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A major open question in studies of nonequilibrium quantum dynamics is the identification of the time
scales involved in the relaxation process of isolated quantum systems that have many interacting particles.
We demonstrate that long time scales can be analytically found by analyzing dynamical manifestations of
spectral correlations. Using this approach, we show that the Thouless time tTh and the relaxation time tR increase
exponentially with system size. We define tTh as the time at which the spread of the initial state in the many-body
Hilbert space is complete and verify that it agrees with the inverse of the Thouless energy. tTh marks the point
beyond which the dynamics acquire universal features, while relaxation happens later when the evolution reaches
a stationary state. In chaotic systems, tTh � tR, while for systems approaching a many-body localized phase,
tTh → tR. Our analytical results for tTh and tR are obtained for the survival probability, which is a global quantity.
We show numerically that the same time scales appear also in the evolution of the spin autocorrelation function,
which is an experimental local observable. Our studies are carried out for realistic many-body quantum models.
The results are compared with those for random matrices.
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I. INTRODUCTION

There is currently great interest in the dynamics of isolated
interacting many-body quantum systems. This is in part due
to the advances of experiments with cold atoms, ion traps,
and nuclear magnetic resonance platforms, which allow for
the simulation of unitary dynamics of highly tunable Hamil-
tonians for long times [1–9]. Great efforts have been devoted
to conciliate reversible microscopic dynamics and irreversible
thermodynamics [10–14]. Increasing attention has also fo-
cused on the analysis of the metal-insulator transition [15–19]
and the quantum-classical correspondence, especially in the
context of many-body quantum chaos and the scrambling
of quantum information [20–27]. A missing piece in these
studies is a complete picture of the time scales involved in
the relaxation to equilibrium.

Several works have discussed what equilibration in closed
finite quantum systems actually means [28–35], a subject on
which we find consensus. Equilibration refers to the proximity
of an observable to its asymptotic value for most times, despite
the presence of temporal fluctuations. Much more problematic
is the identification of the time to reach equilibrium, for which
there are several interesting, but contradictory results. Some
suggest that equilibration happens at very short times, while
others indicate just the opposite, that extremely long times are
required [10,36–43].

To properly determine the relaxation time of many-body
quantum systems, one needs to have a complete picture of
the different behaviors that emerge at different time scales.
Without that, one risks reaching misleading conclusions. Here
we unveil the time scales by using an analytical expression
that describes the entire evolution of the survival probability
for chaotic interacting systems. The survival probability is
the squared overlap between the initial state and its time

evolved counterpart. The crucial observation needed to obtain
our analytic expression is that chaotic systems have strongly
correlated eigenvalues that show level statistics comparable to
what one finds for full random matrices [44,45].

An expression for the evolution of the survival probability
was proposed in Ref. [46] for a disordered spin-1/2 model
in the chaotic regime. Here we present all the steps involved
in the analytical derivation, which is not tied to any specific
model. The only assumptions made are that the system is
defined on a finite lattice, has local two-body interactions only,
is strongly chaotic, and that its initial state is far from equilib-
rium and has energy away from the borders of the spectrum.
We confirm the generality of our equation by showing that it
describes the whole evolution of the survival probability for
the following chaotic models: a disordered spin-1/2 model,
a clean (dynamical) spin-1/2 model, and a sparse banded
random matrix model.

In hands of the analytical equation for the survival prob-
ability, we arrive at one of the central results of this work:
analytical estimates for two long time scales. One is what
we call Thouless time tTh, which is the time for the survival
probability to reach its minimum value at the bottom of the
correlation hole, and the other is the relaxation time tR, which
happens later, when the survival probability saturates to an
asymptotic value. The correlation hole is a dip below the
asymptotic value [47–51] that has been observed in local
many-body Hamiltonians with [52,53] and without disorder
[53] and in the Sachdev-Ye-Kitaev model [22–24].

The Thouless time was first introduced in the context of
noninteracting systems, where it refers to the time scale for a
particle to diffuse through a disordered metallic sample and
reach the boundaries [54]. This definition has been shown to
agree with the inverse of the Thouless energy ETh, which is
the energy scale below which universality holds [55]. Our
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studies bring to light the fact that these two approaches—
diffusion and spectral correlations—give different results for
interacting systems. We demonstrate that our definition of the
Thouless time is indeed inversely proportional to the Thouless
energy generalized to interacting systems in [56]. In contrast,
our tTh does not agree with definitions that employ transport
properties [13,18,19,43].

According to our physical interpretation, the Thouless time
in interacting systems refers to the time that it takes for
an initially localized many-body state to fully spread in the
exponentially large many-body Hilbert space accessible to its
energy. This picture explains why the two approaches used
to define the Thouless time in noninteracting systems are not
equivalent for interacting ones. For single particle models, the
Hilbert space coincides with the physical space, so complete
spread in the former implies complete spread in the latter. The
situation is quite different for many-body systems, for which
the dimension D of the Hilbert space is exponentially large in
the physical size. Complete spread in the many-body Hilbert
space requires a time exponentially large in the system size.

We find that the Thouless time depends on the size of the
Hilbert space as tTh ∝ D2/3/�, where � is the width of the
energy distribution of the initial state. The relaxation time
tR ∝ D/� also extracted directly from our analytical equation
for the survival probability, coincides with the Heisenberg
time, which is the longest possible time scale for the system.
Both scalings are confirmed by exact numerical simulations.

These results are compared with the time scales obtained
analytically for full random matrices from a Gaussian orthog-
onal ensemble (GOE). While the expression for the relaxation
time still coincides with the Heisenberg time, full spreading
in the Hilbert space is reached at a time which is independent
of the matrix size.

In addition to the survival probability, which is a global
quantity, we also investigate the local spin autocorrelation
function, which is equivalent to the density imbalance mea-
sured in experiments with cold atoms [7]. Using a disordered
spin-1/2 model, we show that the time scales for the spin auto-
correlation function to reach the minimum of the correlation
hole and to later saturate coincide with those found for the
survival probability.

A natural question that emerges from these studies is
what happens to the time scales outside the chaotic region.
To address this point, we investigate the dynamics of the
disordered spin model as the disorder strength increases and
the model leaves the chaotic regime toward a many-body lo-
calized phase, where the eigenvalues are no longer correlated.
This affects the dynamics before [57] and after the Thouless
time [52,53]. We show that tTh grows exponentially with the
disorder strength and approaches the relaxation time, that is
tR/tTh → 1. In noninteracting systems, this ratio is known as
Thouless dimensionless conductance.

