to 
decrease significantly. For both models, the analytical results are compared with numerics, 
showing remarkable agreement.

The paper is organized as follows. Section 2 offers a brief presentation of the Hamiltonians 
and coherent states employed. In section 3, we derive an analytical expression for the sur-
vival probability evolving under the LMG model. In section 4, the analytical expression for 
the survival probability obtained with the LMG model is generalized to describe the regular 
regime of the Dicke model. Conclusions are given in section 5. In addition, several appendices 
provide details of the derivations.

2. Hamiltonians, initial states, and survival probability

The LMG and Dicke models were proposed with the common motivation of providing sche-
matic models capable of capturing essential phenomena of many-body quantum physics: the 
transition between the spherical and deformed phase of nuclei, in the case of the LMG model, 
and the interaction between radiation and matter for the Dicke model. Both describe the inter-
action of N two-level systems, mutually interacting in the case of the LMG model, while in the 
Dicke model they are coupled to a single bosonic mode of frequency ω.

The Hamiltonian that describes the LMG model is given by

ĤLMG = Ĵz +
γx

2J − 1
Ĵ2

x +
γy

2J − 1
Ĵ2

y , (1)

where � = 1. For the Dicke model,

ĤD = ωâ†â + ω0Ĵz + γ

√
2
J

Ĵx
(
â + â†) . (2)
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The pseudo-spin operators Ĵi satisfy the usual su(2) algebra, with invariant subspaces labelled 
by the pseudospin quantum number J. The bosonic annihilation (creation) operator is â (â†), 
γx,y  is the coupling strength between the two-level systems and γ is the coupling strength 
between the field and the two-level systems.

Both models present a second-order ground-state QPT at critical values of their coupling 
constants. For the LMG model [49], γcr

x = −1 for γy � −1 or γcr
y = −1 for γx � −1, and for 

the Dicke model [50, 51], γcr =
√
ωωo/2. The critical values separate a normal phase (which 

includes the zero coupling cases) from a deformed (LMG) or superradiant (Dicke) phase. The 
LMG and Dicke Hamiltonians have a discrete parity symmetry, which separates the Hilbert 
space in two invariant subspaces.

2.1. Initial states and classical Hamiltonians

Bloch and Glauber coherent states (z,α ∈ C) [39]

|z〉 = 1(
1 + |z|2

)J ezĴ+ |J,−J〉, and |α〉 = e−|α|2/2eαâ† |0〉,

are used as initial states for the LMG, |Ψ(0)〉 = |z0〉, and the Dicke, 
|Ψ(0)〉 = |z0〉 ⊗ |α0〉, models. Likewise they are used to define classical corresponding 
Hamiltonians [40, 52]: hLMG = 〈z|HLMG|z〉/J  and hD = 〈z| ⊗ 〈α|HD|α〉 ⊗ |z〉/J.

This choice of initial states is natural when one wants to make a clear connection between 
the results of the quantum dynamics with the properties of the classical phase space. Indeed, 
the canonical classical variables (φ, jz) and (q, p) are given in terms of the coherent state 
parameters

z =

√
1 + jz
1 − jz

e−iφ and α =

√
J
2
(q + ip).

The classical limit is obtained by considering J → ∞ [53], the effective Planck constant being 
�eff = 1/J. We choose initial states in regular regions of the corresponding classical phase 
space, in the deformed (LMG) or superradiant (Dicke) phases. We also use positive-parity 
projected [54] initial states, although this choice is not crucial.

In addition to regular dynamics, the other important criterion for our analysis is that the 
initial coherent states have marginal or null components of energy levels from critical energy 
regions, that is ground-state and ESQPT [55–57] energies. The latter critical phenomenon is 
common in few-degrees of freedom models [58, 59]. Studies of the effects of an ESQPT in the 
temporal evolution of the LMG and Dicke models include [19, 20, 60, 61] and [21], respec-
tively. We leave out from this contribution the analysis of these critical cases. We emphasize 
that the results presented in this work are general for coherent initial states away from critical 
points. In addition, they are valid not only to the LMG and Dicke models, but also to other 
models with a regular part of the spectrum, such as those in [45, 46].

2.2. Numerical method

The numerical results for the dynamics are obtained by exactly diagonalizing the Hamiltonians 
and decomposing the initial state in the positive parity energy eigenstates |Ek〉, so that the 
evolved state is
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|Ψ(t)〉 =
∑

k

cke−iEkt|Ek〉. (3)

Above, Ek are the eigenvalues of the Hamiltonian and ck = 〈Ek|Ψ(0)〉 are the numerically 
evaluated overlaps between the initial state and the positive parity eigenstates.

For the LMG model, where the size of the Hilbert space is finite, we can consider rela-
tively large pseudospin values and thus explore, without much computational effort, the conv-
ergence to the classical limit. We select J  =  2000, γx = −3, and γy = −5.

For the Dicke model, the unbounded number of bosons makes the Hilbert space infinite. In 
order to diagonalize its Hamiltonian, a truncation in the number of bosonic excitations is intro-
duced. The cut off has to be large enough to guarantee convergence of the low-energy results 
that we are interested in. We use the basis described in [62–65] to diagonalize the Hamiltonian. 
This basis is particularly efficient to obtain, in the superradiant phase, rapid convergence of a 
large portion of the low-energy spectrum as a function of the cut off. However, the values of 
J computationally affordable are much smaller than in the LMG model. We use J  =  120 and 
consider a resonant case ω = ω0 = 1 with the coupling strength γ = 2γc =

√
ωω0 = 1. The 

technical details to calculate the energy components of the initial coherent states can be found 
in appendix C of [66].

2.3. Survival probability

The survival probablity SP(t) = |〈Ψ(0)|Ψ(t)〉|2 can be written as

SP(t) =
∑
p=1

SPp(t) + IPR
 (4)

where

SPp(t) ≡
∑

k

2|ck+p|2|ck|2 cos(ω( p)
k t), (5)

ω
( p)
k ≡ Ek+p − Ek, (6)

and the index p designates the distance between the eigenenergies. The sum for p  =  1 consid-
ers only nearest neighboring eigenvalues, the sum for p  =  2 only the second neighbors, and 
so on.

The inverse participation ratio, IPR =
∑

k |ck|4, is the infinite-time average of the survival 
probability. It measures the level of delocalization of the initial state in the energy eigenbasis. 
The dispersion of the temporal fluctuations of SP(t) around IPR is also of the order of the  
IPR [67].

3. Survival probability in one-degree-of-freedom bounded systems

The main result of this section is the analytical expression for the survival probability pre-
sented in (25) of section 3.3. Also important is the excellent agreement with the numerics 
shown in section 3.4. The analysis presented for the LMG model can be extended to other 
Hamiltonians with one-degree of freedom, provided they have a discrete spectrum (bounded 
systems) and the mean energy of the initial state is far enough from critical energies (ground-
state and ESQPTs).
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As a representative example, we choose the initial state whose coordinates in the  
classical phase space are jzo = − cos(π/3) and φo = π/2. It has mean energy  
Ē/J =

∑
k |ck|2Ek/J = −2.376 and energy distribution of width σ/J = [

∑
k |ck|2E2

k−  
(Ē)2]1/2/J = 0.020 54. The eigenstates of ĤLMG that significantly contribute to the dynamics are 
in the low-energy region, but far from the ground-state energy, EGS = J(γx + γ−1

x )/2 = −2.6J  
and the critical energy of the ESQPT, EESQPT = J(γy + γ−1

y )/2 = −1.6667J [56].

