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An observable of a disordered system is self-averaging when its properties do not depend on the
specific realization considered. Lack of self-averaging, on the other hand, implies that sample to
sample fluctuations persist no matter how large the system is. The latter scenario is often found
in the vicinity of critical points, such as at the metal-insulator transition of interacting many-body
quantum systems. Much attention has been devoted to these systems at equilibrium, but little is
known about their self-averaging behavior out of equilibrium, which is the subject of this work.
We consider two local and two non-local quantities in real space that are of great experimental
and theoretical interest. In the metallic phase, we show that their self-averaging behavior is highly
dependent on the observable itself and on the time scale, but the picture simplifies substantially as
we approach localization. In this phase, the local quantities are self-averaging at any time, while
the non-local ones are non-self-averaging at all time scales.

I. INTRODUCTION

When dealing with disordered systems, a central ques-
tion is whether self-averaging holds or not [1]. A quan-
tity is self-averaging when the ratio between its variance
over disorder realizations and the square of its average
decreases with system size [2–10]. This implies that the
number of samples used in experiments and statistical
analyses can be reduced as the system size increases. It
also means that in the thermodynamic limit, the quan-
tity’s behavior does not depend on any particular disor-
der realization. If self-averaging does not hold, averages
over large sets of realizations are needed no matter how
large the system is.

Studies of self-averaging are commonly associated with
the analyses of normal and anomalous diffusion [11–14]
and with transitions into the spin-glass state [5, 15, 16].
A variety of quantities have been investigated, from sus-
ceptibility, specific heat, and conductance to order pa-
rameter, free energy, and entanglement entropy. At crit-
ical points, self-averaging is usually absent [2–9, 17–19].

In recent numerical studies of interacting many-body
quantum systems with onsite disorder, self-averaging is
often assumed to hold in the chaotic regime, while more
care is taken only in the vicinity of the metal-insulator
transition. For this case, discussions about the violation
of self-averaging have been made mostly in the context
of systems at equilibrium [20–22]. Very few works target
the self-averaging properties of these many-body quan-
tum systems out of equilibrium, with the existing ones
concentrating on driven systems [10, 23] or on the two-
level form factor [24–28], which is simply an alternative
to analyze spectral properties in the time domain.

When we first approached the subject of self-averaging,
our original goal was to fill this gap by analyzing what
happens to the self-averaging behavior of interacting

quantum systems out of equilibrium. The plan was to
investigate how the behavior of different quantities and
at different time scales would change as the disorder
strength increases and the system approaches a many-
body localized phase. To our surprise, we found analyti-
cally and confirmed numerically that even in the chaotic
regime, when the disorder strength is of the order of
the coupling parameters, some quantities are non-self-
averaging, the results depending strongly on the quantity
and on the time scale. The paper that we ended up writ-
ing was then entirely dedicated to the chaotic regime [29].
In this new work, we come back to our original goal and
investigate the self-averaging properties of an interacting
spin model out of equilibrium as a function of its disorder
strength.

We consider four quantities that have been extensively
studied in nonequilibrium quantum dynamics: survival
probability, inverse participation ratio, spin autocorrela-
tion function, and connected spin-spin correlation func-
tion. The first two are non-local in space and the last
two are local quantities studied experimentally. The spin
autocorrelation function is equivalent to the density im-
balance used in experiments with cold atoms [30] and the
connected spin-spin correlation function is measured in
experiments with ion traps [31].

In the chaotic regime, the results are non-trivial. The
survival probability is not self-averaging at any time
scale, the inverse participation ratio is self-averaging
only at long times, the spin autocorrelation function is
self-averaging only at short times, and the connected
spin-spin correlation function is self-averaging at any
time scale [29]. At localization, we show that the re-
sults become rather simple: our local quantities are self-
averaging at any time scale and our non-local quanti-
ties are non-self-averaging at all times. We also provide
several numerical results and justifications for the vari-
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ous behaviors encountered as the system moves from the
metallic to the insulating phase.

The paper is organized as follows. Self-averaging is
defined in Sec. II, where we present also the model, ini-
tial states, and observables. Each one of the next four
sections is then dedicated to one of the four quantities
investigated. The plots contain on the left columns the
entire evolution of the average values of the observables
and on the right columns, the corresponding results for
the relative variances. Conclusions are given in Sec. VII.

