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Speck of chaos
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It has been shown that, despite being local, a perturbation applied to a single site of the one-dimensional
XXZ model is enough to bring this interacting integrable spin-1/2 system to the chaotic regime. Here, we
show that this is not unique to this model, but happens also to the Ising model in a transverse field and to the
spin-1 Lai-Sutherland chain. The larger the system is, the smaller the amplitude of the local perturbation for
the onset of chaos. We focus on two indicators of chaos, the correlation hole, which is a dynamical tool, and
the distribution of off-diagonal elements of local observables, which is used in the eigenstate thermalization
hypothesis. Both methods avoid spectrum unfolding and can detect chaos even when the eigenvalues are not
separated by symmetry sectors.
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I. INTRODUCTION

The term quantum chaos, as used in this work, refers to
properties of the spectrum and eigenstates that are similar
to those found in full random matrices, such as strongly
correlated eigenvalues [1–3] and eigenstates close to random
vectors [4–10]. Level statistics as in random matrices are
found also in some integrable models, but they are caused
by finite-size effects [11,12] or change abruptly upon tiny
variations of the Hamiltonian parameters [13,14]. Other def-
initions of quantum chaos include the short-time exponential
growth of out-of-time order correlators [15–20] and diffusive
transport [21–23], although exponential behaviors of four-
point correlation functions appear also near critical points of
integrable models [24–28] and ballistic transport has been
observed in the chaotic single-defect XXZ model [29].

The one-dimensional clean spin-1/2 XXZ model rep-
resents an interacting integrable system, whose transport
behavior has been extensively studied [23,30]. In 2004, it was
shown that the model becomes chaotic if a single site has a
Zeeman splitting different from that on the other sites [31]
(see also [32,33]). At first, it was thought that the transport
behavior of this single-defect XXZ model was diffusive [34],
but it was later concluded that it is ballistic [29]. In spite of
that, the model shows all the expected properties of chaotic
many-body quantum systems. As the system size increases,
level repulsion and chaotic eigenstates emerge for smaller
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defect amplitudes [35], local observables satisfy the diagonal
eigenstate thermalization hypothesis (ETH) [35,36], and the
system’s long-time dynamics manifest spectral correlations
[37].

The single-defect XXZ model has motivated studies of
transport behavior in single-defect noninteracting models
[38] and searches for minimal chaotic models with electron-
phonon coupling [39], but it was not until the beginning of
2020 that the model saw a significant resurgence of interest.
It has since been employed in studies of many-body quan-
tum chaos [40,41], thermalization [42,43], quantum transport
[44,45], and entanglement [46]. In the present work, we show
that the onset of chaos due to a local onsite perturbation is not
unique to the XXZ model. This is illustrated for the spin-1/2
Ising model in a transverse field and the spin-1 Lai-Sutherland
chain. The former is among the simplest quantum systems that
exhibit a critical point and, contrary to the XXZ model, it is
solved without the Bethe ansatz technique. The latter, which
has a SU(3) symmetry, has been investigated in the context of
Haldane gapped materials [47,48] and its transport behavior is
receiving increasing attention [49].

What are the best ways to detect quantum chaos? The
analysis of level statistics is the most common approach when
one has direct access to the spectrum, as in nuclear physics
[2]. It requires the separation of the eigenvalues by symmetry
sectors and, depending on the chaos indicator, also the un-
folding of the spectrum. Other methods that have been put
forward include the analysis of the structure of the eigenstates
[4–10] and the entanglement entropy [50,51]. In Ref. [52]
(see also [44,53–55]), the distinction between integrable and
chaotic models is based on the distribution of the off-diagonal
matrix elements of local observables in each subspace. In
Refs. [41,56], a new chaos indicator based on the rate of
deformations of the eigenstates under small perturbations
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bypasses the need to unfold the spectrum and to separate it
by symmetries. Identifying all symmetries of a model is not
always trivial, so having a way to detect chaos despite their
presence is important in studies of both chaotic and integrable
models.

