
On stability of fixed points and chaos in fractional systems
Mark Edelman

Citation: Chaos 28, 023112 (2018); doi: 10.1063/1.5016437
View online: https://doi.org/10.1063/1.5016437
View Table of Contents: http://aip.scitation.org/toc/cha/28/2
Published by the American Institute of Physics

Articles you may be interested in
Phenomenology of coupled nonlinear oscillators
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 023110 (2018); 10.1063/1.5007747

Chaotic and non-chaotic strange attractors of a class of non-autonomous systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 023102 (2018); 10.1063/1.5006284

Elements of decisional dynamics: An agent-based approach applied to artificial financial market
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 023114 (2018); 10.1063/1.5010185

Prediction of flow dynamics using point processes
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 011101 (2018); 10.1063/1.5016219

Solitary states for coupled oscillators with inertia
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 011103 (2018); 10.1063/1.5019792

Transient chaos in the Lorenz-type map with periodic forcing
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 033107 (2018); 10.1063/1.5018265

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1908776651/x01/AIP-PT/Chaos_ArticleDL_0618/Chaos_1640x440Banner_2-18.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Edelman%2C+Mark
/loi/cha
https://doi.org/10.1063/1.5016437
http://aip.scitation.org/toc/cha/28/2
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5007747
http://aip.scitation.org/doi/abs/10.1063/1.5006284
http://aip.scitation.org/doi/abs/10.1063/1.5010185
http://aip.scitation.org/doi/abs/10.1063/1.5016219
http://aip.scitation.org/doi/abs/10.1063/1.5019792
http://aip.scitation.org/doi/abs/10.1063/1.5018265


On stability of fixed points and chaos in fractional systems

Mark Edelman
Department of Physics, Stern College at Yeshiva University, 245 Lexington Ave., New York, New York 10016,
USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York,
New York 10012, USA; and Department of Mathematics, BCC, CUNY, 2155 University Avenue, Bronx,
New York 10453, USA

(Received 19 November 2017; accepted 29 January 2018; published online 21 February 2018)

In this paper, we propose a method to calculate asymptotically period two sinks and define the

range of stability of fixed points for a variety of discrete fractional systems of the order 0 < a < 2.

The method is tested on various forms of fractional generalizations of the standard and logistic

maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding

continuous fractional systems. Published by AIP Publishing. https://doi.org/10.1063/1.5016437

Many natural (biological, physical, etc.) and social systems

possess power-law memory and can be described by the

fractional differential/difference equations. Nonlinearity is

an important property of these systems. Behavior of such

systems can be very different from the behavior of the cor-

responding systems with no memory. Previous research

on the issues of the first bifurcations and the stability of

fractional systems mostly addressed the question of suffi-

cient conditions. In this paper, we propose the equations

that allow calculations of the coordinates of the asymptoti-

cally stable period two sinks and the values of nonlinearity

and memory parameters defining the first bifurcation

form the stable fixed points to the T¼ 2 sinks.

I. INTRODUCTION

It is generally understood that socioeconomic and bio-

logical systems are systems with memory. Specific analysis

showing that the memory in financial and socioeconomic

systems obeys the power law can be found in papers1–3 and

sources cited in these papers. Power-law in human memory

was investigated in Refs. 4–9: the accuracy on memory tasks

decays as a power law �t�b, with 0 < b < 1 and, with

respect to human learning, it is shown in Ref. 10 that the

reduction in reaction times that comes with practice is a

power function of the number of training trials. Power-law

adaptation has been used to describe the dynamics of biolog-

ical systems in papers.8,11–15

The importance and origin of the memory in biological

systems can be related to the presence of memory at the level

of individual cells: it has been shown recently that processing

of external stimuli by individual neurons can be described by

fractional differentiation.16–18 The orders of fractional deriva-

tives a derived for different types of neurons fall within the

interval [0,1], which implies power-law memory �tb with

power b ¼ 1� a; b 2 ½�1; 0�. For neocortical pyramidal

neurons, the order of the fractional derivative is quite small:

a � 0:15.

Viscoelastic properties of the human organ tissues are

best described by fractional differential equations with time

fractional derivatives, which imply the power-law memory

(see, e.g., references in Ref. 19). In most of the biological

systems with the power-law behavior, the power b is between

�1 and 1 (0 < a < 2).

Among the fundamental scientific problems driving

interest and research in fractional dynamics are the origin of

memory and a possibility of memory being present in the

very basic equations of Physics. Could it be that the funda-

mental laws describing fields and particles are not memory

less and are governed by fractional differential/difference

equations?

Because most of the social, biological, and physical sys-

tems are nonlinear, it is important to look for the fundamen-

tal differences in the behavior of nonlinear systems with and

without memory. Let us list some of the differences.