II. SELF-AVERAGING, MODEL, INITIAL
STATES, AND OBSERVABLES

This section defines the property of self-averaging and
presents the spin model, the picked initial states and the
quantities that we study.

A. Self-Averaging

A quantity O is self-averaging when its relative vari-
ance, that is the ratio between its variance σ2

O over dis-
order realizations and the square of its mean,

RO(t) =
σ2
O(t)

〈O(t)〉2
=

〈
O2(t)

〉
− 〈O(t)〉2

〈O(t)〉2
, (1)

goes to zero as the system size L increases. The notation
〈.〉 in the equation above indicates average over disorder
realizations. In our case, it also includes averages over
initial states. These states are all very similar, as we
stress later, since we take them in a very narrow window
of energy around the center of the spectrum. The de-
crease of the relative variance with L implies that in the
thermodynamic limit, the sample to sample fluctuations
vanish.

Strong self-averaging refers to the case where RO(t) ∼
L−1, and weak self-averaging means that RO(t) ∼ L−ν

with 0 < ν < 1. In many-body quantum systems, where
the initial state can eventually spread over an exponen-
tially large many-body Hilbert space, one can also en-
counter what we call “super” self-averaging, when the
relative variance decreases exponentially with the system
size [29].

We emphasize that self-averaging is a concept intrin-
sically related with the presence of randomness in the
system. The relative variance, RO(t), that we study here
involves averages over disorder realizations. It is different
from relative variances involving temporal averages,

TO =
O2 −O2

O
2 , (2)

where

O = lim
T→∞

1

T

∫ T

0

O(t)dt. (3)

While RO(t) depends on time, TO is time independent.
TO is employed in studies of equilibration and thermal-
ization [32–35].

Equilibration happens after the relaxation time tR,
when the dynamics finally saturates and the observable
simply fluctuates around its infinite time average O.
At this large time scales one can expect RO(t > tR)
to coincide with TO when the system is chaotic, since
ergodicity implies that time averages and ensemble
averages agree.

B. Model and Initial State

We consider a one-dimensional spin-1/2 model with lo-
cal two-body interactions and onsite static disorder. The
Hamiltonian is given by

H = Hh +HXXZ, (4)

where

Hh = J

L∑
k=1

hkS
z
k ,

HXXZ = J

L∑
k=1

(SxkS
x
k+1 + SykS

y
k+1 + SzkS

z
k+1). (5)

Above, ~ = 1, Sx,y,zk are the spin operators on site k,
L is the size of the chain, which has periodic condi-
tions, and J sets the energy scale. The Zeeman split-
ting on each site is Jhk, where hk are independent ran-
dom numbers uniformly distributed in [−h, h] and h is
the disorder strength. The total magnetization in the
z-direction is conserved. We work in the largest sub-
space, which has zero total z-magnetization and dimen-
sion D = L!/(L/2)!2.

The model is integrable when h = 0. It becomes
chaotic when h ∼ 1, due to the interplay between dis-
order and the Ising interaction SzkS

z
k+1. It approaches a

many-body localized phase when the disorder strength is
larger than a critical value, h > hc [36–40].

We denote the eigenstates of Hh by |n〉 and the eigen-
states and eigenvalues of H by |α〉 and Eα, respectively.
The initial state |Ψ(0)〉 that we choose is an eigenstate of
Hh with energy very close to the center of the spectrum,

E0 = 〈Ψ(0)|H|Ψ(0)〉 =
∑
α

∣∣c0α∣∣2Eα ∼ 0, (6)

where c0α = 〈α|Ψ(0)〉.
For each curve in the plots of this work, we per-

form averages over 0.01D initial states with E0 ∼ 0
and 104/(0.01D) disorder realizations, so that the total
amount of data is ∼ 104.
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C. Quantities

We investigate the self-averaging behavior of two non-
local quantities in space, the survival probability and the
inverse participation ratio, and two local experimental
observables, the spin autocorrelation function and the
connected spin-spin correlation function.

