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Abstract

Gravitational and Electrostatic

Potential Fields and Dynamics of Non-spherical Systems

This thesis is devoted to several aspects of the n-body problem in the context of

two models of interest: the gravitational n-body problem and the electrostatic n-body

problem.

In the case of gravitational n-body problem, we study central configurations of three

oblate bodies, the Hill approximation of the restricted four body problem with three

oblate heavy bodies, and we find the equilibrium points of the Hill approximation and

determine their linear stability. Also in the case of the gravitational n-body problem,

we find equilibrium shapes of an irregular body, when the gravitational potential and

the rotational potential balance each other. In particular, we find equilibrium dumbbell

shapes.

In the context of the electrostatic n-body problem, we use variational methods to find

approximate solutions of the Poisson-Boltzmann equation, representing the electrostatic

potential produced by charged colloidal particles.

This research is motivated by applications to astrodynamics, dynamical astronomy

and atomic force microscopy.
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Chapter 1

Introduction

This thesis is devoted to several aspects of the n-body problem in the context of the

following models of interest: the gravitational n-body problem and the electrostatic n-

body problem. The thesis is organized as follows. Chapter 2 includes some background

information about Spherical Harmonics Expansion, which is a fundamental method to

study the gravitational potential. An example of obtaining the Spherical Harmonics

coefficients for an asteroid follows and we use it for the models we investigate in the

later chapters in this thesis. In Chapter 3 Section 3.1.1, we recall some basic notions

on central configuration. In Section 3.2, we show the existence and uniqueness of a

scalene triangular central configurations of three oblate bodies, which is one of the main

results in this thesis. Then we compute the positions of the bodies in such a central

configuration relative to some rotating frame as a follow up. In Chapter 4, Section 4.3

we consider a restricted four-body problem, with a precise hierarchy between the bodies:

two larger bodies and a smaller one, all three of oblate shape, and a fourth, infinitesimal

body, in the neighborhood of the smaller of the three bodies. The three heavy bodies

are assumed to move in a plane under their mutual gravity, and the fourth body to

move in the 3-dimensional space under the gravitational influence of the three heavy

bodies, but without affecting them. Then, assuming that these three bodies are in a

scalene triangular central configuration as shown in Chapter 3, in Chapter 4 Section 4.4
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we perform a Hill approximation of the equations of motion describing the dynamics of

the infinitesimal body in a neighborhood of the smaller body. Through the use of Hill’s

variables and a limiting procedure, this approximation amounts to sending the two larger

bodies to infinity. In the Section 4.5 for the Hill approximation of the four-body problem

with three oblate bodies, we find the equilibrium points for the motion of the infinitesimal

body and determine their linear stability. It provides another main result of this thesis.

As a motivating example, we identify the three heavy bodies with the Sun, Jupiter, and

the Jupiter’s Trojan asteroid Hektor, which are assumed to move in a triangular central

configuration.

In general the gravitational field of a body is described as a multipolar expansion

involving spherical coordinates [Kau66]. Using spherical harmonic expansion leads to a

very good approximation of the gravitational potential of spherical like shapes, as well

as of more irregular shapes at points in space that are relatively far away from the

body. However the spherical harmonic expansion does not give good approximation for

the gravitational potential of irregular shaped bodies at points that are close to, or on

the surface of irregular shaped bodies. Given that asteroids often have (very) irregular

shapes, it is useful not only to assume that the asteroid is oblate, but also consider a

more irregular shape, such as a dumbbell. We assume that the object can be modeled

as an in-compressible fluid. This assumption is justify by the astronomical observation

that many asteroids are ’rubble piles’ formed by the aggregation of particles, which

behave similarly to in-compressible fluids. In Chapter 5 we describe the shape in terms

of cylindrical coordinates, which are most naturally adapted to the symmetry of the

body, and we express the potential generated by the rotating body as a simple formula

in terms of elliptic integrals. The equilibrium shapes that the body can attain are given

by equipotential surfaces that correspond to the solution to an isoperimetric problem,

which we solve via the variational method. We give an example where we apply this

method to a two-parameter family of dumbbell shapes, and find approximate numerical
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solutions to the corresponding isoperimetric problem. We investigate the problem of

determining the shape of a rotating celestial object- e.g., a comet or an asteroid- under

its own gravitational field. We also describe the gravitational potential of an irregularly

shaped body as a simple formula in terms of elliptic integrals. More specifically, we

consider an object symmetric with respect to one axis- such as a dumbbell- that rotates

around another axis which is perpendicular to the symmetry axis.

Finally in Chapter 5 we consider a special case of the electrostatic n-body problem

that is described by the Poisson Boltzmann equation. We use the variational method to

study the colloidal system formed by an Atomic Force Microscope Tip and a Charged

Particle in Electrolyte. A variational principle to the nonlinear Poisson-Boltzmann equa-

tion in three dimensions is used to first obtain solutions to the electrostatic potential

surrounding a pair of spherical colloidal particles, one of them modeling the tip of an

Atomic Force Microscope. Specifically, we consider the Poisson Boltzmann action in-

tegral for the electrostatic potential produced by charged interacting colloidal particles

and propose an analytical ansatz solution. This solution introduces the density and its

corresponding electrostatic potential parametrically. The Poisson Boltzmann action is

then minimized with respect to the parameter. Polynomial-exponential approximations

for the parameters as functions of tip- particle separation and boundary electrostatic

potential are obtained. With that information, tip-particle energy-separation curves are

computed as well. Finally, based on the shape of the energy-separation curves, we study

the stability properties predicted by this theory.

Throughout the thesis, there are works based on different models and the main results

are listed as follows:

Main results of the thesis

Chapter 2

Consider a frame centered at the barycenter of the targeted body, the body rotates with
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the angular velocity Θ about its axis. The gravitational potential is of the form:

V pr, θ, φq � GM

r

8̧

n�0

�
R

r


n ņ

m�0

Pm
l psin θqCl,m cospmpφ�Θtqq, (1.1)

where Θ represents the frequency of the spin of Hektor. Notice that C2,0 is time inde-

pendent while C2,2 is time dependent. However, it has averaging effect as zero if the

targeted body spins fast and thus the higher order terms are neglected for the models in

this thesis.

Chapter 3

We consider a system of three oblate bodies and describe the gravitational potential of

each body in terms of spherical harmonics.We only retain the most significant ones, Ci
20

(the C20 term for the i-body). The gravitational potential of each body in Cartesian

coordinates is:

Vipx, y, zq � mi

r
� mi

r

�
Ri

r


2�
Ci

20

2


�
3
�z
r

	2

� 1



(1.2)

where mi is the normalized mass of the i-th body, r is the distance from an arbitrary

point in space to mi, Ri is its average radius in normalized units, and the gravitational

constant is also normalized as G � 1. Defining Ci � Ri
2Ci

20{2 and Cij � Ci � Cj, we

obtain the following proposition.

Proposition 1.0.1. In the three-body problem with all bodies oblate, for every fixed value

Ī of the moment of inertia there exists a unique central configuration, which is in general

a scalene triangle.

Moreover, the body with the larger Ci is opposite to the longer side of the triangle, where

the Ci’s are assumed to satisfy some ordering e.g., C2 ¤ C1 ¤ C3, then r13 ¤ r23 ¤ r12.

Assuming one of the legs of the scalene triangle to be 1, we have the two legs to be

uniquely determined and we denoted them having lengths of u and v. Together with
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the assumption of center of mass at origin and normalized mass, we have the following

proposition.

Proposition 1.0.2. In the synodic reference frame, the coordinates of the three bodies

in the triangular central configuration, satisfying the constraints

px2 � x1q2 � py2 � y1q2 � 1,

px3 � x1q2 � py3 � y1q2 � u2,

px3 � x2q2 � py3 � y2q2 � v2,

m1x1 �m2x2 �m3x3 � 0,

m1y1 �m2y2 �m3y3 � 0,

m1 �m2 �m3 � 1,

y1 � 0,

are given by

x1 ��
b
m2

2 � wm2m3 � u2m2
3,

y1 �0,

x2 ��2m2
2 � 2u2m2

3 � 2wm2m3 � 2m2 � wm3

2
a
m2

2 � wm2m3 � u2m2
3

,

y2 �� 1

2

d
p4u2 � w2qm2

3

m2
2 � wm2m3 � u2m2

3

,

x3 ��2m2
2 � 2u2m2

3 � 2wm2m3 � wm2 � 2u2m3

2
a
m2

2 � wm2m3 � u2m2
3

,

y3 �� 1

2

d
p4u2 � w2qm2

2

m2
2 � wm2m3 � u2m2

3

.

(1.3)

Corollary 1.0.3. Assume that only the body m3 is oblate, i.e. C1
20 � C2

20 � 0. We

obtain the following result: In the three-body problem with one oblate body m3, for every

fixed value Ī of the moment of inertia there exists a unique central configuration, which
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is an isosceles triangle with r13 � r23.

Corollary 1.0.4. In the case when only the body of mass m3 is oblate, by the Proposition

we have r13 � u � r23 � v, so w � 1� u2 � v2 � 1, so the formulas (3.55) become

x1 ��
b
m2

2 �m2m3 � u2m2
3,

y1 �0,

x2 ��2m2
2 � 2u2m2

3 � 2m2m3 � 2m2 �m3

2
a
m2

2 �m2m3 � u2m2
3

,

y2 �� 1

2

d
p4u2 � 1qm2

3

m2
2 �m2m3 � u2m2

3

,

x3 ��2m2
2 � 2u2m2

3 � 2m2m3 �m2 � 2u2m3

2
a
m2

2 �m2m3 � u2m2
3

,

y3 �1

2

d
p4u2 � 1qm2

2

m2
2 �m2m3 � u2m2

3

.

(1.4)

Chapter 4

The Hamiltonian for the restricted four-body problem is:

H � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � 1

ω2

3̧

i�1

�
mi

ri
� mi

r3
i

Cip3 z
r2
i

� 1q


,

where Ci � Ri
2Ci

20{2, Ri is the average radius, Ci
20 is the C20 coefficient of i-body and

ri � ppx� xiq2 � py � yiq2 � pz � ziq2q1{2. With masses m1 ¥ m2 ¥ m3, we have

Theorem 1.0.5. Transform the Hamiltonian as follows:

(i) shift the origin of the reference frame so that it coincides with m3;

(ii) perform a conformal symplectic scaling given by px, y, z, px, py, pzq Ñ m
1{3
3 px, y, z, px, py, pzq;

(iii) rescale the average radius of each heavy body as Ri � m
1{3
3 ρi for i � 1, 2, 3;

(iv) expand the resulting Hamiltonian as a power series in m
1{3
3 , and
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(v) neglect all the terms of order Opm1{3
3 q in the expansion.

Then

H �1

2
pp2
x � p2

y � p2
zq � ypx � xpy � 1

2

����p1� µq
�

3w2

4
� 1
	

u5
�
µ
�

3p2�wq2
4

� 1
	

v5

�
x2

�
��p1� µq

�
3p4u2�w2q

4
� 1
	

u5
�
µ
�

3p4u2�w2q
4

� 1
	

v5

�
y2

�
�
p1� µq6w

?
4u2�w2

4

u5
� µ6p2�wq?4u2�w2

4

v5

�
xy �

�p1� µq
u3

� µ

v3



z2

�

�
��p1� µqc1

u3


�
3
�z
u

	2

� 1



�
�µc2

v3

	�
3
�z
v

	2

� 1



� 1

px2 � y2 � z2q 1
2

� c3

px2 � y2 � z2q 3
2

�
3z2

x2 � y2 � z2
� 1


�
,

(1.5)

where 1, u, v represent the sides of the triangular central configuration as shown, w �
1� u2 � v2, µ � m2

m1�m2
, and ci :� ρ2

iC
i
20{2 � m

� 2
3

3 Ri
3C

i
20{2, i � 1, 2, 3.

Numerical Results: We then obtain the equilibrium positions and their stability charac-

ters in the case of the Sun-Jupiter-Hektor system:

iq Eigenvalues of x-equilibria at p�0.6935267570, 0, 0q

2.5069424783, �2.5069424783,

2.0704830660i, �2.0704830660i,

1.9995877290i, �1.9995877290i.

Stability type: center � center � saddle.
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iiq Eigenvalues of y-equilibria at p0,�7.7545750772, 0q

0.9890157325i, �0.9890157325i,

0.1403687326i, �0.1403687326i,

1.0013166944i, �1.0013166944i

Stability type: center � center � center.

iiiq Eigenvalues of z-equilibria at p0, 0,�0.0008923544q

�37514.04321� 0.9999999997i, �37514.04321� 0.9999999997i,

37514.04321� 0.9999999997i, 37514.04321� 0.9999999997i,

53052.86869i, �53052.86869i,

Stability type: center � complex saddle.

Analytical Results: With the tool of Hill’s approximation, we are able to verify analyti-

cally the linear stability of the equilibrium positions in the case of the Sun-Jupiter-Hektor

system.

Proposition 1.0.6. Consider the equilibria on the z-axis. For µ P p0, 1{2s, one pair

of eigenvalues is purely imaginary, and the two other pairs of eigenvalues are complex

conjugate, with the imaginary part close to �i for c1 � c2 � 0 and for c3 negative and

sufficiently small. The linear stability is of center � complex-saddle type.

Proposition 1.0.7. Consider the equilibria on the y-axis. For µ P p0, 1{2s for c1 �
c2 � 0 and for c3 negative and sufficiently small, one pair of eigenvalues is always purely

imaginary, and there exists µ�, depending on c3, where the other two pairs of eigenvalues

change from being purely imaginary to being complex conjugate. The linear stability

changes from center � center � center type to center � complex-saddle type.

Proposition 1.0.8. Consider the equilibria on the x-axis. For µ P p0, 1{2s, for c1 � c2 �
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0 and for c3 negative and sufficiently small, two pairs of eigenvalues are purely imaginary,

and one pair of eigenvalues are real (one positive and one negative). The linear stability

is of center � center � saddle type.

Chapter 5

Consider a solid of revolution generated by z Ñ fpzq. The gravitational potential at an

arbitrary point ~r of cylindrical coordinates ps, φ, zq is given by

UGp~rq � �
»
Body

Gρ

|~r � ~r1|d
3~r1, (1.6)

where ~r1 is a generic point inside the body. Using the property of Bessel functions, we

have

UG � �2πGρ

» z0
�z0

fpz1qdz1
» �8

0

dk
J0pksqJ1pkfpz1qq

k
e�k|z�z

1| (1.7)

Let I�1
10 pa, b, sq :�

» 8

0

x�1J1paxqJ0pbxqe�sxdx

Function I�1
10 is indeed known in a closed form in terms of Elliptical functions [KIB12]

such that

I�1
10 pa, b, sq �

1

πa

�
2
?
ab

κ
E� pa2 � b2q κ

2
?
ab

K

�
� s

πa
sgnpa�bqΛ� s

a
Hpa�bq,where (1.8)

κ � 2
?
ab?

pa�bq2�s2 ν � 4ab
pa�bq2 Hpa� bq �

$''&''%
0 if a� b   0

1 if a� b ¥ 0

K � Kpκq E � Epκq Λ � Λpν, κq
� |a�b|

a�b
s?

pa�bq2�s2 Πpν, κq

Proposition 1.0.9. The gravitational potential at a point of cylindrical coordinates

ps, φ, zq exerted by a body generated by revolving the graph of z Ñ fpzq, |z| ¤ z0 is
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given by

UG � �2πGρ

» z0
�z0

dz1 fpz1qI�1
10 pfpz1q, s, |z � z1|q. (1.9)

Considering the rotation of the body about the s-axis, total potential is expressed as

the sum of gravitational potential and a non-inertial rotational potential. Consider the

family of shapes

fpzq � γ
b�

1� pz{z0q2
� �

1� pβ{p1� βqq pz{z0q2
�

(1.10)

UTotal �� 2πGρ

» z0
�z0

dz1 fpz1qI�1
10 pfpz1q, fpzq, |z � z1|q

� 1

4
f 2pzqω2 � 1

2
z2ω2

For each ω we compute the potential at each location of z for fixed γ and β. We aim to

find the nominally constant potential by comparing minimum values of the normalized

standard deviation σ{p|µ|q for fixed γ and β.

