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Huelva 21071, Spain
‡Department of Physics, Yeshiva University, New York, New York 10016, United States
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ABSTRACT: Recent works have shown that the spectroscopic access to highly excited states provides
enough information to characterize transition states in isomerization reactions. Here, we show that
information about the transition state of the bond-breaking HCN−HNC isomerization reaction can also
be achieved with the two-dimensional limit of the algebraic vibron model. We describe the system’s
bending vibration with the algebraic Hamiltonian and use its classical limit to characterize the transition
state. Using either the coherent state formalism or a recently proposed approach by Baraban et al. [Science
2015, 350, 1338−1342], we obtain an accurate description of the isomerization transition state. In
addition, we show that the energy-level dynamics and the transition state wave function structure indicate
that the spectrum in the vicinity of the isomerization saddle point can be understood in terms of the formalism for excited-state
quantum phase transitions.

1. INTRODUCTION

Transition state theory is the keystone of chemical reaction
studies and chemical kinetics since its formulation in the
1930s.1,2 It allows for the derivation of thermal reaction rates
from the energy surface landscape, in particular, from the
minimal energy pathway connecting reactants and products.
However, the experimental study of transition states is
hindered by the saddle structure of the phase-space region
they inhabit. In recent works, Baraban et al.3 and Mellau et al.4

presented an interesting approach that allows for the
characterization of the transition state in isomerization
reactions using spectroscopic data in the frequency domain
as an input. The approach in both works is based on a
particular spectroscopic pattern: the appearance of a dip in the
spacing of adjacent quantum levels for overtone series
associated with degrees of freedom that are connected with
the reaction coordinate.
In molecular spectroscopy, the increase in the level density,

which happens together with the decrease in the energy
difference between neighboring energy levels, indicates that the
system is reaching a region subject to significant changes in its
potential shape. An example is the well-known energy-level
piling up that occurs once a system gets close to dissociation.
Birge and Sponer were already aware of the importance of
effective frequency5 and the Birge−Sponer plots, of great
relevance in the study of molecular dissociation and in the
estimation of dissociation energies, reflect the decrease in the
effective frequency value once the system excitation energy
approaches the dissociation energy. The deviation from
linearity in Birge−Sponer plots can be explained from the
potential shape and it may be parameterized to obtain a very
precise estimation of the system dissociation energy.6,7

Nonrigid molecular systems also experience an increase in
the energy-level density when the system explores the top of
the barrier to linearity. In this case, the adjacent quantum-level
splittings pass through a minimum value, where anharmonicity
switches from negative to positive values. This feature is known
as the Dixon dip since the seminal work of Dixon, who showed
that the vibrational bending degrees of freedom of a quasilinear
molecule can be modeled with a cylindrically symmetric
potential with a hump in the origin.8 He evinced the cusp in
the effective frequency at the energy of the barrier to linearity.
This has been later explained with the concept of quantum
monodromy, which elucidates the spectral features associated
with the qualitative change in the system phase-space
configuration that happens once the system energy reaches
the local potential maximum, at the top of the barrier to
linearity.9−11

The formalism presented in ref 3 relates the dip in the
quantum level spacing in isomerizing systems with the saddle
(or local maximum) structure of the potential at energies
around the isomerization barrier height. The work proposed a
simple phenomenological formula to extract the isomerization
barrier height from spectroscopic data. This formula was
applied to the vibrational bending spectrum of two isomerizing
systems that have been subject to extensive theoretical and
experimental analyses: the HCN−HNC bond-breaking system
and the cis−trans configurations in the acetylene S1 electronic
state. In both cases, it was shown how the proposed method
helps to identify isomerization pathways, allowing for the
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distinction between spectator vibrational modes and those
particular combinations of modes that favor the isomerization
reaction path. They were also able to extract the transition
state energies, ETS, well within 1% of the value of the
isomerization barrier height obtained with sophisticated ab
initio calculations.12−15

