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Self-averaging in many-body quantum systems out of equilibrium: Approach to the localized phase
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The self-averaging behavior of interacting many-body quantum systems has been mostly studied at equilib-
rium. The present paper addresses what happens out of equilibrium, as the increase of the strength of on-site
disorder takes the system to the localized phase. We consider two local and two nonlocal quantities of great
experimental and theoretical interest. In the delocalized phase, self-averaging depends on the observable and
on the timescale, but the picture simplifies substantially when localization is reached. In the localized phase,
the local observables become self-averaging at all times while the nonlocal quantities are throughout non-self-
averaging. These behaviors are explained and scaling analysis is provided using the �-bit model and a toy model.
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I. INTRODUCTION

A central question in studies of disordered systems is
whether self-averaging holds or not [1]. A quantity is self-
averaging when the ratio between its variance over disorder
realizations and the square of its average decreases with sys-
tem size [2–10]. This implies that the number of samples used
in an experiment or statistical analyses can be reduced as the
system size increases. It also means that in the thermodynamic
limit, the quantity’s behavior does not depend on the particu-
lar disorder realization used. If self-averaging does not hold,
averages over large sets of random realizations are needed no
matter how large the system is.

The analysis of self-averaging is commonly done in associ-
ation with studies of normal and anomalous diffusion [11–14]
and transitions into the spin-glass state [5,15,16]. Various
quantities have been investigated, from susceptibility, specific
heat, conductance, and free energy to entanglement entropy.
At critical points, self-averaging is usually absent [2–9,17–
19].

The present paper focuses on the self-averaging properties
of interacting many-body quantum systems with on-site dis-
order. In one dimension, these systems exhibit two regimes, a
delocalized phase when the disorder strength is smaller than
the interaction strength and a localized phase reached when
the disorder strength exceeds a critical point [20–24]. The
phenomenon of many-body localization has been intensely
examined, but several questions remain open, including the
exact value of the critical point [25].

In the delocalized phase where the system is chaotic, the
spectrum shows level statistics as in full random matrices.
In this phase, one often assumes that self-averaging holds,
so as the system size increases, one reduces the number of

disorder realizations used in numerical simulations. More care
is usually taken in the vicinity of the transition to the localized
phase, for which several discussions exist about the lack of
self-averaging [26–29]. Most of these works address self-
averaging behavior at equilibrium. The few papers that target
self-averaging properties out of equilibrium include studies
about spin-spin correlations [30], reduced density matrices of
embedded quantum systems [31], and driven systems [10,32].
There are also studies about the lack of self-averaging of the
two-level form factor [33–36], which is not an actual dynam-
ical quantity, but an alternative to analyze spectral properties
in the time domain

When we first approached the subject of self-averaging,
our goal was to analyze what happens to the self-averaging
behavior of interacting many-body quantum systems out of
equilibrium. The plan was to investigate how the behavior of
different quantities and at different disorder strengths might
depend on the timescales. To our surprise, we found ana-
lytically and confirmed numerically that even in the chaotic
regime, some quantities are non-self-averaging. Our first pa-
per was then entirely dedicated to the chaotic regime [37],
using for this a fixed value of the disorder strength.

We now come back to our original goal and investigate
the self-averaging properties of an interacting spin model
out of equilibrium as the disorder strength increases and the
system approaches a many-body localized phase. We con-
sider four quantities that have been extensively studied in
nonequilibrium quantum dynamics: survival probability, in-
verse participation ratio, spin autocorrelation function, and
connected spin-spin correlation function. The first two are
nonlocal quantities in real space and the last two are local
observables. The spin autocorrelation function is equivalent
to the density imbalance used in experiments with cold atoms
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[38] and the connected spin-spin correlation function is mea-
sured in experiments with ion traps [39].

In the chaotic regime, the results are nontrivial and highly
dependent on the quantity and timescale [37]. The same
quantity may be non-self-averaging at short times, but self-
averaging at long times, or vice versa. As the disorder strength
increases and the system approaches localization, the crossing
point for the opposing behaviors gets postponed to ever longer
times. In the localized phase, the general picture becomes
rather simple: The local quantities are self-averaging at any
timescale and the nonlocal quantities are non-self-averaging
at all times.

We present numerical results and justifications for the
changes that take place in the self-averaging behavior as the
disorder strength grows. For the many-body localized phase,
we use the �-bits model to show that the relative variances
of the local observables are proportional to the reciprocal of
the system size. This effective model represents a mapping of
the interacting many-body system into an integrable system
with an extensive number of integrals of motion [40–43]. We
also employ a toy model to explain why the relative variance
of the global quantities grow exponentially with system size.
Both models allow us to access system sizes much larger than
those reachable with the exact diagonalization of the original
spin Hamiltonian.

The paper is organized as follows. Self-averaging is de-
fined in Sec. II, where we present also the Hamiltonian, initial
states, observables, �-bit model, and toy model. The next four
sections, Secs. III, IV, V, and VI, are then dedicated to the
dependence of the relative variance of the four quantities
considered on the disorder strength and on time. The first
paragraph in each one of these sections summarizes the main
findings. A reader interested only in the results for the many-
body localized phase and the scaling analysis obtained with
the �-bit model may skip directly to Sec. VII. Conclusions are
given in Sec. VIII.

II. SELF-AVERAGING, MODEL, AND OBSERVABLES

This section defines self-averaging and the quantities and
spin Hamiltonian studied. It also presents the models used to
describe the localized phase, the � bits, and a toy model.

A. Self-averaging

A quantity O is self-averaging when its relative variance,
which corresponds to the ratio between its variance σ 2

O over
disorder realizations and the square of its mean, that is,

RO(t ) = σ 2
O(t )

〈O(t )〉2 = 〈O2(t )〉 − 〈O(t )〉2

〈O(t )〉2 (1)

goes to zero as the system size L increases. The notation 〈.〉
in the equation above indicates average over disorder real-
izations, and in our case, it also includes the average over
initial states. These states are taken in a very narrow window
of energy around the center of the spectrum. The decrease of
the relative variance with L implies that in the thermodynamic
limit, the sample to sample fluctuations vanish.

Strong self-averaging refers to the case where RO(t ) ∼
L−1 and weak self-averaging means that RO(t ) ∼ L−ν with

0 < ν < 1. In many-body quantum systems, where the ini-
tial state can eventually spread over an exponentially large
many-body Hilbert space, one can also encounter what we
call super self-averaging, when the relative variance decreases
exponentially with the system size [37].