1. Survival Probability

The survival probability gives the probability to find
the initial state later in time [41–56],

PS(t) =
∣∣〈Ψ(0)| e−iHt |Ψ(0)〉

∣∣2 =

∣∣∣∣∣∑
α

∣∣c0α∣∣2 e−iEαt
∣∣∣∣∣
2

.

(7)
It is a non-local quantity in space and also in time, since
it is an autocorrelation function. It can be written in an
integral form as

PS(t) =

∣∣∣∣∫ ρ0(E)e−iEtdt

∣∣∣∣2 , (8)

where

ρ0(E) =
∑
α

∣∣c0α∣∣2 δ(E − Eα) (9)

is the energy distribution of the initial state. The square
of the width of ρ0(E),

Γ2 =
∑
n6=0

|〈n|H|Ψ(0)〉|2, (10)

is related to the number of states |n〉 directly coupled to
the initial state, which is ∝ L for our spin model.

2. Inverse Participation Ratio

The inverse participation ratio quantifies the spread of
the initial state in the many-body Hilbert space defined
by the states |n〉 [57]. It can be written as an out-of-
time order correlator where the operators are projection
operators [58]. It is given by

IPR(t) =
∑
n

∣∣〈n| e−iHt |Ψ(0)〉
∣∣4 . (11)

At t = 0, IPR(0) = 1. At short times, the initial decay-
ing behavior is very similar to the square of the survival
probability. This changes as |Ψ(0)〉 spreads and the dy-
namics pick up the other states |n〉.

3. Spin Autocorrelation Function

The spin autocorrelation function measures how close
the spin configuration in the z-direction at a time t is to
the initial spin configuration,

I(t) =
4

L

L∑
k=1

〈Ψ(0)|SzkeiHtSzke−iHt |Ψ(0)〉 . (12)

This quantity is similar to the density imbalance between
even and odd sites measured in experiments with cold
atoms [30].

4. Connected Spin-Spin Correlation Function

The connected spin-spin correlation function is given
by

C(t) =
4

L

∑
k

[
〈Ψ(t)|SzkSzk+1 |Ψ(t)〉 (13)

− 〈Ψ(t)|Szk |Ψ(t)〉 〈Ψ(t)|Szk+1 |Ψ(t)〉
]
.

It is measured in experiments with ion traps [31].

III. SURVIVAL PROBABILITY

In the chaotic regime, the survival probability is not
self-averaging at any time scale [29]. This was shown
analytically by evolving PS(t) with full random matrices.
Based on numerical results for all times and analytical
results for short and long times, we verified that the same
is true also for the disordered chaotic spin model [29]. As
we now explain, the survival probability remains non-self-
averaging at all times as the disorder strength increases
and the system approaches localization.

A. Short Times: t < Γ−1

An expansion for short times gives RPS (t < Γ−1) =

σ2
Γ2t4 + O(t6), where σ2

Γ2 =
〈
Γ4
〉
−
〈
Γ2
〉2

. This result
is independent of the disorder strength. According to
Eq. (10), Γ2 only depends on the off-diagonal elements
of H, while the disorder enters on the diagonal elements.
This implies that the relative variance of PS increases
linearly with system size for any (reasonable value of the)
disorder strength,

RPS (t < Γ−1) ∝ J4t4L, (14)

This is indeed what we see in Fig. 1, where we show the
average value of the survival probability on the left panels
and its relative variance on the right panels for six values
of the disorder strength, from top panel to bottom panel:
h = 0.75, 1, 1.5, 2, 3, 4. The value h = 0.75 represents the
chaotic region and for h = 4, the system should already
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be in the localized phase. There is not much difference
in the behavior of RPS (t) at short times for the different
disorder strengths.
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FIG. 1. Left panels: Mean value of the survival probability.
Right panels: Relative variance of the survival probability.
The values of the disorder strength are indicated on the left
panels, they increase from the top to the bottom panel. The
curves correspond to system sizes L = 10 (black), 12 (blue),
14 (green), and 16 (red). On each left panel, L increases
from top to bottom and the horizontal dashed line for L = 16
indicates the saturation point.

