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Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system
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Quantum systems whose classical counterparts are chaotic typically have highly correlated eigenvalues and
level statistics that coincide with those from ensembles of full random matrices. A dynamical manifestation of
these correlations comes in the form of the so-called correlation hole, which is a dip below the saturation point
of the survival probability’s time evolution. In this work, we study the correlation hole in the spin-boson (Dicke)
model, which presents a chaotic regime and can be realized in experiments with ultracold atoms and ion traps.
We derive an analytical expression that describes the entire evolution of the survival probability and allows us to
determine the time scales of its relaxation to equilibrium. This expression shows remarkable agreement with our
numerical results. While the initial decay and the time to reach the minimum of the correlation hole depend on
the initial state, the dynamics beyond the hole up to equilibration is universal. We find that the relaxation time of
the survival probability for the Dicke model increases linearly with system size.
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I. INTRODUCTION

The subject of equilibration and thermalization of isolated
quantum systems in the chaotic regime has seen a great deal
of advance in recent years [1–10]. Equilibration is reached
when, after a transient time, the observable under investigation
shows only small fluctuations around an asymptotic value, and
these fluctuations decrease with system size. Thermalization
implies that this infinite-time average is very close to the
predictions from statistical mechanics, and the difference
between the two also decreases with system size. In this
picture, an important open question is how long it takes
for isolated quantum systems to reach equilibrium. Despite
the increasing number of recent works addressing this issue
[6,11–22], there is no agreement regarding how the relaxation
time scale should depend on system size, range of interactions,
observables, and initial states.

The last steps of the evolution toward equilibrium, after
the dynamics resolves the discreteness of the spectrum, are
determined by the properties of the eigenvalues [21]. The
largest possible time scale is the Heisenberg time [23], which
is proportional to the inverse of the mean level spacing of
the region of the spectrum probed by the initial state. Before
reaching this time scale, effects of the correlations between
the eigenvalues may be observed. In the case of the survival
probability [24–26], which is the probability of finding the
initial state at time t , these correlations cause a decay below
the saturation value of the dynamics, known as correlation
hole [27]. This phenomenon was first studied in the context of
molecules, where the interest was not exactly in dynamics, but
in alternative ways to detect level repulsion in systems without
good line resolution [28–30].

The correlation hole has been studied in full random ma-
trices [31], in many-body systems with [21,32–35] and with-

out disorder [33], in the Sachdev-Ye-Kitaev model [36–38],
which is a two-body random ensemble [39], and in the finite
one-dimensional Anderson model [40]. It should be possible
to develop a semiclassical analysis connecting the correlation
hole with periodic orbits along the lines done in [41,42].
The hole is not exclusive to the survival probability, but
emerges also in experimental local observables [34,35]. For
the correlation hole to be visible, one needs to perform large
averages over initial states and, in the case of Hamiltonian ma-
trices with random elements, over ensembles of Hamiltonian
realizations. In Ref. [21], it was shown that in realistic chaotic
many-body quantum systems with local short-range interac-
tions and perturbed far from equilibrium, the time to reach the
minimum of the correlation hole increases exponentially with
system size. This time scale, which is still shorter than the
Heisenberg time, was referred to as Thouless time due to its
relationship with the Thouless energy computed from random
matrix theory. As explained in Ref. [21], the Thouless time
in interacting systems is the time that it takes for an initial
state to spread over the entire Hilbert space accessible to its
energy. Beyond this point, the dynamics becomes universal
all the way to equilibrium.

In the present work, we use the survival probability to study
the correlation hole in the Dicke model. This is a paradigmatic
spin-boson model with two degrees of freedom. It has a clas-
sical counterpart and this quantum-classical correspondence
was explored, e.g., in Refs. [43,44]. It exhibits chaos for
several values of its parameters, mostly for high excitation
energies and in the superradiant phase. The model was first
introduced to explain superradiance [45–48] and has since
then been used in different contexts, from quantum chaos
[49–52] and quantum batteries [53] to excited-state quantum
phase transitions [54–57] and quench dynamics [58–61]. Re-
cently, the model was employed in a study of the out-of-time
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ordered correlator (OTOC), where it was shown that, in the
chaotic regime, the OTOC increases exponentially in time
with a rate comparable to the classical Lyapunov exponent
[62]. In addition to ultracold atoms in optical cavities [63,64],
the Dicke model can now be realized also with ion traps [65].
The latter is one of the main platforms to study long-time
coherence evolution [66], which makes the analysis of the
time scales involved in the relaxation process of the Dicke
model a timely subject.

We obtain an analytical expression that describes the entire
evolution of the survival probability for the Dicke model in
the chaotic regime. The expression describes very accurately
our numerical results, and with it, we can derive analytically
the time scales involved in the relaxation process. We find
that the relaxation time increases linearly with system size,
while the Thouless time depends non trivially on the initial
state.

The article is organized as follows. In Sec. II, we describe
the Dicke model and the properties associated with its eigen-
values. In Sec. III, we discuss the initial states considered and
present the analytical expression for the survival probability.
This expression is compared with numerical results in Sec. IV.
The analytical expressions for the Thouless and relaxation
times are given and discussed in Sec. V. We present our
conclusions in Sec. VI.

