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Positive quantum Lyapunov exponents in classically regular systems
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Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become
common to equate the exponential behavior of the quantum evolution of out-of-time order correlators (OTOCs)
with quantum chaos. The quantum-classical correspondence between the OTOC exponential growth and chaos
in the classical limit has indeed been corroborated for different chaotic systems. In this work, however, we
show that OTOCs can grow exponentially also in regular models. This happens when the classical system
exhibits isolated unstable points. In the quantum domain, these points become finite regions, where the quantum
Lyapunov exponents are throughout positive. Our results are illustrated for the Lipkin-Meshkov-Glick (LMG)
model, which is integrable, and for the Dicke Hamiltonian in the regular regime. These models are currently
realized in various experimental setups, such as those with cold atoms and ion traps.

Classical chaos in Hamiltonian systems is typically defined
by means of the sensitive dependence on initial conditions,
which leads to positive Lyapunov exponents (LEs) [1]]. But
this alone is not a complete definition of chaos. Consider,
for example, the simple pendulum. Its upright position corre-
sponds to a stationary point that is unstable. It has a positive
LE, as any genuine chaotic system, although it is completely
integrable. The lack of chaos in this case is related with the
isolation of this point. No other initial condition can reach
it, so the pendulum cannot exhibit chaotic behaviors, such as
non-periodicity and mixing [2]. In this work, we investigate
what happens to such isolated unstable points in the quantum
domain.

It was argued in [3] that quantum mechanics can bring
chaos to classical systems that are non-chaotic. This idea was
inspired by Ref. [4], where a standard non-chaotic classical
billiard became chaotic when the point particle was substi-
tuted by a finite-size hard sphere. By making a parallel be-
tween the semiclassical dynamics of a quantum wave packet
and the motion of a finite-size classical particle, it was shown
in [3]] that quantum chaos can emerge in regular classical bil-
liards. Quantum chaos in this case refers to the exponentially
fast growth of the out-of-time ordered correlator (OTOC) at
short times.

The OTOC quantifies the degree of non-commutativity in
time between two operators. It was introduced in the con-
text of superconductivity [5] to measure the instability of
the trajectories of electrons scattered by impurities in the su-
perconductor. Recently, the OTOC became a key quantity
in definitions of many-body quantum chaos [6H14]], analy-
sis of the quantum-classical correspondence of chaotic sys-
tems [15H24], and studies of the scrambling of quantum infor-
mation [25) 26] and quantum phase transitions [27, 28]. The
OTOC has been measured experimentally with ion traps [29]
and nuclear magnetic resonance platforms [30H32].

Depending on how the OTOC is computed, it may be called
microcanonical OTOC (MOTOC) [18]], fidelity OTOC (FO-

TOC) [26], thermal OTOC [8]], and OTOC for specific initial
states [3[16]. The exponential growth rate of the latter, of the
MOTOC [19], and of the FOTOC [26] was shown to be related
with the classical LE of chaotic systems. This justifies refer-
ring to the OTOCs exponential growth rates as quantum LEs
and associating their exponential behavior with the notion of
quantum chaos.

Here, we study the FOTOC in systems that are classically
regular and have isolated unstable points of measure zero.
Due to the uncertainty principle, such isolated points become
finite regions in the quantum domain. As a result, we find
that the FOTOC grows exponentially not only for initial states
centered at the classically isolated unstable point, but also for
states centered at the surrounding points. This is entirely at
odds with the classical limit, where for initial conditions in the
surrounding region of zero classical LEs, the unstable point is
inaccessible. Quantum mechanics therefore generates insta-
bility in a region where the classical dynamics is stable. Fol-
lowing the current terminology, we then refer to these regions
as “quantum chaotic”, although one may ponder whether, sim-
ilarly to the above discussion about classical chaos, additional
conditions, on top of the exponential growth of the OTOC:s,
are also needed for defining quantum chaos.

