

1

The Ethics of Reddit and an Artificial Moral Compass

Presented to the S. Daniel Abraham Honors Program

in Partial Fulfillment of the

Requirements for Completion of the Program

Stern College for Women

Yeshiva University

May 6th, 2020

Ayliana Teitelbaum

Mentor: Professor Joshua Waxman, Computer Science

2

Introduction

 There is an inherent lack of clarity to moral lines. This clouding of clear margins is the

cause of constant ethical debates. People may disagree with their opponent, or they may not

know themselves what the correct decision is. There is no black and white in morality; there

are only shades of gray. Besides being of interest to the involved parties, these gray area

situations are a source of fascination to many other people. In order to benefit both the

conflicted and fascinated, a question and answer community to discuss these situations was

created. This community allows people to post their questions and get multiple responses by

various users giving their personal opinion on who, if anyone, is correct. These questions tend

to have a lot of nuance and subtlety to them and can involve many different people, which

human readers can understand and rule on using their moral compass. While humans have this

moral compass to guide them, be it inherent or societally taught, machines do not. However,

the same way machines can “learn” different skills, such as how to identify the subject in

pictures or conduct a basic conversation based on previous data, they may be able to “learn” a

set of ethics based on previous situations that have already been decided on by people. This

paper will explain and analyze an attempt to use the moral question and answer community

history to “teach” a computer a set of moral standards to use in judging new situations.

Additionally, this paper will explore other analyses of this question and answer community to

understand what ethical considerations and ideas are prioritized.

This question and answer community is found on Reddit, which is a discussion

platform for various interests and questions. Reddit is based around various communities called

“subreddits”. Subreddits can be focused on various topics such as politics, headphone types,

different TV shows, or funny stories. People who post on Reddit, called redditors, post

3

questions or statements relating to the subreddit’s topic under that specific subreddit. Then,

other redditors can comment on that specific submission. Comments can also be made on other

comments, all focusing on the topic of that specific subreddit.

There is a subreddit which focuses on moral or ethical dilemmas. This subreddit is

called “Am I the Asshole,” or AITA. Redditors post situations that they have encountered and

ask who was in the right and who was in the wrong. An example could be something along the

lines of:

“I (29, M) have 2 younger half siblings (21 and 18). We are biologically related through
my mom, but my dad adopted me when I was very young. When one of my brothers
was really young, he was kind of a jerk, so my mom said it wasn't a good idea to tell
him I was adopted on my dad’s side. Now he’s older so I wanted to clear the air and
have an open relationship with my brothers, but my parents still didn’t want me to tell
them. I went ahead and told them, and explained that my parents wanted me to lie to
them. They understand why I kept it a secret, but they are furious at my parents for
lying to them this whole time.”

After the submission is posted, different redditors comment on the submission and the redditor

who posted the submission responds to any questions asked in the comments.

In the comments the redditors give a judgement on who they think is correct. However,

in many cases there is more than one party who is right or more than one who is wrong.

Therefore, there are five different options for judgements: YTA, NTA, ESH, NAH, and INFO.

The first is YTA, which stands for you’re the A-hole, and the other person/people are not,

which in this case would mean the writer was wrong. The second is NTA, which stands for not

the A-hole and the other person/people are, which in this case would mean the writer did

nothing wrong, but the parents did. The third is ESH, which stands for everybody sucks here,

both the writer and the parents. The fourth is NAH, which stands for no A-holes here,

conveying no one did anything wrong. The fifth is INFO which means the writer did not

4

provide enough information to make a judgement. The INFO ruling was not used as a

judgement option in the classifier, as it doesn’t convey an ethical opinion.

The different rulings given by commenters are used to assign a final ruling to the

submission. Only “top-level” comments, which are comments directly on the submission and

not on other comments, are eligible to be assigned as the final ruling. After the submission is

posted, comments are posted and “upvoted” by other redditors. If a redditor upvotes a

comment, it means they agree with the comment. 18 hours after the submission is posted, the

top comment of the submission is selected as the ruling on the submission. The top comment

is the comment with the most upvotes by the other redditors. The final ruling is assigned by

the reddit bot, which takes the judgement in the top comment (YTA, NTA, ESH, NAH, INFO)

and assigns it as the “flair” on the submission. A “flair” on a submission is a small banner or

tag added to the top of the submission that lets readers know the final judgement on the

submission.

Data Collection

There are two main application programming interfaces (APIs) used in gathering data

from Reddit. An API is a set of pre-built tools that can be used without having to know the

details of how it was implemented. The two main APIs used for reddit data collection are

Pushshift and PRAW. Each of these APIs have benefits and drawbacks to them. PRAW stands

for Python Reddit API wrapper. PRAW contains many different python methods that can be

used to easily retrieve data based on the user’s specifications. For example, it can return

submissions or comments from a specific subreddit submitted during a certain time period.

However, PRAW requires the user to have a two second delay between each call of at most

5

100 items. This means that in a minute, one can make about 30 calls of 100 items each, which

is 3,000 items total per minute.

As opposed to the PRAW API, the Pushshift API was designed by redditors, and does

not have a set of pre-built Python methods. It is accessed directly through the API endpoint,

which is a URL that data requests are sent to. Similar to PRAW, it can be used to search for

submissions and comments filtered by attributes such as subreddit, date and redditor. However,

it is different from the PRAW API in the maximum requests per minute allowed. Through

Pushshift, the user can make 200 requests per minute, with each request having 500 items.

