
Meta-DPI: A Computational Metamethod for Predicting

Protein-Protein Interfaces

Thesis Submitted in Partial Fulfillment

of the Requirements

of the Jay and Jeanie Schottenstein Honors Program

Yeshiva College

Yeshiva University

May 2020

Mordechai A. Walder

Mentor: Dr. Rajalakshmi Viswanathan, Professor and Co-chair

Department of Chemistry

Table of Contents
Abstract ...1

I. Introduction ..2

A. Protein-Protein Interactions ...2
B. Experimental Approaches for Identifying Protein-Protein Interfaces 4
C. Computational Methods for Predicting Protein-Protein Interfaces 5
D. Metamethods and meta-DPI ...6

II. Background Methodology ..7
A. DockPred ...7
B. PredUs 2.0 ...9
C. ISPRED4 ...12

III. Methods ..14
A. Meta-DPI ...14
B. Evaluation of Prediction Methods ..16

IV. Results & Discussion ..20

A. Single Threshold Evaluation Metrics: F1 Score & MCC ...20
B. Threshold-free Evaluation Metrics: ROC & PR Curves ...23

V. Conclusion ...28

VI. Future Work ...29

VII. References ...30

Appendix A: List of Proteins in Docking Benchmark and NOX Datasets32
Appendix B: Prediction Files for 1ACB.I ...39
Appendix C: Python Script for Logistic Regression ...41
Appendix D: Perl6 Script for Calculating F1 Score ...43
Appendix E: Perl6 Script for Calculating MCC Score ...47
Appendix F: Perl6 Scripts for Calculating ROC and PR Curve Evaluation Metrics 52

1

Abstract

Protein-protein interactions (PPIs) regulate many biological processes that are integral for

the survival, function, growth, and evolution of organisms. Determination of the amino acid

residues at these interaction sites, or interfaces, enhances our understanding of the molecular

mechanisms by which proteins carry out their functions, and it facilitates the development of

therapeutics by identifying critical sites for disrupting protein function. Due to the time-

consuming and costly nature of experimental approaches for identifying interacting residues,

computational methods are employed to streamline the process. This work describes the

development of meta-DPI, a computational metamethod for predicting protein-protein interfaces

that integrates the orthogonal prediction methods DockPred, PredUs 2.0, and ISPRED4. Cross-

validation experiments on two datasets containing a total of 223 protein complexes illustrate that

meta-DPI significantly outperforms each of its three constituent methods (DockPred, PredUs 2.0,

and ISPRED4) as measured by both single-threshold and threshold-free evaluation metrics. The

enhanced predictive power of meta-DPI demonstrates how metamethods create improved

interface predictors, which in turn, enable molecular mechanisms to be understood more

thoroughly and drug targets to be identified more efficiently.

2

I. Introduction

A. Protein-Protein Interactions

Proteins have a diverse range of functions in living organisms. Different proteins catalyze

biochemical reactions, function as hormones that maintain homeostasis, transport molecules

around the body and through cell membranes, and are an essential part of the immune system’s

response to fight infection. Proteins are polymers consisting of amino acid subunits linked

together by peptide bonds. There are twenty different amino acids typically utilized to make

proteins in cells, each with a common backbone and a variable side chain. The unique amino

acid sequence of a protein is known as its primary structure, and the hydrogen bonds between

atoms of a protein’s backbone give rise to its secondary structure elements, like alpha helices and

beta sheets. The tertiary structure of a protein arises due to interactions between amino acid side

chains that yield the folding patterns that define a protein’s three-dimensional structure. The

amino acid residues located on a protein’s surface are able to interact with other molecules,

including other proteins, while internal residues are not able to interact with other molecules. A

Fig 1. Definition of the interface region inte(D) of a protein-protein complex. The dark red interface
region inte(D) of protein A is defined as the continuous protein surface region comprising all residues with at
least one atom within a distance D from protein B. All other residues of protein A belong to the
complementary light red region, non-inte(D). (Based on [1])

3

generic protein-protein interaction is illustrated in Figure 1, in which two proteins (A and B)

interact with each other to form a structured protein complex. The binding interface of protein A

is the cluster of its surface residues that participate in binding with protein B, and a residue is

classified as being at the interface if one of its atoms is within a threshold distance D (usually

4.5-8 Å [2]) from the binding partner [1].

Knowledge of the partners with which a protein forms a complex is key to understanding

a protein’s function and for precise characterization of broad protein interaction networks.

Identifying a protein’s interface residues is important in determining the molecular mechanism

by which a protein executes its function [3]. Modification of the residues at the binding interface

can disrupt or promote a PPI, and knowing which residues are interfacial is critical to discerning

how mutations affect a PPI. Molecular targets serve as the framework of modern drug discovery,

which aims to identify therapeutic agents that can selectively modulate disease-specific

molecular pathways [4]. PPIs play a central role in the progression of many disease states, which

is why they have become an emerging class of targets for drug discovery. Thus, determining the

interfacial residues of PPIs is a critical step in the process of identifying potential drug targets.

One such example of a therapeutic drug that targets a PPI is ipilimumab, which is a

monoclonal antibody that targets the CTLA-4:B7 (receptor: ligand) PPI. T cell homeostasis is

maintained by the homologous (≈ 30% sequence identity) costimulatory receptors CTLA-4 and

CD28 on the cell’s surface, and each of them binds to the B7-1 and B7-2 ligands that are on the

surface of antigen-presenting cells [5]. Upon ligand binding, CD28 sends signals that increase T

cell proliferation and cytokine secretion, while CTLA-4 sends signals that downregulate T cell

response. The FG loop (99MYPPPY104) on CTLA-4 contributes approximately 80% of the

interfacial contacts and 90% of the binding energy with B7 ligands. The FG loop is part of

4

CTLA-4’s P3 epitope that binds to ipilimumab, which indicates that direct steric competition

allows ipilimumab to inhibit B7 ligands from binding to CTLA-4 (Figure 2). Through inhibition

of the CTLA-4:B7 PPI, ipilimumab removes the downregulation of cytotoxic T cells, which

boosts the immune response against cancerous cells. Ipilimumab has been approved to treat

metastatic melanoma, and it is currently being studied in clinical trials to treat other types of

cancer. Ipilimumab is a prime example of how knowing interfacial residues of a PPI can lead to

the development of a therapeutic drug that targets the PPI.

B. Experimental Approaches for Identifying Protein-Protein Interfaces

Commonly used low-throughput methods for determining PPI residues include X-ray

crystallography, NMR spectroscopy, and cryo-electron microscopy. X-ray crystallography

determines the structure of a protein complex based on the diffraction pattern generated from

passing X-rays through a crystallized sample. Thus, it requires a high-quality crystal sample to

specify the complex structure with sufficient resolution. Since integral membrane proteins and

Fig 2. Mechanism of ipilimumab targeting PPI. (D) Mode of B7-1 (pink) interaction with the MYPPPY-loop surface. (E) Mode of
CTLA–4 and ipilimumab interactions. (F) Superposition of the CTLA-4:B7-2 and CTLA-4:ipilimumab structures, based on the CTLA-
4 component in each complex, is presented. These superpositions indicate that ipilimumab and the B7 ligands compete for overlapping
binding surfaces on CTLA-4. (Based on [5])

5

large dynamic complexes are effectively impossible to crystallize, their structures cannot be

determined by X-ray crystallography. NMR spectroscopy does not require that samples be

crystallized, but the large amount of sample required limits NMR to only being able to determine

the structure of small protein complexes. Cryo-electron microscopy does not necessitate a large

amount of sample or protein crystallization, so it has become the dominant technique for

structural determination of protein complexes over the past few years as it allowed previously

inaccessible proteins to be structurally understood [6]. However, due to the low-throughput and

costly nature of these experimental approaches, computational prediction methods are employed

to streamline the process of identifying the interfacial residues of PPIs.

C. Computational Methods for Predicting Protein-Protein Interfaces

The two main strategies implemented in computational prediction methods are intrinsic

based approaches and template-based approaches. Intrinsic-based methods train machine

learning algorithms on a dataset of experimentally determined PPIs in order to create a model

that relates sequence and structural features with the likelihood for residues to be at the interface.

Sequence features include hydrophobicity, amino acid interface propensity, physico-chemical

properties, and evolutionary conservation, and structural features include secondary structure,

solvent-accessible surface area, and geometric shape. As input, intrinsic-based predictors plug a

query protein’s sequence and structural features into their models, and as output, they assign

interface prediction scores to each query protein residue. While intrinsic-based methods have

been steadily enhanced over the past 20 years, their future improvement is limited because

further combination of existing features and classifiers has little impact on performance [2].

Template-based methods exploit the fact that binding interfaces are conserved among

homologous and structurally similar complexes. Homologous template-based predictors build a

6

multiple sequence alignment (MSA) of a query protein to identify the query’s homologues with a

known complex structure. The homologues’ interfaces are mapped onto the query protein, and

the residues are assigned interface prediction scores according to that mapping. Structural

neighbor-based predictors find proteins with a known complex structure and have a globally

similar fold (neighbors) to the query protein. The structural neighbors’ interfaces are mapped

onto the query protein, and the residues are assigned interface prediction scores according to that

mapping. While template-based methods are highly effective for query proteins that have close

homologues or neighbors with a known complex structure, their performance is limited by the

relatively small number of resolved complex structures [2].

D. Metamethods and meta-DPI

To overcome the limitations of intrinsic and template-based methods, metamethods that

integrate orthogonal (based on different non-overlapping features) predictors can be developed to

enhance prediction performance. Meta-PPISP is one such metamethod that combined the

predictors cons-PPISP [7], Promate [8], and PINUP [9] through linear regression analysis [10].

The construction of meta-PPISP was not ideal because it only combined complementary

intrinsic-based approaches, and it did not combine a template-based approach with an intrinsic-

based approach. Additionally, it employed linear regression analysis for method combination,

instead of using logistic regression analysis, which is more effective for discrete categorical data

like a residue’s interfacial score. In order to create a robust metamethod with enhanced

prediction performance, I developed meta-DPI, which implements logistic regression analysis to

integrate the orthologous interface predictors DockPred (docking-based), PredUs 2.0 (template-

based), and ISPRED4 (intrinsic-based).

7

II. Background Methodology

A. DockPred

 It has previously been shown [11] that substrate and non-substrate small organic

molecules have a tendency to bind to similar, energetically favorable sites on a target protein

(“sticky” sites) regardless of their relevance to it. DockPred was created to test the hypothesis

that proteins have a generic interaction site at which cognate and non-cognate ligands bind, just

as it had been observed for small molecule “sticky” sites. The success of DockPred demonstrated

that non-cognate ligands preferentially bind to the cognate binding site of a target protein [12].

