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Despite its importance to experiments, numerical simulations, and the development of theoretical
models, self-averaging in many-body quantum systems out of equilibrium remains underinvestigated.
Usually, in the chaotic regime, self-averaging is just taken for granted. The numerical and analytical
results presented here force us to rethink these expectations. They demonstrate that self-averaging
properties depend on the quantity and also on the time scale considered. We show analytically that
the survival probability in chaotic systems is not self-averaging at any time scale, even when evolved
under full random matrices. We also analyze the participation ratio, Rényi entropies, the spin
autocorrelation function from experiments with cold atoms, and the connected spin-spin correlation
function from experiments with ion traps. We find that self-averaging holds at short times for the
quantities that are local in space, while at long times, self-averaging applies for quantities that are
local in time. Various behaviors are revealed at intermediate time scales.

I. INTRODUCTION

The property of self-averaging is at the heart of studies
about disordered systems [1] and random matrices [2]. It
holds when the distribution of the quantity of interest is
peaked around its average and its relative variance goes
to zero as the system size increases. For sufficiently large
systems, the distribution converges to a delta function.
This implies that, by increasing the system size, one can
reduce the number of samples used in experiments and in
statistical analysis. If the system exhibits self-averaging,
its physical properties are independent of the specific re-
alization, which allows for the construction of theoretical
models to describe finite samples. Lack of self-averaging,
on the other hand, means sample to sample fluctuations
even in the thermodynamic limit, so ensemble averages
are needed no matter how large the system size is. In
this case, scaling analyses become quite challenging.

Absence of self-averaging typically happens near criti-
cal points of disordered systems [3–10]. This is the case of
one-body [11] and many-body [12] systems in the vicinity
of the metal-insulator transition. Using results from An-
derson localization, it has been shown, for example, that
the entanglement entropy is not self-averaging [13]. Self-
averaging has also been the theme of works about spin
glass [6, 14], the kinetics of domain growth [15], and dif-
fusion in disordered media [16–19], often in comparison
to ergodicity.

Ergodicity refers to temporal averages [20] and has re-
cently received extensive attention in studies about equi-
libration and thermalization of isolated quantum sys-
tems [21–29]. Self-averaging, on the other hand, is asso-
ciated with averages over disorder realizations and it has
got little consideration in the context of quantum sys-
tems out of equilibrium, apart from few recent works on
driven systems [30, 31] and studies about the two-level
form factor [32–36], which is a quantity used to study

spectral properties in the time domain.

The present work addresses the mostly uncharted ter-
ritory of self-averaging during the evolution of interact-
ing many-body quantum systems. The focus is on the
chaotic regime, where self-averaging is usually assumed
to hold. Our results dissolve these expectations.

We show analytically and verify numerically that the
survival probability evolving under full random matrices
from the Gaussian orthogonal ensemble (GOE) is not
self-averaging at any time scale. We also study the sur-
vival probability in a chaotic disordered spin model of
experimental interest and confirm that it is nowhere self-
averaging. This is a consequential result, since this spa-
tially non-local quantity is a very common tool in studies
of nonequilibrium quantum dynamics [37–60].

Our analysis is extended also to other non-local and
local quantities in space evolved with both the GOE
and the disordered spin model. As examples of non-
local quantities, we consider the participation ratio and
Rényi entropies, that measure the spread of the initial
state in the many-body Hilbert space and are connected
with the out-of-time ordered correlator [61, 62]. As lo-
cal observables, we investigate the spin autocorrelation
function, which is similar to the density imbalance mea-
sured in experiments with cold atoms [63], and the con-
nected spin-spin correlation function, which is used in
experiments with ion traps [64]. The results are rather
non-trivial, being dependent on the observable and time
scales, although a general picture emerges for short and
long times.

The two local experimental quantities are self-
averaging at the short times currently accessible experi-
mentally, which is reassuring. After equilibration, when
there are only small fluctuations around infinite-time av-
erages, the connected correlation function, the participa-
tion ratio, and the Rényi entropies considered here are
all self-averaging, while the survival probability and the
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spin autocorrelation function are not. These two latter
quantities are autocorrelation functions, being therefore
non-local in time.

This paper is organized as follows. The definition of
self-averaging, as well as the models, initial states, and
quantities investigated are presented in Sec. II. Sec-
tion III shows the entire evolution of the average values
of the observables under the GOE and the spin model.
The plots display the different time scales involved in the
dynamics and they serve as references for the following
core sections. Section IV provides the analytical and nu-
merical results for the survival probability. The other
non-local quantities are studied in Sec. V, and the local
experimental observables are examined in Sec. VI. Con-
clusions and future directions are presented in Sec. VII.
There are also two appendices.

II. GENERAL DEFINITIONS

In this section, we define the concept of self-averaging,
and introduce the Hamiltonians and quantities examined
in this work.

A. Self-averaging

Self-averaging implies that a single large system is
enough to represent the whole statistical ensemble. By
analyzing the sample to sample fluctuations, a quantity
O is said to be self-averaging when the ratio between
its variance σ2

O and the square of its mean, that is, its
relative variance,

RO(t) =
σ2
O(t)

〈O(t)〉2
=

〈
O2(t)

〉
− 〈O(t)〉2

〈O(t)〉2
, (1)

goes to zero as the system size L increases. In our stud-
ies, 〈.〉 includes the averages over both disorder realiza-
tions and initial states taken in a narrow energy window
around the middle of the spectrum. Notice that RO(t) is
time-dependent, since we investigate whether the observ-
able is self-averaging not only at equilibrium, but during
its entire time evolution.

It is common to distinguish strong self-averaging, when
RO(t) ∼ L−1, from weak self-averaging, when RO(t) ∼
L−ν for 0 < ν < 1. In this work, we find also more
extreme cases, in the sense that the relative variance of
O can decrease or increase exponentially in system size.
This sort of “super” self-averaging or “super” non-self-
averaging behavior occurs at large times, when the dy-
namics of a chaotic many-body system become analogous
to those of full random matrices [65]. At such long times,
the initial state is spread over the many-body Hilbert
space, which is exponentially large in L.

B. Models and Initial States

We study quantum Hamiltonians of the form

H = H0 + V, (2)

where H0 is the integrable part of H and V is a strong
perturbation that takes the system in the chaotic regime.
We denote by |n〉 the eigenstates of H0. The eigenstates
and eigenvalues of H are |α〉 and Eα, respectively.

1. GOE model

One of the models that we study is formed by GOE
full random matrices of dimension D [2]. For this model,
H0 corresponds to the diagonal part of the matrix, while
V contains the off-diagonal elements. All entries are real
numbers independently drawn from a Gaussian distribu-
tion with mean value 〈〈Hij〉〉 = 0 and variance

〈〈
H2

ij

〉〉
=

{
2 i = j

1 i 6= j
. (3)

This model is unphysical, because it assumes interactions
between all degrees of freedom, but it has the advantage
of allowing for analytical calculations. This is possible,
because the eigenvalues of the GOE model are highly cor-
related and the eigenstates are normalized random vec-
tors. This model is also relevant, because it correctly
reproduces the spectral correlations and the late time
dynamics of realistic models [65].

2. Disordered spin model

We consider a realistic disordered spin-1/2 chain in the
strong chaotic regime. It has local two-body interactions
only and its Hamiltonian is given by,

H0 = J

L∑

k=1

(hkS
z
k + Sz

kS
z
k+1)

V = J

L∑

k=1

(Sx
kS

x
k+1 + Sy

kS
y
k+1). (4)

In the above, ~ = 1, Sx,y,z
k are spin operators on site k,

L is the number of spins in the lattice, J sets the energy
scale, and periodic boundary conditions are taken. The
Zeeman splittings hi are independent random numbers
uniformly distributed in [−h, h], where h is the disorder
strength. The total magnetization in the z-direction is
conserved. We work in the largest subspace, namely the
one with zero total z-magnetization, which has dimen-
sion D = L!/(L/2)!2. To be in the fully chaotic region,
we use h = 0.75. This model has been extensively studied
in the context of many-body localization, both theoreti-
cally [66–69] and experimentally [63].
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While, for the sake of concreteness, our calculations
and numerical simulations are done for this model, they
can be extended to a large class of different systems [65].
The important elements that the model has to satisfy
are to be strongly chaotic, in the sense of level statistics
comparable to those of random matrix theory, and have
interactions that are strictly local and two body only.

