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In this paper, we consider a simple general form of a deterministic system with power-law memory

whose state can be described by one variable and evolution by a generating function. A new value

of the system’s variable is a total (a convolution) of the generating functions of all previous values

of the variable with weights, which are powers of the time passed. In discrete cases, these systems

can be described by difference equations in which a fractional difference on the left hand side is

equal to a total (also a convolution) of the generating functions of all previous values of the

system’s variable with the fractional Eulerian number weights on the right hand side. In the

continuous limit, the considered systems can be described by the Gr€unvald-Letnikov fractional

differential equations, which are equivalent to the Volterra integral equations of the second kind.

New properties of the fractional Eulerian numbers and possible applications of the results are

discussed. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922834]

Maps with memory have been investigated for many dec-

ades. The field of fractional difference equations is a few

decades old. In this paper, we show that maps with

power-law memory are equivalent to the Gr€unvald-

Letnikov fractional difference equations. The fractional

Eulerian numbers, introduced by Butzer and Hauss in

1993 in a paper which was cited only once in 1995 by

Jean-Louis Nicolas, play the key role in the connection

between maps with power-law memory and fractional

difference equations. In the continuous limit, the relation-

ship between maps with power-law memory and frac-

tional difference equations leads to the equivalence of

fractional differential equations and the Volterra integral

equations of the second kind. Systems with power-law

memory can be used to investigate chaos in continuous

fractional systems of less than three dimensions.

I. INTRODUCTION

In paper,1 we introduced a-families of maps (aFM),

which correspond to a general form of fractional differential

equations of systems experiencing periodic kicks

dax

dta
þ ~GK x t� DTð Þð Þ

X1
k¼�1

d
t

T
� k þ eð Þ

� �
¼ 0; (1)

where ~GKðxÞ is an arbitrary non-linear function, K is a

parameter, e > D > 0; a 2 R; a > 0, in the limit e! 0,

with the initial conditions corresponding to the type of the

fractional derivative used. We investigated their general

properties in Ref. 1 and in the following articles.2–5 These

maps are maps with power-law memory in which the new

value of the variable xnþ1 depends on all previous values xk

ð0 � k � nÞ of the same variable with weights proportional

to the time passed ðnþ 1� kÞ to the power ða� 1Þ. For

example, in the case of the Caputo fractional derivatives,

Eq. (1) leads to (for T¼ 1)

xnþ1 ¼
XN�1

k¼0

x kð Þ
0

k!
nþ 1ð Þk � 1

C að Þ
Xn

k¼0

~GK xkð Þ n� k þ 1ð Þa�1
;

(2)

where xðkÞðtÞ ¼ Dk
t xðtÞ; x

ðkÞ
0 ¼ xðkÞð0Þ; 0 � N � 1 < a � N;

a 2 R; N 2N.

Historically, the first maps with memory were con-

sidered as models for non-Markovian processes in gen-

eral6,7 and, with regards to thermodynamic theory of

systems with memory,8 as analogues of the integro-

differential equations of non-equilibrium statistical

physics9–11 (see also a recent Stanislavsky’s paper on

maps with long-term memory12). The general form of the

investigated maps was

xnþ1 ¼
Xn

k¼m

Vðn; kÞGðxkÞ; (3)

where V(n, k) characterizes memory effects. Maps Eq. (3)

with m¼ 0 are called maps with long term memory. Maps in

which the number of terms in the sum in Eq. (3) is bounded

(m ¼ n�M þ 1) are called maps with short term memory or

M-step memory maps.

In this paper, we consider long term memory maps with

power-law memory in the form

xn ¼
Xn�1

k¼0

ðn� kÞa�1GKðxk; hÞ; (4)
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where K is a parameter and h is a constant time step between

tn and tnþ1. These maps differ from the maps Eq. (2) by the

sum of power functions depending on the initial conditions

of Eq. (1). They coincide in the case of the zero initial condi-

tions, h¼ 1, and GKðxkÞ ¼ � ~GKðxkÞ=CðaÞ.
Interest in power-law memory maps is stimulated by the

recent discovery of the large number of systems (mostly bio-

logical), not necessarily described by the fractional differen-

tial equations, with power-law memory. In the study of

human memory, the accuracy on a memory tasks decays as a

power law, �t�b, with 0 < b < 1.13–17 In the study of human

learning, the reduction in reaction times that comes with

practice is a power function of the number of training

trials.18 Power-law adaptation has been used to describe the

dynamics of biological systems in papers.17,19–23 As it has

been shown recently, even processing of external stimuli by

individual neurons can be described by fractional differentia-

tion.24,25 Most of human organ tissues demonstrate visco-

elastic properties.26–37 This leads to their description by

fractional differential equations with time fractional deriva-

tives,38–46 which implies the power-law memory. In most of

the biological systems with the power-law behavior (�tb),

the power b is between �1 and 1, which leads to 0 < a < 2

in Eq. (4).

Biological systems are not the only natural systems with

power-law memory. In the continuous case, these systems

can be described by fractional differential equations and one

may find many examples of such systems in the recent books

on applications of fractional calculus.39,47–59 In physics, for

example, common and general examples of systems with

power-law memory include: Hamiltonian systems, in which

transport can be described by the fractional Fokker-Planck-

Kolmogorov equation and memory is the result of stickiness

of trajectories in time to the islands of regular motion;49,60–62

dielectric materials, where electromagnetic fields are

described by equations with time fractional derivatives due

to the universal response—the power-law frequency depend-

ence of the dielectric susceptibility in a wide range of fre-

quencies;51,63–65 materials with rheological properties and

viscoelastic materials, in which non-integer order differential

stress-strain relations give a minimal parameter set concise

description of polymers and other viscoelastic materials with

non-Debye relaxation and memory of strain history.39,40,42–44

It is also interesting that the use of fractional calculus

(power-law memory) in control (fractional order control)

makes it possible to improve performance of traditional

controllers.53,55

Another motivation for the present paper comes from

the first results of the investigation of fractional (power-law

memory, see, e.g., Eq. (2)1–5,69–73) and fractional difference

(asymptotically power-law memory3,4) maps. It has been

shown that fractional and fractional difference maps both

demonstrate new type of attractors—cascade of bifurcations

type trajectories (CBTT) (see Fig. 1) in which after a small

number of iterations a trajectory converges to a period one

trajectory (fixed point) which later bifurcates and becomes a

T¼ 2 sink and then follows the period doubling scenario

typical for cascades of bifurcations in regular dynamics. The

difference is that in regular dynamics a cascade of bifurca-

tions is the result of a change in a non-linearity parameter

and in CBTT a cascade of bifurcations occurs on a single

attracting trajectory. CBTT were demonstrated in the exam-

ples of harmonic and quadratic maps with power-law (and

falling factorial-law, which is asymptotically power-law)

memory derived from differential equations with the

Riemann-Liouville and Caputo fractional derivatives (and

from Caputo fractional difference equations) with a 2 ð0; 2Þ.
In regular continuous dynamical systems, the Poincar�e-

Bendixson theorem shows that chaos can only arise in sys-

tems with more than two dimensions. This is a consequence

of the fact that phase space trajectories cannot intersect.