The remainder of this article is organized as follows.
In Sec. II we provide the general structure of the models
considered and introduce the survival probability. In Sec. III
we study numerically and analytically the time scales for the
survival probability evolving under GOE Hamiltonians. In
Sec. IV we present the analytical equation for the survival
probability in realistic chaotic interacting models and use it
to obtain tTh and tR analytically. The expression is compared

with numerical results for three realistic models of various
system sizes. In Sec. V we study numerically how the time
scales for the disordered spin-1/2 model change as the system
approaches localization in space. We also show that our
definition for the Thouless time is inversely proportional to the
Thouless energy. In Sec. VI we study numerically the spin au-
tocorrelation function and find that the long time scales agree
with those for the survival probability. In Sec. VII we summa-
rize our results and outline some future directions. Appendix
describes the steps involved in the derivation of the expression
for the survival probability for realistic chaotic systems.

II. GENERAL DEFINITIONS

The systems studied in this article are described by real and
symmetric Hamiltonians of the form

H = H0 + gV. (1)

We take h̄ = 1. H0 is the integrable part of H , V represents
the perturbation, and g = 1 is the perturbation strength. The
eigenvalues and eigenstates of H are labeled Eα and |ψα〉,
respectively.

The system is prepared in an eigenstate |�(0)〉 of H0 with
energy

E0 = 〈�(0)|H |�(0)〉 (2)

close to the middle of the spectrum. Due to V , the initial state
spreads in time in the many-body basis defined by H0. The
perturbation takes the system very far from equilibrium. To
study the evolution of the initial state, we compute the survival
probability

PS (t ) = |〈�(0)|e−iHt |�(0)〉|2, (3)

which represents the probability to find the system in the
initial state at time t .

The survival probability allows for two different integral
representations. The first one is obtained by writing it as

PS (t ) =
∣∣∣∣∣
∑

α

∣∣C(0)
α

∣∣2e−iEαt

∣∣∣∣∣
2

=
∣∣∣∣
∫

ρ0(E )e−iEt dE

∣∣∣∣
2

, (4)

where C(0)
α = 〈ψα|�(0)〉 is the component of the initial state

over the energy eigenbasis and

ρ0(E ) =
∑

α

∣∣C(0)
α

∣∣2δ(E − Eα ) (5)

is the energy distribution of the initial state, which is also
known as local density of states (LDOS) or strength function.
The width � of this distribution is given by

�2 =
∑
n �=0

|〈φn|H |�(0)〉|2, (6)

where |φn〉 are the eigenstates of H0. �2 is related to the
number of states |φn〉 directly coupled to the initial state
by V .

We take averages over initial states with energies close to
the middle of the spectrum E0 ∼ 0. For random models, we
also average over different realizations of the Hamiltonian. We
denote the total average by 〈·〉. For clean models, the average
is performed only over initial states.
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The asymptotic value of the survival probability corre-
sponds to its infinite time average,

PS =
〈∑

α

∣∣C(0)
α

∣∣4〉. (7)

If the coefficients C(0)
α are Gaussian random numbers satis-

fying normalization, PS ∼ 3/D, where D is the size of the
many-body Hilbert space.

III. TIME SCALES FOR THE SURVIVAL
PROBABILITY IN THE GOE MODEL

The first model that we study corresponds to GOE random
matrices. We take H0 to be the diagonal part of the random
matrix H and V to be the off-diagonal part. The elements are
independent random numbers from a Gaussian distribution
with mean 0 and variance 2 for H0 and 1 for V . The model
is unrealistic, since it implies the simultaneous interaction
between all particles, but it allows for the identification of
universal properties.

For matrices with a large dimension D, the analytical
expression for the entire evolution of the survival probability
under GOE matrices is given by [46,58]

〈PS (t )〉 = 1 − PS

D − 1

[
D
J 2

1 (2�t )

(�t )2
− b2

(
�t

2D

)]
+ PS, (8)

where J1(t ) is the Bessel function of the first kind, the two-
level form factor is

b2(t ) = [1 − 2t + t ln(1 + 2t )]	(1 − t )

+{t ln[(2t + 1)/(2t − 1)] − 1}	(t − 1), (9)

and 	 is the Heaviside step function. Following Eq. (6), � =√
D for the GOE model.
A plot of the analytical Eq. (8) is provided in Fig. 1(a) for

different sizes D of the Hamiltonian matrix. The numerical
curve for D = 12 870 is also shown and, apart from fluctua-
tions at long times, it is undistinguishable from the analytical
expression. The evolution of 〈PS (t )〉 is initially determined
by J 2

1 (2�t )/(�t )2, which at very short times gives 1 − �2t2

and later leads to oscillations that follow a power-law decay
∝ t−3. This decay persists until the minimum of 〈PS (t )〉 is
reached at a time that we call tGOE

Th . After tGOE
Th , 〈PS (t )〉 is

dominated by the b2(t ) function and increases toward satura-
tion. The b2(t ) function describes the correlation hole. This
dip below the saturation point is a direct manifestation of
the rigidity of the spectrum, being nonexistent in integrable
models, where the level spacing distribution is Poissonian.

A. Time for the minimum of the correlation hole

We use Eq. (8) to compute the dependence of tGOE
Th on D.

Since the first term in Eq. (8) depends on �t , while the second
term depends on �t/D, we expect the minimum of 〈PS (t )〉 to
happen at times which are large with respect to 1/� ∼ 1/

√
D,

but short with respect to D/� ∼ √
D. As a consequence, we

expand the first term of Eq. (8) for long times,

D
J 2

1 (2�t )

(�t )2
→ D

π (�t )3
for �t 
 1, (10)
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FIG. 1. Survival probability for the GOE model. (a) Analytical
expression for the survival probability as a function of time [Eq. (8)]
for GOE matrices of dimensions D = 924, 3 432, 12 870, 48 620,
from top to bottom. For D = 12 870, we also provide the numerical
curve. The time scales tGOE

Th and tGOE
R are marked for each curve.