3. Initial state and notation for R(t)

The initial state |Ψ(0)〉 is an eigenstate of H0 with
energy close to the middle of the spectrum,

E0 = 〈Ψ(0)|H |Ψ(0)〉 =
∑

α

∣∣c0α
∣∣2 Eα ∼ 0, (5)

where c0α = 〈α|Ψ(0)〉. This is the region of the spectrum
where the energy eigenstates are chaotic [70]. Such ini-
tial states are very far from equilibrium, which results in
an extremely fast initial evolution under the full Hamil-
tonian H .
For clarity, we refer to the relative variance obtained

for GOE matrices as RGOE
O (t) and as Rspin

O (t) the one
obtained for the chaotic spin model.

C. Quantities

We consider both non-local quantities and local exper-
imental observables.

1. Survival Probability

The survival probability is the squared overlap between
the initial state and its time evolved counterpart,

PS(t) =
∣∣〈Ψ(0)| e−iHt |Ψ(0)〉

∣∣2 . (6)

This quantity is non-local in space and also in time, since
it compares the state at time t with the state at time
t = 0. It has been studied in many different contexts,
from the decay of unstable nuclei [37], the quantum speed
limit [38, 39], and the onset of power-law decays [43–47],
to quench dynamics [48–52], ground state and excited
state quantum phase transitions [53, 54], and multifrac-
tality in one-body and many-body systems [55–57]. The
survival probability is related to the two-level form factor
studied in [35, 71–74], but this one contains information
about the eigenvalues only, while the survival probabil-
ity contains information about the initial state also, being
therefore more appropriate for studies of dynamics.
The survival probability can be written in the following

useful integral representation,

PS(t) =

∣∣∣∣
∫

dEe−iEtρ0(E)

∣∣∣∣
2

, (7)

where

ρ0(E) =
∑

α

∣∣c0α
∣∣2 δ(E − Eα) (8)

is the energy distribution of the initial state, known as lo-
cal density of states (LDOS). The width Γ0 of the LDOS
is related to the number of states |n〉 that are directly
coupled to |Ψ(0)〉 according to

Γ2
0 =

∑

n6=0

|〈n|H |Ψ(0)〉|2. (9)

In the above, the sum runs over all states |n〉, apart from
|Ψ(0)〉. For the GOE model, the average over initial
states and disorder realizations naturally gives

〈
Γ2
0

〉GOE
= D, (10)

while the sparsity of the spin Hamiltonian implies that

〈
Γ2
0

〉spin
=

J2L2

8(L− 1)
∼ J2

8
L. (11)

This difference has important consequences for the time
scales involved in the evolution of the mean value of the
observables and in their self-averaging behavior. In what
follows, we use the notation Γ =

√
〈Γ2

0〉.

2. Inverse Participation Ratio and Rényi Entropies

The inverse participation ratio and the Rényi entropies
are non-local quantities in space, but they are local in
time. In contrast to the survival probability, they com-
pare the state at time t with all states |n〉, not only with
|Ψ(0)〉.
The inverse participation ratio is defined as

IPR(t) =
∑

n

∣∣〈n| e−iHt |Ψ(0)〉
∣∣4 . (12)

It quantifies the spread of the initial many-body state in
the basis of unperturbed many-body states |n〉 [75]. At
t = 0, when the initial state is fully localized in this basis,
IPR(0) = 1. A state completely delocalized at time t has
IPR(t) ∼ 1/D.
The second-order Rényi entropy is related to the in-

verse participation ratio as

S(t) = − ln[IPR(t)], (13)

where no partial trace of degrees of freedom is involved.
While the asymptotic value of IPR(t) scales with the in-
verse of the size of the exponentially large Hilbert space,
the maximum value of S(t) is proportional to L. The
motivation to study not only IPR(t), but also its log-
arithm, comes from the knowledge that the logarithm
cuts the tails of the distribution, therefore enhancing self-
averaging properties.
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The results for S(t) are equivalent to those for the
Shannon entropy (or first-order Rényi entropy), which
is written as

Sh(t) = −
∑

n

∣∣〈n| e−iHt |Ψ(0)〉
∣∣2 ln

∣∣〈n| e−iHt |Ψ(0)〉
∣∣2 .

(14)
This entropy is often used in studies of quantum chaos
(see [76, 77] and references therein).

3. Spin Autocorrelation Function

and Connected Correlation Function

The spin autocorrelation function and the connected
spin-spin correlation function are experimental quanti-
ties. They are both local in space, but only the latter is
also local in time.

The spin autocorrelation function is given by

I(t) =
4

L

L∑

k=1

〈Ψ(0)|Sz
ke

iHtSz
ke

−iHt |Ψ(0)〉 . (15)

It measures the average over all sites of the proximity of
the orientation of a spin k at time t to its orientation at
t = 0. By mapping the spin system to hardcore bosons,
one finds that this quantity is analogous to the density
imbalance between even and odd sites, which is measured
in cold atom experiments [63].

The connected spin-spin correlation function is defined
as

C(t) =
4

L

∑

k

[
〈Ψ(t)|Sz

kS
z
k+1 |Ψ(t)〉 (16)

− 〈Ψ(t)|Sz
k |Ψ(t)〉 〈Ψ(t)|Sz

k+1 |Ψ(t)〉
]
.

Similar to IPR(t), it quantifies how far |Ψ(t)〉 is from the
classical states |n〉. This quantity has been measured in
experiments with ion traps [64].

III. DYNAMICS OF MEAN VALUES

Before studying in detail the behavior of the relative
variance of the quantities above, we briefly explain how
the average values, 〈O(t)〉, change with time. We outline
the main stages of the evolution and the time scales asso-
ciated with these steps, so that in the following sections,
we can analyze how the fluctuations behave in each of
these regimes.

In Fig. 1 (a) and Fig. 1 (b), we show the evolution of
the mean value of the survival probability for the GOE
model and for the chaotic spin model, respectively. The
entire dynamics is depicted, from the moment the sys-
tem is quenched out of equilibrium to the moment a new
equilibrium is reached, which happens when 〈PS(t)〉 only

fluctuates around a finite asymptotic value. This satura-
tion point corresponds to

〈
PS

〉
=

〈
lim
t→∞

PS(t)
〉
=

〈
∑

α

∣∣c0α
∣∣4
〉
. (17)
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FIG. 1. Evolution of the mean value of the survival probabil-
ity for the GOE model (a) and for the chaotic spin model (b),
and evolution of the mean value of the inverse participation
ratio (c), second-order Rényi entropy (d), spin autocorrelation
function (e), and connected spin-spin correlation function (f)
for the chaotic spin model. In (a)-(c) and (e), from top to
bottom: D = 252, 924, 3 432, 12 870, 48 620; in (d) and (f),
these sizes are from bottom to top. In (a) and (b): Horizon-
tal dashed lines mark the saturation value. In (a): Analytical
expression from Eq. (18) and numerical data for D = 12 870.
In (b): Numerical data. All panels: Average over 104 data,
where 0.01D different initial states with E0 ∼ 0 are selected
for each disorder realization.
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The analytical expression for the evolution of the sur-
vival probability was obtained for large Hamiltonian ma-
trices in [65, 78, 79]. For both the GOE and the realistic
model, it is given by

〈PS(t)〉 =
1−

〈
PS

〉

D − 1

[
Db21(Γt)− b2

(
Γt

µD

)]
+
〈
PS

〉
.

