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We modified the way in which the Universal Map is obtained in the regular dynamics to derive the

Universal a-Family of Maps depending on a single parameter a > 0, which is the order of the

fractional derivative in the nonlinear fractional differential equation describing a system

experiencing periodic kicks. We consider two particular a-families corresponding to the Standard

and Logistic Maps. For fractional a < 2 in the area of parameter values of the transition through

the period doubling cascade of bifurcations from regular to chaotic motion in regular dynamics

corresponding fractional systems demonstrate a new type of attractors—cascade of bifurcations

type trajectories. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819165]

Fractional dynamical systems are systems that can be

described by fractional differential equations (FDEs) with

a fractional time derivative. FDEs are integro-differential

equations and solutions of the nonlinear FDE require long

runs of computations. This is why an investigation of the

discrete maps which can be derived from the FDE, the

fractional maps, is even more important for the study of

the general properties of the nonlinear fractional dynami-

cal systems than the investigation of the regular maps in

the case of the regular nonlinear dynamical systems. In this

article, we investigate the Universal a-Family of Maps

(aFM) that depend on a single parameter—the order a
(a > 0) of the corresponding FDE with the periodic kicks.

We show that the integer members of the family represent

area/volume preserving maps and investigate their fixed/

periodic points. Using the particular examples of the

Logistic and Standard aFM, we show how the maps’ prop-

erties evolve with the increase in a. The fractional dynami-

cal systems are systems with memory and solutions of the

FDE may possess quite unusual properties: trajectories

may intersect, attractors may overlap, attractors exist in

the asymptotic sense, and their limiting values may not

belong to their basins of attraction. Cascade of bifurcations

type trajectories (CBTTs) are a new type of attractors,

which exists only in the fractional dynamical systems. In a

CBTT, a cascade of bifurcations occurs not as a result of a

change in a system’s parameter (as in regular dynamical

systems) but on a single attracting trajectory during its

time evolution. We show that the CBTT exists in both fami-

lies for 0 < a < 1. When 1 < a < 2, we found the areas of

parameters in which the CBTT may exist in the Standard

aFM and the inverse CBTT in the Logistic aFM. The par-

ticular areas of the application of the fractional maps may

include biological systems (population biology, human

memory, and adaptation) and fractional control.

I. INTRODUCTION

Fractional derivatives are integro-differential operators

in which an integral is a convolution of a function (or its

derivative) with a power function of a variable.1–3 This is

why FDEs are frequently used in science and engineering

to describe systems with power law memory (see, e.g.,

Refs. 2–10). We will call systems which can be described by

the FDE with a time fractional derivative fractional dynami-

cal systems. Because FDEs are integro-differential equations

and there are no high order numerical algorithms to simulate

such equations, derivation of the fractional maps is important

for the investigation of the general properties of the nonlin-

ear fractional dynamical systems. The nonlinear fractional

maps are also discrete convolutions. They model systems in

which the present state depends on a function of all previous

states weighted by a power of the time passed. Systems

with power law memory include viscoelastic materials,11

electromagnetic fields in dielectric media,12–14 Hamiltonian

systems,4 etc.

There are many examples of systems with power law

memory in biology. It has been shown recently15,16 that proc-

essing of external stimuli by individual neurons can be

described by fractional differentiation. There are multiple

examples where power-law adaptation has been applied in

describing the dynamics of biological systems at levels rang-

ing from single ion channels up to human psychophysics.17–22

Fluctuations within single protein molecules demonstrate

power-law memory kernel with the exponent �0.51 6 0.07.23

The power law has been demonstrated in many cases in the

research on human memory. Forgetting—the accuracy in a

memory task at time t is given by x ¼ at�b, where

0 < b < 1.17,24–27 Learning also can be described by a power

law. The reduction in reaction times that comes with practice

is a power function of the number of training trials.28

In many cases,3,29,30 FDEs are equivalent to the Volterra

integral equations of the second kind. This kind of equation

(not necessarily FDE) is used in nonlinear viscoelasticity

(see, for example, Refs. 31 and 32) and in population biology

and epidemiology, see Refs. 33 and 34. The very basic

model in population biology is the ubiquitous Logistic Map.

This map has been used to investigate the essential property

of the nonlinear systems—transition from order to chaos

through a sequence of period-doubling bifurcations, which is
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called cascade of bifurcations, and its relation to the scaling

properties of the corresponding systems (see Ref. 35). But

the subjects of population biology are always systems with

memory, which can be related to changes in DNA or, as in

the case of human society, to legal regulations; and in most

cases reproduction also involves time delay. Development

and investigation of a map which would correspond to the

Logistic Map with the power law memory and time delay is

important not only for the population biology but also, as in

the case of regular dynamics, it is important in order to study

the general properties of the nonlinear fractional dynamical

systems. One of the current main areas of the application of

the nonlinear FDE, control theory (see Refs. 9 and 36), will

also benefit from the study of the general properties of the

fractional dynamical systems.

