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In this paper, the author compares behaviors of systems which can be described by fractional

differential and fractional difference equations using the fractional and fractional difference Caputo

standard a-Families of maps as examples. The author shows that properties of fractional difference

maps (systems with falling factorial-law memory) are similar to the properties of fractional maps

(systems with power-law memory). The similarities (types of attractors, power-law convergence of

trajectories, existence of cascade of bifurcations and intermittent cascade of bifurcations type

trajectories, and dependence of properties on the memory parameter a) and differences in properties

of falling factorial- and power-law memory maps are investigated. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885536]

Unlike fractional calculus, whose history is more than

three hundred years old, fractional difference calculus is

relatively young—it is approximately thirty years old.

This is probably the result of the fact that, despite the

beautiful mathematics which arises during the develop-

ment of fractional difference calculus, it does not have

too many applications in nature and engineering. As it

has been recently demonstrated, the simplest fractional

difference equations (when a fractional difference on the

left is equal to a nonlinear function on the right) are

equivalent to maps with falling factorial-law memory.

Falling factorial-law memory is asymptotically power-

law memory with the rate of convergence proportional to

the inverse of time (or number of iterations in discrete

cases). It is difficult to distinguish power-law from

asymptotically power-law memory which frequently

appears in investigation of noisy natural systems. This is

the major motivation for the presented work in which we

study the simplest fractional difference equations with

sine nonlinearity and compare their properties with

properties of the corresponding systems with power-law

memory.

I. INTRODUCTION

Systems with memory are common in biology, social

sciences, physics, and engineering (see Ref. 1). Systems with

power-law memory in many cases can be described by frac-

tional differential equations.2–4 If a natural system is a dis-

crete one and can be described by a fractional difference

equation, then the system’s memory is falling factorial-law

memory,5–7 which is asymptotically power-law memory.8

To study nonlinear systems with power-law memory

Tarasov and Zaslavsky9 introduced fractional maps, which

are equivalent to the fractional differential equations of non-

linear systems experiencing periodic delta function-kicks.

Fractional Riemann-Liouville and Caputo standard maps cor-

responding to the fractional differential equations with orders

of derivatives a > 1 were used to investigate general proper-

ties of fractional dynamical systems in Refs. 9–15. The notion

of fractional a-families of maps (aFM), which allowed the

study of fractional standard and logistic maps corresponding

to a > 0, was introduced later in Refs. [1, 16, and 17].

Fractional difference equations were investigated in

many papers (see, e.g., Refs. 5–7, 18–22). The authors of

Refs. 8, 20–22 demonstrated that in some cases, fractional

difference equations are equivalent to maps with falling

factorial-law memory (which we will call fractional differ-

ence maps), where falling factorial function is defined as

tðaÞ ¼ Cðtþ 1Þ
Cðtþ 1� aÞ : (1)

Taking into account that falling factorial-law memory is

asymptotically power-law memory (see Fig. 4 and Eq. (32)

in this paper), we may expect that fractional difference maps

have properties similar to the properties of fractional maps.

Differences in the maps’ properties due to the differences in

the weights of the recent (with ðn� jÞ=n� 1) states (a state

is a set of variables which defines a system) at the time

instants tj in the definition of the present state at time tn
should be significant when a 2 ð0; 1Þ (especially when

a! þ0), as it can be seen from Fig. 1 and comparison of

Figs. 4(a) and 4(b).

The goal of the present paper is to conduct an investiga-

tion of fractional difference maps consistent with the previ-

ous research of fractional maps1,9–17 and make a step

towards the understanding of the general properties of sys-

tems with asymptotically power-law memory. This will also

lead to the understanding of the general properties of solu-

tions of nonlinear fractional difference equations. In our

investigation we use the fractional difference Caputo stand-

ard aFM introduced in Ref. 8, which is an extension of the

regular standard map.23–25 A paper on the fractional differ-

ence Caputo logistic aFM introduced in Ref. 8, which is an

extension of the regular logistic map,26 will be the subject of

a separate publication.
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In Sec. II, we will recall the notions of fractional and

fractional difference Caputo aFMs, and in Sec. III, we will

compare properties of the fractional and fractional difference

Caputo standard aFMs.