For this isoperimetric problem, in Section 5.3, for ω � 0.1, 0.2, ..., 1.0 we find the values at

the parameters γ and β for which σ{p|µ|q attains relatively small values, and we generate

the corresponding shapes.

Chapter 6

Consider a colloidal system, we aim to investigate the interaction energy, which is de-

scribed by Poisson Boltzmann Equation, between two particles. With the charge density

of the solvent, we have:

52ΦpRq � �p8πMec
ε

q sinhpeΦprq
kBT

q, (1.11)

where M is the ion bulk concentration of electrolyte, T is the absolute temperature, e the

ion charge magnitude of anions and cations, ε is the dielectric constant of the surrounding
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fluid and kB is the Boltzmann’s constant. Considering the dimensionless form: [McL89]

52ϕ � � sinhϕ (1.12)

where ϕ represents the dimensionless electrostatic potential.Equation (5.91) can be de-

rived from a variational principle, by applying Euler-Lagrange to the action

I �
»
Space

r1
2
| 5ϕ |2 � coshpϕq � 1sdV (1.13)

where V is the volume. The minimum of I occurs for the function ϕ that satisfies the

Euler-Lagrange equation, which gives rise (5.91). We propose an ansatz for the density

and corresponding electrostatic potential which depends on the parameter k,

ϕpη, zq � ϕ0e
� k

2
r
?
pz� d

2
q2�η2� 1

2
sr
?
pz� d

2
q2�η2� 1

2
s (1.14)

where ϕ0 is the Dirichlet boundary condition, d is the center-to-center separation between

the two spherical colloids and k is a constant refers to an inverse Debye length times the

radius of the interacting particles. The functional forms for the kbest

kbest � pApϕq � 0.1qe Bpϕq
Apϕq�0.1

d � 0.1 (1.15)

where Apϕq is the polynomial approximation between the linear parameter-η-intercepts

and ϕ0, Bpϕq is the polynomial approximation between the other linear parameter-slope

and ϕ0, and d is the separation. Notice that Apϕq and Bpϕq are known explicitly.

Furthermore, we obtain the energy as a function of separation d [HC92]

Eϕpdq � 1

2

»
Space

drρϕpdqVϕpdq (1.16)

where to recall ρ is density and ϕ is voltage, which are now known from the previous
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section. For each boundary condition, the integral is performed for the corresponding

optimal value of k and thus provides the sought sphere-sphere energy-separation curves.

For each boundary condition, the integral in (6.16) is performed for the corresponding

optimal value of k. Equation (1.16) then provides the sought sphere-sphere energy-

separation curves as shown in Figure 1.1. Based on the shape of the curves, we can draw

conclusions regarding the stability properties predicted by this theory.

Figure 1.1: The energy-separation curves for ϕ0 from 1 to 8.
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Chapter 2

Gravitational Potential -Spherical Har-

monics Expansion

This chapter is devoted to the exposition of some basic notions concerning the gravita-

tional potential expressed in spherical harmonics expansion. We follow the exposition

of [Boy97b] and [Bal94]. Then we use the Trojan asteroid— Hektor as an example to

obtain its spherical harmonics coefficients.

2.1 Background

2.1.1 Gravitational Potential Expressed in Spherical coordinates

Consider two point masses m1 and m2, located at position vectors X1 and X2 in R3

moving under Newtonian gravitational law. That is, the force F between the two masses

m1 and m2 separated by a distance r21 is given by

F � �Gm1m2

r2
21

,

where r21 � ‖ ~X2 � ~X1‖. Since the negative sign of the force indicates only the direction,

we choose to use the convension without the negative sign in the following work. By the
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Figure 2.1: m1 exerts a force F12 on m2 while m2 exerts a force F21 on m1. F21 is
equivalent to �F21 by the Newton’s third law.

Newton’s second law, the acceleration a of an object is directly proportional to its mass

m, i.e.

~F � m~a.

Therefore, the force exerted on m1 is expressed as a vector form is given by

~F � m1~a � Gm1m2

r2
21

~X2 � ~X1

r21

.

However, as is easily demonstrated

~X2i � ~X1i

r3
21

� B
BX1i

1

r21

,

where ~X1i and ~X2i are the i� th components of ~X1 and ~X2 respectively. Hence,

:~X1i � Gm2
B

BX1i

p 1

r21

q, i � 1, 2, 3.

Since gravity is a conservative force, it follows that

:~x1 � ∇V

where V � Gm2

r21
, which is known as the gravitational potential.

Definition 2.1.1 (Gravitational Potential energy). Due to the gravitational force of

attraction, any two objects with masses m1 and m2 located on a distance r21 apart
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perform work done and hence they have potential energy. The gravitational potential

energy of the system of two bodies is defined as

U � Gm1m2

r21

.

Note that gravitational potential V , is directly related to gravitational potential en-

ergy U and the potential energy of mass m1 as U � m1V .

Now we consider a continuous mass distribution instead of a point mass in the standard

Figure 2.2: Continuous density distribution.

px, y, zq Cartesian coordinate system, let the mass m2 at ~X2 to be
³
Vm2

ρp ~X2qd3 ~X2, where

ρp ~X2q is the local mass density and d3 ~X2 represents a volume element. We have the

gravitational potential at ~X1 as

V p ~X1q �
»
Vm2

Gρp ~X2q
r21

d3 ~X2, (2.1)

where G is the gravitational constant. The gravitational potential field is a scalar field

given by (2.1) where V p ~X1q is the gravitational potential energy of a unit mass in a

gravitational field g. And g is the gradient of the potential energy V p ~X1q, that is,

g � ∇V � �BVBx , BVBy , BVBz �.
The divergence of the vector field g is defined as

∇ �∇V p ~X1q � ∇2V � 4πGρp ~X1q
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Figure 2.3: From Cartesian Coordinate px, y, zq to Spherical Cooridinate pr, θ, φq.

by applying the differential form of Gauss’s law for gravity. If the vector ~X1 is outside

of the body of mass m2, then we have ρp ~X1q � 0. Thus we have the equation as

∇�∇V p ~X1q � 0, which is known as the Lapalce’s equation. Consequently, the gravitation

potential V satisfies the Laplace’s equation, that is

B2V

Bx2
� B2V

By2
� B2V

Bz2
� 0. (2.2)

It is an important property of the potential energy which we will be using in later com-

putation of spherical harmonics. Now, it is convenient to adopt spherical coordinates

pr, θ, φq, aligned along the z-axis. These coordinates are related to the regular Cartesian

coordinates for masses m1 and m2 as follows:

x � r sin θ cosφ

y � r sin θ sinφ

z � r cos θ,

(2.3)

where 0 ¤ φ ¤ 2π is the azimuthal angle, 0 ¤ θ ¤ π is the polar angle, and r is the radial

distance of the point in the three-dimensional space. Let r21 be the distance between X1

and X2, r �| ~X1 | and r1 �| ~X2 |.



17

Now we have

V p ~X1q �
»
G

r21

ρp ~X2qd3 ~X2

�
»

Gb
| ~X2 |2 �2 ~X1 � ~X2� | ~X1 |2

ρp ~X2qd3 ~X2

(2.4)

Since ~X1 � ~X2 � rr1 cos γ where γ is the angle between the vectors and by the spherical

law of cosine [Sve18], we have

cos γ � cos θ cos θ1 � sin θ sin θ1 cospφ� φ1q.

Thus, we have

~X1 � ~X2 � rr1pcos θ cos θ1 � sin θ sin θ1 cospφ� φ1qq.

Let

F � cos γ

� sin θ sin θ1pcosφ cosφ1 � sinφ sinφ1q � cos θ cos θ1

� sin θ sin θ1 cospφ� φ1q � cos θ cos θ1.

(2.5)

Then

V p~rq � 1

r

»
Vm2

Gρp ~X2qd3 ~X2b
p r1
r
q2 � 2 r

1
r
F � 1

.

Applying the Binomial Theorem, we obtain

p1� 2
r1

r
F � pr

1

r
q2q 1

2 � 1� p�1

2
qp�r

1

r
F � r12

r2
q � p1

2
qp�1

2
� 1q

2!
p�2

r1

r
F � pr

1

r
q2q2 � � � �

� 1� r1

r
F � r12

2r2
� 3r12F2

2r2

� 1� r1

r
F � 1

2
pr

1

r
q2p3F2 � 1q �Opr

13

r3
q.

(2.6)
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Notice that the above expansion coincides with Legendre Polynomials, which is an n-th

degree polynomial expressed as:

Pnpxq � 1

2nn!

dn

dxn
px2 � 1qn, n � 0, 1, 2, ...

P0pFq � 1

P1pFq � 1

211!

d

dF
pF2 � 1q1 � F

P2pFq � 1

222!

d2

dF2
pF2 � 1q2 � 1

8

d

dF
2pF2 � 1qp2Fq

� 1

2

d

dF
pF3 � Fq � 1

2
p3F2 � 1q

(2.7)

We now have

V p ~X1q � 1

r

»
Vm2

Gρp ~X2q
8̧

l�0

pr
1

r
qlPlpFqd ~X2

� 1

r

»
Vm2

Gρp ~X2q
8̧

l�0

pr
1

r
qlPlpcos γqd ~X2.

(2.8)

Consider the case without rotation, we have the difference between φ and φ1 as 0.

That is,

F � cos θ cos θ1 � sin θ sin θ1 cos 0

� cos θ cos θ1 � sin θ sin θ1

� cospθ � θ1q

(2.9)

With γ � θ � θ1, we simply have the expansion with only Legendre polynomials, which

define the zonal surface spherical harmonics. Instead of expanding the terms Plpcos γq
with

cos γ � cos θ cos θ1 � sin θ sin θ1 cospφ� φ1q

in (2.8), we trace back to the general solutions to the Laplace’s equation in spherical co-

ordinates since the potential energy V p ~X1q satisfies the Laplace’s equation as in equation
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(2.2).

Starting with the spherical coordinates as in equations (2.3) The unit vectors in the

spherical coordinate system are functions of position; it is convenient to express them in

terms of the spherical coordinates:

r̂ � ~r

| ~r | �
~r

r
� xx̂� yŷ � zẑ

r

� x̂ sin θ cosφ� ŷ sin θ sinφ� ẑ cos θ

φ̂ �
B~r
Bφ
‖ B~r

Bφ ‖
� �x̂ sinφ sin θ � ŷ sin θ cosφa

sin2 θpsin2 φ� cos2 φq
� �x̂ sinφ� ŷ cosφ

θ̂ � φ̂� r̂

� x̂pcosφ cos θq � ŷp� sinφ cos θq � ẑp� sin2 φ sin θ � sin θ cos2 φq

� x̂ cos θ cosφ� ŷ cos θ sinφ� ẑ sin θ,

(2.10)

where x̂, ŷ and ẑ are the orthogonal unit vectors associated with the Cartesian coordinate

system and r̂, φ̂ and θ̂ are the orthogonal unit vectors associated with the spherical

coordinate system. Using the expressions obtained above, we can derive the following
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relationships:

Br̂
Br � 0

Br̂
Bφ � �x̂ sin θ sinφ� ŷ sin θ cosφ

Br̂
Bθ � x̂ cos θ cosφ� ŷ cos θ sinφ� ẑ sin θ

Bφ̂
Br � 0

Bφ̂
Bφ � �x̂ cosφ� ŷ sinφ � �pr̂ sin θ � θ̂ cos θq

Bφ̂
Bθ � 0

Bθ̂
Br � 0

Bθ̂
Bφ � �x̂ sinφ cos θ � ŷ cosφ cos θ � φ̂ cos θ

(2.11)

2.1.2 Laplacian in Spherical Coordinates

The path increment d~r can then be expressed in spherical coordinates as follows:

d~r � dpr~rq

� r̂dr � rd~r

� r̂dr � rpBr̂Brdr �
Br̂
Bθdθ �

Br̂
Bφdφq

� r̂dr � θrdθ � φ̂r sin θdφ.

(2.12)

Consider any scalar field u as a function of the spherical coordinates r, θ and φ. Then

we have

du � Bu
Br dr �

Bu
Bθ dθ �

Bu
Bφdφ

Note that we can express du as

du � ∇u � d~r,
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where the del operator ∇ represents gradient. Thus, we have

Bu
Br dr �

Bu
Bφdφ�

Bu
Bφdφ � ∇u � d~r

� p∇uqrdr � p∇uqθrdθ � p∇uqφr sin θdφ

(2.13)

And therefore, we obtained

p∇uqr � Bu
Br

p∇uqθ � 1

r

Bu
Bθ

p∇uqφ � 1

r sin θ

Bu
Bφ

(2.14)

and

∇ � r̂
B
Br �

θ̂

r

B
Bθ �

φ̂

r sin θ

B
Bφ.

Now we have the Laplacian in spherical coordinates as

∇2u �∇ � p ~∇uq � pr̂ BBr �
θ̂

r

B
Bθ �

φ̂

r sin θ

B
Bφq � pr̂

Bu
Br �

θ̂

r

Bu
Bθ �

φ̂

r sin θ

Bu
Bφq

�r̂ BBr pr̂
Bu
Br �

θ̂

r

Bu
Bθ �

φ̂

r sin θ

Bu
Bφq

� θ̂

r

B
Bθ pr̂

Bu
Br �

θ̂

r

Bu
Bθ �

φ̂

r sin θ

Bu
Bφq

� φ̂

r sin θ

B
Bφpr̂

Bu
Br �

θ̂

r

Bu
Bθ �

φ̂

r sin θ

Bu
Bφq

(2.15)
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With the partial derivatives derived earlier, we have

∇2u �r̂pr̂B
2u

Br2
� θ̂

r2

Bu
Bθ �

θ̂

r

B2u

BθBr �
φ̂

r2 sin θ

Bu
Bφ �

φ̂

r sin θ

B2u

BφBr q

� θ̂

r
pθ̂BuBr � r̂

B2u

BrBθ �
r̂

r

Bu
Bθ �

θ̂

r

B2u

Bθ2
� θ̂ cos θ

r sin2 θ

Bu
Bφ �

φ̂

r sin θ

B2u

BφBθ q

� φ̂

r sin θ
pφ̂ sin θ

Bu
Br � r̂

B2u

BrBφ �
φ̂ cos θ

r

Bu
Bθ �

θ̂

r

B2u

BθBφ

� r̂ sin θ � θ̂ cos θ

r sin θ

Bu
Bφ �

φ̂

r sin θ

B2u

Bφ2

�pB
2u

Br2
q � p1

r

Bu
Br �

1

r2

B2u

Bθ2
q � p1

r

Bu
Br �

cos θ

r2 sin θ

Bu
Bθ �

1

r2 sin2 θ

B2u

Bφ2
q

�pB
2u

Br2
� 2

r

Bu
Br q � p 1

r2

B2u

Bθ � cos θ

r2 sin θ

Bu
Bθ q � p 1

r2 sin2 θ

B2u

Bφ2
q

� 1

r2

B
Br pr

2Bu
Br q �

1

r2 sin θ

B
Bθ psin θ

Bu
Bθ q �

1

r2 sin2 θ

B2u

Bφ2
.

(2.16)

Therefore the Laplacian in Spherical coordinates can be expressed as

∇2 � 1

r2

B
Br pr

2 B
Br q �

1

r2 sin θ

B
Bθ psin θ

B
Bθ q �

1

r2 sin2 θ

B2

Bφ2

2.1.3 Laplace’s Equation

Laplace’s equation is obtained by taking the divergence of the gradient of the potential,

say ψ. It is a second order differential equation such that

∇2ψ � 0. (2.17)

As we have derived in Section 2.1.2, we have the Laplace’s equation expressed in spherical

coordinates as

B
Br pr

2Bψ
Br q �

1

sin θ

B
Bθ psin θ

Bψ
Bθ q �

1

sin2 θ

B2ψ

Bφ2
� 0 (2.18)
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We note that this equation can be solved by separation of variables. Consider the poten-

tial expressed as a product of functions Rprq, Θpθqand Φpφq, that is

ψpr, θ, φq � RprqΘpθqΦpφq.

