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Abstract 

In this thesis, I discuss my research of the behavior and stability of doublons. I describe 

the dynamics of a one-dimensional closed chain of spins ½. I show that by analyzing the 

eigenstates and eigenvalues of the Hamiltonian that describes the system, I can predict its 

dynamics. In the presence of strong interactions between the particles in the chain, particles 

can bind in pairs of excitations forming what is known as doublons. These doublons are very 

stable and they move together as a single particle, but contrary to it, doublons move slowly. 

Doublons were observed experimentally by many different physicists with cold atoms. In 

those experiments, because of strong on-site interactions between atoms, they would see sites 

that were doubly occupied, which is how the term “doublon” was coined. These doublons 

could move to other sites, but they always moved together as a bounded pair. They were 

never found to be split up with one in each site, they always moved together. In my thesis, 

the doublons are equivalent to bounded pairs of neighboring excitations in a chain instead of 

pairs of atoms.  

I. Quantum Mechanics 

The mystery behind quantum mechanics is one that has been studied for many years, 

each experiment leading to even bigger and more innovative discoveries. The discussion of 

quantum mechanics began way back in the 1800’s in the industrial revolution. While 

working on building more efficient engines, engineers and other workers noticed that when 

the engines became very hot, they would start radiating. Thermal radiation was then born, 

and it was discovered that electrons emit radiation when they start moving at higher 

frequencies, which means more oscillations. In order to better understand the properties of 

thermal and electromagnetic radiation, the universal ideal mathematical body called the 
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blackbody was created. The blackbody absorbs all thermal radiation sent to it and does not 

reflect radiation, it only emits, and it depends only on temperature. The blackbody spectrum 

cannot be understood based on classical arguments, and physicists Wilhelm Wein, Josef 

Stefan, and Ludwig Boltzmann came up with different equations and constants in order to 

explain the spectral distribution of blackbody radiation. While trying to create a formula for 

blackbody radiation, scientists Rayleigh and Jeans accidentally discovered the ultraviolet 

catastrophe. Using the classical equipartition law, �̅� = 𝑘𝑇, they predicted that the blackbody 

radiation should never diverge, and frequency should increase with radiation. However, their 

experimental results showed that it diverges with high frequency. Max Planck solves this 

issue with equation 𝐸 = 𝑛ℎ𝜈 (using his constant h) which proves that energy is quantized. 

This concept has become one of the most basic principles of quantum physics. While Planck 

proved energy quantization for blackbody, Einstein extended this idea through the 

photoelectric effect and said that energy is quantized into lumps, which brought about the 

idea that light is composed of particles called photons.  

One scientist who analyzed the behavior of particles and photons was Louis de 

Broglie, who studied the wave-like properties of particles and discovered the wave-particle 

duality. He did multiple experiments with some resulting in electrons behaving like particles 

and others with results showing that electrons behave like waves. Each experiment only gave 

one result and in a given measurement, only one model applies as to whether the electron 

behaves like a particle or wave. When the entity being studied was detected by some 

interaction with matter, it acted like a particle and was localized. When it moved or 

propagated, it behaved like a wave and it showed interference and was not localized.  
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The role of Quantum Mechanics was to resolve the continuous confusion of how 

things really behave. However, nobody really fully understands Quantum Mechanics, and the 

bottom line is that electrons and other like particles behave in their own unique way, which 

turns out to be both like particles and like waves. Physicist Richard Feynman describes 

several theoretical experiments, which help to explain the behavior of electrons. [1] 

A. The Bullet Experiment 

 There was a famous thought experiment conducted involving two holes in order to 

prove the wave-particle duality and the mysterious nature of electrons, which became the 

basis for the theory of Quantum Mechanics. In the first part of the experiment, scientists tried 

to describe the behavior of particles by comparing it to the behavior of bullets. In this 

theoretical experiment, there was a machine gun that shot bullets from a distance to a plate 

with two slits, and a detector that counted the bullets passing through. It was determined that 

the bullets detected arrived in “lumps”, meaning that bullets equal in size either arrived or 

didn’t arrive in the detector or box, they never arrived in pieces. Furthermore, the bullets 

were only able to go through one hole at a time, so if one hole was closed it would only go 

through the other one. As the distance “x” from the center is varied, the amount of bullets 

that arrive also vary. The probability of arrival, the average number of bullets that arrive in a 

given length of time, was also measured using the sum of P1 (the probability of bullets 

entering hole 1 if hole 2 is closed) and P2 (the probability of bullets entering hole 2 if hole 1 

is closed). These results are plotted on a graph showing two peaks, for P1 and P2, as seen in 

Figure 1b.  The graph of P12 is interpreted as being the sum of two curves, P12=P1+P2, 

implying that there is no interference, which means that the probability of arrival from two 

holes being open is the same as what you would get when you add each hole separately.  
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Figure 1: Experiment with bullets 

B. The Wave Experiment 

Then, there was a similar experiment done to determine the behavior of waves. 