Therefore, using Pushshift one can get 10,000 items in a minute, which is more than three

times the 3,000 item per minute limit using PRAW. However, Pushshift is not as user-friendly

as the PRAW API because it is accessed directly through the API endpoint, and not through a

wrapper. Therefore, to retrieve large amounts of data, a combination of Pushshift and PRAW

was used to maximize the allowed requests per minute. If only small amounts of data were

needed the PRAW API was used because it has a more user-friendly way of retrieving data.

There were two sets of data needed to generate the features to train and test the

classifiers. The first of these sets was a list of the rulings of prolific redditors on the AITA

subreddit. In order to determine who were prolific redditors, I first took a subset of the top

submissions on the subreddit from the PRAW API and gathered a list of all redditors who

commented on those submissions. This was based on the assumption that most redditors who

frequently commented would have commented on the top submissions. Then, for each of those

redditors, using the Pushshift API, I retrieved a list of their top- level comments in the AITA

subreddit and the submissions that those top-level comments were on. I then made a list of the

redditors and the number of submissions that they commented on, and sorted it. This gave me

6

a list of the most prolific redditors, along with the number of times they had commented

throughout the subreddit. The redditors with the highest number of comments had commented

on thousands of submissions.

The second set of data that needed to be gathered was a list of the submissions along

with their top ruling, which is assigned as that submission’s flair. Originally, I started by using

Pushshift, because I wanted to retrieve all the submissions in the subreddit. However, when I

tried to retrieve the “flair” on each submission, it was empty on a large amount of the

submissions. This is because Pushshift ingests the data from Reddit at certain periods of time,

and then doesn’t update that data when it changes. Therefore, if the data on that particular

submission was pulled by Pushshift into their database before the flair was assigned, the flair

of that submission would not be in the data. To get around this issue, I pulled the submission

ids and submission text from Pushshift and retrieved the flair for each submission using the

PRAW API. This way I was able to leverage the fast retrieval of the submission text and id list

from Pushshift while also getting the flair submissions of each post from PRAW using those

ids. Additionally, by alternating the retrieval of data from each, there was a break between calls

to each API, allowing for larger amounts of data to be retrieved without hitting the request

limit. However, from the compiled list, not all the submissions were used. In order to not have

a bias in the machine learning models, an equal number of submissions receiving each ruling

was under sampled to use in the training and testing of the different models.

Feature Selection

 After gathering the data from Reddit, features were extracted from the text. Features

are quantifiable aspects of data that are fed into different machine learning techniques. These

7

features were used to produce machine learning models that would predict the rulings of

different submissions based on aspects of the submissions. There were a few methods used to

break down the text: bag-of-words, TF-IDF and Doc2Vec. Each of these methods have

different uses and strengths to them, while sacrificing other aspects that are more represented

in the other methods.

However, before the features could be produced, text processing had to be done to

remove issues in the text of the submissions that would affect representation of the text. The

first problem is that certain words that appear many times throughout a sentence, such as “a”

or “the”, can confuse the representation of the text because these words don’t add to the

meaning of the sentences. To solve this issue the text was filtered to get rid of any “stop words”

which are common words in the English language that are often filtered out before doing any

text processing.

After filtering out stop words, there was still more text processing that had to be done

on the data. An additional problem within the text is that there are multiple versions of the

same word within the English language. For example, the words “work”, “worked” and

“working” all have the same basic meaning, but are viewed as three separate words. In order

to make these words be viewed as the same word, lemmatization was used. The “lemma” of a

word is the root dictionary meaning of the word, and lemmatization is the process of converting

a word to its lemma. Thus, “working” would be lemmatized to “work”.

 After text processing, the features of the text could then be selected. The first method

of feature selection, bag-of-words, is a very simple way of quantifying a text based on the

frequency of occurrence of different words throughout the text. In computer science, the term

“bag” refers to a multiset, which allows duplicates but does not have order. To create the bag-

8

of-words, a single document, which in this case is a submission, is made into a count of words

that appear in the document. The number of times each word appears in a single document is

counted and stored. The document is then represented as a list of the number of times each

word appears in that document. However, not all the words across submissions can be included

as features. This is because there are many words in the English language, and therefore many

words across submissions. If all of the words were included, there would be too many features,

and the models would take a very long time to run. Additionally, there would be many words

with only a handful of occurrences, which would not really affect the model produced.

Therefore, a certain amount of words with the top frequency were selected as features. Because

of the simplicity of this method for feature selection, it has many problems. One of the

shortcomings of this method is that the method does not maintain or represent the original

order of the text. To somewhat represent this order, groups of words, called ngrams, were

added to the bag-of-words in addition to the individual words. An additional shortcoming is

that the frequency of word occurrence is used as a measure of importance, which can lead to

certain words used very often in the English language being used as features, even if they are

not necessarily indicative of a specific ruling or content of a submission.

 The next method used was TF-IDF. This method is used to try and get around some of

the shortcomings of the simple bag-of-words model. As stated, one of the problems with the

bag-of-words model is that frequently appearing English words which do not add to the

meaning of the document, but are not necessarily classified as stop words, can end up being

included as features. TF-IDF attempts to address this problem. TF stands for term frequency,

and is the number of times a term appears in a text, which is the way the bag-of-words method

approaches the analysis. However, there is also an IDF aspect, which stands for inverse

9

document frequency. Document frequency is the number of documents that have the specific

term in it. Inverse document frequency is the log of the number of documents in the corpus

divided by the document frequency of that particular term. TF-IDF for a particular word is the

term frequency for that particular word multiplied by the inverse document frequency for that

word (Havrlant & Kreinovich, 2017). The TF-IDF of each word within the corpus is computed

and is a measure of the significance of that particular word within the corpus.