Fig 3. Binding supersite of 1cnz.A. Three non-cognate ligands (lower row, from left to right, PDB codes: 2jjs.C, 2v86.A,
3h33.A) that share no detectable sequence or structure similarity to the cognate ligand, are docked extensively on the surface of
the receptor (upper row, 1cnz.A). In the upper row, ribbon model in transparent blue shows the receptor structure. The annotated
functional site in the receptor is shown using red transparent spheres for the Cα atoms. The predicted functional site residues, as
defined by the corresponding ligand probes underneath, is shown using green spheres for the Cα atoms. (Based on [12])

 There were two datasets of query proteins used in the development of DockPred. One

dataset contained 108 proteins from the Docking Benchmark (DB) database, and the other

contained 133 different proteins from the NOX database [13, 14]. 50 DB proteins and 41 NOX

8

proteins belong to the top 12 CATH superfamilies (Table 1). The DB database was constructed

to have a benchmark set of proteins on which to compare the efficacy of docking algorithms

[14]. The NOX database was constructed to develop a support vector machine algorithm that

distinguishes between obligate, non-obligate and crystal packing interactions [13]. The DB and

NOX databases contain 230 and 243 non-redundant protein-protein complex structures along

with the structures of their unbound components, respectively. For DockPred, the Contacts of

Structural Units (CSU) program was used to define interface residues from the complex

structures of the query proteins [15]. If any atom in a query residue was within 3.5Å of an atom

in the query’s partner protein in the complexed structure, the residue was considered to be at the

binding interface. This yielded the experimentally annotated interface residues for each query

protein in the dataset.

Table 1. [12] Number of Proteins in Each Dataset Belonging to Each CATH Superfamily

Predominant Fold (CATH Superfamily) DB Dataset NOX Dataset

Rossman Fold 7 20

Immunoglobulin Like 33 7

TIM Barrel 1 8

Four Helix - 2

Trefoil, Acidic Fibroblast Growth Factor 1 2

Alpha-beta Plaits 1 -

OB Fold 3 1

Jelly Roll 3 -

Globin Like 1 -

Alpha-beta Barrel - 1

9

A group of 13 non-cognate ligand probes were chosen to be used for DockPred based on

their lack of sequence similarity to known cognate ligands of the query proteins. The two

docking programs ZDOCK and GRAMM were used to generate 2000 docked complexes for

each uncomplexed query protein with each of the 13 non-cognate ligand probes. The CSU

program was then used to analyze each of the docked complexes to identify the residues at the

interface of each complex. A residue at the ith position of the query protein in the kth docked

complex was denoted as Rik. I(Rik) = 0 for residues not at the interface of a docked complex, and

I(Rik) = 1 for residues at the interface of a docked complex. For each residue at position i in the

query protein, a Residue Interface Frequency (RIF) was calculated by summing over all docked

complexes according to the formula

𝑁𝑖 = ∑ 𝐼(𝑅𝑖𝑘)2000
𝑘=1 .

The top ranking residues with the largest Ni values of a query protein were considered to be the

residues predicted to be at the binding interface [12].

B. PredUs 2.0

The first version of PredUs, which was developed in 2011, made interface predictions for

a query protein based on the known binding interfaces of the query’s structural neighbors. Two

proteins are considered to be structural neighbors if their three-dimensional structures are

similar. The secondary structure elements of two proteins can be similar without being composed

of the same amino acids, so a prediction based only on structural similarity does not consider the

query amino acids’ tendency to participate in binding. PredUs 2.0 was created in 2015 to address

the flaw in making a structural template-based prediction alone. Using a Bayesian approach,

PredUs 2.0 combines an amino acid interface propensity score with the template-based score of

PredUs [3].

10

The original PredUs program used the structural alignment program Ska [16] to identify a

query protein’s structural neighbors. Protein structural distance (PSD) is a measurement that

quantifies the structural similarity between two proteins. It is calculated by superposing the two

proteins’ structures in a manner that minimizes the root-mean-square deviation of the amino

acids’ alpha carbons [17]. PredUs employed a PSD cutoff of 0.6 so that close and remote

structural neighbors could be found. Neighbors that have a known complex structure were

retained and ranked according to their structural alignment score. Using the program cd-hit [18],

neighbors with a sequence similarity larger than 40% were grouped together, and only the

protein with the higher PSD was kept. PredUs used the transformation relating the neighbor to

the query protein to place the neighbor’s binding partner in the query’s coordinate system. If the

neighbor’s binding partner was within 5Å of a query residue’s heavy atom (C, N, O), PredUs

incremented the residue’s contact frequency score weighted by the PSD score between the

neighbor and query [19]. After the transformation process was completed for every structural

neighbor that was retained, each query residue has a total contact frequency score that sums the

weighted scores from all the transformations.

 PredUs used a support vector machine (SVM) algorithm to generate its template-based

prediction score. Each residue ri on the query’s surface was combined with the 14 closest surface

residues to form ri’s surface patch. A 31-element profile was assigned to the patch, and it was

composed of each residue’s contact frequency score and solvent accessible surface area (ASA),

as well as the highest contact frequency score in the protein. The SVM mapped each patch

profile to vectors in high-dimensional space, and it created a hyperplane that separated the

vectors corresponding to interface residues from the vectors corresponding to non-interface

11

residues. PredUs calculated an interfacial score for each residue based on its profile vector’s

distance above or below the SVM hyperplane [19].

 PredUs 2.0 calculated the interface propensity of each residue type r using a set of 2,766

heterodimeric complexes that had less than 40% sequence redundancy. Interface propensity was

expressed as the relative ASA (RASA) contribution from residues of type r in protein-protein

interfaces relative to their RASA contribution to the whole protein surface:

𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑟) =
(𝑅𝐴𝑆𝐴𝑟

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑅𝐴𝑆𝐴𝑎𝑙𝑙
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒⁄)

(𝑅𝐴𝑆𝐴𝑟
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝐴𝑆𝐴𝑎𝑙𝑙

𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁄)

RASArX represents the sum of RASAs of all type r residues with characteristic X (interface or

surface) in all proteins from the set of heterodimeric complexes. RASAallX represents the sum of

RASAs of all residue types with characteristic X in all proteins from the dataset. RASA of

protein residue is defined as the residue’s ASA as part of the protein, normalized by the residue’s

area as part of an ALA-r-ALA tripeptide. Residues were considered to be at a protein’s surface if

they had a RASA value of at least 0.05.

 Since a residue’s interface propensity can vary with its RASA value, PredUs 2.0

calculated a weighted interface propensity score based on RASA values. The weighted

propensity (WP) of a query protein residue ri of type r was calculated as follows:

𝑊𝑃(𝑟𝑖) = 𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑟) × 𝑃𝑟(𝐼|𝑅𝐴𝑆𝐴)

The term 𝑃𝑟(𝐼|𝑅𝐴𝑆𝐴) represents the probability that a type r residue is at the interface, given its

RASA value. Two scores were calculated for the surface patch associated with residue ri; one

(WPA) was the average of the WPs of the patch residues, and the other (JP) was the joint

probability for patch residues to be at the interface given their RASA values. The number of

times a residue ri appeared in the top 15 patches ranked by WPA was denoted n, and the number

of times a residue ri appeared in the top 15 patches ranked by JP was denoted m. The single patch

12

score assigned to residue ri was (n + m). Using a naïve Bayes approach, PredUs 2.0 generated a

likelihood ratio (LR) from the original PredUs and a LR from the propensity patch score. The

final interface score that PredUs 2.0 assigns to each residue is the product of LRPredUs and LRpatch

[3].

C. ISPRED4

 ISPRED4 is one of the best performing intrinsic-based protein binding interface

predictors currently available. It was developed by training an SVM model on a dataset

(DBv5Sel) of 314 different monomer chains with complex structures that had been resolved by

X-ray crystallography. Interface residues were defined as those that lost at least 1Å2 of ASA

(computed with the DSSP program [20]) when transitioning from a protein’s unbound to

complex form. In the SVM model, each of the training proteins’ surface residues were

represented by a 46-dimensional feature vector consisting of 10 different groups of descriptors

(Table 2). ISPRED4 combined its SVM model with a Grammatical-Restrained Hidden

Conditional Random Field (GRHCRF) to account for possible correlations between neighboring

surface residues. For a given query protein, ISPRED4 calculated interface prediction scores by

plugging the query residues’ feature vectors into its trained SVM/GRHCRF model [21].

The feature vector included 34 sequence-based features that formed 5 groups of

descriptors. The sequence profile descriptor represented evolutionary information for each

primary sequence position of a query protein. PSI-BLAST [22] was used to search the Uniprot

Reference Cluster 90 database [23] for sequences similar to the query protein sequence, and the

output served as the 20-dimensional sequence profile vector. Based on the sequence profile, a

conservation score descriptor was calculated using the normalized Shannon’s entropy equation

[24]. The interface propensity descriptor was calculated for each residue type r using the log-

13

ratio of its interface frequency to its surface frequency. The 10 orthogonal properties introduced

by Kidera et al. were incorporated into a group of 10 residue properties descriptors, which

reflected the physico-chemical nature of each residue type r [25]. A multiple sequence alignment

(MSA) for each query protein was generated using HHblits aligner against the UniprotKB

database [26]. Based on the MSA, the PSICOV [27] and MI methods were each used to calculate

two co-evolutionary scores, and each method’s scores formed a group of two descriptors.

ISPRED4’s feature vector also included 12 structure-based features that comprised 5

groups of descriptors. ISPRED4 used the PSAIA toolkit [28] to compute protrusion and depth

indexes for surface residues. Protrusion indexes consisted of a group of four descriptors, and

depth indexes contained a group of three descriptors. Using the DSSP program, residues were

Descriptor Program(s) Used Number of Features

Sequence profile PSI-BLAST 20

Conservation score PSI-BLAST 1

Interface propensity In-house script 1

Residue properties In-house script 10

Mutual Information / PSICOV HHBlits 2

Depth indexes PSAIA 3

Protrusion indexes PSAIA 4

Secondary structure DSSP 3

Average B-Factor In-house script 1

RSA difference DSSP, SABLE 1

Table 2. [11] ISPRED4 Groups of Feature Descriptors

14

assigned to one of three secondary structure classes: helix (H, G, I), strand (E, B), or coil (T, S).

A group of three descriptors was computed for each residue ri, representing the frequency of

helical, strand, and coil residues in its surface patch. An average B-factor descriptor was

computed for a surface residue by averaging the B-factors for its individual atoms. The dRSA

descriptor was calculated by subtracting a residue’s observed RSA value from its predicted RSA

value (SABLE predictor [29]).

III. Methods

A. Meta-DPI

 Meta-DPI was developed on the two datasets of query proteins used in the development

of DockPred. The DB dataset contained 107 protein chains from the Docking Benchmark

database, and the NOX dataset contained 116 protein chains from the NOX database (see

Appendix A) [13, 14]. Each residue of every query protein was assigned an interface score i of

either 0 (non-interface) or 1 (at interface) based on the experimentally determined complex

structures. DockPred, PredUs 2.0, and ISPRED4 were used to analyze the non-complexed query

protein chains. The three methods generated prediction scores (0 ≤ 𝑝 ≤ 1) for each residue of

every query protein; the higher the score assigned to a residue, the more likely it was to be at the

interface. Appendix B includes each method’s prediction file for an example query protein.