Nonlinear circuit elements with memory, memristors,

memcapacitors, and meminductors37,38 can be used to model

nonlinear systems with memory. These elements may be com-

mon at the nanoscale, where the dynamical properties of

charged particles depend on the history of a system.38 Properties

of such systems and their fractional generalizations39,40 are al-

ready a subject of research but at present mathematical model-

ing of the fractional maps remains the most useful for the study

of the general properties of the fractional dynamical systems.

The first fractional maps were derived from the FDE in

Refs. 30 and 41–43. The first results of the investigation of

the fractional maps (see Refs. 42–45) revealed new proper-

ties of the fractional dynamical systems: intersection of tra-

jectories, overlapping of chaotic attractors, and existence of

the attractors in the asymptotic sense (the limiting values

may not belong to their basins of attraction). CBTTs are the

most unusual features of the investigated fractional maps.

In the CBTT, a cascade of bifurcations is not a result of the

change in a system parameter (as in the regular dynamics)

but appears as the attracting single trajectory and is a new

type of attractors. All previous investigations of the frac-

tional maps were done on the various forms of the frac-

tional two-dimensional Standard Map corresponding to the

order 1 < a � 2 of the fractional derivative. The CBTT

appeared in all investigated fractional maps. The considera-

tion of the origin and the necessary and sufficient condi-

tions of the CBTT’s existence requires further investigation

of the fractional maps, which includes development of the

simple, if possible one-dimensional, fractional maps. The

Logistic Map, and the maps with a � 1 in general, cannot

be derived in a way previously used in Refs. 7 and 30 to

derive the fractional maps for a > 1 (for a detailed discus-

sion see Ref. 46). In Ref. 46, we introduced the notions of

the Universal Fractional Map of an arbitrary order a > 0

and the aFM, which allow a uniform derivation of the frac-

tional maps of the order a > 0. In this paper, we continue

the investigation of the Universal Fractional Map (Sec. II)

and investigate the general properties (fixed and periodic

points and their stability) for the Universal Fractional Map

of an arbitrary integer order (Sec. II B). We also conduct

the detailed investigation of the members of the Logistic

aFM with a � 2 (Secs. III and IV). As it has been shown

before for the members of the Standard aFM with a � 2, in

the Logistic aFM the CBTT exists for the fractional values

of a but when 1 < a < 2 the Logistic aFM demonstrate

only the inverse CBTT (Sec. IV C).

II. UNIVERSAL FRACTIONAL MAP

To derive the equations of the Universal aFM, let us

start with the equation introduced in Ref. 46

dax

dta
þ GKðxðt� DTÞÞ

X1
k¼�1

d

�
t

T
� ðk þ eÞ

�
¼ 0; (1)

where e > D > 0; a 2 R; a > 0, in the limit e! 0. The ini-

tial conditions should correspond to the type of fractional de-

rivative we are going to use. In the case a ¼ 2; D ¼ 0, and

GKðxÞ ¼ KGðxÞ, Eq. (1) corresponds to the equation whose

integration produces the regular Universal Map (see Ref. 4).

Case D ¼ 0 and GKðxÞ ¼ KGðxÞ has been used to derive the

fractional Universal Map for a > 1 (see Chap. 18 from

Ref. 7). D 6¼ 0 is essential for the case a � 1 when x(t) is a

function discontinued at the time of the kicks41,46 and the

use of the K as a parameter rather than a factor is necessary

to extend the class of the considered maps to include the

Logistic Map (see Sec. III). Without losing the generality,

we assume T¼ 1. Case T 6¼ 1 is considered in Ref. 46 and

can be reduced to this case by rescaling the time variable.

Further, in the paper T denotes periods of trajectories.

A. Riemann-Liouville universal fractional map

In the case of the Riemann-Liouville fractional deriva-

tive, Eq. (1) can be written as

0Da
t xðtÞ þ GKðxðt� DÞÞ

X1
k¼�1

dðt� ðk þ eÞÞ ¼ 0; (2)

where e> D> 0; e! 0; 0� N� 1 < a� N;a 2R;N 2N,

and the initial conditions

ð0Da�k
t xÞð0þÞ ¼ ck; (3)

where k¼ 1,…, N. The left-sided Riemann-Liouville frac-

tional derivative 0Da
t xðtÞ defined for t > 0 (Refs. 1–3) as

0Da
t xðtÞ ¼ Dn

t 0In�a
t xðtÞ

¼ 1

Cðn� aÞ
dn

dtn

ðt

0

xðsÞds

ðt� sÞa�nþ1
; (4)

where n� 1 � a < n; n 2 Z; Dn
t ¼ dn=dtn; 0Ia

t is a frac-

tional integral, and CðÞ is the gamma function.