• Trajectories in continuous fractional systems of orders

less than two may intersect (see, e.g., Fig. 2 form Ref. 19)

and chaotic attractors may overlap [see e.g., Fig. 4(f) from

Ref. 20].
• As a result, the Poincar�e-Bendixson Theorem does not

apply to fractional systems and even in continuous sys-

tems of the order a < 2 non-existence of chaos is only a

conjecture (see Refs. 19 and 21).
• Periodic sinks may exist only in asymptotic sense and

asymptotically attracting points may not belong to their

own basins of attraction (see Refs. 20, 22, and 24). A tra-

jectory starting from an asymptotically attracting point

jumps out of this point and may end up in a different

asymptotically attracting point.
• The way in which a trajectory approaches an attracting

point depends on its origin. Trajectories originating from

the basin of attraction may converge faster (as xn � n�1�a

for the fractional Riemann-Liouville standard map, see

Fig. 1 from Ref. 20) than trajectories originating from the

chaotic sea (as xn � n�a).
• Cascade of bifurcations type trajectories (CBTT) exists

only in fractional systems. The periodicity of such trajec-

tories changes with time: they may start converging to the

period 2n sink, but then bifurcate and start converging to

the period 2nþ1 sink and so on. CBTT may end its evolu-

tions converging to the period 2nþm sink [Fig. 1(a)] or in

chaos [Fig. 1(b)].22,23
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• Continuous and discrete fractional systems may not have

periodic solutions except fixed points (see e.g., Refs. 25–31).

Instead they may have asymptotically periodic solutions.
• Fractional extensions of the volume preserving systems

are not volume preserving. If the order of a fractional

system is less than the order of the corresponding integer

system, then behavior of the system is similar to the

behavior of the corresponding integer system with dissipa-

tion.32 Correspondingly, the types of attractors which may

exist in fractional systems include sinks, limiting cycles,

and chaotic attractors.24,33–36

A particular problem related to the differentiation

between fractional systems and integer ones, the first bifurca-

tion on CBTT, and related problems of stability of fixed

points in discrete fractional systems and transition to chaos

in continuous fractional systems are considered in this paper.

The stability of fractional systems was investigated

in numerous papers based on various methods (Lyapunov’s

direct and indirect methods, Lyapunov function, Routh-

Hurwitz criterion,…). Here, we’ll list only some of the

research papers, reviews, and books on the topic. The paper

Ref. 37 is the most cited article on the stability of linear frac-

tional differential equations. In application to the stability of

nonlinear fractional differential equations, we’ll mention

papers.38–44 Some of the results on the stability of discrete

fractional systems can be found in papers.45–50 The reviews

on the topic include papers51–53 and books.54,55 Almost all

results obtained in the cited papers define sufficient condi-

tions of stability and do not allow calculation of the ranges

of nonlinearity parameters and orders of derivatives for

which fixed points are stable.

In this paper, we derive the algebraic equations to calcu-

late asymptotically period two sinks of discrete fractional

systems, which define the conditions of their appearance,

and conjecture that these equations define the values of non-

linearity parameters and orders of derivatives for which fixed

points become unstable. This conjecture is numerically veri-

fied for the fractional standard and logistic maps. This paper

is a continuation of the research on general properties of

fractional systems based on the properties of fractional

maps.19,20,22–24,33,34,45,56–64 In Sec. II, we review the most

common forms of fractional maps. In Sec. III, we derive the

equations defining the ranges of nonlinearity parameters and

orders of derivatives for which fixed points are stable.

Section IV presents the summary of our results.

II. FRACTIONAL/FRACTIONAL DIFFERENCE MAPS

In this section, some essential definitions and theorems

are presented.

FIG. 2. Asymptotically period two trajectories for the Caputo logistic a-family of maps with a ¼ 0:1 and K¼ 15.5: (a) nine trajectories with the initial condi-

tions x0 ¼ 0:29þ 0:04i; i ¼ 0; 1;…; 8 (i¼ 0 corresponds to the rightmost bifurcation); (b) x0 ¼ 0:61þ 0:06i, i¼ 1, 2, 3; (c) x0 ¼ 0:95þ 0:04i, i¼ 1, 2, 3.

As n!1 all trajectories converge to the limiting values xlim1 ¼ 0:80629 and xlim2 ¼ 1:036030 [see Eq. (61)]. The unstable fixed point is xlim0

¼ ðK � 1Þ=K ¼ 0:93548.

FIG. 1. Two examples of cascade of

bifurcations type trajectories in the

Caputo logistic a-family of maps

[Eq.(22) with h¼ 1 and GKðxÞ ¼ x
�Kxð1� xÞ] with a ¼ 0:1 and

x0 ¼ 0:001: (a) for the nonlinearity

parameter K¼ 22.37 the last bifurcation

from the period T¼ 8 to the period

T¼ 16 occurs after approximately

5� 105 iterations; (b) when K¼ 22.423

the trajectory becomes chaotic after

approximately 5� 105 iterations.
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A. Fractional integrals and derivatives

In this paper, we will use the definition of fractional

integral introduced by Liouville, which is a generalization of

the Cauchy formula for the n-fold integral

aIp
t xðtÞ ¼ 1

CðpÞ

ðt

a

xðsÞds

ðt� sÞ1�p
; (1)

where p is a real number, CðÞ is the gamma function, and

we’ll assume a¼ 0.

