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Abstract
We study the complex quantumdynamics of a systemofmany interacting atoms in an elongated
anharmonic trap. The system is initially in a Bose–Einstein condensed state, well described by
Thomas–Fermi profile in the elongated direction and the ground state in the transverse directions.
After a sudden quench to a coherent superposition of the ground and lowest energy transversemodes,
quantumdynamics starts.We describe this process employing a three-modemany-bodymodel. The
experimental realization of this systemdisplays decaying oscillations of the atomic density
distribution.While amean-field description predicts perpetual oscillations of the atomic density
distribution, our quantummany-bodymodel exhibits a decay of the oscillations for sufficiently strong
atomic interactions.We associate this decaywith the fragmentation of the condensate during the
evolution. The decay and fragmentation are also linkedwith the approach of themany-bodymodel to
the chaotic regime. The approach to chaos lifts degeneracies and increases the complexity of the
eigenstates, enabling the relaxation to equilibrium and the onset of thermalization.We verify that the
damping time and quantum signatures of chaos show similar dependences on the interaction strength
and on the number of atoms.

1. Introduction

The emergence of new quantum simulators have allowed for a better understanding, description, and control of
quantummany-body systems out of equilibrium. Progressively, approaches are found to explain and to take
advantage of a variety of different factors that affect the dynamics of these complex systems, including range and
strength of the interactions [1, 2], choice of initial state [3], presence of disorder [4], onset of quantum chaos
[5, 6], and proximity to critical points [7]. Different behaviors have been identified at different time scales [8, 9],
protocols to reach quantum speed limits have been engineered [10, 11], and conditions for isolated quantum
systems to relax to equilibrium and to thermalize have been established [12–16].

Relaxation in an isolated quantum system implies the approach of a set observables to a stationary value,
deviations of which are very rare and negligible for long-time averages. The conditions required for relaxation to
occur have been discussed in [17–27]. Thermalization is associatedwith the fact that the state of the system
reached at long times cannot seemingly be distinguished froman ad hoc defined thermal distribution [13–15,
28] (ad hoc as it is defined for the particular closed system).

Experiments with cold atoms have a prominent place in studies of relaxation and thermalization due to their
high level of isolation [12, 16, 29–36]. Their access to precise coherencemanipulation and to the preparation of
desired initial states are essential for the investigation of quantummany-body dynamics [37]. In this context, a
good example is a set of experiments with a quasi-one dimensional (quasi-1D)Bose–Einstein condensate (BEC)
on an atom chip [11, 38, 39], which successfully performed coherent transfer betweenmotional states of the
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transverse trapping potential. This allowed for the preparation of the condensate in a coherent superposition of
the two lowestmotional states. This superposition then evolved in the trapping potential.

The details of the dynamics of the abovementioned quasi-1DBEC are not yet entirely understood. At short
times, the evolution of the initial superposition presents oscillations of the atomic density distribution [39],
which agreeswith simulations based on a quasi-1DGross–Pitaevskii equation (GPE). At longer time, the density
distribution relaxes to a steady state [40].We note here that there are theoretical studies on three coherent
modes, which displaymany interesting phenomena [41–43]. Nevertheless, the damping of the oscillations is not
captured by themean-field (GPE) approximationwith the physical parameters of the system. That is theGPE
approach predicts perpetual oscillations of the atomic density distribution. In this article, we investigate how a
simple quantummany-bodymodel can provide an explanation for the relaxation of this isolated system. The
model shows relaxation and thermalization, and hence it is a testbed for the analysis of theoretical bounds on
relaxation times.

Before discussing the quantummany-bodymodel, we consider first a semiclassicalmodel based on three
modes. Similarly to theGPE, it accounts for the initial oscillations, but cannot explain their decay. A
semiclassical two-modemodel is evenworse, being incapable of qualitatively describing the initial oscillations.
The system investigated in [39, 40] consisted of a degenerate gas of several hundred 87Rb atoms, which justified
the use of theGPE.Mean-field approximations effectively describe various phenomena in BEC and inmany
cases it is preferred overmany-body approaches, which are computationallymore involved and often
intractable. However,mean-field approximations are by construction blind to themicroscopic properties of
individual atoms and do not account for collisions or quantum fluctuations.

Our three-mode quantummany-bodymodel initially prepared in the two lowestmodes accounts for both
the oscillations and their damping. Aswe show, the decay of the oscillations occurs as a pure quantum
phenomenon and provides a neat example of relaxation in an isolated quantum system. By extrapolating the
number of atoms reachable by our numerical tests to the number of atoms used in the experiment, we extract a
value for the damping time. It is larger than the damping time in the experiment, but reproduces the decay of
oscillations qualitatively.

Note that when referring to the decay of the oscillations, we employ thewords damping, decay, and
relaxation on an equal footing. However, strictly speaking, the isolated three-modemodel cannot account for
damping processes as in conventional open quantum system approaches [44, 45], where information is
irreversibly lost to the environment. Our quantummodel experiences dephasing, similar towhat is termed
collapse and revival of thewave function in quantumoptics [46]. The collapse occurs since the initial state is a
superposition of exactHamiltonianmany-body eigenstates with eigenenergies that are anharmonic. This
anharmonicity ofmany-body eigenstates is the source of the ‘collapse’-dephasing. Since the systemhas strictly
speaking a discrete spectrum, in addition to dephasing, an ‘approximate revival’ of the intial state is expected to
occur at the time scales of the order of the inverse of the smallest/typical gap between neighboring levels in the
energy spectrum (for the discussion in the context of thermalization see [47]). Still, the parallel of ‘dephasing’
and thermalization in open systems can be drawn.Due to its complexity, our systemplays the role of its own
environment. Specifically, the second excitedmode can be understood as aminimal environment, while the
system corresponds to the initially populated ground andfirst excitedmodes. This is an intuitive interpretation
drawn from the fact that the second excitedmode is not initiallymacroscopically occupied and its consideration
represents thefirst step towards amore general approximation: one can consider that all Bogoliubov excitations
are the environment for the two lowestmodes in the same spirit as donewhen interpreting the Bose polaron
motion as that of a quantumBrownian particle [48].

We relate the decay of the oscillations with the fragmentation (loss of coherence) of the condensate andwith
the approach of the quantum three-modemodel to the chaotic regime. The connection between damping and
fragmentation is in accordance with numerical studies done for a BEC in a quasi-1D bosonic Josephson junction
using themulti-configurational time-dependentHartreemethod for bosons (MCTDHB) [49].We also show
thatwhile the two-modemodel can account for the loss of coherence and fragmentation, it does not show a
quantum chaotic regime.

Quantum chaos is associatedwith level repulsion and highly delocalized eigenstates, both of which
guarantee the fast relaxation and thermalization of systems perturbed far from equilibrium [13–15]. In the
scenario of isolated quantum systems, fragmentation, relaxation, and thermalization are caused by the
interparticle interaction, rather than by couplings with an external thermal bath. They therefore reinforce the
fact that themean-field approximation is not valid for long times.

The paper is organized as follows. Section 2 introduces the three-modemany-bodymodel considered.
Sections 3 and 4 analyze how its properties change as the interaction strength increases from zero. In section 3,
the dynamics under the two- and three-mode semiclassicalmodels are comparedwith the quantum three-mode
model. Two kinds of oscillations, their decay, and the phenomenon of fragmentation are discussed. Section 4
addresses the onset of chaos and its connectionwith the decay of the oscillations. Conclusions are given in
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section 5.We also present the study of the quantumdynamics for the two-modemodel in appendix A and
discuss some previous results about the conditions for relaxation in isolated quantum systems in appendix B.