The question addressed by the standard definition of self-
averaging in Eq. (1) is whether the variance of the quantity
O goes to zero faster than 〈O(t )〉2. The square of the mean
value serves as a reference to determine whether the variance
is large or small. If the mean value is exactly zero, independent
of the system size, then the analysis of self-averaging should
be done based on the value of the variance only, not the ratio.
In our case, none of the quantities considered have mean zero,
but they might approach zero at long times as the system size
increases, so Eq. (1) is the proper measure to use.

We emphasize that self-averaging is a concept intrinsically
related with the presence of randomness in the Hamiltonian.
The relative variance, RO(t ), that we study here involves aver-
ages over disorder realizations. This is different from relative
variances involving temporal averages,

TO = O2 − O
2

O
2 , (2)

where

O = lim
T →∞

1

T

∫ T

0
O(t )dt . (3)

While RO(t ) depends on time, TO, is time independent and
may be obtained for a single realization. TO has been em-
ployed in studies of equilibration and thermalization [44–49],
and also many-body localization [43,50].

Equilibration happens after the relaxation time tR, when the
dynamics finally saturates and the observable simply fluctu-
ates around its infinite time average O [44–49,51]. At these
large timescales, t > tR, one may expect RO(t ) at a fixed t to
coincide with TO when the system is chaotic, due to ergodicity.
Whether a relationship between RO(t > tR) and TO might
exist also for larger disorder strengths is a question worth
investigation.

B. Hamiltonian and initial state

We study a one-dimensional spin-1/2 model with local
two-body interactions and on-site disorder. The Hamiltonian
is given by

H = Hh + HXXZ, (4)

where

Hh = J
L∑

k=1

hkS
z
k,

HXXZ = J
L∑

k=1

(
Sx

kSx
k+1 + Sy

kSy
k+1 + �Sz

kS
z
k+1

)
. (5)

Above, h̄ = 1, Sx,y,z
k are the spin operators on site k, L is the

size of the chain, which has periodic conditions, � is the
interaction strength and J sets the energy scale. We fix � = 1,
unless otherwise stated. The Zeeman splitting on each site
is Jhk , where hk are independent random numbers uniformly
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distributed in [−h, h] and h is the disorder strength. The total
magnetization in the z direction is conserved. We work in the
largest subspace, which has zero total z magnetization and
dimension D = L!/(L/2)!2 ∼ √

2/π (2L/
√

L).
The model is integrable when h = 0. It becomes chaotic for

0 < h � 1, due to the interplay between disorder and the Ising
interaction Sz

kS
z
k+1. It approaches a many-body localized phase

as h increases [20,22–24,52–55], which happens when the
disorder is larger than a critical value, h > hc ∼ 4 [25,53,55].

We denote the eigenstates of Hh by |n〉 and the eigenstates
and eigenvalues of H by |α〉 and Eα , respectively. The initial
state |�(0)〉 that we choose is an eigenstate of Hh with energy
very close to the center of the spectrum,

E0 = 〈�(0)|H |�(0)〉 =
∑

α

∣∣c0
α

∣∣2
Eα ∼ 0, (6)

where c0
α = 〈α|�(0)〉.

In our plots, we perform averages over 0.01D initial states
with E0 ∼ 0 and 104/(0.01D) disorder realizations, so that the
total amount of data is 104.

C. �-bit model

Dephasing and dissipation are nonexistent in the localized
phase of noninteracting systems but, in interacting systems,
dephasing is present and responsible for the logarithmic
growth of the entanglement entropy [56,57]. Just as in the non-
interacting case, all eigenstates are still localized and defined
through a set of (almost) local integrals of motion {�τk}. The
corresponding operators {�τk} are adiabatically connected to
the original spin operators {�σk} through a sequence of quasilo-
cal unitary transformations [40,41,58] and are referred to as
pseudospins or � bits. The interaction couples the integrals of
motion, giving rise to the dephasing mechanism responsible
for the entanglement growth and quantum information propa-
gation [43,56,57].

The Hamiltonian of the �-bit model describes the interact-
ing system in the many-body localized phase and is given by

H�bits =
∑

k

J (1)
k τ z

k +
∑
k,l

J (2)
k,l τ z

k τ
z
l + . . . , (7)

where J (1)
k is associated with the random fields and the

coupling parameters J (n�2)
k,l fall off exponentially with the

distance between the sites. Building the integrals of motion of
this Hamiltonian is not trivial. To circumvent the difficulties,
an efficient method was proposed in Ref. [43]. The basic idea
is to resort to the limit of weak interaction and strong disorder,
where the higher order terms of H� bits can be neglected and
the integrals of motion of the noninteracting limit can be used.
We summarize the main steps below, but for more details, see
Ref. [43].

Using the Jordan-Wigner transformation, the Hamiltonian
H in Eq. (4) can be rewritten in terms of interacting spinless
fermions up to boundary terms, and in the localized phase, the
boundary effects are exponentially small in system size. We

have

HJW = J

2

∑
k

(c†
k+1ck + c†

kck+1 + 2hkñk ) + J�
∑

k

ñk ñk+1,

(8)
where c†

k (ck) is the creation (annihilation) fermionic operator
at site k and ñk = c†

kc − 1
2 . In the weakly interacting limit

(�/h 	 1), as a first approximation, the integrals of motion
can be approximated by those of the noninteracting case. We
neglect all terms in HJW that do not commute with the An-
derson integrals of motion (more details in Ref. [43]). Recall
that for � = 0, the system is Anderson localized and its exact
integrals of motion are given by a†

kak , where a†
k (ak ) is the

creation (annihilation) operator for a single-particle Anderson
eigenstate φk with eigenvalue εk . Thus, we obtain the follow-
ing effective �-bit Hamiltonian:

Heff = J
∑

k

εka
†
kak + J

∑
l,k

Sl,ka
†
l ala

†
kak, (9)

where Sl,k = J�
∑

x[|φl (x)|2|φk (x + 1)|2 − φl (x)φl (x +
1)φk (x)φk (x + 1)]. Since the single-particle wave functions
are localized, we have Sl,k ∼ e−d (l,k)/ξ , where d (l, k) is the
distance between the centers of localization of φl and φk and
ξ is the localization length.

The strength of this approach relies on its efficiency, since
the dynamics can be computed using free-fermion techniques.
The computational resources to compute the time evolution of
local observables or correlation functions scale only polyno-
mially with L [43,59,60]. Furthermore, in the limit of weak
interactions, this method does not give just a qualitative de-
scription of the dynamics, but also a quantitative one, meaning
that the relative error with respect to the exact dynamics is
bounded in time [43,60].