A logistic regression model was employed to determine how to combine the prediction

scores of the three methods into a metamethod prediction score. Although linear regression has

been used for some previous metamethods, such as meta-PPISP [10], logistic regression was

chosen for meta-DPI because the interface score (dependent variable) can only have discrete

15

values (0 or 1). Figure 4 illustrates how a logistic regression model fits discrete categorical data

better than a linear regression model. The function used in a logistic model is:

𝑷(𝑖 = 1 | 𝑥1, 𝑥2, … 𝑥𝑗) =
1

1 + 𝑒−(𝑏0+∑ 𝑏𝑗𝑥𝑗)

where 𝑷(𝑖 = 1 | 𝑥1, 𝑥2, … 𝑥𝑗) refers to the probability that 𝑖 = 1 given the values of 𝑥1, 𝑥2, … 𝑥𝑗.

The target dependent variable is i, and the explanatory independent variables are 𝑥1, 𝑥2, … 𝑥𝑗.

Based on previously collected data for i and xj, maximum likelihood is used to estimate the

parameters b0 and bj (“fitting” the logistic model). The likelihood function is a function of the

unknown parameters, and it represents the joint probability of observing the obtained data. The

parameters are estimated by setting each parameter’s partial derivative to zero (maximization),

which results in a system of equations that can be solved iteratively with a computer program

[30].

16

Each query protein residue served as a data point on which the logistic regression model

was trained; the prediction scores from the individual methods (DockPred, PredUs 2.0, &

ISPRED4) were the independent variables, and the interface score was the dependent variable.

The logistic regression model was trained on each set of proteins separately in order to cross-

validate the results. The coefficients generated from training the model on DB proteins were

used to calculate metamethod prediction scores for NOX proteins, and the coefficients generated

from training on NOX proteins were used to calculate metamethod prediction scores for DB

proteins. The logistic function was used to calculate the metamethod prediction scores as

follows:

𝑝𝑚𝑒𝑡𝑎−𝐷𝑃𝐼 =
1

1 + 𝑒−(𝑏0+𝑏𝐷𝑜𝑐𝑘𝑃𝑟𝑒𝑑𝑝𝐷𝑜𝑐𝑘𝑝𝑟𝑒𝑑+𝑏𝑃𝑟𝑒𝑑𝑈𝑠𝑝𝑃𝑟𝑒𝑑𝑈𝑠+𝑏𝐼𝑆𝑃𝑅𝐸𝐷𝑝𝐼𝑆𝑃𝑅𝐸𝐷)

where 𝑏𝑃𝑟𝑒𝑑𝑈𝑠 refers to the coefficient generated for PredUs 2.0, and 𝑝𝑃𝑟𝑒𝑑𝑈𝑠 refers to the

prediction score assigned by PredUs 2.0 for a given residue, and the other coefficients similarly

describe the other two methods.

 In order to acquire a better insight into how each individual method contributed to meta-

DPI, three additional metamethods were created by removing DockPred, PredUs 2.0, or

ISPRED4. Meta-DI combined DockPred and ISPRED4, meta-DP combined DockPred and

PredUs 2.0, and meta-PI combined PredUs 2.0 and ISPRED4. The cross-validation and

calculation of metamethod prediction scores was performed in the same manner described above

for meta-DPI. The python script written to execute the logistic regression analysis is included in

Appendix C.

B. Evaluation of Prediction Methods

Each query protein is composed of n+ experimentally-determined interfacial residues in

the positive class and n- experimentally-determined non-interfacial residues in the negative class.

17

Since protein residues belong to one of two categories, interface prediction methods are

considered binary classifiers. After a classifier generates prediction scores for a query protein,

the query residues are divided into m+ predicted interfacial residues and m- predicted non-

interfacial residues. One way to split a protein’s residues is to sort them according to their

prediction scores (𝑝), and the top k number of residues are assigned to the m+ class and the

remaining residues to the m- class. Another approach is to assign residues for which 𝑝 ≥ 𝑇 to the

m+ class and residues for which 𝑝 < 𝑇 to the m- class (T refers to the 𝑝 threshold value).

Once a classification method has been applied to the proteins in a dataset, each residue

can fall into one of four categories: true positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN). TP refers to predicted interfacial residues that were experimentally

determined to be interfacial (𝑚+ ⋂ 𝑛+), while FP refers to predicted interfacial residues that

were experimentally determined to be non-interfacial (𝑚+ ⋂ 𝑛−). TN refers to predicted non-

interfacial residues that were experimentally determined to be non-interfacial (𝑚− ⋂ 𝑛−), while

FN refers to predicted non-interfacial residues that were experimentally determined to be

interfacial (𝑚− ⋂ 𝑛+). The four binary classification outcomes can be presented in a 2 x 2

confusion matrix 𝑪𝑴 = (𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁). When creating a binary classification model, the goal is to

maximize the number of TP and TN, while minimizing the number of FP and FN. A perfect

classification generates the confusion matrix 𝑪𝑴 = (𝑛+ 0
0 𝑛−), and a perfect misclassification

generates the confusion matrix 𝑪𝑴 = (0 𝑛+

𝑛− 0
) [31].

A variety of classifier evaluation metrics can be calculated from confusion matrix values

(Table 3). Precision (𝑇𝑃
𝑇𝑃+𝐹𝑃

= 𝑚+ ⋂ 𝑛+

𝑚+) refers to the fraction of a classifier’s m+ class that also

18

belongs to the n+ class, and recall (𝑇𝑃
𝑇𝑃+𝐹𝑁

= 𝑚+ ⋂ 𝑛+

𝑛+) refers to the fraction of the n+ class

included in a classifier’s m+ class. The F1 score is the harmonic mean between precision and

recall, so it summarizes a classifier’s performance in generating its m+ class. The MCC is the

only metric that achieves a high score only if a classifier correctly predicted the majority of the

n+ class and the majority of the n- class. Since the F1 score is independent of the number of TN

and changes when the n+ and n- classes are swapped, it is a less informative than the MCC

metric.

Table 3. Binary Classifier Evaluation Metrics

For a given query protein, the number of residues k to assign to the m+ class was

determined using the dynamic cutoff formula [3] proposed by PredUs 2.0: 𝑘 = 6.1𝑁0.3, where N

refers to the number of query protein surface residues (Figure 5A). The values of 𝑘 for the query

proteins in our dataset is included in Appendix A. F1 and MCC scores were calculated for each

individual prediction method and metamethod for all query proteins in the DB and NOX

Evaluation Metric Formula

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall / True Positive Rate 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

False Positive Rate 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

F1 Score 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Matthews Correlation Coefficient (𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

19

datasets. Global F1 score and MCC, which reflect a prediction classifier’s performance on all of

the proteins in a dataset as a whole, were subsequently calculated. The perl6 scripts written to

ascertain the F1 score and MCC are included in Appendices D and E.

The Receiver Operator Characteristic (ROC) and Precision-Recall (PR) curves give an

overview of a classifier’s performance over a range of thresholds. The ROC plot shows pairs of

true positive rate (TPR) and false positive rate (FPR) values at all possible thresholds, and the PR

plot displays pairs of precision and recall values at all possible thresholds. TPR is equivalent to

recall, and FPR (𝐹𝑃
𝑇𝑁+𝐹𝑃

= 𝑚+ ⋂ 𝑛−

𝑛−) refers to the fraction of the n- class included in a classifier’s

m+ class. The area under the curve (AUC) is a metric that quantifies the results in ROC and PR

curves. A random unskilled classifier will yield a ROC plot of 𝑦 = 𝑥 (TPR = FPR), which has a

ROC AUC of 0.5. A PR plot of 𝑦 = 𝑛+

(𝑛++𝑛−)
 will be generated by a random unskilled classifier,

which has a PR AUC of 𝑛+

(𝑛++𝑛−)
. Generally, a small fraction of a protein’s residues appears at its

interface, so 𝑛+and 𝑛− are imbalanced classes (𝑛+ ≪ 𝑛−). Figure 6 illustrates the difference

between the confusion matrices of balanced and imbalanced classes. Since precision can

20

differentiate between a classifier’s performance on balanced classes versus imbalanced classes,

unlike TPR and FPR, PR curves are more informative than ROC curves for a problem like

interface prediction that involves imbalanced classes [32].

For each prediction method, threshold values (T) were incremented by 0.01, starting from

0 and ending at 1 (Figure 5B). Residues with prediction scores 𝑝 ≥ 𝑇 were assigned to the m+

class, and confusion matrices were generated accordingly at each T value. TPR, FPR, precision,

and recall were calculated at every T value. The TPR and FPR at a single T value served as a

data point on the ROC plot, and the precision and recall at a single T value served as a data point

on the PR plot. Using this approach, ROC and PR curves were generated to display each

prediction method’s performance on the DB and NOX datasets. The AUC for the ROC and PR

plots were approximated using the trapezoidal rule. Appendix F contains the perl6 scripts written

to increment T values and calculate the evaluation metrics for the ROC and PR curves.

IV. Results & Discussion

A. Single Threshold Evaluation Metrics: F1 Score & MCC

Table 4. F1 Score & MCC of Individual Classifiers and meta-DPI for DB and NOX Databases

𝑪𝑴 = (𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁) 𝑪𝑴 (𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅) = (6 4

4 6) 𝑪𝑴 (𝑰𝒎𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅) = (3 2
6 9)

Fig 6. Both confusion matrices have 20 total elements. The balanced CM has 10 elements in the 𝑛+class and 10 elements
in the 𝑛− class. The imbalanced CM has 5 elements in the 𝑛+class and 15 elements in the 𝑛− class. (Based on [31])

21

 In developing meta-DPI, I aimed to create a protein interface predictor that performed

better than the currently available methods. A logistic regression model was used to train meta-

DPI on the interface prediction values of DockPred, ISPRED4, and PredUs 2.0 for proteins in the

DB and NOX datasets separately. A cross-validation experiment was performed by using the

logistic regression results of each training set to generate meta-DPI prediction values for proteins

in the other set. In order to compare the performance of meta-DPI relative to its constituent

methods, single-threshold evaluation metrics were calculated for the proteins in each dataset as a

whole.

In Table 4, the Docking Benchmark F1 score and MCC reflect the performance of each

classification method on the proteins in the DB dataset as a whole, while the NOX F1 score and

MCC reflect each classification method’s performance on the proteins in the NOX dataset as a

whole. The meta-DPI prediction values for DB query protein residues, which were calculated

using the coefficients obtained from the logistic regression performed on the NOX dataset, were

used to calculate the DB F1 score and MCC for meta-DPI. The NOX F1 score and MCC for meta-

DPI were calculated in the opposite manner. As shown in Table 4, meta-DPI outperformed each

of its constituent methods according to both evaluation metrics, regardless of the dataset on

which it was trained.