2. Three-modemany-bodymodel

The second-quantizedHamiltonian forN ultracold bosons in an external potentialV(x) is given by

H x x
m

V x x
g

x x x x xd
2 2

d , 1
2

2 3D
ò ò= Y -  + Y + Y Y Y Y

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† † †

whereΨ(x) represents thefield operator, x 3Î ,  is the Planck constant (whichwill be set to 1),m is themass
of the particles, and g3D is the coupling constant in three dimensions governing the contact interactions. The hats
on the operators are omitted to simplify the notation. Let us first consider that the trapping potentialV(x) is
parabolic in the x and z directions, characterized by the trapping frequenciesωx,z.We assume the trapping in the
y direction is slightly anharmonic. In such case all single-particle eigenenergies are discrete and show accidental
degeneracies given by E j j E1 2 1 2j j j x x z z j, ,x z

w w= + + + +( ) ( ) , with jx,z integers andEj the energy of jth level
of the separable single-particleHamiltonian in the y direction.

For clarity of the explanation, wefirst introduce the one dimensionalmodel.We assume that
ωx,z?E01=E1−E0, so thatwe can consider dynamics only in the transverse (y) direction.We aim for amodel
able to describe the dynamics of an initial state where a BEC is prepared in a coherent superposition of the lowest
motional states along y.We expand thefield operator in terms of eigenfunctions of the single-particle
Hamiltonianψj(η), η=x, y, z i.e. a x y zj j j j j j j j j, , , ,

x z x z x z
y y yY = å ( ) ( ) ( ), with a j j j, ,x z

the annihilation operator. As

the atoms are tightly confined in x and z the access to excited states in these directions is in practice forbidden, so
the dynamics is frozen in those directions. Thus, as we only use in practice the operators a0j0, fromhere onwe
only keep the j index.We note that there is a symmetry in the y direction, as theHamiltonian expressed in this
basis is invariant by the reflection y→−y. According to our premises, the atoms initially occupy
macroscopically the two lowestmodes in the y direction.We truncate the expansion of thefield operator in the
thirdmode

a a a 20 0 1 1 2 2y y yY = + + ( )

which produces theHamiltonian

H n E U a a a a U n n
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whereU g y2 dijkl i j k lò y y y y= ( ) ,U g y2 dij i j
2 2ò y y= ( ) ,U g y2 di i

4ò y= ( ) (all wave functions are defined
as real), and Ei is the energy of level i. Here, g is the effective quasi-1D coupling constant along the y direction.
Figure 1 illustrates the parameters of theHamiltonian(3). The caption explains what each parameter denotes
and the processes that the arrows represent.We use the expansion in threemodes, because this is theminimal
model that contains all important virtual process. In appendix A,we introduce the two-modemodel, whichwe
comparewith the results of the three-modemodel obtained below. In the conventional approach to a BECone
assumes thatfluctuations tomodes other than that inwhich condensation occurs are negligible. Thus one
neglects all quadratic termswith j>0. In the three-modemodel, however, a term like a a a0 2 1

2( )† † cannot be
neglected. This is because it involves operators associated tomodesmacroscopically occupied, as initially ajá ñ
and ajá ñ† are Nj~ , j=0,1. Thus, one has to neglect all terms involving bilinear termswith j>1. Butwe keep
all bilinear terms on j=2 that include two operators associated to the zeroth orfirstmode.Wemention here
that the aforementioned reflection symmetry y→−y translates into H P,3m[ ]with P 1 n1= -( ) , with
n a a1 1 1= † . Aswe discuss later, identification of this symmetry is important in the study of quantum chaos in
section 4.

To be able tomodel the experiments in [11, 38–40]wehave to relax the one-dimensional assumption. In
those experiments, a cigar-shaped BEC is produced in an elongated potential, i.e. the potential is weakly
confining along x andmore confining along y and very tightly confined along z. The assumption that the
dynamics in the z direction is frozen is still valid, as the excited states in that direction have very large energies.
We assume that thewave function in the longitudinal direction x is well describedwith the Thomas–Fermi
profile, TF(x). In this paper we consider that initially part of the population is transferred to thefirst excited state.
Particularly, in all examples we assume that half of the population is initially excited. In such a case, as we discuss
later, the period of the density oscillations that occur even in the non-interacting case is given byE01 (see
section 3.1). On the other hand the excitations along x aremuch lower in energy, sinceωx<E01. These
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excitations can easily occur in the system, but they aremuch slower. For this reasonwe assume that along the
evolution the system remains in TF (x) along x and study only the dynamics in y.With this, aHamiltonian
formally identical to equation (3) can be obtained, with a different expression of the coefficients. They have to be
calculated taking into account thatN0 andN1 correspond to the total populationwhen integrating the
corresponding excitedmode in y andTF(x), and thus allUijkl include the integration in x. This procedure gives
rise to the interaction parameters gathered in table 1 for a systemwithN=700.We term these valuesUijkl

exp as
they are close to typical experimental values [11, 38–40].We remark that, as the trapping potential along y is
slightly anharmonic, the energy differences E E E01 1 0= - and E E E12 2 1= - are not equal.

In the numerical examples below, the interaction strengths are varied, sowe takeUijkl to be a constant g
multiplied by the value from the table, that isU g Uijkl ijkl

exp= ´ . Since the geometry of the trapping potential
does not change, the orbitalsψi do not change either. Thismeans that the coupling constant gnum that we
consider in the numerical examples is proportional to the experimental coupling constant, gnum=g×gexp.
Then g=1 implies that gnum=gexp.

3.Dynamics of the three-modemodel

With theHamiltonian in equation (3), we derive the equations ofmotion. In theHeisenberg picture, they are

a

t
a H ji

d

d
, , 0, 1, 2, 4

j
j m3= =[ ] ( )

which leads to

a

t
U a a U a a U n a U n a U n a E a

U a a n a U n a U a a n a

i
d

d
2 2 4 4 2

2 2 2 2 2 , 5

0
01 0 1

2
02 0 2

2
01 1 0 02 2 0 0 0 0 0 0

0112 2 1
2

1 2 0222 2 2 0002 0
2

2 0 2

= + + + + +

+ + + + +( ) ( ) ( )

† †

† †

Figure 1. Illustration of the trapping potential and theHamiltonian interaction parameters.Ui represents the interaction coefficient
between the atoms at level i=0, 1, 2 andEij=Ej−Ei is the energy difference between the subsequent levels i and j. The arrows
between levels represent interaction or transfer processes: (i) thosewith an interaction energyUij are interactions between atoms at
level i and level j or transfer of two atoms from level i to j or vice versa; (ii) thosewith an interaction energyUij

kl destroy/create two
atoms at level i and j and create/destroy one atomat level i and two atoms at level k and l. Note that all transfers between the levels are
led by the interactions.

Table 1.Typical experimental values (inHz) of the different parameters of theHamiltonian in
equation (3). The energy differences between the levels areE01=E1−E0=1.770 kHz and
E12=E2−E1=2.06 kHz.