II. FRACTIONAL AND FRACTIONAL DIFFERENCE
CAPUTO STANDARD a-FAMILIES OF MAPS

A. Fractional Caputo standard a-family of maps

Fractional aFMs were introduced and investigated in

Refs. 16 and 17 (see also Ref. 1). They are identical to the

following equation:

dax

dta
þ GKðxðt� DÞÞ

X1
k¼�1

dðt� ðk þ eÞÞ ¼ 0; (2)

where e > D > 0, a 2 R, a > 0, e! 0, with the initial con-

ditions corresponding to the type of a fractional derivative to

be used. GKðxÞ is a nonlinear function which depends on the

nonlinearity parameter K.

The fractional Caputo standard aFM is generated by

• using in Eq. (2) the left-sided Caputo fractional

derivative2–4

C
0 Da

t xðtÞ¼0IN�a
t DN

t xðtÞ

¼ 1

CðN � aÞ

ðt

0

DN
s xðsÞds

ðt� sÞa�Nþ1
; ðN ¼ daeÞ; (3)

where N 2 Z, DN
t ¼ dN=dtN , 0Ia

t is a fractional integral,

and CðÞ is the gamma function;
• using the initial conditions

ðDk
t xÞð0þÞ ¼ bk; k ¼ 0; :::;N � 1; (4)

• and assuming

GKðxÞ ¼ KsinðxÞ: (5)

Then, after the introduction xðsÞðtÞ ¼ Ds
t xðtÞ, integration of

Eq. (2) produces

x
ðsÞ
nþ1 ¼

XN�s�1

k¼0

x
ðkþsÞ
0

k!
ðnþ 1Þk

� K

Cða� sÞ
Xn

k¼0

sinðxkÞðn� k þ 1Þa�s�1; (6)

where s ¼ 0; 1; :::;N � 1. We call the map Eq. (6) the frac-

tional Caputo standard aFM, because in the 2D case (a ¼ 2),

it can be reduced to the regular standard map (see Ref. 23),

which, on a torus, can be written as

pnþ1 ¼ pn � KsinðxnÞ; ðmod 2pÞ; (7)

xnþ1 ¼ xn þ pnþ1; ðmod 2pÞ: (8)

In Refs. 1, 16, and 17, the Caputo standard aFM was

investigated in detail for the case a 2 ½0; 2� that is important

in applications.

• For a ¼ 0, the Caputo standard aFM is identically zero:

xn ¼ 0.
• For 0 < a < 1, the Caputo standard aFM is

xn ¼ x0 �
K

CðaÞ
Xn�1

k¼0

sinðxkÞ
ðn� kÞ1�a; ðmod 2pÞ: (9)

• For a ¼ 1, the 1D standard map is the circle map with

zero driving phase

xnþ1 ¼ xn � KsinðxnÞ; ðmod 2pÞ: (10)

• For 1 < a < 2, the Caputo standard aFM is

pnþ1 ¼ pn �
K

Cða� 1Þ

"Xn�1

i¼0

V2
aðn� iþ 1ÞsinðxiÞ

þsinðxnÞ
#
; ðmod 2pÞ; (11)

xnþ1 ¼ xn þ p0 �
K

CðaÞ
Xn

i¼0

V1
aðn� iþ 1ÞsinðxiÞ;

ðmod 2pÞ; (12)

where Vk
aðmÞ ¼ ma�k � ðm� 1Þa�k

.
• For a ¼ 2, the Caputo standard map is the regular standard

map as in Eqs. (7) and (8) above.

B. Fractional difference Caputo universal a-family of
maps

As we mentioned in the Introduction, fractional difference

calculus is a subject of extensive current research. To intro-

duce the fractional difference Caputo standard a-family of

maps, we will use only one theorem (Theorem 3 from Ref. 8).

Theorem 1. For a 2 R, a � 0 the Caputo-like differ-
ence equation

FIG. 1. a� K (bifurcation) diagrams for the Caputo (thin lines) and fractional

difference Caputo (bold lines and extra index “d”) standard aFMs. The (0, 0)

fixed point is stable in the area below the curve Kc1 (Kc1d for the difference

map). The period two (T¼ 2) symmetric sink (xnþ1 ¼ �xn) is stable in the area

between Kc1 and Kc2 (Kc1d and Kc2d for the difference map). Kc3 (Kc3d for the

difference map) is the border with chaos (above this curve). Cascade of bifurca-

tions type trajectories can be found in the area near this curve (below it).