Dependence of solutions of fractional differential equations

on the whole history of the corresponding system’s evolution

makes intersection of trajectories possible (see Fig. 2) and

one may consider a conjecture that chaos and CBTT are

possible in fractional systems with less than two dimensions.

One of the goals of the present paper is to investigate a possi-

bility of preserving chaotic behavior during a transition from

discrete to continuous fractional systems in less than two

dimensions.

There is also a fundamental question of the origin of the

Universe and a related question of the origin of the memory

of living species. Were there seeds of memory present at the

origin of the Universe? Were the fundamental laws of nature

FIG. 1. Bifurcations and cascade of bifurcations type trajectories in fractional/(fractional difference) maps: (a) a-K diagrams for the Caputo fractional (thin

lines) and fractional difference (bold lines) Standard Maps (see Ref. 3). Memory parameter a corresponds to the a in Eq. (4) and K is a non-linearity parameter,

which in the case a¼ 2 coincides with the non-linearity parameter in the regular Standard Map.74 Fixed point in the origin is stable below the lower curves and

chaos exists above the upper curves. Period doubling cascades of bifurcations occur between the lower and upper curves; (b) a single trajectory (CBTT) for the

Caputo fractional difference Standard Map with a ¼ 0:1, K¼ 2.4, and the initial condition x0 ¼ 0:1; (c) a single trajectory (intermittent CBTT) for the

Riemann-Liouville fractional Standard Map with a ¼ 1:557 and K¼ 4.21.
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memoryless, or did they have some form of memory? One of

the approaches is to assume that on the time and length

scales smaller than Planck time and length the fundamental

laws should have some memory and a feedback mechanism

in order to manage its evolution. This is a purely philosophi-

cal question unless we show that the presence of memory

may lead to a fundamentally different behavior of the

Universe on the large scales and compare it with the observa-

tions. This is yet another motivation to investigate the very

basic properties of systems with memory.

In what follows we prove the equivalence of the map

Eq. (4) with the non-negative integer power-law memory

(a ¼ m > 0) to the m-step memory map in Sec. II and prove

a similar theorem for the maps with a 2 R in Sec. III. In

Sec. IV, we consider behavior of the discrete maps with

power-law memory and transition to the continuous limit as

h! 0; in this section, we also discuss some properties of the

fractional Eulerian numbers. In Secs. V and VI, we summa-

rize our results and discuss their possible applications.

II. MAPS WITH NON-NEGATIVE INTEGER
POWER-LAW MEMORY

If we assume a¼ 1, then the map Eq. (4) for n> 0 is

equivalent to

x1 ¼ GKðx0; hÞ; xn � xn�1 ¼ GKðxn�1; hÞ; ðn > 1Þ (5)

and requires one initial condition x0. Calculation of the sec-

ond backward difference from Eq. (4) for xn in the case a¼ 2

for n> 0 yields

x1 ¼ GKðx0; hÞ; x2 ¼ 2GKðx0; hÞ þ GKðx1; hÞ;
xn � 2xn�1 þ xn�2 ¼ GKðxn�1; hÞ; ðn > 2Þ

(6)

with the initial condition x0. It is easy to see that for a¼ 3

(n> 3) and a¼ 4 (n> 4) calculating the third and the fourth

backward differences for xn we obtain correspondingly

x1 ¼ GKðx0; hÞ; x2 ¼ 4GKðx0; hÞ þ GKðx1; hÞ;
x3 ¼ 9GKðx0; hÞ þ 4GKðx1; hÞ þ GKðx2; hÞ;
xn � 3xn�1 þ 3xn�2 � xn�3

¼ GKðxn�1; hÞ þ GKðxn�2; hÞ; ðn > 3Þ (7)

and

x1 ¼ GKðx0; hÞ; x2 ¼ 8GKðx0; hÞ þ GKðx1; hÞ;
x3 ¼ 27GKðx0; hÞ þ 8GKðx1; hÞ þ GKðx2; hÞ;
x4 ¼ 64GKðx0; hÞ þ 27GKðx1; hÞ þ 8GKðx2; hÞ þ GKðx3; hÞ;
xn � 4xn�1 þ 6xn�2 � 4xn�3 þ xn�4

¼ GKðxn�1; hÞ þ 4GKðxn�2; hÞ þ GKðxn�3; hÞ; ðn > 4Þ:
(8)

Corresponding summations of Eqs. (5)–(8) with weights

ðn� kÞa�1
yield Eq. (4).

Based on Eqs. (5)–(8), we may expect the following

theorem:

Theorem 1. Any long term memory map

xn ¼
Xn�1

k¼0

ðn� kÞm�1GKðxk; hÞ; ðn > 0Þ; (9)

where m 2N, is equivalent to the m-step memory map

xn ¼
Xn�1

k¼0

ðn� kÞm�1GKðxk; hÞ; ð0 < n � mÞ;

Xm

k¼0

ð�1Þk
m

k

 !
xn�k ¼ dm�1GKðxn�1; hÞ þ

Xm�2

k¼0

Aðm� 1; kÞ

� GKðxn�k�1; hÞ; ðn > mÞ: (10)

In Eq. (10), the alternating sum on the left hand side (LHS)

is the mth backward difference for the xn; di is the Kronecker

delta (d0 ¼ 1 and di6¼0 ¼ 0); A(n, k) are the Eulerian

numbers

Aðn; kÞ ¼
Xk

j¼0

ð�1Þj nþ 1

j

� �
ðk þ 1� jÞn; (11)

defined for k; n 2N0 (N0 :¼N [ f0g), which satisfy the

recurrence formula

Aðn; kÞ ¼ ðkþ 1ÞAðn� 1; kÞ þ ðn� kÞAðn� 1; k� 1Þ: (12)

Proof 1. To prove that Eq. (9) leads to Eq. (10), we mod-

ify the left side of Eq. (10) using Eq. (9)

Xm

k¼0

ð�1Þk
m

k

 !
xn�k

¼
Xm

k¼0

ð�1Þk
m

k

 ! Xn�k�1

i¼0

ðn� k� iÞm�1GKðxi;hÞ ¼ S1þ S2;

(13)

where S1 and S2 are the sums taken over the points in the

upper triangular and the bottom rectangular areas in Fig. 3

correspondingly. After changing the order of summation in

S1, we have

S1 ¼
Xn�1

i¼n�m

GKðxi; hÞ
Xn�1�i

k¼0

ð�1Þk m
k

� �
ðn� k � iÞm�1: (14)

FIG. 2. A self intersecting phase space trajectory of the fractional Caputo

Duffing equation C
0 D1:5

t xðtÞ ¼ xð1� x2Þ; t 2 ½0; 40� with the initial condi-

tions xð0Þ ¼ 1 and dx=dtð0Þ ¼ 0:2. For the definition of the fractional

Caputo derivative, see Eq. (65).
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After introduction j ¼ n� i� 1, we have

S1 ¼
Xm�1

j¼0

GKðxn�j�1; hÞ
Xj

k¼0

ð�1Þk
m

k

 !
ðjþ 1� kÞm�1

¼
Xm�1

j¼0

Aðm� 1; jÞGKðxn�j�1; hÞ

¼ dm�1GKðxn�1; hÞ þ
Xm�2

k¼0

Aðm� 1; kÞGKðxn�k�1; hÞ: (15)

Here, we took into account that according to Eq. (21) below

Aðm� 1;m� 1Þ ¼ dm�1: (16)

For the second sum, we have

S2 ¼
Xn�m�1

i¼0

GKðxi; hÞ
Xm

k¼0

ð�1Þk m
k

� �
ðn� k � iÞm�1

¼
Xn�m�1

i¼0

GKðxi; hÞS3ðm; n� iÞ; (17)

where

S3ðm; jÞ ¼
Xm

k¼0

ð�1Þk m
k

� �
ðj� kÞm�1

(18)

and (mþ 1 � j � n).