(18)
The first term in the equation above is determined by the
shape and energy bounds of the LDOS [46–49], which de-
pend on the model and initial state. For GOE matrices,
the shape is semicircular, up to corrections that are sub-
dominant in 1/D, which gives [48, 49]

b21(Γt) =
J 2
1 (2Γt)

Γ2t2
, (19)

where J1 is the Bessel function of the first kind. For
realistic chaotic many-body systems, the LDOS is Gaus-
sian [48, 49, 80–82] and b1 is given in [65, 78].
The b1 function controls the initial decay of the sur-

vival probability. For Γt ≪ 1, it leads to the universal
1 − Γ2t2 behavior, where 1/Γ is the characteristic time
for the depletion of the initial state. Later, oscillations
emerge that decay as a power law [46, 47]. The power-law
behavior continues until the minimal value of 〈PS(t)〉 is
reached at tTh. This time is referred to as Thouless time
and it marks the point of the complete spread of the ini-
tial state in the many-body Hilbert space, as explained
in Ref. [65].
Beyond tTh, the dynamics become universal and de-

termined by the second term in Eq. (18), which is the
two-level form factor,

b2(t) =






1− 2t+ t ln(2t+ 1) t ≤ 1

t ln

(
2t+ 1

2t− 1

)
− 1 t > 1

. (20)

This function is responsible for the dip below
〈
PS

〉
, which

is known as correlation hole and exists only when the
eigenvalues are correlated [32, 40, 41]. Since the GOE
and the realistic chaotic model have similar level statis-
tics, the same equation for b2(t) is used for both cases. In

Eq. (18), µ = 2 for the GOE model and µ =
√
2π for the

spin model [65]. The b2 function initially grows linearly
and later shows a power-law behavior up to saturation,
which happens at the relaxation time tR.
We therefore have four regions in time that exhibit dif-

ferent behaviors, as indicated in Fig. 1 (a) and Fig. 1 (b):

1. The short time region, for t ≪ 1/Γ.

2. The power-law decay, happening for 1/Γ < t < tTh.

3. The interval for the correlation hole, tTh < t < tR.
The time tTh to reach the minimum of the hole is a
constant for the GOE model, but grows exponen-
tially with system size for the spin model [65]. This
exceedingly long time is a consequence of the spa-
tial locality of the initial state and couplings of the
realistic model.

4. The saturation region, for t > tR. The relaxation
time (or Heisenberg time) is the largest time scale
of the system and is given by the inverse of the
mean level spacing [65].

Four distinct behaviors, at the same time scales identi-
fied for the survival probability, appear also for the spin
autocorrelation function, as seen in Fig. 1 (e). Similarly
to what one finds for 〈PS(t)〉, the correlation hole is evi-
dent for 〈I(t)〉 and does not fade away as the system size
increases.
For the quantities that are local in time, we observe

two different behaviors before the Thouless time, one for
t < 1/Γ and another one for 1/Γ < t < tTh, as evident in
the plots for the inverse participation ratio [Fig. 1 (c)],
second-order Rényi entropy [Fig. 1 (d)], and connected
spin-spin correlation function [Fig. 1 (f)], and also for the
Shannon entropy (not shown). However, beyond tTh, the
effects of the correlation hole are not noticeable for these
quantities, and we basically see only fluctuations around
their infinite-time averages. We can then say that the dy-
namics of 〈IPR(t)〉, 〈S(t)〉, 〈Sh(t)〉, and 〈C(t)〉 saturate
already at the Thouless time.

IV. SURVIVAL PROBABILITY

Despite being a central quantity in the analysis of
systems out of equilibrium, not much is known about
the self-averaging properties of the survival probability.
Some of the existing works have focused on the two-level
form factor, which corresponds to the long-time part of
the survival probability. They include numerical studies
about the spectral correlations of the hydrogen atom in
a magnetic field [34] and theoretical arguments [35], that
both indicate the lack of self-averaging of the two-level
form factor.
Here, we provide an analytical expression for RGOE

PS
(t)

at all times, and show that the survival probability is
not self-averaging at any time scale. We confirm numer-
ically that this picture holds for physical chaotic models
as well. We start the discussion below with estimates for
RPS

(t) for both models at short and long times, and then
proceed with the presentation of the analytical result for
RGOE

PS
(t) and numerical results for both models.

A. Short times

For short times, t ≪ 1/Γ, one can expand the survival
probability as

PS(t) = 1− Γ2
0t

2 +O(t4). (21)

From this expansion, one finds that the relative variance
is given by

RPS
= σ2

Γ2t4 +O(t6), (22)
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where σ2
Γ2 =

〈
Γ4
0

〉
−
〈
Γ2
0

〉2
. For the GOE and the realistic

chaotic model, one has

(σ2
Γ2)GOE = 2D,

(σ2
Γ2)spin =

J4L2(L − 2)

64(L− 1)2
∼ J4

64
L, (23)

so the relative variance grows linearly with matrix or sys-
tem size. The survival probability is non-self-averaging
for both the GOE and the spin model.

B. Long times

Strong evidence for the absence of self-averaging of the
survival probability at long times was already hinted at
by studies of temporal fluctuations. In chaotic systems
after saturation, the dispersion of the temporal fluctua-
tions of PS(t) is proportional to the value of the infinite-
time average, PS [49, 50]. The same result is obtained
also for the dispersion of PS(t) over the ensemble of real-
izations, because for chaotic systems and time intervals
beyond tR, temporal averages become analogous to en-
semble averages, as discussed next.
The survival probability in Eq. (6) can also be written

as

PS(t) =
∑

α6=β

|c(0)α |2|c(0)β |2e−i(Eα−Eβ)t +
∑

α

|c(0)α |4. (24)

For times t > tR, either temporal averages or ensem-
bles averages cancel out the first term in Eq. (24), so

〈PS(t > tR)〉 ∼ 〈PS〉 = 〈∑α |c(0)α |4〉. The eigenvec-
tors of GOE random matrices are statistically equiva-
lent to normalized Gaussian random vectors [83], which
gives 〈PS〉 ∼ 3/D. For physical models, we also have
〈PS〉 ∝ 1/D for eigenstates away from the borders of the
spectrum.
To obtain the variance σ2

PS
(t), one needs 〈PS(t)〉2 and

the ensemble average of the square of the survival prob-
ability as well,

〈
P 2
S(t)

〉
=

〈
∑

α,β,γ,δ

e−i(Eα−Eβ+Eγ−Eδ)t
∣∣c0α

∣∣2∣∣c0β
∣∣2∣∣c0γ

∣∣2∣∣c0δ
∣∣2
〉
.

(25)
At large times, only the terms with α = β and γ = δ, or
α = δ and γ = β matter, since the phase factors average
to zero. This reasoning is the same for computing the

time average of P 2
S(t). Since 〈∑α |c(0)α |4 ∑β |c

(0)
β |4〉 ∼

〈
∑

α |c(0)α |4〉〈
∑

β |c
(0)
β |4〉, one finds that σ2

PS
∝ 〈PS〉2, and

as a consequence

RPS
(t > tR) = O(1). (26)

At long times, the relative variance is therefore indepen-
dent of system size.

C. Analytical result for all times

The derivation of the analytical expression for the
mean value of the squared survival probability is lengthy,
and is explained in Appendix A. The formula reads

〈
P 2
S(t)

〉
= g4(t) + 〈PS〉g3(t) + 4〈PS〉

〈
PS(t)− 〈PS〉

〉

+ 〈PS〉2
〈
PS(2t)− 〈PS〉

〉
+ 2〈PS〉2. (27)

In the above, the functions g4(t) and g3(t) are related to
the Fourier transforms of the four- and three-point spec-
tral correlation functions, respectively. The agreement
between Eq. (27) and the numerical results is perfect,
as can be seen in the figure in Appendix A. Combining
Eq. (18) and Eq. (27), one obtains RGOE

PS
(t) analytically.
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FIG. 2. Relative variance RPS (t) for the survival probability
for the GOE model (a) and the spin model (b). From bottom
to top (easier to distinguish at short times), the sizes of the
matrices are D = 252, 924, 3 432, 12 870, and also D = 48 620
for panel (b). The short times coefficients of limt→0 RPS (t)/t4

are plotted for the GOE and spin models in the insets of
panels (a) and (b), respectively. In panel (a), the coefficients
are shown as a function of D, while in panel (b), as a function
of L.