023137-2 M. Edelman Chaos 24, 023137 (2014)



C
0 Da

t xðtÞ ¼ �GKðxðtþ a� 1ÞÞ; (13)

where t 2Nm, with the initial conditions

Dkxð0Þ ¼ ck; k ¼ 0; 1; :::;m� 1; m ¼ dae (14)

is equivalent to the map with falling factorial-law memory

xnþ1 ¼
Xm�1

k¼0

Dkxð0Þ
k!
ðnþ 1ÞðkÞ

� 1

CðaÞ
Xnþ1�m

s¼0

ðn� s� mþ aÞða�1ÞGKðxsþm�1Þ; (15)

where xk ¼ xðkÞ, which we will call the fractional difference

Caputo universal a-family of maps.

In this theorem, C
0 Da

t is defined by Anastassiou19 for non-

integer a > 0 fractional (left) Caputo difference operator as

C
a Da

t xðtÞ¼aD
�ðm�aÞ
t DmxðtÞ

¼ 1

Cðm� aÞ
Xt�ðm�aÞ

s¼a

ðt� s� 1Þðm�a�1ÞDmxðsÞ; (16)

where Dm is the m-th power of the forward difference opera-

tor defined as DxðtÞ ¼ xðtþ 1Þ � xðtÞ, extended in Ref. 8 to

all real a � 0 by defining C
a Dm

t xðtÞ ¼ DmxðtÞ for m 2N0,

where Nt ¼ ft; tþ 1; tþ 2; :::g.
The family of maps Eq. (15) is called universal because

in the 2D case (a ¼ 2) after the introduction pn ¼ Dxn�1 and

with the assumption GKðxÞ ¼ KGðxÞ, it can be written as the

regular universal map (see, e.g., Ref. 25)

pnþ1 ¼ pn � KGðxnÞ; (17)

xnþ1 ¼ xn þ pnþ1: (18)

1. Integer-dimensional difference universal maps

In the case of the integer a ¼ m, Eq. (13) can be written as

Dmxn ¼ �GKðxnþm�1Þ; (19)

which for m¼ 0 assumes the form

xnþ1 ¼ �GKðxnÞ (20)

and for m¼ 1 assumes the form

xnþ1 ¼ xn � GKðxnÞ: (21)

For m> 1, let us define

x0
n ¼ xn; xs

n ¼ Dxs�1
n�1; s ¼ 1; 2; :::;m� 1: (22)

Then, xs
n ¼ Dsx0

n�s, and Eq. (19) is equivalent to the m-

dimensional map

xs
nþ1 ¼

Xm�1

k¼s

xk
n � GKðx0

nÞ; s ¼ 0; 1; :::;m� 1; (23)

which Jacobian m� m matrix, J�
x0

nþ1
;x1

nþ1
;:::;xm�1

nþ1

�
ðx0

n; x
1
n; :::; x

m�1
n Þ is

1� _GKðx0
nÞ 1 1 ::: 1 ::: 1 1

� _GKðx0
nÞ 1 1 ::: 1 ::: 1 1

� _GKðx0
nÞ 0 1 ::: 1 ::: 1 1

::: ::: ::: ::: ::: ::: ::: :::

� _GKðx0
nÞ 0 0 ::: 0 ::: 0 1

���������������

���������������
:

The first column of this matrix can be written as the sum of

the column with one in the first row and the remaining zeros

and the column which is equal to � _GKðxÞ times the last col-

umn. Determinants of the corresponding matrices are 1 and

0; this is why the Jacobian determinant is equal to one and

the map, similar to the m-dimensional universal map (Eqs.

(13) and (14) in Ref. 17), is the m-dimensional volume pre-

serving map. The m-dimensional difference universal and

universal maps are identical only for the cases m¼ 1 and

m¼ 2.

C. Fractional difference Caputo standard a-family of
maps

For GðxÞ ¼ sinðxÞ, the map Eqs. (17) and (18) is equiva-

lent to the regular standard map Eqs. (7) and (8). This is why

we will call the map Eq. (15) with GKðxÞ ¼ KsinðxÞ

xnþ1 ¼
Xm�1

k¼0

Dkxð0Þ
k!
ðnþ 1ÞðkÞ

� K

CðaÞ
Xnþ1�m

s¼0

ðn� s� mþ aÞða�1Þ
sinðxsþm�1Þ (24)

the fractional difference Caputo standard aFM.