We analyze the evolution of the FOTOC in the Lipkin-
Meshkov-Glick (LMG) Hamiltonian and in the regular regime
of the Dicke Hamiltonian. The LMG model is a one-
dimensional classically integrable system introduced in nu-
clear physics [33] and realized experimentally with cold
atoms [34, 35] and nuclear magnetic resonance platforms
[36]]. The Dicke model is a two-dimensional non-integrable
model used to describe strongly interacting light-matter sys-
tems [37H39]. It presents chaotic and regular regimes, and
has been realized experimentally with cold atoms [40-43]],
by means of cavity Raman transitions [44} 45]], and with ion
traps [46]]. The latter is a promising experimental setup for
measuring the FOTOC.

The unstable points of the LMG and Dicke models.— In a



classical Hamiltonian system with real first-order differential
equations dx/dt = F(x), where x = (q,p) are the gener-
alized coordinates and momenta, a point © = x¢ is station-
ary when F(xo) = 0. This point is unstable when at least
one of the positive-negative pairs of eigenvalues of the Ja-
cobian matrix of J evaluated at x( has a nonzero real part.
The LE of this point equals the maximum of these real part
values [see the Supplemental Material (SM) in [47] for more
details]. Both the LMG and the Dicke model in the classical
limit present stationary points with positive LEs.

The LMG model [33]] describes the collective motion of a
set of IV two-level systems mutually interacting. Its quantum
Hamiltonian is given by

Hing = QJ. + %ji (D
where i = 1, Q is the energy difference of the two-level sys-

tems, & is the coupling strength, .J, ,, . = (1/2) Zi\;l Jg(ff;,z

are the collective pseudo-spin operators given by the sum
of Pauli matrices 03(57272 for each two-level system n, and
j = N/2, where j comes from the eigenvalue j(j + 1) of the
total spin operator J? = j% + jj +J 2 and thus gives the size
of the system. This model has been employed, for example,
in studies of ground state quantum phase transitions (QPTs)
and excited state quantum phase transitions (ESQPTs) [48-
51|, entanglement [52}153]], and quantum speed limit [54].
The classical LMG Hamiltonian is obtained by taking the
expectation value of Hyyg/j on Bloch coherent states |z) =

- .
(1 + |z|2> e*7+|j,—7), where |j, —j) is the state with the

lowest pseudo-spin projection, and .J is the raising operator.
Defining z in terms of the canonical variables (Q, P) as z =

(R—iP)//4 — (Q? + P?) and neglecting O(1/7) terms, the

classical LMG Hamiltonian reads
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The Hamiltonian () is regular, but its stationary point

xo = (Q = 0, P =0) is unstable and presents a positive LE
given by (see SM [47]),

A= /= (22 + 208), 3)

when Q < —2¢&. Figures (a) and (b) show the energy surface
of the classical LMG model for two values of 2 and £ = —1.
When Q > —2¢, x( is a minimum, while for Q < —2¢, x
becomes a saddle point and therefore unstable.

This saddle point is associated with an ESQPT in the quan-
tum domain. A main signature of ESQPTSs is the divergence
of the density of states at an energy denoted by Fgsqpr. In the
mean-field approximation, it has been shown that this energy
coincides with the energy of the classical system at the sad-
dle point [48], 53], that is, for the LMG model, EI%IS\AQCE;,T /i =
Himg(zo) = —Q2.

The Dicke model is a collection of N two-level atoms of
level spacing wy coupled to a quantized radiation field of fre-
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Figure 1. Top: Energy surface for the classical LMG model for two
values of the parameter €2 fixing & = —1. The stationary point
xo = (Q = 0, P =0) is marked with a red sphere. It is a saddle
point for 2 = 1 (a) and a minimum for 2 = 3 (b). Panel (c): Each
colored point corresponds to the maximal classical Lyapunov expo-
nent for the Dicke model in a plane resulting from the intersection of
an energy shell (with energy indicated by the vertical axis) and the
hyperplane p = 0. This is done for different values of wo as indi-
cated by the horizontal axis. We fix v = 0.66 and w = 0.5. The red
square at wo = 3 is the unstable point studied in Fig.[3] The green
circle at wo. = 3.48 is the critical point that marks the ground state
quantum phase transition.

quency w. In the symmetric atomic subspace, the Hamiltonian
is given by
A~ w . R A
Hp = 2( +5°) + wos + 2—=

2 Vi

where § = (af 4+ a)/v2 and p = i(at — a)/v/2, with a(ah)
being the annihilation (creation) operator, and -y is the atom-
field interaction strength. As in the LMG model, j = N/2
gives the system size.