In Fig. 2 (a), we plot the numerical results forRGOE
PS

(t)
for various matrix sizes. It is clear that the survival prob-
ability is not self-averaging at any time scale. The ana-
lytical expression for RGOE

PS
(t) agrees very well with the

numerics for t > 1/Γ, while for very short times, where
the Fourier transform of the LDOS dominates the dy-
namics, finite size corrections are important. In this case,
one computes RGOE

PS
(t) using Eq. (22). This is shown in

the inset of Fig. 2 (a), where the dots are the coeffi-
cients for limt→0 RGOE

PS
(t)/t4 extracted numerically and
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the dashed line shows the analytical behavior predicted
from Eq. (22) and Eq. (23), limt→0 RGOE

PS
(t)/t4 ∝ D.

A qualitatively analogous behavior is shown for the
spin model in Fig. 2 (b). At short times, Rspin

PS
(t) grows

with system size, and at large times, it is size indepen-
dent. The inset confirms the prediction by Eq. (22) and

Eq. (23), indicating that limt→0 Rspin
PS

(t)/t4 is propor-
tional to L. This coefficient grows slower for the spin
model than for the GOE model, because of the sparse-
ness of the realistic Hamiltonian.
At intermediate times, where in Fig. 1, 〈PS(t)〉 shows

oscillations decaying as a power law, RPS
(t) also oscil-

lates for both models, as observed in Fig. 2. In the case
of the physical model, the relative variance in this region
reaches values above 1. Since the power-law decay of
〈PS(t)〉 is caused by the bounds of the spectrum of finite
systems [46, 47], at such intermediate times, the state
|Ψ(t)〉 acquires weight on eigenstates closer to the edges
of the spectrum, which are not described by random ma-
trix theory. The values of Rspin

PS
(t) above 1 could be a

manifestation of correlations between the components of
these states.
Beyond the region of the power-law decay, the relative

variance of the survival probability behaves similarly for
any time, RPS

(t > tTh) ∼ 1. This suggests that the
correlation hole, which is clearly manifested in the mean
value of the survival probability in Fig. 1, does not affect
the self-averaging properties of this quantity in any way
different from what one sees for t > tR.

V. INVERSE PARTICIPATION RATIO AND

RÉNYI ENTROPIES

The inverse participation ratio and Rényi entropies are
defined in Eq. (12), Eq. (13), and Eq. (14). While their
self-averaging properties are similar for t > 1/Γ, they
differ for short times.

A. Inverse participation ratio

There is a fundamental difference between PS(t) and
IPR(t): the survival probability measures the distance of
the evolved state |Ψ(t)〉 from the initial state (indicated
as n = 0), while the inverse participation ratio measures
the distance of |Ψ(t)〉 from any unperturbed many-body
state |n〉. The inverse participation ratio can be seen as a
generalization of the squared survival probability, where
in addition to the term with n = 0, which gives P 2

S(t)
itself, it contains also all other terms with n 6= 0. This
parallel allows us to intuitively understand the behavior
of the relative variance of IPR. At short times, |Ψ(t)〉 is
still very close to |Ψ(0)〉, so the term with n = 0 dom-
inates the evolution and IPR(t) behaves analogously to
P 2
S(t) [62]. This means that self-averaging is absent at

short times. At large times, on the other hand, the av-
erage over all unperturbed many-body states drastically

reduces the fluctuations, and the inverse participation
ratio becomes very strongly self-averaging, in the sense
that RIPR ∝ D−1 for both the GOE and the spin model.
For times t ≪ 1/Γ, IPR(t) can be expanded as

IPR(t) = 1− 2Γ2
0t

2 +O(t4), (28)

which is exactly the same expression one has for P 2
S(t) at

leading order in t. This means that

RIPR(t) ∝ RPS
(t) ∝ σ2

Γ2t4 +O(t6) (29)

at short times, for any model, so the same kind of non
self-averaging behavior found in Sec. IV emerges here
also.
At large times, we study the ensemble average of

IPR(t) =
∑

n

∑

α,β,γ,δ

e−i(Eα−Eβ+Eγ−Eδ)t

× c0αc
n∗
α cnβc

0∗
β c0γc

n∗
γ cnδ c

0∗
δ (30)

and of IPR2(t) using the same arguments employed
in Sec. IV, namely that the eigenstates of GOE ma-
trices imply that 〈cα〉 ∼ 0,

〈
|cα|2

〉
∼ 1/D, and〈∑

α,β e
−i(Eα−Eβ)t

〉
∼ 0 unless α = β. One finds that

RGOE
IPR (t > tR) ∝

1

D
. (31)

Thus, unlike the survival probability, IPR(t) is actually
self-averaging at large times.
As mentioned in Sec. IV, not all eigenstates of realistic

chaotic models are close to normalized Gaussian random
vectors, but they are the majority, so we should expect
a similar behavior for the realistic spin model as well.
In Fig. 3, we plot the numerical data for RGOE

IPR (t)

in panel (a), and for Rspin
IPR(t) in panel (d). In both

cases, the lack of self-averaging at short times and the
very strong self-averaging at large times are clearly vis-
ible. This is shown quantitatively in the other panels.
In Fig. 3 (b) and (e), we plot the short time coefficient
limt→0 RIPR(t)/t

4 for the GOE and the spin model, re-
spectively. In Fig. 3 (c) and (f), we show the value of
RIPR(t) for a long time t ≥ tR. In all four cases, the
numerical values (circles) agree well with our analytical
estimates (dashed lines) in Eq. (29) and Eq. (31).
At intermediate times, in the region of the power-law

decay of PS(t) and similarly to the behavior of RPS
(t),

the relative variance of the inverse participation ratio os-
cillates and reaches its largest values, as seen in Fig. 3 (a)
and Fig. 3 (d). Beyond this region, the curves are pretty
much flat and RIPR is unaware of the correlation hole.

B. Rényi entropies

Similarly to the behavior of the inverse participa-
tion ratio, the second-order Rényi entropy is super self-
averaging at long times and non-self-averaging at the
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FIG. 3. Relative variance of the inverse participation ratio
for the GOE (a) and spin model (d). From top to bot-
tom (at large times), the sizes of the matrices are D =
252, 924, 3 432, 12 870 and also D = 48 620 in (d). In (b) and
(e): coefficient limt→0 RIPR(t)/t4 as a function of D for the
GOE model (b), and as a function of L for the spin model
(e). In (c) and (f): values of RIPR(t ≥ tR) at long times as
a function of D for the GOE (c) and spin model (f). In (b),
(c), (e), and (f), the circles are for numerical data and they
agree well with theoretical estimates (dashed lines).

time scales of the power-law decay of PS(t) (see figures for
RS(t) in Appendix B). The two quantities differ, how-
ever, at short times. This happens, because for t ≪ 1/Γ,

S(t) = 2Γ2
0t

2 +O(t4), (32)

so S(t) → 0 for t → 0, while the inverse participation
ratio goes to 1 for t → 0 [see Eq. (28)]. Contrary to
RIPR(t), the time dependence of RS(t) cancels out at
the lowest order in t,

RS(t) =
σ2
Γ2

〈Γ2
0〉

2 +O(t2). (33)

Using Eq. (10), Eq. (11), and Eq. (23), one finds that
the second-order Rényi entropy is self-averaging at short
times for both random matrices and physical models,

RGOE
S (t) =

2

D
+O(t2), Rspin

S (t) =
1

L
+O(t2). (34)

The difference in the behavior of IPR(t) and
− ln[IPR(t)] is somewhat reminiscent to what happens
in the Anderson model, where the transmission ampli-
tude, which scales multiplicatively with the system size,
is not self-averaging, while its logarithm, which scales
additively, is self-averaging [11]. The fact that S(t) is
self-averaging at short times makes it more appealing for
experiments than IPR(t).
From the point of view of self-averaging properties,

whether one uses the second-order Rényi entropy or the
Shannon entropy is indifferent. We verified that both
RS(t) and RSh(t) exhibit equivalent behaviors.

