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Exponentially fast dynamics of chaotic many-body systems
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We demonstrate analytically and numerically that in isolated quantum systems of many interacting particles,
the number of many-body states participating in the evolution after a quench increases exponentially in time,
provided the eigenstates are delocalized in the energy shell. The rate of the exponential growth is defined by
the width � of the local density of states and is associated with the Kolmogorov-Sinai entropy for systems with
a well-defined classical limit. In a finite system, the exponential growth eventually saturates due to the finite
volume of the energy shell. We estimate the timescale for the saturation and show that it is much larger than
h̄/�. Numerical data obtained for a two-body random interaction model of bosons and for a dynamical model of
interacting spin-1/2 particles show excellent agreement with the analytical predictions.
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I. Introduction. After decades of intensive studies, the
term “quantum chaos” [1–10] has become widely dissemi-
nated and accepted in modern physics. Originally it referred
to quantum systems whose classical counterparts are chaotic.
Paradigmatic examples are the kicked rotor model (KRM)
[1,2] and billiard models [3–5], both of which reveal quan-
tum signatures of classical chaos [11,12]. It was conjectured
and numerically proved [4,5] that quantum chaos might be
quantified by specific properties of the fluctuations of energy
spectra. In particular, it was found that in chaotic systems,
the distribution of spacings between neighboring energy levels
follows closely the Wigner surmise [13], in contrast with the
Poisson dependence that emerges in integrable systems.

Throughout the development of one-body quantum chaos,
dynamics has played a crucial role. Numerical KRM studies
[1,2] discovered the unexpected existence of two timescales
associated with the quantum-classical correspondence. It was
confirmed that a complete correspondence between the quan-
tum and classical behavior occurs only on a tiny timescale
according to the Ehrenfest theorem. It was analytically shown
in Ref. [14] that this timescale is given by tE � λ−1 ln(I/h̄),
where I represents a characteristic action and λ is the classical
Lyapunov exponent. However, numerical data reported and
discussed in Refs. [1,2] revealed the existence of a much larger
timescale on which the behavior of classical and quantum
global observables are equivalent. This timescale was found to
be tD ∝ D/h̄2, where D is the classical diffusion coefficient in
the momentum space. After such time and in contrast with the
classical case, quantum diffusion ceases. This phenomenon,
called dynamical localization, was explained by the localiza-
tion of the eigenstates in momentum space according to the
relation � ∝ D, where � is the localization length [2,15]. It
was later argued that the dynamical localization found in the

KRM can be also thought of in terms of Anderson localization
in pseudorandom potentials [16].

Contrary to one-body quantum chaos, in quantum many-
body systems (MBSs), level statistics is less informative than
the structure of the eigenstates in a physically chosen basis
[10,17]. It is now understood, for example, that the relaxation
of a quantum MBS to its thermal state requires the presence
of chaotic eigenstates [8–10,18]. The relaxation of a quantum
MBS in the thermodynamic limit has been discussed [19],
but the timescale on which it occurs in finite systems is still
an open question. To address this problem, we analyze the
relaxation of observables of quantum MBSs in the many-body
space.

We consider the quench dynamics described by a Hamil-
tonian H = H0 + V in the region of parameters where the
eigenstates are fully delocalized in the energy shell defined
by the interparticle interaction V [17,20–23]. Specifically, we
prepare the system in a single (unperturbed) eigenstate of H0

and study how the state spreads in the unperturbed many-body
basis due to V . With the use of a semi-analytical approach,
we show that the effective number of unperturbed states
participating in the dynamics of quantum MBSs increases
exponentially in time.

We find that the exponential growth saturates at a time
much larger than the characteristic time h̄/� of the initial
state decay, where � is the width of the local density of states
(LDOS). [The LDOS describes the energy distribution of the
initial state. It is obtained by projecting the initial state on
the energy eigenbasis.] We discuss the physical meaning of
this novel timescale in connection with the quantum-classical
correspondence for chaotic MBSs and with the problem of
thermalization in isolated quantum MBSs. Our analytical
estimates are fully confirmed by numerical data obtained
via exact diagonalization for two different systems: a model
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of randomly interacting bosons and a one-dimensional (1D)
system of spins 1/2 with deterministic couplings.