Therefore, both isomerizing and nonrigid molecular species
may be described from a common perspective. In the first case,
the critical point is associated with the transition state saddle
point,3,4 while in the second case, it is connected with the top
of the barrier to linearity.16−18 The questions addressed here
are whether an algebraic model like the two-dimensional limit
of the vibron model (2DVM) can be of help in the estimation
of the transition state properties from spectroscopic data and if
the decrease in the separation between energy levels can be
considered as a new example of excited-state quantum phase
transition (ESQPT).
We show that the 2DVM, once furnished with enough

spectroscopic information, can also be used to characterize the
transition state with great accuracy. The 2DVM stems from the
vibron model introduced by Iachello in the 1980s, an algebraic
model for molecular structure that treats rovibrational
excitations as bosonic particles (vibrons) with a U(4)
dynamical algebra (or spectrum-generating algebra).19,20 The
2DVM is tailored for the treatment of bending dynamics with a
U(3) dynamical algebra.21 Despite its apparent simplicity, the
2DVM encompasses in a common framework the two limiting
cases of interest in the case of bending vibrations; rigidly linear
and rigidly bent configurations, as well as the feature-rich
nonrigid case, with particular spectroscopic signatures due to
the existence of a barrier to linearity.22,23 The classical (or
mean-field) limit of the 2DVM can be obtained with the
coherent (or intrinsic) state formalism,24,25 which provides an
exact energy functional in the large system size limit.26

We perform calculations for the HCN−HNC system
defining an algebraic Hamiltonian and, to get close enough
to the isomerization barrier, we perform a fit to spectroscopi-
cally assigned ab initio term values,12 as in ref 3. The
assignment of these levels to the right quantum labels was
performed in refs 13, 14 and implied an exhaustive analysis of
the full experimental rovibrational spectrum for the [H, C, N]
system. From the results of this fit, we estimate the
isomerization barrier energy in two ways. First, we obtain the
energy functional associated with the optimized algebraic
Hamiltonian for both molecules making use of the coherent
state formalism. From the potential shape, we estimate the
value of the transition state energy. Next, we apply the
phenomenological formula put forward by Baraban et al.3 to
the term values predicted by the optimized algebraic
Hamiltonian, obtaining a second estimation of the saddle
point energy. Moreover, we explore how the structure of the
wave function is affected once the system reaches energies
around the isomerization barrier and we relate this change to
the occurrence of an ESQPT in isomerizing systems.
The present work is organized as follows: Section 2 gives a

brief introduction to the 2DVM algebraic formalism and on
how to obtain its classical limit making use of the intrinsic
(coherent) state formalism. Section 3 presents and explains the
results. Section 4 contains our concluding remarks.

2. THEORY
The modeling of n-dimensional many-body systems using a
U(n + 1) spectrum-generating algebra provides an effective

description of a large variety of systems.27 The most successful
examples of this approach, undoubtedly, are the interacting
boson model in nuclear physics and the vibron model in
molecular physics. The first one is based on a U(6) Lie algebra
as its dynamical algebra28 and the second one relies on a U(4)
Lie algebra.20 In the present section, we briefly outline the
theoretical basis of the 2DVM.
The 2DVM was initially presented by Iachello and Oss for

the study of single and coupled benders.21 The model was
found capable of reproducing the characteristic spectroscopic
features that plague the bending spectrum of nonrigid
molecular species.22,23 Despite its apparent simplicity, the
model includes both a ground-state and an excited-state
quantum phase transition. By conveniently parameterizing the
2DVM Hamiltonian, the system ground state can be made to
evolve from a rigidly linear to a rigidly bent configuration
through the variation of a control parameter. In this process,
the ground state undergoes a particularly abrupt change at a
critical value of the control parameter. This sudden change has
been interpreted as a quantum phase transition,26 a zero-
temperature phase transition purely due to quantum
fluctuations, in the same fashion as in other many-body
bosonic systems.29−31 ESQPTs, defined later,32,33 generalize
this concept to encompass excited states and are characterized
by a singularity (in the mean-field limit) in the system density
of states at a critical energy value. This singularity defines a
separatrix between states having different characteristics.32,33