II. DICKE MODEL

The Dicke model [45] describes the interaction between a
set of N two-level atoms with energy splitting ω0 and a single
mode of the electromagnetic field with radiation frequency ω.
By setting h̄ = 1, the time-reversal symmetric Hamiltonian of
the model is written as

ĤD = ωâ†â + ω0Ĵz + 2γ√
N

Ĵx(â† + â). (1)

The first term of the equation above accounts for the energy
of the field, where â† (â) is the bosonic creation (annihilation)
operator. The second term corresponds to the energy of the
atoms, where Ĵx,y,z = 1

2

∑N
k=1 σ̂ k

x,y,z are the atomic pseudo-
spin operators and σ̂x,y,z are the Pauli matrices. The third
term describes the atom-field interaction with coupling pa-

rameter γ . The eigenvalues j( j + 1) of the operator Ĵ
2 =

Ĵ2
x + Ĵ2

y + Ĵ2
z determine different invariant subspaces. Its max-

imum value, given by j = N /2, defines the symmetric non-
degenerate atomic subspace that includes the ground-state.
The Hamiltonian ĤD commutes with the parity operator �̂ =
eiπ�̂, where �̂ = â†â + Ĵz + j1̂. The operator �̂ represents
the total number of excitations with eigenvalues λ = n + m +
j, where n is the number of photons, m + j is the number
of excited atoms, and m is the eigenvalue of Ĵz. In all calcu-
lations presented below, we consider only the positive parity
spectrum of the model.

When the coupling parameter reaches a critical value γc =√
ωω0/2, a second-order quantum phase transition takes place

[67,68]. The system goes from a normal phase (γ̄ < 1 with
γ̄ = γ /γc), where the ground state has no photons and all
the atoms are in their lowest level, to a superradiant phase
(γ̄ > 1), where the ground state has non-zero expectation
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FIG. 1. (a) The level spacing distribution for the unfolded spec-
trum (shaded area) in the energy region E/(ω0 j) ∈ [−0.8, −0.2]
agrees with the Wigner surmise (dashed line). (b) Density of states
(DoS) evaluated numerically (blue circles) with bin size 	E =
0.1ω0 j and analytical Eq. (2) indicated with the red solid curve.
Parameters: ω = ω0, γ̄ = 2, j = 100, and positive parity. The ver-
tical line in panel (b) indicates the energy Ec = −0.5ω0 j chosen
for our study. A truncated Hilbert space was employed using the
basis of Refs. [72,73], ensuring 24 453 converged eigenenergies,
which range from the ground state energy Egs = −2.125ω0 j until
ET = 1.755ω0 j.

values for the number of photons and number of excited
atoms.

Level statistics and density of states

The classical limit of the Dicke model can be obtained by
using Bloch and Glauber coherent states [51,52,56], which
allows for the identification of the parameters and energy
range that lead to chaos. A main signature of classical chaos
in the quantum regime is energy-level repulsion [69,70].

As our case study, we choose ω = ω0 and j = 100, and
we select a coupling parameter in the superradiant phase,
γ̄ = 2. For these values, chaos is found at excitation energies
above E ≈ −1.6ω0 j (see Ref. [52]). We choose an energy
well above this threshold, Ec = −0.5ω0 j, for which the whole
energy shell is covered by chaotic trajectories (see Ref. [52]).
In Fig. 1(a), we show the level spacing distribution, denoted
by P(s), where s is the spacing between nearest-neighboring
unfolded energy levels from an energy interval around Ec. In
quantum systems whose classical counterparts are chaotic, the
levels are prohibited from crossing and P(s) coincides with
the Wigner surmise [71], as indeed confirmed in Fig. 1(a).

With the classical Hamiltonian, it is possible to estimate
the energy averaged density of states (DoS), which is given
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by the expression [56]

ν(E ) = j

ω

⎧⎪⎪⎨
⎪⎪⎩

1
π

∫ y+
y−

dy cos−1
(√ 2(y−ε)

γ̄ 2(1−y2 )

)
, εgs � ε < −1

1+ε
2 + 1

π

∫ y+
ε

dy cos−1
(√ 2(y−ε)

γ̄ 2(1−y2 )

)
, |ε| � 1

1, ε > 1

,

(2)

where y± = −γ̄ −1[γ̄ −1 ∓ √
2(ε − εgs)] and ε = E

ω0 j is the
normalized energy. The ground-state energy is εgs = −1 for
the normal phase, while it is εgs = − 1

2 (γ̄ 2 + γ̄ −2) in the
superradiant phase. In Fig. 1(b), we compare the DoS obtained
numerically with Eq. (2). The agreement is excellent. It is
evident from the figure that for |ε| � 1, the DoS shows a
linear dependence on energy, ν(E ) ∝ E . Our choice of the
value of Ec for the studies below falls within this region.
Notice also that the DoS in Eq. (2) scales linearly with the
number of atoms ( j appears explicitly in the beginning of the
equation), a property that will be useful below to determine
the dependence of the time scales of the model on the number
of atoms.