B. Long Times: t > tR

At times beyond the saturation of the dynamics, that
is for t > tR, the survival probability for each disorder
realization fluctuates around its infinite-time average,

PS =
∑
α

∣∣c0α∣∣4 . (15)

This is because in the absence of too many degeneracies
in the spectrum, the first term on the right hand side of

the equation

PS(t) =
∑
α 6=β

|c0α|2|c0β |2e−i(Eα−Eβ)t +
∑
α

∣∣c0α∣∣4
cancels out. Equivalently, for the disorder average of the
survival probability at long times, the first term on the
right hand side of the equation

〈PS(t > tR)〉 =

〈∑
α6=β

|c0α|2|c0β |2e−i(Eα−Eβ)t

〉
+

〈∑
α

∣∣c0α∣∣4
〉

also cancels out, so

〈PS(t > tR)〉 =

〈∑
α

∣∣c0α∣∣4
〉
. (16)

To compute RPS (t > tR), we need〈
P 2
S(t > tR)

〉
=〈 ∑

α,β,γ,δ

|c0α|2|c0β |2|c0γ |2|c0δ |2e−i(Eα−Eβ+Eγ−Eδ)t

〉
.

In the equation above, the terms that do not average out
are α = β, γ = δ, α 6= δ, and α = δ, β = γ, α 6= β, and
α = β = γ = δ. Therefore,

〈
P 2
S(t > tR)

〉
= 2

〈∑
α 6=β

∣∣c0α∣∣4 ∣∣c0β∣∣4
〉

+

〈∑
α

∣∣c0α∣∣8
〉
.

and

RPS (t > tR) = (17)

2

〈(∑
α

∣∣c0α∣∣4)2
〉
−
〈∑

α

∣∣c0α∣∣4〉2

−
〈∑

α

∣∣c0α∣∣8〉〈∑
α |c0α|

4
〉2 .

In the chaotic regime, the eigenstates away from the
edges of the spectrum and therefore also the initial states
are similar to the eigenstates from full random matri-
ces, that is, they are approximately normalized random
vectors. This means that the coefficients c0α are approx-
imately random numbers from a Gaussian distribution

with the constraint
∑
α

∣∣c0α∣∣2 = 1. In this case,

〈PS(t > tR)〉 =
〈
PS
〉
∝ 1

D
(18)

and

RPS (t > tR) ' 1, (19)

which implies that the long-time relative variance of the
survival probability in the chaotic regime is independent
of the system size. The lack of self-averaging in this case
is connected with the remaining memory of the initial
state, which is a characteristic of autocorrelation func-
tions.
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As the disorder strength increases above 1, the eigen-
states of the system get further away from those of full
random matrices, correlations build up between their
components and the fluctuations of PS(t) at long times
increase. In this case, RPS (t > tR) becomes dependent
on L and reaches values even larger than 1, as seen on
the right panels of Fig. 1. For a given system size, the
largest values of RPS (t > tR) appear in the intermedi-
ate region between chaos and localization, with the case
of h = 2 in Fig. 1 (h) serving as a good example. This
is the region where the eigenstates become fractal [59–
62], so that they are very different from each other even
when close in energy, some states are strongly localized
in real space, while others spread over a larger number
of spin configurations. This reflects quite naturally on a
large relative variance. While the growth of RPS (t > tR)
with L in the intermediate region (h = 2) seems to be
exponential, in the localized phase (h = 4), it is linear.

C. Intermediate Times: Γ−1 < t < tR

At intermediate times, Γ−1 < t < tR, one sees that
the oscillations that show in the evolution of 〈PS(t)〉
are reflected also in oscillations for RPS (t). The enve-
lope of the oscillations of 〈PS(t)〉 follow a power-law de-
cay [63, 64]. In the chaotic region, the power-law behav-
ior is mostly caused by the presence of the edges of the
spectrum [63, 64], where the eigenstates are not chaotic.
Beyond chaos, the power-law decay is caused by correla-
tions between the components of the eigenstates [60, 61].
The lack of chaotic states in both scenarios justifies the
values of RPS (t) above 1 seen for times t ∼ 10J−1.