This problem (Eqs. (2) and (3)) can be reduced3,7,29 to

the Volterra integral equation of the second kind for t > 0

xðtÞ ¼
XN

k¼1

ck

Cða� k þ 1Þt
a�k

� 1

CðaÞ

ðt

0

ds
GKðxðs� DÞÞ
ðt� sÞ1�a

X1
k¼�1

dðs� ðk þ eÞÞ; (5)

which integration gives (t > 0)
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xðtÞ ¼
XN�1

k¼1

ck

Cða� k þ 1Þt
a�k

� 1

CðaÞ
X½t�e�

k¼0

GKðxðk þ e� DÞÞ
ðt� ðk þ eÞÞ1�a Hðt� ðk þ eÞÞ; (6)

where HðtÞ is the Heaviside step function. In Eq. (6), we

took into account that boundedness of x(t) at t¼ 0 requires

cN ¼ 0 and x(0)¼ 0 (see Refs. 1–3 and 47).

With the introduction41 pðtÞ ¼ 0Da�Nþ1
t xðtÞ; pðsÞðtÞ

¼ Ds
t pðtÞ, s¼ 0, 1,…, N � 2 Eq. (6) leads to

pðsÞðtÞ ¼
XN�s�1

k¼1

ck

ðN � s� 1� kÞ!t
N�s�1�k

� 1

ðN � s� 2Þ!
X½t�e�

k¼0

GKðxðk þ e� DÞÞðt� kÞN�s�2;

(7)

where s¼ 0, 1,…, N � 2. With the definitions xn ¼ xðnÞ and

pðsÞn ¼ pðsÞðnÞ, Eqs. (6) and (7) in the limit e! 0 give for

t¼ n þ 1 the Riemann-Liouville Universal aFM

xnþ1 ¼
XN�1

k¼1

ck

Cða� k þ 1Þðnþ 1Þa�k

� 1

CðaÞ
Xn

k¼0

GKðxkÞðn� k þ 1Þa�1; (8)

ps
nþ1 ¼

XN�s�1

k¼1

ck

ðN � s� 1� kÞ!ðnþ 1ÞN�s�1�k

� 1

ðN � s� 2Þ!
Xn

k¼0

GKðxkÞðn� k þ 1ÞN�s�2: (9)

The map equations for momentum are defined in a usual

way

pðtÞ ¼ D1
t xðtÞ; psðtÞ ¼ Ds

t pðtÞ; s ¼ 0; 1; :::;N � 2; (10)

and the discussion on the different ways of the defining mo-

mentum in the case of the Riemann-Liouville maps can be

found in Ref. 46. Riemann-Liouville Universal aFM equa-

tions (8) and (9) can be written in the much simpler form

ps
nþ1 ¼ ps

n þ
XN�s�3

k¼0

pkþsþ1
n

ðk þ 1Þ!�
GKðxnÞ

ðN � s� 2Þ! ; (11)

xnþ1 ¼
XN�1

k¼2

ck

Cða� k þ 1Þðnþ 1Þa�k

þ 1

CðaÞ p
N�2
nþ1 þ

1

CðaÞ
Xn�1

k¼0

pN�2
kþ1 V1

aðn� k þ 1Þ; (12)

where s¼ 0, 1,… N � 2 and Vk
aðmÞ ¼ ma�k � ðm� 1Þa�k

.

B. Integer-dimensional universal maps

For the integer a ¼ N, the Universal aFM converges to

ps
nþ1 ¼ ps

n þ
XN�s�3

k¼0

pkþsþ1
n

ðk þ 1Þ!�
GKðxnÞ

ðN � s� 2Þ! ; (13)

xnþ1 ¼ xn þ
XN�2

k¼0

pk
n

ðk þ 1Þ!�
GKðxnÞ
ðN � 1Þ! : (14)

To prove that for N � 2, the map equations (13) and (14) are

the N-dimensional volume preserving map, let us consider the

determinant of its Jacobian N�N matrix Jðx0; p
0
0;…; pN�2

0 Þ

1�
_GKðxÞ
CðNÞ 1

1

2
:::

1

CðnÞ :::
1

CðN � 1Þ
1

CðNÞ

�
_GKðxÞ

CðN � 1Þ 1 1 :::
1

Cðn� 1Þ :::
1

CðN � 2Þ
1

CðN � 1Þ

�
_GKðxÞ

CðN � 2Þ 0 1 :::
1

Cðn� 2Þ :::
1

CðN � 3Þ
1

CðN � 2Þ
::: ::: ::: ::: ::: ::: ::: :::

�
_GKðxÞ

CðN � k þ 1Þ 0 0 :::
1

Cðn� k þ 1Þ :::
1

CðN � kÞ
1

CðN � k þ 1Þ
::: ::: ::: ::: ::: ::: ::: :::

� _GKðxÞ 0 0 ::: 0 ::: 0 1

�������������������������

�������������������������

;

where n and k are the column and row numbers. The first col-

umn can be written as the sum of the column with one in the

first row and the remaining zeros and the column, which is

equal to _GKðxÞ times the last column. Determinants of the cor-

responding matrices are 1 and 0; this is why the Jacobian

determinant is equal to one and the map is the N-dimensional

volume preserving map.