The main idea of this approach is that if a term appears throughout many documents in

the corpus, then it is probably not a word that is related to a specific ruling. Rather, it is a

frequently used term in the English language that has no effect on the determination. On the

other hand, if the term only appears in a few documents, it is more likely to be a word that has

an effect on the ruling of the particular submission, as it is a more unique word. The number

of appearances of the word in a document is also indicative of the importance of that particular

word. The more times a word appears in a document, the more relevance that term has to the

document. By combining these two aspects, word frequency and inverse document frequency,

a list of relevant words in the corpus can be created.

This can be illustrated by a toy example. For example, let’s say a particular corpus has

ten documents, and the word “house” appears in two of them ten times each, while the word

“said” appears in eight of them five times each. The TF for “house” is 20, while the TF for

“said” is 40. The IDF for “house” is ln(10/2)=1.61, which the IDF for “said” is ln(10/8) = .22.

Therefore, the TF-IDF of “house” will be 20*1.61= 32.2, while the TF-IDF of “said” will be

40*.22= 8.8. Therefore, even though “said” appears many more times in the corpus than the

word “house”, “house” has a higher TDF-IDF because it appears many times within a few

documents, rather than many times across the whole corpus. After assigning TF-IDF scores to

10

the terms in the corpus of submissions, the term frequencies of the terms with the highest TF-

IDF scores were used as features to then feed into the machine learning algorithms.

 One of the problems with both bag-of-words and TF-IDF is that neither of them account

for all of the context within a submission. They are taking each word as a distinct feature, and

not taking into account the similarities between different words, or the words surrounding each

of the words. Doc2Vec is an approach that tries to solve this problem, by turning documents

into vectors that are representative of the document as a whole. It is based on earlier work,

called Word2Vec, that created a method to convert words into vectors through analyzing

surrounding words. In Tomas Mikolov et al. (2013) they explained Word2Vec as being similar

to a feedforward neural net language model, or NNLM. A NNLM is a neural network used to

predict the next word in a document based on the previous words. As a very basic overview,

the NNLM converts each word into a feature vector, and creates a probability function, which

can be a separate neural network. The probability function takes the feature vector for previous

words and outputs a vector that in position i contains the probability that the word wi is the

next word given the previous words. The network then goes through training to change the

parameters associated with the feature vector and the probability function to minimize error,

along the way also creating a very complex hidden layer as part of the prediction method

(Bengio et al., 2000). Word2Vec does not include this hidden layer, and also does not care

about the final model result that will do the prediction. Rather, it cares about the feature vector

for each word, because the assumption is that two words that are similar in meaning will have

similar words around them, and therefore will have similar feature vectors. Therefore, the

feature vectors represent the semantic meaning for a word, taking into account its context

(Mikolov et al., 2013).

11

The Doc2Vec method expanded on Word2Vec and was first proposed by Quoc Le and

Tomas Milolov in 2004. Instead of producing only feature vectors for words, it also produces

a feature vector for a specific paragraph, or document, and then either concatenates the two

vectors or averages them to produce a guess for the next word. At the end of the training of the

neural network, besides the neural network there is a matrix containing the feature vectors for

each word. This matrix is shared between the various paragraphs. In addition, there is also a

paragraph vector for each paragraph. When a new paragraph is fed into the model, the

paragraph feature vector for that paragraph is generated by the neural network. The neural

network does this by choosing the parameters for the paragraph feature vector that, in

conjunction with the word vector matrix, will minimize the error in predicting the next word

in the paragraph. The paragraph feature vector can then be used as input to different classifiers

(Le & Mikolov, 2014).

Classifiers

 After using bag-of-words, TF-IDF and Doc2Vec to select features from the

submissions, the features were then used by different classifiers to try and predict the rulings

for new submissions. Each set of features generated was used to train each of the classifiers

and then the classifiers were tested on a set of new submissions. The classifiers used were

Logistic Regression, Multinomial Naive Bayes, K-Nearest Neighbors, Linear Support Vector

Classifier and Random Forest.

The first classifier used was multivariable Logistic Regression. Binary Logistic

Regression, Logistic Regression with only two classes, is a classifier that is similar to Linear

Regression. The main difference between them is that while linear regression produces a

12

continuous spectrum of results without bounds, Logistic Regression outputs a result between

zero and one representing the probability of the input belonging to a specific class. To make

this model produce values between zero and one, a linear function is generated representing

the log odds of the probability of an input belonging to one of the two classes, based on its

features. Each feature has a parameter, a number which is multiplied by the value of the feature

in the equation and which indicates how that feature affects the final result, produced by the

maximum likelihood method. The value outputted by the linear equation is used as input into

the sigmoid function, which produces a value between zero and one (DeMaris, 2003).

However, while this technique works for problems where there are only two

possibilities, it does not work for situations where there are multiple possible classes. For those

cases, there are multiple variations on Logistic Regression, one of which is a one-vs-rest, or

ovr. In this technique multiple equations are produced, each computing the probability of the

input being one particular class and not any of the others. For example, in a case where there

are three classes, A, B and C, one equation will calculate the likelihood of the input being class

A and not class B or C, the second equation will output the likelihood of the input being class

B and not A or C, and the third will produce the likelihood of the input being class C, and not

class A or class B. When all the probabilities are calculated, the class with the highest

probability is used as the result.