III. SURVIVAL PROBABILITY AND INITIAL STATES

The survival probability, SP(t ), is a dynamical observable
defined as the probability to find an arbitrary initial quantum
state |�(0)〉 at a later time t ,

SP(t ) = |〈�(0)|�(t )〉|2. (3)

By writing the initial state in terms of the energy eigen-
basis, |�(0)〉 = ∑

k ck|φk〉, where Ĥ |φk〉 = Ek|φk〉 and ck =
〈φk|�(0)〉, the survival probability is

SP(t ) =
∣∣∣∣∣
∑

k

|ck|2e−iEkt

∣∣∣∣∣
2

. (4)

The short-time evolution depends on the energy distribution
of the initial state [60,74], while the long-time dynamics is
determined by the properties of the spectrum [33,34]. The sur-
vival probability has been studied in several different contexts,
with early works focusing on deviations from exponential
behaviors [75,76] and the quantum speed limit [77].

A. Initial states

To disentangle the effects of the spectrum from those of the
energy components of the initial state in the behavior of the
survival probability, we consider ensembles of initial states
defined in a given chaotic energy region with components
randomly selected [78], so that

|ck|2 = rk f (Ek )∑
q rq f (Eq)

. (5)

Above, rk are positive random numbers from an arbitrary
probability distribution. For the numerical simulations pre-
sented below, we consider an uniform distribution in the
interval [0,1] with n-th moments 〈rn

k 〉 = 1/(n + 1). The func-
tion f (E ) = ρ(E )/ν(E ) is used to guarantee that the initial
state has a certain selected profile ρ(E ), which is achieved
by compensating for changes in the density of states. We

consider normalized rectangular and Gaussian profiles given,
respectively, by

ρR(E ) =
{

1
2σR

for E ∈ [Ec − σR, Ec + σR]

0 otherwise,
(6)

ρG(E ) =
{

e−(E−Ec )2/(2σ2
G )

CσG
√

2π
for E ∈ [Emin, Emax]

0 otherwise.
(7)

The profiles are centered at the energy Ec, where we know that
chaos dominates the dynamics. The widths of the rectangular
and Gaussian profiles are, respectively, σR and σG. The lower
and upper energy bounds of the Gaussian profile are Emin and
Emax, and C is a normalization factor,

C = 1

2

[
erf

(
Ec − Emin√

2σG

)
− erf

(
Ec − Emax√

2σG

)]
, (8)

with erf being the error function. In the context of quench
dynamics, where the system is initially prepared in a coherent
state, the energy distribution of the initial state is indeed
Gaussian, which makes the Gaussian profile a realistic choice
(for some examples, see Ref. [60]). The bounds Emin and Emax,
especially Emin, are also plausible, since in quantum systems
there is always at least a ground state, whose presence should
affect the dynamics by partially reconstructing the initial state
[79–81].

In Fig. 2, we show three cases of energy profiles of the
initial state, one rectangular and two Gaussian profiles. The
numerical results are obtained by averaging over ensembles
of 500 initial states. The agreement with the analytical profiles
from Eqs. (6) and (7) confirms that 500 is a sufficiently large
number to obtain stable results.

B. Survival probability: Before the correlation hole

The energy distribution of |�(0)〉 determines the initial
decay of SP(t ). This can be seen by expressing the survival
probability in Eq. (4) as

SP(t ) =
∣∣∣∣
∫

dEρ0(E )e−iEt

∣∣∣∣
2

,

where ρ0(E ) = ∑
k |ck|2δ(E − Ek ) is the local density of

states (LDoS) or strength function, that is the energy distri-
bution weighted by the components of the initial state. If we
approximate the LDoS by its smoothed profile, ρ0(E ) ≈ ρ(E ),
then we obtain for the rectangular profile,

SR
P (t ) = sin2(σRt )

(σRt )2
, (9)

and for the Gaussian profile,

SG
P (t ) = e−σ 2

Gt2

4C2 F (t ), with

F (t )=
∣∣∣∣erf

(
Ec−Emin−iσ 2

Gt√
2σG

)
−erf

(
Ec−Emax−iσ 2

Gt√
2σG

)∣∣∣∣
2

.

(10)

For very short times, t 	 σ−1
R,G, both SR

P (t ) and SG
P (t )

show the universal quadratic decay of the survival probability
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FIG. 2. Smoothed local density of states (LDoS) for the rectangular (a), strongly bounded Gaussian (b), and weakly bounded Gaussian
(c) energy profiles. Numerical data averaged over 500 random initial states (blue dots) and analytical energy profiles from Eqs. (6) and (7) (red
solid lines). Bin sizes: 	E = 0.01ω0 j [(a) and (b)] and 	E = 0.02ω0 j (c). The rectangular LDoS has width σR = 0.1ω0 j and the standard
deviation of the Gaussian profiles is also σG = 0.1ω0 j with Emin = −0.65ω0 j and Emax = −0.35ω0 j for (b), whereas for (c) Emin is given by
the ground-state energy Egs = −2.125ω0 j and by the largest energy obtained for the spectrum Emax = ET = 1.755ω0 j (both energies are out
of the scale used in this panel).

1 − σ 2
R,Gt2. For longer times, both profiles lead to a power-law

decay ∝ t−2. This behavior is evident in Eq. (9) and it can be
obtained from Eq. (10) by analyzing it at long times, in which
case [80,81],

SG
P

(
t 
 σ−1

G

) ≈ 1

2πC2σ 2
Gt2

×
{
E − 2e

− [(Ec−Emin )2+(Emax−Ec )2]

2σ2
G cos[(Emax − Emin)t]

}
, (11)

where

E = exp

[
− (Ec − Emin)2

σ 2
G

]
+ exp

[
− (Ec − Emax)2

σ 2
G

]
. (12)

Power-law decays of the survival probability are caused by the
presence of energy bounds in the LDoS [75] and the power-
law exponent depends on how the bounds are approached
[82].