Substituting the product into the Laplace’s equation (2.18), the derivatives are now the

total derivatives as shown below.

d

dr
pr2dRprq

dr
qΘpθqΦpφq � Rprq

sin θ

d

dθ
psin θdΘpθq

dθ
qΦpφq � RprqΘpθq

sin2 θ

d2Φpφq
dφ2

� 0 (2.19)

Dividing by RprqΘpθqΦpφq throughout the equation, we obtain

1

Rprq
d

dr
pr2dRprq

dr
q � 1

Θpθq sin θ

d

dθ
psin θdΘpθq

dθ
q � 1

Φpφq sin2 θ

d2Θpθq
dφ2

� 0. (2.20)

The first term is now depending on r only and thus it must be a constant. We choose to

have lpl�1q to be the separation constant. This allows us to have the ordinary differential

equation for Rprq as:

1

Rprq
d

dr
pr2dRprq

dr
q � lpl � 1q

That is,

d

dr
pr2dRprq

dr
q � lpl � 1qRprq � 0.

This equation has the linearly independent solution of the form

Arl, Br�pl�1q

such that

Rprq � Arl �Br�pl�1q
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where A and B are constants which will be determined by given boundary equation

and/or conditions. Since the part of equation (2.20) that is associated with Rprq is

separated to be a constant, the remainder of the Laplace equation is

lpl � 1q � 1

Θpθq sin θ

d

dθ
psin θdΘpθq

dθ
q � 1

Φpφq sin2 θ

d2Θpθq
dφ2

� 0.

Multiplying by sin2 θ, we obtain

lpl � 1q sin2 θ � sin θ

Θpθq
d

dθ
psin θdΘpθq

dθ
q � 1

Φpφq
d2Θpθq
dφ2

� 0

in which we see that the last term on the left hand side of the equation is a function

depends only on φ. Similar to Rprq, the last term is now separable and it leads to the

well-known Legendre and Associated Legendre Equations [AH12].

The separated equation for Φpφq is

1

Φpφq
d2Φpφq
dφ2

� const.

Similarly to the previous case, we will choose the constant to be �m2. Since the solution

of the equation has to be a single value, m is required to be either a positive or negative

integer. The constant �m2 allows us to justify the solution precisely:

1

Φpφq
d2Φpφq
dφ2

� �m2

d2Φpφq
dφ2

� �m2Φpφq
d2Φpφq
dφ2

�m2Φpφq � 0

(2.21)
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The solution is of the form of eγt. Its characteristic equation is pγ2�m2q � 0 and implies

γ � �mi. Therefore we have the solution as

Φpφq � e�imφ,

or the general solution as a sum of real functions

Φpφq � Am cospmφq �Bm sinpmφq,

where Am and Bm are some constants.

With separating the function for Φpφq we have the original Laplace equation (2.18) left

with Θpθq. Dividing

lpl � 1q sin2 θ �m2 � sin θ
1

Θpθq
d

dθ
psin θdΘpθq

dθ
q � 0

by Θpθq, we have

plpl � 1q sin2 θ �m2qΘpθq � sin θ
d

dθ
psin θdΘpθq

dθ
q � 0. (2.22)

Let u � cos θ, then du
dθ
� � sin θ and

d

dθ
� d

du

du

dθ
� � sin θ

d

du
. (2.23)

Substituting equation (2.23) into the Laplace equation 2.22, we obtain

plpl � 1q sin2 θ �m2qΘ� sin2 θ
d

du
psin2 θ

dΘ

du
q � 0
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and thus we can now change the entire equation depending on u instead of θ:

plpl � 1qp1� u2q �m2qΘpuq � p1� u2q d
du
pp1� u2qdΘpuq

du
q � 0. (2.24)

2.1.4 Associated Legendre and Legendre Equations

The equation (2.24) derived from the Laplace equation (2.18) in the previous section can

be written as follows by dividing the whole equation by p1� u2q:

p1� u2qd
2Θpuq
du2

� 2u
dΘpuq
du

� plpl � 1q � m2

1� u2
qΘpuq � 0. (2.25)

This is known as the Associated Legendre equation. It is an equation expressed as a

function of cos θ and the solutions to the Associated Legendre equation are also polyno-

mials, which are known as the Associated Legendre polynomials.

In the particular case of m � 0, we obtain a simpler equation

p1� u2qd
2Θpuq
du2

� 2u
dΘpuq
du

� lpl � 1qΘpuq � 0. (2.26)

This is known as the Legendre equation and the solutions to the Legendre equation are

polynomials, which are known as the Legendre polynomials.

In this section, we start with solving the Legendre equation for Legendre polynomials.

Then we make use of the Legendre polynomials to solve the associated Legendre equation

for Associated Legendre polynomials.

To simplify the notation we let g � Θpuq, then the Legendre equation becomes

p1� u2qd
2g

du2
� 2u

dg

du
� lpl � 1qg � 0. (2.27)
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By the product rule of differentiation, we have

d

du
pp1� u2qdg

du
q � lpl � 1qg � 0.

In order to give the general solution to the equation, we consider

ypuq � pu2 � 1ql.

Then we have

y1 � 2lupu2 � 1ql�1.

Multiplying by 1� u2 to y1, we obtain

p1� u2qy1 � �2lupu2 � 1ql

� �2luy

(2.28)

Thus we can easily obtain

p1� u2qy1 � 2luy � 0

Now let v � 1� u2 and performing k-times differentiation by using Leibniz rule, that is,

dk

duk
rvy1s �

ķ

j�0

�
k

j



vpjqypk�j�1q.

Since v is a second order polynomial, only three terms of the above sum will survive.

dk

duk
rvy1s � vypk�1q � kv1ypkq � kpk � 1qvp2qypk�1q

� p1� u2qypk�1q � 2kuypkq � 2
kpk � 1q

2
ypk�1q

(2.29)
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Similarly, we apply the Leibniz rule on the product 2luy.

dk

duk
r2luys � 2luypkq � 2lkypk�1q

We now have

dk

duk
rvy1s � dk

duk
r2luys � 0

becomes

p1� u2qypk�1q � 2kuypkq � kpk � 1qypk�1q � 2luypkq � 2nkypk�1q � 0.

Let k � l � 1, we have

p1� u2qypl�2q � 2pl � 1quypl�1q � pl � 1qplqyplq � 2luypl�1q � 2lpl � 1qyplq � 0

and it simplifies to

p1� u2qypl�2q � 2uypl�1q � pl � 1qplqyplq � 0.

This is indeed the Legendre equation (2.27) with

gpuq � yplq � dl

dul
pu2 � 1ql.

This shows that

cl
dl

dul
pu2 � 1ql (2.30)

where cl is a constant satisfies the Legendre equation. For normalization, cl is chosen to

be 1
2ll!

such that expression (2.30) is 1 when u is 1 and thus

1

2ll!

dl

dul
pu2 � 1ql � Plpuq,
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which is known as the Legendre polynomials (i.e. Rodrigues’ formula). In the case of

considering a m-times differentiation to the Legendre equation, we apply the Leibniz rule

to the products vg2, �2ug1 and plpl � 1q �mpm� 1qqg as follows:

dm

dum
rvg2s � vgpm�2q � 2mugpm�1q �mpm� 1qgpmq

dm

dum
r�2ug1s � �2ugpm�1q � 2mgpmq

dm

dum
rlpl � 1qgs � lpl � 1qgpmq

Thus we obtain a new differential equation

�
1� u2

� pgpmqq2 � 2pm� 1qupgpmqq1 � plpl � 1q �mpm� 1qqgpmq � 0, (2.31)

where gpmq � dm

dum
gpuq. Now we consider

gpmq � p1� u2qrfpuq (2.32)

and we need to find such a function f . To determine r and the condition for f , we first

computer the first and second derivative of the expression (2.32) as follows:

rgpmqs1 � �2rup1� u2qpr�1qf � p1� u2q2f 1 (2.33)

rgpmqs2 � �1� u2
�r
f2 � 4ru

�
1� u2

�r�1
f 1 � 2r

�
1� u2

�r�1
f � 4rpr� 1qu2

�
1� u2

�r�2
f.

(2.34)

Substitute the expressions (2.33) and (2.34) into equation (2.31), we have

p1�u2qf2�2upm�1�2rqf 1�
�
lpl � 1q �mpm� 1q � 2r � 4rpr � 1q � 4rpm� 1q

1� u2



f � 0

(2.35)
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Notice that with r � �m
2

, we recover equation (2.25) with Θpuq � f . Therefore, the

function

fpuq � �1� u2
�m

2
dm

dum
gpuq, (2.36)

where gpuq is a solution to the Legendre equation (2.26). The solution to the Associated

Legendre equation (2.25). With positive integers l andm is known as Associated Legendre

polynomials and it is denoted as Pm
l puq such that

Pm
l puq �

�
1� u2

�m
2
dm

dum
Plpuq. (2.37)

Since we do not have computation for derivatives with negative index, we define Pm
l puq

with positive m. However, we can use extend it to negative m by rewriting equation

(2.37) with Plpuq defined through Rodrigues’ formula. We have

Pm
l puq �

�
1� u2

�m{2 dm

dum

�
1

2ll!

dl

dul
pu2 � 1ql



� 1

2ll!
p1� u2qm2 dl�m

dul�m
pu2 � 1ql

(2.38)

Replacing m by �m now, we obtain the extension to negative values of m:

P�m
l puq � 1

2ll!
p1� u2q�m2 dl�m

dul�m
pu2 � 1ql

� p�1qm pl �mq!
pl �mq!P

m
l puq

(2.39)

Recall that u � cos θ, we have the solution to the Laplace’s equation (2.17) as

ψpr, θ, φq � RprqΘpθqΦpφq

�
8̧

l�0

ļ

m��l

�
Al,mr

l �Bl,mr
�pl�1q� pPm

l pcos θqq �eimφ�
�

8̧

l�0

ļ

m��l

�
Al,mr

l �Bl,mr
�pl�1q�Y m

l ,

(2.40)
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where Y m
l is the spherical harmonics that is defined in Section 2.1.5.

2.1.5 Spherical Harmonics

In general, the Associated Legendre polynomials is defined in the previous section 2.1.4

Pm
l puq � p1� u2qm{2 d

m

dum
pPlpuqq,

with �1 ¤ u ¤ 1, m ¥ 0 and l ¥ m.

Although differentiating a negative number of times is not defined, this problem does not

occur in the Associated Legendre polynomials. As shown in Section 2.1.4, the Rodrigues’

formula allows us to extend the range of m to �l ¤ m ¤ l. Hence the definition of Pm
l

is also valid for negative m without loss of generality.

Assuming m is non-negative, we start with the Rodrigues’ formula

Pm
l puq �

1

2ll!
p1� u2qm{2 d

l�m

dul�m
pu2 � 1ql

� 1

2ll!
p1� u2qm{2 d

l�m

dul�m
rpu� 1qlpu� 1qls.

(2.41)

Now using the Leibniz rule to evaluate the derivative, it yields

Pm
l puq �

1

2ll!
p1� u2qm{2

l�m̧

r�0

pl �mq!
r!pl �m� rq!

drpx� 1ql
dxr

dl�m�rpx� 1ql
dxl�m�r

.

Considering the two derivative factors in a term in the summation, we note that the

first is non-zero only for r ¤ l and the second is non-zero for l �m � r ¤ l. These two

conditions combine to yield m ¤ r ¤ l.
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Performing the derivatives, we obtain

Pm
l puq �

1

2ll!
p1� u2qm{2

l�m̧

r�0

pl �mq!
r!pl �m� rq!

l!pu� 1ql�r
pl � rq!

l!pu� 1qr�m
pr �mq!

� p�1qm{2 l!pl �mq!
2l

ļ

r�m

pu� 1ql�r�m{2pu� 1qr�m{2
r!pl �m� rq!pl � rq!pr �mq! .

(2.42)

For the derivation of P�m
l puq, we perform the steps similarly as above

P�m
l puq � p�1q�m{2 l!pl �mq!

2l

l�m̧

r�0

pu� 1ql�r�m
2 pu� 1qr�m

2

r!pl �m� rq!pl � rq!pr �mq!

Let r̄ � r �m, we have

P�m
l puq � p�1qm{2 l!pl �mq!

2l

ļ

r̄�m

pu� 1ql�r̄�m{2pu� 1qr̄�m{2
pr̄ �mq!pl � r̄q!pl �m� r̄q!r̄! .

In this case, we obtain the identity

P�m
l puq � p�1qm pl �mq!

pl �mq!P
m
l puq. (2.43)

It is now convenient to introduce Spherical Harmonics, which are special functions that

define on the surface of a sphere. Spherical Harmonics form an orthogonal system, so

they set up the base to the expansion of a general function on a sphere. A set of Spherical

Harmonics are defined as

Y m
l pθ, φq �

d
2l � 1

4π

pl �mq!
pl �mq!P

m
l pcos θqeimφ
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with m � �l,�l � 1, ..., l � 1, l and l � 0, 1, 2, .... Notice that

Y �m
l pθ, φq �

d
2l � 1

4π

pl �mq!
pl �mq!P

�m
l pcos θqe�imφ

�
d

2l � 1

4π

pl �mq!
pl �mq!p�1qm pl �mq!

pl �mq!P
m
l pcos θqe�imφ

� p�1qm
d

2l � 1

4π

pl �mq!
pl �mq!P

m
l pcos θqe�imφ

� p�1qm
d

2l � 1

4π

pl �mq!
pl �mq!P

m
l pcos θqeimφ

� p�1qmY m
l pθ, φq

� p�1qmY m�
l pθ, φq

(2.44)

where Y m�
l pθ, φq denotes the conjugate of Y m

l pθ, φq. The condition of the orthogonality

is l1 ¤ l, » 2π

0

dφ

» π
0

sin θdθY m�
l pθ, φqY m1

l1 pθ, φq � δll1δmm1 . (2.45)

A general function gpθ, φq is expanded in terms of the Spherical Harmonics as

gpθ, φq �
¸
l,m

Aml Y
m
l pθ, φq,

with

Aml �
» 2π

0

dφ

» π
0

dθ sin θgpθ, φqY m�
l pθ, φq.

The angular part of the solutions to the Laplace equation is contained in the product of

the azimuthal function Φpφq and the polar function Θpθq. The azimuthal function com-

prise a complex exponential eimφ and the polar function is a solution to the associated

Legendre equation Pm
l pcos θq.

Considering that most applications of spherical harmonics require only real-valued spher-

ical functions, as the gravitational potential that we are working on, it is convenient for
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us to define the real-valued spherical harmonics function as follows:

Yl,mpθ, φq �

$''''''&''''''%

?
2RepY m

l q �
?

2Km
l cospmφqPm

l pcos θq if m ¡ 0

Y 0
l � K0

l P
0
l pcos θq if m � 0

?
2ImpY m

l q �
?

2K
|m|
l sinp| m | φqP |m|

l pcos θq if m   0

with
?

2 as a normalized factor and where

Km
l �

d
2l � 1

4π

pl �mq!
pl �mq! .

The real functions Yl,mpθ, φq are known in the literature as spherical harmonics of the

first kind and they are divided into three categories:

(I) When m � 0, it is known as zonal harmonics.

(II) When l � m, it is known as sectorial harmonics.

(III) When l � 0 and l � m, it is known as tesseral harmonics.

The three types of surface harmonics represent different types of surface changes; graph-

ical representation of the three types of surface harmonics is provided below.