 The next classifier used was Multinomial Naive Bayes. This classifier is called “naive”

because of the assumption it makes that each of the features are independent of one another,

and therefore have no effect on each other. This assumption, while not true in many contexts

including this one, can still produce accurate results. While the function may not be correct in

estimating the exact probability of a piece of data belonging to a certain class, it can still have

!

"$!

(!#&5#!(,,3%(,0!&)!8%$4&,*&)5!*#$!,.%%$,*!,+(''2!V(&;$!=(0$'!,+(''&/&$%'!,(+,3+(*$!*#$!8%.6(6&+&*0!

/.%!(!'8$,&/&,!4.,31$)*!6$+.)5&)5!*.!(!'8$,&/&,!,+(''!60!13+*&8+0&)5!*#$!8%.6(6&+&*&$'!*#(*!$(,#!

/$(*3%$:!.%!9.%4:!&)!*#$!4.,31$)*!9.3+4!6$!8%$'$)*!/.%!*#(*!'8$,&/&,!,+(''2!!

"#$%$!(%$!13+*&8+$!;(%&(*&.)'!.)!V(&;$!=(0$'!,+(''&/&$%':!()4!*#$!,+(''&/&$%!3'$4!#$%$!

9('!Q3+*&).1&(+!V(&;$!=(0$'2!Y.%!(!'8$,&/&,!4.,31$)*:!Q3+*&).1&(+!V(&;$!=(0$'!,+(''&/&$%'!

(%$!4&//$%$)*!/%.1!.*#$%!V(&;$!=(0$'!,+(''&/&$%':!'3,#!('!=$%).3++&!V(&;$!=(0$':!&)!*#(*!*#$0!

(-$!&).!(,,.3)*!*#$!)316$%!./!*&1$'!$(,#!9.%4!(88$(%'!&)!(!'8$,&/&,!4.,31$)*:!()4!).*!.)+0!

#$!8%$'$),$!.%!(6'$),$!./!#.'$!9.%4'2!"#$!Q3+*&).1&(+!V(&;$!=(0$'!,+(''&/&$%'!,(+,3+(*$!*#$!

8%.6(6&+&*0! *#(*!(!9.%4!&)!*#$!4.,31$)*!9.3+4!6$!8%$'$)*!/.%!(!'8$,&/&,!,+(''!60!*(-&)5!*#$!

)316$%!./! *&1$'! (! '8$,&/&,!9.%4! (88$(%$4! &)!4.,31$)*'!./! *#(*! ,+('':! 4&;&4$4!60! *#$! *.*(+!

)316$%!./!9.%4'!&)!4.,31$)*'!./!*#(*!'8$,&/&,!,+(''2!@#$)!(!)$9!4.,31$)*!&'!8(''$4!&)!('!(!

/$(*3%$!;$,*.%!./!*#$!,.3)*!./!*#$!)316$%!./!*&1$'!'8$,&/&,!9.%4'!(88$(%$4!&)!*#$!4.,31$)*:!

#$!,+(''!#(*!#('!*#$!#&5#$'*!8%.6(6&+&*0!./!,.)*(&)&)5!*#(*!4.,31$)*!&'!5&;$)!('!*#$!,+(''2!"#(*!

8%.6(6&+&*0!&'!,(+,3+(*$4!60!!

!

9&*#! /!! 6$&)5! *#$! /%$?3$),0! ./! *#$! 9.%4! &)! *#$!)$9! 4.,31$)*:! V"!# 6$&)5! *#$!)316$%! ./!

.,,3%%$),$'!./!(!'8$,&/&,!9.%4!&)!(!'8$,&/&,!,+('':!V"#6$&)5!*#$!)316$%!./!9.%4'!(88$(%&)5!

(,%.''!(++!4.,31$)*'!&)!*#$!,+('':!k!6$&)5!(!'1..*#&)5!/(,*.%:!()4!8N!"R!6$&)5!*#$!8%.6(6&+&*0!

./!.,,3%%$),$!./!(!,+(''2!"#$!,+(''!9&*#!*#$!1(E&131!8%.6(6&+&*0!./!*#$!4.,31$)*!6$+.)5&)5!

.!&:!*#$!(%51(E:!&'!5&;$)!('!*#$!%$'3+*!./!*#$!Q3+*&).1&(+!V(&;$!=(0$'!,+(''&/&$%!NH$))&$!$*!

(+2:!O]]^R2!!

14

 In example, let’s say we have a corpus with three documents. Document A is the

sentence “The fire truck pulled up to the blue house on fire after speeding down the street” and

is in the “news” category. Document B is “I saw red birds swimming in the blue ocean under

the blue sky” and has the category “colors”. Document C contains the sentence “The truck is

fantastic, with excellent safety features, and a better engine than all similar trucks”, which is

in the “advertisement” category. Then, we see a new sentence “My truck is red and blue” and

need to determine the category. The words “My”, “is” and “and” are filtered out as stop words,

leaving the words “truck”, “red” and “blue”. To compute the probability of the class being in

the news category, we apply the formula above, with the smoothing factor being one in both

the numerator and denominator for simplicity. The word “truck” appears once in the new

sentence, once in the “news” class and after removing stop words there are 11 words in that

class. Therefore the log probability for “truck” in the news class is 1*log((1+1)/(11+1)) =-.78.