• In the case a ¼ 0, the 0D standard map turns into the sine

map (see, e.g., Ref. 27)

xnþ1 ¼ �KsinðxnÞ; ðmod 2pÞ: (25)

• For 0 < a < 1, the fractional difference Caputo standard

aFM is

xnþ1 ¼ x0

� K

CðaÞ
Xn

s¼0

Cðn� sþ aÞ
Cðn� sþ 1ÞsinðxsÞ; ðmod 2pÞ; (26)

which after the p-shift of the independent variable x!
xþ p coincides with the “fractional sine map” proposed in

Ref. 21.
• a ¼ 1 difference Caputo standard aFM is identical to the

circle map with zero driven phase Eq. (10). The map con-

sidered in Ref. 21,

xnþ1 ¼ xn þ KsinðxnÞ; ðmod 2pÞ; (27)

is obtained from this map by the substitution x! xþ p.

023137-3 M. Edelman Chaos 24, 023137 (2014)



• For 1 < a < 2, the fractional difference Caputo standard

aFM is

xnþ1 ¼ x0 þ Dx0ðnþ 1Þ � K

CðaÞ

�
Xn�1

s¼0

Cðn� sþ a� 1Þ
Cðn� sÞ sinðxsþ1Þ; ðmod 2pÞ; (28)

which, after the introduction of pn ¼ Dxn�1, can be written

as a 2D map with memory

pn ¼ p1 �
K

Cða� 1Þ

�
Xn

s¼2

Cðn� sþ a� 1Þ
Cðn� sþ 1Þ sinðxs�1Þ; ðmod 2pÞ; (29)

xn ¼ xn�1 þ pn; ðmod 2pÞ; n � 1; (30)

which in the case x0 ¼ 0 is identical to the “fractional

standard map” introduced in Ref. 21 (Eq. (18) with � ¼
a� 1 there).

• The a ¼ 2 difference Caputo standard aFM is the regular

standard map Eqs. (7) and (8).

III. PROPERTIES OF THE FRACTIONAL AND
FRACTIONAL DIFFERENCE CAPUTO STANDARD aFM

The main properties of the fractional difference caputo

standard aFM and their differences from the properties of

the fractional caputo standard aFM for a 2 ð0; 2Þ are sum-

marized in a� Kc diagram Fig. 1.

A. Integer a

1. The sine map (a50)

The bifurcation diagram for the case a ¼ 0, the sine

map Eq. (25), with jKj � 2p can be found in Ref. 27 and

with K 2 ½0:6; 3:3� in Fig. 2(a). It is easy to show by means

of the standard stability analysis that the fixed point x¼ 0 is

a sink for jKj < 1 and the period two (T¼ 2) point

xnþ1¼ �xn is a sink for 1 < K < 2:262 (at K¼ 2.262 we

have tan2:029 ¼ �2:029 and jxnj ¼ 2:029). At K¼ 2.262,

two new T¼ 2 sinks appear, which later (for larger K) bifurcate

and give birth to the T¼ 4 sink, and so on. This period doubling

cascade of bifurcations process leads to the onset of chaos at

K � 2:72. In Fig. 1, the curves Kc1d, Kc2d, and Kc3d intersect

the line a ¼ 0 at the points 1, 2.262, and 2.72 correspondingly.

2. The circle map with zero driven phase (a51)

The circle map with zero driven phase Eq. (10), which

can also be called the 1D standard map, is investigated in

Refs. 16 and 17 and, for 1:5 < K < 3:8, is presented in Fig.

2(b). In Fig. 1, the intersections of the curves Kc1d, Kc2d, and

Kc3d with the line a ¼ 1 take place at the points 2, p, and

3.532 correspondingly (the same is true for the curves Kc1,

Kc2, and Kc3). Here, we have to notice that the transition at

K ¼ p is not from a T¼ 2 sink to a T¼ 4 sink, but from the

xnþ1 ¼ �xn period two sink to two xnþ1 ¼ xn þ p period two

sinks, and in order to outline the whole bifurcation curve,

one should run computer codes with initial conditions 6x0

(something that the authors of Ref. 21 failed to notice). In

Fig. 2(b) (and in Fig. 3), two sets of initial conditions corre-

spond to two sets of points: the regular points (x0 ¼ 0:1) and

the bold points (x0 ¼ �0:1).