Figure 2.4: Graphical views from the side of objects. The left and right picusre represent
the zonal and tesseral harmonics respectively while the middle one represents sectorial
harmonics.

Modeling an object by the zonal harmonics appear as a circle while viewing the

described object from the top since the changes of the shape is happened to have some

of the horizontal slides of the sphere cut off. This provides that zonal harmonics do not
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depend on longitudes. Modeling an object by sectorial harmonics appear as splitting as

”triangles” while viewing from the top since the changes of the shape is sectional cut

off of a sphere along longitude. Modeling an object by tesseral harmonics appear as

a ”checkerboard” while viewing from the top since the changes of the shape is cutting

pieces out like a ”checkerboard” in general.

Figure 2.5: Graphical views from the top of the objects. The left and right picusre
represent the zonal and tesseral harmonics respectively while the middle one represents
sectorial harmonics.

2.1.6 Gravitational Potential in Spherical Harmonics Expan-

sion

Since the gravitational potential (2.1) satisfies the Laplace’s equation as discussed, we

have V in the form of equation (2.40). Remark that in the case of our interest, a

potential in free space vanishing at infinity and thus Al,m must be zero in (2.40). Consider

the gravitational potential V in spherical coordinates as an orthogonal expansion using

spherical harmonics, we have

V pr, θ, φq � GM

r

8̧

l�0

pr
1

r
ql

ļ

m�0

Pm
l pcos θqrCl,m cospmφq � Sl,m sinpmφqs (2.46)

where Cl,m and Sl,m are the spherical harmonics coefficients and M is the mass of the

body. Note that in the case of gravity field, we adopt the convention to be real for the

expansion functions.
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2.1.7 Derivation of Spherical Harmonics Coefficients of a triax-

ial Ellipsoid

The solution to the Laplace’s equation as in equation (2.40) is expressed by a series of

spherical harmonics Y m
l , which consists of two terms. The two terms are known as the

spherical surface harmonics and defined as Y C
l,m and Y S

l,m:

Pm
l pcosθq cospmφq � Y C

l,m

Pm
l pcosθq sinpmφq � Y S

l,m.

(2.47)

Note that the orthogonal property of the Spherical Harmonics is of use in the following

text. In this thesis, we consider the shape of triaxial ellipsoid with semi-major axes

a ¡ b ¡ c. Of our interest, the gravitational potential (2.46) has the the coefficients Sl,m

are all zeros due to the symmetry of triaxial ellipsoid. We have

V pr, θ, φq � GM

r

8̧

l�0

pr
1

r
ql

ļ

m�0

Pm
l pcos θqrCl,m cospmφqs. (2.48)

Consider

β �
8̧

l�0

ļ

m�0

Pm
l pcos θqCl,m cospmφq (2.49)

Multiply both sides of the equation by Pm1
l1 pcos θq and cospm1φq (i.e. Y C

l1,m1) , we have

βPm1
l1 pcos θq cospm1φq �

8̧

l�0

ļ

m�0

Pm
l pcos θqCl,m cospmφqPm1

l1 pcos θq cospm1φq

ùñ β
pl �mq!
pl �mq!p2� δ0mq

»
V

Pm1
l1 pcos θq cospm1φqdV � Cl,m.

(2.50)

This provides us a way of determining the coefficient Cl,m [Bal94]. With the symmetric

property, we have C2p�1,q � 0 and C2p,2q�1 � 0 and thus we only consider the even terms.

As shown in equation (2.50), we use the property of orthogonality and normalization
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of spherical harmonics. Similarly, we obtain the coefficient C2l,2m of the gravitational

potential (2.46) as in [Bal94] and [Boy97a]:

C2l,2m � β

Mr12l
p2l � 2mq!
p2l � 2mq!p2� δ0mq

»
V

r2l�2P 2m
2l pcos θq sin θ cosp2mφqdrdθdφ. (2.51)

Considering M � 3
4πabcβ

[Bal94], we have

C2l,2m � 3

4πabcr12l
p2l � 2mq!
p2l � 2mq!p2� δ0mq

»
V

r2l�2P 2m
2l pcos θq sin θ cosp2mφqdrdθdφ (2.52)

where r is the radius of mass m while a,b and c are the semi-axes of the ellipsoid aligned

with the x-, y- and z-axes respectively such that a ¡ b ¡ c.

The integral of (2.52) is given by [Boy97b]

» 2π

0

» π
0

» Dpθ,φq
0

r2l�2P 2m
2l pcos θq sin θ cosp2mφqdrdθdφ.

Following the derivation of [Boy97b], we first integrate with respect to the radial coordi-

nate r, then

» D
0

r2l�2dr � D2l�3

2l � 3

� 1

2l � 3
rpcos2 φ

a2
� sin2 φ

b2
q sin2 θ � cos2 θ

c2
s�p2l�3q

2

� 1

2l � 3

1

pA sin2 θ �B cos2 θq�p2l�3q
2

(2.53)

where A � cos2 φ
a2

� sin2 φ
b2

and B � 1
c2

.

Second, consider the integral with respect to the angle θ

» π
0

P 2m
2l pcos θq sin θ

1

pA sin2 θ �B cos2 θq l�3
2

dθ

�p2l � 2mq!
l�m̧

i�0

p�1qi
22m�2ip2l � 2m� 2iq!p2m� iq!i!

» π
0

cos2l�2m�2i θ sin2m�2i�1 θ

pA sin2 θ �B cos2 θq l�3
2

dθ

(2.54)
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by using another definition of the Legendre polynomial, that is,

Pm
l puq � pl �mq!

intp l�m
2
q¸

i�0

p�1qip1� u2qm2 �iul�m�2i

2m�2ipl �m� 2iq!pm� iq!i! , (2.55)

which differs from equation (2.42) by rewriting the combination of terms. Let u � tan2 θ

and consider A and B as variables, we have

p2l � 2mq!
l�m̧

i�0

p�1qi
22m�2ip2l � 2m� 2iq!p2m� iq!i!

» π
0

cos2l�2m�2i θ sin2m�2i�1 θ

pA sin2 θ �B cos2 θq l�3
2

dθ

�p2l � 2mq!
l�m̧

i�0

p�1qi
22m�2ip2l � 2m� 2iq!p2m� iq!i!

� 2 p�4qll!
p2l � 1q!

Bl�m�i
BBl�m�i

Bm�i
BAm�i

» π
2

0

sin θ

pA sin2 θ �B cos2 θq l�3
2

dθ

�p2l � 2mq!
l�m̧

i�0

p�1qi
22m�2ip2l � 2m� 2iq!p2m� iq!i!

� p�4qll!
p2l � 1q!

Bl�m�i
BBl�m�i

Bm�i
BAm�i

» 8

0

du

pAu�Bq 3
2

�p2l � 2mq!
l�m̧

i�0

p�1qi
22m�2ip2l � 2m� 2iq!p2m� iq!i!

p�4qll!
p2l � 1q!

Bl�m�i
BBl�m�i

Bm�i
BAm�i p

2

AB
1
2

q

�2l!
p2l � 2mq!
p2l � 1q!

l�m̧

i�0

Klmi

Am�i�1

(2.56)

where

Klmi � p�1qi pm� iq!c2l�2m�2i�1

p2m� iq!pl �m� iq!i! .

Notice that A involves angle φ, which is the left over term to be considered in the integral

(2.52). The last step for solving the integral, we take the integration with respect to φ.
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Let φ � 2ψ, we have

» 2π

0

cosp2mφqdφ
Am�i�1

�
» 2π

0

cosp2mφqdφ
p cos2 φ

a2
� sin2 φ

b2
qm�i�1

�pa
2b2qm�i�1

pa2b2qm�i�1

» 2π

0

cosp2mφqdφ
p cos2 φ

a2
� sin2 φ

b2
qm�i�1

�pabq2m�2i�2

» 2π

0

cos 2mφ

pb2 cos2 φ� a2 sin2 φqm�i�1
dφ

�pabq2m�2i�2

» 2π

0

cos 2mφ

pa2�b2�a2�b2
2

cos2 φ� a2�b2�a2�b2
2

sin2 φqm�i�1
dφ

�pabq2m�2i�2

» 2π

0

cos 2mφ

pa2�b2
2
pcos2 φ� sin2 φq � a2�b2

2
pcos2 φ� sin2 φqqm�i�1

dφ

�pabq2m�2i�2

» 2π

0

cos 2mφ

pa2�b2
2

� a2�b2
2
pcosp2φqqm�i�1

dφ

�2pabq2m�2i�2

» π
0

cosmψ

pa2�b2
2

� a2�b2
2
pcospψqqm�i�1

dψ

�2pabq2m�2i�2 1

pabqm�i�1

» π
0

cosmψ

pa2�b2
2ab

� a2�b2
2ab

cosψqm�i�1
dψ

(2.57)

Notice that the integral above is in fact the Laplace’s second integral [MS]:

Definition 2.1.2 (Laplace’s Second Integral for Pm
n pxq). If n and m are positive integers

and m ¤ n,

Pm
n pxq � p�1qm n!

pn�mq!
1

π

» π
0

cosmφ

px�?
x2 � 1 cosφqn�1

dφ.

Now we let a2�b2
2ab

� x and m � i � n, we can easily express the integral in terms of

associated Legendre polynomials

» π
0

cosmψ

pa2�b2
2ab

� a2�b2
2ab

cosψqm�i�1
dψ � p�1q�m pm� i�mq!

pm� iq! πPm
m�ip

a2 � b2

2ab
q

� p�1qm i!

pm� iq!πP
m
m�ip

a2 � b2

2ab
q.

(2.58)
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We thus have

C2l,2m

� 3

R2l

l!p2l � 2mq!
p2m� iqp2l � 1q!p2� δ0mq

l�m̧

i�0

p�1qm2 �i c2l�2m�2ipabqm�i
p2m� iq!pl �m� iq!P

m
m�ip

a2 � b2

2ab
q.

(2.59)

Indeed, this expression could be further simplified by the idea of Ivory’s theorem [Dan89]—

instead of depending on the value of a, b and c, the gravitational field of a homogeneous

triaxial ellipsoid at any exterior point depends only on its mass and any two of the quan-

tities a2 � b2, b2 � c2 and a2 � c2.

The Spherical harmonics form an orthogonal set of functions, so we can apply the Ivory’s

theorem such that each of the Harmonics coefficients depends only on α � a2 � c2 and

β � b2 � c2. It implies that for any two ellipsoids with different value of a, b and c but

identical values of α, β and masses, their gravitational potentials are the same. We may

reduce the terms of C2l,2m by applying the idea to an ellipsoid that is equivalent to the

one in which we are interested but with the shortest axis as zero (i.e. c � 0).

Now with a � ?
α, b � ?

β and c � 0, we have only one non-zero term left from the

series— when i � l �m.

C2l,2m � 3

R2l

l!p2l � 2mq!
p2l � 3qp2l � 1q!p2� δ0mqp�1ql�m

2
pαβq l2
pl �mq!Plmp

α � β

2
?
αβ

q. (2.60)

Expanding the Legendre polynomial again as defined in (2.55), we have

Plmpα � β

2
?
αβ

q � pl �mq!
intp l�m

2
q¸

i�0

p�1qip1� p α�β
2
?
αβ
q2qm2 �ip α�β

2
?
αβ
ql�m�2i

2m�2ipl �m� 2iq!pm� iq!i!

� pl �mq!
intp l�m

2
q¸

i�0

p�1qip1� p α�β
2
?
αβ
q2qm2 �ip α�β

2
?
αβ
ql�m�2i

2m�2ipl �m� 2iq!pm� iq!i!

� pl �mq!
intp l�m

2
q¸

i�0

p�1qip�1qm2 �ipα�β
2
qm�2ip�α�β

2
ql�m�2i

2m�2ipl �m� 2iq!pm� iq!i!

(2.61)
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C2l,2m � 3

R2l

l!p2l � 2mq!
p2l � 3qp2l � 1q!p2� δ0mqp�1ql�m

2 pαβq l2

�
intp l�m

2
q¸

i�0

p�1q�pm2 �2iqpα�β
2
qm�2ipα�β

2
ql�m�2i

2m�2ipl �m� 2iq!pm� iq!i!

� 3

R2l

l!p2l � 2mq!
p2l � 3qp2l � 1q!p2� δ0mqpαβq l2

intp l�m
2
q¸

i�0

pα�β
2
qm�2ip�α�β

2
ql�m�2i

2m�2ipl �m� 2iq!pm� iq!i!

� 3

R2l

l!p2l � 2mq!
p2l � 3qp2l � 1q!p2� δ0mq

intp l�m
2
q¸

i�0

pα�β
2
qm�2ip�α�β

2
ql�m�2i

2m�2ipl �m� 2iq!pm� iq!i!

(2.62)

Since this is the harmonic coefficient for the equivalent ellipsoid it must be the coefficient

for the original ellipsoid and thus α and β can be rewritten in terms of a, b and c without

loss of generosity.

C2l,2m � 3

r2l

l!p2l � 2mq!
22mp2l � 3qp2l � 1q!p2� δ0mq

intp l�m
2
q¸

i�0

pa2 � b2qm�2irc2 � 1
2
pa2 � b2qsl�m�2i

16ipl �m� 2iq!pm� iq!i! .

(2.63)

Notice that coefficients C2l,2m are all non-dimensional.

Remark 2.1.3. In the formula of C2l,2m, variable r carries the unit of kilometers while

the term a2 � b2 carries the unit of square kilometer. In the first fraction of (2.63), we

have r2l as the denominator and thus it has the unit of pkmq2l in the denominator. The

numerator of the fraction of summation has the term pa2�b2qm�2i, which carries the unit

of pkmq2pm�2iq while the term rc2 � 1
2
pa2 � b2qsl�m�2i carries the unit of pkmq2pl�m�2iq.

With the multiplication, it gives pkmq2pm�2iq�2pl�m�2iq � pkmq2l, which is the same as the

unit we obtained from the denominator of the first fraction. A cancellation performed

for simplification, we obtain a no-unit quantity as the coefficient C2l,2m. Therefore, it is

a non-dimensional quantity.

Other than the coefficients Slm are all zeros, all the coefficients Clm with either l or

m as odd number are also zeros. Thus, the coefficients that contribute to the gravity

as non-zeros terms are those of the form C2l,2m for l,m � 0, 1, 2, ... [Sch16]. Since we
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consider a triaxial ellipsoid, the shape of its body is defined by the equation

�x
a

	2

�
�y
b

	2

�
�z
c

	2

¤ 1.

It follows that the first few terms of the spherical harmonics C2l,2m for l,m � 0, 1, 2, ...

can be written as the following explicit formula [Sch16]:

C20 � 1

5R2

�
c2 � a2 � b2

2



,

C22 � 1

20R2

�
a2 � b2

�
,

C40 � 15

7

�
C2

20 � 2C2
22

�
,

C40 � 5

7

�
C2

20C
2
22

�
,

C40 � 5

28
C2

22,

(2.64)

where R is the normalized mean radius of the body.

2.2 Data of Trojan Asteroid 624 Hektor and its Spher-

ical Harmonic Coefficients Computation

The spherical harmonic coefficients of a homogeneous tri-axial ellipsoid are given by:

Cl,m � 3

Rl
H

pl{2q!pl �mq!
2mpl � 3qpl � 1q!p2� δ0mq

intp l�m
4
q¸

i�0

pa2 � b2qm�4i
2 rc2 � 1

2
pa2 � b2qs l�m�4i

2

16ip l�m�4i
2

q!pm�2i
2
q!i!

where δ0m is Kronecker symbol, a, b, c are the semi-major radius of the tri-axial ellipsoid

and RH is a scale length. According to the reference [Joh11] we have Hektor is approxi-

mately 416� 131� 120 km in size and the equivalent radius (i.e., the radius of a sphere

with the same volume as the asteroid) is RH � 92 km. Therefore a � 208km, b � 65.5km

and c � 60km; we take the scale length equal to the mean radius of Hektor, which is
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approximately 92km.

