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Survival probability, density imbalance, and out-of-time-ordered correlator
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We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using
full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of
the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical
results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of
this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages
(correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact
that these features are shared by both the random matrix and the realistic disordered model indicates that they
are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix
analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic
system at different time scales.
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Introduction. Nonequilibrium dynamics of isolated many-
body quantum systems is a highly interdisciplinary subject
covering a broad range of physics scales from string theory
and black holes to condensed matter and atomic physics. The
connection between black hole physics and unitary quantum
dynamics emerges from holographic dualities [1]. On the
experimental side, unitary quantum dynamics is investigated
with cold atoms [2–5], ion traps [6,7], and nuclear magnetic
resonance platforms [8,9].

Driven by different purposes, studies of black hole infor-
mation loss [10–12], quantum chaos [13,14], thermalization
in isolated quantum systems [2,5,15], many-body localization
[3,9,16], quantum correlations [8], and quantum speed limits
[17–19] consider similar dynamical quantities. They include
the survival probability, density imbalance, and out-of-time-
ordered correlator (OTOC). Our goal is to characterize the
evolution of these quantities at different time scales.

Given the complexity of out-of-equilibrium many-body
quantum systems, we take the same approach as Wigner when
studying heavy nuclei and use full random matrices (FRMs)
from the Gaussian orthogonal ensemble (GOE). These are
matrices filled with random real numbers and constrained
by time-reversal symmetry. The model is unrealistic as it
assumes simultaneous and infinite-range interactions among
all particles. But it allows for the derivation of analytical
expressions for the observables of interest.

The analysis of the FRM model assists in the identifi-
cation of general features and bounds for the evolution of
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realistic systems. The analytical expressions obtained with
FRMs reveal different behaviors at different time scales. After
determining the generic causes of these behaviors, one can
propose expressions for the dynamics of realistic chaotic many-
body quantum systems.

We compare the analytical expressions for FRMs with
numerical results for the one-dimensional (1D) Heisenberg
spin-1/2 model with on-site disorder. This system has been
extensively studied in the context of many-body localization
[20–22]. It shows a chaotic regime for small disorder [23,24],
which justifies the comparison with FRMs. The rate of the
evolution is faster in the FRM case, but the overall dynamical
behavior is similar for both models.

The basis of our analysis is the survival probability. It gives
the probability of finding the initial state later in time and has
been investigated since the early days of quantum mechanics
[25]. It is a main quantity in the studies of quantum speed
limits [19] and decay processes of unstable systems [26].
More recently, it became central to the analysis of localization
in noninteracting [27,28] and interacting [29,30] systems.
The survival probability is also related [31] to the analytic
continuation of the partition function used to study conformal
field theories with holographic duals [32] and to describe the
time behavior of large anti-de Sitter black holes [11,12,33].

Our analytical expression for the survival probability for
the FRM model covers the entire evolution at all different
time scales. Following the same steps for its derivation, we
find analytical expressions for the density imbalance and the
OTOC. The density imbalance is measured in experiments with
cold atoms [3,4]. The OTOC [14] quantifies the degree of
noncommutativity in time between two Hermitian operators
that commute at time t = 0 and has been studied experimen-
tally [8]. Guided by the derivations with FRM, we propose
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expressions that match very well the numerical evolution of
the realistic spin model.

The short-time dynamics of the survival probability is
controlled by the Fourier transform of the envelope of the
energy distribution of the initial state, the so-called local
density of states (LDOS). When the perturbation that takes
the system out of equilibrium is strong, the LDOS is similar
to the density of states (DOS). The DOS for the FRM has a
semicircle shape, which leads to a decay ∝J 2

1 (t)/t2, where
J1(t) is the Bessel function of first kind [34–37]. The initial
decay of the density imbalance follows the same behavior,
whereas the OTOC goes as J 4

1 (t)/t4. For the spin system,
where only two-body interactions exist, the decay is slower. In
this case, maximally spread-out LDOS reach Gaussian shapes
[34–39], resulting in Gaussian decays.

The envelope of the oscillations of the term involving the
Bessel function decays as 1/t3 for the survival probability
[40–42] and imbalance and as 1/t6 for the OTOC. These
behaviors emerge when the tails of the DOS fall with the square
root of the energy [41,42]. In the spin model, the tails of the
DOS decay slowly to its energy bounds, which yields smaller
power-law exponents.