The Dicke model was first used to explain the collective
phenomenon of superradiance [37,56]. It is now used in stud-
ies of QPTs and ESQPTs [56H61], quantum chaos [[62H63]],
monodromy [66, 67], entanglement creation [68]], nonequi-
librium dynamics [69H73]], the OTOC behavior [26} [74]], and
quantum batteries [[75].

The classical Dicke Hamiltonian [65, |76, [77] is obtained
by taking the expectation value of Hp /j between the product
of Bloch coherent states and Glauber coherent states |a) =
e~ lo?/2¢0al |0, where o = /5 /2(¢+ip) € C, and |0) is the
photon vacuum. In terms of the canonical variables (Q, P)
for the pseudo-spin and of (g, p) for the field [47], it reads

A w
rAf*a 4
Ju g > 4

w

Hp 5

(¢* +p*) —wo + % (Q* + P?)
1 ©)
271 = 2 (@2 + P?)qQ.



The stationary point of the Dicke model is g = (¢ =
0,p = 0,Q = 0,P = 0). The LE associated with it can
be calculated in terms of w, wy and 7, as (see SM [47])

1
A= \/5\/— (w2 4+ wd) + \/(w2 — w?)® 4+ 1672wwg.  (6)

When wy < woe = 42 /w, this equation gives a positive value
for the LE and the stationary point is unstable. When wy >
woe, Eq. (6) has pure imaginary values and the LE is zero. The
point wo. marks the ground state QPT of the Dicke model.
For wy < wqe, the system is in the superradiant phase, and
for wy > woe, it is in the normal phase. The unstable point is
therefore in the superradiant phase.

Energy surfaces similar to those in Figs. [I] (a) and (b) can
also be drawn for the Dicke model, but in higher dimension.
The saddle point of this model is also associated with an ES-
QPT [60], which happens at Egsopr/j = Hp(zo) = —wo.
We stress that, contrary to common belief, the ESQPT in the
Dicke model is not directly related with the transition to clas-
sical chaos [65,[78]].

In Fig.[T](c), we show the largest LEs of the Dicke model as
functions of the classical excitation energy Hp /wy and of the
atomic frequency wy, for v = 0.66 and w = 0.5. Employing
frequency units of kHz/27, these values coincide with those
used in the experiment with ion traps [26, 146]]. The thick blue
line in the figure depicts the ground state energy and the gray
area under it is forbidden. The color gradient indicates pres-
ence or absence of chaos: black represents regular regions and
light areas have large LEs. The bright horizontal line at the
ESQPT, Hp/wy = —1, indicates very large LEs and reflects
the instability.

According to Eq. (6)), the maximum LE is obtained for wy =
0.649, which is approximately the value used in [26]. As one
sees in Fig. || (c), this classical instability is immersed in a
chaotic region of the phase space with positive LEs, so we
show some results for it only in the SM [47]. Here, our main
focus is on the unstable point at wy = 3, which is marked in
the figure with a red square. The area surrounding this point is
completely regular, with zero LEs throughout [65]. This is the
point that we use in our studies in Fig. 3] But before showing
those results, let us describe how the quantum and classical
evolutions are carried out and compared.

Quantum-classical correspondence.— The OTOC measures
the degree of non-commutativity in time between operators W

~ N N 2
and V, Opou(t) = — [W(t), V(O)} ). It is known as FOTOC

when W = 9% where (3 is a Hermitian operator and d¢
is a small perturbation, and V' = |W) (¥, is the projection
operator onto the initial state. In the perturbative limit, §¢ <
1, the dynamics of the FOTOC agrees with that of the variance
of G ([26]), see also SM [47])),

o&(t) = (G*(t) — (G(1))?, )

so we refer to this variance as FOTOC and denote its expo-
nential growth rate by 2A. In what follows, we refer to A as
the quantum LE.