The left-sided Riemann-Liouville fractional derivative

0Da
t xðtÞ is defined for t> 0 (Refs. 65–67) as

0Da
t xðtÞ ¼ Dn

t 0In�a
t xðtÞ

¼ 1

Cðn� aÞ
dn

dtn

ðt

0

xðsÞds

ðt� sÞa�nþ1
; (2)

where n� 1 � a < n; n 2 Z, Dn
t ¼ dn=dtn.

In the definition of the left-sided Caputo derivative,

the order of integration and differentiation in Eq. (2) is

switched66

C
0 Da

t xðtÞ ¼ 0In�a
t Dn

t xðtÞ

¼ 1

Cðn� aÞ

ðt

0

Dn
sxðsÞds

ðt� sÞa�nþ1
; ðn� 1 < a � nÞ:

(3)

B. Fractional sums and differences

In this paper, we will use the proposed by Miller and

Ross sum/difference operator,68 which is a generalization of

the forward difference operator

DxðtÞ ¼ xðtþ 1Þ � xðtÞ; (4)

(see below) and call it simply the fractional sum/difference

operator. Nabla fractional sum/difference operator, which is

the generalization of the backward difference rxðtÞ ¼ xðtÞ
�xðt� 1Þ69 is not considered in this paper.

The fractional sum (a > 0)/difference (a < 0) operator

defined in Ref. 68

aD
�a
t f ðtÞ ¼ 1

CðaÞ
Xt�a

s¼a

ðt� s� 1Þða�1Þf ðsÞ; (5)

is a fractional generalization of the n-fold summation

formula58,69

aD
�n
t f ðtÞ ¼ 1

ðn� 1Þ!
Xt�n

s¼a

ðt� s� 1Þðn�1Þf ðsÞ

¼
Xt�n

s0¼a

Xs0

s1¼a

:::
Xsn�2

sn�1¼a

f ðsn�1Þ; (6)

where n 2N. In Eq. (5), f is defined on Na and aD
�a
t on

Naþa, where Nt ¼ ft; tþ 1; tþ 2;…g. The falling factorial

tðaÞ is defined as

tðaÞ ¼ Cðtþ 1Þ
Cðtþ 1� aÞ ; t 6¼ �1;�2;�3;… (7)

and is asymptotically a power function

lim
t!1

Cðtþ 1Þ
Cðtþ 1� aÞta ¼ 1; a 2 R: (8)

For a > 0 and m� 1 < a � m, the fractional (left)

Riemann-Liouville difference operator is defined (see Refs.

70 and 71) as

aD
a
t xðtÞ ¼ Dm

a D�ðm�aÞ
t xðtÞ

¼ 1

Cðm� aÞD
m
Xt�ðm�aÞ

s¼a

ðt� s� 1Þðm�a�1ÞxðsÞ ; (9)

and the fractional (left) Caputo-like difference operator (see

Ref. 72) as

C
a Da

t xðtÞ ¼ aD
�ðm�aÞ
t DmxðtÞ

¼ 1

Cðm� aÞ
Xt�ðm�aÞ

s¼a

ðt� s� 1Þðm�a�1ÞDmxðsÞ: (10)

Due to the fact that aD
k
t in the limit k! 0 approaches the

identity operator (see Refs. 58 and 68) the definition Eq. (10)

can be extended to all real a � 0 with C
a Dm

t xðtÞ ¼ DmxðtÞ for

m 2N0.

Fractional h-difference operators, which are generaliza-

tions of the fractional difference operators, were introduced

in Refs. 73 and 74. The h-sum operator is defined as

ðaD�a
h f ÞðtÞ ¼ h

CðaÞ
Xth�a

s¼a
h

ðt� ðsþ 1ÞhÞða�1Þ
h f ðshÞ; (11)

where a � 0; ðaD0
hf ÞðtÞ ¼ f ðtÞ, f is defined on ðhNÞa, and

aD
�a
h on ðhNÞaþah. ðhNÞt ¼ ft; tþ h; tþ 2h;…g. The h-fac-

torial t
ðaÞ
h is defined as

t
ðaÞ
h ¼ ha

C
t

h
þ 1

� �

C
t

h
þ 1� a

� � ¼ ha t

h

� �ðaÞ
; (12)

where t=h 6¼ �1;�2;�3;…. With m ¼ dae, the Riemann-

Liouville (left) h-difference is defined as

aD
a
hx

� �
ðtÞ ¼ Dm

h aD
�ðm�aÞ
h x

� �� �
ðtÞ ¼ h

Cðm� aÞ

� Dm
h

Xt
h�ðm�aÞ

s¼a
h

ðt� ðsþ 1ÞhÞðm�a�1Þ
h xðshÞ; (13)