Precursors of ESQPTs have been identified in the vibrational
bending spectra of several molecular species and have been
associated, through the intrinsic state formalism, with the
existence of a barrier to linearity in the energy potential.17,18

The singularity in the spectrum, marked by a pronounced
decrease in level distance, happens once the system energy
approaches the top of the barrier. The particular spectroscopic
features that appear at such energies were explained by
introducing the concept of quantum monodromy.9,10 The
development of new spectroscopy techniques has made it
possible to access experimentally excited vibrational states at
energies beyond the barrier to linearity.34,35 Quantum
monodromy can be interpreted as an ESQPT in the
2DVM,26,33 and the spectral signatures found in the vibrational
bending spectra of some nonrigid molecular species have been
considered the first experimental confirmation of the
occurrence of an ESQPT.17,18 Other experimental systems
where ESQPT signatures have been identified are super-
conducting microwave billiards36 and spinor Bose−Einstein
condensates.37

2.1. Algebraic Approach to Bending Vibrations. The
algebraic approach to bending vibrations is based on a bosonic
U(3) Lie algebra due to the inherently 2D nature of bending
vibrations. The building bricks for this two-level boson model
are a scalar boson, σ†, and two degenerate Cartesian bosons
{τx

†, τy
†}. The nonzero commutation relations between creation

and annihilation operators are

i j x y, 1, , ; , ,i j i j,σ σ τ τ δ[ ] = [ ] = =† †
(1)

All other commutators are zero. It is convenient to transform
Cartesian into circular bosons26

i i

2
,

2
x y x yτ

τ τ
τ

τ τ
= ∓

±
= ∓

∓
±
†

† †

± (2)
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The nine U(3) Lie algebra generators are the bilinear
products of a creation and an annihilation operator. For a
better physical insight, they are expressed as21,27

n n l
D Q
R

, , ,
2 ( ), 2 ,
2 ( )

sτ τ τ τ σ σ τ τ τ τ
τ σ σ τ τ τ

τ σ σ τ

̂ = + ̂ = ̂ = −
̂ = ± ∓ ̂ =
̂ = +

+
†

+ −
†

−
†

+
†

+ −
†

−

± ±
† †

∓ ± ±
†

∓

± ±
† †

∓ (3)

The next step in the algebraic procedure is to consider the
possible dynamical symmetries, subalgebra chains starting in
the dynamical algebra and ending in the system’s symmetry
algebra. In the present case, the system is limited to a plane
and 2D angular momentum (vibrational angular momentum in
molecular bending vibrations) is conserved; thus, the
symmetry algebra is the SO(2) Lie algebra. The generator of
SO(2) is the vibrational angular momentum, ,̂ as one can
easily understand once it is expressed in terms of the Cartesian
boson operators. As this is an angular momentum projection in
the direction perpendicular to the system’s plane, it can take
both positive and negative (or zero) values. There are two
possible dynamical symmetries that start in U(3) and end in
SO(2)

U U(3) (2) SO(2) Chain I⊃ ⊃ (4a)

U(3) SO(3) SO(2) Chain II⊃ ⊃ (4b)

Each dynamical symmetry conveys a basis and an analytical
energy formula that can be associated with a physical limiting
case. The U(2) dynamical symmetry, also called the cylindrical
oscillator symmetry, corresponds to a rigidly linear molecule,
while the SO(3) dynamical symmetry is associated with a
rigidly bent configuration. A detailed discussion of both
dynamical symmetries, their geometric implications, and the
relation between them can be found in ref 26. All calculations
in the present work have been performed using the chain I
basis, the cylindrical oscillator basis, whose states are denoted
as N n;|[ ] ⟩. The quantum number N labels the totally
symmetric representation of U(3) and it is related to the
total number of bound states of the system. Being a constant,
hereafter, we simplify the basis states notation to n| ⟩. The
quantum label n indicates the vibrational number of quanta
and is the vibrational angular momentum. The branching
rules are

n N N N

l n n n

, 1, 2, ..., 0

, ( 2), ..., 1 or 0, ( odd or even)