C. Survival probability: Analytical expression

The expressions in Eqs. (9) and (10) describe accurately the
initial decay of SP(t ), for which just the shape and bounds of
the envelope of ρ0(E ) matters. However, the spectra of finite
quantum systems are discrete and, in our case, the eigenvalues
are correlated. This results in two additional features to the
evolution of SP(t ), beyond the power-law behavior, which are
not captured by Eqs. (9) and (10). They are the manifestations
of the spectrum correlations, which appear at long times, and
the saturation of the dynamics to the asymptotic value

S̄P = lim
t→∞

1

t

∫ t

0
dt ′SP(t ′), (13)

around which the survival probability fluctuates after
relaxation.

To obtain an equation for the full dynamics, we write the
survival probability as

SP(t ) =
∑
k �=l

|cl |2|ck|2e−i(Ek−El )t + IPR, (14)

where

IPR ≡
∑

k

|〈φk|�(0)〉|4 = S̄P (15)

is the so-called inverse participation ratio, which gives the
asymptotic temporal value of SP(t ). The IPR is a measure of
the inverse of the number of elements of a given basis (the
energy eigenbasis, in our case) participating in an arbitrary
quantum state (|�(0)〉, in our case).

For the considered ensembles of initial states, it is possible
to derive accurate estimates for the ensemble averaged 〈IPR〉
by using (see the Appendix)

〈IPR〉 =
〈 ∑

k r2
k f 2(Ek )(∑

q rq f (Eq)
)2

〉
≈

〈
r2

k

〉
〈rq〉2

1

νc

∫
dEρ2(E ), (16)

which, considering random variables rk uniformly distributed,
gives for the rectangular profile,〈

IR
PR

〉 = 2

3σRνc
, (17)

and for the Gaussian profile,

〈
IG
PR

〉 = erf
(Ec−Emin

σG

) − erf
(Ec−Emax

σG

)
3
√

πσGνcC2
. (18)

Above, νc = ν(Ec) is the DoS evaluated at the central energy
Ec, which equals the inverse mean spacing of consecutive
energy levels in the region probed by the initial state.

Since the components ck of the initial state are random
numbers, to compute the ensemble average of SP(t ), we can
treat the statistical properties of the components and of the
spectrum separately. Because the latter has level statistics
comparable to that of random matrices from Gaussian orthog-
onal ensembles (GOE), as shown in Fig. 1(a), we can follow
steps similar to the ones described in Refs. [21,34] to obtain
(see the Appendix for details)

〈SP(t )〉 = 1 − 〈IPR〉
η − 1

[
ηSbc

P (t ) − b2

(
t

2πνc

)]
+ 〈IPR〉. (19)

Above, η is the effective dimension of the ensemble (see the
Appendix) defined as

η ≡ νc∫
dEρ2(E )

=
〈
r2

k

〉
〈rk〉2

1

〈IPR〉 , (20)

where the second equality is obtained using Eq. (16). In
Eq. (19), Sbc

P (t ) describes the behavior of the survival prob-
ability before the manifestation of the correlations between
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FIG. 3. Survival probability for the rectangular (a) [see Fig. 2(a)], strongly bounded Gaussian (b) [see Fig. 2(b)], and weakly bounded
Gaussian (c) [see Fig. 2(c)] energy profiles. (a–c) Light (gray) curves depict the survival probability for a single initial random state and
the dark (blue) curve represents the ensemble average over 500 random initial states. The bright (green) line is the analytical expression
in Eq. (19). The lowest horizontal dashed line is the analytical estimate for the minimum of the correlation hole (see text). The highest
horizontal dotted line shows 〈IPR〉, which is 1.106×10−3 for (a), 8.032×10−4 for (b), and 6.241×10−4 for (c). The leftmost vertical line
indicates the analytical value for the time when the correlation hole attains its minimum value (Thouless time, tTh). The rightmost vertical line
marks the analytically evaluated relaxation time tr . To determine tr , we fixed δ = 0.05 in Eq. (33). In panels (a) and (b), the black dashed line
indicates the power law decay t−λ for the initial oscillatory decay of 〈SP(t )〉. (d) The dark (blue) curves represent averages performed over
both initial states and temporal windows of constant size in logarithmic scale. From top to bottom, the curves are obtained with rectangular,
strongly bounded Gaussian, and weakly bounded Gaussian energy profiles. The temporal averages are plotted against the mean value of the
respective temporal windows. Bright (green) lines depict the same temporal averages of the analytical expression in Eq. (19).

the eigenvalues (bc stands for “before correlations”), as given
by Eqs. (9) and (10) for the rectangular and Gaussian profiles.
This behavior holds until 〈SP(t )〉 reaches its minimum value,
which is actually below 〈IPR〉. Beyond that, the dynamics
becomes controlled by the two-level form factor,

b2(t̄ ) = [1 − 2t̄ + t̄ ln(2t̄ + 1)]�(1 − t̄ )

+
[
t̄ ln

(
2t̄ + 1

2t̄ − 1

)
− 1

]
�(t̄ − 1), (21)

where � is the Heaviside step function. The two-level form
factor brings the survival probability from its minimum value
up to the asymptotic value, creating the dip that is known as
correlation hole [28–31,71]. The hole is a direct signature of
the presence of correlated eigenvalues, and it does not develop
in systems with uncorrelated eigenvalues. The equation used
above for b2(t̄ ) is the same used for GOE full random matrices
[83]. This implies that beyond the minimum of the correlation
hole, the dynamics shows universal properties.