II. Models. In both models, H0 describes the noninter-
acting particles (or quasiparticles), while their interaction is
contained in V . The first model represents N identical bosons
occupying M single-particle levels specified by random ener-
gies εs with a mean spacing 〈εs − εs−1〉 = 1 setting the energy
scale. The Hamiltonian reads

H =
∑

εs a†
s as +

∑
Vs1s2s3s4 a†

s1
a†

s2
as3as4 , (1)

where a
†
s (as) is the creation (annihilation) operator on level s,

and the two-body matrix elements Vs1s2s3s4 are random Gaus-
sian entries with zero mean and variance v2. The interaction
conserves the number of bosons and connects many-body
states that differ by changing at most two particles. This
two-body interaction (TBRI) random model was introduced
in Refs. [24,25] to model nuclear systems. It has been ex-
tensively studied for fermions [20,26] and bosons [27]. It
has also been used to describe nonrandom systems, such as
the Lieb-Liniger model [28] largely investigated experimen-
tally [29]. The unperturbed many-body eigenstates |k 〉 of
H0 = ∑

k Ek|k 〉〈k | are obtained by all possible combinations
of N bosons in M single-particle energy levels according
to standard statistical rules. This generates D = (N+M−1)!

N!(M−1)!
unperturbed many-body states. The eigenstates |α 〉 of the
Hamiltonian H = ∑

α Eα|α 〉〈α | are represented in terms of
the states |k〉 as |α 〉 = ∑

k Cα
k |k 〉.

The other model studied has no random terms. It describes
a dynamical system of interacting spins-1/2 on a 1D lattice of
length L. Spin systems are intensively studied in experiments
with nuclear magnetic resonance platforms [30] and ion traps
[31], as well as similar systems with cold atoms [32]. The
Hamiltonians H0 and V are given by

H0 = J

4

∑
s

(
σx

s σ x
s+1 + σy

s σ
y

s+1 + �σ z
s σ z

s+1

)
, (2)

V = λ
J

4

∑
s

(
σx

s σ x
s+2 + σy

s σ
y

s+2 + �σ z
s σ z

s+2

)
, (3)

where σ
x,y,z
s are the Pauli matrices on site s. The coupling

constant J = 1 sets the energy scale, � is the anisotropy pa-
rameter, and λ is the ratio between nearest-neighbor and next-
nearest-neighbor couplings [33]. The Hamiltonian conserves
the total spin in the z direction, Sz = ∑L

s=1 σ z
s /2, which is

here fixed to Sz = −1, where L is even and the number of up-
spins (excitations) is given by N = L/2 − 1. The dimension
of the Hamiltonian matrix is L!

N!(L−N )! When V = 0, the model
is integrable, while as λ increases, it becomes chaotic [17].

Basic relations. We analyze the wave packet dynamics in
the unperturbed basis |k 〉 after switching on the interaction
V . The system is initially prepared in a particular unperturbed
state |k0 〉,

|ψ (0) 〉 =
∑

α

Cα
k0

|α 〉. (4)

The probability to find the evolved state in any basis state
|k 〉 at the time t is

Pk (t ) = |〈k|ψ (t )〉|2 =
∑
α,β

Cα∗
k0

Cα
k C

β

k0
C

β∗
k e−i(Eβ−Eα )t , (5)

which can be written as the sum of a diagonal part,
P d

k = ∑
α |Cα

k0
|2|Cα

k |2, and an oscillating time-dependent part,

P
f

k (t ) = ∑
α �=β Cα∗

k0
Cα

k C
β

k0
C

β∗
k e−i(Eβ−Eα )t . After a long time

and assuming a nondegenerate spectrum, P
f

k cancels out on
average and only the diagonal part P d

k survives.
With Pk (t ), we construct the quantity of our main interest,

the number of principal components,

Npc(t ) =
{∑

k

[
P d

k + P
f

k (t )
]2

}−1

, (6)

also known as participation ratio [34]. It measures the ef-
fective number of unperturbed states |k 〉 that compose the
evolved wave packet. For weak interaction, Npc(t ) oscillates
in time. Our focus is, however, on strong values of V , where
Npc(t ) increases smoothly and eventually saturates to its
infinite time average given by