(b) The time tGOE
Th to reach the minimum of the correlation hole as a

function of D. The data converge to the asymptotic value (3/π )1/4 of
Eq. (13) (horizontal dashed line) as 1/

√
D (solid line). (c) Relaxation

time tGOE
R as a function of D. The data follow the behavior tR �

(1/3)
√

D/δ (solid line) obtained in Eq. (19).

and expand the two-level form factor b2 for short times,

b2

(
�t

2D

)
→ 1 − �t

D
for

�t

D
� 1. (11)

Combining Eqs. (10) and (11) in the derivative of 〈PS (t )〉, we
have

d〈PS (t )〉
dt

∣∣∣∣
t=tGOE

Th

� 1 − PS

D − 1

[
−3

D

π�3t4
+ �

D

]∣∣∣∣
t=tGOE

Th

= 0. (12)

In the fully connected GOE model, all factors that depend on
D cancel out, resulting in

tGOE
Th =

(
3

π

)1/4 √
D

�
=

(
3

π

)1/4

. (13)

While the initial decay determined by � gets faster with D, the
subsequent power-law decay lasts longer, which leads to the
constant value of tGOE

Th . This is in stark contrast with physical
chaotic models, where, as we shall see in Sec. IV, tTh grows
with system size.

The minimum value reached by the survival probability can
be found by plugging Eq. (13) into Eq. (8), which gives

〈PS (t )〉|t=tGOE
Th

≈ 1 − PS

D − 1

[
D

π
(
�tGOE

Th

)3 −
(

1 − �tGOE
Th

D

)]

+ PS ∼ 1 − PS

D − 1
(−1) + PS. (14)
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Since all eigenstates of GOE matrices are Gaussian random
vectors, so is |�(0)〉. This implies that PS ∼ 3/D and

〈PS (t )〉|t=tGOE
Th

≈ 2

D
. (15)

It is worth comparing our result in Eq. (13) with Ref. [50],
where the expression for 〈PS (t )〉 does not properly capture
the short time decay. As a consequence, it is found there,
incorrectly, that tGOE

Th scales with D. If, however, the matrix
elements are rescaled by a factor 1/

√
D, as done in [22], so

that the width of the density of states is independent of D,
then Eq. (13) changes and tGOE

Th becomes indeed dependent
on D.

In Fig. 1(b) we plot the dependence of tGOE
Th on D. The

data are obtained by numerically minimizing Eq. (8). As we
can see, tGOE

Th converges asymptotically to the value given in
Eq. (13), which is indicated with the horizontal dashed line. A
power-law fitting of the data gives 0.25/

√
D, which is shown

with the solid line.

B. Relaxation time

To estimate the relaxation time, we study the relative
difference between 〈PS (t )〉 and PS . To do so, we expand the
two-level form factor for long times:

b2

(
�t

2D

)
→ D2

3�2t2
for

�t

D

 1. (16)

We also neglect the term involving the Bessel function, since it
goes to zero faster than quadratically for t → ∞. Substituting
Eq. (16) into Eq. (8) gives

|〈PS (t )〉 − PS|
PS

≈ 1 − PS

PS (D − 1)

D2

3�2t2
≈

(
D

3�t

)2

. (17)

This shows that 〈PS (t )〉 approaches the saturation value fol-
lowing a power-law behavior, so the time scale for complete
relaxation is not well defined. Yet, one can define the relax-
ation time as the point where

|〈PS (tR)〉 − PS|
PS

∼ δ, (18)

for some small value δ > 0. This gives

tGOE
R ∼ D

3�
√

δ
∼ 1

3

√
D

δ
. (19)

The relaxation time is therefore inversely proportional to
the mean level spacing �/D, which is the definition of the
Heisenberg time. This is the largest possible time scale for a
quantum system, derived directly from Eq. (8). Unlike tGOE

Th ,
the time to reach actual saturation diverges with D.

As for δ, we choose a value δ � σPS /PS , where σPS is the
width of the ensemble fluctuations of PS at asymptotically
long times. Since σPS ∼ PS [59], this implies δ � 1. In our
plots we take δ = 0.01.

In Fig. 1(c), we plot the dependence of tGOE
R on D. The

numerical data (squares) are compared with the analytical
prediction of Eq. (19), finding perfect agreement. No fitting
parameters were used for this comparison.

IV. TIME SCALES FOR THE SURVIVAL PROBABILITY
IN REALISTIC CHAOTIC MODELS

The GOE model is not appropriate to describe physically
relevant chaotic systems. This is so because, in a random
matrix model, no notion of locality is present and simulta-
neous interaction of all degrees of freedom is assumed. As
a consequence, one cannot expect a priori the predictions of
Sec. III to hold for realistic models.

In this section we provide an analytical equation for 〈PS (t )〉
for generic chaotic many-body quantum systems. With this
analytical expression, we find estimates for the time scales for
the evolution of the survival probability. These predictions are
then checked against numerical data. We find that, while the
behavior of the system at short times is very different from
that of the GOE, at long times the two models behave in an
equivalent way. This is because the dynamics at long times
depend on spectral correlations only.

A. Analytical expression for the survival probability

We consider a many-body quantum system on a lattice,
in the strongly chaotic regime. The interactions are local
and two body only, which implies that the density of states
has a Gaussian shape [60]. In the bulk of the spectrum, the
eigenstates of these systems are close to Gaussian random
vectors.

When the system is taken very far from equilibrium, as
done here [in Eq. (1), g = 1], initial states with E0 ∼ 0 are
very delocalized in the energy eigenbasis [61,62]. In this case,
the LDOS defined in Eq. (5) is also Gaussian. Because the
coupling determined by the V part of the total Hamiltonian is
local and short range, H is a very sparse matrix and, according
to Eq. (6), the width � of the LDOS is proportional to

√
L �√

D. This is a main difference from the GOE model, where
� = √

D. No further assumptions on the nature of the system
and initial state are made.

Since the eigenstates in the bulk of the spectrum are
nearly random vectors, they are statistically independent from
the eigenvalues. This fact is used in the derivation of the
analytical expression for 〈PS (t )〉, which is explained in detail
in Appendix. The equation is given by

〈PS (t )〉 = 1 − PS

(D − 1)

[
De−�2t2

4N 2
F (t ) − b2

(
�t√
2πD

)]
+ PS,

(20)

where

F (t ) =
∣∣∣∣erf

(
Emax + it�2

√
2�

)
− erf

(
Emin + it�2

√
2�

)∣∣∣∣
2

, (21)

N is a normalization constant (see Appendix), erf is the error
function, Emax is the largest eigenvalue of H , and Emin is the
lowest eigenvalue.