3.1. Components of the initial state and IPR

In figure 1(a), we show the absolute squared components |ck|2  as a function of the eigenvalues 
of the LMG model. The components are very well approximated by a Gaussian function

|ck|2 ≈ gk ≡ Ae−
(Ek−Ē)2

2σ2 , (7)

as depicted in the figure with a solid line. From the normalization condition, the amplitude A 
can be shown to be

A =
1√
2π

∆E1

σ
, (8)

where

∆E1 = 〈Ek+1 − Ek〉 (9)

is the mean of the energy differences between consecutive energies of the states that contribute 
to the evolution of the coherent state. Concretely, we consider energy states in the interval 
[Ē − 3.5σ, Ē + 3.5σ], where lies 99.95% of the norm of the initial state.

The infinite-time average of the survival probability is therefore given by

IPR =
∑

k

|ck|4 ≈ A2
∑

k

e−
(Ek−Ē)2

σ2 ≈ A2

∆E1

∫
e−

(E−Ē)2

σ2 dE =
1

2
√
π

∆E1

σ
.

 (10)
As discussed in [68] (see also appendix A), the standard deviation of the energy distribution 
of coherent states is σ ∝

√
J . With this and from the fact that ∆E1 tends to a finite value in the 

limit J → ∞ (see (19) below), expression (10) explains the results of [66, 69], where it was 
shown that the IPR of coherent states in regular regions scales as 1/

√
J  for large J.

3.2. Frequencies and their distribution

In search of an analytical expression for SP(t), we now concentrate on the two key elements 

of SPp(t) in (5), namely the frequencies ω( p)
k  and their distribution given by the product 

|ck+p|2|ck|2, starting with the first ones.

3.2.1. Frequencies ω
( p)
k . In figure  1(b), the LMG eigenergies in the interval 

[Ē − 3.5σ, Ē + 3.5σ] ∼ [−2.448J,−2.304J] are plotted with blue circles against their order-
ing numbers in this region. We show with a solid line that the data can be very well fitted with 
the semi-classical expansion (see appendix B for a detailed derivation)

Ek = eo + e1k + e2k2, (11)

where k is an integer number. This leads to
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ω
( p)
k = (Ek+p − Ek) = p(e1 + p e2) + 2 e2 p k. (12)

The anharmonicity e2 measures the departure from a spectrum with equally spaced energies. 
It is very small, e2 = −0.000 94, when compared with e0  =  −4898.46 and e1  =  2.91. The 
inset of figure 1(b) shows the energy differences of consecutive eigenenergies (circles) and 
the result for Ek+1 − Ek = (e1 + e2) + 2e2k (line), whose slope is given by e2. Despite small, 
e2 has an important role in the decay of the survival probability, as will become clear later. 
Equation (11) is a valid assumption for any coherent state in the semi-classical limit, provided 
the energy interval defined by its mean energy and width does not include critical energies.

3.2.2. Product |ck+p|2|ck |2. Following (7), |ck+p|2|ck|2 ≈ gk+p gk. Appendix C shows that 

this product can be very well approximated by a Gaussian distribution for frequencies ω( p)
k

Figure 1. (a) Absolute squared components (circles) of the chosen coherent state in the 
energy eigenbasis of the LMG model as a function of scaled energy and its Gaussian 
approximation using ∆E1 ≈ ω1 (solid line). (b) Eigenvalues (circles) in the interval 
[Ē − 3.5σ, Ē + 3.5] plotted against their ordering numbers in this region. The quadratic fit 
(11) is shown with a solid line. The inset displays the energy differences of consecutive 
eigenenergies and their fit. (c) Mean value ∆E1 (red line increasing for small J) of the 
differences of consecutive eigenergies in the same interval as the main panel in (b), 
ω
(1)
max = Ekmax+1 − Ekmax (dark purple line fluctuating in its decay), and ω1 evaluated from 

(14) (light orange line) as a function of J. The asymptotic value of the three lines, which 
is the frequency of the classical model ωcl = 2.818, is indicated on the right. The inset 
shows the anharmonicity e2 as a function of J calculated numerically from (20) (circles) 
and from the quadratic fit (triangles). The solid line is the semi-classical approximation in 
(21). Parameters: jzo = − cos(π/3), φo = π/2, Ē/J = −2.376; in (a) and (b): J  =  2000.
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gk+p gk ≈ Ap exp


−

(
ω
( p)
k − ωp

)2

2σ2
p


 , (13)

where the centroid (ωp), amplitude (Ap), and width (σp) are given in terms of the values for 
p  =  1

ωp ≈ pω1, ω1 ≈
√

e2
1 + 4e2(Ē − e0),

 (14)

Ap

A2 ≈
(

A1

A2

) p2

,
A1

A2 = exp

(
− ω2

1

4σ2

)
,

 (15)

σp ≈ pσ1, σ1 =
√

2 |e2|
σ

ω1
.

 (16)
Therefore, the dominant frequency of the pth component of the survival probability is approx-
imately a harmonic frequency, ω1 being the fundamental one. At the value ω1 the product of 
Gaussians gk+1gk takes its maximal value. It is approximately given by the pair of consecutive 
eigenenergies located around Ē

ω(1)
max = Ekmax+1 − Ekmax, (17)

where the pair Ekmax and Ekmax+1 is defined through the condition Ekmax � Ē � Ekmax+1.
To determine A1, in addition to ω1, we also need ∆E1 through A from (8). Since ∆E1 is the 

mean value of the differences of consecutive energies in an interval around Ē  and these differ-
ences vary linearly in this interval (see the inset of figure 1(b)), we can approximate ∆E1 by 
the energy difference in the center of the interval,

∆E1 ≈ ω(1)
max ≈ ω1. (18)

This assumption is not exact, but the three quantities converge, in the limit J → ∞, to the 
classical frequency ωcl

lim
J→∞

∆E1 = lim
J→∞

ω(1)
max = lim

J→∞
ω1 = ωcl, (19)

as shown in figure 1(c) and discussed in appendix B.
It remains to find the width σ1 in (16), and for this we need e2. The anharmonicity is esti-

mated using assumption (11),

e2 =
Ekmax+1 + Ekmax−1

2
− Ekmax. (20)

Small differences exist between e2 estimated with the expression above and the anharmonic-
ity obtained by fitting the spectrum with (11), but both values go to zero as J increases and 
converge to the semi-classical (see appendix B) expression

lim
J→∞

e2 =
ωcl

2J
dωcl

dε
≡ fe/J (with ε = E/J), (21)

as seen in the inset of figure 1(c).
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3.3. Analytical expression

Putting the above results together in (5), we have

SPp(t) ≈
ω2

1

πσ2 exp

(
−p2ω2

1

4σ2

)∑
k

exp


−

(
ω
( p)
k − pω1

)2

2p2σ2
1


 cos(ω

( p)
k t). (22)

Approximating the sum above by an integral (see appendix D for details), we arrive at

SPp(t) ≈
ω1

σ
√
π
exp

[
−p2

(
ω2

1

4σ2 +
t2

t2
D

)]
cos( pω1t), (23)

where we define the decay time

tD ≡ ω1

σ|e2|
. (24)

Expression (23) is valid up to the time when the discrete nature of the spectrum, neglected 
with the use of the integral, finally manifests itself and induces fluctuations of the survival 
probability around its asymptotic value.