Another interesting feature appears after these oscilla-
tions and before saturation. When the eigenvalues have
some level of correlation, be it in the chaotic regime or in
the intermediate region between chaos and localization,
〈PS(t)〉 shows a dip below the saturation point

〈
PS
〉
,

which is known as correlation hole [24]. In Figs. 1 (a),
(c), and (e), the dip is clearly seen below the horizon-
tal dashed line that marks

〈
PS
〉
. For reasons explained

in Ref. [65], we call the time to reach the minimum of
the correlation hole, Thouless time and denote it by tTh.
The hole becomes less deep [66] and tTh is postponed
to longer times [65] as h increases and the correlations
between the eigenvalues die off [cf. Figs. 1 (a), (c), and
(e)]. In the chaotic regime, there is no difference in the
behavior of RPS (t) during or after the correlation hole
[cf. Fig. 1 (a) and Fig. 1 (b)]. However, in the interme-
diate regime, such as for h = 1.5, the behavior of RPS (t)
for t ∼ tTh and for t > tR are distinct [cf. Figs. 1 (e) and
Figs. 1 (f)]. In the region of the hole, RPS (t) is pushed
to its largest values, while for t > tR, RPS (t) saturates
at a lower point.

IV. INVERSE PARTICIPATION RATIO

When the system is chaotic, the inverse participation
ratio is non-self-averaging at short times, but it is self-
averaging at long times [29]. We show below that close
to the localized phase, IPR(t) becomes non-self-averaging
at any time scale.

At short times, the evolved state |Ψ(t)〉 is not yet very
far from |Ψ(0)〉, so the inverse participation ratio behaves
similarly to the square of the survival probability, being
therefore non-self-averaging. As shown on the right pan-
els of Fig. 2 and in accordance with Eq. (14), RIPR(t)
increases with L in an equivalent way for any of the dis-
order strengths considered.
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FIG. 2. Left panels: Mean value of the inverse participation
ratio. Right panels: Relative variance of the inverse partici-
pation ratio. The values of the disorder are indicated on the
left panels, they increase from the top to the bottom panel.
The curves correspond to system sizes L = 10 (black), 12
(blue), 14 (green), 16 (red).

To study RIPR(t > tR) at long times, we write the
inverse participation ratio in terms of the energy eigen-
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states,

IPR(t) =
∑
n

∑
α,β,γ,δ

e−i(Eα−Eβ+Eγ−Eδ)t

× c0αcn∗α cnβc
0∗
β c

0
γc
n∗
γ cnδ c

0∗
δ , (20)

and use the same reasoning employed in the analysis of
RPS (t > tR). The difference now is that one has an
additional sum over all unperturbed many-body states
|n〉. In the chaotic regime, this significantly reduces the
fluctuations leading to “super” strong self-averaging, that
is, the relative variance of IPR(t) decreases exponentially
with L, as RIPR(t > tR) ∝ 1/D [29]. We then have
that before the correlation hole, RIPR(t) increases with
L, but later the curves for different system sizes cross and
RIPR(t) decreases with D [see Fig. 2 (b)].

The picture above changes as h increases from 0.75
to 1.5 and the minimum of the correlation hole moves
to longer times. The crossings between the curves for
RIPR(t) happen at later times [cf. Fig. 2 (b), (d), and
(f)]. Beyond these values of the disorder strength, for
h > 1.5, the curves for the system sizes considered here no
longer cross and the inverse participation ratio becomes
non-self-averaging at any time scale. Just as in the case of
the survival probability, for a given system size, RIPR(t)
reaches its largest values in the transition region between
chaos and localization, e.g. for h = 2 in Fig. 2 (h).

Based on the results for PS(t) and IPR(t), one may
infer that global quantities are nowhere self-averaging
in the region of fractal eigenstates and in the localized
phase. Needless to say the statement awaits a proof.

V. SPIN AUTOCORRELATION FUNCTION

The behavior of the spin autocorrelation function is
just the opposite of the inverse participation ratio. I(t) is
always self-averaging at short times, while at long times,
the dependence of RI(t > tR) on the system size is at-
tached to the disorder strength. In the chaotic regime,
just as the survival probability and contrary to the in-
verse participation ratio, the spin autocorrelation func-
tion is not self-averaging for t > tR. As the disor-
der strength increases, the non-self-averaging region is
pushed to ever longer times, until the system reaches the
localized phase, where I(t) becomes self-averaging at any
time scale.