To leave no doubts about the chaotic nature of our single-
defect models, we consider three indicators of chaos: level
statistics, matrix elements of local observables, and also
the correlation hole. We show that the distribution of the
off-diagonal elements of local observables diagnoses chaos
also when the energy levels are not separated by subspaces.
However, eigenvalues, eigenstates, and matrix elements of
observables are not easily accessible to experiments that fo-
cus on time evolutions, such as those with cold atoms and
ion traps. Therefore, we promote the use of the correlation
hole [37,57–70], which is a dynamical tool to capture level
repulsion and spectrum rigidity. This chaos indicator does not
require unfolding the spectrum or separating it by symmetries
[70]. We discuss how the time scale for the onset of the cor-
relation hole in the three single-defect models—XXZ , Ising,
and Lai-Sutherland chains—depends on the defect amplitude
and on the system size.

II. MODELS

The Hamiltonians for the spin-1/2 XXZ model, spin-1/2
Ising model in a transverse field, and spin-1 Lai-Sutherland
model [71–73] in the presence of a single defect of amplitude
d in the middle of the chain are respectively given by

HXXZ = dJSz
L/2 + J
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(
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kS
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Above, h̄ = 1, L is the number of sites, Sx,y,z
k are spin operators

acting on site k, J is the coupling constant that sets the energy
scale, � is the anisotropy of the XXZ model, and hx is the
amplitude of the transverse field in the Ising model. Note that,
contrary to the case of spin-1/2, the quadratic term in Eq. (3)
is necessary to guarantee integrability when d = 0.

Open boundary conditions are considered to avoid trans-
lational symmetry. To avoid parity and spin reversal, we
add to HXXZ (1) and HZZ (2) small impurities at the edges
of the chain, ε1,LJSz

1,L, where ε1,L are random numbers in
[−0.1, 0.1]. In the case of the spin-1 model, we add to HS1 (3)
the term ε1JSx

1, which connects symmetry sectors where the
total magnetization in the z direction differs by 1. While for
the spin-1/2 models, the onset of chaos requires placing the
defect d out of the borders [31], for the spin-1 model, chaos
emerges when the defect d is on any site, including the edges.

The parameters used are � = 0.48 and hx = 0.84. The
XXZ model conserves total spin in the z direction, so we
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FIG. 1. Chaos indicator β for various values of d for the Ising
model (a) and the spin-1 model (b) averaged over 20 realizations
of border defects. The ratio R from Eq. (5) vs ω for the Ising
model (c) and spin-1 model (d) in the chaotic regime, d = 0.8.
Following [44], we consider only the eigenstates for which (Eβ +
Eα )/2 is in the interval [Ē − 0.05(Emax − Emin)/2, Ē + 0.05(Emax −
Emin)/2], where Ē is the middle of the spectrum and Emax (Emin) is
the largest (smallest) eigenvalue; bin width dω = 0.05.

study the largest subspace of dimension DXXZ = L!/(L/2)!2.
For the other two models: DZZ = 2L and DS1 = 3L.

III. LEVEL STATISTICS

The most used signature of quantum chaos is the distri-
bution of spacings between nearest unfolded energy levels
[74]. For chaotic systems with real and symmetric Hamilto-
nian matrices, as the full random matrices from the Gaussian
orthogonal ensemble (GOE), the level spacing distribu-
tion follows the Wigner-Dyson distribution [2,75], PWD(s) =
(πs/2) exp (−πs2/4), which indicates that the eigenvalues are
highly correlated and repel each other. In integrable models,
where the energy levels are uncorrelated and not prohibited
from crossing, the level spacing distribution is usually Poisso-
nian, PP(s) = e−s, but exceptions include “picket-fence”-kind
of spectra [76–78] and systems with an excessive number of
degeneracies [79].

The crossover from integrability to chaos can be studied
with an indicator that quantifies how close the level spacing
distribution is to PWD(s). An example is the value of β ob-
tained by fitting P(s) with the Brody distribution [80] (see also
[81]),

Pβ (s) = (β + 1)bsβ exp(−bsβ+1), b =
[
�

(
β + 2

β + 1

)]β+1

.