Let us show that S3ðm; jÞ ¼ 0

S3ðm; jÞ ¼
Xm

k¼0

ð�1Þk
m

k

 !
ðj� kÞm�1

¼
Xm

k¼0

ð�1Þk
m

k

 !Xm�1

i¼0

ð�1Þikijm�1�i m� 1

i

 !

¼
Xm�1

i¼0

ð�1Þijm�1�i m� 1

i

 !
S4ðm; iÞ ¼ 0 (19)

because

S4ðm; iÞ ¼
Xm

k¼0

ð�1Þk m
k

� �
ki ¼

0; if 0 � i < m;

m!ð�1Þm; if i ¼ m:

(

(20)

A simple proof of Eq. (20) by induction can be found in Ref.

66 and a very elegant and short proof using generating func-

tions can be found on page 13 of Ref. 67.

For m> 1

Aðm� 1;m� 1Þ ¼
Xm�1

k¼0

ð�1Þk
m

k

 !
ðm� kÞm�1

¼
Xm

k¼0

ð�1Þk
m

k

 !
ðm� kÞm�1

¼ S3ðm;mÞ ¼ 0: (21)

This ends the first part of the proof.

Proof 2. Let us prove that if Eq. (9) is valid for n� m
� k < n (n>m) then, given Eq. (10), it is also valid for

k¼ n. Equation (10) can be written as

xn ¼
Xm�1

k¼0

Aðm� 1; kÞGKðxn�k�1; hÞ �
Xm

k¼1

ð�1Þk
m

k

 !
xn�k

¼ S1n � S2n: ð22Þ

Using the definition of A(n, k), Eq. (11), in S1n and substitut-

ing summation index k by j ¼ n� k � 1, we have

S1n ¼
Xn�1

j¼n�m

GKðxj;hÞ
Xn�j�1

k¼0

ð�1Þk m
k

� �
ðn� j� kÞm�1: (23)

Using Eq. (9) and changing the order of summation in S2n,

we have

S2n¼
Xn�m�1

j¼0

GKðxj;hÞ
Xm

k¼1

ð�1Þk
m

k

 !
ðn� j� kÞm�1

þ
Xn�2

j¼n�m

GKðxj;hÞ
Xn�j�1

k¼1

ð�1Þk
m

k

 !
ðn� j� kÞm�1: (24)

Now Eq. (22) can be written as

xn ¼
Xn�1

j¼n�m

ðn� jÞm�1GKðxj; hÞ

�
Xn�m�1

j¼0

GKðxj; hÞ
Xm

k¼1

ð�1Þk
m

k

 !
ðn� j� kÞm�1

¼
Xn�1

j¼0

ðn� jÞm�1GKðxj; hÞ

�
Xn�m�1

j¼0

GKðxj; hÞ
Xm

k¼0

ð�1Þk
m

k

 !
½ðn� jÞ � k�m�1: (25)

Using binomial formula and Eq. (20), it is easy to prove that

the last sum is equal zero.

This ends the proof of Theorem 1.

FIG. 3. The area of summation.
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III. MAPS WITH REAL POWER-LAW MEMORY

Let us consider the following total usually used to define

the Gr€unvald-Letnikov fractional derivative (see Refs. 38

and 47):

Xn

k¼0

ð�1Þk
a

k

 !
xn�k

¼ð�1Þn
a

n

 !
x0þ

Xn�1

k¼0

ð�1Þk
a

k

 ! Xn�k�1

i¼0

ðn�k� iÞa�1GKðxi;hÞ

¼ð�1Þn
a

n

 !
x0þ

Xn�1

i¼0

GKðxi;hÞ
Xn�i�1

k¼0

ð�1Þk
a

k

 !
ðn�k� iÞa�1

¼ð�1Þn
a

n

 !
x0þ

Xn�1

i¼0

GKðxi;hÞAða�1;n� i�1Þ; (26)

where a is a real number. Transformation from the first to

the second line in Eq. (26) requires changing of the order of

summations and can be seen on the same Fig. 3 if one

assumes m ¼ n� 1. We used the standard definition (see

Refs. 38 and 47)

a
n

� �
¼ a a� 1ð Þ a� nþ 1ð Þ

n!
¼ C aþ 1ð Þ

C nþ 1ð ÞC a� nþ 1ð Þ (27)

and the definition of the Eulerian numbers with fractional

order parameters introduced in Ref. 68

Aða; kÞ ¼
Xk

j¼0

ð�1Þj aþ 1

j

� �
ðk þ 1� jÞa: (28)

Validity of Eq. (4) for n¼ 1 follows from Eq. (26) with

n¼ 1. If we assume that Eq. (4) is true for k � n, then from

Eq. (26) written for nþ 1 follows:

xnþ1¼�
Xn

s¼1

ð�1Þs
a

s

 !Xn�s

k¼0

ðn�s�kþ1Þa�1GKðxk;hÞ

þ
Xn

k¼0

GKðxk;hÞ
Xn�k

s¼0

ð�1Þs
a

s

 !
ðn�k�sþ1Þa�1

¼�
Xn�1

k¼0

GKðxk;hÞ
Xn�k

s¼1

ð�1Þs
a

s

 !
ðn�s�kþ1Þa�1

þ
Xn

k¼0

GKðxk;hÞ
Xn�k

s¼0

ð�1Þs
a

s

 !
ðn�s�kþ1Þa�1

¼
Xn

k¼0

ðn�kþ1Þa�1GKðxk;hÞ: (29)

Now we may formulate the following theorem:

Theorem 2. Any long term memory map

xn ¼
Xn�1

k¼0

ðn� kÞa�1GKðxk; hÞ; ðn > 0Þ; (30)

where a 2 R and n 2N, is equivalent to the map

Xn

k¼0

ð�1Þk
a

k

 !
xn�k

¼ ð�1Þn
a

n

 !
x0 þ

Xn�1

k¼0

GKðxn�k�1; hÞAða� 1; kÞ: (31)

For n¼ 0, Eq. (31) yields the identity x0¼ x0 and for n¼ 1 it

yields x1 ¼ GKðx0; hÞ (notice that Aða; 0Þ ¼ 1). In the case of

a positive integer a ¼ m, Eq. (31) is equivalent to (in the

case n>m) Eq. (10). This follows from equations

m
k

� �
¼ 0 forðk>mÞ; Aðm�1;kÞ¼ 0 for k>m�1 (32)

and Eq. (16).