Instead of bullets, there were waves released from a source to a wall with two holes and a 

detector behind the wall. This time however, instead of the detector measuring the amount of 

waves coming through, it measured the intensity of the waves coming through, which was 

the rate of energy generated by the waves at a certain point. It is important to note that the 

waves were able to come in any size and did not arrive in lumps like the bullets. The more 

ripples and motion in the wave, the higher the intensity would be. When one hole was closed, 

the result was similar to that of the bullet experiment and there was a simple peak at a point 

where the wave was most intense. The intensity of the waves is denoted as I1 (when hole 2 is 

closed) and I2 (when hole 1 is closed). However, when both holes were open, the result was 

not as a simple unified peak like that of the previous experiment. There is interference 

between the two waves when both holes are open and I12 (the intensity when both holes are 
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open) is not a sum of I1 and I2, but rather forms a symmetrical curve with many peaks, as 

seen in Figure 2. When the two waves were released, they would reach a certain point at the 

same time and overlap, thus more ripples were formed resulting in a higher intensity at those 

points where they interacted. This interaction of the waves is known as interference. A peak 

of the I12 curve is referred to as the waves being “in phase”, where the amplitude and 

therefore intensity is very high, also known as constructive interference. On the other hand, 

destructive is when the curve of I12 is at a minimum, where the waves are “out of phase” and 

the intensity is very low. It was determined that the intensity is proportional to the square of 

the amplitude or height, which is why the graph of I12 looked so different than that of P12.  

 

Figure 2: Experiment with waves 

C. Experiment with Electrons 

The final theoretical experiment was of the same nature as the first two, but with 

electrons. This time the source was an electron gun, which shot electrons to a wall with two 

holes in it, and a detector behind the wall. This detector is connected to a loudspeaker, so that 

every time an electron is detected a loud “click” is heard. The first thing the results showed is 
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that there are no “half-clicks”, every “click” is exactly the same. The clicks never changed 

size, or loudness, but the rate at which they were heard was able to change. If there were two 

detectors present, there would never be two clicks heard at the same time. Therefore, it was 

concluded that an electron will come in lumps because it has a definite size and it only 

arrives at one place at one time. When the probability of arrival was measured, which is the 

average rate of electrons coming in per hour, the result was the I12 graph as seen with the 

wave experiment, which indicates that there is some sort of interference. This seems to imply 

that the electron bullet could go through two holes at once, like the waves.  

 

Figure 3: Experiment with electrons 

 The results of this experiment are confusing. It was determined first that electrons 

arrive in lumps like a particle but the probability of arrival of those lumps is determined like 

the intensity of waves. Is it possible that an electron can sometimes behave like a particle and 

other times like a wave?  
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 In order to reduce the confusion, they investigated only Proposition A: that either the 

electron goes through hole 1 or hole 2. They added in a source of light so that every time an 

electron passed, a complete flash would be seen either behind hole 1 or hole 2 in addition to 

the “click” heard, but never behind both at one instant. The result here is surprising. With the 

light source on, the graph of probability of arrival becomes the P12 graph for the particles 

and it can be concluded that an electron behaves like a particle. But when the light source is 

turned off, the results show that the electron behaves like a wave!  

 To investigate this disparity, it is considered that perhaps the light affects the behavior 

of the electron. As the light is turned down and the intensity is lowered, the size of the 

photons does not change at all, only the amount of photons being released is reduced.  

Without being able to see which hole the electron is going through (i.e. without a 

light source), the result is the intensity graph found in the wave experiment, and with the 

ability to see which hole the electron is going through, the resulting graph is that of the 

bullets.   

The conclusion of the experiment is then that it is impossible to predict ahead of time 

which whole the electron will go through without destroying the interference pattern. This 

conclusion is supported by Heisenberg’s uncertainty principle, which states that the location 

and momentum of a particle cannot be determined at the same time. 

II. Probabilistic Nature of Quantum Particles 

In classical mechanics, in order to determine the location of a particle at a given time, 

Newton’s second law F=ma is applied. Quantum mechanics however functions based on 

probability because both the momentum and location are not able to be determined with 

infinite precision at the same time. Instead of looking for x(t), we are trying to find the wave 
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function, 𝛹(x,t), of the particle. Just as in classical mechanics, x(t) is found using Newton’s 

second law, in quantum mechanics, the wave function is found using Schrödinger’s equation: 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑉Ψ (𝑒𝑞𝑛. 1). 

Here, i is √−1 and ℏ is Planck’s constant ℎ divided by 2𝜋: 

ℏ =
ℎ

2𝜋
= 1.054573 × 10−34 𝐽𝑠  (𝑒𝑞𝑛. 2). 

As we have already established, finding the position of a particle is based on 

probability. The probability that a particle will be found at a certain location x at a certain 

time t, also known as probability density, is used to describe the state of the particle: 

|Ψ(𝑥, 𝑡)|2𝑑𝑥 (𝑒𝑞𝑛 3). 