(4)
Chaotic systems give β ∼ 1, while the Poissonian distribution
leads to β ∼ 0.

In Figs. 1(a) and 1(b), we show β as a function of the
defect amplitude for the Ising (a) and the Lai-Sutherland
model (b). One sees that the range of values of d for which
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β ∼ 1 increases with system size, eliminating any suspicion
that the appearance of the Wigner-Dyson distribution might
have been a finite-size effect. A discussion about how the
amplitude of the defect for the onset of chaos decreases as
the system size grows is provided in Appendix A using for
that the single-defect XXZ model.

The level spacing distribution and the ratio of consecu-
tive levels [82,83] detect short-range correlations. A more
complete analysis of level statistics calls for the study of
long-range correlations as well, as measured, for example,
with the level number variance [2]. We verified that the level
number variance for the three single-defect models with d ∼ 1
approaches the GOE result as L increases (not shown).

An advantage of the ratio of consecutive levels over the
level spacing distribution and the level number variance is that
the ratio does not require unfolding the spectrum. However,
a prerequisite for all three quantities is the separation of the
eigenvalues by symmetry sectors. If we mix eigenvalues from
different subspaces, Poissonian statistics may emerge even
when the system is chaotic [84].

IV. EIGENSTATE THERMALIZATION HYPOTHESIS

Indicators of ETH based on observables can also be used to
detect quantum chaos without spectrum unfolding. In chaotic
systems, the infinite-time averages of local observables ap-
proach thermodynamic averages as the system size increases.
This is referred to as the diagonal ETH and has been verified
for the single-defect XXZ model in [35,36] and recently in
[42]. In chaotic systems, the distribution of the off-diagonal
matrix elements of local operators is Gaussian [52,53], which
is called the off-diagonal ETH and has been confirmed for the
single-defect XXZ model as well [44].

We studied the shape of the distribution of the off-diagonal
elements of the operator that breaks the integrability of the
Ising and Lai-Sutherland models, that is, the distribution of
〈ψβ |Sz

L/2|ψα〉, where |ψα,β〉 are the eigenstates of HZZ (2) and
HS1 (3). To confirm that the distribution is indeed Gaussian
and therefore complies with ETH, one performs tests of nor-
mality, such as skewness and kurtosis. In Figs. 1(c) and 1(d),
we show the results for the ratio [53]

R(ω) = |〈ψα|Sz
L/2|ψβ〉|2/|〈ψα|Sz

L/2|ψβ〉|2, (5)

where the bar indicates the average over the off-diagonal
elements for which the energy difference ω = |Eβ − Eα| lies
in one of the bins of width dω = 0.05. For a Gaussian distri-
bution [85], R(ω) = π/2.

Figures 1(c) and 1(d) show that the range of values of ω

for which R(ω) ∼ π/2 increases as the system size grows.
This picture does not hold for the single-defect models in the
integrable limit, where distributions other than Gaussian are
found.

V. CORRELATION HOLE

The results above substantiate that the single-defect models
are chaotic. But which dynamical manifestation of chaos do
they exhibit and how does it depend on the defect amplitude
and system size? To answer these questions, we study the
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FIG. 2. Mean survival probability for the XXZ (a), (d), Ising (b),
(e), and spin-1 (c), (f) model for different system sizes (a)–(c) and
different defect amplitudes (d)–(f). Top row: d = 0.8. Bottom row:
L = 16 (d), L = 14 (e), and L = 9 (f).
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α
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(6)
where C0

α = 〈ψα|
(0)〉 and 〈· · · 〉 indicates an average over
initial states that have energy E0 = 〈
(0)|H |
(0)〉 close to
the middle of the spectrum [86]. The average is needed, be-
cause this quantity is not self-averaging at any time scale [87].
The initial states used are eigenstates of the z terms in H
(1)–(3). The mean survival probability is related to the spectral
form factor K (t ) = ∑D