For most query proteins, the number of dynamic cutoff residues was slightly higher than

the number of experimental annotated residues (see Appendix A). For the NOX query protein

2PCB.A, which had 25 more cutoff residues than annotated residues (31 and 6, respectively),

each classifier had a lower precision than its average precision and a higher recall than its

average recall. On the other hand, for the NOX query protein 1EFV.A, which had 28 fewer

cutoff residues than annotated residues (31 and 59, respectively), each classifier had a higher

22

precision than its average precision and a lower recall than its average recall. Thus, the number

of cutoff residues relative to annotated residues directly influences the two components of the F1

score, precision and recall.

When comparing each classifier’s average MCC with their MCC for the aforementioned

NOX query proteins, no consistent pattern of outliers emerges. This is because the MCC depends

on all four categories of the confusion matrix equally. Since MCC is not influenced by the

difference between the number of cutoff and annotated residues, it is a more informative metric

than F1 score, especially for query proteins with an unknown complex structure and unknown

number of annotated residues.

Table 5. F1 Score & MCC of All Metamethods for DB and NOX Databases

Metamethods that combined two of the three interface predictors were created to gain

insight into each individual classifier’s role in meta-DPI. In Table 5, the performance of meta-

DPI is compared to the performance of the metamethods that combined two of the three

classifiers. Meta-DPI performed better than the other metamethods according to both F1 score

and MCC, regardless of the dataset on which the metamethods were trained. Thus, combining all

three methods into a metamethod yielded a classifier superior to the ones obtained when only

combining two of the methods. By comparing the results in Tables 4 and 5, it can be seen that

the performance of the individual classifiers in a metamethod correlates with the metamethod’s

performance. The DB F1 score of DockPred (0.375) was 10% higher than the scores of ISPRED4

(0.342) and PredUs 2.0 (0.340). Therefore, the DB F1 score of meta-PI (0.367), which combined

23

the lower scoring ISPRED4 and PredUs 2.0, was significantly lower than the scores of the

metamethods that included DockPred, meta-DP (0.398) and meta-DI (0.391).

B. Threshold-free Evaluation Metrics: ROC & PR Curves

24

For both the DB and NOX datasets, the ROC AUC of meta-DPI was higher than the

ROC AUC of the individual classifiers (Figure 7). While the F1 score and MCC demonstrated

meta-DPI’s enhanced ability to classify query protein residues above the dynamic cutoff, the

ROC plots confirmed meta-DPI’s superior classification of all query protein residues.

The average performance of PredUs 2.0 relative to the second-best performing method

was 9.34% lower in terms of ROC AUC, which was significantly larger than its relative poorer

performance in terms of F1 score (1.68%) and MCC (2.19%). This was due to the fact that

PredUs 2.0 assigned a prediction score of 0 to a significantly higher percentage of residues than

the other methods did, so it had an FPR of 1 at 𝑇 = 0.00 and an FPR of less than 0.2 at 𝑇 = 0.01

(no data points with an FPR between 0.2 and 1). The lack of differentiation between the lowest

scoring residues diminished PredUs 2.0’s ROC AUC, but it did not affect its performance for

single-threshold evaluation metrics. This principle can be illustrated by examining DockPred’s

ROC plot for the DB dataset. If the 10 data points DockPred had with an FPR between 0.2 and 1

(0.01 ≤ 𝑇 ≤ .10) were eliminated by changing the residues with 0.01 ≤ 𝑝 ≤ .10 to 𝑝 = 0, its

ROC AUC would drop from 0.866 to 0.821. Thus, ROC AUC is a metric that evaluates

classifiers in a somewhat biased manner because it undervalues classifiers that group the lowest

scoring residues together.

For both the DB and NOX datasets, the ROC AUC of meta-DPI was higher than the

ROC AUC of the metamethods that only combined two classifiers (Figure 8). By comparing the

results in Figures 7 and 8, it can be seen that the threshold-free performance of the individual

classifiers in a metamethod correlates with the metamethod’s performance. ISPRED4’s ROC

AUC (0.815) for the NOX database was significantly higher than the ROC AUC of DockPred

(0.761) and PredUs 2.0 (0.666). Consequently, the ROC AUC of meta-DP (0.760), which

25

combined the poorer performing DockPred and PredUs 2.0, was lower than the ROC AUC of the

metamethods that included ISPRED4, meta-DI (0.826) and meta-PI (0.844).

26

Fig 9. Precision-Recall Graphs for DB & NOX Datasets. Each classifier’s AUC value is included in the enclosed table. The
dashed line represents the PR plot of a random unskilled classifier (𝑦 = 𝑛+

(𝑛++𝑛−)), which is 𝑦 = 0.052 for the DB dataset and
𝑦 = 0.091 for the NOX dataset.

27

For the DB dataset, the Precision-Recall (PR) AUC of meta-DPI (0.364) was 26% greater

than the PR AUC of DockPred (0.288), which was the highest among individual classifiers. As

can be seen in the top graph in Figure 9, meta-DPI could correctly classify 0-40% of the 𝑛+

residues in the DB dataset, while maintaining a significantly higher degree of precision than the

individual classifiers. The results displayed in Figures 9 and 10 further validate meta-DPI’s

superior classification ability even by a metric like precision, which is sensitive to class

imbalance.

Fig 10. Precision-Recall Graphs for Metamethods for DB & NOX Datasets. Each metamethod’s AUC value is included in
the enclosed table. The dashed line represents the PR plot of a random unskilled classifier (𝑦 = 𝑛+

(𝑛++𝑛−)), which is 𝑦 = 0.052
for the DB dataset and 𝑦 = 0.091 for the NOX dataset.

28

 Among the individual classifiers, PredUs 2.0 consistently performed the worst out of the

individual classifiers in terms of global evaluation metrics. For query proteins that had a close

structural neighbor with a known complex structure, PredUs 2.0 performed well. However, for

query proteins that did not have a close structural neighbor with a known complex structure,

PredUs 2.0 performed poorly. The DB and NOX datasets both contain some query proteins with

close structural neighbors with known complex structures, as well as some query proteins

without close structural neighbors with known complex structures. This results in PredUs 2.0’s

classification performance on each data set as a whole being diminished by its inferior

classification of the query proteins without close structural neighbors with known complex

structures.

V. Conclusion

 Through the development of the novel metamethod meta-DPI, I have shown that

orthologous protein interface prediction methods can be combined to create a metamethod that is

a superior interface classifier relative to its constituent methods. In contrast to previous

metamethods that used linear regression, meta-DPI employed logistic regression as the model by

which to combine prediction methods. Meta-DPI’s enhanced classification performance was

verified by single-threshold metrics, F1 score and MCC, and by threshold-free metrics, ROC

AUC and PR AUC. The creation of increasingly robust metamethods is a viable approach for

continuing to enhance the performance of interface predictors, despite the limitations of intrinsic-

based and template-based methods.

29

VI. Future Work

 The next step in the development of meta-DPI will be to quantify the relationship

between the classification performance of PredUs 2.0 and how similar the structural neighbors

are to a given query protein. Once this relationship is ascertained, it can be incorporated into

meta-DPI’s classification model by making structural neighbor similarity one of the features

analyzed during the training process. Another issue to investigate is how the superfold family of

query proteins correlates with each classifiers’ performance, which will allow superfold family

to be an additional feature integrated into meta-DPI’s classification model. The final step in

perfecting the metamethod will be to determine the optimal machine learning algorithm for

integrating the array of features in the classification model. Random forest and decision tree

algorithms can be trained and tested in the same manner as the logistic regression model in order

to determine which approach yields the best classification performance.

After meta-DPI has been optimized, I will investigate how it can be used to predict the

antigen epitopes of antigen-antibody binding interactions specifically. Epitopes can be difficult

to identify because they appear to be barely distinguishable from the rest of the protein surface

[2]. In order to prime meta-DPI for epitope prediction, the training set will be adjusted to only

include antibody-antigen interactions. Interface predictors designed specifically for epitope

prediction, like EpiPred [33], will be incorporated as an input feature in meta-DPI’s

classification model. Identifying an antigen’s epitope is a key step in the process of the

development of a vaccine for a disease associated with the antigen. Additionally, understanding a

monoclonal antibody’s binding mechanism is critical when studying its therapeutic potential.

30

VII. References

1. Vagenende, V., et al., Quantifying the molecular origins of opposite solvent effects on
protein-protein interactions. PLoS Comput Biol, 2013. 9(5): p. e1003072.

2. Esmaielbeiki, R., et al., Progress and challenges in predicting protein interfaces. Brief
Bioinform, 2016. 17(1): p. 117-31.

3. Hwang, H., D. Petrey, and B. Honig, A hybrid method for protein-protein interface
prediction. Protein Sci, 2016. 25(1): p. 159-65.

4. Diaz-Eufracio, B.I., J.J. Naveja, and J.L. Medina-Franco, Protein-Protein Interaction
Modulators for Epigenetic Therapies. Adv Protein Chem Struct Biol, 2018. 110: p. 65-
84.

5. Ramagopal, U.A., et al., Structural basis for cancer immunotherapy by the first-in-class
checkpoint inhibitor ipilimumab. Proc Natl Acad Sci U S A, 2017. 114(21): p. E4223-
E4232.

6. Cheng, Y., Single-particle cryo-EM-How did it get here and where will it go. Science,
2018. 361(6405): p. 876-880.

7. Chen, H. and H.X. Zhou, Prediction of interface residues in protein-protein complexes by
a consensus neural network method: test against NMR data. Proteins, 2005. 61(1): p. 21-
35.

8. Neuvirth, H., R. Raz, and G. Schreiber, ProMate: a structure based prediction program
to identify the location of protein-protein binding sites. J Mol Biol, 2004. 338(1): p. 181-
99.

9. Liang, S., et al., Protein binding site prediction using an empirical scoring function.
Nucleic Acids Res, 2006. 34(13): p. 3698-707.

10. Qin, S. and H.X. Zhou, meta-PPISP: a meta web server for protein-protein interaction
site prediction. Bioinformatics, 2007. 23(24): p. 3386-7.

11. Hajduk, P.J., J.R. Huth, and S.W. Fesik, Druggability indices for protein targets derived
from NMR-based screening data. J Med Chem, 2005. 48(7): p. 2518-25.

12. Viswanathan, R., et al., Protein-protein binding supersites. PLoS Comput Biol, 2019.
15(1): p. e1006704.

13. Zhu, H., et al., NOXclass: prediction of protein-protein interaction types. BMC
Bioinformatics, 2006. 7: p. 27.

14. Vreven, T., et al., Updates to the Integrated Protein-Protein Interaction Benchmarks:
Docking Benchmark Version 5 and Affinity Benchmark Version 2. J Mol Biol, 2015.
427(19): p. 3031-41.

15. Sobolev, V., et al., Automated analysis of interatomic contacts in proteins.
Bioinformatics, 1999. 15(4): p. 327-32.

16. Petrey, D. and B. Honig, GRASP2: visualization, surface properties, and electrostatics of
macromolecular structures and sequences. Methods Enzymol, 2003. 374: p. 492-509.

17. Yang, A.S. and B. Honig, An integrated approach to the analysis and modeling of
protein sequences and structures. I. Protein structural alignment and a quantitative
measure for protein structural distance. J Mol Biol, 2000. 301(3): p. 665-78.

18. Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics, 2006. 22(13): p. 1658-9.

19. Zhang, Q.C., et al., PredUs: a web server for predicting protein interfaces using
structural neighbors. Nucleic Acids Res, 2011. 39(Web Server issue): p. W283-7.

31

20. Kabsch, W. and C. Sander, Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12): p.
2577-637.

21. Savojardo, C., et al., ISPRED4: interaction sites PREDiction in protein structures with a
refining grammar model. Bioinformatics, 2017. 33(11): p. 1656-1663.

22. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

23. Suzek, B.E., et al., UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics, 2015. 31(6): p. 926-32.

24. Sander, C. and R. Schneider, Database of homology-derived protein structures and the
structural meaning of sequence alignment. Proteins, 1991. 9(1): p. 56-68.

25. Kidera, A., Statistical analysis of the physical properties of the 20 naturally occurring
amino acids J Protein Chem. , 1985. 4: p. 23-55.

26. Remmert, M., et al., HHblits: lightning-fast iterative protein sequence searching by
HMM-HMM alignment. Nat Methods, 2011. 9(2): p. 173-5.

27. Jones, D.T., et al., PSICOV: precise structural contact prediction using sparse inverse
covariance estimation on large multiple sequence alignments. Bioinformatics, 2012.
28(2): p. 184-90.

28. Mihel, J., et al., PSAIA - protein structure and interaction analyzer. BMC Struct Biol,
2008. 8: p. 21.

29. Adamczak, R., A. Porollo, and J. Meller, Accurate prediction of solvent accessibility
using neural networks-based regression. Proteins, 2004. 56(4): p. 753-67.

30. Klein, D.G.K.M., Logistic Regression: A Self-Learning Text. 2nd ed. Statistics for
Biology and Health, ed. K. Dietz. 2002, New York: Springer-Verlag.

31. Chicco, D. and G. Jurman, The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics,
2020. 21(1): p. 6.

32. Saito, T. and M. Rehmsmeier, The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One, 2015.
10(3): p. e0118432.

33. Krawczyk, K., et al., Improving B-cell epitope prediction and its application to global
antibody-antigen docking. Bioinformatics, 2014. 30(16): p. 2288-94.

32

Appendix A: List of Proteins in Docking Benchmark and NOX Datasets

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

2SIC.E Docking Benchmark 173 29 17
2A5T.A Docking Benchmark 192 30 10
1DFJ.I Docking Benchmark 325 35 18
2BTF.A Docking Benchmark 267 33 18
1KLU.D Docking Benchmark 165 28 11
4JCV.E Docking Benchmark 177 29 11
4G6M.H Docking Benchmark 320 34 14
3R9A.B Docking Benchmark 217 31 17
2B42.B Docking Benchmark 141 27 21

1KAC.A Docking Benchmark 143 27 9
1GXD.C Docking Benchmark 167 28 18
2FD6.H Docking Benchmark 327 35 14
1DE4.E Docking Benchmark 87 23 21
3G6D.L Docking Benchmark 329 35 15
3SZK.F Docking Benchmark 116 25 11
1JIW.I Docking Benchmark 84 23 15
1JIW.P Docking Benchmark 332 35 20
1ACB.I Docking Benchmark 55 20 11

1GHQ.A Docking Benchmark 197 30 5
1VFB.A Docking Benchmark 166 28 15
3SZK.E Docking Benchmark 107 25 12
2B42.A Docking Benchmark 269 33 19
1KAC.B Docking Benchmark 101 24 12
1ZHH.A Docking Benchmark 240 32 13
3EO1.A Docking Benchmark 330 35 12
2W9E.H Docking Benchmark 328 35 17
1DQJ.A Docking Benchmark 327 35 18
3EOA.L Docking Benchmark 322 34 12
1FC2.D Docking Benchmark 174 29 10
2A5T.B Docking Benchmark 214 31 14
2C0L.A Docking Benchmark 214 31 19
1TMQ.A Docking Benchmark 306 34 18
1US7.A Docking Benchmark 151 27 7
4M76.B Docking Benchmark 130 26 12

33

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

2HLE.B Docking Benchmark 107 25 13
2B4J.C Docking Benchmark 69 22 8
1AVX.A Docking Benchmark 158 28 19
2CFH.C Docking Benchmark 118 26 10
1XQS.A Docking Benchmark 186 29 23
3L5W.L Docking Benchmark 326 35 10
1T6B.Y Docking Benchmark 122 26 14
1ML0.A Docking Benchmark 278 33 9
1OFU.A Docking Benchmark 214 31 12
1ZHI.B Docking Benchmark 108 25 8
1F34.A Docking Benchmark 235 31 22
2AJF.E Docking Benchmark 147 27 11
1ZHI.A Docking Benchmark 162 28 9
3S9D.B Docking Benchmark 152 28 12
1US7.B Docking Benchmark 156 28 8
1E6J.H Docking Benchmark 330 35 7

1TMQ.B Docking Benchmark 93 24 15
2BTF.P Docking Benchmark 106 25 18
3BX7.C Docking Benchmark 101 24 16
1E4K.C Docking Benchmark 141 27 12
2VDB.A Docking Benchmark 499 39 11
1KXP.A Docking Benchmark 250 32 20
1FLE.E Docking Benchmark 167 28 11
1AK4.A Docking Benchmark 119 26 9

3MXW.L Docking Benchmark 327 35 14
2VXT.H Docking Benchmark 324 35 13
4DN4.L Docking Benchmark 310 34 14
2VIS.A Docking Benchmark 332 35 12
1QA9.A Docking Benchmark 83 23 13
1MQ8.B Docking Benchmark 129 26 12
3DAW.B Docking Benchmark 108 25 16
3HMX.L Docking Benchmark 329 35 16
3F1P.B Docking Benchmark 90 24 18
3AAA.C Docking Benchmark 93 24 11
3F1P.A Docking Benchmark 94 24 13

34

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

3BX7.A Docking Benchmark 138 27 16
3DAW.A Docking Benchmark 278 33 20
1QA9.B Docking Benchmark 82 23 15
1MLC.A Docking Benchmark 327 35 13
4G6J.H Docking Benchmark 320 34 16
1T6B.X Docking Benchmark 491 39 12
1JPS.H Docking Benchmark 324 35 16
2J0T.A Docking Benchmark 128 26 18
4FQI.H Docking Benchmark 332 35 11

1AHW.A Docking Benchmark 325 35 20
2HQS.A Docking Benchmark 308 34 17
1FFW.A Docking Benchmark 98 24 8
3HI6.X Docking Benchmark 324 35 15
7CEI.B Docking Benchmark 107 25 10
1GXD.A Docking Benchmark 504 39 21
3V6Z.A Docking Benchmark 329 35 21
1ACB.E Docking Benchmark 172 29 13
1AY7.A Docking Benchmark 85 23 9
1BGX.H Docking Benchmark 332 35 31
1KXP.D Docking Benchmark 361 36 26
3VLB.A Docking Benchmark 286 33 15
1KTZ.A Docking Benchmark 80 23 7
3BIW.A Docking Benchmark 352 35 9
1EXB.E Docking Benchmark 76 22 3
2O3B.A Docking Benchmark 170 28 15
2SIC.I Docking Benchmark 94 24 11

3VLB.B Docking Benchmark 157 28 17
1DFJ.E Docking Benchmark 103 25 18
1IRA.X Docking Benchmark 113 25 23
1AY7.B Docking Benchmark 67 22 9
2HRK.B Docking Benchmark 102 24 8
2J0T.D Docking Benchmark 105 25 11
7CEI.A Docking Benchmark 73 22 13
1FFW.B Docking Benchmark 59 21 10
1PVH.B Docking Benchmark 139 27 8

35

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

3RVW.C Docking Benchmark 321 34 13
1WEJ.H Docking Benchmark 327 35 11
1S1Q.A Docking Benchmark 115 25 11

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

1DOR.A NOX 213 30 25
1YVE.I NOX 331 35 25

1DOW.A NOX 179 29 14
1NSE.A NOX 313 34 39
1EMV.A NOX 73 22 13
1CP2.A NOX 179 29 13
1RRP.A NOX 162 28 32
1XIK.A NOX 239 32 37
1BKD.R NOX 127 26 25
1TCO.A NOX 232 31 21
1JKM.A NOX 244 32 16
1I8L.A NOX 164 28 8
1QBI.A NOX 298 34 17
1QFH.A NOX 180 29 37
1D09.A NOX 206 30 15
1B6C.A NOX 88 23 15
1CMX.A NOX 164 28 22
1ETH.A NOX 302 34 14
3C98.A NOX 400 37 27
1BVN.T NOX 61 21 15
1REQ.A NOX 495 39 64
1STF.E NOX 148 27 12
4SGB.I NOX 48 19 6
1ONE.A NOX 266 33 34
2NAC.A NOX 275 33 56
1BJN.A NOX 253 32 32
1CNZ.A NOX 253 32 43
1SMP.I NOX 81 23 12

36

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

1B3A.A NOX 58 21 12
1B34.A NOX 70 22 17
1AT3.A NOX 159 28 15
1ISA.A NOX 144 27 9
1MSP.A NOX 107 25 12
1CMB.A NOX 94 24 15
1I2M.A NOX 126 26 24
1TRK.A NOX 429 38 67
3HHR.A NOX 139 27 21
1SPU.A NOX 514 40 112
1LFD.A NOX 74 22 11
1VOK.A NOX 149 27 19
1AVW.A NOX 159 28 19
1BRM.A NOX 261 32 54
1UEA.A NOX 133 26 22
1CSE.I NOX 55 20 10
1ITB.A NOX 119 26 25
1SMT.A NOX 90 24 22
1EG9.A NOX 293 34 31
1CVS.A NOX 100 24 17
1FRV.A NOX 198 30 59
1BI7.A NOX 202 30 25
1TX4.A NOX 145 27 17
1B5E.A NOX 187 29 36
1F6Y.A NOX 183 29 19

4MDH.A NOX 239 32 26
1HGX.A NOX 125 26 18
2AE2.A NOX 196 30 18
1C0F.S NOX 101 24 22
1HLU.A NOX 277 33 11
1DHK.A NOX 321 34 26
1WGJ.A NOX 207 30 11
4XXH.A NOX 187 29 19
2AAI.A NOX 199 30 25
2PFL.A NOX 444 38 23