 

Figure 4: A wave function. There is a peak at point A and a minimum at B, showing 

that the particle is more likely to be found at point A than at point B. The shaded region dx 

shows the probability of finding the particle in that particular range. 

The particle can be found anywhere along this wave function, but there is a much 

higher probability of the particle being found at point A than at point B. The wave function is 

simply providing all possible locations of the particle.  

Though only the probability density is being measured, the particle still must be 

somewhere, which means that the wave function must be normalized:  
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∫ |Ψ(𝑥, 𝑡)|2𝑑𝑥 = 1 (𝑒𝑞𝑛. 4).

+∞

−∞

 

III. Stationary States 

 We have discovered the wave function and know that finding it will help us describe 

our system. Now we need to solve the Schrödinger equation to find Ψ(𝑥, 𝑡), and in order to 

do so we must use separation of variables so that lowercase 𝜓 will be a function of x and f 

will be a function of t: 

Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝑓(𝑡). 

Next, we separate the solutions and we get: 

𝜕Ψ

𝜕𝑡
= 𝜓

𝑑𝑓

𝑑𝑡
,

𝜕2Ψ

𝜕𝑥2
=
𝑑2𝜓

𝑑𝑥2
𝑓 

so when substituting these solutions back into the Schrödinger equation (eqn. 1), the equation 

then becomes: 

𝑖ℏ𝜓
𝑑𝑓

𝑑𝑡
= −

ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
𝑓 + 𝑉𝜓𝑓. 

This equation can be further simplified by dividing everything by 𝜓f: 

𝑖ℏ
1

𝑓

𝑑𝑓

𝑑𝑡
= −

ℏ2

2𝑚

1

𝜓

𝑑2𝜓

𝑑𝑥2
+ 𝑉 (𝑒𝑞𝑛. 5). 

With this alteration of the Schrödinger equation, it is evident that the left side of the equation 

is solely a function of t and the right side is only a function of x, which can only be true if 

both sides are constant. So, we will call the right side, constant E and rewrite the equation: 

𝑖ℏ
1

𝑓

𝑑𝑓

𝑑𝑡
= 𝐸, 
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which can also be written as, 

𝑑𝑓

𝑑𝑡
= −

𝑖𝐸

ℏ
𝑓 (𝑒𝑞𝑛. 6). 

We can also equate constant E to the right side of equation 5 

−
ℏ2

2𝑚

1

𝜓

𝑑2𝜓

𝑑𝑥2
+ 𝑉 = 𝐸, 

and if you multiply everything by 𝜓, the result is 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝑉𝜓 = 𝐸𝜓 (𝑒𝑞𝑛. 7). 

We have now transformed the original partial differential equations into two separate 

ordinary differential equations (Equations 6 and 7), which will help to more easily solve the 

Schrödinger equation. The first equation (Equation 6) can be solved easily by multiplying 

everything by dt and integrating, resulting in 

𝑓(𝑡) = 𝑒−
𝑖𝐸𝑡
ℏ . (𝑒𝑞𝑛. 8). 

The other equation is known as the time-independent Schrödinger equation, and in order to 

solve that, we need to find the potential V. To find the potential, we turn to classical 

mechanics, which tells us that the Hamiltonian is the observable which corresponds to the 

total energy of the system, kinetic plus potential: 

𝐻(𝑥, 𝑝) =
𝑝2

2𝑚
+ 𝑉(𝑥) (𝑒𝑞𝑛. 9). 

To translate to quantum mechanics, we substitute p for (ℏ/𝑖)( 𝜕/𝜕𝑥) and we get 
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𝐻 = −
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝑉(𝑥) (𝑒𝑞𝑛. 10) 

which turns out to be exactly Equation 7, so we can equate the two and reduce the time-

independent Schrödinger equation: 

𝐻𝜓 = 𝐸𝜓 (𝑒𝑞𝑛. 11). 

The time-independent Schrödinger equation can now be solved using separation constant E 

which will yield the solutions needed to describe the system. One of the benefits of the 

separable solutions we found is that through linear combinations, an infinite number of 

solutions can be found (𝜓1,𝜓2, 𝜓3…) for each corresponding separation constant 

(𝐸1, 𝐸2, 𝐸3…).  

Additionally, we know through the separable solutions that the states we are 

describing from the time-independent Schrödinger equation are stationary states. Clearly, the 

wave function depends on t,  

Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖𝐸𝑡/ℏ (𝑒𝑞𝑛. 12) 

but the probability density does not because the time dependence cancels out 

|Ψ(𝑥, 𝑡)|2 = Ψ∗Ψ = 𝜓∗𝑒+𝑖𝐸𝑡/ℏ𝜓𝑒−𝑖𝐸𝑡/ℏ = |𝜓(𝑥)|2 (𝑒𝑞𝑛. 13). 