α,β=1〈e−i(Eα−Eβ )t 〉.
The initial decay of the survival probability is determined

by the shape and bounds of the energy distribution of the
initial state [88–91]. The presence of correlated eigenvalues
gets explicitly manifested later, when the dynamics resolve the
discreteness of the spectrum and the mean survival probability
develops a dip below its saturation point, known as correlation
hole [37,57–70], which appears also for experimental local
observables [67,68]. The use of the correlation hole as an
alternative to detect level repulsion was first proposed for
molecules with poor line resolution [57]. The interval tm �
t � tH, where the correlation hole is found, is limited by the
point of its minimum, tm, and by the longest time scale of the
system, the so-called Heisenberg time, tH, which is inversely
proportional to the mean level spacing.

The onset of the correlation hole for the single-defect mod-
els is analyzed in Fig. 2. The mean survival probability for
the XXZ model is shown in Figs. 2(a) and 2(d), for the Ising
model in Figs. 2(b) and 2(e), and for the spin-1 model in
Figs. 2(c) and 2(f). Curves for the systems at strong chaos
(d = 0.8) and for different systems sizes are displayed in
Figs. 2(a)–2(c). They make it evident that tm grows exponen-
tially with L for the three cases. These long times are unrelated
with the fact that the perturbation is local. They reflect in-
stead the locality of the spin-spin couplings, which causes
the gradual and slow spread of the initial many-body states
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FIG. 3. Mean survival probability for the chaotic NNN spin-1/2
model [Eq. (7)] with L = 16, 18 (a) and for the spin-1 model with
L = 9, 10, d = 0, and ε1 = 0.05 (b). The horizontal line marks the
saturation point. The insets show the corresponding level spacing
distributions, L = 14 (a) and L = 8 (b). The ratio R(ω) is shown
for the NNN model (c) and for the spin-1 model (d) for different
system sizes. The insets show the distributions of 〈ψα|Sz

L/2|ψβ〉 for
200 eigenstates in the middle of the spectrum, L = 16 (c) and L = 9
(d). In (a) and (c):

∑
k Sz

k = 0.

in the Hilbert space. The correlation hole also gets elongated
as the system size increases, since the growth constant of the
exponential behavior of tH with L is larger than that for tm.
These features are all very similar to those observed in chaotic
systems with global perturbations and local couplings [68].

In Figs. 2(d)–2(f), we fix the system size and examine
how tm depends on the defect amplitude. As d decreases
from 0.5 toward the integrable point, the correlation hole gets
postponed to later times for the XXZ and the Ising model
(see plots for tm vs d in Appendix B). This is expected, since
the approach to integrability reduces the correlations between
the eigenvalues and the first ones to be eliminated are the
long-range correlations. It calls attention, however, that the
spin-1 model does not show the same behavior. In this case,
as d decreases below 0.5, the correlation hole is not displaced
and even its depth is hardly affected [Fig. 2(f)]. This raises
the suspicion that the border defect ε1Sx

1 may suffice to bring
the Lai-Sutherland chain to the chaotic regime even when
d = 0. The reason why we did not notice this in Fig. 1(b) may
be an indication that not all symmetries of this model were
identified.

VI. SYMMETRIES

Poissonian level statistics may emerge in chaotic systems
if the eigenvalues from different subspaces are mixed. This
contrasts with the correlation hole, whose appearance requires
only the presence of correlated eigenvalues, not their separa-
tion by symmetry sectors [70]. To illustrate this, we show in
Fig. 3(a) the mean survival probability for a spin-1/2 model
that is known to be chaotic. It has couplings between nearest-

and next-nearest neighbors (NNN) and is described by the
following Hamiltonian:

HNNN = J
L−1∑
k=1

�Sk �Sk+1 + 0.9J
L−2∑
k=1

�Sk �Sk+2. (7)

This system conserves total magnetization in the z direction,
total spin, and it also exhibits parity and spin reversal. The
level spacing distribution in the inset of Fig. 3(a) disregards
these symmetries, apart from the z magnetization, which re-
sults in a Poissonian distribution. The correlation hole, on the
other hand, is evident in the main panel.