D. Toy model

The onset of many-body localization was formally, un-
der some mild assumptions about the energy spectral
statistics, shown for the following Hamiltonian [58]: H =
J

∑L
k=1 hkS

z
k + J

∑L
k=1 ξkSx

k + J
∑L

k=1 jkS
z
kS

z
k+1, where hk, ξk

and jk are random variables, that is, the model has random
field, random transverse field, and random interactions. This
model was also employed recently in discussions about the
existence of the localized phase in Ref. [61] but it is hard to
analyze, so we consider here its noninteracting limit by setting
jk = 0. Localization in this case becomes trivial and a tensor
product basis of eigenstates can be constructed. We use this
limit with ξk = 1,

Htoy = J
L∑

k=1

hkS
z
k + J

L∑
k=1

Sx
k , (10)

as a toy model for the analysis of our results in the localized
phase. This is partially similar to assuming that J (2)

k,l = 0 in
Eq. (7) and it is particularly convenient for studying the global
quantities. Both Heff and Htoy are employed in Sec. VII, which
is dedicated to the localized phase.
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E. Quantities

We investigate the self-averaging behavior of two nonlo-
cal quantities in real space, the survival probability and the
inverse participation ratio, and two local experimental ob-
servables, the spin autocorrelation function and the connected
spin-spin correlation function.

1. Survival probability

The survival probability gives the probability to find the
initial state later in time:

PS (t ) = |〈�(0)|e−iHt |�(0)〉|2 =
∣∣∣∣∣
∑

α

∣∣c0
α

∣∣2
e−iEαt

∣∣∣∣∣
2

. (11)

It is a nonlocal quantity in space and also in time. This
autocorrelation function has been broadly studied since the
beginning of quantum mechanics [62–78] and is now analyzed
experimentally as well [79]. It can be written in an integral
form as

PS (t ) =
∣∣∣∣∣
∫

ρ0(E )e−iEt dt

∣∣∣∣∣
2

, (12)

where

ρ0(E ) =
∑

α

∣∣c0
α

∣∣2
δ(E − Eα ) (13)

is the energy distribution of the initial state. The square of the
width of ρ0(E ),

�2 =
∑
n 
=0

|〈n|H |�(0)〉|2, (14)

depends on the number of states |n〉 directly coupled to the
initial state, which is ∝ L for our spin model. In Eq. (14), n 
=
0 indicates that the sum is over all eigenstates of Hh, except
for the initial state.

According to Eq. (11), at times beyond the saturation of the
dynamics, that is, for t > tR, the survival probability for each
disorder realization fluctuates around its infinite-time average,

PS =
∑

α

∣∣c0
α

∣∣4
, (15)

if the system does not have many degeneracies.

2. Inverse participation ratio

The inverse participation ratio quantifies the spread of the
initial state in the many-body Hilbert space defined by the
states |n〉 [80]. It can be written as an out-of-time order cor-
relator where the operators are projection operators [81]. It is
given by

IPR(t ) =
∑

n

|〈n|e−iHt |�(0)〉|4. (16)

At short times, the evolved state is still very close to |�(t )〉
and the behavior of IPR(t ) is very similar to the square of the
survival probability. This changes as |�(t )〉 spreads over many
states |n〉, not only those directly coupled with |�(0)〉.

3. Spin autocorrelation function

The spin autocorrelation function measures how close the
spin configuration in the z direction at a time t is to the initial
spin configuration:

I (t ) = 4

L

L∑
k=1

〈�(0)|Sz
ke

iHt Sz
ke

−iHt |�(0)〉. (17)

This quantity is similar to the density imbalance between even
and odd sites measured in experiments with cold atoms [38].

Using Eq. (17), we can show that at times beyond the
saturation of the dynamics, t > tR, the spin autocorrelation
function fluctuates around the value:

I = PS + 4

L

L∑
k=1

〈�(0)|Sz
k|�(0)〉

×
∑

α

∣∣c0
α

∣∣2 ∑
n 
=0

∣∣cn
α

∣∣2〈n|Sz
k|n〉. (18)

4. Connected spin-spin correlation function

The connected spin-spin correlation function is given by

C(t ) = 4

L

∑
k

[〈�(t )|Sz
kS

z
k+1|�(t )〉

− 〈�(t )|Sz
k|�(t )〉〈�(t )|Sz

k+1|�(t )〉] (19)

and is measured in experiments with ion traps [39]. The initial
states considered here are noncorrelated product states in the z
direction, so C(0) = 0. As the system evolves, C(t ) quantifies
the average growth of correlations between neighboring sites.

III. SURVIVAL PROBABILITY

In the chaotic regime, the survival probability is not self-
averaging at any timescale [37]. This was shown analytically
by evolving PS (t ) with full random matrices. Based on nu-
merical results for all times and analytical results for short
and long times, we verified that the same is true also for the
disordered chaotic spin model [37]. As we now show, the
survival probability remains non-self-averaging at all times
as the disorder strength increases and the system approaches
localization, but differences exist. One worth pointing out is
that after saturation, while the relative variance of PS (t ) is
constant in the chaotic regime, specifically RPS (t > tR) ∼ 1,
it grows with L in the localized phase.

A. Short times: t < �−1

The expansion for short times gives RPS (t < �−1) =
σ 2

�2t4 + O(t6), where σ 2
�2 = 〈�4〉 − 〈�2〉2. This result is in-

dependent of the disorder strength, because according to
Eq. (14), �2 depends only on the off-diagonal elements of
H written in the product states, while disorder enters in the
diagonal elements. This implies that the relative variance of PS

increases linearly with system size for any (reasonable value
of the) disorder strength:

RPS (t < �−1) ∝ J4t4L . (20)
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FIG. 1. Left panels: Mean value of the survival probability. Right
panels: Relative variance of the survival probability. The values of
the disorder strength are indicated on the panels, they increase from
the top to the bottom panel. The curves correspond to system sizes
L = 10 (black), 12 (blue), 14 (green), and 16 (red). The horizontal
dashed line in Figs. 1(a), 1(c) and 1(e) indicates the saturation point,∑

α |c0
α|4 [Eq. (15)], for L = 16.

This is indeed what we see in Fig. 1, where we show the
mean of the survival probability on the left panels and its
relative variance on the right panels for six values of the
disorder strength, from the top to the bottom panel: h =
0.75, 1, 1.5, 2, 3 and 6. The value h = 0.75 represents the
chaotic region and it was studied in Ref. [37]. For h = 6, the
system is already in the localized phase. There is no differ-
ence in the behavior of RPS (t ) at short times for the different
disorder strengths.