Using the above formula, the following values for the first (non-zero) spherical harmonic

coefficients are obtained:

C2,0 � �0.4768, C2,2 � 0.2302,

C4,0 � 0.7143, C4,2 � �0.0784, C4,4 � 0.0095,

C6,0 � �1.5477, C6,2 � 0.0768, C6,4 � �0.0025, C6,6 � 0.0002

Among the above data, both C20 and C22 are significant to the gravitational potential.

The sectional cut along the latitude of the body is described by the coefficient C22.

Due to the fact that Hektor spins as fast as 6.921 � 0h [Joh11], the averaging effect of

the coefficient C22 is zero. While spinning fast, the effect of C22 can be considered as

averaging out all the sectional cuts of the body. Therefore we opt out the effect of C22

in the following chapters.
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Chapter 3

Central Configurations of Oblate bod-

ies

This chapter is devoted to give some background information about central configuration

as well as the derivation of the triangular central configurations of the model of three

oblate bodies under mutual gravitational interaction. We will also consider the particular

case when only one of the three bodies is oblate.

We note that there exist papers in the literature (e.g., [APHS16]), which consider systems

of three bodies, with one of the bodies non-spherical, which are assumed to form an

equilateral triangle central configuration. Such assumption, while it may lead to very

good approximations, is not physically correct. Thus we aim to present the central

configuration of the model that we are interested in.

3.1 Background

3.1.1 Central Configuration

The n–body problem study the motion of n–point masses in RN moving under their

mutual gravity, where N � 1, 2 or 3, assuming that the gravitational constant G � 1 the



45

equations of motion can be written as

mk:qk �
ņ

k�1,k�l

mkmlpqk � qlq
}qk � ql}3

� ∇kU � BU
Bqk , (3.1)

where mk is the body mass for k � 1, 2, ..., n, qk is the position vector of the mass mk, U

is the Newtonian potential such that U � °k l
mkml
rlk

and rlk � }ql� qk} for l � k. Notice

that the potential U only depends on the mutual distances. Denote q � pq1, q2, q3, ..., qnq,
and M � Nn�Nn diagonal matrix with N copies of each mass along the diagonal. Then

equation (3.1) can be written as

M:q � ∇Upqq, (3.2)

where ∇ is the Nn dimensional gradient given by ∇ � p∇1, ...,∇nq where ∇i is the

N -dimensional gradient.

Definition 3.1.1 (Central Configuration). A Central Configuration in the n� body

problem is a particular position of the n� particles where the position and acceleration

vectors are proportional, with the same constant of proportionality. In other words we

have

:qkptq � γqkptq, (3.3)

for all t and k � 1, 2, ..., n.

Consider the center of mass is fixed at the origin, equation (3.3) says that all of the

accelerations are pointing towards the center of mass, which is the origin, under our

assumption. Multiplying both side of equation (3.3) by mkqk and taking a summation

over k, we have ¸
k

mkqk � :qk � γ
¸
k

mkq
2
k, (3.4)
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where � refers to dot product in RN. Thus, we have

¸
k

qk∇kU � γ
¸
k

mkq
2
k. (3.5)

Next we introduce moment of inertia by the following definition:

Definition 3.1.2 (Moment of Inertia). The moment of inertia is given by

I �
ņ

j�1

mjq
2
j .

where mj is the mass for the jth body and qj is the position vector of the mass mj.

Now, the equation (3.4) becomes

¸
k

qk 5k U � γI. (3.6)

Furthermore, we have

¸
k

qk∇kU �
¸
k

qk
¸
l�k

mlmk

‖ql � qk‖3
pql � qkq

�
¸
k

qk
¸
l k

mlmk

‖ql � qk‖3
pql � qkq �

¸
k

qk
¸
l¡k

mlmk

‖ql � qk‖3
pql � qkq

�
¸
k

qk
¸
l k

mimkpql � qkq
‖ql � qk‖3

�
¸
l

ql
¸
l k

mimkpqk � qlq
‖ql � qk‖3

�
¸
k

mlmkpql � qkq
‖ql � qk‖3

pqk � qlq

� �
¸
k

mlmkpql � qkq2
‖ql � qk‖3

� �U

(3.7)

The relationship above shows that the constant

γ � �U
I
, (3.8)
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that introduces a negatively proportionality in a central configuration. Denote M �
m1�m2�� � ��mn. Using the assumption of having the center of mass at origin, we have

¸
i,j

mimjr
2
ij �

¸
ij

mimj‖qi � qj‖2

�
¸
i,j

mimj‖qi‖2 � 2
¸
i,j

mimjqi � qj �
¸
ij

mimj‖qj‖2

�MI � 2
¸
i

miqi

�¸
j

mjqj

�
�MI

� 2MI.

(3.9)

Moreover, ¸
i,j

mimjr
2
ij � 2MI ðñ 2

¸
i j

mimjr
2
ij � 2MI.

Thus the moment of inertial I can also be written as

I � 1

M

¸
i j

mimjr
2
ij. (3.10)

As the moment of inertia I can be written in terms of the mutual distances, we can find

its relation with the potential U easily. Using the equation of motion, we now obtain

M:qptq � γMqptq � γ
¸
k

mkqk � γ

2

¸
k

B
Bqk pmkq

2
kq

∇Upqq � 1

2
γ∇Ipqq

(3.11)

Since the central configurations are invariant under scaling, we may as well normalize the

central configuration by setting I = 1, a normalized central configuration will be resulted

in this case . We observe that equation (3.11) is a Lagrange multiplier problem, with γ as

the Lagrange multiplier. It is well known that this delicate balancing of the gravitational

forces in equation (3.8) gives rise to some remarkable solutions of the n-body problem.

In this chapter, we found the scalene triangular central configuration as a solution to a
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restricted four body problem with three heavy oblate bodies. In this thesis, the notion

of Central Configuration and the results on this chapter are important for an application

on the Hill approximation as shown in Chapter 4.

For instance, in the case of point masses, for n � 3, the only non-collinear central

configuration is that the masses lie on the vertices of an equilateral triangle, which is

known as the Lagrange central configuration. It is one of the first explicit solutions given

in the three-body problem. We will consider this central configuration in the next section.

Definition 3.1.3 (Homographic solution). A solution qptq � pq1ptq, q2ptq, ..., qnptqq of the

n–body problem is called homographic if the configuration of the bodies remains similar

with itself for all time t.

In other words, there exists a scalar function P � P ptq ¡ 0 and an orthogonal ma-

trix Ωptq P SOp3q, such that qkptq � P ptqΩptqqkp0q, for k � 1, 2, ..., n, where qkp0q �
pq1p0q, ..., qNp0qq in RN is a central configuration. Homographic solutions are the config-

urations that are invariant under scaling and rotation and it is often called the self-similar

configurations. A special class of homographic solutions consists of those for which the

shape of the configuration remains unchanged.

Definition 3.1.4 (Relative equilibrium). A solution of the n-body problem where the

configuration formed by the bodies stays self-congruent is called a relative equilibrium.

In the following sections, we are particularly interested in obtaining the relative equi-

librium solution for some special cases.

3.1.2 Central Configuration for the Three-Body Problem with

All Three Point Masses the— Lagrange central configu-

ration

Consider three point masses are interacting under the Newton’s gravitational force such

that m1 ¥ m2 ¥ m3. We refer m1 as the primary body, m2 as the secondary, and m3
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as the tertiary. we obtain the following system of equations of motion. Below q1, q2, q3 P
R2pN � 2q:

m1:q1 � m1m2pq2 � q1q 1

}q2 � q1}3
�m1m3pq3 � q1q 1

}q3 � q1}3
,

m2:q2 � m2m1pq1 � q2q 1

}q1 � q2}3
�m2m3pq3 � q2q 1

}q3 � q2}3
,

m3:q3 � m3m1pq1 � q3q 1

}q2 � q3}3
�m1m2pq2 � q1q 1

}q1 � q3}3
,

(3.12)

the gravitational constant is normalized to G � 1. Denote rij � }qi � qj}, for i � j,

q � pq1, q2, q3q, and M � diagpm1,m1,m2,m2,m3,m3q the 6� 6 matrix with 2 copies of

each mass along the diagonal. Then (3.12) can be written as

M:q � ∇Upqq, (3.13)

where

Upqq � m1m2

�
1

r12



�m1m3

�
1

r13



�m2m3

�
1

r23



(3.14)

is the potential for the three body problem. Assuming the center of mass is fixed at the

origin, we have

Mq �
3̧

i�1

miqi � 0, (3.15)

Following the notation and derivation in section 3.1.1, we have equation (3.8). As the

moment of inertia I can be written in terms of the mutual distances, the conditions for

U to have a critical point on the fixed Ī are

� m1m2

r12

� γm1m2r
2
12

� m2m3

r23

� γm2m3r
2
23

� m3m1

r31

� γm3m1r
2
31

(3.16)



50

which has the only solution of r12 � r23 � r31 �
�
� 1
γ

	 1
3
. This solution is an equilateral

triangle while γ is a scale parameter— one of the first explicit solutions given in the three-

body problem was the Lagrange central configuration, where three bodies of different

masses lie at the vertices of an equilateral triangle [Gei16,Eas93], with each body traveling

along a specific Kepler orbit [Bel18].

Proposition 3.1.5 (Equilateral triangular centeral configuration). In the three-body

problem with all three point masses, for every fixed value Ī of the moment of inertia

there exists a unique central configuration, which is an equilateral triangle.

3.1.3 Location of the Bodies in the Equilateral Triangular Cen-

tral Configuration

We now compute the expression of the location of the three bodies in the equilateral

triangular central configuration, relative to a synodic frame that rotates together with

the bodies, with the center of mass fixed at origin, and the location of m1 on the negative

x-semi-axis. In R3 (N � 3), we have qi � pxi, yi, ziq as the position vector of the ith body

with mass mi, for i � 1, 2, 3. Assuming the normalization of masses and the masses lie

on the xy-plane, we have
°3
k�1mk � 1, z � 0 for all bodies. Instead of fixing the value of

the moment of inertia Ī, we fixed the length of the equilateral triangle to be 1. It gives
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us the system of equations

px2 � x1q2 � py2 � y1q2 � 1, (3.17)

px3 � x1q2 � py3 � y1q2 � 1, (3.18)

px3 � x2q2 � py3 � y2q2 � 1, (3.19)

m1x1 �m2x2 �m3x3 � 0, (3.20)

m1y1 �m2y2 �m3y3 � 0, (3.21)

m1 �m2 �m3 � 1, (3.22)

y1 � 0 (3.23)

Solving the system of equations, we obtain the location of the Lagrangian equilateral

triangle central configuration and the positions of the vertices is given by the following

formulas:

Figure 3.1: Equilarteral triangular central congfiguration.
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x1 � �|K|
a
m2

2 �m2m3 �m2
3

K
,

y1 � 0,

z1 � 0,

x2 � |K|rpm2 �m3qm3 �m1p2m2 �m3qs
2K
a
m2

2 �m2m3 �m2
3

,

y2 � �?3m3

2m
3
2
2

d
m3

2

m2
2 �m2m3 �m2

3

,

z2 � 0,

x3 � |K|
2
a
m2

2 �m2m3 �m2
3

,

y3 �
?

3

2m
1
2
2

d
m3

2

m2
2 �m2m3 �m2

3

,

z3 � 0,

(3.24)

where K � m2pm3 �m2q �m1pm2 � 2m3q. See [BP13]. We note that as m3 goes to zero

the limiting position of the three masses is given by:

x1 � �m2, y1 � 0, z1 � 0,

x2 � 1�m2, y2 � 0, z2 � 0,

x3 � 1�2m2

2
, y3 �

?
3

2
, z3 � 0,

(3.25)

which represent the positions of the primaries and of the L4 equilibrium point in the

planar circular restricted three-body problem.

3.2 Central Configuration for the Three-Body Prob-

lem with All Three Oblate Bodies

In the case of an oblate body, we describe the gravitational potential of the body in terms

of spherical harmonics as in Chapter 2, and we only retain the most significant one, that
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is the coefficient C20, which is also denoted by �J2.

We start by finding the triangular central configurations formed by the three heavy

bodies m1, m2 and m3. Consider three heavy, oblate bodies with normalized masses

m1 ¥ m2 ¥ m3 such that
°3
i�1mi � 1. We denote the oblateness coefficient by Ci

20 for

each body mi. The corresponding gravitational potential in Cartesian coordinates is:

Vipx, y, zq � mi

r
� mi

r

�
Ri

r


2�
Ci

20

2


�
3
�z
r

	2

� 1



(3.26)

where mi is the normalized mass of the ith body, r is the distance from mi, Ri is its

average radius in normalized units, and the gravitational constant is also normalized as

G � 1. When the bodies have oblate shapes, Ci
20   0. The case of Ci

20 ¡ 0 corresponds

to prolate shapes. Consider the rotating frame in the spherical coordinates, we have the

approximation of the gravitational potential for the body of mass mi to be expressed as

Vipx, y, zq � mi

r
� mi

r

�
Ri

r


2�
Ci

20

2


�
3
�z
r

	2

� 1



� mi

r
� mi

r

�
Ri

r


2�
Ci

20

2


�
3 sinφ2 � 1

�
,

(3.27)

for i � 1, 2, 3, where mi is the normalized mass of the ith body (the sum of the three

masses is the unit of mass), Ri is the average radius of the ith body in normalized

units, the gravitational constant is normalized to 1, sinφ � z{r. We want to find the

triangular central configurations by following the approach in [APC13]. By the definition

of central configuration, the three bodies lie in the same plane and therefore we set in

the gravitational field (3.27). We obtain z � 0 (i.e.φ � 0) and thus

Vipqq � mi

r
� Cimi

r3
, (3.28)
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where q � px, yq is the position vector of an arbitrary point on the plane, r � }q} is the

distance from mi, and we denote

Ci � R2
i J

i
20{2 ¡ 0. (3.29)

Let qi be the position vector of the mass mi, for i � 1, 2, 3, in an inertial frame centered

at the barycenter of the three bodies. The combination of the gravitational potentials

(3.28) and the notation (3.29) yields the equations of motion of the three bodies:

m1:q1 � m1m2pq2 � q1q
�

1

}q2 � q1}3
� 3C12

}q2 � q1}5

�
�m1m3pq3 � q1q

�
1

}q3 � q1}3
� 3C13

}q3 � q1}5

�
,

m2:q2 � m2m1pq1 � q2q
�

1

}q1 � q2}3
� 3C12

}q1 � q2}5

�
�m2m3pq3 � q2q

�
1

}q3 � q2}3
� 3C23

}q3 � q2}5

�
,

m3:q3 � m3m1pq1 � q3q
�

1

}q3 � q1}3
� 3C13

}q3 � q1}5

�
�m1m2pq2 � q1q

�
1

}q2 � q1}3
� 3C12

}q2 � q1}5

�
,

(3.30)

where the terms Cij represents the sum of C for the ith and jth bodies, that is,

Cij � Ci � Cj for i � j P t1, 2, 3u. (3.31)

and the gravitational constant is normalized to G � 1. With rij � }qi � qj}, for i � j,

q � pq1, q2, q3q, and M � diagpm1,m1,m2,m2,m3,m3q the 6� 6 matrix with 2 copies of

each mass along the diagonal, equation (3.30) can be written as a compact form:

M:q � ∇Upqq, (3.32)

where

Upqq � m1m2

�
1

r12

� C12

r3
12



�m1m3

�
1

r13

� C13

r3
13



�m2m3

�
1

r23

� C23

r3
23



(3.33)
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is the potential for the system of three oblate bodies problem. Assuming the center of

mass fixed at the origin, we have

Mq �
3̧

i�1

miqi � 0. (3.34)

Relative equilibrium solutions for the motion of the three bodies are of interest. Note

that they are characterized by the fact they become equilibrium points in a uniformly

rotating frame.