The FOTOC enables a direct visualization of the quan-
tum evolution in terms of the dynamics in phase space. It
measures the spread of the size of the wave packet and can
thus be compared with the variance of the canonical vari-
ables in phase space. A great advantage of the FOTOC is that
it can be computed with semiclassical phase-space methods,
such as the truncated Wigner approximation (TWA) [79-81],
which makes accessible system sizes that are not achievable
with exact diagonalization. This is particularly useful for the
Dicke model, which is non-integrable and where the number
of bosons in the field is not limited.

The basic idea of the TWA [80] is to compute the dynam-
ics using the classical equations of motion, but averaging the
observable over a large sample of initial conditions and re-
placing the classical probability distribution with the Wigner
function [82]] and the classical observable with the Weyl sym-
bol of the corresponding quantum operator [83]]. The random
sampling reproduces the quantum fluctuations of a quantum
initial state.

To compute the FOTOC, we consider initial Bloch coherent
states for the LMG model, and initial products of Bloch and
Glauber coherent states for the Dicke model. This implies that
the initial Wigner functions are positive and approximately
given by normal distributions. Our sampling is done by means
of a Monte Carlo method [81]] over ~ 10* random points (see
details in SM [47]]).

In Fig. 2] we compare the quantum LE obtained for the FO-
TOC with the classical LE for the LMG (a) and the Dicke (b)
model at an unstable point. For the LMG model, the quan-
tum evolution is done exactly. Since the wave packet spreads
in both directions in phase space, we analyze the growth of
O’é(t) + 02(t). The agreement between A from Eq. (3) and A
is perfect.
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Figure 2. The classical LE A (solid line) and the quantum LE A
(symbols) for the LMG (a) and the Dicke (b) model at the stationary
point. The results for A for the LMG model are obtained with the
exact quantum evolution and for the Dicke model, the TWA is used.
For the LMG model, the FOTOC corresponds to o (t) + op(t),
¢ = —1,and j = 500. For the Dicke model, the FOTOC is 0 (t) +
ob(t)+0o2(t)+op(t),w = 0.5,y = 0.66, and the 5’s are indicated.

For the Dicke model, we study o¢,(t) + o3 (t) + o7 (t) +
012) (t). Employing an efficient basis for the convergence of the
eigenstates [84], we evaluated the exact quantum evolution for
j = 100, where the truncated Hilbert space has 24 453 con-
verged eigenstates. We verified that for this size, which is al-

ready large for exact diagonalization, the exact quantum evo-



lution and the evolution done with the TWA agree extremely
well from ¢ = 0 up to times beyond the exponential growth
of the FOTOC (see SM [47]). This assures us that we can use
the TWA to calculate A for j = 500 and j = 5000. As one
increases j, the agreement between A from Eq. (6) and the
quantum LE improves, as seen in Fig. 2] (b).

Quantum activation of the instability.— The results above
make evident that, despite the regularity of the systems, both
classical and quantum LEs coincide and are positive at the un-
stable points. We now investigate what happens at the vicinity
of the unstable point of the LMG model with 2 = 1 and of
the Dicke model with wy = 3. Classically, the LEs in the sur-
rounding region are zero and the unstable point is simply un-
reachable. To analyze what happens in the quantum domain,
we study the behavior of the FOTOC as one moves away from
the unstable point.

Figure 3. Energy surface of the LMG model (a) and of the Dicke
model with P = p = 0 (¢), and FOTOC behavior for the LMG
model, 03 (t) +05(t), (b) and for the Dicke model, 0 (t) + 0% () +
oo(t) + op(t), (d). The FOTOC is computed for coherent states
centered at the unstable point O and around it, at points A, B, and C.
The (black) straight line in (b) and (d) corresponds to the exponential
curve with rate given by twice the classical LE. The initial growth
rate of the FOTOC for all points and for both models is 2A ~ 2.
For the LMG model: £ = —1, Q2 = 1, j = 500, and the points A,
B, and C have constant P = 0 and @ = 0.1,0.2, 0.3, respectively.
For the Dicke model: w = 0.5, v = 0.66, wo = 3, and 57 = 500.
The points A, B, and C have P = p = 0, Q = 0.1,0.2, and 0.3,
respectively, and ¢ is chosen so that Hp = —wyo for all four points.