Similar results are found in Fig. 3(b) for the spin-1 model
with d = 0 and a very small border defect, ε1 = 0.05. [For
comparison, see 〈Sp(t )〉 for the clean integrable spin-1 model
in Appendix C.] The inset in Fig. 3(b) shows a nearly Poisso-
nian distribution, while the correlation hole is apparent in the
main panel. This makes clear the power of the correlation hole
as a dynamical tool to identify chaotic systems, but it sug-
gests also its usefulness in the search for integrable models.
Verifying whether a Hamiltonian, which may have unknown
symmetries, remains integrable after small modifications, as
done here, is a very hard problem that is often avoided. In
studies of integrability, the usual strategy is instead to build
integrable Hamiltonians using for example the quantum Yang-
Baxter equations.

A natural question that arises from the discussions above
is what happens to the off-diagonal ETH in the presence of
symmetries [92]. It turns out that it can still detect chaos, but
R(ω) is no longer π/2. Chaos is now revealed by the flatness
of the curves for R(ω) at values close to integer multiples of
π/2, as seen in Fig. 3(c) for the NNN model and in Fig. 3(d)
for the spin-1 model. The specific value of R(ω) depends
on the observable and the number of symmetry sectors. The
following picture provides a simplified explanation.

Suppose that one has two subspaces, each with N = D/2
different chaotic eigenstates, and the operator associated with
the symmetry sectors commutes with the observable O used to
compute R(ω). The distribution of the [N (N − 1)]/2 values of
〈ψα|O|ψβ〉 within each subspace is Gaussian, but by mixing
the sectors, one also has N2 values 〈ψα|O|ψβ〉 = 0 for the
cases where |ψα〉 and |ψβ〉 belong to different subspaces. As
a result, R(ω) = π , and the distribution of the off-diagonal
elements is zero-inflated, similar to the ones seen in the insets
of Figs. 3(c) and 3(d). If instead of 2, one has m subspaces,
then R(ω) = mπ/2.

VII. CONCLUSIONS

In integrable quantum systems with many interacting parti-
cles, a local perturbation applied to a single site can be enough
for the onset of chaos. Such small changes to a Hamiltonian
calls for indicators that can detect chaos in the presence of
symmetries, such as the correlation hole and the distribu-
tion of off-diagonal elements of local observables. These two
methods combined may assist the identification of subspaces
and the search for integrable models.
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APPENDIX A: DEPENDENCE ON SYSTEM SIZE

The curves in Figs. 1(a) and 1(b) clearly indicate that as
the system size increases, the amplitude of the defect needed
for the onset of chaos decreases. But how exactly does d de-
crease with L? A proper scaling analysis is hard when dealing
with many-body systems and their exponentially large Hilbert
spaces, since the numerical data are restricted to few system
sizes. The analysis of level statistics requires the full exact
diagonalization of the Hamiltonian matrices, which restricts
the dimension of the Hilbert space to D ∼ 105.

For the Ising model [Fig. 1(c)], we have four points only
and L = 10 is too small to be used. For the spin-1 model
[Fig. 1(d)], in addition to having very few sizes available,
we still need to identify and take into account the remaining
symmetry (or symmetries) that we detected with the studies of
the correlation hole. But before giving up the idea completely,
let us have a closer look at the XXZ model.

Contrary to the Ising and the Lai-Sutherland systems, the
XXZ model conserves the total magnetization in the z direc-
tion. One can then take advantage of this symmetry to get a
larger number of points for the scaling analysis, that is, for the
same system size L, we consider different values of

∑
k Sz

k and
therefore different values of DXXZ = L!/[n!(L − n)!], where
n is the number of excitations. Naturally, since we are inter-
ested in many-body quantum chaos, we stay away from the
dilute limit and consider only n = L/2 − 1 and n = L/2. In
Fig. 4(a), we show β as a function of d for nine values of
DXXZ . The figure follows the same trend of Figs. 1(c) and
1(d), but now with more curves.