The integer Universal aFM’s fixed points are ps
0 ¼ 0

ðs ¼ 0;…;N � 2Þ and x0 satisfies Gðx0Þ ¼ 0. Their stability

for N � 1 is defined by the eigenvalues k of the Jacobian
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matrix. Polynomial PðkÞ ¼ det½Jðx0; p
0
0;…; pN�2

0 Þ � kI� has

values Pð0Þ ¼ k1 �…� kN ¼ 1 and Pð1Þ ¼ ð�1ÞN _GKðx0Þ,
which means that for odd values of N > 1 stability is possi-

ble only if _GKðx0Þ ¼ 0. For period two (T¼ 2) points ps
nþ1 ¼

�ps
n (s¼ 0,…, N � 2) and Gðxnþ1Þ ¼ �GðxnÞ. In the case

N¼ 3, the only T¼ 2 points are the fixed points.

C. Caputo universal fractional map

For Eq. (1) with the left-sided Caputo derivative,3

C
0 Da

t xðtÞ ¼ 0In�a
t Dn

t xðtÞ

¼ 1

Cðn� aÞ

ðt

0

Dn
sxðsÞds

ðt� sÞa�nþ1
ðn� 1 < a � nÞ;

(15)

the initial conditions may be taken as ðDk
t xÞð0þÞ ¼ bk,

k¼ 0,…, N � 1. This problem is equivalent to the Volterra

integral equation of the second kind (t > 0)

xðtÞ ¼
XN�1

k¼0

bk

k!
tk

� 1

CðaÞ

ðt

0

ds
GKðxðs� DÞÞ
ðt� sÞ1�a

X1
k¼�1

dðs� ðk þ eÞÞ: (16)

With the introduction xðsÞðtÞ ¼ Ds
t xðtÞ, the Caputo Universal

aFM can be derived in the form7

x
ðsÞ
nþ1 ¼

XN�s�1

k¼0

x
ðkþsÞ
0

k!
ðnþ 1Þk

� 1

Cða� sÞ
Xn

k¼0

GKðxkÞðn� k þ 1Þa�s�1; (17)

where s¼ 0, 1,…, N � 1.

III. INTEGER-DIMENSIONAL STANDARD AND
LOGISTIC MAPS

Fractional map equations (11), (12), and (17) are maps with

memory in which the next value of the map variables depends

on all previous values. An increase in a leads to the increase in

the dimension of the map and to the increased power in the

power law dependence of the weights of the old states (the

increased role of memory). Integer values of a correspond to the

degenerate cases in which map equations can be written as the

maps with full memory,48 which are equivalent to the one step

memory maps in which map variables at each step accumulate

information about all previous states of the corresponding sys-

tems (for a discussion on the fractional maps as maps with

memory see Ref. 46). To fully understand the properties of frac-

tional maps, we will start with the consideration of the integer

members of the corresponding families of maps.

In the a ¼ 2 case, Eqs. (13) and (14) produce the

Standard Map if GKðxÞ ¼ K sinðxÞ and in the a ¼ 1 case, the

Logistic Map results from GKðxÞ ¼ x� Kxð1� xÞ. We will

call the Universal aFM Eqs. (11) and (12) with GKðxÞ ¼
K sinðxÞ the Standard Riemann-Liouville aFM and with

GKðxÞ ¼ x� Kxð1� xÞ the Logistic Riemann-Liouville

aFM; we will call Universal aFM Eq. (17) with GKðxÞ ¼
K sinðxÞ the Standard Caputo aFM and with GKðxÞ ¼
x� Kxð1� xÞ the Logistic Caputo aFM.

For a ¼ 0, the solution of Eq. (1) is identical zero. For

a < 1, the Universal Riemann-Liouville aFM Eq. (8) also

produces identical zero for maps that satisfy G(0)¼ 0, which

is true for the Standard Riemann-Liouville aFM and Logistic

Riemann-Liouville aFM.

There are no stable fixed points in the a ¼ 3 Standard

Map. For K2 � 16 < 4p12 < K2, there exist two lines of the

stable T¼ 2 on the torus ballistic points. For more on the pre-

liminary results of the investigation of the Standard aFM and

Logistic aFM for 2 < a � 3, see Ref. 46. A different form of

the 3D Standard Map has been recently introduced and inves-

tigated in Ref. 49 and some 3D quadratic volume preserving

maps were investigated in Ref. 50. The Standard aFM and

Logistic aFM with a > 2 are poorly investigated and 3D vol-

ume preserving maps, in general, are not fully investigated. In

our simulations of the fractional maps, we were able to find

the CBTT only for a < 2. This is why in the present article

we will not further consider maps with a > 2.