With the expressions (23) and (10), the equation for the survival probability in (4) becomes,

SP(t) ≈ ω1

2σ
√
π


1 + 2

∑
p=1

exp

[
−p2

(
ω2

1

4σ2 +
t2

t2
D

)]
cos( pω1t)


 , (25)

which is one of the main results of this paper. Equation (25) can also be expressed as a conv-

ergent series in terms of the Jacobi theta function [70], Θ3(x, y) = 1 + 2
∑

p=1 y p2
cos(2px), 

using x = ω1t/2 and y = exp
(
− ω2

1
4σ2 − t2

t2
D

)
,

SP(t) ≈ ω1

2σ
√
π
Θ3(x, y). (26)

As one sees from (23), the amplitude of each component SPp(t) scales exponentially 
with  −p2. Every SPp(t) is an oscillating function with frequency pω1 modulated in time by a 
Gaussian function

SPDecay
p (t) =

ω1

σ
√
π
exp

[
−p2

(
ω2

1

4σ2 +
t2

t2
D

)]
 (27)

with decay time t( p)
D = tD/p. The decay of the oscillations of the survival probability in (25) is 

controlled by the sum of these Gaussians, SPDecay(t) = IPR +
∑

p�1 SPDecay
p (t).

In the inset of figure 2(a), we show the contribution from each SPDecay
p (t). The components 

with large p decay faster than those with small p. At long times, the sum of Gaussians is domi-
nated by the p  =  1 component. Therefore, the decay time of SP1(t) is also the decay time of the 
entire SP(t) and is given by tD from (24). The larger the anharmonicity is, the shorter the decay 
time becomes, that is faster equilibration. The semi-classical approximation for tD is obtained 
from (19) and (21) as tD = 2J/(σ|dωcl/dε|).

We emphasize that in this one-degree of freedom case, only three parameters are needed to 
fully describe the survival probability at any time up to the equilibration time. As seen from 
(25), they are the energy width σ which can be calculated analytically (see appendix A), the 
mean energy separation between eigenenergies ω1 (approximated by ωcl in the semi-classical 
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limit), and the anharmonicity in the energy spectrum e2 (with semi-classical limit in (21)). 
These parameters depend on the initial state, and we have tested the ability of our analytical 
expression (25) to describe the numerical SP for many different states, founding a remarkable 
agreement (as in the case shown below), provided the initial state is far from critical energies.

In appendix E, we show the dependence of σ, ω1, e2 and the decay time (24) on the coordi-
nates of the initial coherent state. Likewise, the small regions in the coherent parameter space 
close to the critical energies where our approach fails, are identified for the considered case 
with J  =  2000.

3.4. Comparison with numerics

In the main panels of figure 2, we compare the analytical expression (25) and the numerical  
results for the LMG model using the same parameters and initial state as in  
figure 1. The relevant param eters obtained with (7) (or (A.1)), (17), and (20) are 
(σ,ω1, e2) = (41.08, 2.82,−9.38 × 10−4), which gives the decay time tD = 73.09.

The analytical approximation reproduces remarkably well the numerical results up to tD. 
The two lines in the main panel of figure 2(a) can hardly be distinguished. The numerical 
oscillations as well as their decay agree extremely well with the analytical expression (25).

Figure 2. (a) Survival probability for the same coherent state as in figure 1 obtained 
numerically (dark blue line) and using the analytical result (light orange line) in (25). 
The curves are almost indistinguishable up to tD (vertical dashed line). The dashed 
line depicts the analytical decay of the oscillations. The inset shows the decay of the 
different p-components (p  >  0, bottom curves), their sum (black dots), and the power 
law fitting (2.506/t)− IPR (solid red line). (b) Is similar to (a), but for longer times. 
The horizontal black line is the IPR.
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At times of the order of tD, the decay of the oscillations of the survival probability is power 
law, in accord with [20]. This is confirmed with the fit 2.506/t illustrated with a solid red line 
in the inset of figure 2(a). This behavior, including the pre-factor, can be justified analytically 
in the semi-classical limit (see the next subsection and appendix F ).

Figure 2(b) makes more evident what happens at long times, when the discrete nature of 
the spectrum becomes important. Beyond tD, the numerical curve fluctuates around the infinite 
time average, while the analytical expression simply stabilizes at IPR.

3.5. Classical limit

The analytical expression (25) for the survival probability has a well defined classical limit. 
In this limit, e2 ≈ fe/J (see (21)) goes to zero faster than the growth of σ ≈ fσ

√
J  (see (A.2)).  

Consequently, the decay time goes to infinity,

lim
J→∞

tD = lim
J→∞

ω1

σ|e2|
∝ lim

J→∞

√
J = ∞, (28)

and the expression (25) for the SP becomes a sum of Kronecker deltas (see appendix F)

lim
J→∞

SP(t) =
∑
n∈Z

δt,nτ fn, (29)

with τ = 2π/ωcl and fn = (1 + (4πf 2
σfe/ω3

cl)
2n2)−1/2. This result indicates periodic instan-

taneous revivals, which are indeed expected for the survival probability in a one-degree of 
freedom, regular classical system.

With the asymptotic expressions for σ, ω1 and e2, it is possible to justify the power law 
observed in figure 2 for the decay of the survival probability at times of the order tD. For this, 
we investigate SPDecay(t), that is, (25) without the cosine function. Appendix F shows that for 

large J, SPDecay ≈ c/t , where c is an asymptotically finite value given by c =
ω2

cl
2σ2|e2| . For the 

parameters used in figure 2, we find c  =  2.512, which is in excellent agreement with the fit in 
the inset of figure 2(a), which gives c  =  2.506.

4. Survival probability in two-degree-of-freedom models

We now use the Dicke model in the superradiant phase to characterize the dynamics of 
quant um models with two-degrees of freedom. The Dicke model has both regular and chaotic 
regimes. The classical regular dynamics occurs at low energies [71, 72] and is accounted for 
by quasi-integrals of motion [47, 48].

The description of the evolution of the survival probability for the Dicke model is richer 
than what we can find in models with one-degree of freedom. This happens because, in gen-
eral, the projection of coherent states into the energy eigenbasis no longer leads to a single 
sequence of components |ck|2  following a single Gaussian function, as for the LMG model 
in figure 1(a). Instead, the components of the initial state now form different sub-sequences 
(figure 3). In the regular regime, these sub-sequences are overall still represented by Gaussian 
functions, but of different means and widths. These various sub-sequences interfere and lead 
to a more complex behavior of the survival probability. The energy eigenbasis decomposition 
of the coherent states is closely related with the properties of the classical phase space of the 
Dicke model, as it will be shown below.

After a discussion in section 4.1 about the different energy distributions of the coherent 
states displayed in figure  3, we select four representative cases and analyze their survival 
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probability in the following subsections. We start in section 4.2 with the state in figure 3(a). 
This initial state activates only one of the degree of freedom, and, as a consequence, the 
analytical expression of the previous section  describes very well the numerical results. In 
section 4.3, we consider the states from figures 3(b) and (f). They are representative cases of 
initial states activating simultaneously the two-degrees of freedom, which yields to interfer-
ence terms that we are able to describe analytically with formula (34). For section 4.4, we 
choose the state from figure 3(d) to illustrate the effects of the non-linear instabilities and 
unveil the signature of classical chaos in the quantum dynamics. The selected initial states are 
representative of the whole cases that can be found in the regular regime of the Dicke model. 
In [73] other coherent states at the same and also larger energies than the one used here, are 
studied, reinforcing the validity of the results presented and discussed below.