B. Long times: t > tR

To compute the relative variance after saturation, RPS (t >

tR), we need 〈PS (t > tR)〉 and 〈P2
S (t > tR)〉. At long times, the

first term on the right hand side of the equation

〈PS (t > tR)〉 =
〈∑

α 
=β

∣∣c0
α

∣∣2∣∣c0
β

∣∣2
e−i(Eα−Eβ )t

〉
+

〈∑
α

∣∣c0
α

∣∣4

〉

cancels out in the absence of many degeneracies, so

〈PS (t > tR)〉 =
〈∑

α

∣∣c0
α

∣∣4

〉
. (21)

In the equation for〈
P2

S (t > tR)
〉

=
〈 ∑

α,β,γ ,δ

∣∣c0
α

∣∣2∣∣c0
β

∣∣2∣∣c0
γ

∣∣2∣∣c0
δ

∣∣2
e−i(Eα−Eβ+Eγ −Eδ )t

〉
,

the terms that do not average out are α = β, γ = δ, α 
= δ,
also α = δ, β = γ , α 
= β, and α = β = γ = δ. Therefore,

〈
P2

S (t > tR)
〉 = 2

〈∑
α 
=β

∣∣c0
α

∣∣4∣∣c0
β

∣∣4

〉
+

〈∑
α

∣∣c0
α

∣∣8

〉

and

RPS (t > tR) = 2
〈(∑

α

∣∣c0
α

∣∣4)2〉 − 〈∑
α

∣∣c0
α

∣∣4〉2 − 〈∑
α

∣∣c0
α

∣∣8〉
〈∑

α

∣∣c0
α

∣∣4〉2 .

(22)

In the chaotic regime, the eigenstates away from the edges
of the spectrum, and thus also our initial states, are similar to
the eigenstates from full random matrices, that is, they are ap-
proximately normalized random vectors. This means that the
coefficients c0

α are nearly random numbers from a Gaussian

distribution with the constraint
∑

α |c0
α|2 = 1, in other words,

|c0
α|2 ∼ 1/D. This implies that 〈PS (t > tR)〉 ∝ 1/D, as seen in

Fig. 1(a). Due to the uniformization of the components of the
initial state,

RPS (t > tR) � 1, (23)

as seen in Fig. 1(b). This implies that the long-time relative
variance of the survival probability is independent of the sys-
tem size and this quantity is thus non-self-averaging.

As the disorder strength increases above 1, 〈PS (t > tR)〉
grows and RPS (t > tR) becomes dependent on the system
size, reaching values even larger than 1, as, e.g., for h = 2
in Fig. 1(h). This is expected, since by increasing h above 1,
the eigenstates distance themselves from those of full random
matrices, correlations build up between their components, and
thus the fluctuations of PS (t ) at long times should increase. At
first sight, these results suggest the onset of multifractal eigen-
states [82–85], meaning that they do not span homogeneously
the entire Hilbert space, but only a vanishing portion of the
the full Hilbert space, so 〈PS (t > tR)〉 ∝ D−γ with 0 < γ < 1.
However, multifractality at intermediate disorder strengths,
1 < h < hc, has been challenged in Ref. [54], where system
sizes up to L = 24 were considered.

In the many-body localized phase, on the other hand, it
has been argued that the eigenstates are indeed multifractal
[54,55]. This should imply 〈PS (t > tR)〉 ∝ D−γ and the expo-
nential growth of RPS (t > tR) with L. With the few numerical
points in the insets of Figs. 1(k) and 1(l), it is not possible to
confirm that. In fact, one cannot even exclude linear scalings
with L, that is 〈PS (t > tR)〉 ∝ 1/L and RPS (t > tR) ∝ L. Re-
sults better aligned with the expectation of multifractality are
obtained with the toy model Eq. (10), as discussed in Sec. VII.

Independently of the region where multifractality emerges
and on the proper scaling of 〈PS (t > tR)〉 and RPS (t > tR),
it is unquestionable that in the localized phase, the survival
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probability after saturation remains non-self-averaging, but
now at an even stronger sense that in the chaotic regime.

C. Intermediate times: �−1 < t < tR

At intermediate times, �−1 < t < tR, one sees that the
oscillations observed in the evolution of 〈PS (t )〉 get reflected
in oscillations for RPS (t ) as well. The envelope of the oscil-
lations of 〈PS (t )〉 follow a power-law decay [86,87]. In the
chaotic region, this power-law behavior is in part caused by
the presence of the edges of the spectrum [78,86,87], where
the eigenstates are not chaotic. Beyond chaos, the power-law
decay is caused by correlations between the components of
the eigenstates [83,84]. The absence of chaotic states in both
scenarios is a possible justification for the values of RPS (t )
above 1 seen for times t ∼ 10J−1.

Another interesting feature appears after the power-law
decay of 〈PS (t )〉 and before saturation. When the eigenvalues
have some degree of correlation, be it in the chaotic regime
or in the intermediate region between chaos and localization,
〈PS (t )〉 shows a dip below the saturation point 〈PS〉, which is
known as correlation hole [88]. In Figs. 1(a), 1(c) and 1(e), the
dip is clearly seen below the horizontal dashed line that marks
〈PS〉. For reasons explained in Ref. [89], we call Thouless time
[90] the time to reach the minimum of the correlation hole
and denote it by tTh. This is the point where the dynamics
resolve the discreteness of the spectrum and detect spectral
correlations.

The correlation hole becomes less deep [91] and tTh is
postponed to longer times [89] as h increases and the corre-
lations between the eigenvalues die off [cf. Figs. 1(a), 1(c)
and 1(e)]. In the chaotic regime, there is no difference in the
behavior of RPS (t ) during or after the correlation hole [cf.
Figs. 1(a) and 1(b)]. During this entire interval, tTh < t < tR,
the dynamics depend only on the eigenvalues and no longer
on the components of the initial state. However, in the inter-
mediate regime, such as for h = 1.5, the behavior of RPS (t )
for t ∼ tTh is different from that for t > tR [cf. Figs. 1(e) and
Figs. 1(f)]. In the region of the hole, RPS (t ) is pushed to larger
values, while for t > tR, RPS (t ) saturates at a lower point. It
is likely that for h ∼ 1.5, the dependence of the dynamics on
the components |c0

α|2 of the initial state persists to later times,
including the interval of the correlation hole, fading away only
when saturation is approached.

IV. INVERSE PARTICIPATION RATIO

When the system is chaotic, the inverse participation ratio
exhibits two different behaviors. It is non-self-averaging at
short times, but becomes self-averaging at long times [37],
once the initial state has had time to spread in the many-body
Hilbert space and to visit the exponentially large number
of many-body states accessible to its energy. In contrast, as
shown below, as we approach the localized phase, this global
quantity becomes non-self-averaging at all times.

The dependence on the system size of RIPR(t ) at long times
clearly distinguishes chaos from localization. In the ergodic
phase, where the eigenstates are close to random vectors,
RIPR(t > tR) ∝ 1/D. Contrary to that, in the localized phase,
RIPR(t > tR) increases as L grows.
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FIG. 2. Left panels: Mean value of the inverse participation ratio.
Right panels: Relative variance of the inverse participation ratio. The
values of the disorder strength are indicated on the left panels; they
increase from the top to the bottom panel. The curves correspond to
system sizes L = 10 (black), 12 (blue), 14 (green), and 16 (red).