VI. EXPERIMENTAL LOCAL QUANTITIES

The two experimental quantities considered, the spin
autocorrelation function and the connected spin-spin cor-
relation function, are local in space. Since for random
matrices, the notion of locality is meaningless, we study
these quantities for the spin model only.
The main difference between the two observables is

that the connected spin-spin correlation function is also
local in time, while the spin autocorrelation function is
not. In this sense, the spin autocorrelation function is
the spatially local counterpart of the survival probability,
since both are measured with respect to the state of the
system at t = 0, and the connected correlation function
is the spatially local counterpart of the inverse partici-
pation ratio, both involving only the state at t and both
dealing also with averages over all unperturbed many-
body states.
The differences between these quantities are reflected

in their self-averaging properties. At short times, spatial
locality ensures that both observables are self-averaging.
Their dynamics involve only a finite number of spins, and
the spatial averages ensure that the relative variances are
reduced as the system size increases. At long times, on
the other hand, the spin autocorrelation function, just as
the survival probability, is not self-averaging, while the
connected correlation function, similarly to the inverse
participation ratio, is.

A. Spin autocorrelation function

At short times, t ≪ 1/Γ, one can expand the spin
autocorrelation function in the following way,

I(t)=1−Γ2
0t

2+
4t2

L

L∑

k=1

S00
k

∑

n6=0

|〈n|H |Ψ(0)〉|2 Snn
k +O(t4),

(35)
where Snn

k = 〈n|Sz
k |n〉. The third term in Eq. (35) is

zero, unless |n〉 is directly coupled with |Ψ(0)〉. These
states |n〉 differ from |Ψ(0)〉 by two neighboring sites only.
Therefore, using the definition of Γ2

0 in Eq. (9), one finds
that

L∑

k=1

S00
k

∑

n6=0

|〈n|H |Ψ(0)〉|2 Snn
k =

L− 4

4
Γ2
0,

which gives

I(t) = 1− 4Γ2
0t

2

L
+O(t4). (36)

From this expansion, we obtain the relative variance,

RI(t) =
16σ2

Γ2t4

L2
+O(t6) ∝ t4

L
, (37)

where we used that σ2
Γ2 ∝ L [see Eq. (23)].
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The estimates above provide us with two important
results about the spin autocorrelation function at short
times: (i) Its mean value 〈I(t)〉 is independent of sys-
tem size, since according to Eq. (11),

〈
Γ2
0

〉
∝ L; and

(ii) the quantity is strongly self-averaging, since the rel-
ative variance decays as 1/L. Both these features are a
consequence of the local structure of the observables and
of the Hamiltonian, and not of any peculiar property of
I(t). As a consequence, we can claim that the local quan-
tities studied here, or any other involving only sums of
local operators and evolving under local Hamiltonians,
are self-averaging for short times.
The relative variance RI(t) is plotted in Fig. 4 (a). At

short times, we observe the expected power-law behavior
∝ t4, with a coefficient limt→0 RI(t)/t

4 ∝ 1/L, as shown
in Fig. 4 (b). The self-averaging behavior persists up
to all times currently reachable experimentally, so self-
averaging can be safely assumed in real experiments.
At large times, however, an inversion happens, and

RI(t) starts growing with system size, as seen in
Fig. 4 (a) and Fig. 4 (c). This happens at times of the
order of the Thouless time, when 〈I(t)〉 enters the correla-
tion hole [see Fig. 1 (e)], and the dynamics crossover from
a model-dependent regime at short times, to a universal
regime at long times [65]. After this point, self-averaging
is lost, and in an even stronger sense than for the survival
probability, for which RPS

(t) for t > tTh is system size
independent.

B. Connected spin-spin correlation function

Using a short-time expansion for the connected spin-
spin correlation function, one finds that,

C(t)=
4t2

L

L∑

k=1

∑

n6=0

(
S00
k S00

k+1 − 2S00
k Snn

k+1 + Snn
k Snn

k+1

)
×

|〈n|H |Ψ(0)〉|2 +O(t4) = −2Γ2
0t

2

L
+O(t4). (38)

This implies that, as a consequence of space locality and
that 〈Γ2

0〉 ∝ L, the mean value of this quantity is sys-
tem size independent, just like the spin autocorrelation
function, and it is also self-averaging,

RC(t) =
σ2
Γ2

〈Γ2
0〉2

+O(t6) ∼ 1

L
. (39)

The main difference between the connected spin-spin
correlation function and the spin autocorrelation at short
times is that C(0) = 0, while I(0) = 1. Therefore, the
relative variance RC(t) tends to a finite value as t → 0,
while RI(t) → 0. In Fig. 4 (d), we plot RC(t) for the
spin model. At short times, the relative variance indeed
saturates to a finite value. Figure 4 (e) confirms that this
value decays as 1/L.
At large times, RC(t) saturates to an asymptotic

value that decreases exponentially with L, as shown in
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FIG. 4. Relative variance of the spin autocorrelation func-
tion (a) and connected spin-spin correlation function (d)
for the spin model. In (a) and (b): From top to bot-
tom (at short times), the sizes of the matrices are D =
252, 924, 3 432, 12 870, 48 620. Panels (b) and (e) depict, re-
spectively, the short time coefficient 102

× limt→0 RI(t)/t4

and 102 × limt→0 RC(t) as a function of system size L. The
numerical data (circles) are compared with a fitting curve
∝ 1/L (dashed line). Panels (c) and (f) show numerical data
(circles) for RI(t) and RC(t) for a time t > tR as a function
of the dimension D; in (f): fitting curve ∝ 1/D0.8 (dashed
line).

Fig. 4 (f). This is similar to what happens for the in-
verse participation ratio, and in contrast to the behavior
of the spin autocorrelation function. This very strong
self-averaging behavior at long times is associated to the
fact that no memory of the initial state is encoded in the
connected spin-spin correlation function.

VII. CONCLUSIONS

This work analyzes the self-averaging behavior of
many-body quantum systems out of equilibrium. The
focus is on the chaotic regime, where self-averaging is of-
ten taken for granted. By examining different non-local
and local quantities in space, we bring forward a rich va-
riety of behaviors and deduce that self-averaging is not
an intrinsic consequence of quantum chaos, but depends
strongly on the quantity and time scale.
On the bright side, the local quantities studied here

and measured in experiments with cold atoms and ion
traps, namely the spin autocorrelation function and
the connected spin-spin correlation function, are self-
averaging for the times that are currently experimentally
reachable. The same arguments that we employ for these
quantities can be extended to any observable comprising
only sums of spatially local operators and evolving under
local Hamiltonians, so they should also be self-averaging
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at short times, a result that is reassuring for experimen-
talists.
Numerical studies, on the other hand, where long times

and an array of quantities are available, should be cau-
tious. Autocorrelation functions, such as the survival
probability and the spin autocorrelation function, are not
self-averaging at long times, so one needs large statistics
even when pushing towards very large system sizes. In
fact, as we showed analytically for full random matrices,
the survival probability is not self-averaging at any time
scale. Extra care should therefore be taken when dealing
with this quantity, which has a central role in studies of
nonequilibrium quantum dynamics.
The time evolution of the fluctuations of observables

is still uncharted territory. There are multiple interest-
ing directions that the study initiated here could take,
from the analysis of non-chaotic models, such as those
approaching many-body localization, to time-dependent
Hamiltonians and open systems. The present work opens
the path for such future analysis.
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Appendix A: Analytical expression for
〈