Any non-stationary state that does change in time is considered to be dynamic. Now that we 

have learned about stationary states, we can discover more about the dynamics of non-

stationary states.  
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IV. Spin-½ System 

 Many concepts in quantum mechanics stem from classical mechanics, and one of 

these concepts is what is known as the spin of a particle. Every object in classical mechanics 

has two types of momentum; orbital angular momentum and spin angular momentum, which 

seem very similar, but they have a key difference. Orbital momentum has to do with the 

motion of the center of mass, which can be seen in the earth’s revolution around the sun. 

Spin on the other hand is the motion about the center of mass, which is related to the earth’s 

rotation about its axis. In quantum mechanics, the concept is similar. There is both orbital 

momentum, which is associated with the electron orbiting around the nucleus, and also spin, 

which is different from the classical spin. The orbital and spin angular momentum of 

particles are otherwise known as extrinsic angular momentum and intrinsic angular 

momentum, respectively.  

 Every type of particle has a different fixed spin. For example, photons have a spin of 

1 while electrons have a spin of ½. The system that I am studying is a one-dimensional chain 

of spins ½. In a system of spins ½, there are only two basis vectors; spin up, indicated by 

vector (1
0
) and arrow |↑⟩, and spin down, indicated by vector (0

1
) and arrow |↓⟩. There are 

also spin operators, and in the case of spin ½, they are known as the Pauli spin matrices: 

𝜎𝑥 = (
0 1
1 0

) ; 𝜎𝑦 = (
0 −𝑖
𝑖 0

) ; 𝜎𝑧 = (
1 0
0 −1

). 

As is evident here, the x and y matrices have off-diagonal elements, while the z matrix has 

diagonal elements. Each Pauli matrix has its own function and will be used in the 

Hamiltonian used to describe the spin ½ system, which I will explain shortly.  
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In a chain with spins ½, we assume that there is a strong magnetic field pointing 

down in the z direction, so the spins will either point up and be antiparallel to the field or be 

pointing down parallel to the field. Each up spin is therefore what we will refer to as an 

excitation. Interactions can occur between neighboring sites and as a result, the excitation can 

hop to the neighboring site on the right or the left. 

The one-dimensional chain can be an open chain with open boundaries or a closed or 

periodic chain with closed boundaries, which has a ring structure (as seen in Figure 5).  

        

 

 

Figure 5: Left: Closed chain, Right: Open chain. Red arrows denote excitations.  

We will be focusing only on a closed chain, which means that because of the ring 

structure, the first and last sites of the chain can also interact, and the excitation can move 

between those two sites if interaction occurs. Every chain has parameters and one parameter 

of the system is L, which represents the number of sites in the chain. In my case, I will have 

only two spins pointing up, so another parameter will be L-2, the number of spins pointing 

down. The excitations can occur at any two locations in the chain, but later on we will study 

the bound pairs, which are two excitations in neighboring sites in the chain.  

The Hamiltonian of the system describes how the spins in the chain are coupled, and 

what role the Pauli matrices play in it: 
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𝐻 =∑
𝐽

4
[

𝐿

𝑛=1

𝜎𝑛
𝑥𝜎𝑛+1

𝑥 + 𝜎𝑛
𝑦
𝜎𝑛+1
𝑦
] +

𝐽𝑧
4
[𝜎𝑛
𝑧𝜎𝑛+1

𝑧 ] (𝑒𝑞𝑛. 14) 

 The first term in the Hamiltonian is known as the flip-flop term. When it acts on a 

state where it has a spin pointing up in one site and a spin pointing down in a neighboring 

site, it flips both. For example, when 𝜎𝑥 acts on a spin pointing up, it flips the spin to be 

pointing down, and vice versa. 

𝜎𝑥|↑⟩ = (
0 1
1 0

) (
1
0
) = (

0
1
) = |↓⟩ 

𝜎𝑥|↓⟩ = (
0 1
1 0

) (
0
1
) = (

1
0
) = |↑⟩ 

Similarly, when 𝜎𝑦acts on a spin, it flips the orientation but with an additional coefficient of 

i. 

𝜎𝑦|↑⟩ = (
0 −𝑖
𝑖 0

) (
1
0
) = 𝑖 (

0
1
) = 𝑖|↓⟩ 

𝜎𝑦|↓⟩ = (
0 −𝑖
𝑖 0

) (
0
1
) = −𝑖 (

1
0
) = −𝑖|↑⟩ 

To look at it in terms of the Hamiltonian, when the flip-flop terms acts on a state with one 

spin pointing up and the spin in the neighboring site pointing down, it flips both terms and 

the state which was up down becomes down up. This is why it is called flip-flop, because it 

flips the terms. When the first term of the Hamiltonian,  

𝐽

4
[𝜎𝑛
𝑥𝜎𝑛+1

𝑥 + 𝜎𝑛
𝑦
𝜎𝑛+1
𝑦
]|↑↓⟩ =

𝐽

4
|↓↑⟩ 



 15 

𝐽

4
[𝜎𝑛
𝑥𝜎𝑛+1

𝑥 + 𝜎𝑛
𝑦
𝜎𝑛+1
𝑦
]|↑↓⟩ =

𝐽

4
|↓↑⟩ 

acts on two spins in neighboring sites, the effect of the term is that it moves the excitation 

from one site to the neighboring site, from site n to site n+1. The flip-flop term is also 

equivalent to a term of kinetic energy.  