U0 U1 U2 U01 U02 U12 U0112 U0002 U0222

0.303 0.248 0.218 0.171 0.144 0.157 −0.062 0.110 −0.001
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an equation similar to equation (5) for a2, and

a

t
U a a U a a U n a U n a U n a E a

U a a a a a a a a a

i
d

d
2 2 4 4 2

4 . 6
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2
12 1 2

2
01 0 1 12 2 1 1 1 1 1 1

0112 0 2 1 0 2 1 2 0 1

= + + + + +

+ + +( ) ( )

† †

† † †

3.1. Semiclassical dynamics
To get physical insight into the role of the different parameters of equation (3) and the processes represented in
figure 1, we consider a semiclassical version of the above equations ofmotion. For this, we neglect quantum
fluctuations and treat the operators as c-numbers, N iexpi i ia f= ( ), whereNi is the amplitude andfi is the
phase of thefieldsαi (for details on this procedure see [50]). In this way, we obtain

N
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with similar equations forN2 andf2, and
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Infigures 2(a) and (b)we show two exemplary dynamical evolutions of the amplitudes for the threemodes.We
assume that the initial condition is such that half of the atoms occupy the groundmode and the other half
occupy thefirst excitedmode. In particular, the initial state has (N0,N1,N2)=(100, 100, 0) atoms and all
relative phases equal to zero. Twoobservations aremade from the two panels. First, although the thirdmode is
not populated initially, its gets significantly populated during the evolution, as we expected. Second, the
dynamics presents two types of oscillations with different timescales. A fast oscillationwith a period
T 0.5 msfast » and a slow oscillationwith a longer period T 5 msslow » .

From inspection of equations (7)–(10) one deduces that for g=0 (non-interacting limit, allU coefficient
vanish) the amplitudesNi are constant and the phasesfi growwith a rate Ei. For the initial condition considered
here one observes density oscillations in the numerical simulations (not shown here)which are only due to these

Figure 2.Evolution of themode average occupations for the semiclassical three-mode (left column), semiclassical two-mode (central
column), and three-modemany-body (right column)models. Upper (lower) row corresponds to g=10 (g=20).We represent the
groundmodewith a red thin line, the first excitedmodewith a blue thick line, and the second excitedmodewith a green thin line (the
latter is the lower curves in panels (a), (b), (e) and (f)). The initial condition is an equally weighted coherent superposition of the atoms
in the ground and first excited states with a total number of atomsN=200. Time in allfigures is adimensionalizedwithΔE01 and
divided by 2π to resemble approximately a period of oscillation.
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running phases. Thus, this is themain origin of the density oscillations observed in the density plots atfinite g
(see figure 3). Because of that we adimensionalize the time in allfigureswithΔE01. For small g, inspection of
equation (7) shows thatN0 will oscillate slightly around the initial valuewith amplitude proportional toU01 and
period proportional toE01 (see first lines in equations (7) and (9)). All other terms are small becauseN2 ismuch
smaller. In our numerical simulationswith small g (not shown)we observe that this is the only oscillation
present in the populations. As g ismade larger, there is a part of population that occupies the secondmode, so
thatN2 is no longer negligible. In such casewe observe a second type of oscillation, which is slower and has an
amplitude proportional toU0112.

For comparison, we show infigures 2(c) and (d) the amplitudes of the ground andfirst excitedmodes for a
semiclassical two-modemodel starting with the same initial state as infigures 2(a) and (b). The evolution gets
much simpler, as only the fast oscillation remains. The semiclassical equations for the two-modemodel are
trivially obtained by neglecting in equations (7)–(10) all variables and parameters associatedwithmode 2. They
are equivalent to the equations of an oscillator such as the bosonic Josephson junction [51].

Infigure 3(a)wedepict the evolution of the corresponding density t z, 2y∣ ( )∣ for the example shown in
figure 2(a). This evolution resembles qualitatively the initial density oscillations observed in the experiment and
also reproducedwith a quasi-1DGPEdescription of the dynamics along y [39, 40]. On the other hand, the
density evolution shown infigure 3(b), which corresponds to the case infigure 2(c), has no similarity with the
experiment. These results confirm that the two-modemodel is insufficient to describe even qualitatively the
dynamics of the system and that the inclusion of the thirdmode is necessary to comprehend the complexity of
the dynamics. As discussed in section 2, the two-modemodel offers an oversimplified picture of the system, as it
neglects important processes that populate significantly the secondmode.We checked that involvingmore than
threemodes in the semiclassical description does not bring significant changes to the evolution.

The semiclassical three-modemodel captures the initial oscillations as present also in themean-field
description.However, just as theGPE simulation, it does not describe any decay of these oscillations, as seen in
figures 2(a) and (b)where the oscillations continue over time. In contrast, themany-bodymodel discussed next
accounts for a decay of the oscillations.We do not attempt here for a full study of the nonlinear dynamics in the
semiclassical equations, as our goals relies in the quantumdynamics discussed inwhat follows.

3.2.Quantummany-body dynamics
To simulate themany-body dynamics, we perform the exact diagonalization of themany-bodyHamiltonian in
equation (3). The dimension  of theHamiltonianmatrix is N m N m1 1 = + - -( )! [ !( )!], wherem=3
is the number ofmodes. For largeN, N m 1 » - , as shown by using Stirling formula.

The analysis of the system’s time evolution via exact diagonalization is very general and can be adapted to
differentmodels, e.g. Lipkin–Meshkov–Glick [52–54] or Bose–HubbardHamiltonian [55]. This approach has
the advantage to be relatively simple. By comparison, othermethods to describemany-body systems, such as the
MCTDHB [56, 57], can includemore features, but the physical phenomena at the origin of the observed features
can be difficult to identify. Exact diagonalization is, however, limited by the exponential growth of the
dimension  with each additionalmode or particle. For the three-modemodel, we simulate the evolutionwith a
total number of atoms up toN=200.

The system is initialized in a coherent superposition of ground andfirst excited states, which corresponds to
the experimental initial state in [39, 40],

Figure 3.Evolution of the density profiles forN=200 atoms (same initial state as in figure 2). (a)Evolution of the density profile for
the semiclassical three-modemodel, g=10. (b) Same for the semiclassical two-modemodel. (c) and (d)Evolution of the density
profile for the three-modemany-bodymodel for g=10 and g=20, respectively. Damping occurs in themany-body case after a
number of oscillations. It occurs at a shorter time for larger interactions.
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where vacñ∣ is the vaccum and c c 10
2

1
2+ =∣ ∣ ∣ ∣ . The initial average population of the twofirstmodes is

n c00 0
2á ñ =( ) ∣ ∣ and n c01 1

2á ñ =( ) ∣ ∣ , with n t t a a ti i iy yá ñ = á ñ( ) ( )∣ ∣ ( )† .We present results for an initial coherent
state with c0=c1, but no qualitative differences are observedwhen c c0 1¹ . As expected, this initial state permits
to reproduce faithfully the semiclassical results for small interacting systems. Even for largely interacting system,
it reproduces the semiclassical results for thefirst few oscillations (see figure 2). This is not the case if one takes a
Fock initial state, i.e. N N a a1 vacN N

ini 0 1 0 1
0 1y ñ = ñ∣ ( ! ! )( ) ( ) ∣† † (generally, we denote a Fock vector as

N N N a a a N N N1 vac , ,k
N N N

0 1 2 0 1 2 0 1 20 1 2j = =∣ ⟩ ( ! ! ! )( ) ( ) ( ) ∣ ⟩ ∣ ⟩† † †/ ). The reason for not using an initial
Fock state is that it has a definite number of particles occupying eachmodewith all uncertainty translated into
the relative phase, whichwill be undetermined. This initial state does not correspond to the initial state prepared
in the experiment, where the initial relative phase is on average zero (note that we take c0=c1).