A. One-dimensional maps

The a ¼ 1 Standard Riemann-Liouville aFM is a partic-

ular form of the Circle Map with zero driving phase

xnþ1 ¼ xn � K sin ðxnÞ; ðmod 2pÞ: (18)

The bifurcation diagrams for the regular Logistic Map and

the one-dimensional Standard Map are presented in Fig. 1.

FIG. 1. (a) The bifurcation diagram for

the regular Logistic Map x¼Kx(1 � x).

(b) The bifurcation diagram for 1D

Standard Map, Eq. (18).
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The 1D Standard Map has the attracting fixed points

2pn for 0 < K < 2 and pþ 2pn when �2 < K < 0 (see

Fig. 1(b)). The antisymmetric T¼ 2 points are stable for

2 < jKj < p, while xnþ1 ¼ xn þ p sinks (T¼ 2) are stable

when p < jKj <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2
p

� 3:445. The stable T¼ 4 sink

appears at K � 3:445 and the transition to chaos through the

period doubling cascade of bifurcations occurs at K � 3:532.

More on the properties of the a ¼ 1 Standard Map can be

found in Ref. 46.

Stability properties of the Logistic Map are well known.51

For K > 0, the x¼ 0 fixed point is stable when K < 1, the

(K � 1)/K fixed point is stable when 1 < K < 3, the T¼ 2

sink is stable for 3 � K < 1�
ffiffiffi
6
p
� 3:449, the T¼ 4 sink is

stable for 3:449 < K < 3:544, and at K � 3:56995 is the

onset of chaos, at the end of the period-doubling cascade of

bifurcations.

B. Two-dimensional maps

The regular (a ¼ 2) Standard Map (Chirikov Standard

Map)

pnþ1 ¼ pn � K sin x; ðmod 2pÞ;
xnþ1 ¼ xn þ pnþ1; ðmod 2pÞ

(19)

demonstrates a universal generic behavior of the area-

preserving maps whose phase space is divided into elliptic

islands of stability and areas of chaotic motion and is well

investigated (see, e.g., Ref. 52). In the Standard aFM with

1 < a < 2, the elliptic islands evolve into periodic sinks.42,44–46

The properties of the phase space and the appearance of the

CBTT in the Standard aFM are connected to the evolution

(with the increase in parameter K) of the regular Standard

Map’s islands originating from the stable for K < 4 fixed point

(0,0). At K¼ 4, it becomes unstable (elliptic-hyperbolic point

transition) and two elliptic islands around the stable for 4 < K
< 2p period 2 antisymmetric (pnþ1 ¼ �pn; xnþ1 ¼ �xn)

points appear. At K ¼ 2p, this point turns into the T¼ 2 point

with pnþ1 ¼ �pn; xnþ1 ¼ xn � p, which is stable for 2p < K
< 6:59. The T¼ 4 stable elliptic points appear at K � 6:59 and

the period doubling cascade of bifurcations leads to the disap-

pearance of the islands of stability in the chaotic sea at

K � 6:6344.52

The a ¼ 2 Logistic Map

pnþ1 ¼ pn þ Kxnð1� xnÞ � xn;

xnþ1 ¼ xn þ pnþ1

(20)

is a quadratic area preserving map. The quadratic area pre-

serving maps with a stable fixed point at the origin were

studied by H�enon53 and a recent review on quadratic maps

can be found in Ref. 54. The map equation (20) has two fixed

points: (0, 0) stable for K 2 ð�3; 1Þ and ((K � 1)/K, 0) stable

for K 2 ð1; 5Þ. The T¼ 2 elliptic point

x ¼ K þ 36
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 3ÞðK � 5Þ

p
2K

;

p ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 3ÞðK � 5Þ

p
K

(21)

is stable for �2
ffiffiffi
5
p
þ 1 < K < �3 and 5 < K < 2

ffiffiffi
5
p
þ 1.

The period doubling cascade of bifurcations (for K > 0)

with further bifurcations, T¼ 2! T¼ 4 at K � 5:472, T¼ 4

! T¼ 8 at K � 5:527, T¼ 8 ! T¼ 16 at K � 5:5319,

T¼ 16 ! T¼ 32 at K � 5:53253, etc., and the correspond-

ing decrease in the area of the islands of stability leads to

chaos (see Fig. 2).