The property Aðm� 1; kÞ ¼ 0 for k > m� 1 follows

from Eq. (16) and repeated applications of the recurrence

formula Eq. (12): diagonal elements A(j, j) are equal to zero

and each element A(n, k) is a linear combination of the

elements to the left Aðn; k � 1Þ and below Aðnþ 1; kÞ with

respect to this element.

IV. BEHAVIOR OF SYSTEMS WITH REAL POWER-LAW
MEMORY

A. Discrete systems

For any finite h, systems with power-law memory are

discrete systems. Their behavior for a > 0 was preliminarily

investigated in papers.1–5,69–73 In the most important for bio-

logical applications cases, 0 < a < 2, the investigation is

more detailed and is done on the examples of the fractional

Standard and Logistic maps. Maps with m� 1 < a � m,

where m 2N, are equivalent to m-dimensional maps. For

integer values of a ¼ m > 1, these maps are m-dimensional

volume preserving maps with no (one-step) memory. It is

easy to see that after the introduction

x
ð0Þ
k ¼ xk;

x
ð1Þ
k ¼ x

ð0Þ
k � x

ð0Þ
k�1;

:::;

x
ðrÞ
k ¼ x

ðr�1Þ
k � x

ðr�1Þ
k�1 ;

:::;

x
ðm�1Þ
k ¼ x

ðm�2Þ
k � x

ðm�2Þ
k�1 ;

(33)

where k � m� 1, the map Eq. (10) can be written as

xðm�1Þ
n ¼x

ðm�1Þ
n�1 þ

Xm�2

k¼0

Aðm�1;kÞGK

Xk

i¼0

ð�1Þi k

i

 !
x
ðiÞ
n�1;h

 !

¼ x
ðm�1Þ
n�1 þF x

ð0Þ
n�1;::::x

ðm�2Þ
n�1

� �
;

xðm�2Þ
n ¼x

ðm�2Þ
n�1 þxðm�1Þ

n ;

:::;

xðm�kÞ
n ¼x

ðm�kÞ
n�1 þxðm�kþ1Þ

n ;

:::;

xð0Þn ¼x
ð0Þ
n�1þxð1Þn :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(34)
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The Jacobian matrix (m�m) of this transformation

Jðxð0Þnþ1
;x
ð1Þ
nþ1

;:::;x
ðm�1Þ
nþ1

Þðx
ð0Þ
n ; xð1Þn ; :::; xðm�1Þ

n Þ is

1þ @F

@x 0ð Þ
n

1þ @F

@x 1ð Þ
n

1þ @F

@x 2ð Þ
n

::: 1þ @F

@x m�2ð Þ
n

1

@F

@x 0ð Þ
n

1þ @F

@x 1ð Þ
n

1þ @F

@x 2ð Þ
n

::: 1þ @F

@x m�2ð Þ
n

1

@F

@x 0ð Þ
n

@F

@x 1ð Þ
n

1þ @F

@x 2ð Þ
n

::: 1þ @F

@x m�2ð Þ
n

1

::: ::: ::: ::: ::: :::

@F

@x 0ð Þ
n

@F

@x 1ð Þ
n

@F

@x 2ð Þ
n

::: 1þ @F

@x m�2ð Þ
n

1

@F

@x 0ð Þ
n

@F

@x 1ð Þ
n

@F

@x 2ð Þ
n

:::
@F

@x m�2ð Þ
n

1

��������������������������

��������������������������

:

The first column of this matrix can be written as the sum of

the column with one in the first row and the remaining zeros

and the column which is equal to @F=@xð0Þn times the last

column. The determinant of the latter one is zero. It is easy to

show recursively that determinant of the former one is equal

to one and the map Eq. (34) indeed is volume preserving.

As it has been shown in paper,1 the complexity of the

behavior of discrete systems with positive power law mem-

ory increases with the increase in power. When the power is

fractional, systems demonstrate the new types of behavior

which include the new types of attractors and the non-

uniqueness (dependence on the history) of solutions. The

new types of attractors include cascade of bifurcations types

trajectories (CBTT) and intermittent CBTT. As a result of

the non-uniqueness, attractors may overlap and phase space

trajectories intersect. Systems with a � 0 are not

investigated.

B. Continuous systems

Let us assume, according to the general approach in the

definition of the Gr€unvald-Letnikov fractional derivative, that

x ¼ xðtÞ; xk ¼ xðtkÞ; tk ¼ aþ kh; nh ¼ t� a (35)

for 0 � k � n. If one divides Eq. (10) by hm in the case of

positive integer values of a and considers a limit h! 0þ,

then the left side of the resulting equation will give the mth

derivative from x(t) at the time t. If we assume

GK x; hð Þ ¼ 1

C að Þ h
aGK xð Þ; (36)

where GKðxÞ is continuous, then xðtÞ 2 Cm. The map Eq. (4)

can be written as

x tð Þ ¼ 1

C að Þ h
Xn�1

k¼0;nh¼t�a

t� tkð Þa�1GK x tkð Þð Þ (37)

and in the limit h! 0 Theorem 1 can be formulated as a

well-known result.

Theorem 3. The Volterra integral equation of the sec-
ond kind

x tð Þ ¼ 1

C mð Þ

ðt

a

GK x sð Þð Þds

t� sð Þ1�m
; t > að Þ; (38)

where m 2N and GKðxÞ 2 C0 on the range D 2 R of the
function x(t) (t 2 ½a; b�), is equivalent on ½a; b� to the differen-
tial equation

dmx tð Þ
dtm

¼ 1

C mð Þ
Xm�1

k¼0

A m� 1; kð ÞGK x tð Þð Þ ¼ GK x tð Þð Þ; (39)

where we used the classical result
Pm�2

k¼0 Aðm� 1; kÞ
¼ CðmÞ, with the zero initial conditions

ck ¼
dkx tð Þ

dtk
t ¼ að Þ ¼ 0; k ¼ 0; 1; :::;m� 1: (40)

While discrete equations (9) and (10) have unique solu-

tions for any function GKðxÞ, the corresponding continuous

equations (38) and (39) require the Lipschitz condition on

GKðxÞ in D. Because this is not essential for this paper, in

what follows, we always assume that the GKðxÞ satisfies the

Lipschitz condition in D.

In the case ck 6¼ 0, the well-known equivalence of the

differential equation (39) to the Volterra integral equation of

the second kind

x tð Þ ¼
Xm�1

k¼0

ck

C kþ 1ð Þ t� að Þk þ 1

C mð Þ

ðt

a

GK x sð Þð Þds

t� sð Þ1�m
; t> að Þ

(41)

follows in the limit h! 0 from the following generalization

of Theorem 1.