A. Short times: t < �−1

At short times, the evolved state |�(t )〉 is not yet very
far from |�(0)〉, so the inverse participation ratio behaves
similarly to the square of the survival probability and Eq. (20)
applies also for RIPR(t < �−1). Accordingly, as shown on
the right panels of Fig. 2, RIPR(t ) increases linearly with L
independently of the disorder strengths considered.

B. Long times: t > tR

To study RIPR(t ) at times t > tR, we write the inverse
participation ratio in terms of the energy eigenstates,

IPR(t ) =
∑

n

∑
α,β,γ ,δ

e−i(Eα−Eβ+Eγ −Eδ )t

× c0
αcn∗

α cn
βc0∗

β c0
γ cn∗

γ cn
δc0∗

δ , (24)

and use the same reasoning employed in the analysis of
RPS (t > tR). The difference now is that one has an additional
sum over all unperturbed many-body states |n〉. In the chaotic
regime, this significantly reduces the fluctuations and leads
to “super” strong self-averaging, that is, the relative variance
of IPR(t ) decreases exponentially with L. As seen in Fig. 2
(b), RIPR(t > tR) ∝ 1/D, which can be explained analytically

094310-6



SELF-AVERAGING IN MANY-BODY QUANTUM SYSTEMS … PHYSICAL REVIEW B 102, 094310 (2020)

using the fact that the eigenstates are nearly random vectors
[92].

The inverse participation ratio does not develop a visible
correlation hole [cf. Figs. 1(a) and 2(a)]. The hole exists, with
its minimum at the same time tTh [37], but it is minor and the
ratio between the minimum value of IPR(t ) and it saturation
value goes to 1 exponentially fast as L increases. In spite
of that, the behavior of RIPR(t ) before and after the hole is
clearly different in the chaotic region.

The picture above changes as h increases above 0.75 and
the minimum of the correlation hole moves to longer times
[89,91]. The crossings between the curves for RIPR(t ) happen
now at ever longer times [cf. Figs. 2(b), 2(d) and 2(f)]. The in-
stant where the spectral correlations get dynamically detected
marks the time beyond which IPR(t ) becomes self-averaging.
This point disappears once the correlations are destroyed. For
disorder strengths h > 1.5, the curves for the system sizes
considered here no longer cross and the inverse participation
ratio becomes non-self-averaging at all times.

Using the same arguments of multifractality in the many-
body localized phase discussed in Sec. III B, we find that
IPR(t > tR) ∝ e−γ L and RIPR(t > tR) ∝ eγ L, as explained in
Sec. VII. In fact, according to the toy model (10), both RPS (t )
and RIPR(t ) grow exponentially with L at all times.

In the next two sections, we contrast the self-averaging
properties of the nonlocal quantities described in Secs. III and
IV with those for the local quantities.

V. SPIN AUTOCORRELATION FUNCTION

The self-averaging behavior of the spin autocorrelation
function with respect to time is just the opposite from the
inverse participation ratio. I (t ) is self-averaging at short times
for any value of the disorder strength, while at long times,
whether self-averaging holds or not depends on the disorder
strength. In the chaotic regime, just as the survival probability
and contrary to the inverse participation ratio, the spin auto-
correlation function is non-self-averaging for t > tTh. As the
disorder strength increases, the non-self-averaging region is
pushed to ever longer times, until the system reaches the lo-
calized phase, where I (t ) becomes self-averaging at all times.

A. Short times: t < �−1

Quantities that are local in space and involve spatial
averages, such as the spin autocorrelation function, are self-
averaging at short times for any value of the disorder strength,
which can be understood as follows. For t < �−1, the exci-
tations only have time to hop to few neighboring sites, even
if the system is deep in the chaotic phase. As a result, due
to the spatial average, which corresponds to the sum over k
in Eq. (17), the relative variance decreases with system size.
This can be seen by expanding the relative variance of the spin
autocorrelation function for short times [37], which gives

RI (t ) = 16σ 2
�2t4

L2
+ O(t6) ∝ J4t4

L
, (25)

where 1/L appears explicitly. Since σ�2 does not depend on h,
the above result is independent of the disorder strength. This
statement is confirmed by the right column of Fig. 3, where
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FIG. 3. Left panels: Mean value of the spin autocorrelation func-
tion. Right panels: Relative variance of the spin autocorrelation
function. The values of the disorder are indicated on the left panels;
they increase from the top to the bottom panel. The curves corre-
spond to system sizes L = 10 (black), 12 (blue), 14 (green), and 16
(red). The horizontal dashed lines in Figs. 3(a), 3(c) and 3(e) mark
the saturation value of the spin autocorrelation function [Eq. (18)]
for L = 16.

the short-time behavior of RI (t < �−1) is very similar from
Figs. 3(b) to Fig. 3(l).

B. Long times: t > tR

As seen in Fig. 3(b), the curves for RI (t ) in the chaotic
regime cross in the region of the correlation hole. Similarly
to the survival probability, the spin autocorrelation function
is not self-averaging at long times. PS (t ) and I (t ) are both
autocorrelation functions, which may explain some of their
common features. The two quantities develop a visible corre-
lation hole, as seen for I (t ) in Figs. 3(a), 3(c) and 3(e). We
note, however, that contrary to PS (t ), our numerical studies
(not shown) indicate that the correlation hole for I (t ) shrinks
for L > 16. It is an open question whether the onset of a
visible correlation hole has any direct connection with the lack
of self-averaging at long times in the chaotic regime.

As h increases above 0.75 and the correlation hole gets
postponed, one should expect the crossings between the
curves of RI (t ) to happen later in time, analogously to what
one sees for the inverse participation ratio. This is indeed the
case, but for the spin autocorrelation function it only becomes
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evident for h > 1.5. Despite the shift of the correlation hole to
longer times in Figs. 3(a) and 3(c), the crossing of the curves
of RI (t ) in Figs. 3(b) and 3(d) happens at similar times. It
is only for h > 1.5 that we finally see a clear shift in the
crossing points of RI (t ) to later times. It may be that the spin
autocorrelation function is more sensitive to finite size effects.