= − −

= ± ± − ± = (5)

The definition of a simple Hamiltonian that contains the
main physical ingredients of the model and allows for the study
of the shape phase transition between the different dynamical
symmetries implies the consideration of Casimir or invariant
operators of the subalgebra chains under study.24,25 A simple
model Hamiltonian includes the first-order Casimir operator of
U(2), n̂, and the second-order Casimir operator of SO(3),

W D D D D( )/22 2̂ = ̂ ̂ + ̂ ̂ + ̂
+ − − + .

To reproduce the bending spectrum of HCN and HNC, we
use the algebraic Hamiltonian

H P n P n P l P W P W n n W11 21
2

22
2

23
2

45
2 2 2 2̂ = ̂ + ̂ + ̂ + ̂ + [ ̂ ̂ + ̂ ̂ ]

(6)

extending the most general one- and two-body Hamiltonian,
employed in ref 18, with a four-body operator. The parameter

Pij comes with the jth i-body operator in the Hamiltonian. The
matrix elements of the one- and two-body operators in chain I
basis are

n n n n n n n n n l n l, ,l l l l l l2 2 2 2⟨ | |̂ ⟩ = ⟨ | ̂ | ⟩ = ⟨ | ̂ | ⟩ = (7)

n W n

N n N n n l n l

N n n N n n l

N n N n n l n l

( 2)( 1)( )( )

( )( 2) ( 1)

( )( 1)( 2)( 2)

l l

n n

n n

n n

2
2

1

1 1 1 1 , 2

1 1 1 1
2

,

1 1 1 1 , 2

2 1

2 1

2 1

δ

δ

δ

⟨ | ̂ | ⟩ =

− − + − + + −

+ [ − + + − + + ]

− − − − + + − +

−

+

(8)

The four-body operator [Ŵ2n̂2 + n̂2Ŵ2] is used here
exclusively to improve the HCN data fit, and its matrix
elements are

n n W W n n

n n N n N n n l n l

n N n n N n n l

n n N n N n n l n l

( 2) ( 2)( 1)( )( )

2 ( )( 2) ( 1)

( 2) ( )( 1)( 2)( 2)

l l

n n

n n

n n

2
2 2 2 2

1

1
2

1
2

1 1 1 1 , 2

1
2

1 1 1 1
2

,

1
2

1
2

1 1 1 1

, 2

2 1

2 1

2 1

δ

δ

δ

⟨ | ̂ ̂ + ̂ ̂ | ⟩ =

−[ + − ] − + − + + −

+ [ − + + − + + ]

− [ + + ] − − − + + − +

−

+ (9)

Operators n̂, n̂2, and
2̂
are diagonal in the U(2) basis and

can be identified with a harmonic term, an anharmonic
correction, and the vibrational angular momentum, respec-
tively. By contrast, the operator Ŵ2 is diagonal in the chain II
basis and it is associated with an anharmonic displaced
oscillator. The four-body operator combines Casimir operators
from both subalgebra chains and it is not diagonal in any of
them. Using the procedure sketched in the next section, we
obtain a set of optimized spectroscopic parameters Pij for each
molecule.