The probability for “red” is 1*log((0+1)/(11+1))= -1.08 and for “blue” is also -.78. Adding

these together, you get -2.64. Then the probability of the “news” class occurring is 1/3, and

log(⅓) +-2.64 = -3.12, which is the Naive Bayes value of the new sentence for the “news”

class. For the “colors” class, the value is -2.82, and for the “advertisement” class, the value is

-3.24. Therefore, the “colors” class has the highest value, and is the class chosen by the Naive

Bayes classifier, which is consistent with the most likely topic of the new sentence.

 The next classifier trained and tested on the material was the K-Nearest Neighbors

classifier. This classifier works by finding the most similar documents in the training dataset

to the new document and giving the new document the class of the most similar documents.

The classifier is set to be based on some number K nearest neighbors, which are the most

similar documents to the new document. The class with the most neighbors belonging to it,

15

weighted by the similarity of the different neighbors to the new document, will be assigned to

the new document. The number K is chosen based on training to reduce the number of errors,

while still being able to classify new documents accurately (Manning & Hinrich, 1999). This

classifier is used for many different cases such as facial recognition, song and movie

recommendation, and text analysis.

 After using the K Nearest Neighbors classifier, a LinearSVC model was trained and

tested on the submission and ruling data. LinearSVC stands for linear support vector classifier.

A two class linear support vector classifier assumes that if all the data is plotted, a hyperplane,

which is a plane that has one less dimension than the space that it is drawn in, can be drawn

between the different points on the plot to separate between the two classes. The support

vectors are the points on the graph that are close to the plane which separates between the two

classes. The purpose of the linear support vector classifier is to create the plane so there is the

furthest distance possible between the plane and the support vectors, and therefore a clearer

distinction between classes.

However, in many cases, the different classes cannot be separated completely by a

hyperplane, and then there are outliers on either side of the plane belonging to the wrong class.

In this case, the model works to maximize the distance between the plane and the support

vectors, while also minimizing the penalty on the outliers. The penalty on any outliers increases

as they move further from the hyperplane. When there are multiple classes, the Linear Support

Vector classifier takes a one-vs-all approach, similar to multivariable Logistic Regression

(Fletcher, 2008).

 The final machine learning model generated was the Random Forest classifier. Random

Forests work by building a group of decision trees and then those decision trees vote on the

16

final class classification. Decision trees are like a binary tree with a question at each level to

determine which way to traverse. One of the problems with decision trees is that they can

“overfit” the training data, which means the set of rules will be overly specific to the training

data, while not generalizing well to new pieces of data. To solve this problem, Random Forest

classifiers introduce an element of randomness to individual decision trees, and then take the

consensus of the decision tree results to prevent overfitting.

There are two aspects of randomness introduced in Random Forest classifiers. The first

is that for each decision tree in a Random Forest classifier, a random sample of the training

input is taken with replacement and used as input. This means that from the submissions in the

training set, only a certain amount of them are used in training a specific decision tree. The

second aspect of randomness is that only a subset of the training features is used to build an

individual decision tree. The features for the submissions are either represented by word

frequencies, in bag-of-words and TF-IDF, or by the Doc2Vec vector representation. For a

specific decision tree only a sample of words or part of the Doc2Vec vector from each of the

submissions in the random sample are used to make the tree. By introducing these elements of

randomness, and then taking the consensus of the decision trees to generate the result for a

specific piece of data, overfitting is avoided, and the classifier’s accuracy is improved

(Breiman, 2001).

17

Results

 Bag-of-Words TF-IDF Doc2Vec

Logistic Regression .39 .39 .31

Multinomial

Naive Bayes

.39 .38 .29

K-Nearest Neighbors .30 .28 .26

Linear Support

Vector Classifier

.37 .36 .32

Random Forest .30 .30 .27

Table 1: Top Ruling Prediction Accuracy

The above chart shows the accuracy for each of the machine learning models in

predicting the top ruling, using the features selected by each of the feature selection methods.

These results are for the most upvoted ruling on the submission, which is also the one that was

assigned as the submission flair after eighteen hours. There were four options of rulings to

choose from for each submission, and therefore if for every submission a random ruling had

been chosen, the accuracy rate would have been close to .25. Performing at or below this

benchmark would indicate a failure in using these features to predict the rulings. The accuracy

results were higher than the random guessing benchmark across all selection methods and

machine learning models. The most accurate classifier was Logistic Regression, with .39

accuracy for both bag-of-words and TF-IDF. The least accurate classifier was K-Nearest

Neighbors, with .26 accuracy for Doc2Vec, barely above the random guessing baseline. Bag-

18

of-words and TF-IDF had similar accuracy for the same classifiers. Doc2Vec had lower

accuracy for all of the classifiers, but still all above the random guessing baseline.

 Bag-of-Words TF-IDF Doc2Vec

Logistic Regression .28 .27 .24

Multinomial

Naive Bayes

.26 .26 .28

K-Nearest Neighbors .27 .26 .25

Linear Support

Vector Classifier

.30 .28 .26

Random Forest .27 .27 .24

 Table 2: Top Redditors Median Prediction Accuracy

The above chart shows the results for the median accuracy of the different machine

learning models in predicting the rulings of the twenty most frequent commenters based on the

features generated by the different feature selection methods. This analysis was done because

if the rulings of specific redditors could be predicted, then the most popular predicted ruling

among a group of redditors on a submission could be used to predict the top ruling. However,

since the classifier performed around the random guessing benchmark, I did not pursue this

further. The classifier with the highest accuracy was Logistic Regression on features created

by the bag-of-words method and Multinomial Naive Bayes on Doc2Vec. However, while these

results were the median, there were certain redditors for which higher accuracy was achieved.