IV. THE FRACTIONAL (a < 2) STANDARD aFM AND
LOGISTIC aFM

A. The CBTT in the standard aFM and the logistic aFM
with a < 1

With the corresponding GKðxÞ, the Universal Caputo

aFM for 0 < a < 1

xnþ1 ¼ x0 �
1

CðaÞ
Xn

k¼0

GðxkÞðn� k þ 1Þa�1
(22)

produces the Standard Caputo aFM

xn ¼ x0 �
K

CðaÞ
Xn�1

k¼0

sin xk

ðn� kÞ1�a; ðmod 2pÞ; (23)

and the Logistic Caputo aFM

xn ¼ x0 þ
1

CðaÞ
Xn�1

k¼0

Kxkð1� xkÞ � xk

ðn� kÞ1�a ; (24)

FIG. 2. Bifurcations in the 2D Logistic

Map: (a) T¼ 4 ! T¼ 8 bifurcation at

K � 5:527. (b) T¼ 8 ! T¼ 16 bifur-

cation at K � 5:5319.
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which are one dimensional maps with the power law

decreasing memory.46 The bifurcation diagrams for these

maps are similar to the corresponding diagrams for the a ¼ 1

case but are stretched along the parameter K-axis and the

stretchiness increases with the decrease in a, Figs. 3(a)–3(d).

In the area of the parameter values for which on the bifurca-

tion diagram stable periodic T > 2 points exist, individual

trajectories are the CBTT Figs. 3(e) and 3(f).

B. The CBTT in the standard aFM with 1 < a < 2

The Standard Riemann-Liouville and Caputo aFM with

1 < a < 2 were investigated in Refs. 42, 44, and 45. In this

subsection, we will recall some of the results of this investi-

gation. The fixed point (0, 0), which is a sink in this case, is

stable for (see Fig. 4(a))

0 < K < Kc1ðaÞ ¼
2CðaÞ

Val
; (25)

where

Val ¼
X1
k¼1

ð�1Þkþ1V1
aðkÞ: (26)

In accordance with Sec. III, Kc1ð1Þ ¼ 2 and Kc1ð2Þ ¼ 4. The

antisymmetric period 2 sink

pnþ1 ¼ �pn; xnþ1 ¼ �xn (27)

is stable for Kc1ðaÞ<K <Kc2ðaÞ, where Kc2ðaÞ¼ 0:5pKc1ðaÞ
with Kc2ð1Þ¼ p and Kc2ð2Þ¼ 2p.

FIG. 3. Bifurcations and the CBTT in

the Standard (Figures 3(a), 3(c), and

3(e)) and Logistic (Figures 3(b), 3(d),

and 3(f)) Caputo aFM with 0 < a < 1.

In (a)–(d), bifurcation diagrams

obtained after performing 104

iterations on a single trajectory with

x0 ¼ 0:1 for various values of K. In

(a) and (b), a ¼ 0:5. In (c), a ¼ 0:05.

In (d), a ¼ 0:1. In (e), a CBTT for

a ¼ 0:01 and K¼ 276. In (f), a CBTT

for a ¼ 0:1 and K¼ 22.7.
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pnþ1 ¼ �pn; xnþ1 ¼ xn þ p (28)

two T¼ 2 sinks are stable in the band above K ¼ Kc2ðaÞ
curve (Fig. 4(a)). For a ¼ 1, it corresponds to p < jKj
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2
p

� 3:445 and for the regular Standard Map the

corresponding elliptic points are stable when 2p < K < 6:59.

For a ¼ 1, the T¼ 4 sink appears at K � 3:445 and the

transition to chaos occurs at K � 3:532 (Sec. III A), while

for a ¼ 2 the T¼ 4 elliptic points appear at K � 6:59 and

the sequence of the period doubling bifurcations leads to

the disappearance of the islands of stability in chaotic sea at

K � 6:6344 (Sec. III B). For 1 < a < 2, the CBTT exists in

the band between two curves connecting the above-

mentioned points (Fig. 4(a)). Both curves are calculated

numerically and confirmed by the large number of computer

simulations.44,45 Within the CBTT, band trajectories evolve

from being very stable features, which exist for the longest

time we were running our codes, 500 000 iterations, when a
is close to 1 (Fig. 5(a)) to being barely distinguishable and

short-lived features when a is close to 2 (Fig. 5(b)). For

the intermediate values of a, CBTT behaves similar to the

sticky trajectories in Hamiltonian dynamics: occasionally

FIG. 5. A single CBTT in the Standard

Riemann-Liouville aFM. (a) One of the

two branches of the CBTT for a ¼ 1:1
and K¼ 3.5. (b) A zoom of a small

feature in an intermittent trajectory

for a ¼ 1:95 and K¼ 6.2. (c) An inter-

mittent trajectory in phase space for

a ¼ 1:65 and K¼ 4.5. (d) x of n for the

case (c).