2.2. Classical Limit of the Two-Dimensional Vibron
Model. A system energy functional can be retrieved from the
algebraic Hamiltonian (eq 6) by the method of coherent
(intrinsic) states originally introduced in the study of
nuclei,24,25,38,39 and later adapted to molecular systems.40

There are other methods to establish a link between the phase
space and the algebraic approaches.41

The intrinsic state method defines a coherent state, where
the variational parameters r and θ are, in general, complex and
represent coordinates and momenta.40 We consider the spatial
dependence only and, therefore, we set the momenta equal to
zero.20 We now proceed to outline the more relevant results
needed to obtain the classical limit of the 2DVM. For a
detailed description of this procedure in the 2DVM case, see
refs 17, 18, 26.
The first step is the coherent state definition

N r
N

bc.s. ; ,
1

( ) 0N
cθ| ⟩ ≡ |[ ] ⟩ =

!
| ⟩†

(10)

where r and θ are the polar coordinates associated with
Cartesian coordinates x and y. The operator bc

† is the boson
condensate creation operator, b x y( )

r x yc
1

1 2
σ τ τ= [ + + ]†

+
† † † .

The expectation value of the Hamiltonian (eq 6) in the
coherent state gives as a result the ground-state energy
functional, E(r), akin to the system potential function
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H
N

P r
r

P r
r

N r
r

P r
r

P N r
r

P r
r

N r r
r

N N r r
r

N N N r
r

( )
c. s. c. s.

1

1
( 1)

(1 ) 1

2 ( 1)
4

(1 )
4

1
( 1)

12 16
(1 )

( 1)( 2)
4 28
(1 )

( 1)( 2)( 3)
8

(1 )

11

2

2

21

2

2

4

2 2 22

2

2

23

2

2 2 45

2

2

4 2

2 2

6 4

2 3

6

2 4

= ⟨ | ̂ | ⟩ =
+

+

+
+ −

+
+

+
+

+ −
+

+
+

+ − +
+

+ − − +
+

+ − − −
+

(11)

The equilibrium configuration of the molecule is obtained
by minimizing E(r) with respect to the variable r.

3. RESULTS AND DISCUSSION

To shed light on the estimation of the transition state
properties and the possible link between isomerization and
ESQPTs, we analyze the available data for the HCN−HNC

system. The available experimental data for the bending
vibrational spectrum of HNC and HCN were already
successfully modeled with a four-parameter 2DVM spectro-
scopic Hamiltonian, which is the most general Hamiltonian
including one- and two-body interactions.18 Unfortunately,
experimental data are not available above 10 000 cm−1 and the
dissociation barrier is expected to lie around 17 000 cm−1

above the HCN minimum, which is located approximately
5200 cm−1 below the HNC minimum. To overcome this
obstacle, we adopt the same approach as in Baraban et al.:3 we
use for our calculations a set of ab initio term values12

spectroscopically assigned after an exhaustive analysis of the
full experimental rovibrational spectrum for the [H, C, N]
system.13,14 In the present work, selecting pure bending levels,
we consider 142 energies with vibrational angular momenta up
to 12= in the case of HCN compared to 30 available
experimental terms and 41 energy levels up to 9= in the case

Table 1. Optimized Spectroscopic Parameters Pij (cm
−1 units), Root Mean Square Deviation rms (cm−1), and Vibron Number

N Obtained from the Fit to the HCN and HNC Ab Initio Data Set12,14,45 for Hamiltonian (eq 6)a

molecule P11 P21 P22 P23 P45 × 104 N rms

HCN 2308.3(6) −39.947(14) 21.810(6) −10.635(3) −1.311(3) 50 19.37
HNC 1024.9(1.4) −18.59(4) 13.362(23) −5.085(11) 40 14.91

aFor a detailed description of the fitting procedure, see the Supplementary Material.

Figure 1. (a) Sketch of the potentials obtained for the two molecular species using the intrinsic state formalism and the isomerization barrier values,
locating states I, II, III, and IV chosen to illustrate our results (see text). (b) Effective frequency weff as a function of the midpoint excitation energy
E̅ for HCN and HNC. Crosses indicate the available experimental data, while green squares are spectroscopically assigned ab initio results (ref 12,
see text). Blue (orange) circles are the algebraic model results and the blue (orange) line marks the result of fitting eq 12 to the algebraic fit results
for HCN (HNC). (c) Normalized participation ratio (see eq 13) of 0= HCN (blue dots) and HNC (orange dots) eigenstates resulting from the
fit of the algebraic Hamiltonian (eq 6) (see Supplementary Material for details) making use of a truncated cylindrical oscillator basis. (d) Squared
components in the cylindrical oscillator basis for four algebraic model eigenstates of HCN (blue bars) and HNC (orange bars) as a function of the
expectation value of the Hamiltonian in the n| ⟩ basis state.