 The other term in my Hamiltonian is the term of interaction, known as the Ising 

interaction. This term tells us what the energy of each spin configuration is. When 𝜎𝑧 acts on 

a spin, it does not change the state like the flip-flop term, but it determines the energy. For 

example, when the 𝜎𝑧 sees a positive spin, it gives us positive energy and when 𝜎𝑧 sees a 

negative spin, it gives a negative energy but does not change the spin. 

𝜎𝑧|↑⟩ = (
1 0
0 −1

) (
1
0
) = +(

1
0
) = |↑⟩ 

𝜎𝑧|↓⟩ = (
1 0
0 −1

) (
0
1
) = −(

0
1
) = |↓⟩ 

Therefore, when this term acts on parallel spins, it gives us this energy +𝐽𝑧
4

 and when it acts 

on a state with antiparallel spins, it gives us this energy - 𝐽𝑧
4

.  

𝐽𝑧
4
[𝜎𝑛
𝑧𝜎𝑛+1

𝑧 ]|↑↑⟩ = +
𝐽𝑧
4
|↑↑⟩ 

𝐽𝑧
4
[𝜎𝑛
𝑧𝜎𝑛+1

𝑧 ]|↑↓⟩ = −
𝐽𝑧
4
|↑↓⟩ 
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A. Hamiltonian in Matrix Form 

 Now that we understand the different parts of the Hamiltonian, we will write it in 

matrix form. In order to write it in matrix form, I first have to choose a basis, which is the 

configuration of spins pointing up and down. The number of sites in the system is L and the 

number of up-spins is a fixed amount, which we will denote as n. As an example, I chose a 

system with 4 sites and 2 spins pointing up. The dimension, or permutations of the different 

basis vectors, can be found using the equation 

𝐿!

𝑛! (𝐿 − 𝑛)!
 (𝑒𝑞𝑛. 15). 

With L=4 and n=2, there are 6 different permutations or configurations: 

|1100⟩, |1010⟩, |1001⟩, |0110⟩, |0101⟩, |0011⟩. 

Each configuration can also be represented as a vector. For example, 

(

  
 

1
0
0
0
0
0)

  
 

 represents the first 

basis vector |1100⟩, and 

(

  
 

0
1
0
0
0
0)

  
 

 represents the second basis vector |1010⟩. In total for this 

system, there Hamiltonian matrix will have a dimension of 6, with 6 rows and six columns.  

In order to obtain each element of the matrix, we have two factors to include; the flip-

flop term and the term of interaction. The diagonal elements of the matrix will be made up of 
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contributions coming from the Ising interaction, which is the energy of each of the spin 

configurations or basis vectors. The off-diagonal elements are the ones coming from the flip-

flop term, which tell us which states are directly coupled.  

Finding the diagonal elements is relatively simple. First, for each term we look at the 

number of pairs parallel and antiparallel spins there are. For each pair of parallel spins, you 

will add 𝐽𝑧
4

, and for each pair of antiparallel spins you will subtract 𝐽𝑧
4

. Let us use the first 

configuration as an example, |1100⟩. The spins in the first and second sites are parallel, so 𝐽𝑧
4

 

is added. Sites 2 and 3 have anti-parallel spins, so 𝐽𝑧
4

 is subtracted. Sites 3 and 4 have parallel 

spins 𝐽𝑧
4

 is added again. We also look at sites 4 and 1 because as I mentioned early, the spins 

are on a closed chain, which means that the first and last sites also interact. The spins on sites 

4 and 1 are antiparallel, so 𝐽𝑧
4

 is subtracted. We total these results to find the first diagonal 

element in the matrix, 𝐻11. We find that 𝐽𝑧
4
−
𝐽𝑧

4
+
𝐽𝑧

4
−
𝐽𝑧

4
= 0, so the 𝐻11 element is 0. This 

process is done for all the diagonal elements in the matrix.  