The unstable point is marked as O in the energy surface
of the LMG model in Fig. [3] (a) and of the Dicke model in
Fig. E] (c). Points O, A, B, and C correspond to the center
of the coherent states used in the calculation of the FOTOC.
The choices of A, B, and C are done such that the trajectories
do not go (come) asymptotically to (from) the unstable point.
To guarantee this, since the LMG model has only one degree
of freedom, the points A, B, and C have decreasing energies,

while for the Dicke model, it is enough to select different val-
ues of () with the same energy Hp = —wy.

For any of the points (and for those in between them), the
initial evolution of the FOTOC is exactly the same as the one
for O, with the same exponential growth rate 2A ~ 2\, as
clearly seen in Fig. [3] (b) [Fig. 3] (d)] for the LMG [Dicke]
model. What changes is the duration of the exponential be-
havior, which becomes shorter as one gets further from O, and
also the saturation value of the dynamics, which gets lower
and shows larger oscillations.

Figure E] demonstrates that, in absolute contrast with the
classical dynamics, quantum instability is not only possible,
but is ubiquitous in the vicinity of an unstable point. One
needs to move quite far from the unstable point for getting rid
of any reminiscence of an exponential growth.

Discussion.— Classical systems in the regular regime, as the
LMG and the Dicke model considered here, can exhibit un-
stable points with positive LEs. This reflects on the onset of
positive quantum LEs for initial states centered at those same
points. Classically, these unstable points have measure zero,
being surrounded by points with zero LEs. In the quantum
domain, on the other hand, these points become finite regions,
where the exponential behavior of the FOTOC is throughout
verified. Quantum mechanics can therefore activate instabil-
ity in regions where the classical dynamics is not unstable. In
these regions, the quantum-classical correspondence does not
hold even at very short times. We leave as an open question
whether these systems should indeed be called “chaotic quan-
tum systems”. A positive answer would imply detaching the
concept of quantum chaos from the presence of chaos in the
classical limit.
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LYAPUNOV EXPONENT FOR STATIONARY POINTS OF
CLASSICAL HAMILTONIAN SYSTEMS

In this section we show how to obtain the Lyapunov expo-
nents (LEs) associated with the stationary points of classical
systems. Consider a classical Hamiltonian system H (x) with
n degrees of freedom and a set of generalized coordinates and
respective momenta € = (q,p) = (g1, -+, @n, D1, ---Pn). We
denote the Hamilton dynamical equations by & = F(x). A
stationary point xo of the system satisfies F(xg) = 0, i.e.
@y (t) = o(to).

To calculate the LE A associated with o, we employ the
tangent space by means of the fundamental matrix of the sys-
tem, @, (¢) [L]]. This matrix solves the simultaneous equations

(&)= (020.) (29)= (),

where D, F(x) is the Jacobian matrix of F and lg,, is the
2n x 2n identity matrix. Because x( is a stationary point,
A = Dy F(x) = Dy F(x0) is independent of time and

®, (1) = et (S1)

The fundamental matrix allows us to find the time evolution
of a variation over the initial condition dx. Specifically,

ox(t) = @y, (t) 6o = e 5. (S2)

Employing the spectral norm || ®, (¢)|| [2] (the square root of
the largest eigenvalue of the matrix ®], o Pz, ), one gets [11,

1
A= lim = log|le]. (S3)
t—oo t

This limit can be expressed in terms of the eigenvalues \; of
the matrix A. Denoting the maximum of the real parts of the
eigenvalues of A by Apnax(A) = max; Re ();), we have that

A = Amax (A). (S4)

Proof. This proof was modeled after a discussion in [3].