For long times, but still shorter than the inverse of the mean
level spacing (Heisenberg time), the survival probability for
both the FRM and the spin model shows a dip below its satu-
ration value, known as the correlation hole [43–47]. This is an
explicit dynamical manifestation of level repulsion in systems
with discrete spectra [30,48]. For yet longer times, the survival
probability eventually saturates. Its increase from the bottom
of the hole to saturation is nearly linear. We show that the
correlation hole appears also for the imbalance and the OTOC.

Hamiltonians and dynamical quantities. We consider
Hamiltonians H = H0 + JV that have an unperturbed part
H0 and a perturbation V of strength J . We set J = 1 and h̄ = 1.

For the 1D spin-1/2 model with on-site disorder, L sites,
and periodic boundary conditions, H0 = ∑L

k=1 hkS
z
k and V =∑L

k=1
�Sk

�Sk+1, where �Sk’s are the spin operators on site k.
The amplitudes hk of the static magnetic fields are random
numbers from a uniform distribution [−h,h]. The total spin in
the z direction Sz = ∑

k Sz
k is conserved. We study the largest

subspace Sz = 0, which has dimension N = L!/(L/2)!2.
When h = 0 or h > hc, where hc is the critical point for

spatial localization, the eigenvalues can cross, and the level
spacing distribution is Poissonian as typical of integrable mod-
els. For 0 < h < hc, the eigenvalues become correlated and
repel each other. The level spacing distribution is intermediate
between the Wigner-Dyson and the Poissonian distributions.
The best agreement with the Wigner-Dyson distribution for
N = 12 870 occurs at h ∼ 0.5 [30].

In the FRM model, H0 is the diagonal part of the matrix,
and V consists of the off-diagonal elements. In the FRM from
the GOE, the matrix elements Hnm are random numbers from
a Gaussian distribution with mean zero. The variance of the
elements of V is σ 2, and for H0, it is 2σ 2. Due to the rotational
symmetry, Hnm = Hmn = H ∗

mn [49]. As in the spin model, N
is the size of the matrix.

The system is initially in one of the eigenstates |φn〉 of H0.
The dynamics starts by switching on the perturbation abruptly.
The evolution of the initial state |�(0)〉 = |φn0〉 is dictated
by H, |�(t)〉 = e−iH t |�(0)〉. The eigenvalues and eigenstates

of H are denoted by Eα and |ψα〉. The dynamical quantities
investigated are listed below.

(i) The survival probability is given by

Wn0 (t) = |〈�(0)|�(t)〉|2 =
∣∣∣∣∣
∑

α

∣∣C(α)
n0

∣∣2
e−iEαt

∣∣∣∣∣
2

, (1)

where C(α)
n0

= 〈ψα|�(0)〉.
(ii) The imbalance of the spin density for all sites is

computed as in [50,51],

I (t) = 4

L

L∑
k=1

〈
�(0)

∣∣Sz
k (0)Sz

k (t)
∣∣�(0)

〉
. (2)

(iii) In terms of spin operators, the OTOC that we calculate
is similar to the one in [16],

Otoc(t) = 32(L − 2)!

L!N
∑
n,k,k′

〈φn|Sz
k′(t)Sz

k (0)Sz
k′(t)Sz

k (0)|φn〉,

(3)

where we average over all pairs of sites k′ > k. In the thermal
ensemble average, all states |φn〉 of the subspace N are
assumed to contribute equally.

Survival probability. We can write Eq. (1) in terms
of the Fourier transform of the spectral autocorrela-
tion function as Wn0 (t) = ∫

G(E)e−iEtdE + Wn0 , where
G(E) = ∑

α1 	=α2
|C(α1)

n0
|2|C(α2)

n0
|2δ(E − Eα1 + Eα2 ) and Wn0 =∑

α |C(α)
n0

|4 is the infinite time average.
In the GOE FRM model, the eigenstates are random

vectors, so 〈Wn0〉FRM = W
FRM
n0

= 3/(N + 2), where
〈·〉FRM represents the ensemble average. Since the
eigenvalues and eigenstates are statistically independent,
G(E) is separated into 〈∑α1 	=α2

|C(α1)
n0

|2|C(α2)
n0

|2〉
FRM

=
1 − W

FRM
n0

and 〈δ(E − Eα1 + Eα2 )〉FRM = ∫
δ(E − Eα1 +

Eα2 )R2(Eα1 ,Eα2 )dEα1dEα2/[N (N − 1)], where R2(Eα1 ,Eα2 )
is the two-point correlation function. R2 splits in the
one-point correlation function, which is simply the DOS,
and the two-level cluster function [52]. As N → ∞,
the DOS converges to the Wigner semicircle law

ρ(E) = 2N
πε

√
1 − (

E
ε

)2
, where 2ε is the length of the spectrum.