P 2
S(t)

〉〈

P 2
S(t)

〉〈

P 2
S(t)

〉

We provide here the analytical derivation for RGOE
PS

(t).
The analytical expression for 〈PS(t)〉 is given in Eq. (18)
and was already obtained in [78, 79]. It remains to show
how we obtain Eq. (27) for

〈
P 2
S(t)

〉
, which is a much more

involved derivation.
Before presenting the steps of the derivation, we com-

pare in Fig. 5 the expression from Eq. (27) (dashed lines)
with the numerical results (solid lines) for GOE matrices
of different sizes. The agreement is indeed perfect.
To obtain the relative variance of the survival proba-

bility, we need to compute

〈
P 2
S(t)

〉
= Ξ1 + Ξ2 + Ξ3 + Ξ4, (A1)
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FIG. 5. Evolution of the squared survival probability for the
GOE model. From top to bottom, the sizes of the matrices
are D = 252, 924, 3 432, 12 870. Numerical results (solid lines)
and the analytical expression (dashed lines) from Eq. (27) are
presented. Averages over 104 data.

where

Ξ1 =

〈
∑

α6=γ 6=β 6=δ

e−i(Eα−Eβ+Eγ−Eδ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2 ∣∣∣c(0)γ

∣∣∣
2 ∣∣∣c(0)δ

∣∣∣
2
〉
,

Ξ2 =

〈
∑

α6=β 6=γ

e−i(2Eα−Eβ−Eγ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
4 ∣∣∣c(0)γ

∣∣∣
2
〉

+

〈
∑

α6=β 6=γ

e−i(Eα−2Eβ+Eγ)t
∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
2 ∣∣∣c(0)γ

∣∣∣
2
〉
,

Ξ3 =

〈
∑

α6=β

e−2i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
4
〉

+ 4

〈
∑

α6=β

e−i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2 ∑

γ

∣∣∣c(0)γ

∣∣∣
4
〉
,

Ξ4 = 2

〈
∑

α,β

∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
4
〉
.

Equation (A1) is obtained by splitting the sum in
Eq. (25) into all possible combination of equal indexes
α, β, γ, δ. For example, Ξ1 contains the terms with all in-
dexes different, Ξ2 the terms with either α = γ or β = δ,
and so on. We now compute each one of these terms,
starting from Ξ4 and moving upwards.

1. Term Ξ4Ξ4Ξ4

The fourth term in Eq. (A1) can be computed straight-
forwardly, applying the results of Refs. [78, 79]. Indeed,
up to subleading corrections in D−1, one finds

2

〈
∑

α,β

∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
4
〉

= 2
〈
PS

〉2
+O(D−3). (A2)
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Note that, at large times, this is the only term that does
not vanish. This is because it is the only term which does
not contain fluctuating phases in time. We can therefore
compute the asymptotic value of the relative variance
already,

lim
t→∞

RGOE
PS

(t) =
2
〈
PS

〉2 −
〈
PS

〉2
〈
PS

〉2 +O(D−1)

= 1 +O(D−1). (A3)

This means that, as explained in Sec. IV, the relative
variance is system size independent at large times, and
self-averaging is not present.

2. Term Ξ3Ξ3Ξ3

Let us first compute the following term of Ξ3,

4

〈
∑

α6=β

e−i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2 ∑

γ

∣∣∣c(0)γ

∣∣∣
4
〉
. (A4)

In order to do this, let us define the time dependent part
of the survival probability

P̃S(t) = PS(t)− PS =
∑

α6=β

e−i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2

,

(A5)
which tends to zero as t → ∞. From Eq. (18), one gets
for its average value

〈
P̃S(t)

〉
=

1−
〈
PS

〉

D − 1

[
Db21(Γt)− b2

(
Γt

2D

)]
. (A6)

As a consequence, one finds, up to subleading corrections
in D−1, that

4

〈
∑

α6=β

e−i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2 ∑

γ

∣∣∣c(0)γ

∣∣∣
4
〉

= 4
〈
PS

〉 〈
P̃S(t)

〉
+O(D−2). (A7)

We now compute the other term of Ξ3,〈
∑

α6=β

e−2i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
4
〉
. (A8)

For this, one needs to recall that for GOEmatrices, eigen-
values and eigenvectors are statistically independent [2].
This means that the averages over the components and
the eigenenergies factorize. This fact will be used multi-
ple times in this derivation. For this particular term, it
implies that

〈
∑

α6=β

e−2i(Eα−Eβ)t
∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
4
〉

=

〈
∑

α6=β

∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
4
〉〈

e−2i(Eα−Eβ)t
〉

=
〈
P̃S(2t)

〉 〈
PS

〉2
+O(D−3)

1−
〈
PS

〉 (A9)

∼
〈
P̃S(2t)

〉(〈
PS

〉2
+O(D−2)

)
.

3. Term Ξ2Ξ2Ξ2

We now need to compute Ξ2,

〈
∑

α6=β 6=γ

e−i(2Eα−Eβ−Eγ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
4 ∣∣∣c(0)γ

∣∣∣
2
〉

+

〈
∑

α6=β 6=γ

e−i(Eα−2Eβ+Eγ)t
∣∣∣c(0)α

∣∣∣
4 ∣∣∣c(0)β

∣∣∣
2 ∣∣∣c(0)γ

∣∣∣
2
〉
. (A10)

Using again the statistical independence of eigenvalues
and eigenvectors, we get for the components of the initial
state,

〈
∑

α6=β 6=γ

∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
4 ∣∣∣c(0)γ

∣∣∣
2
〉

=
〈
PS

〉
+O(D−2). (A11)

It remains to obtain the following function,

g3(t) =
〈
e−i(2Eα−Eβ−Eγ)t + e−i(Eα−2Eβ+Eγ)t

〉
. (A12)

Following Refs. [78, 79, 84], we write this average as

g3(t) =
(D − 3)!

D!

∫
dEe−iEt

∫
dEαdEβdEγR3(Eα, Eβ , Eγ)

× [δ(E − (2Eα − Eβ − Eγ)) + δ(E − (Eα − 2Eβ + Eγ))] ,

where R3(Eα, Eβ , Eγ) is the three-point spectral correla-
tion function [2]. It can be written as

R3(Eα, Eβ , Eγ) = R1(Eα)R1(Eβ)R1(Eγ)−R1(Eα)T2(Eβ , Eγ)

− R1(Eβ)T2(Eα, Eγ)−R1(Eγ)T2(Eα, Eβ)

+ T3(Eα, Eβ , Eγ). (A13)

In the above,

R1(E) =
1

π

√
2D − E2 (A14)

is the density of states, while T2 and T3 are the two- and
three-point cluster functions, respectively. T3 represents
the connected part of the three-point correlation func-
tion, while all other terms of R3 represent all possible
disconnected contributions.

We first compute the term which depends on the den-
sity of states only,
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(D − 3)!

D!

∫
dEe−iEt ×

∫
dEαdEβdEγR1(Eα)R1(Eβ)R1(Eγ) [δ(E − (2Eα − Eβ − Eγ)) + δ(E − (Eα − 2Eβ + Eγ))]

=
(D − 3)!

D!

∫
dEαe

−2iEαtR1(Eα)

∫
dEβe

−iEβtR1(Eβ)

∫
dEγe

−iEγtR1(Eγ) + c.c.

= 2
(D − 3)!

D!
(2D)3b1(2Γt)b

2
1(Γt). (A15)

We now consider the terms containing both R1 and T2. As an example, let us compute

(D − 3)!

D!

∫
dEe−iEt ×

∫
dEαdEβdEγR1(Eα)T2(Eβ , Eγ) [δ(E − (2Eα − Eβ − Eγ)) + δ(E − (Eα − 2Eβ + Eγ))]

=
(D − 3)!

D!

∫
dEαR1(Eα)e

−2iEαt

∫
dEβdEγT2(Eβ , Eγ)e

−i(−Eβ−Eγ)t (A16)

+
(D − 3)!