3. The standard map (a52)

The standard map (Chirikov map) is one of the best-

investigated maps (see Refs. 23 and 24). It demonstrates a

FIG. 2. Bifurcation diagrams for (a). The sine map (difference map with

a ¼ 0) Eq. (25) and (b). The circle map (a ¼ 1) with zero driven phase

Eq. (10).

FIG. 3. Bifurcation diagrams for the fractional difference Caputo standard

aFM Eq. (26) ((a), (c), and (e)) and the fractional Caputo standard aFM Eq.

(9) ((b), (d), and (f)). The diagrams were obtained after 5000 iterations with

the initial condition x0 ¼ 0:1 (regular points) and x0 ¼ �0:1 (bold points).

a ¼ 0:8 in (a) and (b); a ¼ 0:3 in (c) and (d); a ¼ 0:01 in (e) and (f).
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universal generic behavior of the area-preserving maps

whose phase space is divided into elliptic islands of stability

and areas of chaotic motion. The (0, 0) elliptic point

becomes unstable (elliptic-hyperbolic point transition) at

K¼ 4 and gives birth to two elliptic islands around the stable

(for 4 < K < 2p) T¼ 2 antisymmetric (pnþ1 ¼ �pn,

xnþ1 ¼ �xn) trajectory. At K ¼ 2p, the antisymmetric T¼ 2

point turns into two stable T¼ 2 points with pnþ1 ¼ �pn,

jxnþ1 � xnj ¼ p. The following period doubling cascade of

bifurcations leads to the disappearance of the islands of sta-

bility in the chaotic sea at K � 6:6344. In Fig. 1, the inter-

sections of the curves Kc1d, Kc2d, and Kc3d with the line

a ¼ 2 take place at the points 4, 2p, and 6.6344 correspond-

ingly (the same is true for the curves Kc1, Kc2, and Kc3).

B. 0 < a < 1

Sample bifurcation diagrams for the fractional and frac-

tional difference Caputo standard aFM with 0 < a < 1 are

presented in Fig. 3. One obvious difference between two

aFMs is that as a decreases towards zero, bifurcation dia-

grams of the fractional difference maps Figs. 3(a), 3(c), and

3(e) contract along the K-axis approaching the bifurcation

diagram of the sine map Fig. 2(a), while the bifurcation dia-

grams of the fractional maps Figs. 3(b), 3(d), and 3(f) expand

along the K-axis.

The complete analysis of these bifurcation diagrams is

not a subject of the present paper, but we will outline some

analytic results which were confirmed by the direct simula-

tions of fractional maps.

Both maps, Eq. (9) and Eq. (26), can be written in the

form

xn ¼ x0 �
K

CðaÞ
Xn�1

k¼0

Waðn� kÞsinðxkÞ; (31)

where WaðsÞ ¼ sa�1 for the fractional map and WaðsÞ ¼
Cðsþ a� 1Þ=CðsÞ for the fractional difference map.

Asymptotically, both expressions coincide (see Fig. 4)

because

lim
s!1

Cðsþ aÞ
Cðsþ 1Þsa�1

¼ 1; a 2 R: (32)

In the sine map and in the circle map with zero driven

phase at the point where the x¼ 0 sink becomes unstable it

gives birth to a symmetric T¼ 2 point in which xnþ1 ¼ �xn.

Following the results of our numeric simulations, let us

assume that this property persists (asymptotically) for

a 2 ð0; 1Þ. Equation (31) can be written as

xnþ1 ¼ xn �
K

CðaÞ Wað1ÞsinðxnÞþ
Xn�1

k¼0

sinðxkÞ½Waðn� k þ 1Þ
(

�Waðn� kÞ�
)
: (33)

Taking into account that Waðn� k þ 1Þ �Waðn� kÞ ! 0 as

n!1, after substitution j ¼ n� k for large n, we may

write

xn ¼
K

2CðaÞ Wað1Þþ
X1
j¼1

ð�1Þj½Waðjþ 1Þ �WaðjÞ�
( )

sinðxnÞ;

(34)

where the alternating series on the right side converges

because its terms converge to 0 monotonically. This equation

has real non-trivial solutions when

K > Kcr1 ¼
2CðaÞ

Wað1Þ þ
X1
j¼1

ð�1Þj½Waðjþ 1Þ �WaðjÞ�
:

(35)

Numeric calculations of Eq. (35) with the corresponding

functions Wa were performed to obtain the curves Kc1 and

Kc1d for a 2 ð0; 1Þ in Fig. 1, and they were also confirmed by

the direct numeric simulations of the maps.