Quantities that are local in space, such as the spin au-
tocorrelation function, are always self-averaging at short
times. This holds for any value of the disorder strength
and can be understood as follows. For t < Γ−1, the ex-
citations only have time to hop to few neighboring sites,
even if the system is deep in the chaotic phase. As a
result, due to the spatial averages given by the sum in k
in Eq. (12), the relative variance decreases with system
size. This can be seen by expanding the relative variance
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FIG. 3. Left panels: Mean value of the spin autocorrelation
function. Right panels: Relative variance of the spin auto-
correlation function. The values of the disorder are indicated
on the left panels, they increase from the top to the bottom
panel. The curves correspond to system sizes L = 10 (black),
12 (blue), 14 (green), 16 (red).

of the spin autocorrelation function for short times [29],

RI(t) =
16σ2

Γ2t4

L2
+O(t6) ∝ J4t4

L
. (21)

This result is independent of h, because as said in the
presentation of Eq. (14), σΓ2 does not depend on the
disorder strength. This statement is confirmed by the
right columns of Fig. 3, where the short-time behavior of
RI(t < Γ−1) is pretty much the same from Fig. 3 (b) to
Fig. 3 (l).

Since both PS(t) and I(t) are autocorrelation func-
tions, they share important features. I(t) also detects
the correlation hole, as seen in Figs. 3 (a), (c), and (e),
and it also keeps memory of the initial state, causing
the lack of self-averaging in the chaotic and intermediate
regimes at large times, as evident in Figs. 3 (b), (d), and
(f).

As h increases from 0.75 to 3, we should expect the
crossings between the curves of RI(t) to happen later
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in time, analogously to what one sees in the analysis of
the inverse participation ratio. This is indeed the case,
but what is not yet very clear to us is why the crossings
for RI(t) do not happen close to t ∼ tTh, as one verifies
for RIPR(t) in Figs. 2 (b), (d), and (f). It is only for
h > 2 that we finally see a clear shift in the crossing
points of RI(t) to later times. It may be that the spin
autocorrelation function is more sensitive to finite size
effects, but this point remains to be better understood.

In the localized phase, h = 4, the spin autocorrelation
function finally becomes self-averaging also at very long
times, as seen in Fig. 2 (l). This is because at localization,
the initial spin configuration cannot change much in time.
Indeed, as shown in Fig. 2 (k), the value of I(t > tR) no
longer depends on the system size and saturates at a finite
value. In contrast, the variance σ2

I (t) can still decrease
with L, resulting in the self-averaging behavior of I(t).

VI. CONNECTED SPIN-SPIN CORRELATION
FUNCTION

The connected spin-spin correlation function combines
all the good properties for self-averaging found in the
previous quantities. It is local, as the spin autocorre-
lation function, so it is self-averaging at short times for
any disorder strength. Since it is not an autocorrelation
function, it can be self-averaging at long times also in
the chaotic regime. The result is a quantity that is self-
averaging at any time scale and for any disorder strength,
which is the perfect picture for an experimental quantity.

In Fig. 4, we show the absolute value of the mean value
of C(t) on the left columns and the relative variance on
the right columns, confirming its self-averaging behavior
for all h’s and all times. But some additional comments
are in place:

(i) Despite being self-averaging everywhere, the values
of the relative variance depend on the time scale and on
the disorder strength. RC(t) has a non-monotonic be-
havior in time in the chaotic and intermediate regimes,
showing a dip at t ∼ 1 and a bump at t ∼ tTh. These fea-
tures are no longer seen in the localized phase [Fig. 4 (l)].

(ii) Similarly to the other three quantities, the time
where the value of RC(t) saturates gets postponed as
the disorder strength increases [cf. Figs. 4 (b), (d), (f),
(h)], happening close to the point for the minimum of
the correlation hole at t ∼ tTh.

As a wrap-up, it is worth emphasizing that in the
chaotic regime, all four quantities considered in this work
go to zero at long times as the system size increases,
yet only the survival probability and the spin autocor-
relation function are non-self-averaging after saturation,
while RIPR(t > tR) and RC(t > tR) do decrease with
L. The fact that the denominator of RO(t) goes to zero
is therefore not the reason why a quantity is non-self-
averaging in the chaotic regime.
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FIG. 4. Left panels: Absolute value of the mean value of the
connected spin-spin autocorrelation function. Right panels:
Relative variance of the connected spin-spin autocorrelation
function. The values of the disorder are indicated on the left
panels, they increase from the top to the bottom panel. The
curves correspond to system sizes L = 10 (black), 12 (blue),
14 (green), 16 (red).