4.1. Initial coherent states

In figure 3, we fix φ = 0 and p  =  0, vary jz, and determine q from the condition that guarantees 
that all chosen coherent states have the same mean energy E/J  =  −1.8, which is relatively 
close to the ground-state (EGS/J = −2.125). Regular dynamics dominates this energy region, 
as seen in figure 4(a). This figure shows Poincaré sections for the classical limit of the Dicke 
model at E/J  =  −1.8. The closed loops, covering the whole Poincaré surface, reflect the exis-
tence of invariant tori. Their nature can be revealed in light of the adiabatic approximation 
[47, 48]: for the parameters (ω = ω0 = γ = 1) and energy chosen here, the dynamics of the 
bosonic variables ( p, q) is slower than that of the pseudospin variables. The pseudospin pre-
cesses rapidly around a slowly changing q-dependent axis. The nearly constant angle β that 
forms the pseudospin with respect to the precession axis defines an effective one-dimensional 

|ck|2

Ek/J Ek/J Ek/J

Figure 3. Eigenenergy components of a sample of coherent states with the same 
mean energy (E/J  =  −1.8) as a function of scaled eigenenergies, for the Dicke model 
with ω = ω0 = γ = 1 and J  =  120. The Bloch coherent parameters are φo = 0 and 
jz  =  −0.505 (a), −0.452 (b), −0.116 (c), 0.019 (d), 0.113 (e), 0.140 (f), and the Glauber 
parameters are po  =  0 and qo given by the condition 〈αozo|HD|αozo〉/J = −1.8. Solid 
lines in panels (a), (b), (e) and (f) represent Gaussian fits (parameters of panels (b) and (f) 
in table 1) for the sub-sequences with the largest components |ck|2. Vertical dashed lines in 
panels (a), (b) and (f) indicate the sample of energy components used in figures 5(a) and 6.
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adiabatic potential for the bosonic variables. If the angle β is small, the amplitude of the 
bosonic variables is large and vice versa.

The Poincaré sections in figure 4(a) can then be understood as follows:

 •  The trajectories rotating around ( jz,φ) ≈ (−0.5, 0) (plotted in purple) correspond to 
small precessing angles β and wide amplitudes of the bosonic excitations.

 •  The trajectories rotating around ( jz,φ) ≈ (0.15, 0) (plotted in red) have large β and con-
sequently small displacements of the bosonic variables.

 •  The trajectories in the center (plotted in orange), rotating around the point 
( jz,φ) ≈ (−0.15, 0), indicate the breaking of the adiabatic approximation. They emerge 
from nonlinear resonances between the adiabatic modes. These trajectories are the pre-
cursors of ample chaotic regions that appear for energies larger than the one considered 
here. In fact, a detailed view of the separatrix between this last set of trajectories and the  
two former ones reveals the existence of a narrow region with classical chaotic  
trajectories [69].

The six coherent states of figure 3 sample the three classical regions listed above. In fig-
ure 4(b), we show where these states fall in the Poincaré surface. Each point in figure 4(b) 
indicates the phase-space coordinates associated with the coherent state parameters (zo,αo), 
and the curve surrounding each point represents the spreading of the corresponding coherent 
state wave function in phase space (level curves |〈z,α|zo,αo〉|2 = e−1 for J  =  120).

According to the list above, the states in figures  3(a) and (b) are associated with large 
bosonic amplitudes and those in figures 3(e) and (f) with large pseudospin precession angles. 

jz

φ φ

(a) (b)

Figure 4. (a) Poincaré sections (p  =  0) projected in the plane jz − φ for the classical 
Dicke model with the same parameters and energy as figure 3. The dark black trajectory 
indicates the separatrix between the region of nonlinear resonances (central light orange 
trajectories) and the regions of the adiabatic modes (outer light red trajectories for 
the pseudospin and dark purple for the bosonic mode). (b) Location of the coherent 
states from figure 3 in the classical phase space. Dots (from bottom to top) indicate the 
coherent states from figures 3(a) to (f). The closed curves that encircle the dots represent 
the spreading of the corresponding wave functions (level curves |〈z,α|zo,αo〉|2 = e−1) 
for J  =  120.
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They have one sequence (a) or sub-sequences ((b), (e) and (f)) of components described by 
Gaussian distributions. The differences of consecutive energies in the sub-sequences of fig-
ures 3(e) and (f) are larger than in figures 3(a) and (b). This can be qualitatively understood 
from the classical model, because the pseudospin has faster dynamics than the bosonic vari-
ables, and thus larger oscillation frequencies.

The state in figure 3(a) is representative of nearly pure bosonic excitations. Its components 
|ck|2  are well approximated by a single Gaussian function. This situation is equivalent to what 
we have for the LMG model, so the analytical expression (25) is still applicable here. This 
state corresponds classically to pseudospin precessing angle β = 0 and maximal amplitude of 
the bosonic variables.

In contrast, the state in figure 3(f) is representative of nearly pure pseudospin excitations. 
Its components |ck|2  are well described by a dominant Gaussian distribution with a second 
smaller Gaussian sub-sequence. In the classical picture, this state corresponds to nearly maxi-
mal precessing pseudospin angle and nearly zero amplitude of the bosonic variables.

The states in figures 3(b) and (e) have more than a single sequence of components; three 
Gaussians are identifiable in (b), while four are distinguished in (e). The presence of several 
sub-sequences of components in these states corresponds classically to the simultaneous exci-
tation of different adiabatic modes, with the dominance of one of them, the bosonic one in 
figure 3(b) and the pseudospin mode in figure 3(e).

The state in figure 3(c), located close to the center of the region of nonlinear resonances, 
exhibits a dominant Gaussian sub-sequence and many smaller ones, while the coherent 
state in figure 3(d) has a complicated structure with so many eigenstates participating that 
it is hard to identify the sub-sequences (if any). In the classical phase space of figure 4(b), 
this state is located in the unstable separatrix between the region of non-linear resonances 
and the fast mode of the adiabatic approximation, where, as it is known [74], classical 
chaos emerges.

4.2. One-sequence coherent state

In figure 3(a), we show a Gaussian fit to the energy components of the coherent state. The 
mean and the width σ obtained from the fitting match those calculated analytically through the 
expectation values 〈HD〉 and 〈H2

D〉 (see appendix A). This agreement confirms that this state is 
indeed very well described by a single sequence of energy components.

The energy levels {Ek} that are relevant to the evolution of the coherent state, i.e. those 
with non-negligible |ck|2 , are very well described by the semi-classical approximation (11), 
as can be seen in figure 5(a). A tiny discrepancy is visible by plotting the energy difference 
Ek+1 − Ek in the inset of figure 5(a), which could be related with the small J accessible to our 
numerical analysis of the Dicke model (J  =  120). However, as we show below, (11) can still 
be successfully employed for the description of the survival probability.

The analytical expression (25) used for the LMG model can be used here also. Using (17) and 
(20) in the numerically evaluated spectrum, we obtain (ω1, e2) = (0.9456,−0.399 × 10−3), 
which together with the calculated width σ/J = 0.0436 give the decay time tD = 451.5.