The direct numeric simulations of the maps show that for

the fractional (this is not true for the fractional difference)

Caputo standard aFM, at the value of K when the antisymmet-

ric T¼ 2 point becomes unstable, and two new T¼ 2 sinks

appear with the property jxnþ1 � xnj ¼ p. Then, an asymptotic

consideration similar to the one presented above leads to

6p ¼ K

CðaÞ Wað1Þþ
X1
j¼1

ð�1Þj½Waðjþ 1Þ �WaðjÞ�
( )

sinðxnÞ

(36)

and

K > Kc2 ¼ pKc1=2: (37)

The last equation was used to calculate the curve Kc2 in

Fig. 1. The curves Kc2d, Kc3, and Kc3d were obtained by the

direct numeric simulations of the maps.

Periodic sinks x ¼ xl (except the x¼ 0 fixed point) exist

only in the asymptotic sense. Trajectories starting at xl jump

out of the sink and then converge asymptotically according

to a power law x� xl 	 n�a. This law of convergence to the

x¼ 0 sink is demonstrated in Fig. 5. For small a, the rate of

convergence is very slow. For the difference map, even the

rate of convergence itself is converging to its asymptotic

value very slowly (Fig. 5(c)). Significance of the slow rate

convergence for the explanation of the fact that in the frac-

tional difference Caputo standard aFM with small values of

a the bifurcation diagrams depend on the initial conditions

FIG. 4. Falling factorial ðnþ a� 2Þða�1Þ
to power law na�1 ratio. a ¼ 0:5 in

(a) and a ¼ 0:1 in (b).
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(Fig. 6) is not investigated in the present paper. As can be

seen from Fig. 6, the dependence of the bifurcation diagrams

of the difference maps on the initial conditions is significant

for a < 0:2. As in the case of fractional maps,1,16,17 individ-

ual trajectories of the fractional difference standard aFM

with 0 < a < 1 in the area of the parameter values for which

on the bifurcation diagram stable periodic T > 2 sinks exist

and the transition to chaos occurs are cascade of bifurcations

type trajectories (CBTT) (see Fig. 7(c)). Even more compli-

cated trajectories, including inverse cascades of bifurcations

(Fig. 7(a)) and trajectories with intermittent chaotic behavior

(Figs. 7(b) and 7(d)), can be found in the fractional differ-

ence standard aFM.

One of the consequences of the existence of CBTT is

the dependence of bifurcation diagrams on the number of

iterations after which they are calculated. In Fig. 8, some

of the points—which after 200 iterations are T ¼ 2n

FIG. 5. Convergence of trajectories to the x¼ 0 sink for the fractional ((b)

and (d)) and fractional difference ((a) and (c)) Caputo standard aFM

(a 2 ð0; 1Þ). In all cases x0 ¼ 0:1. 10 000 iterations, a ¼ 0:8, and K¼ 1.5 in

(a) and (b). 20 000 iterations, a ¼ 0:1, and K¼ 1.0 in (c) and (d).

FIG. 6. Dependence of the fractional difference Caputo standard aFM’s bifur-

cation diagrams on the initial conditions for small a. a ¼ 10�10 in (a) and (b);

a ¼ 0:1 in (c) and (d); a ¼ 0:2 in (e) and (f). In (a) and (b), the bifurcation dia-

grams are obtained after 200 iterations for each K. In (c)–(f), the bifurcation

diagrams obtained after 5000 iterations for each K. The initial conditions: x0 ¼
60:001 in (a); x0 ¼ 60:00001 in (c) and (e); x0 ¼ 60:1 in (b), (d), and (f).