D!

∫
dEαR1(Eα)e

−iEαt

∫
dEβdEγT2(Eβ , Eγ)e

−i(−2Eβ+Eγ)t.

From Ref. [2], we know that, for any n ≥ 2, integrals of
the form

∫
dE1dE2···dEnTn(E1, E2,···En)e

−i
∑n

j=1
kjEj (A17)

are non-vanishing if and only if
∑n

j=1 kj = 0. Since this

is not the case in the integrals of Eq. (A16), all terms in
g3 containing both R1 and T2 vanish.
Finally, we consider the term containing the T3 con-

nected correlation function,

(D − 3)!

D!

∫
dEe−iEt ×

∫
dEαdEβdEγT3(Eα, Eβ , Eγ) [δ(E − (2Eα − Eβ − Eγ)) + δ(E − (Eα − 2Eβ + Eγ))]

=
(D − 3)!

D!

∫
dEαdEβdEγT3(Eα, Eβ , Eγ)

[
e−i(2Eα−Eβ−Eγ)t + e−i(Eα−2Eβ+Eγ)t

]
. (A18)

We perform the change of variables ξα = Eα/R1(0),
and similarly for Eβ and Eγ . This corresponds to
rescale the energies by their mean level spacing. Call-
ing Y3(ξα, ξβ , ξγ) = R3

1(0)T3(Eα, Eβ , Eγ), this integral
becomes

(D − 3)!

D!

∫
dξαdξβdξγY3(ξα, ξβ , ξγ)×

[
e−i(2ξα−ξβ−ξγ)R1(0)t + ei(ξα−2ξβ+ξγ)R1(0)t

]
, (A19)

which can be computed using the following formula,
found in Ref. [2],

∫
dξ1dξ2···dξnYn(ξ1, ξ2,··· , ξn)e

−i
∑n

j=1
ξjτj

= δ (τ1 + τ2 +··· +τn)

∫ ∞

−∞

dτ

[
∑

P

f(τ)f(τ + τP (1))···

f(τ + τP (1) +··· + τP (n−1))
]
(0)

.

In this formula, P labels all permutations of the indexes
1, 2, 3, . . . n, and P (i) is the permuted counterpart of i,

according to P . f(τ) is a matrix valued function, which
reads

f(τ) =

(
f2(τ) τf2(τ)
f2(τ)−1

τ
f2(τ)

)
, f2(τ) =

{
1 |τ | < 1/2

0 |τ | ≥ 1/2
.

(A20)
With the notation [·](0), we mean the following: Taken a

generic 2× 2 matrix A, we call

[A](0) =
A11 +A22

2
, (A21)

where A11 and A22 are the diagonal entries of A. In
particular, for Eq. (A19), we have τ1 = 2R1(0), τ2 =
τ3 = −R1(0) for the first term, and τ1 = τ3 = R1(0), τ2 =
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−2R1(0) for the second. Thus, we obtain for Eq. (A19),

(D − 3)!

D!

∫
dξαdξβdξγY3(ξα, ξβ , ξγ)

×
[
e−i(ξα−ξβ−ξγ)R1(0)t + ei(ξα−2ξβ+ξγ)R1(0)t

]

=
(D − 3)!

D!
Db3

(
Γt

2D

)
, (A22)

with

b3(τ) =

{
4 [1− 4τ + 3τ log (2τ + 1)] 0 < τ ≤ 1

2

8
[
τ − 1 + 3

2τ log
(

4−τ
2+τ

)]
τ > 1

2

.

(A23)
Putting all these terms together, we get

g3(t) =
(D − 3)!

D!

[
16D3b1(2Γt)b

2
1(Γt)−Db3

(
Γt

2D

)]
.

(A24)

4. Term Ξ1Ξ1Ξ1

Finally, we compute the term Ξ1,

〈
∑

α6=γ 6=β 6=δ

e−i(Eα−Eβ+Eγ−Eδ)t
∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2 ∣∣∣c(0)γ

∣∣∣
2 ∣∣∣c(0)δ

∣∣∣
2
〉
.

(A25)

Using again the independence of eigenvalues and eigen-
vectors, we factorize the average, and compute the part
depending on the eigenvectors first,

〈
∑

α6=γ 6=β 6=δ

∣∣∣c(0)α

∣∣∣
2 ∣∣∣c(0)β

∣∣∣
2 ∣∣∣c(0)γ

∣∣∣
2 ∣∣∣c(0)δ

∣∣∣
2
〉

=

1− 6
〈
PS

〉
+ O(D−2) ∼ 1. (A26)

We now compute the average over the energy levels,

g4(t) =
〈
e−i(Eα−Eβ+Eγ−Eδ)

〉

=
(D − 4)!

D!

∫
dEe−iEt

×
∫

dEαdEβdEγdEδR4(Eα, Eβ , Eγ , Eδ)

× δ(E − (Eα − Eβ + Eγ − Eδ)). (A27)

R4(Eα, Eβ , Eγ , Eδ) is the four-point correlation function,
which can be written as [2]

R4(Eα, Eβ , Eγ , Eδ) = R1(Eα)R1(Eβ)R1(Eγ)R1(Eδ)−R1(Eα)R1(Eβ)T2(Eγ , Eδ)−R1(Eα)R1(Eγ)T2(Eβ , Eδ)

− R1(Eα)R1(Eδ)T2(Eβ , Eγ)−R1(Eβ)R1(Eγ)T2(Eα, Eδ)−R1(Eβ)R1(Eδ)T2(Eα, Eγ)

− R1(Eγ)R1(Eδ)T2(Eα, Eβ) + T2(Eα, Eβ)T2(Eγ , Eδ) + T2(Eα, Eγ)T2(Eβ , Eδ)

+ T2(E1, E4)T2(E2, E3) +R1(E1)T3(E2, E3, E4) +R1(E2)T3(E1, E3, E4)

+ R1(E3)T3(E1, E2, E4) +R1(E4)T3(E1, E2, E3)− T4(Eα, Eβ , Eγ , Eδ). (A28)

Once again, this amounts to consider the connected cor-
relation function T4(Eα, Eβ , Eγ , Eδ) and all disconnected

components. We now study the resulting integrals, one
by one.
We first consider the term containing R1 only:

(D − 4)!

D!
×

∫
dEαdEβdEγdEδR1(Eα)R1(Eβ)R1(Eγ)R1(Eδ)e

−i(Eα−Eβ+Eγ−Eδ)t

=
(D − 4)!

D!

∣∣∣∣
∫

dER1(E)e−iEt

∣∣∣∣
4

=
(D − 4)!

D!
(2D)4b41(Γt). (A29)

Next, we consider terms containing both R1 and T2, such as

(D − 4)!

D!

∫
dEαdEβdEγdEδR1(Eα)R1(Eβ)T2(Eγ , Eδ)e

−i(Eα−Eβ+Eγ−Eδ)t. (A30)
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This term can be rewritten as

(D − 4)!

D!
×

∣∣∣∣
∫

dER1(E)e−iEt

∣∣∣∣
2

(A31)

×
∫

dEγdEδT2(Eγ , Eδ)e
−i(Eα−Eβ)t

=
(D − 4)!

D!
(2D)2b21(Γt)Db2

(
Γt

2D

)
.

Note that this integral is non zero only if the two energies
in the T2 function come with opposite signs in the corre-
sponding exponential. For this reason, this term comes
with a combinatorial factor equal to 4.

Next are the terms containing T2 only,

(D − 4)!

D!

∫
dEαdEβdEγdEδT2(Eα, Eβ)T2(Eγ , Eδ)e

−i(Eα−Eβ+Eγ−Eδ)t =

(D − 4)!

D!

(∫
dEαdEβT2(Eα, Eβ)e

−i(Eα−Eβ)t

)2

=
(D − 4)!

D!
D2b22(Γt). (A32)

This term comes with a combinatorial factor equal to 2.
Then come the terms with R1 and T3, such as

(D − 4)!