First, note that both sides of Eq. are invariant un-
der arbitrary basis changes. For any A’ = PAP~!, being
P any invertible complex matrix, as both A and A’ share
the same eigenvalues, on the right hand side of Eq. (S4),
Amax(A) = Amax(A’). On the other side of Eq. (S4), using
the submultiplicativity of the spectral norm, we have

log ||| —log [le™ (|| < log (|| PI[II P~"]]),
and then
lim 1logHeAtH = lim 11og||eA/t||.
t—oo t t—oo t

Because of the above, we can write A in Jordan normal
form A = diag(Jy, Jo, ..., Jn), where each Jordan block J;
corresponds to an eigenvalue \; of A with multiplicity n; and
is given by J; = Al + S,,. Here, S, is the n; x n; matrix
with superdiagonal elements equal to one and zero elsewhere.
We then get

e[| = [ldiag(e”, ", ... e”x) | = max [l
7

|> . (83

SO

lim %log HeAtH = max (tlim %log He"it

t—o0 —00
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Since the matrices A;l,,, and S,,, commute,

nL—1

eJit — oAilntpSnt — it 2: .,

with spectral norm

nl—l
HeJit eRe(Xi)t Z
Thus,
li 11
Jim og||e”*|| =Re(\;) (S6)
n;—1 k
+t1~i>rgo log Z k'

To complete the proof we have to show that the last term in
Eq. (S6) equals zero. If n; = 1, it s trivial, so assume n; > 1.
Using the triangle inequality of the norm and the fact that
|| || =1forall k € {0,1,...,n; — 1}, we find the bounds

n;—1 k
Z 5| < pr(®), (S7)
where
tnifl n;—2 tk ni—1 tk
=" S = n=S" L
k=0 k=0

For large enough ¢, pr,(¢t) > 0, and we may take the loga-
rithm and divide by ¢ the three terms in Eq. (S7). But for any
real polynomial p(t) with positive leading coefficient, one has
limy 00 M = 0 by applying L"Hoépital’s rule. Thus, us-
ing the squeeze theorem in Eq. (S7), we get

n;—1 k:

Zk,

With Eq. (S3), Eq. (S6), and Eq. (S8), we arrive at the desired
result,

lim — log
t—oo t

(S8)

1
tygiyglogHeAin::In?kaXAi)::AmM(A). (S9)

Notice that we did not use any particular property of the ma-
trix A at any point. This formula is true for any complex ma-
trix A. O

In what follows we apply this result to obtain the LEs
for the classical simple pendulum, the Lipkin-Meshkov-Glick
(LMG) model, and the Dicke model.

Lyapunov exponent of the simple pendulum

The Hamiltonian of the classical simple pendulum is

2

2l2

H(0,pe) = + mgl(1 — cos ), (S10)
where m and [ are the mass and length of the pendulum, re-
spectively, g is the gravity acceleration, 6 is the angle of the
pendulum measured from the vertical, and py = mi20 is the
canonical momentum associated with 6. The Hamilton equa-
tions are € = F(x) = (0p, H,—0gH) with x = (6,pp).
This model has two stationary points, ; = (0, 0) at the bot-
tom and x4+ = (7,0) at the top. The Jacobian matrix for each
point can be obtained by simple differentiation,

1 0 1
Amzz<¢w2 o>’

where w = m, the negative sign corresponds to x| and
the positive sign to x4. For x|, the eigenvalues of A are pure
imaginary numbers. From Eq. (S4), , is then a center point
with zero LE, A\ = 0, that is, it is a stable point. For xy,
the eigenvalues of A are +w. This is a hyperbolic point with
A+ = w, so it is an unstable point. Despite being the go-to
example of an integrable system, even the simple pendulum
has a non-zero LE at 4. Yet, the system cannot be classified
as chaotic, because this is an isolated point in the phase space.

Lyapunov exponent of the Lipkin-Meshkov-Glick model

To find the stationary points of the LMG model, we use the
equations of motion for Hy g (see this Hamiltonian in Eq. (2)
of the main text), which are

. OHwe £Q?

Q= P —P(Q - (S11)

. O H, P2

pP=-"M_q 5 —(264+Q)) +£@Q% (812

oQ
The stationary point happens at o = (Q = 0, P = 0), where
the Jacobian matrix is
0 Q
A_<_“}+%)O>. (S13)

Its eigenvalues are Ay = ++/—(Q? + 2£Q). According to
Eq. (S4), the LE for this stationary point is zero for > —2¢,

because all the eigenvalues of A are imaginary. However, for
Q < —2¢, both eigenvalues of A are real and the LE equals
the positive one. We then have

ifQ > —2¢

ifQ < —2¢° (514

0
A:{ (2 +200)



Lyapunov exponent of the Dicke model

The Dicke model has a ground-state quantum phase transi-
tion (QPT) [4,15] at
42

Woe = ——.
w

(S15)

It is in the normal phase when wgy > wq. and in the superradi-
ant when wg < woe.