The Fourier transform of the semicircle leads to a term
∝J1(εt)/t [34]. The Fourier transform of the two-level cluster
function gives the two-level form factor b2(Dt/2π ), where
D is the mean level spacing [49,52]. In the large N limit,
D ≈ 1/ρ(0). Therefore,

W FRM
n0

(t) = 1 − W
FRM
n0

N − 1

[
4N

J 2
1 (εt)

(εt)2
− b2

(
εt

4N

)]
+ W

FRM
n0

,

(4)

where b2(t) = [1 − 2t + t ln(1 + 2t)]�(1 − t) + {−1 + t

ln[(2t + 1)/(2t − 1)]}�(t − 1) and � is the Heaviside step
function.

In Fig. 1(a), we compare Eq. (4) with the numerical results
for the GOE FRM. The agreement is excellent; the two curves
can hardly be distinguished.

The initial evolution of W FRM
n0

(t) is controlled by the term
with the Bessel function, which leads to oscillations that decay
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FIG. 1. Survival probability and |Z(β + it)|2. In (a), GOE FRM.
Numerical results and Eq. (4) are superposed; 1/t3 decay (the
dashed curve), saturation value (the dot-dashed curve). In (b),
the solid lines from bottom to top give |Z(β + it)|2 with β =
0,0.01,0.05,0.1,0.2,0.5,1; the dotted curve is Eq. (4). In (c), the solid
lines from bottom to top are as follows: Eq. (4) and numerical results
for the spin model with h = 0.5,1,1.5,2. The squares correspond to
the fitting curve for h = 0.5. The FRM is rescaled, so the DOS of both
models have the same width. The inset of (c): Eq. (4) (bottom) and
time average for h = 0.5 (top). In (a) and (b), the averages are over
200 disorder realizations; N = 16 384, σ 2 = 2. In (c), the average is
over 105 data; N = 12 870.

as 1/t3, as indicated by the dashed line in Fig. 1(a). The
correlation hole, corresponding to the full time interval where

W FRM
n0

(t) is below W
FRM
n0

, is caused by b2(t). As we approach
the Heisenberg time, the hole fades away, and the dynamics

eventually saturates at W
FRM
n0

.
The correlation hole is a direct probe of short- and long-

range correlations in the eigenvalues. For level statistics given
by the Poissonian distribution, b2(t) = 0, and the hole is
nonexistent.

In Fig. 1(b), we compare Eq. (4) (the dotted line) with
numerical results for the analytic continuation of the partition
function |Z(β + it)|2 = ∑

α exp[−(β + it)Eα]/Z(β) (the
solid lines). As discussed in Ref. [31], |Z(β + it)|2 is
analogous to the survival probability if one considers
as initial state, a thermo-field-double state, that is
|�(0)〉 = ∑

α exp(−βEα/2)|ψα〉/√Z(β). As illustrated
in Fig. 1(b), the results for |Z(β + it)|2 for GOE FRM show
qualitative agreement with W FRM

n0
(t). The survival probability

and |Z(β + it)|2 for β = 0 decay initially as J 2
1 (εt)/(εt)2,

and all curves in Fig. 1(b) show correlation holes. However,
this comparison has limitations since in quench dynamics C(α)

n0

cannot be chosen independently of H0 and H as performed
for the thermofield state. Contrary to |Z(β + it)|2, Wn0 (t)
depends on the quench protocol.

Figure 1(c) depicts the survival probability for the spin
model with different disorder strengths. The curves are av-
erages over disorder realizations and 0.1N initial states with
energy in the middle of the spectrum. Even deep in the chaotic
regime (h = 0.5), the decay of 〈Wn0 (t)〉 is slower than that for
the FRM model, being bounded by Eq. (4). This is caused by

two related factors typical of realistic systems with two-body
interactions: the Gaussian shape of the DOS [53] and the lack
of full ergodicity of the eigenstates.