The analytical expression for the survival probability in
Eq. (19) describes the complete evolution of 〈SP(t )〉, from
t = 0 to saturation. The equation has no fitting parameters.

All the parameters entering in Eq. (19) can be determined
from the properties of the model and the energy profile of the
initial state. As we show in the next section, this analytical
expression shows remarkable agreement with our numerical
results.

IV. COMPARING NUMERICAL
AND ANALYTICAL RESULTS

In Fig. 3, we compare numerical results for the survival
probability with the analytical expression given by Eq. (19).
The light (gray) lines represent the numerical results ob-
tained with a single initial random state for the rectangular
[Fig. 3(a)] and Gaussian [Figs. 3(b) and 3(c)] energy profiles.
The darker (blue) line is obtained by performing ensemble
averages over 500 random initial states. The bright (green)
curve, following extremely well the ensemble average, is the
analytical Eq. (19). As clear from all panels, the ensemble
average is needed for the hole to be visible.

The initial decay is determined entirely by the energy
profile of the initial states, which is the same for every member
of the ensemble. An oscillatory decay modulated by a power
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law ∝ t−λ is seen in Figs. 3(a) and 3(b). As mentioned before,
this behavior is caused by the bounds in the energy profiles,
which determine also the size of the oscillations. For the
rectangular profile [Fig. 3(a)], the exponent is indeed λ = 2,
as obtained for Sbc

P (t ) in Eq. (9), whereas for the strongly
bounded Gaussian profile [Fig. 3(b)], the power-law exponent
obtained numerically is λ = 1.7, instead of 2 as in Eq. (11).
This is because the oscillations in Fig. 3(b) start at a temporal
scale where the two-level form factor b2 is not negligible, so
it affects the exponent. The power-law decay in Figs. 3(a)
and 3(b) is followed by the correlation hole. In the case of
the weakly bounded Gaussian profile of Fig. 3(c), no trace
of the modulated oscillations is left, because they occur at a
temporal scale when Sbc

P (t ) is already extremely small with
respect to the b2 term. In all panels, once saturation is reached,
the survival probability only fluctuates around its asymptotic
value.

The minimum of the correlation hole is indicated in
Figs. 3(a)–3(c) with the lowest horizontal dashed line. The
dynamics beyond this minimum point depends on level statis-
tics, as confirmed by the fact that the behavior of the ensemble
averages is very well described by the analytical expression
Eq. (19), where the same two-level form factor b2 used for
full random matrices was employed. However, the size of
the temporal fluctuations after the mimimum depends on
the fine details of the particular spectrum and on the level
of delocalization of the initial state written in the energy
eigenbasis [1–4].

Contrary to ensembles of random matrices or disordered
models, where one can further reduce the temporal fluctu-
ations of 〈SP(t )〉 with averages over many energy spectrum
realizations, in the case of the Dicke model, the spectrum is
exactly the same for every member of the ensemble. Thus,
to further reduce the fluctuations in the ensemble averaged
〈SP(t )〉, we perform an additional time average over temporal
windows of constant size in logarithmic scale, i.e., temporal
windows whose sizes increase exponentially in time. By
plotting this temporal averages against the mean time of the
respective windows, we obtain the results shown in Fig. 3(d).
This smoothing procedure results in numerical curves that are
almost identical to the analytical curves, further validating
Eq. (19) and the approach that led to it.

The fact that the dynamics beyond the minimum of the cor-
relation hole is governed entirely by the two-level form factor
implies that the time to reach saturation depends only on how
the b2 function approaches 〈IPR〉 (indicated in Fig. 3 with the
highest horizontal dashed line). Provided the initial state is
fully extended in the energy eigenbasis, counting with the
participation of all (most) energy levels in the energy interval
characterizing |�(0)〉, the relaxation time is independent of
the initial state. Indeed, as seen in Fig. 3(d), the time to reach
〈IPR〉, which is shown with the rightmost vertical dashed line,
is the same for the three different energy profiles.

V. TIME SCALES OF THE SURVIVAL PROBABILITY

In hands of the analytical expression for the survival prob-
ability, we can derive analytically the time scales involved
in the relaxation process. We focus on the two longest time
scales: the time to reach the minimum of the correlation

hole, referred to as Thouless time tTh, and the final relaxation
time tr .

A. Thouless time

The Thouless time divides the dynamics of chaotic systems
in two temporal regions, before tTh the dynamics is governed
by the shape of the energy distribution of the initial state and
the energy bounds, whereas after tTh the dynamics becomes
comparable to that obtained with ensembles of full random
matrices. The Thouless time marks the point where the term
ηSbc

P (t ) in Eq. (19) meets the function b2(t/2πνc), being
derived from

d〈SP(t )〉
dt

∣∣∣∣
t=tTh

= 0. (22)

Therefore, we need to examine Sbc
P (t ) at long times and

b2(t/2πνc) at short times, i.e., in the temporal range σ−1 	
t 	 νc [recall that σ is the width of the LDoS and νc is the
inverse of the mean level spacing for the eigenvalues involved
in the evolution of |�(0)〉].