We select a threshold value for β for which reasonable
Wigner-Dyson distributions are seen and show in Fig. 4(b)
how the defect amplitude d for the chosen β decreases as
DXXZ increases. The decay of d is evident for the four cho-
sen values β = 0.6, 0.7, 0.8, 0.9 and our studies suggest that
d ∝ D−0.35

XXZ , but we cannot predict what may happen for larger
systems sizes and cannot preclude an eventual halt on the
decay of d .

APPENDIX B: DEPENDENCE ON DEFECT AMPLITUDE

In Figs. 2(d) and 2(e), we fix the system size and observe
that the time to reach the minimum of the correlation hole
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FIG. 4. Chaos indicator β for various values of d for the
XXZ model (a) and value of d as a function of the

∑
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k sub-
space dimension DXXZ for the four values of β indicated (b).
The values of {L, n,DXXZ} from the smallest dimension to the
largest are {12, 6, 924}, {13, 5, 1287}, {13, 6, 1716}, {14, 6, 3003},
{14, 7, 3432}, {15, 6, 5005}, {15, 7, 6435}, {16, 7, 11440}, and
{16, 8, 12870}. In (b) circles are numerical data and the fittings
are indicated with the solid line: d = 2.04/D0.351

XXZ for β = 0.6, d =
2.75/D0.357

XXZ for β = 0.7, d = 3.24/D0.350
XXZ for β = 0.8, and d =

4.37/D0.349
XXZ for β = 0.9.

increases as the defect size decreases from d = 0.5 toward
the integrable point. The hole also gets shallower and it should
eventually disappear altogether when the integrable point has
uncorrelated eigenvalues.

In Fig. 5, we show how tm increases as d decreases for
the XXZ model (a) and the Ising model (b). The fitting gives
tm ∝ d−1.1 for the XXZ model and tm ∝ d−0.4 for the Ising
model. Similarly to the discussion in Sec. I, these results
prompt the question of how these behaviors depend on the
system size. This is again hard to answer, due to the limitations
in system sizes, but the correlation hole offers the great advan-
tage of being a dynamical quantity. Methods other than exact
diagonalization exist to study the time evolution of systems
larger than those available to exact diagonalization and these
techniques are constantly being improved. We may therefore
presume that with the correlation hole we might be able to
perform better scaling analysis than what we can now do with
the eigenvalues.
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d

1000
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3000

tm

0 0.2 0.4
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4000

6000
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)b()a(

FIG. 5. Time for the minimum of the hole as a function of the
defect amplitude for the XXZ model with L = 16 (a) and for the
Ising model with L = 14 (b). Solid lines indicate: tm ∝ d−1.1 in
(a) and tm ∝ d−0.4 in (b).
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FIG. 6. Mean survival probability for the clean integrable spin-1
model (d = ε1 = 0) and for the chaotic single-defect spin-1 model
(d = 0.5 and ε1 ∈ [−0.1, 0.1]) for L = 9. Dark solid lines represent
running averages.

APPENDIX C: SURVIVAL PROBABILITY IN THE CLEAN
SPIN-1 MODEL

The mean survival probability for the integrable clean Lai-
Sutherland spin-1 model with d = ε1 = 0 is shown in Fig. 6
together with the curve for d = 0.5 and ε1 �= 0 to allow for the
comparison between the two and with the case where d = 0
and ε1 = 0.05 presented in Fig. 3(b). The same average over
initial states with energies close to the mean of the spectrum
is considered here also. For the clean case, there is no sign of
the correlation hole caused by level repulsion of the kind seen
in random matrices. At the integrable point, the spin-1 model
has more symmetries, which results in the large fluctuations
seen in Fig. 6 even after a running average. The symmetries
also bring the saturation value of 〈Sp(t )〉 to a level higher than
for the chaotic single-defect spin-1 model, as expected.

We note that correlations of other kinds, such as those
caused by the Shnirelmann’s peak observed in some integrable
models, may lead to correlation holes of different forms and at
different time scales [12], but they are easily distinguished by
the holes generated by quantum chaos, which can be described
using random matrix theory [68].
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