N∞
pc =

[
2

∑
k

(
P d

k

)2 −
∑

α

∣∣Cα
k0

∣∣4 ∑
k

∣∣Cα
k

∣∣4

]−1

. (7)

This determines the total number of unperturbed many-body
states inside the energy shell.

III. Dynamics in many-body space. A distinctive property
of the dynamics of a quantum MBS is that it cannot be de-
scribed as either ballistic or diffusive in the many-body space.
A pictorial demonstration of how the initial state spreads in
the many-body space is given in the Supplemental Material
[35]. Specifically, on a small timescale, only the basis states
directly coupled to the initial state are excited. Their number
is much smaller than the total number of basis states, due
to the sparse structure of the Hamiltonian matrix. As time
passes more basis states are populated inside the shell, until its
ergodic filling. This takes place provided the perturbation V is
sufficiently strong so that the eigenstates of H are delocalized
in the energy shell.

To describe the time dependence of Npc(t ), we develop a
cascade model to monitor the flow of probability to find the
system in specific unperturbed states at different time steps.
This is done by dividing the dynamical process in different
time intervals associated with different sets of basis states
(classes). At t = 0, only the M0 class is not empty: it has one
element, which is the initial state |k0 〉. In the next time step, all
states having a nonzero coupling with the initial basis state are
populated; that is, the first class M1 contains the basis states
|k〉 for which 〈k0|V |k〉 �= 0. The second class M2 consists
of those states which have nonzero matrix elements with all
states from the first class. In the same manner, one can define
all classes in the many-body space.

For an infinite number of particles, there is an infinite
hierarchy of equations describing the flow of probability from
one class to the next one. However, for the values of N and
M accessible to our computers, the number of states in the
second class practically coincides with D, so only two classes
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can be considered [35]. As shown below, this is indeed a good
approximation.

Let us define the probability to find the system in class M0,
as W0(t ) ≡ Pk0 (t ). This is the survival probability of the initial
state. The probability for being in the class M1 is W1(t ) ≡∑

k∈M1
Pk (t ). Neglecting the back flow to the initial state, we

can write the following set of rate equations [35]:

dW0

dt
= −�

(
W0 − W∞

0

)
,

dW1

dt
= −�

(
W1 − W∞

1

) + �
(
W0 − W∞

0

)
, (8)

where the infinite time averages are W∞
0 = ∑

α |Cα
k0

|4 and

W∞
1 = ∑

k∈M1

∑
α |Cα

k0
|2|Cα

k |2.
The decay rate � corresponds to the width of the LDOS,

Fk0 (E) =
∑

α

∣∣Cα
k0

∣∣2
δ(E − Eα ), (9)

which is obtained by projecting the initial state |k0 〉 onto the
energy eigenbasis. It was introduced in nuclear physics to
describe the relaxation of excited heavy nuclei [36], where it
is known as “strength function.”

The solution of Eq. (8) gives

W0(t ) = e−�t
(
1 − W∞

0

) + W∞
0 ,

W1(t ) = �te−�t
(
1 − W∞

0

) + W∞
1 (1 − e−�t ). (10)

With the expressions (10) one can derive the time dependence
for Npc(t ),

Npc(t ) �
[∑

n

W 2
n /Nn

]−1

� [
W 2

0 + W 2
1 /N1

]−1 ∼ e2�t ,

(11)
where Nn is the number of states contained in the nth class.
This result shows that the number of basis states effectively
participating in the evolution of the wave packet increases
exponentially in time with the rate 2�. For a finite number
of particles, this growth lasts until the saturation given by
Eq. (7). We note that exponential instability was also studied
in Ref. [37], where the number of harmonics of the Wigner
function was shown to increase exponentially fast in time.