Table 2. Isomerization Barrier Height in cm−1 Units for HCN and HNC Computed from the Bending Energy Functional
(2DVM-I) and from the 2DVM Optimized Term Values Using eq 12 (2DVM-II) Compared with Results Obtained Using
Other Approaches (Columns Third to Fifth)

ETS comparison (cm−1)

molecule 2DVM-I 2DVM-II Baraban et al.3 Mourik et al.45 Makhnev et al.46

HCN ( 0= ) 16 580(50) 16 599(15) 16 695(17) 16 798 16 809.4
HNC ( 0= ) 11 790(90) 11 977(15) 11 533(124) 11 517 11 496.6
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of HNC compared to only 19 experimental levels. The
optimization of the spectroscopic parameters was carried out
through an iterative nonlinear least-square fitting procedure
that uses the Fortran version of Minuit42 and the optimal
values computed are included in Table 1 (see Supplementary
text for details of the fits).
Once we optimize the spectroscopic parameter values in the

algebraic Hamiltonian (eq 6), we compute the vibrational
bending energy functional for both HCN and HNC using eq
11 derived from the intrinsic state formalism. The obtained
functionals, depicted in Figure 1a, allow for the estimation of
the isomerization barrier height, ETS, which corresponds to the
distance between the functional minimum and its asymptotic
value. We provide in the column labeled 2DVM-I of Table 2
the obtained ETS values for HCN and HNC.
Baraban et al. calculate the transition state energy with a

different approach. They quantify the observed energy dip
making use of the effective frequency, a quantity defined for

quantum systems as w n( ) E n
n

E
n

eff ( )= =∂
∂

Δ
Δ
, i.e., the discrete

derivative of the system energy with respect to the principal
quantum number n.3,4 They suggest a simple formula3 to
parameterize the dependence of the effective frequency on the
midpoint vibrational energy E̅,

i
k
jjjjj

y
{
zzzzzw E

E
E

( ) 1
m

eff
0

TS

1/

ω̅ = − ̅
(12)

with three adjustable parameters: ω0, m, and ETS. The
parameter ω0 is the effective frequency for the potential
ground state and m depends on the potential shape.3 The most
relevant parameter is ETS, the transition state energy, which
provides an estimate of the energy barrier between different
reactants.
We derive the transition state energy employing an

alternative procedure. We use the effective frequencies
computed from the term values predicted using the 2DVM
for both molecular species. The results for 0= vibrational
angular momentum are shown in Figure 1b, where ωeff is
plotted as a function of E̅ using blue (orange) circles for the
algebraic model results for HCN (HNC). The effective
frequency for spectroscopically assigned ab initio data is
depicted using green squares and the available experimental
data are also included as (cyan) crosses. It is clear from this
figure that the 2DVM results undergo the expected dip in the
effective frequency and that they provide a very good estimate
of the height of the isomerization barrier in the HCN−HNC
molecular system. The HNC data are displaced so that the top
of the barrier is common for both molecular species, which
allows for the estimation of the separation between the HCN
and HNC energy minima. We use the effective frequency of
the algebraic term values to fit the parameters in the function
(eq 12) with the help of the Python LMFIT package,43 and
obtain the estimated barrier values in the column of Table 2
labeled as 2DVM-II.
The agreement between the values of the transition state

energy obtained with the two methods above and the values
obtained with other approaches is very good, as can be seen in
Table 2. The differences of the ETS value with respect to
sophisticated ab initio calculations are 1−2% in the HCN case,
and they increase to a maximum of 4% in the HNC case. The
explanation for this difference lies in the fact that the HNC
bending potential has an unusual shape from the interaction

with a nearby excited diabatic electronic state.44 To overcome
this obstacle, Baraban et al.3 included a Gaussian term into
their phenomenological formula (eq 12). The lack of this
extension in the present work explains the different agreement
with the results obtained using other approaches for HCN and
HNC.
An advantage of the algebraic model, compared to a pure