The analytical approximation (25) and the numerical results for the survival probability 
are compared in figures 5(b) and (c) both in linear (main panels) and log–log (inset) scales. 
The analytical approximation gives a very accurate description of SP(t) from t  =  0 until tD. 
Beyond the equilibration time, the discreteness of the energy spectrum becomes relevant. 
It leads to small fluctuations that are not captured by the analytical expression, as seen in 
figure 5(b).
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4.3. Interference terms

When the components of the initial state can be fitted with more than a single Gaussian, as 

in figures 3(b) and (f), we use the index i to denote the components |c(i)
k |2, energies {E(i)

k }, 
and the Gaussian curve g(i)

k = Aie−(E(i)
k −Ēi)/(2σ2

i ) associated with each sub-sequence. Three 
Gaussians (i = 1, 2, 3) are used for the state in figure 3(b) and two (i = 1, 2) for the state in 
figure 3(f). In these cases, (4) for the survival probability can be written as

SP(t) =

∣∣∣∣∣
∑

ik

|c(i)
k |2e−iE(i)

k t

∣∣∣∣∣
2

=
∑

i

SP(i)(t) +
∑
i<j

SP(ij)
I (t). (30)

The novelty with respect to (25) is the interference terms SP(ij)
I . The steps involved in the 

derivation of the terms SP(i) are similar to those taken in section 3 and an equation equivalent 
to (26) is obtained

SP(i)(t) =
A2

i σi
√
π

ω
(i)
1

Θ3(xi, yi), (31)

Figure 5. (a) Energies (dots) of the 30 largest components of the coherent state of 
figure 3(a) (the ones located between the two vertical dashed lines in that figure). The 
solid line is a fit using (11). The inset shows the difference between consecutive energies 
and the corresponding fit. (c) Survival probability for the coherent state of figure 3(a): 
numerical curve (dark blue) and analytical expression (light orange). The inset shows 
the same figure  in log–log scale. (b) Closer view around the decay time tD. In both 
panels, the dashed black line depicts the analytical decay of the oscillations of SP. The 
vertical dashed line indicates the decay time tD = 451.5 and the horizontal solid black 
line is the IPR  =  0.0496.
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with xi = ω
(i)
1 t/2 and yi = e−

(
ω

(i)
1 /2σi

)
2

e−
(

t/t(i)
D

)
2

. Analogously to section 3, the decay time 
of each isolated sub-sequence is t(i)

D = ω
(i)
1 /(|e(i)

2 |σi); the frequency ω(i)
1 = E(i)

kmax+1 − E(i)
kmax 

is the difference of the closest energies of the ith sub-sequence to the mean energy Ēi, with 

E(i)
kmax � Ēi � E(i)

kmax+1; and the anharmonicity is e(i)
2 = (E(i)

kmax+1 + E(i)
kmax−1)/2 − E(i)

kmax .

To obtain an analytical expression for SP(ij)
I , we use the same strategy used in section 3, 

namely we separate the terms according to the index distance p between the eigenvalues

SP(ij)
I (t) = 2

∑
p∈Z

∑
k

|c(i)
k |2|c( j)

k+p|
2 cos

[
(E( j)

k+p − E(i)
k )t

]
. (32)

In addition, we assume that the energy sub-sequences are of the form (11) and related by a 
constant shift δEij

δEij = E(i)
k − E( j)

k . (33)

This is an important step in the derivation of an expression for SP(ij)
I (t). In figures 6(a) and 

(b), we show the energies {E(i)
k } of each Gaussian sub-sequence of the coherent states from 

figures 3(b) and (f), respectively. The insets of figures 6(a) and (b) confirm the validity of (33). 
The agreement is not perfect, but it should improve for larger J.

From the assumption (33) and using |c(i)
k |2 ≈ g(i)

k , the following expression is obtained for 
the interference terms (see appendix G for a detailed derivation),

SP(ij)
I (t) =

2AiAj
√

2πσiσj

ωij

√
σ2

i + σ2
j

∑
p∈Z

e
−

( pωij+δEij+Ēi−Ēj)
2

2(σ2
i +σ2

j ) e−
(σijpt)2

2 cos[(δEij + pωij)t].

 

(34)

Above,

σij =
2|e(i)

2 |σiσj

ωij

√
σ2

i + σ2
j

,

and ωij = E(i)
kI+1 − E(i)

kI
 is the energy difference between the eigenvalues of the ith sub-sequence 

that are closest to the value E(I)
ij  that maximizes the product of Gaussians g(i)

k g( j)
k . This value 

is given by

E(I)
ij =

Ēiσ
2
j + Ējσ

2
i

σ2
i + σ2

j

and satisfies E(i)
kI

� E(I)
ij � E(i)

kI+1.
All these contributions are now gathered into (30), which can be compared with the numer-

ical results. At variance with the case of a single sequence, when several sub-sequences par-
ticipate in the energy eigenbasis decomposition of the coherent states, one needs to deal with 
several parameters to describe the evolution of the survival probability. Although they can be 
obtained analytically employing a semi-classical analysis, here we estimate them numerically 
from the exact energy spectrum.

In figure 7, we study the evolution of the survival probability for the coherent state from 
figure 3(b). The parameters employed in (30) are shown in table 1. The analytical expression 

provides an accurate description of the numerical result from t  =  0 until the decay time t(1)
D  
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of the dominant sub-sequence. The expression captures the details of the interference terms. 
They produce slow oscillations that modulate the fast revivals associated with the isolated sub-
sequences. These slow oscillations are approximately described by the analytical expression 
by making xi  =  0 and pωij = 0 in the arguments of the Jacobi theta and cosine functions in 
(31) and (34), respectively. The result is shown in both panels of figure 7 with dashed lines. 
The inset of figure 7(a), which zooms in a small time interval of the main panel, reinforces the 
accuracy of the analytical expression.

Analogously to figure 2(b) in section 3, figure 7(b) makes explicit the effects of the dis-

crete nature of the quantum spectrum, which becomes important for t > t(1)
D . These effects are 

neglected by the analytical approximation, whose oscillations beyond the decay time differ 
from those of the numerics.

In figure 8(a), expression (30) is compared with the numerical results for the survival prob-
ability of the coherent state from figure 3(f), showing excellent agreement from t  =  0 up to 

the decay time t(1)
D . This state has two main sub-sequences, whose adjusted parameters are 

given in table 1. Notice that the frequency of the revivals is larger than in figures 5 and 7. As 
discussed in section 4.1, this can be qualitatively understood because the coherent state from 
figure 3(f) is located in a region of the phase space corresponding to wide and fast pseudospin 
excitations, in contrast with the states of figures 5 and 7, which are dominated by the slow 
bosonic mode.

On the other hand, the anharmonicities e(i)
2  of the state of figure 8(a) are also larger than for 

the states of figures 5 and 7. This yields a decay time for the survival probability in figure 8(a) 

that is one order of magnitude smaller, so fewer revivals are seen before t(1)
D .

Also in contrast with figure 7 is the almost lack of modulation of the fast oscillations in 
figure 8(a). This happens, because the effect of the interference term is less pronounced, as 

Figure 6. (a) Energies of the largest components of the three sub-sequences contributing 
to the coherent state in figure 3(b). The sampled energies are the ones located between 
the two vertical dashed lines in that figure. Each sub-sequence has a different color, 
which corresponds with the colors used in figure  3(b). The inset shows the energy 
differences between two distinct sub-sequences (dots) and the respective mean values 
(horizontal lines). (b) Similar to panel (a), but for the largest components of the two 
principal sub-sequences of the coherent state in figure 3(f).
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Figure 7. (a) Survival probability for the coherent state in figure 3(b): numerical curve 
(dark blue line), analytical approximation from (30) (light orange), and analytical 
modulation of the revivals (black dashed lines). The inset shows a small time interval of 
the main panel to emphasize the agreement between the expression and the numerics. 

(b) Closer view around the decay time t(1)
D  of the main sub-sequence of participating 

energy levels. This decay time is indicated with vertical lines in both main panels. The 
horizontal black line depicts IPR  =  0.0365.