Using as a reference the steps for the analytical derivation of
G(E) for FRM, namely, that the R2 function splits into the DOS
and the two-level cluster function, we look for an expression
that can reproduce the evolution of the chaotic spin model. We
take into account the following features of the realistic system:
(i) The Fourier transform of a Gaussian LDOS gives a Gaussian
decay at short times e−w2t2

, where w is the width of the energy
distribution [34–36,38,39], (ii) this distribution is bounded in
energy [41,42] and nearly constant at the edges, which causes
a power-law behavior ∝1/t2, and (iii) the presence of level
repulsion induces the correlation hole at long times. These
aspects, together with the saturation of 〈Wn0 (t)〉, motivate the
expression

〈
Wn0 (t)

〉 = 1 − 〈
Wn0

〉
N − 1

[
N g(t)

g(0)
− b2

(
wt

N

)]
+ 〈

Wn0

〉
, (5)

where g(t) = e−w2t2 + A(1 − e−w2t2
)/(w2t2) and A is a fitting

constant. Apart from the first term, which depends on the shape
and tails of the energy distribution, Eq. (5) is equal to Eq. (4). It
is impressive that, with a single fitting constant, our expression
captures so well the entire evolution of 〈Wn0 (t)〉 for h = 0.5 as
seen in Fig. 1(c).

The inset of Fig. 1(c) confirms that b2 is the appropriate
function to describe the correlation hole also for the chaotic
spin system. The h = 0.5 curve follows closely the FRM
analytical expression. This indicates that the long-time behav-
ior of realistic chaotic many-body systems (before saturation)
depends only on the correlations between the eigenvalues, not
on details of the model, such as the shape of the DOS and
structure of the eigenstates.

The origin of the 1/t3 decay for the FRM model is the
square-root edge of the DOS. This power-law exponent is
observed also for the Sachdev-Ye-Kitaev model [12,54] where
the DOS is also a semicircle at the edges [55,56] and for
(1 + 1)-dimensional conformal field theories with a gravity
dual [32]. Since field theories with holographic duals set
bounds to certain dynamical coefficients [57], one may specu-
late whether the 1/t3 behavior is a general bound to the decay of
the survival probability and related quantities of generic lattice
many-body quantum systems. If we replace the Gaussian
distribution of the random entries of the FRM by distributions
involving higher even powers, it is possible to achieve DOS
whose tails go as |E − E0|ξ where ξ = 3/2,5/2, . . . and E0

is the edge of the spectrum [58], which would lead to decays
faster than 1/t3. Whether there may be realistic systems with
such DOS is an open question.

Density imbalance. Level repulsion manifests itself not only
as the correlation hole of the survival probability. It is revealed
also in the long-time evolution of experimental observables
such as the spin-density imbalance.

The curves for the density imbalance for the FRM model
and for the disordered spin system with different values of h

show a dip below the saturation value as illustrated in Fig. 2(a).
As h increases above 0.5 and the realistic system moves away
from the chaotic region, the hole in Fig. 2(a) shows the same
features of the hole in Fig. 1(c). It gets less deep, its time interval

060303-3



E. J. TORRES-HERRERA et al. PHYSICAL REVIEW B 97, 060303(R) (2018)

10-1 100 101 102 103 104

t

10-4

10-3

10-2

10-1

100

<I
>

10-1 100
1.0×10-1

2.0×10-1

5.0×10-1

1.0×100

<I
>

102 103 104

t
1.0×10-3

2.0×10-3

1.5×10-3

<I
>

(a) (b)

(c)

FIG. 2. Density imbalance for the FRM and the spin model. In (a)
from bottom to top, the FRM (numerical and analytical curves) and
disorder strength h = 0.5,1,1.5,2,2.5; 1/t3 (the dashed curve). In (b)
and (c), the numerical result (the solid curve) and fitting (the squares)
for h = 0.5. In (b), the short-time dynamics with Gaussian behavior.
In (c), the long-time evolution fitted with a power-law decay and the
b2(t) function. Averages over 104 random realizations; N = 12 870.

shrinks, and the moment when it first appears gets deferred to
longer times. This is consistent with the fact that the long-range
correlations in the eigenvalues diminish as the realistic system
moves towards a localized phase. The depth of the correlation
hole has been used to signal the metal-insulator transition in
[30,48].