At long times, ηSbc
P (t ) shows a power-law decay ∝ t−2.

More specifically, for the rectangular energy profile, the tem-
poral average of the oscillatory decay in Eq. (9) leads to

ηSbc,R
P

(
t 
 σ−1

R

) → η

2σ 2
Rt2

. (23)

For the Gaussian profile, associated with Eq. (10), if the
conditions

e−(Emax−Ec )2/σ 2
G >

1

η
and e−(Emin−Ec )2/σ 2

G >
1

η
(24)

are fulfilled, then the form of Sbc
P (t ) in the time scale where it

meets b2 is given by [see Eq. (11)]

ηSbc,G
P

(
t 
 σ−1

G

) → ηE
2πC2σ 2

Gt2
. (25)

This is what happens for the strongly bounded Gaussian
energy profile of Fig. 2(b). Otherwise, if the conditions in
Eq. (24) are not fulfilled, then the early Gaussian decay still
persists at the meeting point with the b2 function and

ηSbc,G
P

(
t 
 σ−1

G

) → η exp
[−σ 2

Gt2
]
. (26)

This is what happens for the weakly bounded Gaussian energy
profile of Fig. 2(c).

At short times, the two-level form factor is dominated by a
linear term,

b2

(
t

2πνc

)
→ 1 − t

πνc
for

t

νc
	 1. (27)

Combining Eqs. (23) and (27), we obtain the Thouless time
for the rectangular ensemble

tR
Th =

(
2πν2

c

σR

)1/3

, (28)

where we used that νc = η

2σR
[see Eq. (20) and the Appendix].

From Eqs. (25) and (27), we arrive at the Thouless time for
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the strongly bounded Gaussian energy profile,

tG
Th =

(
ηνcE
C2σ 2

G

)1/3

, (29)

and if the conditions Eq. (24) are not fulfilled, using Eq. (26),
we have

tG
Th ≈

√
log(2πησGνc)

σG
. (30)

The Thouless time obtained in the equations above are in-
dicated in Fig. 3, showing excellent agreement with the
numerics.

B. Relaxation time

The relaxation time depends only on the b2 function at long
times, which grows toward saturation following a power-law
behavior,

b2

(
t

2πνc

)
→ π2ν2

c

3t2
for

t

νc

 1. (31)

Even though Eqs. (23) and (25) decay with the same power-
law exponent 2, as in Eq. (31), the latter is proportional to
η2, since νc ∝ η, while the former equations are proportional
to η, which justifies considering only Eq. (31). We define the
relaxation time according to

〈SP(tr )〉 = (1 − δ)〈IPR〉, (32)

where δ is a small parameter determining the point where
〈SP(t )〉 is already within the fluctuations around the asymp-
totic value. We arrive at

tr = πνc

2
√

δ
, (33)

which holds for the three energy profiles. This time is pro-
portional to the inverse of the mean level spacing, νc, which is
the largest time scale of a quantum system and is known as the
Heisenberg time. In Fig. 3, tr is indicated with the rightmost
vertical lines, showing excellent agreement with the numerical
results.

C. Scaling with system size: Thouless and relaxation time

With Eqs. (28), (29), (30), and (33), we can determine the
dependence of the Thouless and relaxation times on the size
of the system, i.e., on the number N = 2 j of two-level atoms.
Both times depend on νc, which scales linearly with j. We can
write νc = νo j/ω and evaluate νo numerically, which for the
chosen energy Ec is νo = 0.6027.

The Thouless time depends additionally on the widths σR

and σG of the energy distribution of the initial state and, for
the Gaussian profile, on the energy bounds Emin and Emax. The
scaling σR,G = σ o

R,G jβ of these widths, as well as the scalings
of (Ec − Emin) ∝ jα1 and (Emax − Ec) ∝ jα2 , can in principle
be selected at will in the range −1 � β � 1 and −1 � αi � 1.
The lower values β = αi = −1 are imposed by the scaling of
the mean-level spacing of consecutive energy levels and the
upper bound is given by the scaling of the energy spectrum,
which is proportional to j. A physical relevant choice for
the previous scalings is β = 1/2, which is the scaling of the
energy widths of minimal uncertainty coherent states [84], and

αi = 1, which implies that the bounding energy interval of the
Gaussian profile scales as the energy spectrum. Therefore, for
the rectangular profile and strongly bounded Gaussian profile
satisfying conditions Eq. (24), the Thouless time scales as

tR,G
Th = tR,G

o j1/2, (34)

where tR,G
o is a constant determined by νo and σ o

R,G. For the
rectangular profile, this scaling is valid for any j, but for the
Gaussian profile, it is valid up to a finite value of j. This is
because we assume that (Ec − Emin) and (Emax − Ec) grow
with j faster than σG, which implies that for large enough j the
conditions Eq. (24) will not be satisfied anymore, switching
to the scenario of Eq. (30). For the weakly bounded Gaussian
profile, described by Eq. (30), the Thouless time for large j is
given by

tG
Th =

√
log co + 3 log j

σ o
G j1/2

, (35)

where co = 4π (3/2)(σ o
G)2ν2

o/ω
2, and we have approxi-

mated the error functions by their asymptotic values,
limz→∞ erf(z) → 1.