and the Caputo (left) h-difference is defined as

aD
a
h;	x

� �
ðtÞ¼ aD

�ðm�aÞ
h Dm

h x
� �� �

ðtÞ¼ h

Cðm�aÞ

�
Xt

h�ðm�aÞ

s¼a
h

ðt�ðsþ1ÞhÞðm�a�1Þ
h ðDm

h xÞðshÞ; (14)

where ðDm
h xÞÞðtÞ is the mth power of the forward h-difference

operator
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ðDhxÞðtÞ ¼ xðtþ hÞ � xðtÞ
h

: (15)

As it has been noted in Refs. 73 and 74, due to the

convergence of solutions of fractional Riemann-Liouville

h-difference equations when h! 0 to solutions of the corre-

sponding differential equations, they can be used to solve frac-

tional Riemann-Liouville differential equations numerically.

C. Fractional maps

Maps with power-law memory can be introduced directly

as a particular form of maps with memory (see papers19,45

which contain references and discussions on the topic). The

most general form of the convolution-type map with power-

law memory introduced in Ref. 19 can be written as

xn ¼
Xdae�1

k¼1

ck

Cða� k þ 1Þ ðnhÞa�k

þ ha

CðaÞ
Xn�1

k¼0

ðn� kÞa�1GKðxkÞ; (16)

where a � 0, K is a parameter, and h is a constant time step

between the time instants tn ¼ aþ nh and tnþ1. We assume

that GKðxÞ is a nonlinear function and K is the nonlinearity

parameter characterizing nonlinearity of the function and

nonlinear properties of the corresponding system. For a

physical interpretation of this formula, we consider a system

whose state is defined by the variable x(t) and evolution by

the continuous function GKðxÞ. The value of the state vari-

able at the time tn, xn ¼ xðtnÞ, is a weighted total of the func-

tions GKðxkÞ from the values of this variable at the past time

instants tk ¼ aþ kh; 0 � k < n, tk¼ kh. The weights are the

times between the time instants tn and tk to the fractional

power a� 1. Equation (16) in the limit h! 0þ yields the

Volterra integral equation of the second kind

xðtÞ ¼
Xdae�1

k¼1

ck

Cða� k þ 1Þ ðt� aÞa�k

þ 1

CðaÞ

ðt

a

GKðs; xðsÞÞds

ðt� sÞ1�a : ðt > aÞ: (17)

This equation is equivalent to the fractional differential equa-

tion with the Riemann-Liouville or Gr€unvald-Letnikov frac-

tional derivative19,75,76

RL=GL
a Da

t xðtÞ ¼ Gkðt; xðtÞÞ; 0 < a; (18)

with the initial conditions

RL=GL
a Da�k

t x
� �

ðaþÞ ¼ ck; k ¼ 1; 2;…; dae: (19)

For a 62N, we assume cdae ¼ 0, which corresponds to a

finite value of x(a).

The same map, Eq. (16), called the universal map, repre-

sents the solution of the fractional generalization of the dif-

ferential equation of a periodically (with the period h) kicked

system (see Refs. 23, 33, 34, and 60–63 for the fractional

universal maps and Ref. 77 in regular dynamics).

To derive the equations of the fractional universal map,

which we will call the universal a-family of maps (a-FM) for

a � 0, we start with the differential equation

dax

dta
þ GKðxðt� DhÞÞ

X1
k¼�1

d
t

h
� ðk þ eÞ

� �
¼ 0; (20)

where e > D > 0; a 2 R; a > 0, and consider it as e! 0.

The initial conditions should correspond to the type of the

fractional derivative used in Eq. (20). The case a¼ 2, D¼ 0,

and GKðxÞ ¼ KGðxÞ corresponds to the equation whose inte-

gration yields the regular universal map.

Integration of Eq. (20) with the Riemann-Liouville frac-

tional derivative 0Da
t xðtÞ and the initial conditions

ð0Da�k
t xÞð0þÞ ¼ ck; (21)

where k ¼ 1;…;N and N ¼ dae yields the Riemann-

Liouville universal a-FM Eq. (16).

Integration of Eq. (20) with the Caputo fractional deriv-

ative C
0 Da

t xðtÞ and the initial conditions ðDk
t xÞð0þÞ ¼ bk, k

¼ 0;…;N � 1 yields the Caputo universal a-FM

xnþ1 ¼
XN�1

k¼0

bk

k!
hkðnþ 1Þk

� ha

CðaÞ
Xn

k¼0

GKðxkÞðn� k þ 1Þa�1: (22)

In this paper, we’ll refer to the map Eq. (16), the RL uni-

versal a-FM, as the Riemann-Liouville universal map with

power-law memory or the Riemann-Liouville universal frac-

tional map; we’ll call the Caputo universal a-FM, Eq. (22),

the Caputo universal map with power-law memory or the

Caputo universal fractional map.