In addition to the asymptotic value PS , Eq. (20) contains
two other terms. The one with F (t ) describes the initial decay
of the survival probability. At short times, the decay follows a
Gaussian, ∼e−�2t2

, up to t ∼ 1/�, which is the characteristic
time for the depletion of the initial state. Later, when the
bounds of the spectrum are reached, this term behaves like
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FIG. 2. Different stages of the evolution of the survival probabil-
ity for a realistic chaotic model with local two-body interaction and
initial states very delocalized in the energy eigenbasis. Same model
and parameters as in Fig. 4(a) with L = 16.

a power law ∝ t−2 [63–65]:

De−�2t2

4N 2
F (t ) → D

�2t2
for �t 
 1. (22)

At yet longer times, the dynamics become dominated by the
b2 function. Its functional form is the same as that for the
GOE in Eq. (9), because the level statistics of realistic chaotic
models described by real symmetric Hamiltonian matrices are
comparable to those for the GOE. We reiterate that up to this
point, no specific model was considered.

Figure 2 illustrates the entire evolution of the survival
probability for a generic chaotic many-body model that sat-
isfies the conditions described above. Up to tTh, which marks
the minimum of the correlation hole, the dynamics differ
from what we have for the GOE matrices in Fig. 1. Here a
Gaussian behavior and a power-law decay ∝ t−2 are observed.
Universality, in the form of the correlation hole, takes place
only beyond tTh. The dynamics saturate at tR, after which there
are only fluctuations around the infinite time average PS .

B. Analytical estimation for the Thouless time
and relaxation time

With Eq. (20) one can obtain analytical estimates for the
time of the minimum of the hole tTh and for the relaxation
time tR, following the procedure of Sec. III.

1. Thouless time

To obtain tTh, we expand the first term in Eq. (20) for long
times, as done in Eq. (22), which gives the power-law decay
∝ t−2. And we expand the b2 function to short times, which
gives the linear increase in t ,

b2

(
�t√
2πD

)
→ 1 − 2

�t√
2πD

for
�t

D
� 1. (23)

Combining the expansion in Eq. (22) and the expansion above
in the derivative of 〈PS (t )〉, we arrive at one of our central

results,

tTh ∝ D2/3

�
∼ e

2cL
3√
L

, (24)

where we used that the Hilbert space dimension of the sys-
tem is D ∝ ecL, for some constant c > 0. This result for
tTh is completely different from what we have for the GOE
model in Eq. (13). While for full random matrices, tGOE

Th is
independent of system size, for realistic chaotic systems, tTh

grows exponentially with L. Such exponential increase of tTh

is a general result for realistic many-body quantum systems
with local interactions. Mathematically, this is caused by two
combined factors: the rate of the initial Gaussian decay of
〈PS (t )〉 increases just linearly with L, because the Hamiltonian
matrices describing real systems are sparse, and this decay is
followed by a power-law behavior that lasts longer as L grows.

In noninteracting models, the time that it takes for a particle
to diffusively cross a disordered medium is called Thouless
time. For realistic interacting quantum systems, we use the
same terminology to denote the time for 〈PS (t )〉 to reach the
minimum of the correlation hole. The region of the correlation
hole is exclusively present in finite quantum systems with a
discrete spectrum and correlated eigenvalues. It takes the time
tTh for the dynamics to resolve the discreteness of the spec-
trum and detect spectral correlations. After tTh, the dynamics
consist purely of dephasing processes, and are fully quantum
in nature.

Physically, we interpret the Thouless time in interacting
systems as the time for the initial many-body state to spread
over an exponentially large many-body Hilbert space via
local interactions, which takes an exponentially long time.
The initially localized state, given by one eigenstate of the
unperturbed Hamiltonian H0, needs time tTh to acquire weight
over all many-body states of H0 in the microcanonical energy
shell. This contrasts with the GOE model, where the initial
state is directly coupled with all eigenstates of H0, so the time
to reach the minimum of the correlation hole does not depend
on system size.

To describe the spread of the initial state in the many-body
space of a realistic system, we compute the evolution of the
inverse participation ratio,

〈IPR(t )〉 =
∑

n

|〈φn|e−iHt |�(0)〉|4, (25)

which quantifies the inverse of the number of unperturbed
many-body states that contribute to the dynamics. When
〈IPR(t )〉 reaches its minimal value, the spreading of the initial
state in the Hilbert space is maximal. This is illustrated
in Fig. 3 for the same generic chaotic many-body model
considered in Fig. 2. Figure 3 confirms that the minimum of
〈IPR(t )〉, just as the minimum of 〈PS (t )〉, happens at tTh.

2. Relaxation time

We now examine the relaxation time tR. For long times,

b2

(
�t√
2πD

)
→ πD2

6�2t2
for

�t

D

 1. (26)

Since the term above is proportional to D2, while Eq. (22)
is proportional to D, we can discard the latter for large D.
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FIG. 3. Spread in time of an initially localized state through the
many-body Hilbert space. The spread is quantified by the inverse
participation ratio. In the figure, 〈IPR(t )〉 is multiplied by the dimen-
sion D of the Hilbert space. Same realistic chaotic model with local
two-body interaction used in Fig. 2 and in Fig. 4(a) with L = 16.
The vertical dashed line marks the Thouless time and the horizontal
dashed line indicates the saturation value.

Following the same procedure as in Sec. III B, one finds that

tR ∝ D

�
√

δ
∼ ecL

√
Lδ

. (27)

Since for realistic chaotic systems and for the GOE model, the
dynamics at long times are dominated by the same function
b2, we obtain again that tR is inversely proportional to the
mean level spacing. This result demonstrates analytically
that the time beyond which the observable simply fluctuates
around the infinite-time average is the Heisenberg time.

By comparing Eqs. (24) and (27), one sees that as the
system size L grows, the Thouless and relaxation times move
exponentially far apart from each other and the correlation
hole gets elongated.

C. Numerical results for different realistic chaotic models

In Fig. 4 we compare our analytical Eq. (20) for the
survival probability with numerical data for three different
realistic chaotic models. We use the lower bound Emin as a
single fitting parameter.