To circumvent our limitation to relatively small system sizes, we increase the effective interaction constant to
reach values of the product gN that are close to those found experimentally [11, 39, 40], where an example is
given in table 1, and hence correspond to g=1 andN=700.One needs to keep inmind, however, that keeping
gN constant, but varying the interaction parameter and atomnumber does not necessarily guarantee the same
physical scenarios [49]. For afixed and small value of gN, a small interaction constant gwith a big value ofN
ensures that the semiclassical description is valid, while a small number of atomsNwith large interactions leads
to the strongly correlated quantum regime. To extend results obtained for low atomnumbers (and high g) to the
experimental case of highN (and low g), amapping to a knownproblem (e.g. a Bose–Hubbardmodel in a lattice)
could provide some insight, but suchmapping is not always trivial.

Infigures 2(e) and (f), we present two examples of the evolution of the occupation of the ground andfirst
excitedmodes forN=200 for two values of g. Infigures 3(c) and (d), we show the corresponding density
evolution. Thefiguresmake it evident that themany-body evolution differs from the semiclassical one. For the
quantummodel, the systemdamps to an equilibrium state after a few oscillations. The damping occurs earlier as
gN ismade larger.We have not found any revival even for the longest numerical simulations performed
(typically 15 oscillations in terms ofΔE01/2π, with the longest simulations up to tmax=30ΔE01/2π).

3.3.Damping of the oscillations
The rest of the paper is devoted to investigating theoretically the origin of the damping of the oscillations.We
evaluate numerically the damping time τ as a function of gN. To this end, we simulate the system for a number of
particlesN ranging between 40 and 200 andwe also vary g. But before proceedingwith this evaluation, it is
beneficial to elaborate on some related points.

First, we note that the decay of the oscillations of allmodes occupations, a ai iá ñ† for i=0, 1, 2, are
accompanied by a decay to zero of the coherence terms a ai já ñ† with i j¹ . This parallel is verified by comparing
the decay of the oscillations infigures 2(e), (f), and 3(d)with figures 4(a) and (b). The vanishing of the off-
diagonal terms is associatedwith the fragmentation of the BEC, as discussed next.

The phenomenon of fragmentation can be understood as follows. For a BEC in a trap, when there is only one
large eigenvalue of the one-body densitymatrix (OBDM), r = YñáY∣ ∣, the semiclassical Gross–Pitaevskii
approach is appropriate. In this case, the depletion cloud of atomswhich are not occupying the condensate is
small. In contrast, the presence ofmore than one large eigenvalue indicates that the depletion cloud is large and

Figure 4.Evolution of the off-diagonal elements of the one body densitymatrix (OBDM) a ai iá ñ¢† forN=200when g=10 (a) and
g=20 (b) (same initial state as in figure 2). Top black curve corresponds to (i, i′)=(1, 2), red curve to (i, i′)=(1, 3) and blue curve to
(i, i′)=(2, 3). The damping observed infigures 2(e), (f), and 3(d) is accompanied here by the vanishing of the off-diagonal
correlations. In (c): evolution of the largest (top 4 curves) and second largest (bottom 4 curves) eigenvalues of theOBDM for different
values of the interaction strength. At initial times, there is only one large eigenvalue, as expected for condensation in the coherent
superposition of the ground and first excitedmode. In time, the second largest eigenvalue becomes also sizeable, indicating
fragmentation. (The third eigenvalue, associatedwith the occupation of the second excitedmode, is not shown, but it also becomes
non-negligible, but smaller.)This effect occurs at shorter times for larger interaction strengths. Thus, the damping infigures 2(e), (f),
and 3(d), the loss of coherence in panels (a) and (b), and the fragmentation in (c) occur together.
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thatmany atoms are not Bose–Einstein condensed [58]. For instance, in the context of double-well potentials
(and generally with two-modemodels), when there are two, and only two, large eigenvalues, the system is said to
be fragmented [59, 60]. Thismeans that the atoms occupying the two distinctmodes of the system cease to be
coherent, while coherencemay still exist among the atoms occupying each individualmode. In general,
fragmentation corresponds to the separation of an initially fully condensed state into two ormore independent
condensed parts. This scenario can be pictured as a double-well potential with an infinitely large barrier between
thewells, so that the system is effectively cut in two halves, with no coherence among them.Of course, a single-
shot experiment can show fringes and interference between the two condensates (see discussion in pg 343 of
[61], where interference experiments in the Fock regime in a doublewell is discussed).We clarify here that it is in
this sense thatwe talk about loss of coherence.

Infigure 4(c), we show the time evolution of the two largest eigenvalues of theOBDM for different values of
gN, takingN=200. Initially, there is only one large eigenvalue. It decreases in time, while the second largest
eigenvalue increases. After the damping occurs, one finds three eigenvalues that are significantly different from
zero (only two are shown infigure 4(c), because the third one ismuch smaller, although it is also non-negligible,
as the sumof the first two does not amount to 1). This indicates some degree of fragmentation in the two lowest
modes. Since the eigenvalue corresponding to the thirdmode ismuch smaller than the other two, it should not
become of order 1 asN increases, but should instead converge to zero. Therefore, its occupation should not be
macroscopic in the thermodynamic limit (largeN). This sustains our intuition that the thirdmode acts as an
environment for the other two.

The loss of coherence, just as damping, occurs earlier in time as gN ismade larger (comparefigures 2(e), (f),
and 4(c)). After relaxation, the system is found in a Fock state, that is, a state with a determined value of atoms
occupying eachmode. The link between damping and fragmentation has also been pointed out in two-mode
models [49, 62].

We estimate the damping time τ from the evolution of the eigenvalues of theOBDM. In figure 5, we plot our
numerical estimates for τ as a function of gN. Two numerical criteria are used to determine the damping time. In
figure 5(a), τ is the time at which the largest eigenvalue of theOBDMgets smaller than 0.98. Infigure 5(b), τ is
the timewhen the largest eigenvalue becomes smaller than 0.85.

For eachN, we observe that the dependence of τ on gN can befitted to a function of the form
a N b N xexpt = ( ) [ ( ) ], with x gNlog10= ( ). For every value ofN, we fit the parameters a(N) and b(N) from the

results of the numerical simulations performedwith a large number of values of gN.We present the results for
A N a Nln=( ) [ ( )]and b(N) infigures 5(c) and (d). The corresponding fitted curves are the solid lines in
figures 5(a) and (b). For every curve corresponding to a differentN, we define gdamping as that inwhich the
damping time is reduced to two oscillations in terms ofΔE01/2π (see figures 5(a) and (b)).With the time
adimensionalizationwe used, this corresponds to τ=2.We use two oscillations as a criteria to define gdamping

becausewe observe that, in this way, for g<gdamping the damping time increases significantly as one decreases g.
This allows to distinguish from the regionwith g>gdamping, where the damping time is reduced strongly. For

Figure 5.Damping time τ as a function of gN (top panels). The damping time is obtained from themany-body simulations for atom
numbers fromN=40 toN=200. The damping time is defined as the time at which the largest eigenvalue of theOBDM is smaller
than 0.98 (panel (a)) or 0.85 (panel (b)). The lines correspond tofitting curves of the form a N b N xexpt = ( ) [ ( ) ], x gNlog10= ( ), to
the numerical results.We also show the resulting parameters A N a Nln=( ) [ ( )] and b(N) in panels (c) and (d). The red thick line in
(a) and (b) shows the expected behavior forN=700 obtained by extrapolating the numerical interpolated curves shown in (c) and
(d). In panels (a) and (b) and forN=700, we also represent gdamping, defined as the value of the coupling constant for which τ=2.
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the large values of g and the atomnumbers considered infigure 5, all the curves for differentN show very similar
behaviors.