Table 1. Parameters determined from the numerical spectrum of the coherent states 
of figures  3(b) and (f), and used in the analytical expression (30) for the survival 
probability plotted in figures 7 and 8(a).

i Ai Ēi/J σi/J ω
(i)
1 /J e(i)

2 /J t(i)
D i, j ωij/J δEij/J

Coherent state of figure 3(b)

1 0.0612 −1.809 0.0421 0.007 88 −3.3 × 10−6 476.80 1,2 0.007 86 0.001 52

2 0.0105 −1.771 0.0394 0.007 86 −3.7 × 10−6 447.08 1,3 0.007 85 0.002 75

3 0.0025 −1.751 0.0382 0.007 85 −4.1 × 10−6 420.97 2,3 0.007 85 0.001 23

Coherent state of figure 3(f)

1 0.126 −1.820 0.0841 0.0308 −0.000 135 22.57 1,2 0.0303 0.008 02
2 0.018 −1.699 0.0667 0.0297 −0.000 134 27.73
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can be confirmed in the inset of figure 8(a), which shows separate curves for SP(1)(t), SP(2)(t), 

and SP(12)
I (t).

4.4. Effects of the nonlinear resonances

In figure 8(b), we show the numerical result for the survival probability of the coherent state 
of figure 3(d), which is located at the separatrix of the nonlinear resonances region of the clas-
sical phase space, where chaos emerges. The eigenstate decomposition of this initial state is 
complex, with no easily identifiable structures. This is reflected in the rapid decay of SP(t), the 
weakness of its partial revivals (inset of the same figure), and the fact that the IPR is one order 
of magnitude smaller than in the previously discussed cases, where analytical approximations 
were applicable.

The fast decay of the survival probability signals the presence of a narrow chaotic region, 
which becomes larger for higher energies. The complicated eigenstate decomposition of this 
initial coherent state is a quantum manifestation of classical nonlinear resonances related to 
the behavior of the Husimi function of the eigenstates of the standard map reported in [75].

5. Conclusions

We have studied, in the semi-classical limit, the quantum dynamics of bounded systems with 
one- and two-degrees of freedom represented by the LMG and Dicke Hamiltonians, respec-
tively. For this, we employed the survival probability and used coherent quantum states as 
initial states. Our focus was on parameters and energies for which both models have classical 
regular trajectories.

Contrary to a great number of studies of the survival probability that are numerical and 
concentrate on some intervals of time, we obtained analytical results that cover the entire 

Figure 8. (a) Survival probability for the coherent state in figure 3(f): numerical curve 

(dark blue line) and analytical approximation (light orange). The decay time t(1)
D  of the 

dominant sub-sequence is indicated with a dashed vertical line. The horizontal black 
line depicts IPR  =  0.0777. The inset shows SP(1)(t) (light orange line), SP(2)(t) (red 
dashed line), and SP(12)

I (t) (dark purple line). (b) Numerical result for the survival 
probability of the coherent state in figure 3(d), which is located at the separatix between 
the region of nonlinear resonances and the region of adiabatic modes. The inset shows 
the evolution in a shorter time interval. The IPR = 0.008 55 is shown by a horizontal 
black line, but its is so close to the horizontal axis that it is difficult to distinguish it.
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evolution, from t  =  0 to equilibration. This allowed us to understand the onset of partial reviv-
als, the rate of their decay, and the equilibration time. The characterization of the time scales 
involved in the relaxation process of isolated quantum systems is a major open question. The 
fact that we were able to determine the equilibration time analytically is an important contrib-
ution to the field.

The analysis presented here is valid in general for bounded models with few degrees of 
freedom and can be extended to study the dynamical evolution of other observables. For 
instance, models such as the generalized Dicke [76] and the non-linear Rabi and Dicke models 
[77, 78] are well suited for being studied with our approach.

The initial coherent states are not only experimentally accessible, but they allow for a 
connection with the classical phase space. Therefore, they are a natural starting point for 
theoretical and experimental studies of the dynamical consequences of chaos on the survival 
probabilities and other physical observables.

The evolution of the survival probability depends on the energy distribution of the initial 
state. For one-degree of freedom systems and for two-degrees of freedom systems when only 
one of the two degrees of freedom is excited, the spectrum of the energy states contributing 
to the initial state is quasi-harmonic with Gaussian weights. In this case, an expression for 
the survival probability in terms of the Jacobi theta function was derived and shown to be in 
excellent agreement with the numerical results. The expression describes the periodic partial 
revivals of the initial state and the slow equilibration. We also found that the equilibration 
time, given by the inverse of the anharmonicity parameter, diverges in the classical limit.

In more complex situations where the two-degrees of freedom are excited, the dynamics is 
determined by several interference terms that result in the modulation of the revivals. For the 
regular regime, we were still able to derive an analytical expression. As the system approaches 
chaotic regions, the distribution of the components of the initial state loses a simple recogniz-
able structure, resulting in very short equilibration times.

An interesting future direction is to connect the results of this work with those of [41], 
where the temporal evolution of initial coherent states under the Dicke model was also stud-
ied. We conjecture that the analytical formula given here is related to the classical drift term 
in [41], while the fluctuations observed at times longer than the equilibration time are related 
to a diffusive quantum term.
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Appendix A. Standard deviations of the Hamiltonians in coherent states

The standard deviations of the LMG and Dicke Hamiltonians in coherent states were calcu-
lated in [68]. Here, we simply correct some misprints found in that reference.

According to equation (69) of [68], and after redefining parameters to be consistent with 
our parametrization for the LMG model (we have also corrected two misprints in the third and 
fourth line of equation (70) in [68]), the standard deviation of the Hamiltonian in a coherent 
state is
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σ2
LMG = 〈z|H2

LMG|z〉 − 〈z|HLMG|z〉2 = Ω1 +Ω2 (A.1)
where (defining cos θ = jz)

Ω1 =
J
2
[
−2γx cos θ sin

2 θ cos2 φ− 2γy cos θ sin
2 θ sin2 φ

+γ2
x (sin

4 θ cos2 φ sin2 φ+ cos2 θ sin2 θ cos2 φ) + γ2
y (sin

4 θ cos2 φ sin2 φ+ cos2 θ sin2 θ sin2 φ)

+sin2 θ − 2γxγy sin
4 θ cos2 φ sin2 φ

]
,

is of order J. In the limit J � 1, this is the dominant term of σLMG , since

Ω2 =
1
8

(
1 − 1

2J

)[
−4γxγy cos

2 θ + (γx(1 − sin2 θ cos2 φ) + γy(1 − sin2 θ sin2 φ))2]

is of order J0 and J−1. From the previous expressions, it is clear that in the limit J → ∞, the 
uncertainty of HLMG scales as

σLMG ≈ fσ
√

J. (A.2)

Similarly, the uncertainty of the Dicke Hamiltonian in coherent states is depicted by equa-
tion (85) of [68]. The result in our parametrization (and after correcting a misprint in the third 
line of equation (86) in [68]) is

σ2
D = 〈zα|H2

D|zα〉 − 〈zα|HD|zα〉2 = Ω1 +Ω2,

where, again, Ω1 is linear in J,

Ω1 = J
{
ω2

2
(q2 + p2) +

ω2
o

2
sin2 θ + 2γ2 [(sin2 θ sin2 φ+ cos2 θ)q2 + sin2 θ cos2 φ

]

+2γq(ω cosφ− ωo cos θ cosφ) sin θ
}

,

and gives the leading contribution in the limit J � 1, because Ω2 if of order J0

Ω2 = γ2(sin2 θ sin2 φ+ cos2 θ).

Therefore, the uncertainty of the Dicke Hamiltonian in a coherent state also scales as  σD ∝
√

J.