In the case of integer a, the universal map converges

to xn ¼ 0 for a¼ 0, xnþ1 ¼ xn � hGKðxnÞ for a¼ 1, and for

a ¼ N ¼ 2 with pnþ1 ¼ ðxnþ1 � xnÞ=h

pnþ1 ¼ pn � hGKðxnÞ; n � 0;

xnþ1 ¼ xn þ hpnþ1; n � 0:

(
(23)

N-dimensional, with N � 2, universal maps are investigated

in Ref. 23, where it is shown that they are volume preserving.

D. Universal fractional difference map

In what follows, we will consider fractional Caputo

difference maps—the only fractional difference maps whose

behavior has been investigated. The following theo-

rem56,58,59,64,78 is essential to derive the universal fractional

difference map

Theorem 1. For a 2 R; a � 0, the Caputo-like h-differ-
ence equation

ð0Da
h;	xÞðtÞ ¼ �GKðxðtþ ða� 1ÞhÞÞ; (24)

where t 2 ðhNÞm, with the initial conditions
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ð0Dk
hxÞð0Þ ¼ ck; k ¼ 0; 1;…;m� 1; m ¼ dae; (25)

is equivalent to the map with h-factorial-law memory

xnþ1 ¼
Xm�1

k¼0

ck

k!
ððnþ 1ÞhÞðkÞh

� ha

CðaÞ
Xnþ1�m

s¼0

ðn� s� mþ aÞða�1ÞGKðxsþm�1Þ; (26)

where xk ¼ xðkhÞ, which is called the h-difference Caputo
universal a-family of maps.

In the case of integer a, the fractional difference univer-

sal map converges to xnþ1 ¼ �GKðxnÞ for a¼ 0, xnþ1 ¼ xn

�hGKðxnÞ for a¼ 1, and for a ¼ N ¼ 2 with pnþ1 ¼ ðxnþ1

�xnÞ=h

pnþ1 ¼ pn � hGKðxnÞ; n � 1; p1 ¼ p0;

xnþ1 ¼ xn þ hpnþ1; n � 0:

(
(27)

N-dimensional, with N � 2, difference universal maps are

volume preserving.56

All the above considered universal maps in the case

a¼ 2 yield the standard map if GKðxÞ ¼ K sin ðxÞ (harmonic

nonlinearity) and we will call them the standard a-families of

maps. When GKðxÞ ¼ x� Kxð1� xÞ (quadratic nonlinearity)

in the one-dimensional case, all maps yield the regular logis-

tic map and we will call them the logistic a-families of maps.

III. PERIOD TWO SINKS AND STABILITY OF FIXED
POINTS

In fractional systems not only the speed of convergence

of trajectories to the periodic sinks but also the way in which

convergence occurs depends on the initial conditions. As

n!1, all trajectories in Fig. 2 converge to the same period

two (T¼ 2) sink [as in Fig. 2(c)], but for small values of the

initial conditions x0 all trajectories first converge to the T¼ 1

trajectory which then bifurcates and turns into the T¼ 2 sink

converging to its limiting value. As x0 increases, the bifurca-

tion point nbif gradually evolves from the right to the left

[Fig. 2(a)]. Ignoring this feature may result (as in Ref. 64

and some other papers) in very messy bifurcation diagrams.

In this paper, we consider the asymptotic stability of

periodic points. A periodic point is asymptotically stable if

there exists an open set such that all trajectories with initial

conditions from this set converge to this point as t!1. It

is known from the study of the ordinary nonlinear dynamical

systems that as a nonlinearity parameter increases the system

bifurcates. This means that at the point (value of the parame-

ter) of birth of the T ¼ 2nþ1 sink, the T ¼ 2n sink becomes

unstable. In this section, we will investigate the T¼ 2 sinks

of discrete fractional systems and apply our results to ana-

lyze the stability of the systems’ fixed points.

A. 0 < a < 1

When 0 < a < 1, all forms of the universal a-family of

maps introduced in this paper, Eqs. (16), (22), and (26), can

be written in the form

xnþ1 ¼ x0 �
Xn

k¼0

~GðxkÞUaðn� k þ 1Þ: (28)

In this formula, ~GðxÞ ¼ haGKðxÞ=CðaÞ and x0 is the initial

condition [x0 ¼ 0 in Eq. (16)]. In fractional maps, Eqs. (16)

and (22)

UaðnÞ ¼ na�1; Uað1Þ ¼ 1; (29)

and in fractional difference maps, Eq. (26)

UaðnÞ ¼ ðnþ a� 2Þða�1Þ;

Uað1Þ ¼ ða� 1Þða�1Þ ¼ CðaÞ: (30)