A. Results for the TBRI model. To verify the validity of our
approach, we compare in Figs. 1(a) and 1(b) the numerical
data for W0(t ) and W1(t ) with Eqs. (10). The chosen v is such
that the eigenstates are strongly chaotic and extended in the
energy shell [23]. The value of � used in the analytical ex-
pressions is obtained by fitting the numerical curve for W0(t ).
The agreement between numerical and analytical results is
very good for the entire duration of the evolution, up to the
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FIG. 1. TBRI model: Numerical data for W0(t ) (a) and W1(t )
(b) are shown by solid curves and compared with the analytical
expressions (10) (dashed curves). The parameters are N = 6, M =
11, and v = 0.4 (chaotic regime). In the initial state |ψ (0) 〉 =
(a†

5 )6|0 〉 all particles initially occupy the fifth single-particle level.
The exponential rate � = 2.8 is obtained by fitting W0(t ). (c) Growth
in time of Npc for two initial conditions; from top to bottom:
|ψ (0) 〉 = (a†

4 )6|0 〉 and |ψ (0) 〉 = (a†
5 )6|0 〉. The dashed line is e2�t .

Horizontal dotted lines are the analytical estimates given by Eq. (7).
Average over 50 random realizations.

saturation given by W∞
0 and W∞

1 . These results confirm that
the back flow can indeed be neglected and that one can take
into account two classes only.

In Fig. 1(c) we show the evolution of the number of
principal components Npc. The numerical data (solid curve)
corroborate the analytical prediction (dashed curve) from
Eq. (11), namely, the exponential behavior, Npc(t ) ∼ e2�t .

Our data manifest the existence of two timescales. The first
one, t� � 1/�, corresponds to the characteristics decay time
of W0(t ), as shown in Eq. (10). The second, tS , is the timescale
for the saturation of the dynamics and can be estimated from
e2�t � N∞

pc , which gives

tS � ln
(
N∞

pc

)
/2�. (12)

Assuming a Gaussian shape for both the density of states and
the LDOS [35], we show that the maximal value of N∞

pc is

Nmax
pc = η

√
1 − η2D, (13)

where η = �/σ
√

2 and σ is the width of the density of states
(see details in Ref. [35]). For M ∼ 2N and for M,N  1 one
gets the estimate

tS ∼ N/� = Nt�. (14)

This is the timescale for the complete thermalization in quan-
tum MBSs. As one can see from Eq. (14), when the number
of particles is very large, the two timescales are very different.
Notice that for fixed �, the time tS increases linearly with N

due to the exponential growth with N of the many-body space
and not because of the Gaussian shape of the density levels
[35].

B. Results for the spin model. The analytical estimates ob-
tained with the cascade approach are valid also for dynamical
models. To show this, we study the evolution of the spin-1/2
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FIG. 2. Spin model: Numerical data (solid curves) for W0(t ) (a)
and W1(t ) (b) compared with the analytical expressions (10) (dashed
curves). (c) Numerical data for the number of principal components
Npc(t ) (solid curve) and the infinite-time average in Eq. (7) (dotted
line). The dashed line represents e2�t . Parameters: L = 16, � =
0.48, λ = 1, and N = 7 excitations. Average over 16 initial states
with energy close to −0.5. Threshold for counting N1 is ξ = 0.05
and � = 2.62 is obtained by fitting W0(t ).

system described by Eq. (3) in the limit of strong chaos (λ =
1) [22]. The analysis is analogous to the one developed with
the TBRI model. We note, however, that H0 is now initially
written in the basis where each site has a spin pointing up or
down in the z direction (site basis). It is then diagonalized to
obtain the mean-field basis. As a result, all matrix elements of
the full Hamiltonian written in the mean-field basis become
nonzero. Therefore, to properly determine the classes, we
use the following procedure. In the first class we have all
states m coupled to k0 such that |Hk0,m| > ξ |Hk0,k0 − Hm,m|
with ξ being a threshold reasonably chosen. This procedure is
repeated for higher classes.