In the many-body localized phase, h = 6, the spin autocor-
relation function becomes self-averaging also at long times,
as seen in Fig. 3(l). This reflects the locality of the observable.
For h > hc, the initial spin configuration cannot change much
in time, as clearly seen in Fig. 3(k). In contrast to the cases
with h < hc, 〈I (t > tR)〉 in Fig. 3(k) no longer depends on
the system size and saturates at a finite value that does not
decrease with L. This behavior contrasts also with that for
the nonlocal quantities, where even in the localized phase,
one sees that 〈PS (t > tR)〉 and 〈IPR(t > tR)〉 depend on L
[Figs. 1(k) and 2(k)]. The fact that the values of I (t > tR) do
not depend on L explain why, as the system size increases,
the variance σ 2

I (t ) can still decrease with L, resulting in the
self-averaging behavior of I (t ).

A more quantitative analysis of the self-averaging behavior
of the spin autocorrelation function at all times in the many-
body localized phase is provided in Sec. VII.

VI. CONNECTED SPIN-SPIN CORRELATION FUNCTION

The connected spin-spin correlation function combines all
the good properties for self-averaging found in the previous
quantities. It is local in space, as the spin autocorrelation
function, so it is self-averaging at short times for any disorder
strength. It is not an autocorrelation function and does not
develop a correlation hole, which may explain why it is self-
averaging also at long times for any value of h. This quantity
is thus self-averaging at any time scale and for any disorder
strength, which is the perfect picture for an experimental
quantity.

In Fig. 4, we show the absolute value of the mean of C(t )
on the left columns and the relative variance of C(t ) on the
right columns, confirming its self-averaging behavior for all
h’s and all times. But as seen in the panels, the values of RC (t )
depend on the timescale and on the disorder strength.

The relative variance of C(t ) has a nonmonotonic behavior
in time in the chaotic and intermediate regimes, showing a
dip at t ∼ 1 and a bump at t ∼ tTh. This reflects the behavior
of the mean of the spin-spin correlation function, which is
very fast for t < �−1, but then slows down up to tTh. The
slow dynamics in the interval (�−1, tTh) is observed for all
four quantities. This is the time of the power-law decay of
the survival probability [see Figs. 4(a), 4(c) and 4(e)]. The
interval gets elongated as the disorder strength increases and
RC (t ) thus takes longer to saturate [cf. Figs. 4(b), 4(d), 4(f),
4(h), and 4(j)].

The nonmonotonic behavior of RC (t ) disappears in the
localized phase [Fig. 4(l)], where the initial fast evolution of
|〈C(t )〉| is simply followed by the saturation of the dynamics
[Fig. 4(k)]. In this phase, similarly to what was seen for the
spin autocorrelation function in Fig. 3(k), and contrary to
the behavior of the global quantities, the values of C(t ) are
independent on the system size.
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FIG. 4. Left panels: Mean value of the connected spin-spin cor-
relation function. Right panels: Relative variance of the connected
spin-spin correlation function. The values of the disorder are indi-
cated on the left panels, they increase from the top to the bottom
panel. The curves correspond to system sizes L = 10 (black), 12
(blue), 14 (green), and 16 (red).

At equilibrium, the scaling of RC (t > tR) with system
size makes evident the difference between the chaotic and
the many-body localized phase. In the chaotic regime, the
relative fluctuations of the spin-spin correlation decrease ex-
ponentially with system size, RC (t > tR) ∝ 1/D, while in the
localized phase, it decreases linearly with L, as justified with
the �-bit model in the next section.

VII. LOCALIZED PHASE

This section is dedicated to the limit of strong disorder,
h = 6, which is already deep in the localized phase. With the
noninteracting model (� = 0) from Eq. (4), the �-bit Hamil-
tonian in Eq. (9), and the toy model in Eq. (10), we can inspect
large system sizes and asymptotically long times. Notice that
the plots in this section are semilog, while the plots in the
previous sections were log-log.

A. Global quantities

We start by discussing the global quantities. We perform
the scaling analysis of the survival probability using the non-
interacting model in Eq. (4) with � = 0 and explain the
results with the toy model in Eq. (10).
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FIG. 5. Rescaled survival probability −L−1 ln〈PS〉 in (a) and
(c) and its rescaled relative variance −L−1 ln(〈PS〉 + 1) in (b) and
(d) for the noninteracting model (� = 0) of Eq. (4) in (a) and (b) and
for the interacting case (� = 1) in (c) and (d). The system sizes are
indicated.

1. Survival probability

To try to understand the dependence of 〈PS (t )〉 and RPS (t )
on system size L, we consider the noninteracting limit, � = 0,
of the Hamiltonian in Eq. (4). Figures 5(a) and 5(b) display
−L−1 ln〈PS (t )〉 and L−1 ln(RPS (t ) + 1) for h = 6, � = 0, and
large system sizes. The plots show that the survival probabil-
ity is exponentially suppressed in system size, PS (t ) ∝ e−γ L,
while RPS (t ) increases exponentially fast with system size,
RPS (t ) ∝ eγ L. The exponential decay of the survival probabil-
ity with system size after equilibration implies that

∑ |c0
α|4 ∝

D−γ with 0 < γ < 1, which agrees with the picture of fractal
eigenstates in the many-body localized phase [54].

The equivalent plots in Figs. 5(c) and 5(d) are obtained
with the numerical data from Figs. 1(k)–1(l) for the inter-
acting Hamiltonian of Eq. (4). The top and bottom panels of
Fig. 5 are very similar, indicating that the limit � = 0 and the
scaling analysis obtained with it describe well the behavior of
the survival probability and its fluctuations in the many-body
localized phase.

We verified that if we consider −〈ln PS (t )〉 instead of
− ln〈PS (t )〉, we recover self-averaging, that is R− ln PS (t ) ∝
L−1 (not shown). This comes from the fact that logarithms cut
the tails of distributions, thus favoring self-averaging. A some-
what similar discussion appears in Ref. [37] when comparing
the self-averaging behavior of IPR(t ) and of the second-order
Rényi entropy − ln[IPR(t )].

To provide an explanation of the behavior of the survival
probability and its fluctuations, we employ the toy model in
Eq. (10). In this case, it is straightforward to compute the
survival probability

PS (t ) =
L∏
k

fk (t ), (26)

with

fk (t ) = cos4(φk/2) + sin4(φk/2)

+ 2 cos2(φk/2) sin2(φk/2) cos [(ε (k)
+ − ε

(k)
− )t], (27)

where sin2 φk = 1/

√
1 + h2

k and ε
(k)
± = ±

√
1 + h2

k . For a fixed
time t > 0, the functions { fk (t )} are positive independently
and identically distributed random variables with mean value
〈 fk (t )〉 ∼ e−γ (t ) and second moment 〈 f 2

k (t )〉 ∼ e−γ1(t ), where
γ (t ), γ1(t ) > 0. Thus, 〈PS (t )〉 = ∏L〈 fk (t )〉 = e−γ (t )L is expo-
nentially suppressed in system size. Instead, for the relative
fluctuation we have

RPS (t ) =
〈
P2

S (t )
〉

〈PS (t )〉2
− 1 =

( 〈
f 2
k (t )

〉
〈 fk (t )〉2

)L

− 1 ∼ e(2γ (t )−γ1(t ))L.