The relaxation time is independent of the details of the
initial state and scales linearly with νc, so it is given simply
by

tr = πνo

2ω
√

δ
j. (36)

The distance between the Thouless and the relaxation time
diverge with j, which means that the correlation hole gets
elongated as the number of atoms increases.

D. Depth of the correlation hole

With the Thouless time, we can quantify the relative depth
of the correlation hole through the expression

κ = 〈IPR〉 − 〈SP(tTh)〉
〈IPR〉 . (37)

For the ensembles considered in this paper, we can calculate
the depth of the correlation hole for j 
 1. A direct substitu-
tion of the Thouless time in the analytical expression for the
survival probability in Eq. (19) allows to demonstrate that

lim
j
1

〈SP(tTh)〉 = −1

η
+ 〈IPR〉 =

〈
r2

k

〉 − 〈rk〉2〈
r2

k

〉 〈IPR〉,

where in the last step we have used Eq. (20). From this result,
we obtain

κ∞ = 〈rk〉2〈
r2

k

〉 . (38)

The value κ∞ gives an upper bound for the depth of the
correlation hole for finite j. In the case of random variables rk

uniformly distributed in the interval [0,1], as considered here
[85], this bound is κ∞ = 3/4.

The actual values of κ for the finite systems studied, where
j = 100, are obtained by substituting Eqs. (28), (29), and
(30) in Eq. (19), which gives 〈SP(tTh)〉, and by getting 〈IPR〉
from Eqs. (17) and (18). We get κ = 0.672 for the rectangular
ensemble, κ = 0.711 for the ensemble from the strongly
bounded Gaussian profile, and κ = 0.748 for the ensemble
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from the weakly bounded Gaussian profile. The analytical es-
timates for 〈SP(tTh)〉 and 〈IPR〉 are depicted in Figs. 3(a)–3(c)
with horizontal lines, showing excellent agreement with the
numerical results. This confirms that the analytical expression
in Eq. (19) describes the survival probability at any time scale.

VI. CONCLUSIONS

We obtained an analytical expression that describes re-
markably well the entire evolution of the averaged survival
probability, 〈SP(t )〉, for the Dicke model in the chaotic regime
and allowed us to derive analytical expressions for the dif-
ferent time scales involved in the relaxation to equilibrium.
Due to spectral correlations, the survival probability exhibits
a correlation hole. We find that the initial decay of 〈SP(t )〉
and the time tTh for it to reach the minimum of the correlation
hole (Thouless time) depend on the energy profile of the initial
states. Beyond the Thouless time, the dynamics is universal,
being governed by the two-level form factor of the GOE. This
implies that the time, tr , for the survival probability to reach
equilibrium (relaxation time) depends only on the energies,
being proportional to the inverse of the mean level spacing.
An interesting extension of the studies presented here would
be to investigate the time scales involved in the relaxation
process of other physical observables that are relevant for the
Dicke model. Another future direction would be to study the
universality of the dynamics beyond the Thouless time for
special sets of initial states, such as minimal uncertainty states.
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APPENDIX: ENSEMBLE AVERAGES
OF THE SURVIVAL PROBABILITY

In this Appendix we present the steps involved in the
derivation of the analytical expression given by Eq. (19) for
the ensemble average of the survival probability. We begin
with Eq. (14) and perform ensemble averages, taking into
account that the eigenvalues and the components |ck|2 of the
initial state are statistically independent,

〈SP(t )〉 =
〈∑

k �=l

|cl |2|ck|2e−i(Ek−El )t

〉
+ 〈IPR〉

=
∑
k �=l

〈|cl |2|ck|2〉e−i(Ek−El )t + 〈IPR〉. (A1)

Let us consider first the ensemble average of IPR. Using
Eq. (5), we have

〈IPR〉 =
〈∑

k

|ck|4
〉

=
〈 ∑

k r2
k f 2(Ek )( ∑

q rq f (Eq)
)2

〉

=
∑

k

〈
r2

k(∑
q rq f (Eq)

)2

〉
f 2(Ek ). (A2)

For a large number of components, the average of the second
line above can be approximated as〈

r2
k[ ∑

q rq f (Eq)
]2

〉
≈

〈
r2
k

〉
[∑

q〈rq〉 f (Eq)
]2

=
〈
r2

k

〉
〈rq〉2

1[∑
q f (Eq)

]2 , (A3)

where in the last equality we have used the fact that 〈rn
q〉 is

actually independent of index q. By inserting this result in
Eq. (A2), we obtain

〈IPR〉 =
〈
r2

k

〉
〈rq〉2

∑
k f 2(Ek )[ ∑
q f (Eq)

]2 ≡
〈
r2

k

〉
〈rq〉2

1

η
. (A4)

Here, we have introduced the effective dimension of the
ensemble

η =
[ ∑

q f (Eq)
]2∑

k f 2(Ek )
, (A5)

whose name comes from the fact that it reduces to the number
of states participating in the rectangular ensemble, as it is
shown below. We now approximate the sums in Eq. (A4) by
integrals,