Figure 2 compares the numerical results for W0(t ), W1(t ),
and Npc(t ) for the spin model with the analytical expressions
in Eqs. (10) and (11). The agreement is very good, and
the exponential increase in time of the number of principal
components with rate 2� is confirmed. As for the TBRI
model, we see that the back flow is not important and that two
classes suffice to describe the dynamics. This validates our
approach for realistic physical systems even in the absence of
any random parameter.

IV. Discussion. We studied the dynamics of interacting
quantum MBSs whose eigenstates have a chaotic structure
in the basis of noninteracting particles. We demonstrated that
in the many-body space the relaxation is not a diffusive or
ballistic process. Instead, wave packets evolve exponentially
fast in the unperturbed basis before reaching saturation, which
happens when all states of the energy shell get populated.
Unexpectedly, we found that the timescale for saturation is
much larger than the characteristic decay time of the initial
state.

To describe the dynamical process, we developed a semi-
analytical approach that allowed us to estimate the rate and

the timescale of the relaxation, as well as the saturation value
of the number of principal components in the wave packet. It
is quite impressive that our simple phenomenological model
with a single parameter, the width � of LDOS, reproduces so
well the system dynamics at very different timescales.

The first analytical investigation of the properties of the
LDOS was done by Wigner in his studies of banded random
matrices [38]. In the context of quantum chaos, these matrices
were employed in Ref. [39], where it was pointed out that the
LDOS has a well-defined classical limit and is the projection
of the unperturbed Hamiltonian onto the total one. Its maximal
width is given by the width of the energy shell, as shown in
Ref. [39]. In the classical description, the energy shell corre-
sponds to the phase-space volume obtained by the projection
of the phase-space surface H0 = E0 onto the surface defined
by the total Hamiltonian H . Note that the classical LDOS can
be obtained by solving classical equations of motion [40]. The
dynamics of the classical packets created by H0 is restricted
to the energy shell [40,41], which can be filled in time either
partially or ergodically. In the quantum description, these two
alternatives correspond to either localized or delocalized wave
packets.

Inspired by the above studies, our results for the expo-
nential growth of Npc can be treated in terms of the phase-
space volume VE occupied by the wave packet, VE (t ) ∼
Npc(t )/ρ(E), where ρ(E) is the total density of states. We
can write

VE (t ) = VE (0)e2�t ∼ VE (0)ehKS t . (15)

Here we associate 2� with the Kolmogorov-Sinai entropy
[42], hKS , which gives the exponential growth rate of phase-
space volumes for classically chaotic MBSs [42]. A connec-
tion between the entanglement entropy growth rate and hKS

was found also in Ref. [43]. Note that in many-body systems,
hKS is defined as the sum of all positive Lyapunov exponents
and not only the largest one. The relation hKS ∼ 2� al-
lows one to establish a quantum-classical correspondence for
MBSs. Indeed, when the system admits a well-defined classi-
cal limit in which there is strong chaos, the Kolmogorov-Sinai
entropy is associated with the width of the classical LDOS.

We stress that Eq. (15) holds only up to the saturation
time tS ∼ Nt� , which defines the timescale for the quantum-
classical correspondence for the number of principal com-
ponents Npc participating in the dynamics. This time tS
is important for the problem of thermalization in isolated
systems of interacting particles. It establishes the timescale
for the complete thermalization of the system due to the
ergodic filling of the energy shell. It also corresponds to the
scrambling time discussed in studies of the loss of information
in black holes (see Ref. [44] and references therein). One
sees that in the thermodynamic limit, N → ∞, tS diverges
(provided the width of the LDOS remains constant), which
agrees with the quantum-classical correspondence principle.
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