The Hamilton equations of the Dicke model have several
stationary points depending on the set of Hamiltonian param-
eters that are chosen (see details in Refs. [5,6]]). We are inter-
ested in the unstable stationary point, which is related with the
excited state quantum phase transition (ESQPT). In the classi-
cal phase space, this point is o = (¢, @, p, P) = (0,0,0,0),
which, according to the classical Hamiltonian given in Eq. (4)
of the main text, implies energy —wp. In the normal phase,
this point is stable and corresponds to the quantum ground
state in the thermodynamic limit. Keeping w and v of the
Dicke Hamiltonian constant (see the main text), this point be-
comes unstable, if one decreases the atomic level spacing, so
that wg < woc [4]].

The Jacobian matrix at ag is

0 0 wo O
0 0 0 w

A= —wg =2y 0 0| (516)
-2y —w 0 0

and has the following eigenvalues

1 2
A zzt\/— w2 4+ w?) 1/ (w? — w3)” + 1672wwy.
1234 =5 ( o) \/( 3) v2wwo

(S17)
If wop > woe, all eigenvalues are imaginary and the LE is
zero, but if wy < wp., some eigenvalues become real, and
the largest one is given by

1
A= ﬂ\/_ (W2 +wi) + \/(w2 — w2)® 4 1672wwq.
(S18)

FIDELITY OUT-OF-TIME ORDER CORRELATOR

The out-of-time order correlator (OTOC) is defined as
F(t) = (WIVIW(@)v), (S19)

where W (t) = e*We=iHt If W and V are both unitary
operators,
PN B B PN
Re(F(t)) =1 — <[W, V} [W, V} )/2. (S20)

In Ref. [7]], the fidelity OTOC (FOTOC) is obtained by us-
ing as operators

W = i9¢, (S21)

9

where G is a Hermitian operator and d¢ is a perturbative small
parameter, and

V = [Wo) (W), (S22)

which is the projector onto the initial state |Wo). With this
choice of V, Eq. li becomes
PSRN I B SPNEN
1 — Re(F(t)) = <{W, V] [W7 v] ), (S23)

where this F'(t) is known as FOTOC. Using the following ex-
pansion up to second order in ¢,

8

(Wo W (1)|Wo) = 1+ i66(G(1)) > (G2, (24

it can be shown that F'(¢) is related with the variance of G as

1—F(t) o (1AN2 A 2y — 2
G~ (GO — (G = o5 (t).

Since the evolution of F(t) is equivalent to that of o2 (t), we
refer to the variance as FOTOC.

For most interacting many-body systems the OTOCs must
be calculated numerically. To do so for time-independent

Hamiltonians, one employs the eigenbasis expansion. The
FOTOC is then calculated as

aé(t) = Z c?*c?ei(EfE’?)thkai -
0,5,k

(S25)

(S26)

2
0% 0 i(Ej—E)try
E c;le et Gy |
5]

where Gi; = (E;|G|E;), the energy eigenstate is E;), and
) = (¥y|E;). Even though Eq. is formally simple, it
is, in general, numerically challenging for non-integrable sys-
tems, such as the Dicke model. In this case, to deal with large
system sizes, we resort to the truncated Wigner approximation
(TWA), which is a phase space method.

TRUNCATED WIGNER APPROXIMATION IN THE DICKE
MODEL

The calculation of the FOTOC, 02, = (i7) — (&), is
reduced to obtaining the expectation value of powers of the
canonical coordinates Z; of a quantum system under the short
time evolution of a certain quantum state |¥y). To do this, we
use the TWA.

Consider the Wigner function [[8] of the evolved initial state,
W (x,t). The expectation value of an observable O may be

calculated by

(O(1)) = / Wz, )0 (x)dz,

where O(z) is a function of the phase space variables known
as the Weyl symbol of O [9]. In our case, the observables



of interest are O = 27 with n = 1,2. Their Weyl symbols,
in very good approximation (the error is of order j~!), are
obtained by removing the hats off the observable O = z.
Thus,

(2 (1)) = / W (a, t)zlda.