Next, we have to find the off-diagonal elements, which is a little more difficult to 

calculate. Each element in the matrix is the result of two vectors acting on each other, and the 

result will tell us whether the two states are coupled. For example, the element 𝐻12 (the 

element in row 1 and column 2) is the result of the vectors |1100⟩ and |1010⟩ acting on each 

other, which can also be written as: ⟨1100|𝐻|1010⟩. In order to see if the states can be 

coupled, the spins of both sites are compared. If only two neighboring sites differ, then there 

is a coupling matrix element. In other words, f the two states can be made equal by moving 

an excitation by only one site, then the states can be coupled. Using the example of element 
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𝐻12, if the excitation in site 2 from |1100⟩ was moved over one site, it would become 

|1010⟩. These states only differ by two neighboring sites, site 2 and site 3. So, the states can 

be directly coupled, and the result is 𝐽𝑥𝑦
2

. Additionally, this means that the opposite element 

𝐻21 of row 1 and column 2 will also be coupled. Therefore, 𝐻12 = ⟨1100|𝐻|1010⟩ =
𝐽𝑥𝑦

2
=

𝐻21. This same process can be done for all the remaining elements in the matrix, and the 

remaining elements in the Hamiltonian matrix can now be filled. It is evident when looking 

at the matrix which states are directly coupled and which are not, because if the resulting 

element is non-zero, then the states can be directly coupled.  

 This is the Hamiltonian matrix for the system with 4 sites and 2 excitations which we 

have been studying until now:  

𝐻 =                    

(

 
 
 
 
 
 
 
 
 
 
0

𝐽𝑥𝑦
2

0 0
𝐽𝑥𝑦
2

0

𝐽𝑥𝑦
2

−𝐽𝑧
𝐽𝑥𝑦
2

𝐽𝑥𝑦
2

0
𝐽𝑥𝑦
2

0
𝐽𝑥𝑦
2

0 0
𝐽𝑥𝑦
2

0

0
𝐽𝑥𝑦
2

0 0
𝐽𝑥𝑦
2

0

𝐽𝑥𝑦
2

0
𝐽𝑥𝑦
2

𝐽𝑥𝑦
2

−𝐽𝑧
𝐽𝑥𝑦
2

0
𝐽𝑥𝑦
2

0 0
𝐽𝑥𝑦
2

0 )

 
 
 
 
 
 
 
 
 
 

 

It is important to note that we can never create or annihilate excitations. If you have 

two spins pointing up, you will forever have two spins pointing up. This conservation of 

excitations implies that there is a symmetry in the system and the sum of total magnetization 

in the z direction is conserved.  

  

𝐽𝐽𝐽

(

 
 𝐽
 
 
 
 
 
 
 
𝐽
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B. Eigenvalues and Eigenvectors 

 Once I have the Hamiltonian matrix, I will diagonalize it in order to get the 

eigenvalues and eigenvectors. I will also choose values for the parameters of the 

Hamiltonian, meaning the interaction strength 𝐽𝑧, and the coupling strength 𝐽𝑥𝑦. I will do so 

for a closed chain with L=6 sites and n=2 excitations, which will be the parameters of the 

chain I am working with from now on. To find the dimension of the chain, we will use 

Equation 15, 6!

2!(6−2)!
= 15. The Hamiltonian matrix with therefore be 15x15, and there will 

be 15 basis vectors. The eigenvalues of the Hamiltonian represent the energy of each basis 

vector, so there will be 15 different eigenvalues and each eigenvalue will have 15 different 

corresponding eigenvectors or eigenstates. For each eigenvector, each element gives the 

probability amplitude for a particular basis vector, or spin configuration. For instance, 

eigenvalue 𝐸1 is associated with eigenvector  Ψ1.The probability amplitude to find eigenstate 

Ψ1 in the basis is C1, which is a complex number. If we perform a measurement is a system 

in state Ψ1, at energy 𝐸1, we have |C12|, which is the probability of finding it in the first state 

|1100⟩. The sum of all the probabilities should equal 1, 

∑|𝐶𝑛|
2 = 1 (𝑒𝑞𝑛.  16)

𝑑𝑖𝑚

𝑛=1

 

because there must be a probability of finding something. Before making any calculations, 

using the Mathematica software I checked and verified that indeed each eigenstate is 

normalized. 
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V. Case Studies  

We will now choose values for the coupling strength and the interaction strength in order 

to find the eigenvalues and eigenvectors. We want to find out if there is participation in the 

system of configurations with bound pairs and how the interaction strength will affect the 

participation. We will study two cases, one in which 𝐽𝑧 is much larger than 𝐽𝑥𝑦 and the other 

in which they are of the same order. After doing so, we will see the effects of both through 

the probability amplitudes and dynamics for each case.   

A.  Case 1: 𝑱𝒛 ≫ 𝑱𝒙𝒚 

 For the first example, I will choose the 𝐽𝑥𝑦 term, the flip-flop term, to be 1 in any 

arbitrary unit of energy, and I chose the 𝐽𝑧 interaction strength to be much larger than the 

strength of the flip-flop term. In this case it will be 100 times larger. This is the resulting 

histogram of the energies with the chosen parameters: 

 



 21 

Figure 6: Histogram for the case where 𝐽𝑧 = 100, showing well separated bands of energy  

These are the eigenvalues I get with the chosen parameters: {-51.4192, -50.7083, -

50.7083, 50.01, 50.0075, 50.0075, -50.0075, -50.0075, 50.0025, 50.0025, 50., -50., -49.2942, 

-49.2942, -48.5908}. As an example, I will choose eigenvalue -50.0075 and show the 

probability amplitudes of the corresponding eigenvector for each of the basis vectors. 