Theorem 4. Any long term memory map

xn ¼
Xm�1

k¼0

ck

C kþ 1ð Þ nhð Þkþ hm

C mð Þ
Xn�1

k¼0

n� kð Þm�1
GK xkð Þ;

n> 0ð Þ;
(42)

where m 2N, is equivalent to the m-step memory map

xn ¼
Xm�1

k¼0

ck

C kþ 1ð Þ nhð Þk þ hm

C mð Þ
Xn�1

k¼0

n� kð Þm�1
GK xkð Þ;

0 < n � mð Þ;
Xm

k¼0

�1ð Þk m

k

 !
xn�k ¼

hm

C mð Þ
Xm�1

k¼0

A m� 1; kð ÞGK xn�k�1ð Þ;

n > mð Þ: (43)

Proof. The proof of this theorem is similar to the proof

of Theorem 1.

(1) The first part of the proof uses the fact that for n>m mth

backward difference of the first sum in Eq. (42) is equal

to zero

Xm

k¼0

�1ð Þk m
k

� �Xm�1

i¼0

ci

C iþ 1ð Þ n� kð Þh½ �i

¼
Xm�1

i¼0

cih
i

C iþ 1ð Þ
Xm

k¼0

�1ð Þk m
k

� �
n� kð Þi: (44)
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After we apply the binomial formula to ðn� kÞi and use

the identity Eq. (20), it is clear that the internal sum on

the right hand side (RHS) is equal to zero.

(2) In the second part of the proof, an additional term on the

RHS of Eq. (24) is

Xm

k¼1

�1ð Þk m

k

 !Xm�1

i¼0

ci

C iþ 1ð Þ n� kð Þh½ �i

¼
Xm�1

i¼0

cih
i

C iþ 1ð Þ
Xm

k¼1

�1ð Þk m

k

 !
n� kð Þi

¼ �
Xm�1

i¼0

ci

C iþ 1ð Þ nhð Þi; (45)

which completes the proof of Theorem 4.

(3) From Eq. (43) follows that xðaÞ ¼ x0 ¼ c0 and for

0 < n < m

x nð Þ að Þ ¼ lim
h!0

1

hn

Xn

k¼0

�1ð Þk n

k

 !
xn�k

¼ lim
h!0

1

hn

Xn

k¼0

�1ð Þk n

k

 !Xm�1

i¼0

cih
i

C iþ 1ð Þ n� kð Þi

¼ lim
h!0

1

hn

Xm�1

i¼0

cih
i

C iþ 1ð Þ
Xn

k¼0

�1ð Þk n

k

 !
n� kð Þi ¼ cn:

(46)

In the last sum, all terms with i< n are zeros because of

Eq. (20); limit h! 0 of all terms with i> n is also zero;

when i¼ n the only term which gives non-zero sum over

k in the binomial expansion of ðn� kÞn is ð�1Þnkn and

the corresponding sum is n!.
As we mentioned in Sec. I, a transition from discrete to

continuous dynamical system in the case m¼ 2 results in the

disappearance of chaos, which, in general, should not be

the case for systems with non-degenerate memory and for

the case, which is important in applications, 0 < a < 2, we

may expect that corresponding continuous systems will still

have chaotic solutions.

Let us consider the limit h! 0 for fractional a > 0 in

Eq. (31) divided by ha given in Eq. (35)

lim
n!1

nh ¼ t� a

h�a
Xn

k¼0

�1ð Þk a

k

 !
xn�k

(

¼ �1ð Þn a

n

 !
x0 þ

1

C að Þ
Xn�1

k¼0

haGK xn�k�1ð ÞA a� 1; kð Þ
)
:

(47)

The LHS of Eq. (47) coincides with the definition of the

Gr€unvald-Letnikov fractional derivative

lim
n!1

nh ¼ t� a

h�a
Xn

k¼0

ð�1Þk a
k

� �
xn�k

¼ lim
h! 0

nh ¼ t� a

h�a
Xn

k¼0

ð�1Þk a
k

� �
xðt� khÞ¼aDa

t xðtÞ; (48)

where x(t) is assumed to be dae times continuously differen-

tiable on ½a; t�. The first term on the RHS of Eq. (47) is equal

to zero:

lim
n!1

nh ¼ t� a

h�að�1Þn a
n

� �
x0 ¼ ð�1Þnx0ðt� aÞ�a

lim
n!1

na a
n

� �

(49)

and

lim
n!1

na a

n

 !�����
����� ¼ lim

n!1

naC aþ 1ð Þ
n!C 1� n� að Þð Þ

����
����

¼ C aþ 1ð Þsin pað Þ
p

����
���� lim

n!1

naC n� að Þ
n!

¼ C aþ 1ð Þsin pað Þ
p

����
���� lim

n!1

nan�a n� 1ð Þ!
n!

¼ C aþ 1ð Þsin pað Þ
p

����
���� lim

n!1

1

n
¼ 0: (50)

Here, we used the well known properties of the Gamma-

function: Cð1� zÞCðzÞ ¼ p= sinðpzÞ and limn!1Cðnþ aÞ=
½CðnÞna� ¼ 1.

The evaluation of the last term in Eq. (47) will require

some revision of the results obtained in Refs. 68 and 75:

(1) The last theorem (Theorem 9) proven in Ref. 68, which

states that for any a > 1 and k 2N0

Aða; kÞ ¼ Cðaþ 1Þ
ðkþ1

k

paðxÞdx; (51)

X1
k¼0

Aða; kÞ ¼ Cðaþ 1Þ; (52)

where

pa xð Þ :¼

0;

1

C að Þ
X

0�j<x

�1ð Þj
a

j

 !
x� jð Þa�1;

�1 < x � 0

0 < x <1

8>><
>>:

(53)

is based on the results from Ref. 75 which are obtained

for a > 0. The one line proof of Theorem 9 in Ref. 68 is

nowhere violated for 0 < a � 1. Thus, we assume that

Eqs. (51) and (52) are true for a > 0.