(28)
Since 2γ (t ) − γ1(t ) > 0, we have that PS (t ) is not self-
averaging and RPS increases exponentially fast with L.

By considering − ln PS (t ) = −∑
k ln fk (t ) and that the

variance of the sum of independent random variables is the
sum of the variances of the random variables, we obtain that
σ 2

− ln PS (t ) = Lσ 2
− ln f (t ). This leads to the relative variance

R− ln PS (t ) = Lσ 2
− ln f (t )

L2〈− ln f (t )〉2
∝ L−1, (29)

which explains why −〈ln PS (t )〉 is self-averaging, as men-
tioned above.

The fractal dimension associated with the scaling analysis
of

∑ |c0
α|4 is usually denoted by D̃2. If it is computed using

− ln〈PS (t > tR)〉 vs lnD, the result in Eq. (28) above implies
that D̃2 is non-self-averaging, but if we use −〈ln PS (t > tR)〉
vs lnD then the fractal dimension is self-averaging.

2. Inverse participation ratio

Using the toy model Eq. (10) for the inverse participation
ratio in the many-body localized phase, we get that

IPR(t ) =
L∏
k

gk (t ), (30)

where gk (t ) = | cos2(φk/2)e−iε (k)
+ + sin2(φk/2)e−iε (k)

− |4 +
|2(cos φk/2) sin(φk/2) sin(ε (k)

+ t )|4. Using arguments similar
to those in the discussion above for the survival probability,
it is thus clear that 〈IPR(t )〉 ∝ e−a(t )L and RIPR(t ) ∝ ea1(t )L,
with a(t ), a1(t ) � 0.

B. Local quantities

We now study the local quantities using the effective
Hamiltonian Eq. (9) for the �-bit model.

1. Spin autcorrelation function

Figure 6(a) shows 〈I (t )〉 obtained with Heff in Eq. (9) for
weak interaction, � = 0.1. After a short and quick dynam-
ics, some memory of the initial state is retained and 〈I (t )〉
saturates to an L-independent positive value. This behavior
is analogous to what we have for H in Eq. (4) in Fig. 3(k),
although there, the saturation point is slightly larger.

The relative variance RI (t ) rescaled with L is shown in
Fig. 6(b), making it evident that RI (t ) ∝ L−1. The �-bit model
confirms that the spin autcorrelation function is self-averaging
at any time in the many-body localized phase, as suggested by
the numerical results for H (4) displayed in Fig. 3(l).
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FIG. 6. Left panels: Mean value of the spin autocorrelation func-
tion. Right panels: Relative variance of the spin autocorrelation
function. In both panels, the dynamics was computed using the
effective �-bit Hamiltonian Heff in Eq. (9) with h = 6 and � = 0.1
for system sizes L = 48, 96, 192. The dashed-line represents the
noninteracting model (� = 0) for L = 48.

Both panels in Fig. 6 also include the curve for the non-
interacting model (� = 0). The same scaling, RI (t ) ∝ L−1,
holds also for this case. The role of the interaction in the �-bit
model is to enhance the self-averaging behavior of I (t ) by re-
ducing in time the value of the relative variance RI (t ) after the
interval of oscillations. This contrasts with the noninteracting
case, where RI (t ) after the oscillations is constant and, in fact,
more similar to what we see for the available system sizes in
Fig. 3(l).

Since the same scaling for RI (t ) holds for the � bits and
the noninteracting Hamiltonian, we consider the toy model in
Eq. (10) to present an analytical argument supporting the self-
averaging property of I (t ). One can show that

I (t ) = 1

L

∑
k

{cos2 φk + sin2 φk cos[(ε+ − ε−)t]}, (31)

where sin2 φk = 1/

√
1 + h2

k and ε± = ±
√

1 + h2
k . The spin

autocorrelation function is then a sum of independent iden-
tically distributed random variables. Applying the additivity
property of the variance, we arrive at RI (t ) ∝ L−1.

2. Connected spin-spin correlation function

Similar conclusions can be drawn for the connected spin-
spin correlation function C(t ). Figures 7(a) and 7(b) show
|〈C(t )〉| and its relative variance RC (t ) for the �-bit model.

FIG. 7. Left panels: Mean value of the connected spin-spin corre-
lation function. Right panels: Relative variance of the connected spin
autocorrelation function. In both panels, the dynamics was computed
using the effective �-bit Hamiltonian Heff in Eq. (9) with h = 6 and
� = 0.1 for system sizes L = 12, 24, 48. The dashed-line represents
the noninteracting model (� = 0) for L = 12.

The corresponding results for the noninteracting limit are
exhibited with dashed lines and are similar to those seen in
Figs. 4(k) and 4(l). As in the case of the spin autocorrelation
function, we find that RC (t ) ∝ L−1 meaning that 〈C(t )〉 is
self-averaging.

The reason why self-averaging holds for I (t ) and C(t ) is
rooted in the fact that both quantities are sums of expectation
values of local observables. At strong disorder, the system
can be thought of, as a first approximation, as a union of
disconnected and independent small chains and we can thus
apply the central limit theorem to understand the behavior of
the relative variances with L.

VIII. CONCLUSIONS

Based on the analysis of the one-dimensional spin-1/2
Heisenberg model with on-site disorder, this paper shows that
the self-averaging behavior of many-body quantum systems
out of equilibrium is rather nontrivial. It depends on the quan-
tity, timescale, and disorder strength. With the use of the �-bit
model and a toy model, we are able to explain analytically
how the mean value and the relative variances of the two
nonlocal and the two local quantities studied here scale with
system size in the many-body localized phase. The general
picture that we draw from our results is the following.

(i) The survival probability, which is nonlocal in real space
and nonlocal in time, is non-self-averaging at any timescale
and for any disorder strength. The behavior is particularly seri-
ous in the many-body localized phase, where our analytical re-
sults show that the relative variance grows exponentially with
system size. These results are worrisome, since PS (t ) is exten-
sively considered in studies of nonequilibrium quantum dy-
namics and in fundamental questions of quantum mechanics.

(ii) The connected spin-spin correlation function measured
in experiments with ion traps, which is local in space and
in time, is self-averaging at all times and for any disorder
strength. In the chaotic region, the relative variance decreases
exponentially with system size at long times, while in the
many-body localized phase, RC (t ) ∝ L−1.