FIG. 4. Bifurcations in the Standard and Logistic aFM with 1 < a < 2. (a) The Standard aFM K � a graph. The fixed point (0, 0) is stable for K < Kc1; the anti-

symmetric T¼ 2 sink is stable for Kc1 < K < Kc2; two T¼ 2 sinks xnþ1 ¼ xn � p; pnþ1 ¼ �pn are stable in a band above Kc2; the CBTT exists in the band of the

map’s parameters ending at the cusp in the top right corner; the upper curve is a border with chaos. The star marks the point (K � 6:63) at which the Standard

Map’s (a ¼ 2) T¼ 2 points become unstable and the T¼ 4 elliptic points are born. (b) The Logistic aFM K � a graph. One fixed point is stable for K < Kc1L; the

T¼ 2 sink is stable for Kc1L < K < Kc2L; the sinks with T � 4 and the inverse CBTT exists in the upper band; the upper curve is a border with chaos.
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trajectories enter CBTT and then leave them entering the

chaotic sea (Figs. 5(c) and 5(d)).

Let us list below some additional interesting properties of

the Standard aFM with 1 < a < 2.44,45 The types of solutions

include periodic sinks, attracting slow diverging trajectories,

attracting accelerator mode trajectories, chaotic attractors, and

the CBTT. All attractors below the CBTT band are periodic

sinks and slow diverging trajectories and all trajectories con-

verge to one of those attractors. Each attractor has its own ba-

sin of attraction and the chaotic areas exist in the sense that

two trajectories with infinitely close initial conditions from

those areas may converge to different attractors. Periodic sinks

exist in the limiting sense and the limiting values themselves

in most of the cases do not belong to their basins of attraction.

The rate of convergence of trajectories to the sinks depends

on the initial conditions. The trajectories that start from the

basins of attraction converge fast as dx � n�1�a; dp � n�a,

while those starting from the chaotic areas converge slow as

dx � n�a (or even as dx � n1�a), dp � n1�a. Trajectories

may intersect and chaotic attractors overlap. More on the

properties of the Standard Riemann-Liouville and Caputo

aFM with 1 � a � 2 can be found in Refs. 44–46.

C. CBTT in the logistic aFM with 1 < a < 2

In this part, we will investigate the Logistic Riemann-

Liouville aFM

pnþ1 ¼ pn þ Kxnð1� xnÞ � xn; (29)

xnþ1 ¼
1

CðaÞ
Xn

i¼0

piþ1V1
aðn� iþ 1Þ: (30)

As in the case of the Standard aFM, the partition of the phase

space into the areas of stability of the periodic sinks originat-

ing from the period one sink (0, 0) is almost the same (numeri-

cal result) for the Logistic Riemann-Liouville and Caputo

aFM. For 0 < K < 1, all converging trajectories converge to

(0, 0) point as x � n�a�1; p � n�a. For 1 < K < Kc1L, the

only stable sink is the period one ((K � 1)/K, 0) sink and the

rate of convergence is dx � n�a; p � n�aþ1. For Kc1L < K
< Kc2L, all converging trajectories (this is a result from the

large number of numerical simulations) converge to the T¼ 2

sink antisymmetric in p (Fig. 6(a)).

To find the Logistic Riemann-Liouville aFM’s critical

curve Kc1L on which, as a result of a bifurcation, the T¼ 1

sink disappears and the T¼ 2 sink is born, let us consider the

T¼ 2 sinks. The results of large number of simulations (see,

e.g., Fig. 6(b)) suggest the following asymptotic behavior:

pn ¼ plð�1Þn þ A

na�1
: (31)

Then, from Eq. (30)

xlo ¼ lim
n!1

x2nþ1 ¼
pl

CðaÞ lim
n!1

X2nþ1

k¼1

ð�1ÞkV1
aðkÞ

þ A

CðaÞ lim
n!1

X2n�1

k¼1

a� 1

ka�1ð2n� kÞ2�a ¼ �
pl

CðaÞVal

þða� 1ÞA
CðaÞ

ð1

0

x1�adx

ð1� xÞ2�a ¼ �
pl

CðaÞVal þ ACð2� aÞ:

(32)

In a similar way,

xle ¼ lim
n!1

x2n ¼
pl

CðaÞVal þ ACð2� aÞ: (33)

In the limit n!1, Eq. (29) gives

�2pl ¼ Kxleð1� xleÞ � xle; (34)

2pl ¼ Kxloð1� xloÞ � xlo: (35)

The system of Eqs. (32)–(35) has four equations and

four unknown variables pl, A, xlo, and xle. This equation has

two obvious solutions xlo ¼ xle ¼ pl ¼ A ¼ 0 and xlo ¼ xle

¼ xl ¼ ðK � 1Þ=K; pl ¼ 0; A ¼ xl=Cð2� aÞ, corresponding

to two fixed points. If xlo 6¼ xle, then

A ¼
K � 1þ 2CðaÞ

Val

2KCð2� aÞ (36)

and xle is a solution of the quadratic equation

FIG. 6. The Logistic Riemann-Liouville

aFM with a¼1:32 and K¼3.4. (a)

Phase space: 300 trajectories with x0¼0;
p0¼10�6þ0:00024i; 0� i<300. All

converging trajectories converge to

the T¼2 antisymmetric in p sink.