In the case of global quantities in localized phase, on
the other hand, the combination of eigenstates of differ-
ent structures, leading to reasonable values of σ2

O(t > tR),
together with mean values that decrease with L [see
Fig. 1 (k) and Fig. 2 (k)] can indeed justify their lack
of self-averaging. This contrasts with the mean values
of the local quantities, which do not depend on system
size at long times, as shown in Fig. 3 (k) and Fig. 4 (k),
resulting in their self-averaging behavior.

VII. CONCLUSIONS

Based on the analysis of the one-dimensional spin-1/2
Heisenberg model with onsite disorder, this work shows
that the self-averaging behavior of many-body quantum
systems out of equilibrium is rather non-trivial, depend-
ing on the quantity, time scale, and disorder strength.
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The general picture that we draw for the four quantities
studied here is the following.

• The survival probability, which is non-local in real
space and non-local in time, is non-self-averaging at any
time scale and for any disorder strength.

• The connected spin-spin correlation function mea-
sured in experiments with ion traps, which is local in
space and in time, is self-averaging at all times and for
any disorder strength.

• In between these two extremes, we find the inverse
participation ratio, which is non-local in space and local
in time, and the spin autocorrelation function, which is
local in space and non-local in time. They show com-
plementary behaviors. In the chaotic regime, IPR(t) is
non-self-averaging at short times, but it becomes self-
averaging at long times, while for I(t), we have just the
opposite. As the disorder strength increases, the crossing
point between one behavior and the other gets delayed
to longer times. Once localization is reached, the inverse
participation ratio, just as the survival probability be-
comes nowhere self-averaging, while the spin autocorre-
lation function, just as the spin-spin correlation function,
becomes self-averaging at all times.

The lack of self-averaging behavior of the survival
probability is worrisome, since this quantity is exten-
sively considered in studies of non-equilibrium quan-
tum dynamics and in fundamental questions of quantum
mechanics, such as the quantum speed limit. In fact,
this quantity is now even analyzed experimentally [67].
On the positive side, among the different features that
RPS (t) presents at different times, we single out one that
is particularly useful. After saturation, as explained in
Sec. III, RPS (t > tR) ' 1 in the chaotic regime. Away
from chaos, RPS (t > tR) reaches values larger than 1, the

largest values for a fixed system size, happening when the
eigenstates become fractal. This may serve as a good di-
agnosis of the presence of fractality.

Contrary to ergodicity and thermalization, self-
averaging in many-body quantum systems out of equi-
librium has received very little attention. There are still
plenty of questions that can be addressed, from exten-
sions to other isolated time-independent Hamiltonians,
to time-dependent Hamiltonians and open systems. Our
own current interest is in the distributions of the ex-
pectation values of different observables at different time
scales.
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[22] M. Serbyn, Z. Papić, and D. A. Abanin, Thouless en-
ergy and multifractality across the many-body localization
transition, Phys. Rev. B 96, 104201 (2017).

[23] B. Mukherjee, Floquet topological transition by unpolar-
ized light, Phys. Rev. B 98, 235112 (2018).

[24] L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique,
Fourier transform: A tool to measure statistical level
properties in very complex spectra, Phys. Rev. Lett. 56,
2449 (1986).

[25] N. Argaman, F.-M. Dittes, E. Doron, J. P. Keating, A. Y.
Kitaev, M. Sieber, and U. Smilansky, Correlations in the
actions of periodic orbits derived from quantum chaos,
Phys. Rev. Lett. 71, 4326 (1993).

[26] B. Eckhardt and J. Main, Semiclassical Form Factor of
Matrix Element Fluctuations, Phys. Rev. Lett. 75, 2300
(1995).

[27] R. E. Prange, The spectral form factor is not self-
averaging, Phys. Rev. Lett. 78, 2280 (1997).

[28] P. Braun and F. Haake, Self-averaging characteristics of
spectral fluctuations, J.Phys. A 48, 135101 (2015).

[29] M. Schiulaz, E. J. Torres-Herrera, F. Pérez-Bernal, and
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