The TWA is used to deal with the evolution of the Wigner
function [10, [I1]. The idea of the approximation is to treat
a positive Wigner function as a classical phase space distri-
bution for short times, assuming that it remains constant over
the classical phase space trajectories. The temporal evolution
is then given by [12]

W(x,t) = W(z(-1),0),

(S27)

(528)
where x(t) is the classical trajectory in the classical Hamilto-
nian phase space. Inserting this in Eq. (S27)), we get

(1)) = / W (@) 2:(t)" de. (529)

Dicke model: TWA-quantum correspondence

For the Dicke model, we use the product of Glauber |«)
and Bloch |z) coherent states of the Heisenberg-Weyl and the
SU(2) spaces, respectively, as initial states [13]]. The Wigner
function for these states is everywhere positive.

For Glauber states, the Wigner function is given by a nor-
mal distribution [14]]

] A2
W‘ZO;FO (Qap) = %e_JA , (S830)

where A = \/(q — q0)2 +(p— p0)2 is the distance between

(¢, p) and (qo, po).-
For a Bloch coherent state, the Wigner function may be
written as a sum of Legendre polynomials Py (x) [15,[16]

(2))! & (2k +1)
Woo.0(0:0) = 7 kz_o @) —k)i@j + ki es©).
(S31)
where z = tan(#/2)e’® and © is the angle between (6, ¢) and
(6o, ¢o) obtained from

cos © = cos 6 cos Oy + sin 0sin Oy cos(¢ — ¢p).

As j increases, Eq. (S31) converges rapidly to a normal distri-
bution on the Bloch sphere

J _je?
W907¢0(93¢) ~ ;6 i .

(S32)

The Wigner function of a Dicke coherent state centered at
x¢ is given by the product of the Glauber and Bloch Wigner
functions

N 2
Wiy (@) = (J) e (a7, ($33)

™
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Figure 4. (Color online) FOTOC for the observable ¢ in the Dicke
model. The coherent state has (a) energy £ = —wqj centered at the

stationary point zp = (¢ = 0,p = 0,Q = 0,P = 0) and (b) £ =
—2.5jwq centered in a regular point & = (¢ = —1.722,p = 0,Q =
1.2, P = 0). In both panels, the parameters are the experimental
values used in Ref. [7, [18]]: wo = 0.649, w = 0.5, v = 0.66,
and ;5 = 100. The black line corresponds to the actual quantum
evolution, while the red line is the truncated Wigner approximation.
The inset in panel (a) shows the same data, but in a lin-log scale.

To compute the integral in Eq. (S29) with this initial Wigner
function, we use a Monte Carlo method [17], where we sam-
ple a set (~ 10%) of initial conditions  from the initial nor-
mal Wigner distribution in Eq. (S33) and then calculate the
mean of the values of =} after evolving the points according
to the classical Hamiltonian. The approximation in Eq. (S32)
allows us to simplify the sampling from the distribution and
save computational resources.

In Fig. @] we compare the temporal TWA evolution with
the exact quantum evolution in the Dicke model to determine
where they diverge. We calculate the FOTOC of the observ-
able g for a coherent state located at the critical point o for a
given value of wq. The results are shown in Fig. |§| (a). Notice
that there is perfect agreement for times beyond the exponen-
tial growth of the variance, providing a solid foundation to use
this approximation to analyze the short time quantum behav-
ior of the FOTOC, as we do in the main text.

Interestingly, this semiclassical approximation holds for
even longer times in the regular case. This is seen in Fig. [ (b),
where we compare the TWA and the exact quantum evolution
for a coherent state located in a regular region of the phase



space. In this case, we select a lower energy F/jwy = —2.5
and a point with x = (¢ = -1.722,p=0,Q = 1.2, P = 0).
We choose this point because it is located roughly at the cen-
ter of the available phase space that is completely regular at
this energy. The agreement between the semi-classical and
quantum simulations lasts for a long time.
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