(b) log p� log n graph showing the rate

of convergence dp� n�aþ1 on a single

trajectory.
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x2
le �

�
2CðaÞ
KVal

þ K � 1

K

�
xle þ

�
CðaÞ
2KVal

þ K � 1

4K

�2

�ðK � 1ÞCðaÞ
K2Val

� ðK � 1Þ2

2K2
¼ 0; (37)

which for positive K has solutions only when

K � Kc1l ¼ 1þ 2CðaÞ
Val

: (38)

Direct numeric simulations of the map, Eqs. (29) and (30),

confirm this Kc1l value as well as the limiting values for pl,

xlo, and xle. For a way to calculate numerically slow converg-

ing series Eq. (26) for Val see Appendix.

In the CBTT band of the Logistic aFM, the narrow band

between the upper two curves on Fig. 4(b), the cascade of

bifurcation type trajectories exists only in the form of the

inverse CBTT (see Fig. 7). The inverse CBTTs that exist for

the Logistic Caputo aFM (Figs. 7 and 8(a)) are almost

impossible to find in the Logistic Riemann-Liouville aFM

(Fig. 8(b)). The closer a is to two, the more difficult it is to

find the CBTT in the phase space or x-n graph of the

Logistic Caputo aFM.

V. CONCLUSION

The Universal a-Family of Maps introduced in this paper is

the extension of the fractional Universal Map, which allows

consideration of the Logistic Map as its particular form. The

results of the investigation of the Standard and Logistic Families

of Maps suggest that the existence of the cascade of bifurcations

type trajectories is a general property of the fractional dynamical

systems. They appear for the parameter values corresponding to

the transition through the period doubling cascade of bifurca-

tions from regular to chaotic motion in the regular dynamics.

Figs. 3 and 5 support our statement that with the increase in a,

which represents the increase in the systems’ dimension and

memory (increase in the weights of the earlier states), systems

demonstrate more complex and chaotic behavior. Biological

systems are systems with memory and the Fractional Logistic

Map can serve as a basic model in population biology with

memory. We believe that experiments on human memory

and/or adaptive biological systems, which in many respects

are systems with power law memory, could demonstrate the

CBTT-like behavior. New types of materials with memory,

such as memristors, memcapacitors, and meminductors, could

be used to model fractional systems to demonstrate the exis-

tence of the CBTT. The a > 2 Standard and Logistic Maps

(including their integer volume preserving forms) are topics

of ongoing research and their further investigation is neces-

sary to demonstrate the consistency of the changes in the

properties of the fractional systems with the change in a.
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FIG. 8. The Logistic Caputo aFM vs.

the Logistic Riemann-Liouville aFM.

(a) 60 000 iterations on a single Logistic

Caputo aFM trajectory for a ¼ 1:6 and

K¼ 3.9. (b) The T¼ 4 trajectory for the

Logistic Riemann-Liouville aFM with

a ¼ 1:6 and K¼ 3.88.

FIG. 7. An inverse CBTT in the

Logistic Caputo aFM with a ¼ 1:2 and

K¼ 3.45. 40 000 iterations on a trajec-

tory with x0 ¼ 0:01 and p0 ¼ 0:1. (a)

Phase space. (b) x–n graph.
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APPENDIX: CALCULATION OF Val

Val can be written as

Val ¼
X1
k¼1

ð�1Þkþ1VaðkÞ ¼ S1 þ S2; (A1)

where

S1 ¼
X2N

k¼1

ð�1Þkþ1VaðkÞ; (A2)

with the N sufficiently large and

S2 ¼
X1

k¼Nþ1

fVað2k � 1Þ � Vað2kÞg: (A3)

The value of S1 can be directly calculated numerically with

high precision. The second sum can be developed into a se-

ries as follows:

S2 ¼
X1

k¼Nþ1

ð2kÞa�3ða� 1Þð2� aÞ
�

1þ 3� a
2

1

k
þ 7ð3� aÞð4� aÞ

48

1

k2
þ ð3� aÞð4� aÞð5� aÞ

32

1

k3
þ O

�
1

k4

��

¼ ð2Þa�3ða� 1Þð2� aÞðfð3� aÞ þ 3� a
2

fð4� aÞ þ 7ð3� aÞð4� aÞ
48

fð5� aÞ þ ð3� aÞð4� aÞð5� aÞ
32

fð6� aÞÞ

�
XN

k¼1

ð2kÞa�3ða� 1Þð2� aÞ
�

1þ 3� a
2

1

k
þ 7ð3� aÞð4� aÞ

48

1

k2
þ ð3� aÞð4� aÞð5� aÞ

32

1

k3

�
þ O

�
1

N6�a

�
: (A4)

This is what finally was coded using a fast method for calcu-

lating values of the f-function.
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