Appendix B. Semi-classical expansion for the spectrum  

From the Bohr–Sommerfeld quantization rule using scaled variables (h  =  H/J and 
εn = En/J )

I(εn) =

∮

h( jz,φ)=εn

jzdφ =
2π
J

(
n +

1
2

)
,

we obtain, for two quantized energy levels, εn and εn′,

I(εn)− I(εn′) =
2π
J

k (k = n − n′). (B.1)
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On the other hand, in the classical limit J → ∞, the energy states contributing significantly 
to a given initial coherent state, are located in an scaled interval whose width (let us say 
[(Ē − 3.5σ)/J, (Ē + 3.5σ)/J]) goes to zero. Consequently, the action variables associated to 
two quantized energies in this interval can be approximated by a Taylor expansion

I(εn)− I(εn′) ≈
2π
ωcl

(εn − εn′)−
π

ω2
cl

dωcl

dε
(εn − εn′)

2, (B.2)

where we have used the classical relation I′(εn′) = 2π/ωcl. By equating (B.1) and (B.2), solv-
ing the quadratic equation for εn and expanding in powers of 1/J, we obtain for the non-scaled 
energies

En = En′ + ωclk +
ωcl

2J
dωcl

dε
k2 +O(J−2).

This relation justifies the expansion (11) and allows to obtain semi-classical estimates for its 
parameters

e1 ≈ ωcl ≈ En+1 − En +O(J−1) and e2 ≈ ωcl

2J
dωcl

dε
.

Since ωcldωcl/dε is a finite value in the limit J → ∞, the anharmonicity parameter e2 goes to 
zero. The vanishing of the anharmonicity is a subtle reflect of the classical limit. In this limit, 
the classical (scaled) energy width of the coherent state become infinitely small, simultane-
ously the number of energy states participating in the coherent state goes to infinity (see (10)). 
In this way, we have an infinitely narrow classical energy interval with an infinite number of 
quantum energy levels inside. Since only a single classical frequency (ωcl) is associated to 
an infinitely small classical energy interval (in effective one degree-of-freedom systems), the 
quantum energy levels inside the interval must be equally spaced (En+1 − En ≈ ωcl), conse-
quently e2 must be zero.

Appendix C. Frequencies distribution, product gk+pgk

In this section we show that the product gk+pgk can be approximated by a single Gaussian for 

the frequencies ω( p)
k = Ek+p − Ek . Based on (7) and (11)

gkgk+p = A2 exp


−

(
ω
( p)
k

)2

4σ2


 exp


−

F
(
ω
( p)
k

)

16σ2e2
2p4


 , (C.1)

where we have we used (12) to express Ek as a quadratic function of ω( p)
k ,

Ek = eo +
(ω

( p)
k − e2p2)2 − e2

1p2

4e2p2 ,

and defined

F
(
ω
( p)
k

)
=

{(
ω
( p)
k

)2
+ p2 (4e2(eo − Ē) + e2

2p2 − e2
1

)}2

.

Since the function F is inside the argument of the exponential, the frequencies ω( p)
k  far from 

its minimum, ωp, are highly suppressed. Expanding up to second order around ωp and using
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ωp = p
√

e2
1 + 4e2(Ē − e0)− e2

2p2, F (ωp) = 0 and F′′ (ωp) /2 = 4ω2
p ,

 (C.2)

the distribution of frequencies of the pth component, can be written as a product of two 
Gaussians. For large J, since the width of the second Gaussian is very narrow, it can be 
reduced to

gkgk+p ≈ Ap exp

[
−
(ω

( p)
k − ωp)

2

2σ2
p

]
,

with amplitude Ap

A2 = exp

[
− ω2

p

4σ2

]
 and width σp =

√
2|e2|p2σ/ωp.

Finally, since |e2| � |e1|, at leading order in e2, the centroid, width, and amplitude of the 
pth distribution are given simply in terms of the values for p  =  1

ωp ≈ pω1, σp ≈ pσ1 and
Ap

A2 ≈
(

A1

A2

) p2

 (C.3)

with

ω1 ≈
√

e2
1 + 4e2(Ē − e0), σ1 =

√
2 |e2|

σ

ω1
, and

A1

A2 = exp

(
− ω2

1

4σ2

)
.

Appendix D. Approximation of the sum by an integral for the pth component 
of the survival probability

Here, we approximate the sum appearing in the the pth component of the SP (22) by an int-
egral. Using our assumption for the principal spectrum (11), we write the differences between 

consecutive frequencies as ∆ω
( p)
k = ω

( p)
k+1 − ω

( p)
k = 2 p e2 and arrive at

∑
k

exp


−

(
ω
( p)
k − pω1

)2

2p2σ2
1


 cos(ω

( p)
k t) ≈ 1

2 p|e2|

∫
exp

(
− (ω − pω1)

2

2p2σ2
1

)
cos(ωt)dω

=
1

2 p|e2|
Re

[
eipω1t

√
2πpσ1e−

( pσ1 t)2

2

]
=

√
πσ1√
2|e2|

exp

[
− ( pσ1t)2

2

]
cos( pω1t).

With the result above, the expression for σ1 (16) and the considerations for equation (18), we 
obtain the following expression for the pth component of the SP

SPp(t) =
ω1

σ
√
π
exp

[
−p2

(
ω2

1

4σ2 +
t2

t2
D

)]
cos( pω1t), (D.1)

where we have defined the decay time tD ≡ ω1
σ|e2| .
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Appendix E. Parameter dependence on the coordinates of the initial coherent 
state in the LMG model

Using the semi-classical formulae for ω1 (19) and e2 (21), and the analytical expression for 
the energy standard deviation σ (A.1), we study their dependence and that of the decay time 
tD = ω1/(σ|e2|) (24) on the parameters of the initial coherent states for the LMG model with 
couplings as in section 3 of the main text, γx = −3, γy = −5, and J  =  2000. A similar analysis 
can be performed for any other coupling set. The coherent parameter space defines the surface 
of the so-called Bloch sphere. For simplicity, this surface is represented in a 2D circle using 
coordinates (1 + jz) cosφ and (1 + jz) sinφ. In this representation, the south pole is located 
in the center of the circle whereas the north pole is deformed to the outer circle of radius 2. ω1 
and e2 are obtained by using the method described in [61].

The results are shown in figure E1. In panel (a), level curves of the scaled energy are shown. 
Red diamonds indicate the ground-state configurations with E/J  =  −2.6. Dashed green line 
indicates the level curve of the ESQPT critical energy at EESQPT/J = −1.6667. The central 
blue triangle is a local maximum critical point at energy E/J  =  −1. The orange dot indicates 
the coordinate of the representative coherent-sate discussed in section 3 of the main text. The 
parameters e2 and ω1 depend only on energy, their dependences are shown, respectively, in 
panel (b) and inset. The vertical dashed lines indicate the ESQPT critical energy, where e2 
diverges and ω1 = 0. Contrary to the latter parameters, the energy width σ depends on the 
localization of the coherent states in the Bloch sphere, this dependence is shown in panel (c). 
The decay time of the SP (tD) as a function of the initial coherent state is shown in panel (d). 
In this panel, blue and cyan lines delimit the small regions around the critical energy con-
figurations (ground-state and ESQPT respectively) where our approach is not applicable for 
J  =  2000 (we use the criterion E ± 3.5σ = Ecr to define these lines). These regions become 
narrower as J approaches the classical (J → ∞) limit. Observe that the decay time increases 
unboundedly for states approaching the ground-state configuration or the local maximum in 
the center, whereas for states close to the ESQPT the decay time goes to zero. This latter result 
is in accord with those of [21].