The 6�6 block diagonal matrix that consists of 3 diagonal blocks is denoted by Rpθq;
it takes the form ��� cospθq � sinpθq

sinpθq cospθq

��
P SOp2q.
Consider qptq � Rpωtqzptq for some ω P R where z � pz1, z2, z3q P R6, we have,

9q � ω 9Rzptq �R 9zptq

:q � ω2
:Rzptq � ω 9R 9zptq � ω 9R 9zptq �R :zptq

� ω2
:Rzptq � 2ω 9R 9zptq �R :zptq,

(3.35)

where

R �

���cospωtq � sinpωtq
sinpωtq cospωtq

��
, and (3.36)

9R �

���� sinpωtq � cospωtq
cospωtq � sinpωtq

��
, :R �

���� cospωtq sinpωtq
� sinpωtq � cospωtq.

��
 (3.37)

When θ � 0, we have Rpθq � Id. And thus we follow with using θ � 0 to evaluate R, 9R

and :R. We obtain

9R �

���0 �1

1 0

��
, :R �

����1 0

0 �1

��
� �Id (3.38)
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Substituting :qptq � :z� 2ωJ 9z� ω2z in equation (3.32), we obtain

M
�
:z� 2ωJ 9z� ω2z

� � ∇U,
where J is the block diagonal matrix consisting of 3 diagonal blocks of the form

J �

��� 0 �1

1 0

��
. (3.39)

The condition for an equilibrium point of (3.27) such that 9z � 0 and :z � 0 yields the

algebraic equation

∇Upzq � ω2Mz � 0. (3.40)

A solution z of the three-body problem satisfying (3.40) is referred to as a central

configuration. This is equivalent to :zi � �ω2zi, for i � 1, 2, 3, which means that the

accelerations of the three masses are proportional to their corresponding position vectors,

and all accelerations are pointing towards the center of mass. Hence, the solution qptq is

a relative equilibrium solution if and only if qptq � Rpωtqzptq with zptq being a central

configuration solution. Note that the rotation Rpωtq is a circular solution of the Kepler’s

problem. Let Ipzq � zTMz � °
imi}zi}2 be the moment of inertia. Since it is in a

quadratic form, we have gradient ∇Ipzq � pMT �Mqz. Notice that M is a diagonal

matrix, and thus it is symmetric pMT � Mq. We then obtain ∇Ipzq � 2Mz. It is easy

to see that this is a conserved quantity for the motion, that is, Ipzptqq � Ī for some Ī for

all t. With Mz � 0, normalization on masses such that
°3
i�1mi � 1 and following the

derivation shown in Section 3.1.1 as in equation (3.10), we have the moment of inertia

can be written as:

Ipzq �
¸

1¤i j¤3

mimj}zi � zj}2 :�
¸

1¤i j¤3

mimjr
2
ij. (3.41)
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Alternatively, we can use Lagrange’s second identity to show the above relationship (see,

e.g., [GN12]). In conclusion, central configurations correspond to critical points of the

potential U on the sphere zTMz � 1, which can be obtained by solving the Lagrange

multiplier problem

∇fpzq � 0, Ipzq � Ī � 0, (3.42)

where fpzq � Upzq � 1
2
ω2pIpzq � Īq. In the above, we used the fact that ∇Ipzq � 2Mz.

Since both U and I can be written in terms of rij � }zi � zj} for 1 ¤ i   j ¤ 3, we

solve the problem (3.42) in these variables. This reduces the dimension of the system

(3.42) from 7 equations to 4 equations. Denote r � pr12, r13, r23q, and let f̃prq be the

function f expressed in the variable r, that is f̃prpzqq � fpzq. Using the chain rule, we

have ∇rf̃ �
� Br
Bz
� � ∇zfpzq. For z1, z2, z3 are not collinear, it is easy to see that the rank

of the matrix
� Br
Bz
�

is maximal (for details, see [CLPC04, APC13]). As we are looking

for triangular central configurations, this condition is satisfied. Thus, ∇rf̃prq � 0 if and

only if ∇zfpzq � 0. In addition, we recall the moment of inertia as in equation (3.10).

We can now solve the system (3.42) in the variable r. We obtain

$'''''''&'''''''%

1
r212

� 3C12

r412
� ω2r12 � 0,

1
r213

� 3C13

r413
� ω2r13 � 0,

1
r223

� 3C23

r423
� ω2r23 � 0,

m1m2r
2
12 �m1m3r

2
13 �m2m3r

2
23 � Ī .

It gives us the system of equations

$'''''''&'''''''%

1
r312

� 3C12

r512
� ω2,

1
r313

� 3C13

r513
� ω2,

1
r323

� 3C23

r523
� ω2,

m1m2r
2
12 �m1m3r

2
13 �m2m3r

2
23 � Ī .

(3.43)
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Note that the function

hprq � 1

r3
� 3C

r5
� ω2 (3.44)

has negative derivative

h1prq � � 3

r4
� 15C

r6
  0

for r ¡ 0 and C   0, and thus h is injective as a function of r. In addition, we note

that limrÑ0 hprq � �8 and limrÑ8 � �ω2   0. And therefore, for each of the first three

equations in the system (3.43), and for a fixed ω, there exists a unique solution rij �
rijpωq. Consider the first equation of the system (3.43). Taking implicit differentiation

with respect to ω, we have

3

r4
12

dr12

dω
� 15C12

r6
12

dr12

dω
� �2ω,

ùñ dr12

dω
� �2ω

3
r412

� 15C12

r612

.
(3.45)

For r12 ¡ 0 and C12   0, we have dr12
dω

  0, provided ω ¡ 0. Similarly, we obtain dr13
dω

  0,

and dr23
dω

  0.

Consider the right-hand side of the last equation in the system (3.43) as a function

of ω. We denote it as F pωq, that is

F pωq � m1m2r
2
12pωq �m2m3r

2
23pωq �m1m3r

2
13pωq (3.46)

and its derivative with respect to ω is

F 1pωq � 2m1m2r12
dr12

dω
� 2m1m3r13

dr13

dω
� 2m2m3r23

dr23

dω
. (3.47)

Recall that
drij
dω

  0, we thus have F 1pωq   0. Therefore, there exists a unique ω such that

F pωq � Ī. Next, we study the dependence on the unique solution rij on Cij. Consider r
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as the unique solution of

1

r3
� 3C

r5
� ω2,

the implicit differentiation with respect to C yields

dr

dC
� � r

r2 � 5C
  0.

It shows that r is a decreasing function in C. If the Ci’s satisfy some ordering such as

C2 ¤ C1 ¤ C3, then C12 ¤ C23 ¤ C13, and hence r13 ¤ r23 ¤ r12. Thus, we have proved

the following result:

Proposition 3.2.1. In the three-body problem with all bodies oblate, for every fixed value

Ī of the moment of inertia there exists a unique central configuration, which is in general

a scalene triangle.

Furthermore, the body with the larger Ci is opposite to the longer side of the triangle.

Remark 3.2.2. The last statement of Proposition 3.2.1 is similar to the elementary ge-

ometry theorem saying that, in a triangle, the largest angle is opposite the longest side.

Surprisingly, the masses of the bodies do not play a role in the ordering of the sides.

Remark 3.2.3. The triangular central configurations corresponding to different values

of ω are not similar to one another, as shown by the following counterexample. Let

C12 � �0.1, C13 � �0.2, and C23 � �0.3. For ω � 1 solving (3.43) yields r12 � 1.07937,

r13 � 1.13577, r23 � 1.18063. For ω̄ � 2 solving (3.43) yields r̄12 � 0.730867, r̄13 �
0.788914, r̄23 � 0.831688. We have

r12

r̄12

� 1.47683,
r13

r̄13

� 1.43967,
r23

r̄23

� 1.41956.

This situation is very different from the case of point masses (no oblateness), when all

triangular central configurations are equilateral triangles.
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Remark 3.2.4. If the unit of distance is rescaled by a factor of α, that is, the quantities

rij and Ri get rescaled by a factor of α, then Ci and Cij get rescaled by a factor of α2 due

to (3.29) and (3.31). Therefore ω gets rescaled by a factor of α�3{2, and Ī gets rescaled

by a factor of α2 due to (3.43).

3.3 Location of the Bodies in the Scalene Triangular

Central Configuration

In this section we compute the expressions of the locations of the three bodies in the

scalene triangular central configuration, relative to a synodic frame that rotates together

with the bodies. Assuming the center of mass at the origin, and the location of m1 on the

negative x-semi-axis. In addition we assume that the masses lie on the plane such that

z � 0. Instead of fixing Ī the moment of inertia, we fix one of the leg of the triangular

configuration to be one without loss of generality. It simplifies further computation of the

exact location of the vertices of the triangular central configuration in later computation.

We fix r12 � 1, and let r13 � u, and r23 � v, where u and v are uniquely determined

by the system (3.43). For convenience, we denote w � 1� u2 � v2 to yield the following

result:

Figure 3.2: Scalene triangular central configuration.
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Proposition 3.3.1. In the synodic reference frame, the coordinates of the three bodies

in the triangular central configuration, satisfying the constraints

px2 � x1q2 � py2 � y1q2 � 1, (3.48)

px3 � x1q2 � py3 � y1q2 � u2, (3.49)

px3 � x2q2 � py3 � y2q2 � v2, (3.50)

m1x1 �m2x2 �m3x3 � 0, (3.51)

m1y1 �m2y2 �m3y3 � 0, (3.52)

m1 �m2 �m3 � 1, (3.53)

y1 � 0, (3.54)

are given by

x1 ��
b
m2

2 � wm2m3 � u2m2
3,

y1 �0,

x2 ��2m2
2 � 2u2m2

3 � 2wm2m3 � 2m2 � wm3

2
a
m2

2 � wm2m3 � u2m2
3

,

y2 �� 1

2

d
p4u2 � w2qm2

3

m2
2 � wm2m3 � u2m2

3

,

x3 ��2m2
2 � 2u2m2

3 � 2wm2m3 � wm2 � 2u2m3

2
a
m2

2 � wm2m3 � u2m2
3

,

y3 �� 1

2

d
p4u2 � w2qm2

2

m2
2 � wm2m3 � u2m2

3

.

(3.55)

Proof. With the assumptions introduced in Section 3.2 and 3.3, we begin with the fol-
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lowing system $'''''''''''''''''&'''''''''''''''''%

m1 �m2 �m3 � 1, p1q
m1x1 �m2x2 �m3x3 � 0, p2q
m1y1 �m2y2 �m3y3 � 0, p3q
px2 � x1q2 � py2 � y1q2 � 1, p4q
px3 � x1q2 � py3 � y1q2 � u2, p5q
px3 � x2q2 � py3 � y2q2 � v2, p6q
y1 � 0. p7q

(3.56)

Since p3q and p7q implies

y2 � �m3

m2

y3, (3.57)

and thus we have equations p4q and p5q become

$'&'% px1 � x2q2 � y2
2 � 1, pAq

px3 � x1q2 � y2
3 � u2, pBq

With straightforward computation we have equations pAq and pBq become

$'&'% px1 � x2q2 � 1� m2
3

m2
2
y2

3, pA1q
px3 � x1q2 � u2 � y2

3, pB1q

And thus

x1 � x2 � x3 � x1 �
d

1� m2
3

m2
2

y2
3 �

b
u2 � y2

3

x3 � x1 �
d

1� m2
3

m2
2

y2
3 �

b
u2 � y2

3

(3.58)
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On the other hand, the equation p7q in the system p3.56q yields

px3 � x2q2 � v2 � py3 � y2q2

� v2 � y2
3p1�

m3

m2

q2
(3.59)

And thus we haved
1� m2

3

m2
2

y2
3 �

b
u2 � y2

3 � v2 � y2
3p1�

m3

m2

q2

ùñ 1� m2
3

m2
2

y2
3 � 2

d
1� m2

3

m2
2

y2
3

b
u2 � y2

3 � u2 � y2
3 � v2 � y2

3p1�
m3

m2

q2

ùñ 1� m2
3

m2
2

y2
3 � 2

d
u2 � y2

3 � u2
m2

3

m2
2

y2
3 �

m2
3

m2
2

y2
3 � u2 � y2

3 � v2 � y2
3p1� 2

m3

m2

� m2
3

m2
2

q

ùñ � 2

d
u2 � y2

3 � u2
m2

3

m2
2

y2
3 �

m2
3

m2
2

y4
3 � v2 � 2

m3

m2

y2
3 � 1� u2

ùñ 4pu2 � y2
3 � u2m

2
3

m2
2

y2
3 �

m2
3

m2
2

y4
3q � 4

m2
3

m2
2

y4
3 � 4pm3

m2

y2
3qpv2 � 1� u2q � pv2 � 1� u2q2

(3.60)

ùñ 4
m3

m2

pv2 � 1� u2qy2
3 � 4y2

3 � 4u2m
2
3

m2
2

y2
3 � pv2 � 1� u2q2 � 4u2

ùñ y2
3p4

m3

m2

pv2 � 1� u2q � 4� 4u2m
2
3

m2
2

q � pv2 � 1� u2q2 � 4u2

ùñ y2
3 �

pv2 � 1� u2q2 � 4u2

4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2

ùñ y3 �
gffe pv2 � 1� u2q2 � 4u2

4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2

(3.61)

and

y2 � �m3

m2

gffe pv2 � 1� u2q2 � 4u2

4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2

. (3.62)
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Now we will make use of the equation (1) of the system (3.56). Let

A � x1 � x2 �
b

1� y2
2,

B � x3 � x1 �
b
u2 � y2

3.

(3.63)

Then we have

x2 � x1 � A,

x3 � x1 �B.

(3.64)

Thus we have

m1x1 �m2px1 � Aq �m3px1 �Bq � 0

ùñ m1x1 �m2x1 �m3x1 � m2A�m3B

ùñ x1pm1 �m2 �m3q � m2A�m3B,

(3.65)

and since one of our assumptions is m1 �m2 �m3 � 1, we have

x1 � m2A�m3B

ùñ x1 � m2

b
1� y2

2 �m2

b
u2 � y2

3

ùñ � m2

gffe1� m2
3rpv2 � 1� u2q2 � 4u2s

m2
2r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s

�m3

gffeu2 � pv2 � 1� u2q2 � 4u2

4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2

ùñ � m2

gfffem2
2r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s �m2

3rpv2 � 1� u2q2 � 4u2s
m2

2r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s

�m3

gfffeu2m2
2r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s �m2

2rpv2 � 1� u2q2 � 4u2s
m2

2r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s

(3.66)
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ùñ � m2

a�p2m2 �m3pv2 � 1� u2qq2 �m3

a�p2u2m3 �m2pv2 � 1� u2qq2a
4m2m3pv2 � 1� u2q � 4m2

2 � 4u2m2
3

ùñ � m2pm3pv2 � 1� u2q � 2m2q �m3p2u2m3 �m2pv2 � 1� u2qq
2
a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

ùñ � �2m2
2 � 2m2m3pv2 � 1� u2q � 2u2m2

3

2
a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

ùñ � �m2
2 �m2m3pv2 � 1� u2q � u2m2

3a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

ùñ � �pm2
2 �m2m3pv2 � 1� u2q � u2m2

3qa
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

(3.67)

We are now getting the expression of x2 and x3.

x2 � x1 � A

ùñ x2 � �pm2
2 �m2m3pv2 � 1� u2q � u2m2

3qa
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

�
gffe1� m2

3rpv2 � 1� u2q2 � 4u2s
m2

2r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s

ùñ � �pm2
2 �m2m3pv2 � 1� u2q � u2m2

3qa
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

�
d

4m2m3pv2 � 1� u2q � 4m2
2 � 4u2m2

3 �m2
3pv2 � 1� u2q2 � 4u2m2

3

4pm2m3pv2 � 1� u2q �m2
2 � u2m2

3q

ùñ � �2pm2
2 �m2m3pv2 � 1� u2q � u2m2

3q � p2m2 �m3pv2 � 1� u2qq
2
a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

ùñ � �p2m2
2 � 2m2m3pv2 � 1� u2q � 2u2m2

3 � 2m2 �m3pv2 � 1� u2qq
2
a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

(3.68)

and

x3 � x1 �B

ùñ x3 � �pm2
2 �m2m3pv2 � 1� u2q � u2m2

3qa
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

�
gffeu2 � rpv2 � 1� u2q2 � 4u2s

r4m3

m2
pv2 � 1� u2q � 4� 4u2m

2
3

m2
2
s

(3.69)
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ùñ � �pm2
2 �m2m3pv2 � 1� u2q � u2m2

3qa
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

�
d

4m2m3u2pv2 � 1� u2q � 4u4m2
3 �m2

2pv2 � 1� u2q2
4pm2m3pv2 � 1� u2q �m2

2 � u2m2
3q

ùñ � �2pm2
2 �m2m3pv2 � 1� u2q � u2m2

3q � p2u2m3 �m2pv2 � 1� u2qq
2
a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

ùñ � �p2m2
2 � 2m2m3pv2 � 1� u2q � 2u2m2

3 � 2u2m3 �m2pv2 � 1� u2qq
2
a
m2

2 � u2m2
3 �m2m3pv2 � 1� u2q

(3.70)

For convenience, we now denote w � 1�u2�v2 and substitute w for the above cooridates.