Table 1: Eigenvectors corresponding to eigenvalue -50.0075 when 𝐽𝑧 ≫ 𝐽𝑥𝑦  

 You will immediately notice after examining the values that the probability amplitude 

for the states with bound pairs are very large. For example, the states |110000⟩, |100001⟩, 

and |001100⟩ have probability amplitudes of approximately 0.49, 0.51, and -0.51 

respectively. In contrast, if you look at states where the excitations are separated, the value is 

approximately 0, meaning there is almost no probability amplitude. For the chosen 

eigenvalue, only states with bound pairs contributed to the eigenstate.  

Now we will look at eigenvalue -49.2942 and its corresponding eigenvectors.  

0.493138 ↑↑↓↓↓↓ −0.0134155 ↓↑↑↓↓↓ −0.00499809 ↓↓↑↓↑↓ 

0.00239843 ↑↓↑↓↓↓ −0.00259965 ↓↑↓↑↓↓ −3.13985 × 10−16 ↓↓↑↓↓↑ 

−1.11022 × 10−16 ↑↓↓↑↓↓ 4.85723 × 10−16 ↓↑↓↓↑↓ −0.493138 ↓↓↓↑↑↓ 

0.00259965 ↑↓↓↓↑↓ 0.00499809 ↓↑↓↓↓↑ −0.00239843 ↓↓↓↑↓↑ 

0.506554 ↑↓↓↓↓↑ −0.506554 ↓↓↑↑↓↓ 0.0134155 ↓↓↓↓↑↑ 
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0.000485865 ↑↑↓↓↓↓ −0.00197118 ↓↑↑↓↓↓ −0.391454 ↓↓↑↓↑↓ 

0.294967 ↑↓↑↓↓↓ 0.0964871 ↓↑↓↑↓↓ −0.136697 ↓↓↑↓↓↑ 

0.554586 ↑↓↓↑↓↓ −0.41789 ↓↑↓↓↑↓ 0.000485865 ↓↓↓↑↑↓ 

0.0964871 ↑↓↓↓↑↓ −0.391454 ↓↑↓↓↓↑ 0.294967 ↓↓↓↑↓↑ 

0.00148532 ↑↓↓↓↓↑ 0.00148532 ↓↓↑↑↓↓ −0.00197118 ↓↓↓↓↑↑ 

Table 2: Eigenvectors corresponding to eigenvalue -49.2942 when 𝐽𝑧 ≫ 𝐽𝑥𝑦 

Here, we see that there are contributions only from states with no bound pairs, and the 

participation ratio for configurations with bound pairs is almost 0. Because of very strong 

interactions, either we will have states where there will only be contributions from 

configurations with bound pairs, or there will be eigenstates where there will only be 

contributions from configurations that do not have bound pairs. So, either there is an 

existence of a bound pair, or there is not.  

In order to further explain why this is the case, I will go back to the Hamiltonian 

matrix with 4 sites and 2 excitations. It is clear that there is a direct coupling between the first 

state |1100⟩ where there is a bound pair, and the second state |1010⟩ where there is no 

bound pair, because there is a resulting element of 𝐽𝑥𝑦
2

. The energy of the state |1100⟩ is 0 

and the energy of the state |1010⟩ is −𝐽𝑧, which means that the energy difference, 0 − 𝐽𝑧 =

𝐽𝑧. In the case we just examined where 𝐽𝑧 is very large, the energy different here is very large 

as well, and as a result the coupling is ineffective. For any spin configurations, they will get 

coupled if they have the same energy, even if they are not directly coupled, because of high 
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order of perturbation theory. (The perturbation theory is a system created in order to correct 

any perturbations in a problem and find approximate solutions created from the unperturbed 

solutions.) So, there are some states that will be indirectly coupled, and other states that will 

be directly coupled, but the energy difference is so large that the coupling is ineffective.  

B. Case 2: 𝑱𝒛~ 𝑱𝒙𝒚 

Now, I will change the interaction strength to be the same order as the coupling 

strength and compare the results to what happens when the interaction strength is much 

larger than the coupling strength. We will set 𝐽𝑧 = 0.5 and 𝐽𝑥𝑦 = 1 and this is the Histogram 

of energies: 

 

Figure 7: Histogram of energies for case of 𝐽𝑧 = 0.5, where all eigenvalues are close 

in values. 