A similar analysis of the SP parameters for the Dicke model, is a challenging task, not only 
because the dimension of the energy surfaces is three, but also because the increase in the 
numbers of Gaussian sub-sequences makes it hard to provide a complete analysis. However, 
the different study cases used in the main text are representative of the whole cases that can be 
found in the regular regime of the Dicke model.

Appendix F. Classical limit of the survival probability and power law decay  
of its revivals

In this section we derive analytically the classical limit of the survival probability, as well as 
the power law decay of its revivals.

The decay of the oscillations in the survival probability is given by the expression (26) with 
the first argument x  =  0. Taking the limit J � 1 and using ω1 ≈ ωcl, σ ≈ fσ

√
J , e2 ≈ fe/J and 

tD = ω1/(σ|e2|), the SP decay reads

SPDecay(t) ≈ ωcl

2fσ
√
π
√

J
Θ3

(
0, e

− 1
J

[
ω2

cl
4f 2
σ
+

f 2
σ f 2

e
ω2

cl
t2
])

.

As limJ→∞ Θ3(0, e−b/J)/
√

J =
√
π/b,
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lim
J→∞

SPDecay(t) =
1√

1 +
(

2f 2
σ fet
ω2

cl

)2
≈ ω2

cl

2σ2|e2|
1
t

(t � 1),
 (F.1)

which explains the power-law decay observed in the survival probability at times t ∼ tD.
The partial revivals occurring at integer multiples of the classical period τ = 2π/ωcl become 

more and more narrower as J increases, turning into Kronecker deltas in the limit J → ∞. The 
heights ( fn) of the widthless revivals are given by (F.1) evaluated in t = nτ = 2πn/ωcl , thus 
the SP in the limit J → ∞ is

lim
J→∞

SP(t) =
∑
n∈Z

δt,nτ fn, with fn =
1√

1 +
(

4πf 2
σ fe

ω3
cl

)2
n2

.

(1
+

j z
)s

in
φ

|e
2|

(1 + jz) cos J/Eφ

(1
+

j z
)s

in
φ

(1 + jz) cos φ (1 + jz) cos φ

Figure E1. Scaled energy (a), energy width (c) and time decay (d) dependence on the 
parameter of the initial coherent state for the LMG model. (b) Anharmonicity parameter 
and classical frequency ω1 (inset) as a function of scaled energy. See text for details.
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Appendix G. Interference terms

To derive an analytical expression for the interference terms SP(ij)
I  given in (32) we write

SP(ij)
I (t) ≡

∑
p∈Z

SP(ij)
Ip (t) = 2

∑
p∈Z

∑
k

g(i)
k g( j)

k+p cos
[
Ω

( p)
k t

]
, (G.1)

with Ω( p)
k = (E(i)

k+p − E(i)
k + δEij), under the assumption E( j)

k = E(i)
k + δEij.

The product of the Gaussian functions g(i)
k g( j)

k+p leads to another single Gaussian for the 

frequencies Ω( p)
k . To demonstrate this, we express E(i)

k  as a function of Ω( p)
k  employing (11)

E(i)
k =

(Ω
( p)
k − δEij)

2

4e2p2 −
Ω

( p)
k − δEij + 2eo

2
− e2

1 − p2e2
2

4e2
.

Using this and (7), we obtain

g(i)
k g( j)

k+p = AiAj exp

[
−
(Ēi − Ēj +Ω

( p)
k )2

2(σ2
i + σ2

j )

]
exp

[
−
σ2

i + σ2
j

2σ2
i σ

2
j

G
(
Ω

( p)
k

)2
]

,

where G is a quadratic function, G = Ap

(
Ω

( p)
k

)
2 + BpΩ

( p)
k + Cp, with

Ap =
1

4e2p2 , Bp =
σ2

i − σ2
j

2(σ2
i + σ2

j )
−

δEij

2e2p2 ,

and

Cp =
1
4

(
−e2

1

e2
+ 4eo + e2p2 −

4(Ējσ
2
i + Ēiσ

2
j )

σ2
i + σ2

j
+ 2δEij +

δE2
ij

e2p2

)
.

As in appendix C, since the function G2 is inside the argument of the exponential, we consider 
a Taylor expansion around its minimum (Ωij

p ) up to quadratic terms

G
(
Ω

( p)
k

)2
≈ (B2

p − 4ApCp)(Ω
( p)
k − Ωij

p)
2 with Ωij

p =
−Bp ±

√
B2

p − 4ApCp

2Ap
.

At leading order in e2

Ωij
p ≈ δEij + pωij and (B2

p − 4ApCp) ≈
ω2

ij

4e2
2p2

,

where ωij  is given by

ωij =

√√√√√e2
1 + 4e2


 Ējσ2

i + Ē2
i σ

2
j − δEijσ2

i(
σ2

i + σ2
j

) − e0


.

The parameter ωij  can be estimated from the numerical spectrum as described below.
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With

σij =
2|e2|σiσj

ωij

√
σ2

i + σ2
j

,

the terms in the sum(G.1) now become

SP(ij)
Ip (t) ≈ 2AiAje

[
−

(Ēi−Ēj+δEij+pωij)
2

2(σ2
i +σ2

j )

] ∑
k

exp


−

(
Ω

( p)
k − (δEij + pωij)

)2

2( pσij)2


 cos

[
Ω

( p)
k t

]
.

From (11), we obtain ∆Ω( p) = Ω
( p)
k+1 − Ω

( p)
k = 2pe2, to approximate the previous sum by an 

integral that can be calculated as in appendix D,

SP(ij)
Ip (t) ≈

2AiAj
√

2πσiσj

ωij

√
σ2

i + σ2
j

e

[
−

( pσij t)2

2

]

exp

[
−
(Ēi − Ēj + δEij + pωij)

2

2(σ2
i + σ2

j )

]
cos[(δEij + pωij)t].

Finally, we present a simple way to estimate the parameter ωij . According to the discus-

sion above, the maximum of the product g(i)
k g( j)

k+1 is Ω(ij)
p=1 = δEij + ωij. On the other hand, the 

product of two Gaussian functions, considering the energy as a continuous variable x and a 

fixed parameter Δ, g(i)(x)g( j)(x +∆) = AiAj exp
[
− (x−Ēi)

2

2σ2
i

]
exp

[
− (x+∆−Ēj)

2

2σ2
j

]
, acquires its 

maximum value at xmax = E(I)
ij − σ2

i
σ2

i +σ2
j
∆, with

E(I)
ij =

Ēiσ
2
j + Ējσ

2
i

σ2
i + σ2

j
. (G.2)

For the argument of the second Gaussian, we sum xmax +∆ = E(I)
ij +

σ2
j

σ2
i +σ2

j
∆. Therefore the 

pair of continuous energies maximizing the product of Gaussians are located to the right and 

to the left of E(I)
ij . Returning to the discrete spectrum, the best approximation to this pair of 

energies is given by the pair of consecutive discrete energies satisfying

E(i)
kI

� E(I)
ij � E(i)

kI+1. (G.3)

From this simple observation, the frequency maximizing the Gaussian product can be approxi-

mated by Ω(ij)
p=1 ≈ E(i)

kI+1 + δEij − E(i)
kI

. Comparing this with the equivalent expression in terms 

of ωij , that is Ω(ij)
p=1 = δEij + ωij, allows for the estimation

ωij ≈ E(i)
kI+1 − E(i)

kI
.

This provides a way to obtain ωij  from the numerical spectrum by using (G.2) and (G.3).
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