We obtain the formulas (3.55).

Remark 3.3.2. For future reference, we note that if we let m3 Ñ 0 in (3.55), we obtain

x1 � �m2, y1 � 0,

x2 � �m2 � 1, y2 � 0,

x3 � �m2 � w
2
, y3 � 1

2

?
4u2 � w2.

(3.71)

3.4 Central Configurations for the Three-Body Prob-

lem with One Oblate Body

In this section, we consider three heavy bodies, of masses m1 ¥ m2 ¥ m3, with only the

tertiary body with mass m3 being oblate, in which we only take into account the term

corresponding to C20 � �J2 in the potential (3.27) as in section 3.2 for i � 3. It implies

the assumption thatC1
20 � C2

20 � 0. We write the approximation of the gravitational

potential of the tertiary in both Cartesian and spherical coordinates in the frame of the

tertiary and rotating together with the body:

V3px, y, zq � m3

r
� m3

r

�
R3

r


2�
J2

2


�
3
�z
r

	2

� 1



� m3

r
� m3

r

�
R3

r


2�
C20

2


�
3 sinφ2 � 1

�
,

(3.72)
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where m3 is the normalized mass of the tertiary body with the sum of the three masses

as the unit of mass, R3 is the average radius of mass m3 in normalized units with the

distance between m1 and m3 as the unit of distance, the gravitational constant G is

again normalized to 1, and sinφ � z{r. And the potential for the primary and secondary

bodies with normalized masses m1 and m2 are

V1px, y, zq � m1

r
and V2px, y, zq � m2

r
(3.73)

respectively. Similar to Section 3.2 we want to find the triangular central configurations

formed by the masses m1, m2 and m3. Following the notations in Section 3.2, we note

that in the special case when C1 � C2 we have C13 � C1 � C3 � C2 � C3 � C23. In

this case, the second and third equations of the system (3.43) are identical, and, since

the function h defined in the equation (3.44) is injective as a function of r, it follows

that r13 � r23. Thus the central configuration is an isosceles triangle. This situation

occurs, for example, if we assume that only the body m3 is oblate, i.e. C1
20 � C2

20 � 0

and therefore we have obtained the following:

Corollary 3.4.1. In the three-body problem with one oblate tertiary body with mass m3,

for every fixed value Ī of the moment of inertia there exists a unique central configuration,

which is an isosceles triangle with r13 � r23.

We note that, while [APC13] studies central configurations of three oblate bodies (as

well as of three bodies under Schwarzschild metric), the isosceles central configuration

found above is not explicitly shown there (see Theorem 4 in [APC13]).

In order to put this in quantitative perspective, we use the data from Section 2.2

in equation(3.29) and we obtain C3
20 � 3.329215 � 10�15. Letting u � r13 � r23 � 1,

we obtain v � r12 � 0.9999999999999967 � 1.0 � 3.3 � 10�15 from the system (3.43).

Practically, this isosceles triangular central configuration is almost an equilateral triangle.
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3.5 Location of the Bodies in the Isosceles Triangu-

lar Central Configuration

We now compute the expressions of the locations of the three bodies in the isosceles

triangular central configuration, relative to a synodic frame that rotates together with

the bodies. With the center of mass fixed at the origin, and the primary body located

on the negative x-semi-axis and the assumption that the masses lie in the z � 0 plane,

we have the following result.

Remark 3.5.1. Similar to Section 3.3 we want to find the location of the isosceles triangu-

lar central configurations formed by the masses m1, m2 and m3. Following the notations

in Section 3.3, in the case when only the tertiary body with mass m3 is oblate, by Propo-

sition 3.3.1 we have r13 � u � r23 � v, so w � 1 � u2 � v2 � 1, and thus the formulas

(3.55) become

x1 ��
b
m2

2 �m2m3 � u2m2
3,

y1 �0,

x2 ��2m2
2 � 2u2m2

3 � 2m2m3 � 2m2 �m3

2
a
m2

2 �m2m3 � u2m2
3

,

y2 �� 1

2

d
p4u2 � 1qm2

3

m2
2 �m2m3 � u2m2

3

,

x3 ��2m2
2 � 2u2m2

3 � 2m2m3 �m2 � 2u2m3

2
a
m2

2 �m2m3 � u2m2
3

,

y3 �1

2

d
p4u2 � 1qm2

2

m2
2 �m2m3 � u2m2

3

.

(3.74)
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Figure 3.3: Isosceles triangular central configuration.

3.6 Location of the Bodies in the Equilateral Trian-

gular Central Configuration

With the oblateness coefficient C20 to be zero for all three bodies, we have the case in

terms of point masses. We follow the computations in Section 3.3 and we have u � 1 and

v � 1, we want to recover the locations of vertices of the equilateral triangular central

configuration as shown in Section 3.1.3 equation (3.24)

Remark 3.6.1. In the case when none of the bodies are oblate we have u � v � 1 and

w � 1. From the system (3.74) we obtain the Lagrangian equilateral triangle central

configuration r12 � r23 � r13 � 1. The position given (3.74) are equivalent to the
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following formulas (see, e.g., [BP13]):

x1 � �|K|
a
m2

2 �m2m3 �m2
3

K
,

y1 � 0,

x2 � |K|rpm2 �m3qm3 �m1p2m2 �m3qs
2K
a
m2

2 �m2m3 �m2
3

,

y2 � �
?

3m3

2
a
m2

2 �m2m3 �m2
3

,

x3 � |K|
2
a
m2

2 �m2m3 �m2
3

,

y3 �
?

3m2

2
a
m2

2 �m2m3 �m2
3

,

(3.75)

where K � m2pm3 �m2q �m1pm2 � 2m3q. Notice that the coordinates of the locations

in equations (3.75) are expressed in terms of m1,m2 and m3, while the formulas in (3.55)

are expressed in terms of m2,m3. Using the assumption of the normalization of masses,

we have the relation
°3
m�1 � 1 and thus we can make a substitution of m1 � 1�m2�m3

in formulas (3.75). It follows that the corresponding expressions are equivalent. One

minor difference is that in formulas (3.75) the position of x1 is not constrained to be on

the negative x-semi-axis, as we assumed for formulas (3.55). Note that the position of

x1 in formulas (3.75) depends on the quantity signpKq. When signpKq ¡ 0, we have

|K|{K � 1, and the equations (3.55) become equivalent with the formulas (3.75).

As a reference, when m3 Ñ 0, we have the limiting position of the three masses in

formulas (3.75) given by:

x1 � �m2, y1 � 0, z1 � 0,

x2 � 1�m2, y2 � 0, z2 � 0,

x3 � 1�2m2

2
, y3 �

?
3

2
, z3 � 0,

(3.76)

with px1, y1q and px2, y2q representing the position of the primary and secondary bodies,
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respectively, and px3, y3q representing the position of the equilibrium point L4 in the

planar circular restricted three-body problem. Note that when m3 � 0 and m2 :� µ,

we recover the coordinates (3.24) of L4 in the restricted three body problem with one

mass at px1, y1, z1q � p�µ, 0, 0q, a second mass at px2, y2, z2q � p1 � µ, 0, 0q and the L3

equilibrium point at px3, y3, z3q � p1
2
� µ,

?
3

2
, 0q.

3.7 Conclusions

In this chapter, we consider the three-body problems with different conditions— three

oblate bodies, one oblate body and three point masses — and we obtain their correspond-

ing triangular central configuration. It is well known that for the restricted three-body

problem (with three point-masses) the only non colinear central configuration is given by

an equilateral triangle. This is one of the first explicit solutions given in the three-body

problem was the Lagrange central configuration, where three bodies of different masses

lie at the vertices of an equilateral triangle. To begin this chapter, we first consider the

three-body problem with three heavy oblate bodies and we find that the corresponding

triangular central configurations is given by a scalene triangle. Furthermore, we find the

locations of the vertices of the scalene triangular central configurations formed by the

three oblate bodies. The results of the scalene triangular central configurations (i.e. the

case for three oblate bodies) allow us to reduce to the special case of having only one

oblate body in the three-body problem. In the three-body problem with one oblate body,

there exists a unique central configuration, which is an isosceles triangle. In addition, we

find the locations of the vertices of such an isosceles triangular central configurations. At

the end of this chapter, we are able to recover the equilateral triangular central config-

uration and the locations for its vertices in the absence of oblateness on the three-body

problem (i.e. the case for three point masses).
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Chapter 4

Hill Four-Body Problem with Three

Oblate Bodies

Hill approximation of the lunar problem is a classical approximation of the restricted

three body problem, which has been used to write accurate series solutions for the mo-

tion of the Moon. Similarly on a restricted four body problem [BGG15], we perform a

symplectic scaling, in which we aim to send the two massive bodies to infinity, we then

expand the potential as a power series in m3, and take a limit as m3 goes to zero. As a

motivating example, we consider the dynamics of the moonlet Skamandrios of Jupiter’s

Trojan asteroid Hektor. Other than the moonlet, we can also consider the small body

as a spacecraft orbiting Hektor. The system Sun-Jupiter-Hektor-Skamandrios plays a

relevant role for several reasons. Being the largest Jupiter Trojan, Hektor has one of

the most elongated shapes among the bodies of its size in the Solar system. And it

is one of the few Trojan asteroids to possess a moonlet (see, e.g., [DLZ12] for stability

regions of Trojans around the Earth and [LC15] for dissipative effects around the tri-

angular Lagrangian points). Astrodynamics is another motivation for us to study the

dynamics of a small body near a Trojan asteroid. NASA is preparing the first mission

to the Jupiter’s Trojans— Lucy is planned to be launched in October 2021 to flyby and

visit seven different asteroids including Trojans asteroids.
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4.1 Background

4.1.1 Hill’s approximation on a Restricted Four-Body Problem

The model of a restricted four-bodies problem

Consider an equilateral triangular central configuration with three point masses located

on the vertices while moving under mutual Newtonian gravitational attraction in circular

periodic orbits around their center of mass at origin. A fourth body of infinitesimal mass

is moving under the gravitational attraction of the three bodies, without affecting their

motion. This model is known as the equilateral restricted four body problem [Bel18],

in which we assume that the three masses are m1 ¥ m2 ¥ m3, where m1 refer to the

primary body, m2 the secondary, and m3 the tertiary. With dimensionless coordinates,

the equations of motion of the infinitesimal body relative to a synodic frame of reference

that rotates together with the three point masses are:

:x� 2 9y � Ωx

:y � 2 9x � Ωy

:z � Ωz

where

Ωpx, y, zq � 1

2
px2 � y2q �

3̧

i�1

mi

ri

ri �
a
px� xiq2 � py � yiq2 � z2, i � 1, 2, 3

and pxi, yiq denotes the xy�coordinates of the body mass mi for i � 1, 2, 3. Multiplying

the equations by 2 9x, 2 9y and 2 9z respectively, we have

2 9x:x� 4 9x 9y � 2 9xΩx

2 9y:y � 4 9x 9y � 2 9yΩy
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2 9z:z � 2 9zΩz

Summing the equations, we have

2 9x:x� 2 9y:y � 2 9z:z � 2 9xΩx � 2 9yΩy � 2 9zΩy

ñ 9x2 � 9y2 � 9z2 � 2Ω� C

ñ C � 2Ω� p 9x2 � 9y2 � 9z2q
ñ H � �Ω� 1

2
p 9x2 � 9y2 � 9z2q

ñ H � 1

2
p 9x2 � 9y2 � 9z2q � 1

2
px2 � y2q �

3̧

i�1

mi

ri

Performing the transformation 9x � px � y, 9y � py � x, 9z � pz, we have the Hamiltonian

H � 1

2
pppx � yq2 � ppy � xq2 � ppzq2q � 1

2
px2 � y2q �

3̧

i�1

mi

ri

� 1

2
p2
x � p2

y � p2
z � ypx � xpy �

3̧

i�1

mi

ri

(4.1)

with respect to the standard symplectic form $ � dpx ^ dx � dpy ^ dy � dpz ^ dz

on T �Ω̄ where Ω̄ � px, y, z, px, py, pzq : px, y, zq � px1, y1, z1q, px2, y2, z2q, px3, y3, z3q. This

symplectic structure allows us to rewrite the Hamiltonian equations as 9x � J 5 Hpxq,
where

J �

��� 0 Id

�Id 0

��
, (4.2)

and x � px, y, z, px, py, pzq. Notice that Hpx, y, z, px, py, pzq � Hpx, y, z, 9x, 9y, 9zq.

Hill’s Approximation Applied to a Restricted Four-Body Problem

In this section we will study the limiting Hamiltonian of the restricted four body problem

whenm3 Ñ 0. We use a procedure similar to that in [BGG15], by performing a symplectic

scaling depending on m
1{3
3 , expanding the Hamiltonian as a power series in m

1{3
3 in a
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neighborhood of the small mass m3, and neglecting all terms of order Opm
1
3
3 q or higher.

Then we obtain a limiting Hamiltonian, which is a three-degree of freedom system. The

resulting Hamiltonian depends on a parameter µ which becomes equal to the mass of the

secondary m2 in normalized units i.e. µ � m2

m1�m2
.

Consider the Hamiltonian of the restricted four body problem with the center of mass

coordinates at m3, we have equation (4.1). We first make the change of coordinates as

follow:

xÑ x� x3, y Ñ y � y3, z Ñ z

px Ñ px � y3, py Ñ py � x3, pz Ñ pz.
(4.3)

We obtain the Hamiltonian

H � 1

2
rppx � y3q2 � ppy � x3q2 � p2

zs � py � y3qppx � y3q � px� x3qppy � x3q

�
3̧

i�1

mi

ri

� 1

2
rpp2

x � 2pxy3 � y2
3q � pp2

y � 2pyx3 � x2
3q � p2

zs � ypx � yy3 � y3px � y2
3

� xpy � xx3 � x3py � x2
3 �

3̧

i�1

mi

ri

� 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � pxx3 � yy3q �

3̧

i�1

mi

ri
� 1

2
px2

3 � y2
3q

(4.4)

Since the term of 1
2
px2

3 � y2
3q is a constant, we drop it in the computation and we obtain

H � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � px3x� y3yq �

3̧

i�1

mi

r̄i
, (4.5)

where r̄i
2 � px� x3 � xiq2 � py� y3 � yiq2 � z2 :� px� x̄iq2 � py� ȳiq2 � z2 for i � 1, 2, 3.