Dunham expansion, is that it provides not only the spectrum
but also the eigenstates of Hamiltonian (eq 6) upon
diagonalization. The height of the isomerization barrier has
strong consequences for the structure of the eigenstates and
the dynamics of the HCN−HNC molecular system.47−49

Indeed, it has been recently shown that the system’s eigenstate
with the closest energy to the saddle point that characterizes
the transition state has an enhanced localization in the bending
coordinates.4 A similar phenomenon has been discussed in the
case of ESQPTs in different realizations of the vibron model,
where eigenstates with eigenvalues close to the critical energy
of the ESQPT have been shown to be strongly localized in the
basis associated with the linear configuration, also called the
cylindrical oscillator basis.50−52

The level of localization of states written in a certain basis
can be quantified with quantities such as the information (or
Shannon) entropy or the participation ratio (PR).53,54 A large
PR value implies that the state receives significant contribu-
tions from many basis states and a small PR value denotes a
strong localization of the state in the basis. This is similar to
other quantities, such as Heller’s F parameter, used to probe
phase-space flow in molecular systems.55,56 Hamiltonian (eq 6)
is block-diagonal in the vibrational angular momentum . Its
eigenstates can be written as a linear combination of the

cylindrical oscillator basis states N n{|[ ] ⟩}: C nk n k n
( )

,ψ| ⟩ = ∑ | ⟩
and the participation ratio is defined as
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The minimum PR value is 1, when the system localization is
maximal and the eigenstate can be identified with a basis state.
The maximum PR value is the dimension of an -vibrational
angular momentum basis block, which happens when all
components are nonzero and have the same weight.
In the nonrigid case, the eigenstate at the ESQPT critical

energy is strongly localized in the chain I basis state with n = 0.
This has been shown to affect the system dynamics. If the
system is initially prepared in this initial basis state, the
evolution is substantially slower than that for other initial states
with similar energy.50−52,57 Similarly, the eigenstate at the
isomerization barrier is also localized, but with a caveat, as we
explain next. In the HCN−HNC case, we plot the PR for the

0= eigenstates normalized by the vibron number N in
Figure 1c with blue (orange) dots for HCN (HNC). In both
cases, there is a remarkable decrease in the PR value for
eigenstates close to the isomerization energy value. To further
clarify the variation in the eigenstates structure, we include in
Figure 1a the two energy functional curves and the energies of
four eigenstates chosen to illustrate the different structures of
the wave functions at different excitation energies. These states
are also indicated in Figure 1c. The four selected eigenstates of
HCN and HNC, labeled as I, II, III, and IV, have energies at
different locations in the potential: at the ground-state energy,
at a mid-height, at the isomerization barrier, and above the
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barrier. The bar diagrams in the four panels of Figure 1d are
drawn from the squared value of the Ck n, coefficients for those
four eigenstates as a function of the energy of the
corresponding basis vector, Nn H Nn⟨ | ̂ | ⟩; bars are blue
(orange) for HCN (HNC) eigenstates. The change in the
structure as we move from eigenstate I to IV is evident. The
low-energy eigenstate I is localized because the cylindrical
oscillator basis is the most appropriate basis for the description
of rigidly linear configurations. Eigenstates II and IV are
characterized by a strong mixing in the same basis. Eigenstate
III is of special relevance since it is the eigenstate with the
closest energy to the isomerization barrier. It is characterized
by a strong localization in the cylindrical oscillator basis.
Contrary to what happens in the ESQPT for nonrigid
molecules, where for 0= the basis element |N00⟩ has the
largest component,50−52 in the isomerization case, the
minimum in the PR is associated with a large component in
a basis state with a high n value, e.g., |NN0⟩ for an even N
value. This is likely caused by anharmonicity effects in the
Hamiltonian, as already hinted in ref 58. Indeed, we verified
that a negative quadratic contribution in the vibrational
quantum number operator has effects in the symmetric
phase for linear and quasilinear states before the control
parameter reaches the critical value.