For example, one redditor had an accuracy rate in the .3-.4 range for the different classifiers.

19

Additionally, another redditor had .4 accuracy with Logistic Regression on TF-IDF selected

features.

Discussion

Looking at the different feature selection methods, the performance of the models was

better with bag-of-words and TF-IDF than with Doc2Vec. This could be because the document

vector representation of Doc2Vec, even while better representing the context of different texts,

does not capture the totality of the problems explained in the submissions. Bag-of-words and

TF-IDF, while not having the context aspect of Doc2Vec, do include what they judge to be the

important words from the submission, which better represents the text. Bag-of-words and TF-

IDF have similar accuracy, possibly showing that the most frequent words across submissions

are similar to those chosen by the TF-IDF calculation.

Across the different feature selection methods, the models that performed the best in

predicting the top rulings were Logistic Regression, Multinomial Naive Bayes and Linear

Support Vector Classifier, while K-Nearest Neighbors and Random Forest performed worse.

K-Nearest Neighbors and Random Forest are both simpler algorithms and techniques; K-

Nearest Neighbors looks at the similarity between feature vectors to decide what class a new

submission belongs to, while Random Forest turns the submissions into a set of questions used

to decide which class the new submission belongs to. Both of these methods are relatively

simplistic. On the other hand, Logistic Regression, Multinomial Naive Bayes and Linear

Support Vector Classifiers are all more complicated, looking at the results as a whole and not

merely comparing each feature to features in past examples, like K Nearest Neighbors, or

feeding the features into questions like the Random Forest classifier. These three classifiers

20

look at the features as a whole through mathematical methods, possibly having more of the

nuance necessary to accurately predict the ruling on submissions.

 Even though the different models were able to accurately predict the ruling for a certain

amount of the test data, they were not able to correctly predict the ruling for the majority of

the test submissions. This is most likely due to the complexity and subtlety of the classification

problem. Deciding the appropriate ruling for a particular submission is not an objective

classification, rather it is a matter of debate. The various feature selections would take into

account the words of the different submissions, and then the machine learning models would

try to find a pattern based on the different words. The method of feature selection and models

generated were not able to correctly interpret the nuance of many of the moral questions that

the commenters were asking.

However, the models were better able to predict the top ruling than the rulings of

individual redditors. They were able to learn that certain features meant specific rulings. These

features could be topic related, that certain words are more likely to point to a topic that is more

common to a specific ruling. Additionally, it could be some sort of sentiment analysis on the

different submissions, where language with specific sentiment, either positive or negative

could point to a specific ruling. These features, or whichever the models actually used to get

that accuracy rate for the top rulings, were learned and more consistent in the top rulings than

in those for the individual redditors. One reason could be that there were more submissions for

it to learn from. Additionally, it is possible that while a specific person might be inconsistent

in their rulings, the overall consensus of many redditors may be more consistent.

21

Topic Analysis

While reading through many of the submissions, it became clear that there were a few

common topics that many of the submissions focused on. To see what these topics were, a

Latent Dirichlet Allocation (LDA) model was created from all the submissions. LDA models

group documents of similar topics together, given a specific number of topics. It does this

through a set of assumptions. The first is that each document was generated by assigning it

certain percentages of different topics, for example document A is 90% about family and 10%

about money. Then, within each of those topics there is a distribution of word probabilities.

For example, the topic family has the words father, mother, spouse, house, and salary with

different probabilities of appearing in the topic. The LDA method then assumes that each word

in the document is generated by first choosing a topic based on the topic probabilities of the

document, and then choosing a word from within that topic based on the word probabilities.

The LDA method generates the word probabilities for each topic, and calculates the probability

of each document belonging to each topic based on these assumptions. However, it does not

label the topics. If the model works well, the topic will be obvious based on the words with the

high probabilities in that topic (Blei et al., 2003). Below is a chart showing the top ten words

for each of the seven topics the LDA analysis generated.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

food school friend work money room mom

gift class time time month dog family

22

cat time thing day year house year

thing game people car job roommate sister

stuff thing year hour time door dad

dish year day job wedding time parent

clothe(s) student girl people week night kid

dinner people guy week trip apartement brother

table college group minute car bed time

meal teacher boyfriend phone day day mother

 Table 3: LDA Analysis- Top 10 Words per Topic

 Based on these words, the different topics can be inferred. Topic one would appear to

be about items. Topic two is about school. Topic three seems to be about different people who

are not family, from the words: people, guy, girl, boyfriend. Topics four and five have some

overlap, both being about work. However, topic four focuses more on the work aspect, from

the words work, job and maybe phone, also being related to work. Topic five focuses more on

the monetary aspect of the job with monetary considerations such as money, wedding, trip and

job. Topic six has words about living space such as house, roommate, apartment and bed.

Topic seven has words referring to family such as mom, family, sister, and dad.

After generating the topics from the LDA model, I then looked at the distributions of

rulings within each topic, to see if some topics had more of a leaning towards one ruling more

!