FIG. 7. Bifurcating trajectories in the fractional difference Caputo standard

aFM. Each figure represents a single trajectory with: (a). a ¼ 0:2, K¼ 2.52,

and x0 ¼ 0:1; (b). a ¼ 0:2, K¼ 2.55, and x0 ¼ 0:1; (c). a ¼ 0:1, K¼ 2.41,

and x0 ¼ 0:1; (d). a ¼ 0:001, K¼ 2.72, and x0 ¼ 0:003;

FIG. 8. Two bifurcation diagrams for the fractional difference Caputo stand-

ard aFM with a ¼ 0:1 and x0 ¼ 0:1 calculated after 200 iterations (regular

points) and 5000 iterations (bold points).
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sinks—after 5000 iterations become T ¼ 2nþ1 sinks, and the

corresponding bifurcation points shift to the left.

C. 1 < a < 2

In this section, we will apply the methods by which the

evolution of the (0, 0) fixed point with the increase in K was

investigated for the fractional standard map with 1 < a < 2

in Refs. 1, 10, and 14–17 to investigate the fractional differ-

ence Caputo standard aFM for 1 < a < 2. As in the frac-

tional standard map, when the (0, 0) sink becomes unstable it

gives birth to the T¼ 2 antisymmetric sink xnþ1 ¼ �xn,

pnþ1 ¼ �pn, which later, at K for which xn ¼ p=2, turns into

two p-shift T¼ 2 sinks (see Fig. 9).

Assuming the existence of the antisymmetric T¼ 2 sink

xnþ1 ¼ �xn, pnþ1 ¼ �pn and following the same steps as in

Sec. III B, it is easy to derive from Eq. (29) for large n

pn ¼
K

2Cða� 1Þ Wa�1ð1Þþ
X1
j¼1

ð�1Þj½Wa�1ðjþ 1Þ
(

�Wa�1ðjÞ�
)

sinðxnÞ; (38)

where, as in Eq. (31), WaðsÞ ¼ Cðsþ a� 1Þ=CðsÞ. Eq. (30)

for large n gives pn ¼ 2xn. Then, the equations defining the

sink ðxn; pnÞ are

xn ¼
K

4Cða� 1Þ

(
Wa�1ð1Þþ

X1
j¼1

ð�1Þj½Wa�1ðjþ 1Þ

�Wa�1ðjÞ�
)

sinðxnÞ; (39)

pn ¼ 2xn; (40)

from which follows that for 1 < a < 2

Kc1dðaÞ ¼ 2Kc1dða� 1Þ; (41)

where Kc1dða� 1Þ is defined by Eq. (35). This result was

confirmed by the direct numeric simulations of the maps and

used to calculate the curve Kc1d for a 2 ð1; 2Þ in Fig. 1.

In a similar way, assuming the existence of the antisym-

metric T¼ 2 sink jxnþ1 � xnj ¼ p, pnþ1 ¼ �pn, asymptoti-

cally, the equations defining the sink ðxn; pnÞ can be written as

6p ¼ K

2Cða� 1Þ Wa�1ð1Þþ
X1
j¼1

ð�1Þj½Wa�1ðjþ 1Þ
(

�Wa�1ðjÞ�
)

sinðxnÞ; (42)

pn ¼ 6p: (43)

As for the fractional maps, for the fractional difference maps

with a 2 ð1; 2Þ, the following holds

FIG. 10. The fractional difference Caputo standard map Eqs. (29) and (30)

with a ¼ 1:8, K¼ 2.5: (a) Phase space obtained by performing 1000 itera-

tions on each of the 50 trajectories with x0 ¼ 0 and

p1 ¼ �3:1415þ 6:28i=50, where 0 � i < 50; (b) Convergence to the (0, 0)

sink of a trajectory with x0 ¼ 0 and p0 ¼ 0:01.

FIG. 9. Two T¼ 2 trajectories for the fractional difference Caputo standard

aFM with a ¼ 1:5 and x0 ¼ 0 and p0 ¼ 0:01: (a) K¼ 4.0 antisymmetric tra-

jectory xnþ1 ¼ �xn, pnþ1 ¼ �pn; (b). K¼ 4.74 p-shift trajectory with

jxnþ1 � xnj ¼ p, pnþ1 ¼ �pn.