In Fig. 4(a) we plot the data for a disordered spin-1/2 chain
with nearest-neighbor couplings only. The total Hamiltonian
Hds has two terms,

Hds = Hds
0 + V ds, Hds

0 = J
L∑

k=1

(
hkS

z
k + Sz

kS
z
k+1

)
,

V ds = J
L∑

k=1

(
Sx

kSx
k+1 + Sy

kSy
k+1

)
. (28)

Above, Sx,y,z
k are the spin operators on site k, L is the size of

the chain, and the amplitudes hk are uniform random numbers
in [−h, h], h being the disorder strength. We set J = 1 and
periodic boundary conditions are assumed. This system can be
mapped into models of hardcore bosons and spinless fermions
and has been studied experimentally in the context of many-
body localization [7].
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FIG. 4. Survival probability for realistic chaotic models. In (a),
(c), and (d) we compare numerical data (full lines) with the analytical
Eq. (20) (dashed lines). (a) Disordered spin-1/2 model from Eq. (28)
with disorder strength h = 0.5 and system sizes L = 10, 12, 14, 16
from top to bottom. (c) Clean spin-1/2 model with next-to-nearest-
neighbors couplings from Eq. (29) and system sizes L = 12, 14, 16
from top to bottom. (d) Sparse banded random matrix model with
matrices sizes D = 924, 3 432, 12 870. In (b) we compare the values
of tTh (circles) and tR (squares) extracted numerically for the disor-
dered spin-1/2 model with the analytical Eqs. (24) and (27) (full and
dashed lines, respectively), finding excellent agreement.

The Hamiltonian Hds conserves the total magnetiza-
tion Sz = ∑

k Sz
k . We work with the largest subspace Sz =

0, where the dimension of the Hilbert space is D =
L!/(L/2)!2 ∼ eL ln 2, so c = ln 2 in Eqs. (24) and (27). We take
the disorder strength h = 0.5, where the model is maximally
chaotic [52]. To compute 〈PS (t )〉, an average over initial states
with energies close to the middle of the spectrum and over
disorder realizations is performed.

As clearly seen in Fig. 4(a), the analytical prediction from
Eq. (20) describes accurately the numerical curve for 〈PS (t )〉
for more than six orders of magnitude in time, covering the
entire evolution, from t ∼ 1/� to t ∼ tR. The figure shows that
both tTh and tR grow with the system size. A more quantitative
analysis is provided in Fig. 4(b), where we plot tTh and tR
as a function of L and compare them with our analytical
estimates in Eqs. (24) and (27). The agreement is excellent.
The exponential growth of both tTh and tR is clearly visible,
as well as the growth of the difference between them, which
indicates the stretch of the correlation hole with L.

To show that Eq. (20) is indeed general, we test it for two
other models. In Fig. 4(c) we plot the survival probability
for a clean spin-1/2 model with next-to-nearest-neighbors
couplings. Its Hamiltonian reads

H cl = H cl
0 + V cl, H cl

0 = J�

L∑
k=1

(
Sz

kS
z
k+1 + λSz

kS
z
k+2

)
,

V cl = J
L∑

k=1

[
Sx

kSx
k+1 + Sy

kSy
k+1 + λ

(
Sx

kSx
k+2 + Sy

kSy
k+2

)]
. (29)
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FIG. 5. Survival probability (a) and long time scales (b) for the
disordered spin-1/2 model (28) with different disorder strengths. (a)
〈PS (t )〉 for h = 0.5, 1.0, 1.5, 2.0, from bottom to top, and system size
L = 16. (b) Thouless time (circles) and relaxation time (squares) as
a function of disorder strength. The solid line shows the fit tTh ∼
37e2.6h.

We choose open boundary conditions J = 1, anisotropy
parameter � = 0.48, the strength of the next-to-nearest-
neighbors coupling λ = 1, and Sz = 0, so that again D =
L!/(L/2)!2. Despite the absence of random elements, this
model is strongly chaotic as well [66]. The average is now
performed over initial states only, which explains why the
numerical data in Fig. 4(c) show larger fluctuations than for
the disordered spin model in Fig. 4(a). The analytical curves
for different system sizes capture the numerical behavior of
〈PS (t )〉 extremely well.

As a third example, in Fig. 4(d) we plot the data for a
sparse banded random matrix model. This model has the
same nonzero entries as the Hamiltonian in Eq. (29), but they
are drawn independently from a Gaussian distribution with
mean value 0 and variance J2. An average over initial states
with energies at the middle of the spectrum and over several
realizations of the Hamiltonian is performed. This model is
not related to any specific physical system. Once again, the
numerical evolution of 〈PS (t )〉 follows very well the analytical
expression.

V. TRANSITION FROM CHAOS TO LOCALIZATION

In the previous section we considered only systems in
the strongly chaotic regime. It is now natural to ask how
the results change for systems away from this regime. In
this section we analyze this question for the disordered spin-
1/2 model of Eq. (28). At a critical value hc > 2.25, this
system transitions to a many-body localized phase, where the
eigenvalues are uncorrelated. We consider disorder strengths
0.5 � h � 2.25, where the energy levels have some degree
of correlation. We find that as h is increased above 0.5, the
Thouless time progressively approaches the relaxation time
until their values coincide and the correlation hole disappears.

A. Growth of the Thouless time with disorder

In Fig. 5(a) we plot the survival probability for different
disorder strengths, increasing from bottom to top, at system
size L = 16. The consequence of the presence of disorder
is different at different time scales. For short times, where
the Gaussian decay holds, the disorder has no effect on the
dynamics, because � depends only on the off-diagonal entries

of the Hamiltonian, which are independent of h. For �t � 1,
all curves fall on top of each other. At later times, in the region
of the power-law decay, the power-law exponent decreases
as a function of h, as explained in Refs. [52,57]. At even
later times, the b2 function is also affected by disorder: the
correlation hole gets delayed and tTh grows as h increases.
Finally, while the saturation value PS naturally increases as
the disorder strength increases, since the initial states become
less spread out in the energy eigenbasis, the time tR at which
such value is reached does not change. This is because tR is
inversely proportional to the mean level spacing, which does
not strongly depend on disorder for 0.5 � h � 2.25.

The dependence of the long time scales on the disorder
strength can be seen more quantitatively in Fig. 5(b), where
we plot tTh and tR as a function of h. The Thouless time
grows exponentially with h, indicating that the spread of the
initial state in the many-body space becomes much slower. tTh

eventually reaches tR for h > 2.25, when the system localizes
and the correlation hole ceases to exist. We do not show data
for this region, because for h � 2.25, the hole becomes tiny
and it becomes challenging to distinguish numerically the
Thouless time from the relaxation time.

We notice that, in noninteracting disordered systems, the
ratio tR/tTh is called Thouless dimensionless conductance. It
is large in the metallic phase and it approaches 1 as the system
approaches the localized phase. For the interacting disordered
spin model from Eq. (28) in the chaotic regime, our results
show that tR/tTh ∝ eL(ln 2)/3. As the disorder strength grows
and the system leaves the chaotic region toward many-body
localization, the gap between the two time scales decreases
exponentially with h and tR/tTh → 1. This ratio is thus an
additional tool for the studies of localization in interacting
systems.