Our numerical studies are limited to numbers of atoms up toN=200, but one can extrapolate the damping
times to the case with g=1 andN=700, which is the lowest number of atoms performed in the experiment
(see our convention as described in the end of section 2). To this end, wefit a straight line to the coefficients a(N)
and b(N) (seefitting lines infigures 5(c) and (d)).We use thesefitted behaviors to extrapolate the behavior to
larger number of atoms to estimate the coefficients a(700) and b(700)which correspond to the curve expected
forN=700. The result is the thick red curve infigures 5(a) and (b), where the estimated coefficientA
(700)≈35 and 25, respectively, while b(700)≈−9 and−6, respectively. According to thesefittings, the
damping occurs around gNlog 3.610 =( ) [3.8]withN=700 for the criterion used infigures 5(a) [(b)]. This
corresponds to gdamping≈5 (gdamping≈9), while in the experiment it happens at gdamping=1 (following our
convention). The damping time predicted for g=1 andN=700 from the curves offigures 5(a) and (b) is of the
order of thousands of oscillations,much larger than the one observed in the experiment (τexpΔE01�15)
[39, 40]. Thus, even though the three-mode quantummodel describes a damping of the density oscillations
similarly to the experimental observations [40], the damping timescale it predicts differs from the experimental
one. Some other effectsmay cause the shorter damping time seen in the experiment, such as dephasing dynamics
in the longitudinal direction, perpendicular to the one-dimensional plane thatwe consider here.

In the next section, we explore the relationship between the onset of quantum chaos, the decay of the
oscillations, and the fragmentation of the condensate.We numerically link thefinite values of τwith the
approach of the quantummodel to the chaotic regime.

4.Onset of quantum chaos and damping

Isolatedmany-body quantum systems perturbed far from equilibrium relax quickly to a new equilibrium
despite the absence of external couplings. The drivingmechanism for equilibration is the internal coupling
between particles [14].While both integrable and chaotic systems undergo a similar process, relaxation to
thermal equilibrium is expected only for chaotic systems.

Themany-body three-modemodel undergoes a transition from integrability to chaos as the interaction
strength g increases from zero. This is in contrast with themany-body two-modemodel, which is integrable for
any value of the interaction, as discussed in appendix A.

In themany-body three-modemodel, as the number of atomsN increases, smaller values of g are needed to
move the system away from the integrable limit. This behaviormirrors ourfindings for the damping time, which
also decreases as gN gets larger.

4.1.Quantum chaos
Quantumchaos refers to signatures observed at the quantum level that indicate that the classical counterpart of
the system is chaotic. The concept has been extended to any quantum system that exhibits those properties even
if it does not have a classical limit. Amain signature of quantum chaos is level repulsion and the consequent
rigidity of the spectrum.

4.1.1. Level spacing distribution
There are different ways to detect level repulsion and therefore the crossover from integrability to quantum
chaos [63]. Themost commonly used quantity is the distribution P of the spacings s between neighboring
unfolded levels. In integrablemodels, the levels can cross and the distribution is usually Poisson,

P s sexp ,P = -( ) ( )

although variationsmay be found. Thismay occur, for example, in systemswith an excessive number of
degeneracies or in ‘picket-fence’ spectrawhere the eigenvalues are nearly equally spaced. A typical example for
the latter is the case of uncoupled harmonic oscillators [64, 65]. In chaotic systems, on the other hand, crossings
are avoided andP(s) follows theWigner–Dyson distribution, as predicted by randommatrix theory. In systems
described byHamiltonianmatrices that are real and symmetric, the shape of this distribution is given by

P s
s s

2
exp

4
.WD

2p p
= -

⎛
⎝⎜

⎞
⎠⎟( )

Infigure 6, we compare the level spacing distribution of the three-mode quantummodel for different values
of g andN. To get ameaningful distribution, the levels need to be separated by symmetry sector [66]. Following
the description of equation (3), we separate the eigenvalues by the parity of the eigenstates. The two top rows of
figure 6 are obtained forN=140.When the interaction strength is small, g<10, and themodel is close to
integrability, the level spacing distribution is not even Poisson. The distributions for g=0.03, 0.1 suggest a
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‘picket-fence’ spectrum [67]. For large interaction, g>40, the transition to theWigner–Dyson distribution is
clear.

The second and third rows offigure 6 compare P(s) for two different choices ofN. As the number of atoms
increases, the transition to chaos occurs for smaller values of the interaction [68]. This is evident by contrasting
the panels with strong interactions (g=40 and g=80) forN=140with those forN=220. This indicates that
whenN is very large, infinitesimal interactionsmay suffice for the onset of quantum chaos.

The two bottompanels offigure 6 show results for chaos indicatorsβ and η. These aremeasures of the
proximity ofP(s) to Poisson or toWigner–Dyson distributions. The indicatorβ is obtained byfittingP(s)with
the Brody distribution [69],

P s bs bs b1 exp ,
2

1
,B

1

1

b
b
b

= + - = G
+
+

b b
b

+
+⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( ) ( )

whereΓ is Euler’s gamma function.Whenβ=0, the distribution is Poisson and forβ=1,P(s) has theWigner–
Dyson shape. The indicator ηwas introduced in [70] and is defined as
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where s0 is thefirst intersection point ofPP(s) andPWD(s). For a Poisson distribution, 1h  , and for the
Wigner–Dyson distribution, 0h  .

Infigure 6, the results forβ and η for g<10 need to be takenwith care. For the numbers of atoms accessible
to us, this range of interaction strengths leads to shapes other thanPP,PWD, or any intermediate distribution
between the two, as seen in thefirst row offigure 6. The fact that for g<10, the indicatorβ (η) increases

Figure 6. Level spacing distribution (three top rows) for the three-modemodel for two numbers of particles and different values of the
interaction strength, as indicated in the panels. Curves for the Poisson andWigner–Dyson distributions are also presented for
comparison. The two bottompanels show chaos indicatorsβ and η as a function of the interaction strength for differentNʼs. The
results for all panels are averaged over the two parity sectors. Note thatβ→1 and η→0 implies quantum chaos (approach to a
Wigner–Dyson distribution).
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(decreases) as g andN get smaller simply indicates that wemove away from the Poisson distribution, but this is
not accompanied by an approach toPWD.We instead approach the integrable point of three uncoupled
oscillators, H n Ei i i~ å .

For the numbers of atoms considered here, the transition fromPoisson toWigner–Dyson is well captured by
the chaos indicators when g>10. The plots forβ and η infigure 6 reinforce our statement above that the
transition to chaos happens for smaller values of g asN increases.

4.1.2. Structure of the eigenstates
The emergence of randommatrix statistics is tightly connectedwith the appearance of chaotic eigenstates, that is
states that are highly delocalized andfill the energy shell [71–73]. Tomeasure the level of delocalization of the
eigenstates y ñn∣ , one can use quantities such as the participation ratio,

C
PR

1
, 13

j j
4

=
å

n
n∣ ∣

( )( )
( )

where Cj jj y= á ñn
n∣( ) is the overlap between the eigenstate y ñn∣ and the basis vector jj ñ∣ . PR is largewhen the

eigenstate is delocalized in the chosen basis. The choice of basis for the analysis of the structure of the eigenstates
is physicallymotivated. For the three-modemodel, we select the Fock basis, N N N, ,j 0 1 2j ñ = ñ∣ ∣ . In the absence
of interaction, when the eigenstates coincide with the basis vectors, PR=1.