FIG. 11. Three single trajectories in the fractional difference standard map

below the border with chaos in phase space ((b), (d), and (f)) and in x vs. n
graphs ((a), (c), and (e)) with the initial conditions x0 ¼ 0 and p0 ¼ 0:01.

a ¼ 1:7 and K¼ 5.43 in (a) and (b); a ¼ 1:5 and K¼ 4.82 in (c) and (d); a ¼
1:5 and K¼ 4.92 in (e) and (f).

023137-7 M. Edelman Chaos 24, 023137 (2014)



Kc2dðaÞ ¼
p
2

Kc1dðaÞ: (44)

The direct numeric simulations of the maps confirm this

result. The Kc3d curve is obtained by the direct map’s

numeric simulations.

As in the case of the fractional Caputo standard map, the

trajectories in the fractional difference Caputo standard map

converge to sinks according to a power law. But if in the

case of the fractional standard map, trajectories converge to

the fixed point according to xn 	 n1�a and pn 	 n1�a (see,

e.g., Fig. 1e in Ref. 15), in the case of the fractional differ-

ence standard map, the convergence is according to xn 	
n1�a and pn 	 n�a (see Fig. 10(b)). As we see, the rate of

convergence of the x variable is the same for both maps. The

difference in the rates of convergence of the p variable could

be due to the difference in the definitions of momenta p in

two cases. The phase space of the “fractional standard map”

(Eq. (18) from Ref. 21) plotted for the same a ¼ 1:8 and

K¼ 2.5 using 200 iterations on each of the 400 trajectories

with ðx0; p0Þ ¼ ð�3:1415þ 6:28i=20;�3:1415þ 6:28j=20Þ,
where 0 � i; j < 20Þ is identical to the phase space of the

fractional difference standard map Fig. 10(a); the lnðx; pÞ vs.

lnðnÞ graph for the “fractional standard map” with a ¼ 1:8,

K¼ 2.5, x0 ¼ 0:3, and p0 ¼ 0:1 is also identical to the one

in Fig. 10(b). The phase portrait in Fig. 6 from Ref. 21 for

a ¼ 1:8 and K¼ 2.5 with the structure of islands of stability

and areas of chaotic motion is obviously incorrect.

As in the case of the fractional standard map,1,10,14–17

the most interesting features of the fractional difference

standard map are CBTT and intermittent CBTT which

appear below the border with chaos (curve Kc3d in Fig. 1).

As in the fractional Caputo standard map, in the frac-

tional difference Caputo standard map with a 2 ð1; 2Þ inter-

mittent CBTT can be found in x vs. n plots and reveal

themselves best in the middle of the (1, 2) interval when a �
1:5 (Figs. 11(a), 11(c), and 11(e)). In phase space intermit-

tent CBTTs are presented as dense dark areas embedded into

chaotic attractors near points where p ¼ 6p (Figs. 11(b),

11(d), and 11(f)). For small a (close to one), as K increases

towards the chaotic area, periodic trajectories turn into cha-

otic attractors (Fig. 12).

IV. CONCLUSION

The main conclusion based on the results of the pre-

sented research is that systems with asymptotical power

law-memory, similar to systems with power-law memory,

demonstrate behaviors different from the behaviors of sys-

tems with no memory. The new properties include existence

of attracting and intermittent cascade of bifurcations type

trajectories, a common pattern in dependence of bifurcation

diagrams on the memory parameter a, and non-uniqueness

of solutions (intersection of trajectories and overlapping of

attractors) (see also Refs. 1 and 15).

The quanitative differences of properties of falling

factorial-law memory maps from power-law memory maps

are the results of the differences in weights of the recent

states in the definition of the present state and are significant

when a! þ0. Behavior of systems with small values of a
appears to be the most interesting (see Figs. 3(e), 3(f), and

6–8). It is interesting to notice that the case of small a plays

an important role in biological applications (see, e.g.,

Ref. 1). It has been shown recently28,29 that processing of

external stimuli by individual neurons can be described by

fractional differentiation. The orders of fractional derivatives

a obtained for different types of neurons fall within the inter-

val [0, 1]. For neocortical pyramidal neurons, it is quite

small, a � 0:15. We suggest that it will be important for bio-

logical applications to conduct more theoretical research of

the maps with small a and to make a comparison with exper-

imental biological results.
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