4. CONCLUSIONS

In short, we have shown that the 2DVM, despite the simplicity
of the Hamiltonian (eq 6), describes extremely well the
localization and the effective frequency dip of the transition
state for isomerizing systems, once it is fed with enough
spectroscopic data or with accurate enough ab initio
calculations. The value of the transition state energy can be
estimated from the intrinsic state energy functional or from the
dip in the energy gap. In both cases, the differences with the
ETS values obtained with sophisticated ab initio calculations are
very small, in the range 1−4%. As a consequence of the link
between the isomerization barrier and ESQPTs, our character-
ization of the transition state is not restricted to energy values
and their differences only, but includes also the structure of the
algebraic wave function. This offers a promising line of
research for applications of the ESQPT formalism to
isomerization reactions.
Our approach also provides a physically sound way for

obtaining a minimum bound for the vibron number value N,
which needs to be large enough to accommodate the minimum
in the participation ratio. Heretofore, in the case of bending
vibrations, the value of the vibron number N used to be fixed
based only on the best fit to experiment.17

Another problem that can be tackled with the present
formalism is the isomerization between the cis and trans
geometric configuration of acetylene in the acetylene S1
electronic state. The modeling in the algebraic framework of
the bending degrees of freedom in a tetratomic molecule,
which implies two coupled benders, requires a U(3) ⊗ U(3)
dynamical algebra.21,59−61 An appropriate starting point would
be the fit to the experimental bending vibrational term levels
for each one of these two acetylene geometric configurations
obtained making use of an algebraic Hamiltonian based on
coupled dynamical algebra U(3) ⊗ U(3).61 The study of this
case is of interest because this would be the first example of the
identification of an ESQPT in experimental data for a system
with more than one effective degree of freedom. In such

systems, the detection of the ESQPT precursors is expected to
be more cumbersome than in the single degree of freedom
cases.62,63

Finally, it is interesting to note that the 2DVM eigenstates
with a positive slope in the right end of Figure 1b have energies
beyond the isomerization energy barrier. Thus, they cannot be
unambiguously associated to one of the two molecular
configurations and they correspond to the so-called bond-
breaking states, which are often expressed with the H0.5CNH0.5
formula.49 These eigenfunctions necessarily entangle both
molecular configurations, something that in the 2DVM case
was already noticed in ref 18 (see Figure 6 in this reference). A
full description of the isomerizing HCN−HNC system at these
energies requires the consideration of both molecules in a
single system. This is a direction we plan to explore in the near
future.
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(23) Peŕez-Bernal, F.; Santos, L.; Vaccaro, P.; Iachello, F.
Spectroscopic signatures of nonrigidity: Algebraic analyses of infrared
and Raman transitions in nonrigid species. Chem. Phys. Lett. 2005,
414, 398−404.
(24) Gilmore, R.; Feng, D. Phase transitions in nuclear matter
described by pseudospin Hamiltonians. Nucl. Phys. A 1978, 301, 189−
204.
(25) Gilmore, R. The classical limit of quantum nonspin systems. J.
Math. Phys. 1979, 20, 891−893.
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(62) Strańsky,́ P.; Macek, M.; Cejnar, P. Excited-state quantum
phase transitions in systems with two degrees of freedom: Level
density, level dynamics, thermal properties. Ann. Phys. 2014, 345, 73−
97.
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