For n ¼ 2N, Eq. (28) can be written (after subtracting

x2N) as

x2Nþ1 ¼ x2N � ~Gðx2NÞUað1Þ

þ
XN

n¼1

~Gðx2N�2nþ1ÞðUað2n� 1Þ � Uað2nÞÞ

þ
XN

n¼1

~Gðx2N�2nÞðUað2nÞ � Uað2nþ 1ÞÞ: (31)

The terms Uað2n� 1Þ � Uað2nÞ are of the order na�2. If we

assume that in the limit n!1 the period, T¼ 2 sink exists

xo ¼ lim
n!1

x2nþ1; xe ¼ lim
n!1

x2n; (32)

then the series in Eq. (31) converge absolutely. In the limit

n!1, Eq. (31) converges to

xo � xe ¼ ~GðxoÞ � ~GðxeÞ
� 	

Wa; (33)

where Wa is a converging series

Wa ¼
X1
n¼1

Uað2n� 1Þ � Uað2nÞ½ �; (34)

which can be computed numerically with UaðnÞ defined

either by Eq. (29) or by Eq. (30).

Now, instead of subtracting, let us add x2N to x2Nþ1

x2Nþ1 þ x2N ¼ 2x0 �
X2N

n¼1

~Gðx2N�nþ1Þ þ ~Gðx2N�nÞ
� 	

� UaðnÞ � ~Gðx0ÞUað2N þ 1Þ: (35)

If the T¼ 2 sink exists, then, in the limit n!1, the left-

hand side (LHS) of Eq. (35), as well as the first term on the

right-hand side (RHS) and the last term of this equation, is

finite. Expressions in the brackets in Eq. (35) tend to the limit
~GðxoÞ þ ~GðxeÞ. Because the series

P1
n¼1 UaðnÞ is diverging,

the only case in which Eq. (35) can be true is when

~GðxoÞ þ ~GðxeÞ ¼ 0: (36)

Equations which define the existence and value of the

asymptotic T¼ 2 sink can be written as
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GKðxoÞ þ GKðxeÞ ¼ 0;

xo � xe ¼
Wa

CðaÞ h
a GKðxoÞ � GKðxeÞ½ �:

8><
>: (37)

• It is easy to see that the fixed point defined by the equation

GKðxoÞ ¼ 0 is a solution of the system Eq. (37).
• As it was mentioned above, when h! 0, fractional differ-

ence equations converge to the corresponding fractional

differential equations. As h! 0, the second equation

from the system Eq. (37) leads to xo � xe ! 0. This

implies that in fractional differential equations of the order

0 < a < 1 transition from a fixed point to periodic trajec-

tories will never happen. A strict proof of the impossibility

of periodic trajectories (except fixed points) in autono-

mous fractional systems described by the fractional differ-

ential equation

dax

dta
¼ GKðxðtÞÞ; 0 < a < 1; (38)

with the Caputo or Riemann-Liouville fractional deriva-

tive was given in Ref. 27 (Theorem 9 there). Impossibility

of the fixed-point bifurcations and the fact that in regular

dynamics transition to chaos occurs through cascades of

the period doubling bifurcations are additional arguments

supporting mentioned in Sec. I conjecture

Conjecture 2. Chaos does not exist in continuous fractional
systems of the orders 0 < a < 1.

B. 1 < a < 2

For 1 < a < 2 map equations Eqs. (16), (22), and (26)

can be written in the form

xnþ1 ¼ x0 þ f ðaÞ hðnþ 1Þ½ �bp0

�h
Xn

k¼0

~GðxkÞUaðn� k þ 1Þ þ hf1ðnÞ: (39)

Here, ~GðxÞ ¼ ha�1GKðxÞ=CðaÞ, x0, and U(n) are defined the

same way as in Eqs. (28), (29), and (30), p0 is the initial

momentum (bk or ck in corresponding formulae), b is equal

to 1 in Eqs. (22) and (26) and a� 1 in Eq. (16) f ðaÞ is 1 in

Eqs. (22) and (26) and 1=CðaÞ in Eq. (16), and f1ðnÞ ¼ 0 in

Eqs. (16) and (22) and f1ðnÞ ¼ ha�1Gðx0Þðn� 1þ aÞða�1Þ=
CðaÞ � na�1 in Eq. (26).