(2) According to the asymptotic formula for large k from the

fifth page of Ref. 75 for a > 0, integer k, and 0 < H � 1

paðk þHÞ ¼ Oðk�a�1ÞHa�1 þ Oðk�a�1 þ ka�½a��2Þ: (54)

Then

Aða� 1; kÞ ¼
Xk

j¼0

ð�1Þj a
j

� �
ðk þ 1� jÞa�1

¼ CðaÞpaðk þ 1Þ ¼ Oðk�a�1 þ ka�½a��2Þ: (55)

As a continuous function, xðsÞ attains its maximum xmax and

minimum xmin values on ½a; t� and is bounded (jxj < M1).
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Assuming that GKðxÞ is a continuous function on ½xmin; xmax�,
this function is also bounded (jGKðxÞj < M2). This yields

lim
n!1

Xn�1

k¼0

jGKðxn�k�1ÞAða� 1; kÞj

� lim
n!1

Xn�1

k¼0

M2Oðk�a�1 þ ka�½a��2Þ <1: (56)

Now, for a > 0, we may write

lim
n!1

nh ¼ t� a

Xn

k¼0

GK xn�kð ÞA a� 1; kð Þ

¼ lim
n!1

nh ¼ t� a

XN1

k¼0

GK x t� k

n
t� að Þ

� �� �
A a� 1; kð Þ

þ
X1

k¼N1þ1

GK xn�kð ÞA a� 1; kð Þ; (57)

where for an arbitrarily small e > 0 there exists N such that

for 8 N1 > N the following holds

X1
k¼N1þ1

GK xn�kð ÞA a� 1; kð Þ
�����

����� < e
2
: (58)

In Eq. (57), by choosing n > N2 � N1, the argument of the

function xðsÞ in the first sum on the right can be made arbi-

trarily close to t so that due to the continuity of xðsÞ and

GKðxÞ

XN1

k¼0

GK x t� k

n
t� að Þ

� �� �
�GKðx tð ÞÞ

� �
A a� 1; kð Þ < e

2
:

(59)

Equations (56)–(59) yield

lim
n!1

nh ¼ t� a

Xn

k¼0

GKðxn�kÞAða� 1; kÞ

¼ GKðxðtÞÞ lim
n!1

Xn

k¼0

Aða� 1; kÞ; (60)

where the series on the right converges absolutely for a > 0

according to Eq. (55). According to Eqs. (52) and (39) for

a � 1 the sum on the right is equal to CðaÞ and in the limit

h!1, we may formulate the following theorem.

Theorem 5. For a 2 R; a � 1, the Volterra integral
equation of the second kind

x tð Þ ¼ 1

C að Þ

ðt

a

GK x sð Þð Þds

t� sð Þ1�a ; t > að Þ; (61)

where GKðxðsÞÞ is a continuous on x 2 ½xminðsÞ; xmaxðsÞ�, s 2
½a; t� function is equivalent to the fractional differential
equation

aDa
t xðtÞ ¼ GKðxðtÞÞ; (62)

where the derivative on the left is the Gr€unvald-Letnikov
fractional derivative, with the zero initial conditions

ck ¼
dkx tð Þ

dtk
t ¼ að Þ ¼ 0; k ¼ 0; 1; :::; dae � 1: (63)

The methods used in Refs. 68 and 75 do not allow us to

prove Eq. (52) for �1 < a < 0 but based on the convergence

of the series in Eq. (60) we will formulate the following

conjecture.

Conjecture 6 Theorem 5 is valid for 0 < a < 1.

Theorem 5 and Conjecture 6 are not new results. It is

known (see Refs. 38, 47, and 48) that Riemann-Liouville and

Caputo derivatives coincide in the case ck ¼ dkxðtÞ=dtðt ¼ aÞ
¼ 0, k ¼ 0; 1; :::; ½a� and also that for xðtÞ 2 C½a�½a; T� and

integrable x½a�þ1ðtÞ in ½a; T� (a< t< T) Riemann-Liouville

and Gr€unvald-Letnikov fractional derivatives aDa
t xðtÞ

coincide.

For t> a, the left-sided Riemann-Liouville fractional

derivative is defined as

RL
a Da

t x tð Þ ¼Dn
t aIn�a

t x tð Þ ¼ 1

C n� að Þ
dn

dtn

ðt

a

x sð Þds

t� sð Þa�nþ1
; (64)

where n� 1 � a < n; a 2 R, n 2N; Dn
t ¼ dn=dtn, and 0Ia

t

is a Riemann-Liouville fractional integral. In the definition

of the left-sided Caputo fractional derivative, the order of

integration and differentiation is switched

C
a Da

t x tð Þ ¼ aIn�a
t Dn

t x tð Þ ¼ 1

C n� að Þ

ðt

a

Dn
sx sð Þds

t� sð Þa�nþ1
: (65)

In Refs. 76 and 77, Kilbas and Marzan showed that fractional

differential equation

C
a Da

t xðtÞ ¼ GKðt; xðtÞÞ; 0 < a; t 2 ½a; T� (66)

with the initial conditions

dkx tð Þ
dtk

t ¼ að Þ ¼ ck; k ¼ 0; 1; :::; dae � 1 (67)

is equivalent to the Volterra integral equation of the second

kind

x tð Þ¼
Xdae�1

k¼0

ck

C kþ1ð Þ t�að Þkþ 1

C að Þ

ðt

a

GK s;x sð Þð Þds

t�sð Þ1�a ; t> að Þ

(68)

in the space Cdae�1½a; T�. A similar result for the equivalence

of the equation with the Riemann-Liouville fractional

derivative

RL
a Da

t xðtÞ ¼ Gkðt; xðtÞÞ; 0 < a; (69)

with the initial conditions

ðRL
a Da�k

t xÞðaþÞ ¼ ck; k ¼ 1; 2; :::; dae (70)

to the Volterra integral equation of the second kind
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x tð Þ ¼
Xdae
k¼1

ck

C a� k þ 1ð Þ t� að Þa�k þ 1

C að Þ

ðt

a

GK s; x sð Þð Þds

t� sð Þ1�a ; t > að Þ (71)

for xðtÞ 2 Lða; TÞ and Gðt; xðtÞÞ 2 Lða; TÞ was proved by Kilbas et al. in Refs. 78 and 79.

On one hand, in the case of xðtÞ 2 Cdae�1½a; T� and the zero initial conditions, all above defined derivatives are equivalent

and Eq. (62) is equivalent to Eq. (61). On the other hand, we saw that for a > 0 Eq. (61) is equivalent (see Eq. (60)) to

aDa
t x tð Þ ¼ 1

C að ÞGKðx tð ÞÞ lim
n!1

Xn

k¼0

A a� 1; kð Þ: (72)

This proves Conjecture 6 and Eq. (52) for a > �1.

We will end this section with the theorem which in the limit h! 0 yields the equivalence of problem Eq. (69) and

Eq. (70) to the problem Eq. (71) in the case cdae ¼ 0, which corresponds to a finite value of x(a).