Each panel of the two top rows offigure 7 show the values of PR for all eigenstates. Different values of g are
considered. The level of delocalization increases significantly with the interaction strength. One also notices that
the highest values of PR occur close to themiddle of the spectrum. This reflects the shape of the density of states
ρ, shown in the bottom rowoffigure 7 for comparison5.The density of states peaks close to themiddle of the
spectrum,where the largest concentration of eigenstates is found. This is the regionwherewe expect the
eigenstates to bemore delocalized states, while at the borders, PR is smaller.

Themiddle row offigure 7 illustrates the consequence of the transition to chaos. For g<40 and thus away
from the chaotic regime, there are largefluctuations in the values of PR. This implies that eigenstates very close in
energy can have very different levels of delocalization. In contrast, in the chaotic region (g=80), the structures
of the eigenstates become very similar, especially close to themiddle of the spectrum,where PR becomes a

Figure 7.Participation ratio (two top rows) and density of states ρ (bottom row) for the three-modemodel with different values of the
interaction strength (indicated);N=220. Both parity sectors are included. Vertical linesmark the energy of the initial state.

5
Wenote that the shape of the density of states in the three-modemodel is very similar to that found for the three-orbital Lipkin–Meshkov–

Glickmodel [85].
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smoother function of energy. At this point, the states approach randomvectors. The similarity between
eigenstates very close in energy is what guarantees the validity of the eigenstate thermalization hypothesis (ETH)
and the viability of thermalization [68, 74, 75], as discussed next.

4.2. Thermalization
The analysis of the onset of thermalization involves two steps. First one needs to ensure that the system
equilibrates. Next, we verify whether the equilibrium is thermal or not.

4.2.1. Equilibration
How the isolated system reaches equilibrium is the subject of the broad field of nonequilibriumquantum
dynamics towhich the previous section and several other works have been devoted to, including studies about
pre-thermalization [34, 76]. A brief discussion about the subject is presented in appendix B. In this section, we
are concernedwith the equilibriumpoint itself.

One can say that isolated quantummany-body systemswithout toomany degeneracies equilibrate, because
revivals become rare and take exceedingly long times to happen as the system size increases. For all practical
purposes, the coherences are irreversibly lost. The systems equilibrate in a probabilistic sense. To better explain
whatwemean by this, consider a general observableO evolving in time according to the equation
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where y ñn∣ andEν are the eigenstates and eigenvalues ofH, ‘ini’ indicates the initial state, O Oy y= á ñmn m n∣ ∣ , and
Oνν is the eigenstate expectation value (EEV) ofO. After a transient time, the system is said to have reached a new
equilibrium ifO(t) simplyfluctuates around the infinite-time average,
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and remains very close to this value formost times. Since the infinite-time average only involves the diagonal
matrix elementsOνν, this average is often referred to as ‘diagonal ensemble’ (DE) average.

To talk about equilibration, it is therefore essential that thefluctuations aroundODE be small and decrease
with system size [17–27]. Equilibration does not require chaos in the sense of level repulsion, but it needs highly
delocalized eigenstates, delocalized initial states, and not toomany degeneracies.

As shown infigures 2(e) and (f), the three-modemodel relaxes to a Fock statewith afixed number of atoms
occupying eachmode, that is t n t0,1,2y yá ñ( )∣ ∣ ( ) decays to n0,1,2. Thefluctuations after equilibration are small and
decrease with g, as one sees by comparing figures 2(e) and (f).

4.2.2. Thermal equilibrium
After equilibration, the observable will have reached thermal equilibrium if its infinite-time average coincides
with a thermodynamic average, that is if

O O , 16DE ME= ( )
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is the average over amicrocanonical ensemble. In the equation above, the sum in ν is performed over all energy
eigenbases within thewindow δE around the energyEini of the initial state, that is E E Eini d- <n∣ ∣ , and E E,ini

 d
is the total number of these eigenstates. Equation (16) holdswhenOνν for eigenstates close in energy coincide
with themicrocanonical average, an idea that is at the heart of statisticalmechanics and has become known
as ETH.

When studying thermalization infinite systems, we investigate how close the left and right sides of
equation (16) are andwhether they approach each other as the system size increases. This is guaranteed to
happenwhen the eigenstates are nearly random vectors. All randomvectors are equivalent, since their
components are simply randomnumbers. Thus,Oνν computedwith one randomvector is very similar to the
result for any other randomvector, apart from smallfluctuations that decrease with system size.

In full randommatrices, all eigenstates are randomvectors, inwhich case thermalization is trivial. In realistic
systems, the eigenstates away from the borders of the spectrum approach random vectors as the systemmoves
toward the chaotic regime (see the discussion about the results for PRwhen g=80 infigure 7). This is paralleled
by the behavior of the EEV for the occupations of the threemodes depicted infigure 8. As g increases, the
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fluctuations decrease and the EEVs show a smoother behaviorwith energy, especially close to themiddle of the
spectrum.

To quantify the proximity of the EEV to themicrocanonical average, we compute [74]

O O
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å
n nn

n nn

∣ ∣
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where for the three-modemodel, O n n n, ,0 1 2= á ñ á ñ á ñ. The sum includes only the eigenstates within the
microcanonical window [E−δE,E+δE]. Infigure 9, we choose E very close to themiddle of the spectrum and
δE=0.5, so that themicrocanonical window contains approximately 102 levels. Provided there is a reasonable
number of levels inside thewindow, the precise value of δE does not affect the results. Similarly towhatwe find
for the chaos indicators infigure 6, O

MED infigures 9(a) and (b) decreases with g and alsowithN, suggesting that
thefluctuations vanish in the thermodynamic limit.

Amore stringent demonstration of the vanishing of thefluctuations for strong interactions and large
numbers of particles ismadewith the normalized extremalfluctuation ofO, defined as [75],

O O
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. 19O
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ME
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Themaximum ( Omax ) andminimum ( Omin ) values of the EEV are obtained for the eigenstates within the
microcanonical window. The results are shown infigures 9(c) and (d) andmirror those from figures 9(a) and (b).

Infigure 9, our choice of thewindowof energy in themiddle of the spectrum implies infinite temperature.
Studies of the dependence of the size of thefluctuations on temperature can also be done [75]. Thefluctuations
are expected to decrease as the temperature increases.

The smallfluctuations of the EEV, which happens for chaotic eigenstates, are strong indications that
equation (16) should hold. But for this to be indeed the case, the initial state needs to probe those chaotic states.
We can then single out conditions that guarantee the onset of thermalization: the initial state is highly
delocalized, so that equilibration can take place; the initial state has significant overlaps with chaotic eigenstates,
that is Eini falls within the chaotic region of the spectrum; and thewidth of the energy distribution of the initial
state is smaller than or equal to themicrocanonical window δE [14].

Infigure 10, we finally compare the infinite-time average for the initial states chosen according to
equation (11)with themicrocanonical average. For this, we compute the relative difference,

Figure 8.Eigenstate expectation value (EEV) for niá ñ, i=0, 1, 2, for all eigenstates (both parity sectors are included) and different
values of the interaction strength (indicated);N=220. Vertical linesmark the energy of the initial state.
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The two averages get indeed closer as g andN increase, confirming our expectations that thermalization should
take place.

In addition to strong interactions and large numbers of atoms, the energyEini of the initial state also plays a
role in pushing the system toward thermal equilibrium. The vertical lines infigures 7 and 8mark the position of
Eini. One sees that itmoves closer to themiddle of the spectrum as g increases. This further contributes to the
viability of thermalization. Theoretically, we could also study the dependence of O

DE MED - on the energy of the
initial state forfixed gʼs andNʼs [77]. Experimentally, we are restricted to the initial states that can be actually
prepared.