(iii) In between the two above quantities of opposing fea-
tures, we find the inverse participation ratio, which is nonlocal
in space and local in time, and the spin autocorrelation func-
tion, which is local in space and nonlocal in time. They show
complementary behaviors. In the chaotic regime, IPR(t ) is
non-self-averaging at short times, but self-averaging at long
times, while for I (t ), we have just the contrary. As the disorder
strength increases, the crossing point between one behavior
and the other gets delayed to longer times. Once localization
is reached, the inverse participation ratio, just as the survival
probability, becomes non-self-averaging at any timescale with
a relative variance that grows exponentially with system size,
while the spin autocorrelation function, just as the connected
spin-spin correlation function, becomes self-averaging at all
times with RI (t ) ∝ L−1.

(iv) The dependence on the system size of the relative
variances of the observables at long times, t > tR, makes a
clear distinction between the ergodic and the localized phase.
The table below summarizes the differences.

Contrary to ergodicity and thermalization, self-averaging
in many-body quantum systems out of equilibrium has re-
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Chaotic phase Localized phase

RPS (t > tR) ∼1 eγ L

RIPR(t > tR) e−γ L eγ L

RI (t > tR) grows with L 1/L
RC (t > tR) e−γ L 1/L

ceived very little attention. There are several new questions
that can be addressed, from extensions to other isolated time-
independent Hamiltonians to time-dependent Hamiltonians
and open systems.

ACKNOWLEDGMENTS

E.J.T.-H. acknowledges funding from VIEP-BUAP
(Grants No. MEBJ-EXC19-G and No. LUAGEXC19-G),

Mexico. He is also grateful to LNS-BUAP for allowing
use of their supercomputing facility. M.S. and L.F.S.
were supported by NSF Grant No. DMR-1603418 and
gratefully acknowledges support from the Simons Center
for Geometry and Physics, Stony Brook University at which
some of the research for this paper was performed. F.P.B.
thanks the Consejería de Conocimiento, Investigación y
Universidad, Junta de Andalucía and European Regional
Development Fund (ERDF), Ref. No. SOMM17/6105/UGR.
Additional computer resources supporting this work were
provided by the Universidad de Huelva CEAFMC High
Performance Computer located in the Campus Universitario
el Carmen and funded by FEDER/MINECO Project No.
UNHU-15CE-2848. L.F.S. is supported by the NSF Grant
No. DMR-1936006. Part of this work was performed at the
Aspen Center for Physics, which is supported by National
Science Foundation Grant No. PHY-1607611.

[1] I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction
to the Theory of Disordered Systems (Wiley, New York, 1988).

[2] S. Wiseman and E. Domany, Lack of self-averaging in critical
disordered systems, Phys. Rev. E 52, 3469 (1995).

[3] A. Aharony and A. B. Harris, Absence of Self-Averaging
and Universal Fluctuations in Random Systems Near Critical
Points, Phys. Rev. Lett. 77, 3700 (1996).

[4] S. Wiseman and E. Domany, Finite-Size Scaling and Lack of
Self-Averaging in Critical Disordered Systems, Phys. Rev. Lett.
81, 22 (1998).

[5] T. Castellani and A. Cavagna, Spin-glass theory for pedestrians,
J. Stat. Mech.: Theory Exp. (2005) P05012.

[6] A. Malakis and N. G. Fytas, Lack of self-averaging of the
specific heat in the three-dimensional random-field Ising model,
Phys. Rev. E 73, 016109 (2006).

[7] S. Roy and S. M. Bhattacharjee, Is small-world network disor-
dered? Phys. Lett. A 352, 13 (2006).

[8] C. Monthus, Random walks and polymers in the presence of
quenched disorder, Lett. Math. Phys. 78, 207 (2006).

[9] A. Efrat and M. Schwartz, Lack of self-averaging in random
systems: Liability or asset? Phys. A: Stat. Mech. Appl. 414, 137
(2014).

[10] M. Łobejko, J. Dajka, and J. Łuczka, Self-averaging of random
quantum dynamics, Phys. Rev. A 98, 022111 (2018).

[11] J.-P. Bouchaud and A. Georges, Anomalous diffusion in dis-
ordered media: Statistical mechanisms, models and physical
applications, Phys. Rep. 195, 127 (1990).

[12] T. Akimoto, E. Barkai, and K. Saito, Universal Fluctuations of
Single-Particle Diffusivity in a Quenched Environment, Phys.
Rev. Lett. 117, 180602 (2016).

[13] A. Russian, M. Dentz, and P. Gouze, Self-averaging and weak
ergodicity breaking of diffusion in heterogeneous media, Phys.
Rev. E 96, 022156 (2017).

[14] T. Akimoto, E. Barkai, and K. Saito, Non-self-averaging behav-
iors and ergodicity in quenched trap models with finite system
sizes, Phys. Rev. E 97, 052143 (2018).

[15] L. Pastur and M. V. Shcherbina, Absence of self-averaging of
the order parameter in the Sherrington-Kirkpatrick model, J.
Stat. Phys. 62, 1 (1990).

[16] W. F. Wreszinski and O. Bolina, A self-averaging “order param-
eter” for the Sherrington-Kirkpatrick spin glass model, J. Stat.
Phys. 116, 1389 (2004).

[17] G. Parisi and N. Sourlas, Scale Invariance in Disordered Sys-
tems: The Example of the Random-Field Ising Model, Phys.
Rev. Lett. 89, 257204 (2002).

[18] C. A. Müller and D. Delande, Disorder and Interference: Local-
ization Phenomena, Les Houches 2009–Session XCI: Ultracold
Gases and Quantum Information, edited by C. Miniatura, L.-C.
Kwek, M. Ducloy, B. Gremaud, B.-G. Englert, L. F. Cuglian-
dolo, and A. Ekert (Oxford University Press, Oxford, 2011).

[19] L. Pastur and V. Slavin, Area Law Scaling For the Entropy of
Disordered Quasifree Fermions, Phys. Rev. Lett. 113, 150404
(2014).

[20] L. F. Santos, G. Rigolin, and C. O. Escobar, Entanglement ver-
sus chaos in disordered spin systems, Phys. Rev. A 69, 042304
(2004).

[21] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-
insulator transition in a weakly interacting many-electron sys-
tem with localized single-particle states, Ann. Phys. 321, 1126
(2006).

[22] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[23] D. Luitz and Y. B. Lev, The ergodic side of the many-
body localization transition, Ann. Phys.(Berlin) 529, 1600350
(2017).

[24] E. Altman, Many-body localization and quantum thermaliza-
tion, Nat. Phys. 14, 979 (2018).

[25] E. V. H. Doggen, F. Schindler, K. S. Tikhonov, A. D. Mirlin, T.
Neupert, D. G. Polyakov, and I. V. Gornyi, Many-body local-
ization and delocalization in large quantum chains, Phys. Rev.
B 98, 174202 (2018).
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