Theorem 7. Any long term memory map

xn ¼
Xdae�1

k¼1

ck

C a� k þ 1ð Þ nhð Þa�k þ
Xn�1

k¼0

n� kð Þa�1
GK xk; hð Þ; (73)

where a 2 R, is equivalent to the map

Xn

k¼0

�1ð Þk a

k

 !
xn�k �

Xdae�1

i¼1

cih
a�i

C a� iþ 1ð Þ
Xi�1

k¼0

�1ð Þk i� 1

k

 !
A a� i; n� k � 1ð Þ

¼ �1ð Þn a

n

 !
x0 þ

Xn�1

k¼0

GK xn�k�1; hð ÞA a� 1; kð Þ: (74)

Proof 1. The first part of the proof is the same as the proof of Theorem 2 plus the following result:

Xn

k¼0

�1ð Þk a

k

 !Xdae�1

i¼1

ci

C a� iþ 1ð Þ n� kð Þh½ �a�i ¼
Xdae�1

i¼1

cih
a�i

C a� iþ 1ð Þ
Xn�1

k¼0

�1ð Þk a

k

 !
n� kð Þa�i

¼
Xdae�1

i¼1

cih
a�i

C a� iþ 1ð Þ
Xi�1

k¼0

�1ð Þk i� 1

k

 !
A a� i; n� k � 1ð Þ: (75)

Here, we used the identity

Xn�1

k¼0

ð�1Þk
a

k

 !
ðn� kÞa�i ¼

Xn�1

k¼0

ð�1Þk
Xi�1

j¼0

i� 1

j

 !
a� iþ 1

k � j

 !
ðn� kÞa�i ¼

Xi�1

j¼0

i� 1

j

 !Xn�1

k¼j

ð�1Þk
a� iþ 1

k � j

 !
ðn� kÞa�i

¼
Xi�1

j¼0

ð�1Þj
i� 1

j

 !Xn�j�1

k¼0

ð�1Þk
a� iþ 1

k

 !
ðn� k � jÞa�i

¼
Xi�1

k¼0

ð�1Þk
i� 1

k

 !
Aða� i; n� k � 1Þ; 0 < i < dae: (76)

Proof 2. Equation (74) with n¼ 1 yields Eq. (73). If we assume that Eq. (73) is true for k � n, then we may write the equa-

tion for xnþ1 as in Eq. (29) with two additional terms on the RHS

xnþ1¼
Xn

k¼0

n�kþ1ð Þa�1
GK xk;hð Þþ

Xdae�1

i¼1

cih
a�i

C a�iþ1ð Þ
Xi�1

k¼0

�1ð Þk i�1

k

 !
A a�i;n�kð Þ�

Xn

k¼1

�1ð Þk a

k

 !Xdae�1

i¼1

cih
a�i

C a�iþ1ð Þ nþ1�kð Þa�i

¼
Xn

k¼0

n�kþ1ð Þa�1
GK xk;hð Þþ

Xdae�1

i¼1

cih
a�i

C a�iþ1ð Þ
Xi�1

k¼0

�1ð Þk i�1

k

 !
A a�i;n�kð Þ

�
Xdae�1

i¼1

cih
a�i

C a�iþ1ð Þ
Xn

k¼0

�1ð Þk a

k

 !
nþ1�kð Þa�i� nþ1ð Þa�i

" #

¼
Xdae�1

k¼1

ck

C a�kþ1ð Þ nþ1ð Þh½ �a�kþ
Xn

k¼0

n�kþ1ð Þa�1
GK xk;hð Þ: (77)
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Proof 3. From fractional calculus, it is known that the Gr€unvald-Letnikov fractional derivative of the power function

f ðtÞ ¼ ðt� aÞb is

aDa
t t� að Þb ¼ lim

n!1
nh ¼ t� a

h�a
Xn

k¼0

�1ð Þk a
k

� �
n� kð Þh½ �b ¼ C bþ 1ð Þ

C �aþ bþ 1ð Þ t� að Þb�a
; (78)

where a < 0; b > �1 or 0 � m � a < mþ 1; b > m (see Sec. 2.2.4 in Ref. 38). This yields for b ¼ a� i, i 2 Z, and b; a > 0

lim
n!1

nh ¼ t� a

h�a
Xn

k¼0

ð�1Þk a
k

� �
½ðn� kÞh�b ¼

Cðbþ 1Þðt� aÞ�i=ð�iÞ!; i < 0;

Cðbþ 1Þ; i ¼ a� b ¼ 0;

0; i > 0:

8>><
>>: (79)

For k ¼ 1; 2; :; dae � 1, Eq. (73) leads to

aDa�k
t x aþð Þ ¼ lim

t!aþ
lim

n!1
nh ¼ t� a

hk�a
Xn

j¼0

�1ð Þj a� k

j

 !
xn�j;¼ lim

t!aþ
lim

n!1
nh ¼ t� a

hk�a
Xn

j¼0

�1ð Þj a� k

j

 !Xdae�1

i¼1

ci

C a� iþ 1ð Þ n� jð Þh½ �a�i

¼
Xdae�1

i¼1

ci

C a� iþ 1ð Þ lim
t!aþ

lim
n!1

nh ¼ t� a

hk�a
Xn

j¼0

�1ð Þj a� k

j

 !
n� jð Þh½ �a�i

¼
Xdae�1

i¼1

ci

C a� iþ 1ð Þ

limt!aþC a� iþ 1ð Þ t� að Þk�i
= k� ið Þ!; k > i;

C a� iþ 1ð Þ; i ¼ k;

0; k < i

¼ ck: ð80Þ

8>><
>>:

The direct calculation of the LHS of Eq. (79) with m ¼ �i � 0 yields

lim
n!1

nh¼ t�a

h�a
Xn

k¼0

�1ð Þk
a

k

 !
n� kð Þh½ �b¼ lim

n!1
nh¼ t�a

hm
Xn

k¼0

�1ð Þk
b�m

k

 !
n� kð Þb

¼ lim
n!1

nh¼ t�a

hm
Xn

k¼0

�1ð Þk n� kð Þb
Xk

j0¼0

�1ð Þj0
b�mþ1

k� j0

 !

¼ t�að Þm lim
n!1

n�m
Xn�1

j0¼0

Xn�j0�1

k¼0

�1ð Þk b�mþ1

k

 !
n� j0�kð Þb

¼ t�að Þm lim
n!1

n�m
Xn�1

j0¼0

Xj0

k¼0

�1ð Þk
b�mþ1

k

 !
j0þ1� kð Þb

¼ t�að Þm lim
n!1

n�m
Xn�1

j0¼0

Xj0

j1¼0

Xj1

j2¼0

:::
Xjm

k¼0

�1ð Þk
bþ1

k

 !
jmþ1� kð Þb

¼ t�að Þm lim
n!1

n�m
Xn�1

j0¼0

Xj0

j1¼0

Xj1

j2¼0

:::
Xjm�1

jm¼0

A b; jmð Þ¼ 1

m!
t�að Þm lim

n!1

Xn�1

s¼0

C mþn� sð Þ
nmC n� sð Þ

A b;sð Þ

¼ 1

m!
t�að Þm lim

n!1

Xn�1

s¼0

D m;n;sð ÞA b;sð Þ¼ 1

m!
t�að Þm lim

n!1
Sn¼

1

m!
C bþ1ð Þ t�að Þm: (81)

The transition within the sixth line of this chain of transformations is based on Theorem 1 from Ref. 4, which states that for

8n 2N

aD
�n
t f tð Þ ¼ 1

n� 1ð Þ!
Xt�n

s¼a

t� s� 1ð Þ n�1ð Þ
f sð Þ ¼

Xt�n

s0¼a

Xs0

s1¼a

:::
Xsn�2

sn�1¼a

f sn�1ð Þ; (82)

where falling factorial function tðaÞ is defined as
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t að Þ ¼ C tþ 1ð Þ
C tþ 1� að Þ : (83)