B. Relation between the Thouless time and the Thouless energy

In noninteracting disordered systems, the Thouless time
was originally defined as the diffusion time of a particle
through the sample. It is inversely proportional to the Thouless
energy ETh, which is determined by the diffusion constant
and the system size [44,54]. Later, it was shown that, within
the energy scale defined by ETh, the level statistics of these
systems follow those from random matrices [55]. The analysis
of level statistics can then be used as an alternative way to
identify the Thouless energy.

Here we investigate how this picture can be extended to
interacting systems. For our definition of the Thouless time,
namely the time to reach the minimum of the correlation hole,
we indeed recover that tTh ∝ 1/ETh. But before showing these
results, let us explain how ETh is obtained from the spectral
correlations of chaotic models.

The energy levels of chaotic systems are strongly corre-
lated. Long-range correlations can be quantified by computing
the level number variance �2(�). This is done as follows. One
first has to unfold the spectrum, in order to set the smooth
part of the density of states to a constant [44]. Then, one
partitions the spectrum into intervals of length �, counts the
number of levels inside each interval, and computes the vari-
ance of the resulting distribution. For GOE random matrices,
strong correlations between the eigenvalues manifest as a
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FIG. 6. Level number variance (a) and relation between the
Thouless energy and the Thouless time (b) for the disordered spin
model from Eq. (28) with different disorder strengths. (a) The analyt-
ical GOE curve (dashed line) for �2(�) is compared with numerical
results (solid lines) for h = 0.5, 0.75, 1, 1.25, 1.5 from bottom to
top. (b) The numerical data (triangles) are fitted with ETh = 2724/tTh

(solid line), showing that the Thouless energy and the Thouless time
are inversely proportional to each other. Both panels: L = 16.

logarithmic growth for the level number variance �2(�) =
2
π2 [log(2π�) + γe + 1 − π2

8 ], where γe = 0.5772 . . . is the
Euler-Mascheroni constant.

For chaotic noninteracting disordered models, it was found
in [55] that �2(�) grows logarithmically with the energy
interval � for � < ETh, where ETh is the Thouless energy.
For level separations larger than the Thouless energy, �2(�)
deviates from this behavior. This notion of the Thouless
energy was extended to the interacting disordered model of
Eq. (28) in Ref. [56]. There it was shown that the Thouless
energy becomes smaller as the disorder strength increases and
the system approaches a many-body localized phase.

In Fig. 6(a) we compare the data for �2(�) for various
disorder strengths with the analytical GOE curve (dashed
line). The Thouless energy is extracted as the point at which
�2(�) deviates from the logarithmic behavior. In Fig. 6(b) we
then analyze the relationship between ETh and tTh for various
values of h and confirm that ETh ∝ 1/tTh for our interacting
model. This further justifies referring to the time to reach the
minimum of the correlation hole as the Thouless time.

VI. SPIN AUTOCORRELATION FUNCTION

The survival probability and the inverse participation ratio
shown in Fig. 3 are nonlocal quantities. In this section we
investigate the long time scales for the spin autocorrelation
function, which is a local observable in real space. It is given
by

I (t ) = 4

L

L∑
i=1

〈�0|Sz
i e

iHt Sz
i e

−iHt |�0〉. (30)

This quantity measures how close the spin configuration at
time t is to the initial one. It is analogous to the density
imbalance measured in experiments with cold atoms [7].

At long times, the behavior of 〈I (t )〉 is remarkably similar
to 〈PS (t )〉, as seen in Fig. 7(a). There, a correlation hole is
also clearly visible. In Fig. 7(b) we plot the numerical values
for tTh and tR vs L for the spin autocorrelation function.
It shows again that the time to reach the minimum of the
correlation hole increases exponentially with system size. The
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FIG. 7. Spin autocorrelation function for the spin model. 〈I (t )〉
in (a) and (c). Thouless and relaxation times as a function of system
size (b) and of disorder strength (d). Circles are for tTh, squares for tR.
(b) Solid line is for Eq. (24) and dashed line for Eq. (27). (d) Solid
line is for the fit 124e1.8h. (a) L = 12, 14, 16 from top to bottom.
(a) and (b) h = 0.5. (c) and (d) L = 16.

same estimate found for the survival probability in Eq. (24)
matches very well the numerical results for 〈I (t )〉. The time to
later relax to the infinite-time average follows again Eq. (27),
that is, it is given by the inverse of the mean level spacing. This
shows that the long time scales that we unveiled for global
quantities can manifest themselves for local experimental
quantities as well.

Evidently, the short-time evolution of the spin autocorre-
lation function is different from the survival probability, as
one can see by comparing Figs. 4(a) and 7(a). Up to tTh the
dynamics depend on the initial state, model, and observable.
Beyond the minimum of the correlation hole, as mentioned
at different occasions in this work, the dynamics become
universal and governed by spectral properties. It may happen,
however, that the amplitude of the dynamical effects caused
by correlated eigenvalues is not large, as seen for 〈IPR(t )〉 in
Fig. 3. Open questions include why this happens and which
observables have pronounced correlation holes, as the survival
probability and the spin autocorrelation function. Another
interesting question is whether for the observables with visible
correlation holes, the time to reach the minimum value always
follows Eq. (24). This is indeed what our results indicate,
where the particular features of the short-time evolution of
〈I (t )〉 conspire to achieve the same L dependence for tTh as
for 〈PS (t )〉.

The analogy between the spin autocorrelation function
and the survival probability extends also to the transition
region between chaos and localization. Just as for the survival
probability, the minimum of the correlation hole for 〈I (t )〉
gets postponed to later times as h increases, as illustrated in
Fig. 7(c). This time grows exponentially with h, as shown in
Fig. 7(d), until tTh ∼ tR. Therefore, the analysis of how the
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ratio tR/tTh approaches 1 may be used to detect the transition
to localization also when local observables are considered.

The fact that the time to achieve complete relaxation
increases exponentially with system size, be the observable
global or local, is of consequence to theoretical and exper-
imental studies of relaxation and thermalization. Needless to
say, reaching tTh or tR experimentally is challenging. However,
coherence times are being pushed to ever longer values. In
particular, the Thouless time for systems with L � 18 might
soon be within reach.

VII. CONCLUSION

This work promotes the use of dynamical manifestations
of spectral properties, which emerge when the time evolution
resolves the discreteness of the spectrum, as a means to
identify the long time scales involved in the relaxation process
of interacting many-body quantum systems. In doing so, we
find that there is not only one, but two very long time scales:
the Thouless time tTh and the relaxation time tR.