We chose not to show the results for n
DE ME

2
Dá ñ

- infigure 10. For the selected initial state onlymodes 0 and 1 are

initially populated, sowhen g is small, the discrepancy between n2 DEá ñ and n2 MEá ñ is very large.However, the
difference decreases rapidly as the interaction increases and shows results similar to those for n0á ñand n1á ñ
when g>20.

Figure 9.Relative difference between the eigenstate expectation value (EEV) and themicrocanonical ensemble (ME) ((a) and (b)), and
normalized extremal fluctuations of EEV ((c) and (d)) as a function of g and for different numbersN of atoms (indicated). All
eigenstates of both parity sectors in thewindow [−δE, δE]with δE=0.5 are taken into account.

Figure 10.Relative difference between the infinite-time average and themicrocanonical average as a function of the interaction
strength and for different numbersN of atoms (indicated). The initial state is chosen according to equation (11). Themicrocanonical
window is centered at the energy of the initial state, [Eini−δE,Eini+δE]with δE=0.5.
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Wepresent in appendix A the study of the quantumdynamics for the two-modemodel.While thismodel is
insufficient to describe the system, it is interesting to emphasize differences and similarities with the three-model
model.Wemention two points. (i) Similarly to the three-modemodel, with twomodes one alsofinds damping
of the oscillations. (ii) Interestingly, with two-modes there is absence of a transition to the quantum chaos
regime. In contrast, two-modemodel exhibits an excited state quantumphase transition (ESQPT), as expected
from the similarity with the Lipkin–Meshkov–GlickHamiltonian.

4.3.Quantum chaos and damping: extrapolation to large N
Wenowhave the tools to compare the emergence of the damping of the oscillations with the onset of quantum
chaos. For this, we choose thresholds for the damping time and chaos indicatorβ. For eachN, wefind the values
of g at which the damping is so strong that the damping time τ infigure 5 is smaller than 2.We use this
convention to get a value for gdamping, whichwe defined in section 3.3. Using this convention, we get a set of
values of gdamping as a function ofN for the criterion used infigure 5(a) and another one for the criterion used in
figure 5(b). The values of gdamping versusN are plotted infigure 11. For eachN, we also obtain the value of g for
whichβ in figure 6 is larger than 0.3.We call this gchaos, as it indicates that the systemhas alreadymoved away
from the integrable point and is approaching the chaotic regime. The behavior of the curves for g versusN
extracted from τ and fromβ is very similar: the larger the number of atoms is, the smaller the interaction needs
to be for damping and chaos.

We note, however, that damping does not require the onset of chaos, as characterized by aWigner–Dyson
distribution. Damping can take place providedwe do not encounter an excessive number of degeneracies or
commensurate phases. Quantum chaos is a stronger condition to guarantee that not only the system relaxes, but
it also reaches an equilibriumdescribed by theGibbs ensemble. This is whywe chose as threshold for the chaos
indicatorβ>0.3 instead of a value closer to 1.

Similarly towhatwe did infigure 5, byfitting a curve to each set of data infigure 11, we extrapolate our
results toN=700, which is the typical number of atoms in the experiments. This leads to a value of g∼10.
Both analysis performed here, based on the damping time and on the approach to chaos, show that the strong
damping described by the quantummodel takes place at larger g than the damping observed
experimentally [40].

5. Conclusion

Wehave shown that the three-mode quantummany-bodymodel is aminimalmodel to qualitatively describe
both the atomic density distribution oscillations and their damping. This behavior is qualitatively similar to the
one observed experimentally with a quasi-1DBECprepared in a coherent superposition of its two lowest
motional states [11, 38, 39]. This system is isolated, so it does not include amechanism for damping through an
environment. Yet, one canmake a system-environment analogy by viewing the second excitedmode, which is
essential for the decay of the oscillations, as aminimal environment, and the ground andfirst excitedmodes as
constituting the system.

To characterize the observed decay of the oscillations, we employed the exact diagonalization of themany-
bodyHamiltonian for a numberN of atoms ranging from40 to 220 and a range of the interaction strength g.We
showed that the damping time decreases as gN increases. Themodel also undergoes a transition to the quantum
chaos regimewhen g becomes sufficiently strong. This value decreases asN increases. A key finding of this paper
is the link established between the decay of the oscillations, the loss of coherence (fragmentation), and the
approach to chaos.

Figure 11. For eachN, values of g at which the damping time is smaller than τ=2 (whichwe name as gdamping) are shownwith crosses
for the criterion used infigure 5(a) andwith circles for the criterion infigure 5(b).We also show as a function ofN, values of g at which
the chaos indicatorβ>0.3, whichwe name as gchaos and represent with squares. The solid lines correspond tofittings to the
numerical results. The three curves have the same qualitative behavior. The extrapolation toN=700 gives gä[8,14].
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The extrapolation of our results to the smallest number of atoms considered in the experiments (N=700)
reveals that, despite qualitatively reproducing the decay of the oscillations, themany-body three-modemodel
predicts damping times that are larger than those observed experimentally.We conjecture that thismay be due
to the fact that the experimental system is not a true quasi-1D system, but a cigar shaped condensate. For large
interactions, phenomena occurring in the elongated directionmay be the cause of an extra damping
mechanism,whichmakes the damping time shorter.Whether thismechanism is the twin-atom generation
processs described in [78] is out of the scope of this paper and a question to be investigated as an outlook.

The three-modemodel offers a good example for studies of relaxation and thermalization in isolated
quantummany-body systems.We have numerically shown that thermalization can indeed take place as g
increases. The viability of thermalization is tightly connectedwith the onset of chaos.We expect that similar
results can be found in other three-modemany-bodymodels, as e.g. three bosonic species with coherent
couplings in a trap or ultracold atoms in three-wells as in [79]. The role of the interaction energies that lead to the
transfers betweenmodes in our systemwould be played by the coherent coupling between species in thefirst
model and by the tunneling energies betweenwells in the second one. The initial condition in these cases would
be a coherent superposition of two of the species for thefirstmodel and two of thewells for the second one.

As a final remark, wemention a new study [80] about the conditions required to prepare an initial state (in
general aHamiltonian protocol) that does not equilibrate, thus introducing the concept of resilience against
equilibration. This suggests a link between the area of nonequilibriumquantumdynamics and that of quantum
resource theory. In the system studied here, an interesting outlookwould be to study the resilience of possible
initial coherent states.
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AppendixA. The two-modemodel dynamics and spectrum

If only twomodes are considered, we approximate thefield operator Ŷ describing the condensate by

a a , A.10 0 1 1y yY +ˆ ( )

where theψi are the two lower-lying eigenstates of the non-interacting part of theHamiltonian (taken to be real
and normalized to yd 1i

2ò y =∣ ∣ ) and the aiˆ are annihilation operators associatedwith themodes, fulfilling the

commutation relation a a,i j ijd=[ ˆ ˆ ]† . Following the approach of [53], we obtain the effective two-mode
Hamiltonian

H
E

a a a a
U

a a a a U a a a a
2 4

, A.22m 1 1 0 0 1 1 0 0
2

01 0 1 0 1
2=

D
- + - + +ˆ ( ) ( ) ( ) ( )† † † † † †

with

E E N U U1 , A.301 00 11D = - - -( )( ) ( )