#$!

*#()! *#$! .*#$%'2! Y.%! (! '361&''&.):! >! (''&5)$4! *#$! *.8&,!9&*#! *#$! #&5#$'*! 8%.6(6&+&*0! ('! *#(*!

'361&''&.)K'!*.8&,2!"#$):!>!5(*#$%$4!*#$!4&'*%&63*&.)'!./!*.8!%3+&)5'!.)!'361&''&.)'!9&*#&)!$(,#!

.8&,2!"#$!4&'%&63*&.)!9&*#&)!$(,#!*.8&,!&'!'#.9)!&)!*#$!8&$!,#(%*'!6$+.92!

!!!! F-/,1%&'(&<-841-#,4-).8&)@&+,$-./8&A-4D-.&!)*-38!!!!!

!

@#$)!,.18(%&)5!*#$!8$%,$)*(5$'!9&*#&)!*#$!8&$!,#(%*':!&*!6$,.1$'!(88(%$)*!*#(*!,$%*(&)!

.8&,'!#(;$!#&5#$%!8$%,$)(5$'!./!,$%*(&)!%3+&)5'2!"#$!*.8&,!9&*#!*#$!#&5#$'*!8$%,$)*(5$!./!G[

#.+$!%3+&)5'!9('!-4%E8:!9&*#!Oh2aOn:!*#$)!83D))$:!*%)*$%:!A)1B:!D),8-./:!()4!E).%62!"#$!*.8&,!

9&*#!*#$!+.9$'*!8$%,$)*(5$'!./!G[#.+$!%3+&)5'!9('!@"E-$6:!9&*#!.)+0!SP2Oen2!@&*#!(!'+&5#*+0!

24

different order, the topic with the highest percentage of Not the A-hole (NTA) rulings was

family, with 60.93%, then housing, work, money, people, and items. School had the lowest

percentage of NTA rulings, with 51.06%. This shows that people tend to be more sympathetic

towards issues involving family, and are least sympathetic towards issues involving school and

items. This may be because many people experience issues involving family, and the issues

are often complicated, with multiple people involved and a big gray area, leading people to be

more sympathetic and side with the writer of the submission.

On the other hand, issues involving school are usually more straightforward, and those

writing submissions about school issues tend to be younger leading to less mature writing and

perspective. This could cause people to have less sympathy towards the writer if they feel the

writer is immature and do not have a developed moral compass yet. Issues involving items are

also less sympathetic, as there are usually two basic scenarios involving items, either someone

took or broke the writer’s items, or the writer took or broke someone else’s items. If the writer’s

items were taken or broken, usually they know they are in the right, and don’t post in the group,

leading most of the posts involving items to be about the writer taking someone else’s items,

which is usually wrong. Therefore, most of the rulings involving items are YTA. As a result

of these different distributions, I tried adding the topic as a feature in the classifier to see if it

would increase accuracy. It did not increase accuracy, which could be because the topic is

already represented in the models based on the other features.

 Another interesting point is that overall, NTA was the ruling for over half of all

submissions, with YTA as a trailing second, with 19% - 26% of submissions across topics. The

NTA ruling being the highest by far can be attributed to the story being told only by the writer

in most cases, who might leave out certain parts that paint them in a negative light. Then, YTA

25

is the second most frequent. NAH and ESH are both infrequently used rulings, possibly

because in most scenarios there is one party who is more in the right than the others. INFO is

a rarely used ruling because after being used a few times in the comments, the writer of the

submission will often edit the submission to include more details so that a ruling can be

determined.

Age and Gender Analysis

 Besides looking at the content of the submissions, another interesting point to consider

is the age and gender of the individuals writing the submissions. These characteristics may

change the type of problems encountered. It can also provide insight into the people

commenting on the subreddit, if the assumption can be made that there is a similar age and

gender distribution for both the writers of the submissions and the writers of the comments on

the submissions. The age and gender of the writer of the submission can sometimes be

extracted from the text of the submission. The writer will include the information in the format

“first_person_word(age gender)”, such as I(33F), or in a few other format variations. Using

those formats, the age and gender of the writer was able to be extracted by applying a regex on

the submissions. About 10% of the submissions included the age and gender. The age

distribution was as follows:

Age Range Under 10 10-19 20-29 30-39 40-49 50-59 60-69

Percent 2% 27% 58% 11% 2% <1% <1%

 Table 4: Age Distribution Among Submission Authors

As would be expected, the majority of submission writers are in their twenties, followed by

writers in their teens. When looking at the gender of the writers, about 64% were females,

!

#'!

9#&+$!^hn!9$%$!1(+$2!"#(*!1$()'!*#$%$!9$%$!(+1.'*!4.36+$!*#$!)316$%!./!'361&''&.)'!60!

/$1(+$'!('!1(+$'2!A.9$;$%:!*#$!(,*3(+!4&'*%&63*&.)!,.3+4!6$!4&//$%$)*!&/!1.%$!/$1(+$'!&),+34$!

*#$&%! 5$)4$%! &)! *#$! *$E*! ./! '361&''&.)! *#()!1(+$'2! >)*$%$'*&)5+0:! *#$! 4&'*%&63*&.)! ./! %3+&)5'!

(1.)5!1(+$!()4!/$1(+$!9%&*$%'!9$%$!4&//$%$)*2!

!

F-/,1%&7(&<-841-#,4-).&)@&+,$-./8&@)1&F%E"$%&".2&9"$%&G,#E-88-).&5,4D)18!!!!