We derive analytical estimates for tTh and tR for realis-
tic interacting systems in the chaotic regime. They match
extremely well our numerical results for a global quantity
and an experimental local observable. These are the survival
probability and the spin autocorrelation function, respectively.

We provide a physical interpretation for the Thouless time
in interacting systems. When interactions are present, the
dynamics cannot be completely captured in terms of real space
processes, but require instead the analysis of the evolution in
the many-body Hilbert space. Using the inverse participation
ratio, we showed that tTh corresponds to the time for a many-
body initial state to get completely spread out, via local
interactions, in the many-body Hilbert space. Since this space
is exponentially large in the system size L, the Thouless time
grows exponentially with L. This is to be contrasted with our
results for the GOE model, where the matrices are fully con-
nected and tGOE

Th is therefore independent of the matrix size.
Our derivations demonstrate that the relaxation time coin-

cides with the Heisenberg time, being thus the largest time
scale of the system dynamics. The analytical estimate for tR is
the same for realistic systems and for the GOE model, since
the dynamics beyond tTh become universal.

In noninteracting disordered systems, the ratio between
the Heisenberg time and the Thouless time is the Thouless
dimensionless conductance, which goes to 1 as the system
approaches the localized phase. This prompts us to use the
disordered interacting spin model to analyze tR/tTh, finding
that the ratio approaches 1 exponentially fast with the disorder
strength. We verify that the parallel between interacting and
noninteracting disordered systems extends also to the rela-
tionship between the Thouless time and the Thouless energy.
We find that tTh ∝ 1/ETh, which gives further support to our
definition of the Thouless time.

Definitions of the Thouless time based on transport prop-
erties [13,18,19,43] lead to a power-law scaling of tTh with
system size. This result does not agree with our definition,
which is based on the dynamical manifestations of spec-
tral correlations. While these two approaches coincide for
noninteracting systems, they are not equivalent for interact-
ing many-body systems. Understanding this discrepancy is a

critical point for future works on nonequilibrium many-body
quantum dynamics and related subjects, such as many-body
localization, many-body quantum chaos, and thermalization.
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APPENDIX: DERIVATION OF THE EXPRESSION FOR
THE SURVIVAL PROBABILITY FOR REALISTIC

MANY-BODY QUANTUM SYSTEMS

Here we show the steps to obtain Eq. (20), which describes
the entire evolution of the averaged survival probability. We
reiterate that Eq. (20) is general and valid for realistic many-
body quantum systems on a finite lattice, which are strongly
chaotic, present only local two-body interactions, and are
perturbed very far from equilibrium (i.e., beyond the Fermi
golden rule regime). The initial states correspond to site-basis
vectors (computational basis vectors) with energies away from
the edges of the spectrum, so that they are highly delocalized
in the energy eigenbasis.

The equation for the survival probability can be written in
the following forms:

PS (t ) = |〈�(0)|e−iHt |�(0)〉|2 =
∣∣∣∣∣
∑

α

∣∣C(0)
α

∣∣2e−iEαt

∣∣∣∣∣
2

=
∑
α �=β

∣∣C(0)
α

∣∣2∣∣C(0)
β

∣∣2e−i(Eα−Eβ )t +
∑

α

∣∣C(0)
α

∣∣4

=
∫

G(E )e−iEt dE , (A1)

where C(0)
α = 〈α|�(0)〉 and the integrand G(E ) is

G(E ) =
∑
α �=β

∣∣C(0)
α

∣∣2∣∣C(0)
β

∣∣2δ(E − Eα + Eβ )

+
∑

α

∣∣C(0)
α

∣∣4δ(E ). (A2)

This function is similar to the spectral autocorrelation func-
tion

∑
α,β δ(E − Eα + Eβ ), the difference being the weights

|C(0)
α |2.
To obtain the averaged survival probability,

〈PS (t )〉 =
∫

〈G(E )〉e−iEt dE , (A3)

we take into account the asymptotic value

PS =
〈 ∑

α

∣∣C(0)
α

∣∣4〉, (A4)
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FIG. 8. Shaded areas: (a) Distribution of the coefficients |C (0)
α |2

for a single initial state with energy in the middle of the spectrum and
(b) energy distribution of this initial state (LDOS). (a) The solid line
is the Porter-Thomas distribution given in Eq. (A7). (b) The solid
line is the density of states and the dashed line is the Gaussian fit
for the LDOS. Disordered spin-1/2 model described in Eq. (28) with
size L = 16 and disorder strength h = 0.5.

and need to compute

〈G(E )〉α �=β =
〈∑

α �=β

∣∣C(0)
α

∣∣2∣∣C(0)
β

∣∣2δ(E − Eα + Eβ )

〉
. (A5)

1. Factorization of eigenvalues and eigenvectors

In full random matrices, where the eigenstates are random
vectors and the coefficients are then uncorrelated random
numbers, the eigenvalues and eigenstates are statistically in-
dependent, which allows for the factorization [50,58,65],

〈G(E )〉α �=β =
∑
α �=β

〈∣∣C(0)
α

∣∣2∣∣C(0)
β

∣∣2〉〈δ(E − Eα + Eβ )〉. (A6)

For realistic chaotic many-body quantum systems, it is
reasonable to expect a similar (but not identical) scenario,
provided they are perturbed very far from equilibrium and the
initial state has energy close to the middle of the spectrum,
i.e., E0 ∼ 0, as indeed considered in our work. In the bulk of
the spectrum, the eigenstates are chaotic [61,62,67,68], while
states close to the edges of the spectrum are not. By chaotic
states, we mean states for which the coefficients are (nearly)
uncorrelated and fill the entire energy shell [11,69]. In the
limit of very strong perturbation, beyond the Fermi golden
rule regime, initial states with E0 ∼ 0 fall within the chaotic
region of the spectrum, being themselves chaotic states, so the
majority of their components |C(0)

α |2 are nearly uncorrelated.
To further support the assumption of the chaoticity of

the initial state, we study in Fig. 8(a) the distribution of its
components |C(0)

α |2. In random matrix theory, the components
of chaotic states are known to follow the Porter-Thomas
distribution [60],

PT
(∣∣C(0)

α

∣∣2) =
(

D

2π
∣∣C(0)

α

∣∣2
)1/2

exp

(
−D

2

∣∣C(0)
α

∣∣2). (A7)

As seen in Fig. 8(a), this is indeed the distribution obeyed
by |C(0)

α |2 for the chaotic disordered spin-1/2 model from
Eq. (28). Notice that it holds even though we consider in the
figure a single initial state and a single disorder realization.