U U U U U
g

y2 , and
2

d . A.4ij i j00 11 01
2 2ò y y= + - = ∣ ∣ ∣ ∣ ( )

To connect with conventional approaches, let us introduce the operators J a a a a 2x 0 1 0 1= +( )† † ,
J a a a a 2iy 0 1 0 1= -( )† † and J a a a a 2z 1 1 0 0= -( )† † , which satisfy angularmomentum commutation relations.
We canwrite equation (A.2) in the spin representation

H E J UJ U J4 . A.5z z x2m
2

01
2= D + +ˆ ( )

In this waywe show that thisHamiltonian resembles the bosonic JosephsonHamiltonian, with an additional
energy offset between the twomodes. Themany-body dynamics and damping of the oscillations describedwith
the two-modemodel is very different from that describedwith three-modemodel (see figures 2–4). Infigure A1
we show the evolution of themode amplitudes for the twomodes and the off-diagonal correlations a a1 2á ñ† for
N=1000 atoms. The initial condition is an equally weighted coherent superposition of the atoms in the ground
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andfirst excited states, (N0,N1)=(500, 500) and all relative phases equal to zero. Thefirst observation is that the
fast oscillation observed in the three-modemode is the only one present in the two-modemodel. Butmore
importantly, as g is increased, the two-modemodel also shows damping of the oscillations. This damping is
qualitatively different from that observed in the three-mode case and in the experiment, as observed from figure
A2, where the corresponding densities are depicted. First, the final state is different. It is also a fragmented state,
but only over the twomodes considered. ForN=1000we observe that the very quick damping (damping time
smaller than two oscillations) occurs also around g=6.5, which is of the same order of the one observed for the
three-modemodel forN=700.We note that, for g>6.5, the off-diagonal elements a a1 2á ñ† do not tend to zero
anymore.

To better understand the two-modemodel, we discuss its Hamiltonian, eigenvalues, and eigenstates.When
U=0, equation (A.2) represents the Lipkin–Meshkov–Glick (LMG)model [81], with the case of U 0¹ being a

Figure A1.Evolution of themode average occupations (left column) and the off-diagonal elements of the one body densitymatrix
(OBDM) a a1 2á ñ† (right column) for the two-modemany-bodymodel forN=1000 atoms (same initial state as infigure 2). On left
column, we represent n0, 1á ñ( ) with a red thin (blue thick) line. From the top to the bottompanel, the interaction is increased as g=5,
6, 6.5 and 7.

Figure A2.Evolution of the density profiles forN=1000 atoms for the two-modemany-bodymodel (same initial state as infigure 2).
(a)–(d) correspond to g=5, 6, 6.5 and g=7, respectively. Damping occurs for similar gN as in the three-modemodel, but
qualitatively thefinal state is different both to that reached at large times in the three-modemodel and in the experiment.
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generalization. Thismodel is integrable and therefore presents no level repulsion. It is also known to exhibit an
excited ESQPT.

In systemswith a quantumphase transition, the gap between the ground state and thefirst excited state
closes in the thermodynamic limit. In systemswith an ESQPT [82, 83], this crossing occurs together with the
clustering of the levels near the ground state and this divergence (peak) of the density of statesmoves to higher
energies as the control parameter increases above the ground-state critical point. Concomitantly, the eigenstates
that are very close to the energy of the ESQPT are highly localized leading to the slow evolution of initial states
with similar energy [84].

The features of ESQPT for theHamiltonian (A.2) are evident infigure A3. The top panels show results for the
density of states, where two peaks are seen. Theymust be relatedwith two different phase transitions caused by
the three competing terms in equation (A.5). They emerge for g>3 and are initially at the borders of the
spectrum.We verified numerically that g>3 is also theminimumvalue forwhich the two-modemodel with
N=1000 shows dampingwithin the longest simulationswe performed (that is a time shorter than∼30
oscillations in terms ofΔE01/2π). As g increases, the two peaks approach each other (compare g=10 and
g=20),merge together, and then separate again (compare g=40 and g=80). The peaksmergewhen only
twomain competing terms remain in equation (A.5).

The bottompanels of figure A3 depict the results for the PR for all eigenstates as a function of energy. Dips in
the PR occur at the same energies of the divergences of the density of states (see top and bottompanels of the
figure). The dips indicate that the eigenstates around the energies of the ESQPT are very localized.

In summary, the two-modemodel is significantly different from the three-modemodel. Besides not being
chaotic, it exhibits an ESQPT, which should affect the relaxation process.

Appendix B. Condition for relaxation

Here, we discuss briefly themain ingredients of the body of theory which studies relaxation in isolated quantum
systems (see e.g. [13, 17–27]) to highlight the connectionswith our discussion on quantum chaos. To this end, let
us denote the evolving state through its densitymatrix ρ(t), with unitary dynamics dictated by a generic
HermitianHamiltonianH, which is determined by its collection of eigenstates y ñn{∣ }and corresponding
eigenenergies En{ }. TheHilbert space is offinite dimension. Let us introduce also the dephased state as

p , B.1ini iniåw r y y= ñá
n

n
n n( ) ∣ ∣ ( )( )

where pini iniy r y= á ñn
n n∣ ∣( ) and ρini is the initial state.When the latter is a pure state, p Cini ini

2=n n∣ ∣( ) ( ) , as used in
equations (14) and (15). According to equation (13), the PRini for the chosen initial state projected in the energy
eigenbasis is given by

Figure A3.Density of states ρ (top) and participation ratio (bottom) for the two-modemodel for different values of the interaction
strength (indicated);N=1000. Both parity sectors are included.
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If the system relaxes to equilibrium, its long-time average agreeswith equation (B.1), that is

T
t tlim

1
d . B.3

T

T

0
iniò r w r=

¥
( ) ( ) ( )

Equivalently, the expectation value of an arbitrary observableO tends to

O OTr , B.4iniw r= ( ( ) ) ( )

which is the expectation value in the dephased state (see also equation (15)). As explained in themain text below
equation (15), equilibration requires that the temporal fluctuations around O be small and decrease with system
size. Under the condition of lack of degeneracies,more precisely absence (or a negligible number) of degenerate
level spacings [19, 22, 23], it has been shown that the variance of the temporalfluctuations is bounded by

O O
O

Var Tr
PR

. B.5ini

2

ini

r r w r-
 ( ) ≔ [ ( ( ))] ( )

Thismeans that for a given observable and under the conditionmentioned above, relaxation occurs for highly
delocalized initial states. In the context of quench dynamics, highly delocalized initial states emerge in systems
perturbed far from equilibrium andwheremost eigenstates are strongly delocalized. These conditions are
fulfilled by both chaotic and also interacting integrablemodels, as shownnumerically in [26]. This justifies the
sentence from themain text: ‘equilibration does not require chaos in the sense of level repulsion, but it needs
highly delocalized eigenstates, delocalized initial states, and not toomany degeneracies.’

In [22] and others that followed, PRini has been named effective dimension, deff(ρini), as one understands that
is the actual dimension used by the initial state to relax to equilibrium, in contrast with the real dimension of the
Hilbert state. If the effective dimension is proportional to the dimension of theHilbert space, , as it is often the
case in chaotic systems, one expects that the initial state will thermalize after evolution.

In connectionwith the discussion presented here, we note that, recently, the phenomena of equilibration
and the time scales required to equilibrate have been related to the quantumphenomena of dephasing in [47]. In
this reference, the authors also estimate the equilibration time scale as roughly the inverse of the dispersion of the
relevant energy gaps. As an outlookwe find that such ideas can be investigatedwith the three-modemodel.
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