 

These are the resulting eigenvectors to the chosen eigenvalue −1.05902.  
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0.070406 ↑↑↓↓↓↓ −0.159221 ↓↑↑↓↓↓ −0.416847 ↓↓↑↓↑↓ 

0.232522 ↑↓↑↓↓↓ 0.184325 ↓↑↓↑↓↓ 0.227839 ↓↓↑↓↓↑ 

−0.515251 ↑↓↓↑↓↓ 0.287413 ↓↑↓↓↑↓ 0.070406 ↓↓↓↑↑↓ 

0.184325 ↑↓↓↓↑↓ −0.416847 ↓↑↓↓↓↑ 0.232522 ↓↓↓↑↓↑ 

0.0888154 ↑↓↓↓↓↑ 0.0888154 ↓↓↑↑↓↓ −0.159221 ↓↓↓↓↑↑ 

Table 3: Eigenvectors corresponding to eigenvalue -1.05902 when 𝐽𝑧~𝐽𝑥𝑦 

It is evident here that all spin configurations can participate. When the energy difference was 

very large, for each eigenvalue there were contributions either from spins with bound pairs or 

from spins without bound pairs. With an interaction strength of the same order as the flip-

flop term, there is a probability amplitude for the first configuration with a bound pair, but a 

probability amplitude also exists for the second configuration when they are separated. The 

that all spin configurations can participate is because the interaction is weak and so the 

coupling is effective. Using this information, we will be able to anticipate the dynamics of 

the system.  

C. Dynamics 

 Suppose I prepare my system in an initial state where I have a bound pair, for 

example this first configuration |110000⟩. If there is a strong interaction, as with the case 

where 𝐽𝑧 = 100, I would expect the bound pair to move as a pair and never split up. In the 

second example where the interaction is weak (𝐽𝑧 = 0.5), the bound pair should be able to 

split. Using Mathematica, I can calculate the probability amplitudes and graph them to 

anticipate the dynamics.  
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 In the plot below, you can see that each curve in the plot gives you the probability to 

find the spin configurations in time. I set 𝐽𝑧 = 100 and my initial state here is |110000⟩ with 

the bound pair on sites 1 and 2. As time passes, I only see contributions from other bound 

pairs. Note that excitations on sites 1 and 6 on basis |100001⟩ is also a bound pair, because it 

is a closed chain. On the graph, only the configurations with bound pairs can be seen, 

because there is no participation from the spin configurations with no bound pairs.  

 

Figure 8: Probability to find spin configurations in time for L=6, n=2, 𝐽𝑧=100, 𝐽𝑥𝑦=1, in a 

closed chain  

 

Let us now compare this to the results when 𝐽𝑧 = 0.5. As we saw earlier, when the 

interaction strength is weak and of the same order of the strength of the coupling term, there 

will be participation from many different spin configurations, not only ones with or without 

bound pairs. I will graph the system with 𝐽𝑧 = 0.5, with the same initial state |110000⟩.  
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Figure 9: Probability to find spin configurations in time for L=6, n=2, 𝐽𝑧=0.5, 𝐽𝑥𝑦=1, in a 

closed chain  

 

It is evident that the dynamics here are much faster than the dynamics when I had a strong 

interaction. In Figure 3, there is a shorter time scale to better identify each curve. My initial 

state is the same, but as time goes on you see contributions both from states with and without 

bound pairs.  
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Figure 10: Probability to find spin configurations in time for L=6, n=2, 𝐽𝑧=0.5, 𝐽𝑥𝑦=1, in a 

closed chain  

 

VI. Mathematica Codes 

 Many of the results in my thesis were found using Mathematica codes, which are 

presented below.  

o How to define the parameters Hamiltonian, find the basis vectors and initialize the 

Hamiltonian: 

 

 

o To find the diagonal elements of the Hamiltonian which are composed of the ising 

interaction terms and add the additional parameter of the closed chain: 
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o How to find the off-diagonal elements of the Hamiltonian matrix, which are 

composed of the coupling terms, including the additional parameter of the closed 

chain: 
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o Compiling the completed Hamiltonian matrix and finding the eigenvalues and 

eigenvectors as well as the Histogram of the energies: 

 

o Finding and plotting the dynamics of the system: 
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VII. Conclusions 

In this thesis, we were successfully able to predict the dynamics of a quantum system and 

demonstrate the stability of doublons. In our case, however, instead of doubly occupied sites 

as in experiments with cold atoms, we investigated the lasting nature of a bound pair of 

neighboring excitations.  We saw that we were able to create these bound pairs through 

interaction, when the interaction strength was much larger than the coupling strength. The 

stability of these bound pairs is caused by the energy difference between configurations 

where we have a bound pair and configurations where the two pairs are split up. We also saw 

that the dynamics were very slow in the case where the interaction strength was much larger 

than the coupling strength, compared to the case where they were of the same order.  

This research can take many future directions. One of which can be to add an impurity or 

defect to the chain and see its effects. An additional study could be to analyze open chains as 

well, both with and without an impurity. Once one defect is added, we can include more than 

one defect, and consider coupling not just between direct neighbors, but second neighbors as 

well. An even more challenging direction may be to extend the studies to a 2-dimensional 

system. Many of these future directions are all extensions of my research that can be done 

experimentally with cold atoms in optical lattices.  
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