The explanations above justify proceeding with the fac-
torization in Eq. (A6), although corrections do exist. For
instance, while both the energy distribution of the initial state
(LDOS),

ρ0(E ) =
∑

α

∣∣C(0)
α

∣∣2δ(E − Eα )

and the density of states,

R1(E ) =
∑

α

δ(E − Eα )

have a Gaussian shape, as expected for many-body quan-
tum systems with two-body couplings [60,70], the LDOS is
narrower than the density of states. This is clearly seen in
Fig. 8(b). However, as our numerical results in Sec. IV C
show, these corrections do not affect the general features of
the initial decay of the survival probability, only details that
are not relevant for our estimates of the time scales obtained
in Sec. IV B.

Since the average over the components of the initial state
is 〈∑

α �=β

∣∣C(0)
α

∣∣2∣∣C(0)
β

∣∣2〉 =
〈
1 −

∑
α

∣∣C(0)
α

∣∣4〉 = 1 − PS, (A8)

we are left with

〈PS (t )〉 = (1 − PS )
∫

〈δ(E − Eα + Eβ )〉e−iEt dE + PS. (A9)

To compute the integral above, we use the fact that the average
over the spacing distributions can be written in terms of the
two-point spectral correlation function R2(Eα, Eβ ), as [45,50]

〈δ(E − Eα + Eβ )〉 = (D − 2)!

D!

∫
dEαdEβ

× δ(E − Eα + Eβ )R2(Eα, Eβ ).

(A10)

The function R2(Eα, Eβ ) can be decomposed into the density
of states R1(Eα ) and the two-level cluster function T2(Eα, Eβ ),
so that

R2(Eα, Eβ ) = R1(Eα )R1(Eβ ) − T2(Eα, Eβ ). (A11)

2. Gaussian density of states

Plugging the first term of Eq. (A11) into the Fourier
transform in Eq. (A9) gives

(D − 2)!

D!

∫
e−iEtδ(E − Eα + Eβ )R1(Eα )R1(Eβ ) dE dEα dEβ

= 1

D(D − 1)

∣∣∣∣
∫

e−iEαtR1(Eα )dEα

∣∣∣∣
2

. (A12)

In accordance with Fig. 8(b), we use that the width of the
Gaussian density of states is approximately the same as the
width of the LDOS, �DOS ∼ �, and write

R1(E ) = D√
2π�N

exp

(
− E2

2�2

)
. (A13)
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In addition, the spectrum is bounded [63,64] between energies
Emin and Emax, which explains the normalization factor

N = 1

2

[
erf

(
Emax√

2�

)
− erf

(
Emin√

2�

)]
. (A14)

Plugging Eq. (A13) into Eq. (A12) gives

1

D(D − 1)

∣∣∣∣
∫ Emax

Emin

dEe−iEt R1(E )

∣∣∣∣
2

= D

D − 1

e−�2t2

4N 2
F (t ),

(A15)

where

F (t ) =
∣∣∣∣erf

(
Emax + it�2

√
2�

)
− erf

(
Emin + it�2

√
2�

)∣∣∣∣
2

. (A16)

In the above, erf is the error function.
For very short times, t � 1/�, Eq. (A15) leads to the

universal quadratic decay of the survival probability 1 − �2t2.
This is followed by a true Gaussian behavior exp(−�2t2), as
expected from the Fourier transform of a Gaussian energy
distribution [61,62,67–69].

For long times, Eq. (A15) can be written as [63,64]

D

D − 1

1

2πN 2�2t2

[
exp

(
−E2

max

�2

)
+ exp

(
−E2

min

�2

)

− 2 exp

(
−E2

max + E2
min

2�2

)
cos[(Emax−Emin)t]

]
. (A17)

Since the cosine term averages to zero at large times, we are
left with

D

D − 1

1

2πN 2�2t2

[
exp

(
−E2

max

�2

)
+ exp

(
−E2

min

�2

)]
, (A18)

which shows that, later in time, a power-law decay ∝ t−2

develops.

3. Correlation hole

Let us now go back to Eq. (A11) and compute the Fourier
transform of the second term,

− (D − 2)!

D!

∫
e−iEtδ(E − Eα + Eβ )T2(Eα, Eβ )dEdEαdEβ.

For full random matrices, following Ref. [45], one writes the
energies in terms of the mean level spacing μ = 1/R1(0),
introducing the variables εα,β ≡ Eα,β/μ. In the limit D → ∞,
one has

− (D − 2)!

D!

∫
e−i(Eα−Eβ )t T2(Eα, Eβ ) dEα dEβ

= − (D − 2)!

D!

∫
e−iμ(εα−εβ )tY2(εα, εβ )dεαdεβ, (A19)

where Y2(εα, εβ ) = μ2T2(Eα, Eβ ). In the bulk of the spectrum,
the cluster function is translation invariant, i.e., Y2(εα, εβ ) =
Y2(r), with r = |εα − εβ |. This is not true if Eα or Eβ are
close to the boundaries of the spectrum, but such anomalous
contributions are negligible for large D. Taking into account
the change in variables, the Fourier transform of Y2(r) gives
[45]

− (D − 2)!

D!

∫
De−irμtY2(r)dr = 1

D − 1
b2

(
μt

2π

)
, (A20)

where

b2(t ) = [1 − 2t + t ln(1 + 2t )]	(1 − t )

+{t ln[(2t + 1)/(2t − 1)] − 1}	(t − 1), (A21)

is the two-level form factor presented in Eq. (9).
For chaotic noninteracting disordered quantum systems in

more than two dimensions, spectral correlations are analogous
to those found in random matrices for energy separations
|Eα − Eβ | � ETh, with ETh 
 s being the Thouless energy
[44,55]. The same is also true for chaotic interacting systems
[56]. Furthermore, it is known that T2(Eα, Eβ ) is exponentially
small for |Eα − Eβ | 
 s, so the same procedure to get the b2

function described above holds for realistic chaotic systems
as well, the only difference in this case is that the mean level
spacing comes from the Gaussian distribution μ = √

2π�/D,
Plugging Eqs. (A15) and (A20) into Eq. (A10), and this

one back into Eq. (A9), one obtains the final expression of
Eq. (20), that is,

〈PS (t )〉 = 1 − PS

(D − 1)

[
De−�2t2

4N 2
F (t ) − b2

(
�t√
2πD

)]
+ PS.

(A22)
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