To obtain an analytical expression for the density
imbalance, we refer to the equation O(t) = ∫

K(E)e−iEtdE +
O for a general observable O, where K(E)=∑

α1 	=α2
C(α1)

n0
C(α2)

n0
Oα1α2δ(E−Eα1 +Eα2 ) with Oα1α2 =

〈ψα1 |O|ψα2〉 and O = ∑
α |C(α)

n0
|2Oαα is the infinite time

average. In the FRM model, where the eigenvalues, eigenstates,
and Oα1α2 are statistically independent, we can separate K(E)

into 〈∑α1 	=α2
C(α1)

n0
C(α2)

n0
Oα1α2〉FRM

= O(0) − O
FRM

and
〈δ(E − Eα1 + Eα2 )〉FRM, already computed for Eq. (4).

Using the reasoning above, we obtain the following expres-
sion for the density imbalance:

I FRM(t) = I (0) − I
FRM

N − 1

[
4N

J 2
1 (εt)

(εt)2
− b2

(
εt

4N

)]
+ I

FRM
,

(6)

where I
FRM = 2I (0)/(N + 2). The result is very similar to

that for the survival probability, leading also to the 1/t3 decay
of the oscillations as seen in Fig. 2(a).

The decay of the density imbalance for the spin model is
bounded by Eq. (6). It shows a power-law behavior also in the
chaotic domain, which indicates that algebraic decays are not
exclusive to systems in the vicinity of a localized phase.

The relaxation of I (t) for the disordered spin model was
investigated in Ref. [50]. There, a fitting function with nine
free parameters was proposed for the intermediate times where
the power-law behavior is observed. We add to this picture the
description of the short- and long-time dynamics.

The imbalance for the spin system follows closely what
happens for the survival probability. The initial decay, up to
wt ∼ 2, is Gaussian as shown in Fig. 2(b).
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FIG. 3. OTOC for FRM (a) and compared with the disordered
model forh = 0.5 (b). In (a),J 4

1 (εt)/(εt)4 (the solid curve), numerical
results (the circles), and 1/t6 (the dashed curve). In (b), the FRM
(bottom) and h = 0.5 (top); numerical curve (the solid curve) and
Gaussian fit (the squares). Averages over 340 (FRM) and 100 (spin
model) disorder realizations; N = 3432.

The correlation hole emerges at long times and is shown in
Fig. 2(c). The numerical curve for h = 0.5 is fitted with the
function At−B − Cb2( wt

N ), where A, B, and C are fitting con-
stants. We use the same b2(t) used for the survival probability
in Fig. 1(c). The agreement is extremely good, covering a large
time interval all the way to saturation.

Out-of-time-ordered correlator. Analogous to what happens
for the density imbalance, the evolution of the OTOC for the
FRM model is initially very fast and later shows oscillations
that decay as 1/t6. The OTOC involves the four-point cor-
relation function R4(Eα1 ,Eα2 ,Eα3 ,Eα4 ) derived from the en-
semble average 〈δ(E − Eα1 + Eα2 − Eα3 + Eα4 )〉FRM. R4 can
be expressed as the determinant of a single spectral kernel
which is known explicitly [52]. For short and intermediate
times, the leading contribution to the Fourier transform of R4

is proportional to J 4
1 (εt)/(εt)4, which causes the 1/t6 decay.

At long times, b2
2(Dt/2π ) becomes dominant and causes the

correlation hole.
The 1/t6 behavior of the OTOC is shown in Fig. 3(a).

The agreement between the numerical data and the analytical
prediction from the FRM is very good. In Fig. 3(b), the
analytical curve for the FRM model is compared with the decay
for the disordered spin system with h = 0.5. The decay of the
latter is slower and exhibits a Gaussian behavior for short times.

The survival probability, and therefore I (t) and Otoc(t), are
not self-averaging [59]. The size of the ensemble of random
matrices needed to reasonably expose the correlation hole for
the density imbalance and the OTOC is significantly larger than
for 〈Wn0 (t)〉.

Conclusion. We have found analytical expressions for the
evolution of the survival probability, density imbalance, and
OTOC for a FRM model. These observables are central
to theoretical and experimental studies of quantum systems
out of equilibrium. The analytical findings were compared
with numerical results for a 1D-disordered spin-1/2 sys-
tem. The power-law decays, for intermediate times, and
dips below the saturation values, for longer times, revealed
by the FRM model appeared also for the chaotic spin
model. The identification of these generic properties helped
us finding and justifying functions that describe very well
the numerical evolution of the spin model at different time
scales. This approach can be used also for describing equiv-
alent realistic lattice many-body quantum systems with level
repulsion.
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