37

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

1QAE.A NOX 164 28 13
1WQ1.R NOX 120 26 14
1BML.A NOX 171 29 26
1GUX.A NOX 137 27 13
1EUV.A NOX 158 28 27
1GPE.A NOX 351 35 28
1CC0.A NOX 130 26 9
1PDK.A NOX 170 28 28
1DCE.A NOX 433 38 39
2PTC.I NOX 53 20 8
1TGS.I NOX 49 20 13
1QFE.A NOX 170 28 7
1JTD.A NOX 177 29 12
1B9M.A NOX 217 31 41
2HHM.A NOX 193 30 21
1VLT.A NOX 120 26 14
1CLI.A NOX 246 32 42
1YCS.A NOX 153 28 11
1SOX.A NOX 333 35 24
1GLA.F NOX 121 26 7
1EFV.A NOX 228 31 59
1FIN.A NOX 223 31 29
1PP2.L NOX 105 25 17
1BYF.A NOX 94 24 16
1B8J.A NOX 289 33 60
1BUH.A NOX 221 31 12
1COZ.A NOX 102 24 10
1HJR.A NOX 126 26 15
1PNK.A NOX 172 29 80
1QAX.A NOX 327 35 78
1QOR.A NOX 235 31 21
1FSS.A NOX 341 35 15
1AVZ.B NOX 89 23 11
1LUC.A NOX 239 32 30
1AVA.A NOX 259 32 17

38

PDB ID Dataset Surface
Residues

Dynamic Cutoff
Residues

Experimental Annotated
Residues

1H2A.L NOX 349 35 55
1CQI.A NOX 201 30 18
2HDH.A NOX 226 31 16
1YPI.A NOX 179 29 23
2UTG.A NOX 66 21 14
3TMK.A NOX 167 28 11
1HSS.A NOX 92 24 15
1ZBD.A NOX 131 26 19
1BO1.A NOX 252 32 18
1XSO.A NOX 107 25 7
1B8A.A NOX 333 35 56
1B7B.A NOX 230 31 28
1KPE.A NOX 93 24 33
1QAV.A NOX 76 22 13
1EAI.C NOX 60 21 10
1F60.A NOX 319 34 28
2PCB.A NOX 224 31 6
1ATN.A NOX 270 33 16

39

Appendix B: Prediction Files for 1ACB.I

Residue
Number

Residue
Type

Prediction
Score

8 LYS 0.31
9 SER 0.06
10 PHE 0.00
11 PRO 0.02
12 GLU 0.02
13 VAL 0.00
14 VAL 0.06
15 GLY 0.01
16 LYS 0.01
17 THR 0.01
18 VAL 0.00
19 ASP 0.02
20 GLN 0.01
21 ALA 0.00
22 ARG 0.01
23 GLU 0.01
24 TYR 0.01
25 PHE 0.00
26 THR 0.02
27 LEU 0.31
28 HIS 0.17
29 TYR 0.03
30 PRO 0.02
31 GLN 0.02
32 TYR 0.00
33 ASP 0.05
34 VAL 0.00
35 TYR 0.02
36 PHE 0.00
37 LEU 0.04
38 PRO 0.03
39 GLU 0.02

ISPRED4 DockPred PredUs 2.0

40

40 GLY 0.05
41 SER 0.35
42 PRO 0.96
43 VAL 0.25
44 THR 0.96
45 LEU 0.67
46 ASP 0.98
47 LEU 0.97
48 ARG 0.17
49 TYR 0.24
50 ASN 0.12
51 ARG 0.00
52 VAL 0.00
53 ARG 0.1
54 VAL 0.00
55 PHE 0.26
56 TYR 0.05
57 ASN 0.04
58 PRO 0.01
59 GLY 0.01
60 THR 0.01
61 ASN 0.01
62 VAL 0.02
63 VAL 0.00
64 ASN 0.01
65 HIS 0.01
66 VAL 0.02
67 PRO 0.00
68 HIS 0.01
69 VAL 0.00
70 GLY 0.01

41

Appendix C: Python Script for Logistic Regression

#!/usr/bin/env python

imports
import pandas as pd
import numpy as np
import statsmodels.api as sm

set table of data
aucframe= pd.DataFrame({})

create logistic regression function
def log_reg_nox():
 col_names = ['residue', 'predus', 'ispred', 'dockpred', 'annotated']
 # load dataset
 df =
pd.read_csv("/Users/evanedelstein/Desktop/Research_Evan/Raji_Summer2019_atom/Data_Files
/Logistic_regresion_corrected/noxdata.csv", header=None, names=col_names)
 df.isnull().any()
 data = df.fillna(method='ffill')
 feature_cols = ['predus','ispred','dockpred']
 protein = data.residue
 X = data[feature_cols] # Features
 y = data.annotated # Target variable
 x = sm.add_constant(X)
 logit_model=sm.Logit(y,x)
 result=logit_model.fit()
 print(result.summary2())
 coefficients = result.params
 benchmark=
pd.read_csv('/Users/evanedelstein/Desktop/Research_Evan/Raji_Summer2019_atom/Data_Files/
Logistic_regresion_corrected/benchmarkdata.csv', header=None, names=col_names)
 protein= benchmark.residue
 predusval = benchmark.predus
 ispredval = benchmark.ispred
 dockpred = benchmark.dockpred
 predcoef = coefficients[1]
 ispredcoef = coefficients[2]
 dockpredcoef= coefficients[3]
 val = (coefficients[0] + predcoef * predusval + ispredval* ispredcoef+dockpred *
dockpredcoef)*(-1)
 exponent = np.exp(val)
 pval = (1/(1+exponent))
 results = pd.DataFrame({"residue": protein, "prediction value": pval})

42

path="/Users/evanedelstein/Desktop/Research_Evan/Raji_Summer2019_atom/Data_Files/Logist
ic_regresion_corrected/predictionvalues/predus_ispred_dockpred/benchmarkpredictionvalues.cs
v"
 results.to_csv(path,sep=",", index=False, header=True)
log_reg_nox()
def log_reg_bnch():
 col_names = ['residue', 'predus', 'ispred', 'dockpred', 'annotated']

load dataset
 df =
pd.read_csv("/Users/evanedelstein/Desktop/Research_Evan/Raji_Summer2019_atom/Data_Files
/Logistic_regresion_corrected/benchmarkdata.csv", header=None, names=col_names)
 df.isnull().any()
 data = df.fillna(method='ffill')
 feature_cols = ['predus','ispred','dockpred']
 protein = data.residue
 X = data[feature_cols] # Features
 y = data.annotated # Target variable

 # fit the model with data
 x = sm.add_constant(X)
 logit_model=sm.Logit(y,x)
 result=logit_model.fit()
 print(result.summary2())
 coefficients = result.params
 print(coefficients)

prediction value
 nox=
pd.read_csv('/Users/evanedelstein/Desktop/Research_Evan/Raji_Summer2019_atom/Data_Files/
Logistic_regresion_corrected/noxdata.csv', header=None, names=col_names)
 protein= nox.residue
 protein= nox.residue
 predusval = nox.predus
 ispredval = nox.ispred
 dockpred = nox.dockpred
 predcoef = coefficients[1]
 ispredcoef = coefficients[2]
 dockpredcoef= coefficients[3]
 val = (coefficients[0] + predcoef * predusval + ispredval* ispredcoef+dockpred *
dockpredcoef)*(-1)
 exponent = np.exp(val)
 pval = (1/(1+exponent))
 results = pd.DataFrame({"residue": protein, "prediction value": pval})

43

path="/Users/evanedelstein/Desktop/Research_Evan/Raji_Summer2019_atom/Data_Files/Logist
ic_regresion_corrected/predictionvalues/predus_ispred_dockpred/noxpredictionvalues.csv"
 results.to_csv(path,sep=",", index=False, header=True)
log_reg_bnch()
def log_reg_nox_ispred_dockpred():
 col_names = ['residue', 'predus', 'ispred', 'dockpred', 'annotated']

Appendix D: Perl6 Script for Calculating F1 Score

#!/usr/bin/perl

declaration of file names as variables
my $DBMark_surface_file =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/Dynamic_Cutoff/DBMark_
surfaceres.csv>;
my $NOX_surface_file =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/Dynamic_Cutoff/NOX_surf
aceres.csv>;
my $Dbmark_preddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/ISPRED/ISPRED_DBMark
_data_sorted/>;
my $NOX_preddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/ISPRED/ISPRED_NOX_da
ta_sorted/>;
my $Dbmark_annotateddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Annotated_Residues/Dbmark_Annotate
d_Residues>;
my $NOX_annotateddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Annotated_Residues/NOX_Annotated_
Residues>;
#creating data table file
my $F_Score_File =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Results/Fscores_Results/Ispred.cutoff.F
scores.csv>;

initiating values for global dataset calculations
my $TP_Dbmark_sum = 0;
my $TP_NOX_sum = 0;
my $Pred_Dbmark_sum = 0;
my $Pred_NOX_sum = 0;

44

my $Ann_Dbmark_sum = 0;
my $Ann_NOX_sum = 0;

creating array of query proteins’ dynamic cutoffs
if (my $F_Score_Data = open $F_Score_File, :w) {
 $F_Score_Data.print("Database", ",", "Protein_ID", ",", "TP", ",", "Interface_residues", ",",
"Dynamic_Cutoff", ",", "Precision", ",", "Recall", ",","F_Score", "\n");
}
my %Dbmark_cutoff;
my @Dbmark_cutoff;
for $DBMark_surface_file.IO.lines -> $line {
 my $protein = split(',', $line)[0];
 my $cutoff = split(',', $line)[2];
 @Dbmark_cutoff.push: $protein;
 @Dbmark_cutoff.push: $cutoff;
}
 %Dbmark_cutoff = @Dbmark_cutoff;

looping through annotated residue files
for dir($Dbmark_annotateddir) -> $file {
 my @annotatedres;
 my $Dbmark_filename = split('/', $file.IO.path)[7];
 my $Dbmark_protein = split('_', $Dbmark_filename)[0];
 say $Dbmark_protein;
 my $cutoff_res = %Dbmark_cutoff{$Dbmark_protein};
 my int $cutoff_res_int = +$cutoff_res;
 say $cutoff_res_int;
 my $Dbmark_protein_ispred = "$Dbmark_preddir$Dbmark_protein.ispred_sorted.csv";
 for $file.IO.lines -> $line {
 my ($annres_num, $annres) = $line.split('_');
 @annotatedres.push: $annres_num;
 }
 my $N = @annotatedres.elems;

assigning predicted residues to an array
 my @predres;
 my $predfile = open $Dbmark_protein_ispred, :r;
 my $preddata = $predfile.slurp;
 for $preddata.lines($cutoff_res_int) -> $prediction {
 my ($predres_num, $predres) = $prediction.split(', ');
 @predres.push: $predres_num;
 }
 $predfile.close;

comparing annotated and predicted residues to determine true positives
 my @TPres;