G'!,()!6$!'$$)!/%.1!*#$!8&$!,#(%*':!*#$!4&'*%&63*&.)!./!%3+&)5'!(1.)5!1(+$!()4!/$1(+$!

9%&*$%'!4&//$%2!Q(+$!9%&*$%'!%$,$&;$4!(!W"G!%3+&)5!/.%!^S2hTn!./!'361&''&.)':!9#&+$!/$1(+$!

9%&*$%'! %$,$&;$4! (! W"G! %3+&)5! /.%! .)+0! Sh2ahn! ./! '361&''&.)'2! I&1&+(%+0:! /$1(+$! 9%&*$%'!

%$,$&;$4!(!V"G!%3+&)5!/.%!ha2STn!./!'361&''&.)':!9#&+$!1(+$!9%&*$%'!%$,$&;$4!(!V"G!%3+&)5!

/.%!.)+0!fT2TSn!./!%3+&)5'2!>*!&'!).*!,+$(%!&/!*#&'!&'!43$!*.!*#$!4&//$%$),$!&)!*08$!./!?3$'*&.)!1$)!

()4!9.1$)!(%$!+&-$+0!*.!8.'*:!*#$!9%&*&)5!'*0+$:!9#.!&'!1.%$!'018(*#$*&,:!.%!9#.!#('!(!6$**$%!

4$;$+.8$4!1.%(+!,.18('':!63*!&*!&'!&)*$%$'*&)5!*.!'$$!*#$!4&//$%$),$!&)!8$%,$)*(5$!./!%3+&)5'!/.%!

$(,#2!"#.35#!*#$%$!(%$!*#$'$!4&//$%$),$':!9#$)!*#$!(5$!()4!5$)4$%!9$%$!(44$4!('!/$(*3%$'!&)!

8%$4&,*&)5!*#$!%3+&)5'!&*!4&4!).*!(//$,*!*#$!1.4$+!(,,3%(,02!"#&'!,.3+4!6$!43$!*.!.)+0!(!'1(++!

8$%,$)*(5$!./!'361&''&.)'!,.)*(&)&)5!*#&'!&)/.%1(*&.)2!

27

Conclusion

 In this paper, an analysis was done on the AITA subreddit, looking at the submissions

posted and the rulings they received. Using different feature selection methods and machine

learning algorithms, the models attempted to learn to predict the ruling for a new submission.

For learning to predict the ruling given by specific prolific redditors, the models had an

accuracy of slightly above a random guessing baseline. However, to predict the top ruling on

a submission, the models achieved an accuracy well above the random guessing baseline.

Additionally, analysis was done on the topics of different submissions, and how the

distributions of rulings were different among different topics. A similar analysis was then done

on the difference in the distributions of rulings given to male and female writers of

submissions.

 There is more analysis that can be done on the data in this subreddit. The subreddit is

a very interesting data source, giving a large amount of data on different moral situations and

how people would judge them. More complex text analysis on the submissions to create

features that are a more accurate representation of the data could be helpful in teaching the

models to better predict the rulings on different submissions. However, the moral questions

asked are complex and have nuance and subtlety that often leave people arguing among

themselves. Therefore, with the text processing algorithms available now, it is unclear if it is

possible to create models to predict the ruling given more accurately. As more complex and

precise text processing methods are created, perhaps it will be possible, using this data, to

create models that machines can use to answer moral questions, giving them an artificial moral

compass.

28

Works Cited

Bengio, Y. & Ducharme, Réjean & Vincent, Pascal. (2000). A Neural Probabilistic

Language Model. Journal of Machine Learning Research. 3. 932-938.

10.1162/153244303322533223.

Blei, David & Ng, Andrew & Jordan, Michael. (2003). Latent Dirichlet Allocation.

Journal of Machine Learning Research. 3. 993-1022. 10.1162/jmlr.2003.3.4-5.993.

Breiman, Leo (2001) “Random Forests” Machine Learning, 45, 5-32. Retrieved from

https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf

DeMaris, A. (2003). Logistic Regression. In Handbook of Psychology, I.B. Weiner

(Ed.). doi:10.1002/0471264385.wei0220

Fletcher, Tristan. (2008). Support Vector Machines Explained. Retrieved from

https://cling.csd.uwo.ca/cs860/papers/SVM_Explained.pdf

Havrlant, L., & Kreinovich, V. (2017). A simple probabilistic explanation of term frequency-

inverse document frequency (tf-idf) heuristic (and variations motivated by this

explanation). International Journal of General Systems, 46, 27 - 36.

Le, Q. & Mikolov, T.. (2014). Distributed Representations of Sentences and Documents.

Proceedings of the 31st International Conference on Machine Learning, in PMLR

32(2):1188-1196

Manning, Christopher D. & Schütze, Hinrich. 1999. Foundations of statistical natural

language processing. MIT Press, Cambridge, MA, USA., 295-296

Mikolov, Tomas & Chen, Kai & Corrado, G.s & Dean, Jeffrey. (2013). Efficient Estimation

of Word Representations in Vector Space. Proceedings of Workshop at ICLR. 2013.

29

Rennie, Jason & Shih, Lawrence & Teevan, Jaime & Karger, David. (2003). Tackling the

Poor Assumptions of Naive Bayes Text Classifiers. Proceedings of the Twentieth

International Conference on Machine Learning. 41.