D!
×
∫

dEαdEβdEγdEδ (A33)

×R1(Eα)T3(Eβ , Eγ , Eδ)e
−i(Eα−Eβ+Eγ−Eδ)t.

However, as explained for the g3(t) function, all the in-
tegrals of this form vanish.

Finally, comes the term containing the T4 function:

(D − 4)!

D!
×
∫

dEαdEβdEγdEδT4(Eα, Eβ , Eγ , Eδ) (A34)

× e−i(Eα−Eβ+Eγ−Eδ)t =
(D − 4)!

D!
Db4

(
Γt

2D

)
.

We compute the function b4 with a procedure analogous
to the one used for b3. The result is

b4(τ) =






4τ3−20τ2−4τ+3
2τ+1 + 6τ log(2τ + 1) τ ≤ 1

2

2 2τ3+8τ2−2τ−3
2τ+1 + 3τ [2 log(2τ + 1)− 3 log(4τ − 1) + log 2] 1

2 < τ < 1

2 6τ2−1
4τ2−1 + 3τ log

(
2τ+1
2τ−1

) . (A35)

So the g4 function reads

g4(t) =
(D − 4)!

D!

[
16D4b41(Γt)− 16D3b21(Γt)b2

(
Γt

2D

)
+ 2D2b22

(
Γt

2D

)
−Db4

(
Γt

2D

)]
. (A36)

Combining all the terms together, one recovers Eq. (27)
from the main text.

Appendix B: Plots for the relative variance of the

second-order Rényi entropy

For completeness, we present in Fig. 6 (a) the relative
variance of the second-order Rényi entropy as a function
of time. The behavior for the relative variance of the
Shannon entropy is very similar (not shown).
Contrary to the inverse participation ratio, the second-

order Rényi entropy is self-averaging at short times. In-

deed, as seen in Fig. 6 (b), the relative variance follows

very well the prediction in Eq. (34) that Rspin
S (t) ∝ 1/L,

as we find also for the spatially local quantities discussed
in Sec. VI.

At long times, the second-order Rényi entropy behaves
similarly to the inverse participation ratio and the con-
nected spin-spin correlation function, being super self-
averaging, since Rspin

S (t) ∝ 1/D, as shown in Fig. 6 (c).

The behavior of Rspin
S (t) for short- and long-times is

therefore similar to that of Rspin
C (t).

Between the two extremes of short and long times,
in the region of the power-law behavior of 〈PS(t)〉, the



15

10
0

10
2

10
4

Jt

10
-6

10
-4

10
-2

R
Ssp

in

10 12 14 16 18L
0.02

0.03

0.04

0.05

lim
t→

0R
Ssp

in

10
2

10
3

10
4

10
5

D
10

-6
10

-5
10

-4
10

-3

R
Ssp

in
(t

R
)

(a) (b)

(c)

Short Times

Long Times

FIG. 6. Relative variance of the second-order Rényi
entropy for the spin model (a). From top to bot-
tom (at large times), the sizes of the matrices are
D = 252, 924, 3 432, 12 870, 48 620. In (b): coefficient

limt→0 R
spin

S
(t)/t4 as a function of L; numerical values (cir-

cles) and theoretical estimate ∝ 1/L (dashed line). In (c):

numerical values (circles) of Rspin

S
(t) for t > tR as a function

of D and curve ∝ 1/D (dashed lines).

second-order Rényi entropy is not self-averaging. This
means that the relative variance of S (same for Sh) ex-
hibits two crossing points as time increases from zero, a
feature that contrasts with those of the other quantities
studied in this paper, PS , IPR, I, and C.

We fitted Rspin
S (t > tR) in Fig. 6 (c) and Rspin

IPR(t > tR)
in Fig. 3 (f) with 1/D for making an analogy with the
results for the GOE model, but the exponent ν in the
best fit 1/Dν is 1 ± 0.2. In Fig. 4 (f) for the connected
spin-spin correlation function, where we do not make a
comparison with the GOE model, we actually show the
best fit. Independently of the exact value of the exponent
ν, the relative variance at long times for any of these three
quantities decreases exponentially fast with L.
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[12] M. Serbyn, Z. Papić, and D. A. Abanin, “Thouless en-
ergy and multifractality across the many-body localiza-
tion transition,” Phys. Rev. B 96, 104201 (2017).

[13] L. Pastur and V. Slavin, “Area Law Scaling for the
Entropy of Disordered Quasifree Fermions,” Phys. Rev.
Lett. 113, 150404 (2014).

[14] W.F. Wreszinski and O. Bolina, “A self-averaging “or-

der parameter” for the Sherrington-Kirkpatrick spin glass
model,” J. Stat. Phys. 116, 1389 (2004).

[15] A. Milchev, K. Binder, and D. W. Heermann, “Fluctua-
tions and lack of self-averaging in the kinetics of domain
growth,” Z. Phys. B Condensed Matter 63, 521 (1986).

[16] J.-P. Bouchaud and A. Georges, “Anomalous diffusion
in disordered media: Statistical mechanisms, models and
physical applications,” Phys. Rep. 195, 127 (1990).

[17] T. Akimoto, E. Barkai, and K. Saito, “Universal Fluc-
tuations of Single-Particle Diffusivity in a Quenched En-
vironment,” Phys. Rev. Lett. 117, 180602 (2016).

[18] A. Russian, M. Dentz, and P. Gouze, “Self-averaging and
weak ergodicity breaking of diffusion in heterogeneous
media,” Phys. Rev. E 96, 022156 (2017).

[19] T. Akimoto, E. Barkai, and K. Saito, “Non-self-
averaging behaviors and ergodicity in quenched trap
models with finite system sizes,” Phys. Rev. E 97, 052143
(2018).

[20] Thudiyangal Mithun, Yagmur Kati, Carlo Danieli, and
Sergej Flach, “Weakly nonergodic dynamics in the Gross-
Pitaevskii lattice,” Phys. Rev. Lett. 120, 184101 (2018).

[21] J. M. Deutsch, “Quantum statistical mechanics in a
closed system,” Phys. Rev. A 43, 2046 (1991).

[22] M. Srednicki, “Does Quantum Chaos Explain Quantum
Statistical Mechanics?” ArXiv:9410046.

[23] M. Rigol, V. Dunjko, and M. Olshanii, “Thermaliza-
tion and its mechanism for generic isolated quantum sys-
tems,” Nature 452, 854 EP – (2008).

[24] L. D’ Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
“From quantum chaos and eigenstate thermalization to
statistical mechanics and thermodynamics,” Adv. Phys.
65, 239–362 (2016).

[25] Peter Reimann, “Foundation of statistical mechanics un-
der experimentally realistic conditions,” Phys. Rev. Lett.
101, 190403 (2008).

[26] A. J. Short, “Equilibration of quantum systems and sub-
systems,” New J. Phys. 13, 053009 (2011).

[27] A. J. Short and T. C. Farrelly, “Quantum equilibration
in finite time,” New J. Phys. 14, 013063 (2012).

[28] Pablo R. Zangara, Axel D. Dente, E. J. Torres-Herrera,
Horacio M. Pastawski, A. Iucci, and Lea F. Santos,



16

“Time fluctuations in isolated quantum systems of in-
teracting particles,” Phys. Rev. E 88, 032913 (2013).

[29] Charlie Nation and Diego Porras, “Off-diagonal observ-
able elements from random matrix theory: distribu-
tions, fluctuations, and eigenstate thermalization,” New
J. Phys. 20, 103003 (2018).

[30] M.  Lobejko, J. Dajka, and J.  Luczka, “Self-averaging of
random quantum dynamics,” Phys. Rev. A 98, 022111
(2018).

[31] B. Mukherjee, “Floquet topological transition by unpo-
larized light,” Phys. Rev. B 98, 235112 (2018).

[32] Luc Leviandier, Maurice Lombardi, Rémi Jost, and
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