45

 my %lookup = map { $_ => 1 }, @annotatedres;
 for (@predres) -> $res {
 if (%lookup{ $res }) {
 @TPres.push: $res;
 }
 }
 say "My tpres = ", @TPres;
 my $TP = @TPres.elems;
 my $Recall = $TP/$N;
 my $Precision = $TP/$cutoff_res_int;

calculating precision, recall, and F1 scores
 my $F_Score;
 if ($TP == 0) {
 $F_Score = 0;
 } else {
 $F_Score = (2 * $Recall * $Precision)/($Recall + $Precision);
 }
 say $F_Score;
 if (my $F_Score_Data = open $F_Score_File, :a) {
 $F_Score_Data.print("DBMark", ",", $Dbmark_protein, ",", $TP, ",", $N, ",",
$cutoff_res_int, ",", $Precision, ",", $Recall, ",", $F_Score, "\n");
 }
 $TP_Dbmark_sum += $TP;
 $Pred_Dbmark_sum += $cutoff_res_int;
 $Ann_Dbmark_sum += $N;
 }

repeating process for proteins in NOX database
 my %NOX_cutoff;
 my @NOX_cutoff;
 for $NOX_surface_file.IO.lines -> $line {
 my $protein = split(',', $line)[0];
 my $cutoff = split(',', $line)[2];
 @NOX_cutoff.push: $protein;
 @NOX_cutoff.push: $cutoff;
 }
 %NOX_cutoff = @NOX_cutoff;
 for dir($NOX_annotateddir) -> $file {
 my @annotatedres;
 my $NOX_filename = split('/', $file.IO.path)[7];
 my $NOX_protein = split('_', $NOX_filename)[0];
 say $NOX_protein;
 my $cutoff_res = %NOX_cutoff{$NOX_protein};
 my int $cutoff_res_int = +$cutoff_res;
 say $cutoff_res_int;

46

 my $NOX_protein_ispred = "$NOX_preddir$NOX_protein.ispred_sorted.csv";
 for $file.IO.lines -> $line {
 my ($annres_num, $annres) = $line.split('_');
 @annotatedres.push: $annres_num;
 }
 my $N = @annotatedres.elems;
 my @predres;
 my $predfile = open $NOX_protein_ispred, :r;
 my $preddata = $predfile.slurp;
 for $preddata.lines($cutoff_res_int) -> $prediction {
 my ($predres_num, $predres) = $prediction.split(', ');
 @predres.push: $predres_num;
 }
 $predfile.close;
 my @TPres;
 my %lookup = map { $_ => 1 }, @annotatedres;
 for (@predres) -> $res {
 if (%lookup{ $res }) {
 @TPres.push: $res;
 }
 }
 my $TP = @TPres.elems;
 my $Recall = $TP/$N;
 my $Precision = $TP/$cutoff_res_int;
 my $F_Score;
 if ($TP == 0) {
 $F_Score = 0;
 } else {
 $F_Score = (2 * $Recall * $Precision)/($Recall + $Precision);
 }
 say $F_Score;
 if (my $F_Score_Data = open $F_Score_File, :a) {
 $F_Score_Data.print("NOX", ",", $NOX_protein, ",", $TP, ",", $N, ",", $cutoff_res_int,
",", $Precision, ",", $Recall, ",", $F_Score, "\n");
 }
 $TP_NOX_sum += $TP;
 $Pred_NOX_sum += $cutoff_res_int;
 $Ann_NOX_sum += $N;
 }

calculating global precision, recall, and F1 scores for Docking Benchmark NOX databases
 my $Global_Dbmark_Precision = $TP_Dbmark_sum/$Pred_Dbmark_sum;
 my $Global_Dbmark_Recall = $TP_Dbmark_sum/$Ann_Dbmark_sum;
 my $Global_Dbmark_F_Score = (2 * $Global_Dbmark_Recall *
$Global_Dbmark_Precision)/($Global_Dbmark_Recall + $Global_Dbmark_Precision);
 my $Global_NOX_Precision = $TP_NOX_sum/$Pred_NOX_sum;

47

 my $Global_NOX_Recall = $TP_NOX_sum/$Ann_NOX_sum;
 my $Global_NOX_F_Score = (2 * $Global_NOX_Recall *
$Global_NOX_Precision)/($Global_NOX_Recall + $Global_NOX_Precision);
 my $F_Score_Global =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Results/Fscores_Results/Ispred.cutoff.F
scores.Totals.csv>;
 if (my $F_Score_Data_Totals = open $F_Score_Global, :w) {
 $F_Score_Data_Totals.print("DBmark_Global_F_Score", ",", "NOX_Global_F_Score",
"\n");
 $F_Score_Data_Totals.print($Global_Dbmark_F_Score, ",", $Global_NOX_F_Score);
 }

Appendix E: Perl6 Script for Calculating MCC Score

#!/usr/bin/perl

declaration of file names as variables
my $DBMark_surface_file =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/Dynamic_Cutoff/DBMark_
surfaceres.csv>;
my $NOX_surface_file =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/Dynamic_Cutoff/NOX_surf
aceres.csv>;
my $Dbmark_preddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/ISPRED/ISPRED_DBMark
_data_sorted/>;
my $NOX_preddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/ISPRED/ISPRED_NOX_da
ta_sorted/>;
my $Dbmark_annotateddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Annotated_Residues/Dbmark_Annotate
d_Residues>;
my $NOX_annotateddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Annotated_Residues/NOX_Annotated_
Residues>;

creating data table file
my $MCC_File =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Results/MCC_Results/ISPRED/Ispred.
MCC.csv>;

48

initiating values for global dataset calculations
my $TP_Dbmark_sum = 0;
my $TP_NOX_sum = 0;
my $FP_Dbmark_sum = 0;
my $FP_NOX_sum = 0;
my $TN_Dbmark_sum = 0;
my $TN_NOX_sum = 0;
my $FN_Dbmark_sum = 0;
my $FN_NOX_sum = 0;
if (my $MCC_Data = open $MCC_File, :w) {
 $MCC_Data.print("Database", ",", "Protein_ID", ",", "Interface_residues", ",",
"Dynamic_Cutoff", ",", "Sequence_residues", ",", "TP", ",", "FP", ",", "TN", ",", "FN",
",","MCC", "\n");
}

creating array of query proteins’ dynamic cutoffs
my %Dbmark_cutoff;
my @Dbmark_cutoff;
for $DBMark_surface_file.IO.lines -> $line {
 my $protein = split(',', $line)[0];
 my $cutoff = split(',', $line)[2];
 @Dbmark_cutoff.push: $protein;
 @Dbmark_cutoff.push: $cutoff;
}
%Dbmark_cutoff = @Dbmark_cutoff;

looping through annotated residue files
for dir($Dbmark_annotateddir) -> $file {
 my @annotatedres;
 my $Dbmark_filename = split('/', $file.IO.path)[7];
 my $Dbmark_protein = split('_', $Dbmark_filename)[0];
 say $Dbmark_protein;
 my $cutoff_res = %Dbmark_cutoff{$Dbmark_protein};
 my int $cutoff_res_int = +$cutoff_res;
 say $cutoff_res_int;
 my $Dbmark_protein_ispred = "$Dbmark_preddir$Dbmark_protein.ispred_sorted.csv";
 for $file.IO.lines -> $line {
 my ($annres_num, $annres) = $line.split('_');
 @annotatedres.push: $annres_num;
 }
 my $N = @annotatedres.elems;

assigning predicted residues to an array
 my @predres;
 my @seqres;

49

 my $predfile = open $Dbmark_protein_ispred, :r;
 my $preddata = $predfile.slurp;
 for $preddata.lines($cutoff_res_int) -> $prediction {
 my ($predres_num, $predval) = split ', ', $prediction;
 @predres.push: $predres_num;
 }
 for $preddata.lines -> $prediction {
 my ($predres_num, $predval) = split ', ', $prediction;
 @seqres.push: $predres_num;
 }
 $predfile.close;

comparing annotated and predicted residues to determine true positives
 my @TPres;
 my %lookup = map { $_ => 1 }, @annotatedres;
 for (@predres) -> $res {
 if (%lookup{ $res }) {
 @TPres.push: $res;
 }
 }

calculating confusion matrix values and MCC score
 my $Seqres = @seqres.elems;
 my $neg = $Seqres - $cutoff_res_int;
 my $TP = @TPres.elems;
 my $FP = $cutoff_res_int - $TP;
 my $FN = $N - $TP;
 my $TN = $neg - $FN;
 my $MCC_num = ($TP * $TN) - ($FP * $FN);
 my $MCC_denom = sqrt(($TP + $FN) * ($TP + $FP) * ($TN + $FP) * ($TN + $FN));
 my $MCC = $MCC_num/$MCC_denom;
 say "My MCC = ", $MCC;
 if (my $MCC_Data = open $MCC_File, :a) {
 $MCC_Data.print("DBMark", ",", $Dbmark_protein, ",", $N, ",", $cutoff_res_int, ",",
$Seqres, ",", $TP, ",", $FP, ",", $TN, ",", $FN, ",",$MCC, "\n");
 }
 $TP_Dbmark_sum += $TP;
 $FP_Dbmark_sum += $FP;
 $TN_Dbmark_sum += $TN;
 $FN_Dbmark_sum += $FN;
}

repeating process for proteins in NOX database
my %NOX_cutoff;
my @NOX_cutoff;
for $NOX_surface_file.IO.lines -> $line {

50

 my $protein = split(',', $line)[0];
 my $cutoff = split(',', $line)[2];
 @NOX_cutoff.push: $protein;
 @NOX_cutoff.push: $cutoff;
}
 %NOX_cutoff = @NOX_cutoff;
 for dir($NOX_annotateddir) -> $file {
 my @annotatedres;
 my $NOX_filename = split('/', $file.IO.path)[7];
 my $NOX_protein = split('_', $NOX_filename)[0];
 say $NOX_protein;
 my $cutoff_res = %NOX_cutoff{$NOX_protein};
 my int $cutoff_res_int = +$cutoff_res;
 say $cutoff_res_int;
 my $NOX_protein_ispred = "$NOX_preddir$NOX_protein.ispred_sorted.csv";
 for $file.IO.lines -> $line {
 my ($annres_num, $annres) = $line.split('_');
 @annotatedres.push: $annres_num;
 }
 my $N = @annotatedres.elems;
 my @predres;
 my @seqres;
 my $predfile = open $NOX_protein_ispred, :r;
 my $preddata = $predfile.slurp;
 for $preddata.lines($cutoff_res_int) -> $prediction {
 my ($predres_num, $predval) = split ', ', $prediction;
 @predres.push: $predres_num;
 }
 for $preddata.lines -> $prediction {
 my ($predres_num, $predval) = split ', ', $prediction;
 @seqres.push: $predres_num;
 }
 $predfile.close;
 say "My predres = ", @predres;
 my @TPres;
 my %lookup = map { $_ => 1 }, @annotatedres;
 for (@predres) -> $res {
 if (%lookup{ $res }) {
 @TPres.push: $res;
 }
 }
 my $Seqres = @seqres.elems;
 my $neg = $Seqres - $cutoff_res_int;
 my $TP = @TPres.elems;
 my $FP = $cutoff_res_int - $TP;
 my $FN = $N - $TP;