∑
k

• →
∫

dE ν(E )•, (A6)

to obtain

〈IPR〉 ≈
〈
r2

k

〉
〈rq〉2

∫
dE ρ2(E )/ν(E )[∫

dE ρ(E )
]2 =

〈
r2

k

〉
〈rq〉2

∫
dE

ρ2(E )

ν(E )
,

where we have used f (E ) = ρ(E )/ν(E ), and, in the last
equality, the normalization of ρ(E ). Finally, since ν(E ) varies
linearly in the energy interval where ρ(E ) is significant, we
substitute the function ν(E ) by its value in the center of the
profile distribution νc ≡ ν(Ec) and obtain

〈IPR〉 ≈
〈
r2

k

〉
〈rq〉2

1

νc

∫
dE ρ2(E )

and

η = νc∫
dE ρ2(E )

.

From the expression for η, it is clear that, in the case of
the rectangular profile η = 2νcσR, which gives the number of
states participating in the ensemble.
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For the first term in Eq. (A1), we have to evaluate the
ensemble average

〈|cl |2|ck|2〉 = fl fk

〈
rl rk( ∑
q rq fq

)2

〉
,

where (l �= k) and, for simplicity, we introduced the short-
hand notation fk ≡ f (Ek ). To obtain an approximation to the
average, we consider the identity,

1 =
∑

k fkrk
∑

l fl rl(∑
q rq fq

)2 =
∑

k f 2
k r2

k(∑
q rq fq

)2 +
∑

l �=k rl rk fl fk( ∑
q rq fq

)2 .

From this, we obtain∑
l �=k rl rk fl fk( ∑

q rq fq
)2 = 1 − IPR.

By taking the ensemble average of this expression and assum-
ing that 〈

rl rk(∑
q rq fq

)2

〉
≈ A,

where A is a constant independent of indexes l and k, we get

A
∑
l �=k

fl fk = 1 − 〈IPR〉,

which implies that

A = 1 − 〈IPR〉∑
l �=k fl fk

.

The sum in the denominator of the equation above can be
expressed in terms of the effective dimension η [see Eq. (A5)]
as follows:

∑
l �=k

fl fk = η − 1

η

(∑
q

fq

)2

= η − 1

η
,

where in the last step, the normalization
∑

q fq →∫
dEρ(E ) = 1 was used. With the above result, the average

can be written as

〈|cl |2|ck|2〉 ≈ 1 − 〈IPR〉
η − 1

η fl fk,

which, when substituted in Eq. (A1), leads to

〈SP(t )〉 = 〈IPR〉 + 1 − 〈IPR〉
η − 1

η
∑
k �=l

fk fl e
−i(Ek−El )t . (A7)

We now turn our attention to the double sum
∑

k �=l in
Eq. (A7). To solve it, we use∑

k �=l

• →
∫

dEdE ′R(E , E ′)•,

where the Dyson two-point correlation function, R(E , E ′) =
ν(E )ν(E ′) − T (E − E ′), includes the DoS, ν(E ), and the
two-level cluster function, T (E − E ′), which has information
about the correlations between the eigenvalues [83]. We then

obtain

∑
k �=l

fk fl e
−i(Ek−El )t →

∣∣∣∣
∫

dEρ(E )e−iEt

∣∣∣∣
2

−
∫

dEdE ′ρ(E )ρ(E ′)
T (E − E ′)
ν(E )ν(E ′)

e−i(E−E ′ )t . (A8)

Using unfolded energy variables, which leads to universal
functions in the limit of an infinite number of levels, we have
[83]

Y ([E − E ′]νc) = T (E − E ′)/ν2
c .

With this function, the second integral in Eq. (A8) is

∫
dEdE ′ρ(E )ρ(E ′)

T (E − E ′)
ν(E )ν(E ′)

e−i(E−E ′ )t

≈
∫

dEdE ′ρ(E )ρ(E ′)Y ([E − E ′]νc)e−i(E−E ′ )t , (A9)

which, in terms of variables z = E ′ and x = (E − E ′)νc

becomes

1

νc

∫
dxdzρ(z)ρ(z + x/νc)Y (x)e−i2πxt̄ , (A10)

with t̄ = t/(2πνc). By expanding ρ(z + x/νc) in powers of x
and considering only the lowest order, the double integral can
be approximated by a product of two independent integrals,

1

νc

∫
dzρ(z)2

∫
dxY (x)e−i2πxt̄ = 1

η
b2

(
t

2πνc

)
,

where we have used the effective dimension introduced be-
fore, and b2(t̄ ) is the known Fourier transform of the GOE-
two level cluster function [83], the so-called two-level form
factor shown in Eq. (21). We use the same b2(t̄ ) as in GOE
matrices, because the unfolded spectrum of the Dicke model
has correlations comparable to those of the GOE levels.

Gathering the previous results together, we obtain for the
ensemble average of the survival probability

〈SP(t )〉 = 〈IPR〉 + 1 − 〈IPR〉
η − 1

×
[
η

∣∣∣∣
∫

dEρ(E )e−iEt

∣∣∣∣
2

− b2

(
t

2πνc

)]
. (A11)

Since the squared absolute value inside the parenthesis is the
short time decay Sbc

p given by Eqs. (9) and (10), we finally
arrive at our analytical expression in Eq. (19).
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