For m¼ 0, the equality

lim
n!1

Xn�1

s¼0

C mþ n� sð Þ
nmC n� sð Þ

A b; sð Þ ¼ C bþ 1ð Þ (84)

coincides with Eq. (52), which is true for b > �1. SeriesPn�1
s¼0 Aðb; sÞ converges absolutely and Dðm; n; sÞ, which is a

product of m factors

D m;n; sð Þ ¼ 1� s

n

� �
1� s� 1

n

� �
… 1� s�mþ 1

n

� �

< 1þm

n

� �m

; (85)

is bounded. This means that Sn converges absolutely to

some S. For 8e > 0, there exists N1 such that for 8N � N1

simultaneously j
PN2�1

s¼N1
Dðm;N2; sÞAðb; sÞj < e=3 and

jCðbþ 1Þ �
PN1�1

s¼0 Aðb; sÞj < e=3. For N2 � N1 and s � N1,

1� m
N1

N2

< 1� N1

N2

� �m

< D m;N2; sð Þ < 1þ N1

N2

� �m

< 1þ m2

N2

þ o
m2

N2

� �
(86)

and

jD m;N2; sð Þ � 1j < m
N1

N2

: (87)

For 8N2 > Ne, where

Ne ¼
3mN1

P1
s¼0

jA b; sð Þj

e
; (88)

we can write

jSN2
� Cðbþ 1Þj ¼

XN2�1

s¼0

Dðm;N2; sÞAðb; sÞ � Cðbþ 1Þ
�����

����� <
XN2�1

s¼N1

Dðm;N2; sÞAðb; sÞ
�����

�����
þ
XN1�1

s¼0

jDðm;N2; sÞ � 1jjAðb; sÞj þ
XN1�1

s¼0

Aðb; sÞ � Cðbþ 1Þ
�����

����� < e: (89)

This means that S ¼ Cðbþ 1Þ.
If in Eq. (79) i> 0, then using Eq. (76), we may write

lim
n!1

nh ¼ t� a

h�a
Xn

k¼0

ð�1Þk
a

k

 !
½ðn� kÞh�b ¼ lim

n!1
nh ¼ t� a

h�i
Xn

k¼0

ð�1Þk
a

k

 !
ðn� kÞa�i

¼ ðt� aÞ�i
lim

n!1
ni
Xi�1

k¼0

ð�1Þk
i� 1

k

 !
Aða� i; n� k � 1Þ: (90)

Comparing Eq. (90) with Eq. (79), we may formulate a new

property of Eulerian numbers

lim
n!1

ni
Xi�1

k¼0

ð�1Þk i� 1

k

� �
Aða� i; n� k � 1Þ ¼ 0; ði > 0Þ:

(91)

V. SUMMARY

Here, we summarize the main results obtained in this pa-

per. We start with the fractional difference calculus.

Theorem 2 can be formulated as the equivalence of maps

with power-law memory (power a� 1) generated by a func-

tion GKðx; hÞ, where x is the map’s variable, K is a parame-

ter, and h is the map’s step (constant time interval between

two consecutive iterations), to fractional difference equations

in which the Gr€unvald-Letnikov like fractional difference

operator acting on the map’s variable on the LHS is equal to

the convolution of the values of the generating function from

all previous steps k with the Eulerian numbers Aða� 1; kÞ on

the RHS. In the case of an integer power-law memory, this

theorem can be formulated as a simpler result (Theorem 1):

any long term non-negative integer power-law memory

(power m – 1) map is equivalent to a m-step memory map

(the mth backward difference on the LHS is equal to the con-

volution of the generating functions from the MAXð1;m� 1Þ
previous values of the map’s variable with the Eulerian num-

bers Aðm� 1; kÞ on the RHS). Maps with the long term posi-

tive integer (m> 1) power-law memory are equivalent to the

m-dimensional volume preserving maps with no (one-step)

memory.

In the continuous limit (h! 0), Theorems 1 and 2 yield

the well-known results of the equivalence of differential
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equations to the integral Volterra equations of the second

kind in both integer and fractional cases. In the process of

transition to the continuous limit, we were able to prove that

the property of Eulerian numbers
P1

k¼0 Aða; kÞ ¼ Cðaþ 1Þ,
Eq. (52), known for a > 1, is true for a > �1 and obtained a

new property of Eulerian numbers [Eq. (91)].

VI. CONCLUSION

Phase space of discrete non-linear integer maps with

power-law memory may demonstrate islands of stability and

chaotic areas. These maps are well investigated for m¼ 2 but

investigation of general properties of such maps for m> 2 is

far from completion. Equation (5) yields the regular logistic

map if we assume GKðx; hÞ ¼ �GL
KðxÞ ¼ �xþ Kxð1� xÞ.

Equation (34) with GKðx; hÞ ¼ �GSM
K ðxÞ ¼ �K sinðxÞ yields

the regular standard map. This is why we will call maps Eqs.

(9), (10), (73), and (74) with GKðx; hÞ ¼ �GL
KðxÞ the logistic

maps with memory or the fractional logistic maps and with

GKðx; hÞ ¼ �GSM
K ðxÞ the standard maps with memory or the

fractional standard maps. Initial investigation of maps with

long term fractional power-law memory in Refs. 1–5 and

69–73 has been done on the examples of the fractional logis-

tic and standard maps with 0 < a < 3. New types of attrac-

tors (CBTT) were obtained for 0 < a < 2.

If we consider Eq. (74) with GKðx; hÞ ¼ haKGðxÞ, then,

up to the term depending on the initial conditions, solution

of this fractional difference equation depends only on the

product haK. This type of systems includes fractional stand-

ard map (GðxÞ ¼ �sinðxÞ) and a system, which in the limit

h! 0 yields the fractional logistic differential equation

(GðxÞ ¼ xð1� xÞ). In the case h¼ 1 for 0 < a < 2, the frac-

tional standard and logistic maps with jKj�1 have only sinks

(see Fig. 1(a)) (no chaos). We may conclude that for small h
there will be no chaotic trajectories for jKj�h�a, which

implies a possibility that in the limit h! 0 the fractional

logistic differential equation and the limit of the fractional

standard map (DaxðtÞ=Dta ¼ K sinðxÞ) will have no chaotic

solutions for 0 < a < 2. This kind of reasoning may not

work for all fractional systems. The stability of the x¼ 1

fixed point of the fractional logistic differential equation also

follows from the elementary stability analysis (see, e.g., Ref.

80). In Ref. 81, on the basis of the analysis of two fractional

order autonomous non-linear systems, authors conjectured

that chaos may exist in autonomous non-linear systems with

a total system’s order of 2þ e, where 0 < e < 1. Examples

of fractional chaotic attractors in continuous systems of the

order less than three can be found also in Ref. 82.

To the best of our knowledge, there is no proof that

chaos cannot exist in fractional systems of the order less than

two. To prove it or to find a counterexample is a challenging

problem. Another challenging problem is to investigate if

there are analogs of cascade of bifurcations type trajectories

in continuous systems.
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