51

 my $TN = $neg - $FN;
 my $MCC_num = ($TP * $TN) - ($FP * $FN);
 my $MCC_denom = sqrt(($TP + $FN) * ($TP + $FP) * ($TN + $FP) * ($TN + $FN));
 my $MCC = $MCC_num/$MCC_denom;
 say "My MCC = ", $MCC;
 if (my $MCC_Data = open $MCC_File, :a) {
 $MCC_Data.print("NOX", ",", $NOX_protein, ",", $N, ",", $cutoff_res_int, ",", $Seqres,
",", $TP, ",", $FP, ",", $TN, ",", $FN, ",",$MCC, "\n");
 }
 $TP_NOX_sum += $TP;
 $FP_NOX_sum += $FP;
 $TN_NOX_sum += $TN;
 $FN_NOX_sum += $FN;
 }

calculating global confusion matrix values and MCC scores for Docking Benchmark NOX
databases
 my $Dbmark_MCC_num = ($TP_Dbmark_sum * $TN_Dbmark_sum) - ($FP_Dbmark_sum *
$FN_Dbmark_sum);
 my $Dbmark_MCC_denom = sqrt(($TP_Dbmark_sum + $FN_Dbmark_sum) *
($TP_Dbmark_sum + $FP_Dbmark_sum) * ($TN_Dbmark_sum + $FP_Dbmark_sum) *
($TN_Dbmark_sum + $FN_Dbmark_sum));
 my $Dbmark_MCC = $Dbmark_MCC_num/$Dbmark_MCC_denom;
 my $NOX_MCC_num = ($TP_NOX_sum * $TN_NOX_sum) - ($FP_NOX_sum *
$FN_NOX_sum);
 my $NOX_MCC_denom = sqrt(($TP_NOX_sum + $FN_NOX_sum) * ($TP_NOX_sum +
$FP_NOX_sum) * ($TN_NOX_sum + $FP_NOX_sum) * ($TN_NOX_sum +
$FN_NOX_sum));
 my $NOX_MCC = $NOX_MCC_num/$NOX_MCC_denom;
 say "My Dbmark_MCC = ", $Dbmark_MCC;
 say "My NOX_MCC = ", $NOX_MCC;
 my $MCC_Total =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Results/MCC_Results/ISPRED/Ispred.
MCC.Totals.csv>;
 if (my $MCC_tot = open $MCC_Total, :w) {
 $MCC_tot.print("Dbmark_MCC", ",", "NOX_MCC", "\n", $Dbmark_MCC, ",",
$NOX_MCC);
 }

52

Appendix F: Per6 Scripts for Calculating Evaluation Metrics of ROC and PR Curves

#!/usr/bin/perl

declaration of file names as variables
my $Dbmark_preddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/ISPRED/ISPRED_DBMark
_data_sorted/>;
my $NOX_preddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Data_Files/ISPRED/ISPRED_NOX_da
ta_sorted/>;
my $Dbmark_annotateddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Annotated_Residues/Dbmark_Annotate
d_Residues>;
my $NOX_annotateddir =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Annotated_Residues/NOX_Annotated_
Residues>;

creating file w/ data table of gloabal TPR/FPR values at each threshold
my $ROC_File =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Results/ROC_Curves_Results/ROC_D
ata/ISPRED/Ispred.ROC.thresholds.csv>;
if (my $ROC_Data = open $ROC_File, :w) {
 $ROC_Data.print("Threshold", ",", "Global_Dbmark_TPR", ",", "Global_Dbmark_FPR", ",",
"Predicted_Total", ",", "Annotated_Total", ",", "Global_NOX_TPR", ",", "Global_NOX_FPR",
",", "Global_Total_TPR", ",", "Global_Total_FPR", "\n");
}

#creating file w/ data table of TPR/FPR values for each protein at the 0 threshold mark
my $Zero_Threshold_File =
</Users/mordechaiwalder/Desktop/Research_Mordechai/Results/ROC_Curves_Results/ROC_D
ata/ISPRED/Ispred.ROC.zero_threshold.proteins.csv>;
if (my $Zero_Data = open $Zero_Threshold_File, :w) {
 $Zero_Data.print("Protein", ",", "TP", ",", "Annotated_Residues", ",", "TPR", ",", "FP", ",",
"Non-Annotated_Residues", ",", "FPR", "\n");
}

#looping through threshold values
for 0.00, 1.01, 0.01 -> $start, $stop, $inc
 {
 my @seq = flat ($start, *+$inc ... $stop);
 for (@seq) -> $threshold {
 #initializing values
 my $TP_Dbmark_sum = 0;
 my $TP_NOX_sum = 0;
 my $FP_Dbmark_sum = 0;

53

 my $FP_NOX_sum = 0;
 my $Ressum_Dbmark = 0;
 my $Ressum_NOX = 0;
 my $Neg_Dbmark_sum = 0;
 my $Neg_NOX_sum = 0;
 print $threshold;
 print "\n";

 # looping through Docking Benchmark proteins
 for dir($Dbmark_annotateddir) -> $file {
 my @annotatedres;
 my $Dbmark_filename = split('/', $file.IO.path)[7];
 my $Dbmark_protein = split('_', $Dbmark_filename)[0];
 say $Dbmark_protein;
 my $Dbmark_protein_ispred = "$Dbmark_preddir$Dbmark_protein.ispred_sorted.csv";
 for $file.IO.lines -> $line {
 my ($annres_num, $annres) = $line.split('_');
 @annotatedres.push: $annres_num;
 }
 my $N = @annotatedres.elems;
 my @predres;
 my @seqres;
 my $predfile = open $Dbmark_protein_ispred, :r;
 my $preddata = $predfile.slurp;
 for $preddata.lines -> $prediction {
 my ($predres_num, $predval) = split ', ', $prediction;
 @seqres.push: $predres_num;
 if ($predval >= $threshold) {
 @predres.push: $predres_num;
 }
 }
 $predfile.close;
 my @TPres;
 my %lookup = map { $_ => 1 }, @annotatedres;
 for (@predres) -> $res {
 if (%lookup{ $res }) {
 @TPres.push: $res;
 }
 }
 my $pred = @predres.elems;
 my $TP = @TPres.elems;
 my $Seqres = @seqres.elems;
 my $TPR = $TP/$N;
 my $FP = $pred - $TP;
 my $neg = $Seqres - $N;
 my $FPR = $FP/$neg;

54

 if ($threshold == 0) {
 if (my $Zero_Data = open $Zero_Threshold_File, :a) {
 $Zero_Data.print($Dbmark_protein, ",", $TP, ",", $N, ",", $TPR, ",", $FP, ",", $neg, ",",
$FPR, "\n");
 }
 }
 $TP_Dbmark_sum += $TP;
 $FP_Dbmark_sum += $FP;
 $Ressum_Dbmark += $N;
 $Neg_Dbmark_sum += $neg;
 }
 my $Seq_Dbmark_sum = $Neg_Dbmark_sum + $Ressum_Dbmark;
 my $Pred_Dbmark_sum = $TP_Dbmark_sum + $FP_Dbmark_sum;
 say "my TP_Dbmark_sum = ", $TP_Dbmark_sum;
 say "my FP_Dbmark_sum = ", $FP_Dbmark_sum;
 say "my Ressum_Dbmark = ", $Ressum_Dbmark;
 say "my Neg_Dbmark_sum = ", $Neg_Dbmark_sum;
 my $Global_Dbmark_TPR = $TP_Dbmark_sum/$Ressum_Dbmark;
 my $Global_Dbmark_FPR = $FP_Dbmark_sum/$Neg_Dbmark_sum;
 say "my Global_Dbmark_TPR = ", $Global_Dbmark_TPR;
 say "my Global_Dbmark_FPR = ", $Global_Dbmark_FPR;
 #looping through NOX
 for dir($NOX_annotateddir) -> $file {
 my @annotatedres;
 my $NOX_filename = split('/', $file.IO.path)[7];
 my $NOX_protein = split('_', $NOX_filename)[0];
 say $NOX_protein;
 my $NOX_protein_ispred = "$NOX_preddir$NOX_protein.ispred_sorted.csv";
 for $file.IO.lines -> $line {
 my ($annres_num, $annres) = $line.split('_');
 @annotatedres.push: $annres_num;
 }
 my $N = @annotatedres.elems;
 my @predres;
 my @seqres;
 my $predfile = open $NOX_protein_ispred, :r;
 my $preddata = $predfile.slurp;
 for $preddata.lines -> $prediction {
 my ($predres_num, $predval) = split ', ', $prediction;
 @seqres.push: $predres_num;
 if ($predval >= $threshold) {
 @predres.push: $predres_num;
 }
 }
 $predfile.close;
 my @TPres;

55

 my %lookup = map { $_ => 1 }, @annotatedres;
 for (@predres) -> $res {
 if (%lookup{ $res }) {
 @TPres.push: $res;
 }
 }
 #say "My tpres = ", @TPres;
 my $pred = @predres.elems;
 my $TP = @TPres.elems;
 my $Seqres = @seqres.elems;
 my $TPR = $TP/$N;
 my $FP = $pred - $TP;
 my $neg = $Seqres - $N;
 my $FPR = $FP/$neg;
 if ($threshold == 0) {
 if (my $Zero_Data = open $Zero_Threshold_File, :a) {
 $Zero_Data.print($NOX_protein, ",", $TP, ",", $N, ",", $TPR, ",", $FP, ",", $neg, ",",
$FPR, "\n");
 }
 }
 $TP_NOX_sum += $TP;
 $FP_NOX_sum += $FP;
 $Ressum_NOX += $N;
 $Neg_NOX_sum += $neg;
 }
 my $Seq_NOX_sum = $Neg_NOX_sum + $Ressum_NOX;
 my $Pred_NOX_sum = $TP_NOX_sum + $FP_NOX_sum;
 say "my TP_NOX_sum = ", $TP_NOX_sum;
 say "my FP_NOX_sum = ", $FP_NOX_sum;
 say "my Ressum_NOX = ", $Ressum_NOX;
 say "my Neg_NOX_sum = ", $Neg_NOX_sum;
 my $Global_NOX_TPR = $TP_NOX_sum/$Ressum_NOX;
 my $Global_NOX_FPR = $FP_NOX_sum/$Neg_NOX_sum;
 say "my Global_NOX_TPR = ", $Global_NOX_TPR;
 say "my Global_NOX_FPR = ", $Global_NOX_FPR;
 my $TP_Total_sum = $TP_NOX_sum + $TP_Dbmark_sum;
 my $FP_Total_sum = $FP_NOX_sum + $FP_Dbmark_sum;
 my $Ressum_Total = $Ressum_NOX + $Ressum_Dbmark;
 my $Neg_Total_sum = $Neg_NOX_sum + $Neg_Dbmark_sum;
 my $Global_Total_TPR = $TP_Total_sum/$Ressum_Total;
 my $Global_Total_FPR = $FP_Total_sum/$Neg_Total_sum;
 say "my Global_Total_TPR = ", $Global_Total_TPR;
 say "my Global_Total_FPR = ", $Global_Total_FPR;
 if (my $ROC_Data = open $ROC_File, :a) {

56

 $ROC_Data.print($threshold, ",", $Global_Dbmark_TPR, ",", $Global_Dbmark_FPR, ",",
$Pred_Dbmark_sum, ",", $Ressum_Dbmark, ",", $Global_NOX_TPR, ",", $Global_NOX_FPR,
",", $Global_Total_TPR, ",", $Global_Total_FPR, "\n");
 }
 }
}