If we define

pnþ1 ¼
xnþ1 � xn

h
; (40)

then, taking into account that Uað0Þ ¼ 0, from Eq. (39)

follows:

pnþ1 ¼ ~f ðnÞp0 �
Xn

k¼0

~GðxkÞ ~Uaðn� k þ 1Þ

þ f1ðnÞ � f1ðn� 1Þ; (41)

where

~UaðnÞ ¼ UaðnÞ � Uaðn� 1Þ

¼

na�1 � ðn� 1Þa�1 � na�2

and ~Uað1Þ ¼ 1 in Eqs: ð16Þ; ð22Þ;

ðnþ a� 2Þða�1Þ � ðnþ a� 3Þða�1Þ

¼ ða� 1Þðnþ a� 3Þða�2Þ

¼ ða� 1ÞUa�1ðnÞ � na�2

and ~Uað1Þ ¼ CðaÞ in Eq: ð26Þ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(42)

f1ðnÞ � f1ðn� 1Þ ¼ 0 in Eqs. (16) and (22) and f1ðnÞ
� f1ðn� 1Þ � na�1 in Eq. (26), ~f ðnÞ ¼ 1 in Eqs. (22) and

(26) and ~f ðnÞ � na�2 in Eq. (16). Note that the definitions

of ~Uað1Þ in Eq. (42) and Uað1Þ in Eqs. (29) and (30) are

identical.

Assuming existence of the T¼ 2 sink and limits xo and

xe are defined by Eq. (32), the limiting values for p are

defined by

po ¼ lim
n!1

p2nþ1 ¼ lim
n!1

x2nþ1 � x2n

h
¼ xo � xe

h
and

pe ¼ lim
n!1

p2n ¼ �po: (43)

As in the derivation of Eqs. (33) and (36), if we add and sub-

tract expressions for p2Nþ1 and p2N , we’ll arrive at relations

po � pe ¼ ~GðxoÞ � ~GðxeÞ
� 	

~Wa (44)

and

~GðxoÞ þ ~GðxeÞ ¼ 0; (45)

where ~Wa is a converging series

~Wa ¼
X1
n¼1

~Uað2n� 1Þ � ~Uað2nÞ
� 	

: (46)

Let us note that with UaðnÞ ¼ na�1, as defined in Eq. (29), ~W
is identical to introduced in Ref. 22 Val defined as

~Wa ¼ Val ¼
X1
n¼1

ð�1Þnþ1 na�1 � ðn� 1Þa�1
h i

: (47)

A high accuracy algorithm for calculating Val is presented in

Appendix to Ref. 24. For U(n) defined by Eq. (30), ~W was

calculated in Ref. 56. Taking into account that converging

series Eq. (46) can be written as

~Wa ¼ ~Ua1 �
X1
n¼1

~Uað2nÞ � ~Uað2nþ 1Þ
� 	

; (48)

where

~Ua1 ¼
1 in Eqs: ð16Þ; ð22Þ;
CðaÞ in Eq: ð26Þ;

(
(49)

and using the absolute convergence of series Eq. (34) [and,

correspondingly, the series on the first line of Eq. (51)

below], for 0 < a < 1 we can write
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~Wa ¼ ~Ua1 �
X1
n¼1

f Uað2nÞ � Uað2n� 1Þ½ �

� Uað2nþ 1Þ � Uað2nÞ½ �g

¼ ~Ua1 þ
X1
n¼1

Uað2n� 1Þ � Uað2nÞ½ �

�
X1
n¼1

Uað2nÞ � Uað2nþ 1Þ½ � ¼ Wa þ ~Ua1

�Uað2Þ þ Uað3Þ � Uað4Þ þ Uað5Þ �… ¼ 2Wa:

(50)

Let us notice that in fractional difference maps Eq. (48) can

be written as

~Wa ¼ ða� 1ÞCða� 1Þ � ða� 1Þ
X1
n¼1

Ua�1ð2nÞ½

�Ua�1ð2nþ 1Þ� ¼ ða� 1ÞWa�1 ¼
a� 1

2
~Wa�1: (51)

Finally, the equations which define the existence and

value of the asymptotic T¼ 2 sink for 0 < a < 2 can be writ-

ten as

GKðxoÞ þ GKðxeÞ ¼ 0;

xo � xe ¼
~Wa

2CðaÞ h
a GKðxoÞ � GKðxeÞ½ �;

8><
>: (52)

where ~Wa is defined by Eqs. (48) and (49). Notice that

according to Eq. (48) ~W1 ¼ 1.

• As in the case 0 < a < 1, for 1 < a < 2 the fixed point,

defined by the equation GKðxoÞ ¼ 0 is a solution of the

system Eq. (52).
• As h! 0, fractional difference equations converge to the

corresponding fractional differential equations and xo � xe

! 0, which implies that in fractional differential equations

of the order 1 < a < 2 transition from a fixed point to

periodic trajectories will never happen. All arguments sup-

porting Conjecture 2 can be repeated to support the stron-

ger (mentioned in Sec. I) conjecture:

Conjecture 3. Chaos does not exist in continuous frac-
tional systems of the orders 0 < a < 2.

C. Examples

Now we will consider application of the results from this

section to the fractional and fractional difference standard

[GKðxÞ ¼ K sin ðxÞ] and logistic [GKðxÞ ¼ x� Kxð1� xÞ]
a-families of maps introduced at the end of Sec. II.

1. Standard a-families of maps

With GKðxÞ ¼ K sin ðxÞ, all the above-considered forms

of the universal map for a¼ 2 converge to the regular stan-

dard map and they are called the standard a-families of

maps. These families of maps are usually considered on a

torus (mod 2p). The first equation of the system Eq. (52)

yields

sin
xo þ xe

2
cos

xo � xe

2
¼ 0; (53)

which on x 2 ½�p; p� yields two solutions

symmetric point xosy ¼ �xesy and

shift� p point xosh ¼ xesh � p: (54)

Then, the second equation of Eq. (52) yields the equation

which together with Eq. (54) defines two T¼ 2 sinks for

0 < a < 2

sin xosy ¼
2CðaÞ
~WahaK

xosy (55)

and

sin xosh ¼
pCðaÞ
~WahaK

: (56)

The symmetric T¼ 2 sink appears when

hajKj > hajKC1sj ¼
2CðaÞ

~Wa
; (57)

and the shift-p T ¼ 2 sink appears when

hajKj > p
2

hajKC1sj: (58)

2. Logistic a-families of maps

With GKðxÞ ¼ x� Kxð1� xÞ, all the above-considered

forms of the universal map for a¼ 1 converge to the regular

logistic map and they are called the logistic a-families of

maps. The system Eq. (52) becomes

ð1� KÞðxo þ xeÞ þ Kðx2
o þ x2

eÞ ¼ 0;

xo � xe ¼
~Wa

2CðaÞ h
aðxo � xeÞ 1� K þ ðxo þ xeÞ½ �:

8><
>: (59)

Two fixed point solutions with xo¼ xe are xo¼ 0, stable for

K< 1, and xo ¼ ðK � 1Þ=K.

The T¼ 2 sink is defined by the equation

x2
o �

2CðaÞ
~WKha

þ K � 1

K

� �
xo þ

2C2ðaÞ
ð ~WKhaÞ2

þ ðK � 1ÞCðaÞ
~WK2ha

¼ 0;

(60)

which has solutions

xo ¼
KC1s þ K � 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK � 1Þ2 � K2

C1s

q
2K

; (61)

defined when

K � 1þ 2CðaÞ
~Wha

¼ 1þKC1s or K � 1� 2CðaÞ
~Wha

¼ 1� KC1s:

(62)
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The first inequality of Eq. (62) was derived in Ref. 24 for

h¼ 1 and 1 < a < 2. In this paper, we consider K> 0 and

h � 1. It follows from the definition, Eq. (48), that ~W < ~U1,

which is either 1 or CðaÞ, and it is known that CðaÞ > 0:885

for a > 0. Then, 2CðaÞ=ð ~WhaÞ > 1 and we may ignore the

second of the inequalities in Eq. (62). We may also note that

the fixed point x ¼ ðK � 1Þ=K is stable when

1 � K < KC1l ¼ 1þ 2CðaÞ
~Wha

¼ 1þ KC1s: (63)

IV. CONCLUSION

The main result of this paper is Eq. (52) which defines

coordinates of the asymptotic period two sinks for the frac-

tional and fractional difference universal maps of the orders

0 < a < 2. The conditions of the existence of a solution for

this equation define the conditions of the stability (instabil-

ity) of the maps’ fixed points.

Figures 3(a) and 3(b), the two-dimensional bifurcation

diagrams, present results of the computer simulations of the

fractional and fractional difference standard and logistic maps.

Low curves on these diagrams are obtained using Eqs. (57),

(58), and (62). They are in good agreement with the results

(also used to calculate all other curves) obtained by the direct

numerical simulations to calculate x vs. K bifurcation diagrams

for various a 2 ð0; 2Þ after 5000 iterations. The slight differ-

ence in Fig. 3(b) for the fractional difference logistic map for

a < 0:2 is probably due to the slow, as �n�a, convergence of

trajectories to the fixed points. This confirms the validity of

Eq. (52) to calculate the coordinates of the asymptotic T¼ 2

sinks and the points of the first bifurcations for the discrete

fractional/fractional difference maps. The continuous limits of

the discrete maps considered in this paper are fractional differ-

ential equations and from the consideration presented in this

paper we may conclude that chaos is impossible in systems

described by equations

dax

dta
¼ f ðxÞ; (64)

with 0 < a < 2.

There are still many unanswered questions related to the

behavior of fractional systems. They include:

• What is the nature and the corresponding analytical

description of the bifurcations on a single trajectory of a

fractional system?
• What kind of self-similarity can be found in CBTT?
• How to describe a self-similar behavior corresponding to

the bifurcation diagrams of fractional systems? Can con-

stants similar to the Feigenbaum constants be found?
• Can cascade of bifurcations type trajectories be found in

continuous systems?

This paper is a small step in the investigation of the frac-

tional dynamical systems and we hope that subsequent works

will lead to the more complete description of fractional (with

power-law memory) systems which have many applications

in biological, social, and physical systems.
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