Expanding the terms 1
r1

and 1
r2

in Taylor series round the new origin of coordinates, we

obtain
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f 1 :� 1

r̄1

�
¸
k¥0

P 1
k px, y, zq

f 2 :� 1

r̄2

�
¸
k¥0

P 2
k px, y, zq

(4.6)

where P j
k px, y, zq is a homogenous polynomial of degree k for j � 1, 2. Notice that we

neglect the constant terms. With some computations, we have

P i
0 � px̄i2 � ȳi

2q� 1
2 � r�1

i3 (4.7)

for i � 1, 2, where r13 � ppx1�x3q2�py1� y3q2q1{2, and r23 � ppx2�x3q2�py2� y3q2q1{2.

Notice that P 1
0 and P 2

0 are constant terms and play no role in the Hamiltonian equa-

tions, so they will be dropped in the following calculations. Now we perform the follow-

ing symplectic scaling x Ñ m
1
3
3 x, y Ñ m

1
3
3 y, z Ñ m

1
3
3 z, px Ñ m

1
3
3 px, py Ñ m

1
3
3 py and

pz Ñ m
1
3
3 pz with multiplier m

� 2
3

3 , obtaining

H � m
� 2

3
3 r1

2
rpm

1
3
3 pxq2 � pm

1
3
3 pyq2 � pm

1
3
3 pzq2 �m

1
3
3 ym

1
3
3 px �m

1
3
3 xm

1
3
3 py �m

1
3
3 xx3

�m
1
3
3 yy3 �m

1
3
3

¸
k¥1

m1P
1
k px, y, zq �m

1
3
3

¸
k¥1

m2P
2
k px, y, zq �

m3

m
1
3
3 r̄3

s

� 1

2
pp2
x � p2

y � p2
zq � ypx � xpy �m

� 1
3

3 xx3 �m
� 1

3
3 yy3 �m

� 1
3

3 P 1
1 �m

� 1
3

3 P 2
1

�
¸
k¥2

m
k�2
3

3 m1P
1
k px, y, zq �

¸
k¥2

m
k�2
3

3 m2P
2
k px, y, zq �

1

r̄3

� 1

2
pp2
x � p2

y � p2
zq � ypx � xpy �m

� 1
3

3 pxx3 � yy3 �m1P
1
1 �m2P

2
1 q

�
¸
k¥2

m
k�2
3

3 m1P
1
k px, y, zq �

¸
k¥2

m
k�2
3

3 m2P
2
k px, y, zq �

1

r̄3

(4.8)

where

P 1
1 �

Bf 1

Bx p0, 0, 0qx�
Bf 1

By p0, 0, 0qy �
Bf 1

Bz p0, 0, 0qz

� x1 � x3

r̄1
3

x� y1 � y3

r̄1
3

y

(4.9)
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and similarly we have

P 2
1 �

Bf 2

Bx p0, 0, 0qx�
Bf 2

By p0, 0, 0qy �
Bf 2

Bz p0, 0, 0qz

� x2 � x3

r̄2
3

x� y2 � y3

r̄2
3

y

(4.10)

where r̄i �
apx3 � xiq2 � py3 � yiq2. Note that the first partial derivative with respect

to the variable z is given by

f iz � � z
r̄i3

for i � 1, 2.

Therefore, we obtain

f izp0, 0, 0q � f ixzp0, 0, 0q � f iyzp0, 0, 0q � 0 and f izzp0, 0, 0q � �1.

Recall that the three bodies form an equilateral triangle configuration with length equal

to 1 by assumption and thus we have the relation on m1 � 1�m2 �m3.

m
� 1

3
3 px3x� y3y �m1P

1
1 �m2P

2
1 q

� m
� 1

3
3 rx3x� y3y � p1�m2 �m3qpx1 � x3q

r̄1
3

x� p1�m2 �m3qpy1 � y3q
r̄1

3
y

�m2
px2 � x3q

r̄2
3

x�m2
py2 � y3q
r̄2

3
ys

� m
� 1

3
3 rx3 � px1 � x3q

r̄1
3

�m2
px1 � x3q

r̄1
3

�m3
px1 � x3q

r̄1
3

�m2
px2 � x3q

r̄2
3

sx�m
� 1

3
3 ry3

� py1 � y3q
r̄1

3
�m2

py1 � y3q
r̄1

3
�m3

py1 � y3q
r̄1

3
�m2

py2 � y3q
r̄2

3
sy

� m
� 1

3
3 rx1 �m2px2 � x1q �m3px1 � x3qsx�m

� 1
3

3 ry1 �m2py2 � y1q �m3py1 � y3qsy
(4.11)

Together with the general expressions of the coordinates of the three bodies that are
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given by equation (3.24), we obtain

m
� 1

3
3 ry1 �m1py2 � y1q �m3py1 � y3qs

� m
� 1

3
3 rm2p�

?
3m3

2m
3
2
2

d
m3

2

m2
2 �m2m3 �m2

3

q �m3p
?

3

2m
1
2
2

d
m3

2

m2
2 �m2m3 �m2

3

qs

� m
2
3
3m2p�

?
3

2
q
d

1

m2
2 �m2m3 �m2

3

�m
2
3
3 p
?

3

2

m2a
m2

2 �m2m3 �m2
3

q.

(4.12)

Similarly, we have

m
� 1

3
3 rx1 �m2px2 � x1q �m3px1 � x3qs

� m
� 1

3
3 rx1p1�m2q �m2x2 �m3x1 � x3m3s

� m
� 1

3
3 rx1m1 � x2m2 � x3m3s

� 0.

(4.13)

Thus the Hamiltonian becomes

H � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � 1

r̄3

�m1P
1
2 �m2P

2
2 �Opm

1
3
3 q. (4.14)

Neglecting the terms of order Opm
1
3
3 q by taking the limit m3 Ñ 0; we mean to send the

primary and the secondary bodies at an infinity distance and their total mass becomes

infinite.

For the computation of P 1
1 , we have

P 1
2 �

1

2
rx2fxxp0, 0, 0q � xyfyxp0, 0, 0q � xzfzxp0, 0, 0q � xyfxyp0, 0, 0q � y2fyyp0, 0, 0q

� yzfzyp0, 0, 0q � xzfxzp0, 0, 0q � yzfyzp0, 0, 0q � z2fzzp0, 0, 0qs

� 1

2
rx2fxxp0, 0, 0q � 2xyfxyp0, 0, 0q � y2fyyp0, 0, 0q � z2fzzp0, 0, 0qs

(4.15)

Recall from Section 3.6 we have that when m3 � 0 and m2 :� µ, restricted three body
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problem with one mass at px1, y1, z1q � p�µ, 0, 0q, a second mass at px2, y2, z2q � p1 �
µ, 0, 0q and the third oneat px3, y3, z3q � p1

2
� µ,

?
3

2
, 0q and thus we have

P 1
2 �

1

2
rx2 3px1 � x3q2

r̄1
5

� 2xy
3y3px3 � x1q

r̄1
5

� y2 3y2
3

r̄1
5
� z2p�1qs

� 3

8
x2 � xy

3
?

3

4
� y2 9

8
� 1

2
z2.

(4.16)

Similarly, we have

P 2
2 �

1

2
rx2fxx|p0,0,0q � xyfyx|p0,0,0q � xzfzx|p0,0,0q � xyfxy|p0,0,0q � y2fyy|p0,0,0q

� yzfzy|p0,0,0q � xzfxz|p0,0,0q � yzfyz|p0,0,0q � z2fzz|p0,0,0qs

� 1

2
rx2fxx|p0,0,0q � 2xyfxy|p0,0,0q � y2fyy|p0,0,0q � z2fzz|p0,0,0qs

� 1

2
rx2 3px2 � x3q2

r̄2
5

� 2xy
3py2 � y3qpx2 � x3q

r̄2
5

� y2 3py2 � y3q2
r̄2

5
� z2p�1qs

� 3

8
x2 � xy

3
?

3

4
� y2 9

8
� 1

2
z2

(4.17)

With the above computations, the limiting Hamiltonian

H � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � 1

r̄3

�m1P
1
2 �m2P

2
2 (4.18)

becomes

H � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � 1a

x2 � y2 � z2
� p1� µq

p3
8
x2 � xy

3
?

3

4
� y2 9

8
� 1

2
z2q � µp3

8
x2 � xy

3
?

3

4
� y2 9

8
� 1

2
z2q

� 1

2
pp2
x � p2

y � p2
zq � ypx � xpy � r3

8
x2 � p1� 2µqxy3

?
3

4
� 9

8
y2 � 1

2
z2

� 1a
x2 � y2 � z2

s.

(4.19)
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4.2 Data on the Sun-Jupiter-Hektor-Skamandrios sys-

tem

The application for the model that we develop below is the case of the Sun-Jupiter-

Hektor-Skamandrios system. Since we will demostrate the application in this chapter, it

will be useful to extract some data for this system from [JPL, MDCR�14, Des15]. Our

target asteroid — Hektor is the largest Trojan asteroid that is approximately located at

the Lagrangian point L4 of the Sun-Jupiter system. According to [Des15], Hektor’s size

is is approximately 416 � 131 � 120 km, while the equivalent radius ,that is, the radius

of a sphere with the same volume as the asteroid, is RH � 92 km1. It is observed that

Hektor’s shape can be approximated by a dumb-bell figure. Furthermore, Hektor spins

very fast that it has a rotation period of approximately 6.92 hours (see the JPL Solar

System Dynamics archive [JPL]).

The moonlet with 12� 3km diameter, which is known as Skamandrios, was detected

orbiting around Hektor at a distance of approximately 957.5 km, with an orbital period of

2.965079 days; see [Des15]. The orbit is observed to be highly inclined, at approximately

50.1� with respect to the orbit of Hektor, which justifies the system refers to as a model

of the spatial restricted four-body problem rather than the planar one; see [MDCR�14].

According to [JPL], the inclination of Hektor is approximately 18.17�. Although a

more refined model should include a non-zero inclination, we will consider that Sun-

Jupiter-Hektor move in the same plane, due to the assumption is needed in order for the

three bodies to form a central configuration. Furthermore, we assume that the axis of

rotation of Hektor is perpendicular to the plane of motion.

In this work, we use the values of m1 � 1.989 � 1030 kg, m2 � 1.898 � 1027, and

m3 � 7.91 � 1018 kg for the masses of Sun, Jupiter and Hektor respectively. Having

Sun-Jupiter as the average distance, we use the value 778.5� 106 km.

1Note that [Des15] claims that there are some typos in the values reported in [MDCR�14].
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Figure 4.1: Order of magnitude of the different perturbations acting on the moonlet
as a function of its distance from Hektor. The terms Gm, Sun and Jupiter denote,
respectively, the monopole terms of the gravitational influence of Hektor, the attraction
of the Sun and that of Jupiter. J2 represents the perturbation due to the non-spherical
shape of Hektor. The actual distance of the moonlet is indicated by a vertical line.

In Figure 4.1 we show the comparison between the strength of different forces acting

on the moonlet: the Newtonian gravitational attraction of Hektor, Sun, Jupiter, and the

effect of the non-spherical shape of the asteroid, limited to the so-called J2 coefficient,

which will be introduced in Section 4.2.1.

4.2.1 The gravitational field of a non-spherical body

It is well known that the gravitational potential of a general (non-spherical) shape can be

expanded in terms of spherical harmonics (see, e.g., [CG18]). In this thesis, we will only

use the truncation up to the second order, which is known as the zonal harmonics due

to the reasons provide in Chapter 2. In other words, we are approximating the body by

an an oblate shape (i.e., an ellipsoid of revolution obtained by rotating an ellipse about

its minor axis). Relative to a reference frame centered at the barycenter of the body,

this potential is given in spherical coordinates pr, φ, θq as in Section 3.2 equation (3.27).



82

Recall that C20 is a negative number for an oblate body C20 and notice that the positive

quantity �C20 is often denoted by J2, and the study of the motion of particle relative to

the gravitational field (3.27) is referred to as the J2 problem.

In the case of an ellipsoid of semi-axes a ¥ b ¥ c, we have the explicit formula

( [Boy97a]) for C20 as in Section 2.1.7 equation (2.64). Recall the dimensions of Hektor

from Section 2.2, we have a � 208 km, b � 65.5 km, c � 60 km and RH � 92 km, as

in [Des15]. We obtain

C3
20 � �0.476775

as the zonal coefficient for Hektor (see Section 2.2). Consider the value of C3
20 com-

puted from Section 2.2 being different from the corresponding value of 0.15 reported

in [MDCR�14]. We note that it is due to the different estimates for the size of Hektor,

following [Des15]. We note that the oblateness for the Sun is a subject of active debate,

and several different values can be found in the literature. In this thesis, we use the

measurements from [KBES12], that is C1
20 � �5.00 � 10�6 for the oblateness coefficient

of Sun. For Jupiter’s oblateness coefficient we use the value C2
20 � �14, 736� 10�6.

4.3 Equations of motion for the restricted four-body

problem with three oblate bodies

Similar to the first part of Section 4.1.1, in this section we consider the dynamics of

an infinitesimal mass under the influence of the three heavy oblate bodies. A fourth

body of infinitesimal mass, such as the moonlet Skamandrios or a spacecraft, is moving

under the gravitational attraction of the three bodies, without affecting their motion.

The dynamics of the fourth body is modeled by the spatial, circular, restricted four-body

problem. It means that the moonlet is moving under the gravitational attraction of

Hektor, Jupiter and the Sun, without affecting their motion which remains on circular
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orbits and forming a triangular central configuration as in Section 3.2. With pxi, yi, ziq
representing the px, y, zq-coordinates in the synodic reference frame of the body of mass

mi, the equations of motion of the infinitesimal mass relative to a synodic frame of

reference that rotates together with the three heavy oblate bodies is given by

:x� 2ω 9y � BΩ̃

Bx � Ω̃x

:y � 2ω 9x � BΩ̃

Bx � Ω̃y

:z � BΩ̃

Bz � Ω̃z,

(4.20)

where the effective potential Ω̃ � Ω̃px, y, zq is given by

Ω̃ � 1

2
ω2px2 � y2q �

3̧

i�1

�
mi

ri
� mi

ri

�
Ri

ri


2�
Ci

20

2



p3 sin2 φi � 1q

�

where ri � ppx� xiq2 � py � yiq2 � z2q 1
2 is the distance from the infinitesimal body to

the mass mi, sinφi � z{ri, ω is the angular velocity of the system of three bodies around

the center of mass, and Ci
20 is the oblateness coefficient of mass mi, for i � 1, 2, 3. We

notice that ω depends on the oblateness parameters. Following the notation in Section

3.3 equations (3.48), (3.49) and (3.50) we have r12 � 1, r13 � u and r23 � v. With the

relations shown in equation (3.43) we have that the angular velocity is given by

ω �
a

1� 3C12, (4.21)

where we recall from Section 3.2 equation (3.31) that C12 � C1�C2 � R2
1C

1
20{2�R2

2C
2
20{2.

Rescaling the time t � s
ω

, we have the relative to the new time s the mean motion is
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normalized to 1. Thus we obtain

:x� 2 9y � BΩ

Bx � Ωx,

:y � 2 9x � BΩ

By � Ωy,

:z � BΩ

Bz � Ωz,

(4.22)

with the effective potential Ω � Ωpx, y, zq given by

Ω � 1

2
px2 � y2q � 1

ω2

3̧

i�1

�
mi

ri
� mi

ri

�
Ri

ri


2�
Ci

20

2



p3 sin2 φi � 1q

�
. (4.23)

The equations of motion (4.22) have the total energy H defined as a conserved quantity:

H �1

2
p 9x2 � 9y2 � 9z2q � Ω,

�1

2
p 9x2 � 9y2 � 9z2q

�
�

1

2
px2 � y2q � 1

ω2

3̧

i�1

�
mi

ri
� mi

ri

�
Ri

ri


2�
Ci

20

2



p3 sin2 φi � 1q

��
.

Performing the transformation 9x � px � y, 9y � py � x and 9z � pz, we now switch to the

Hamiltonian setting And thus the Hamiltonian passes to have the symplectic coordinates

px, y, z, px, py, pzq relative to the symplectic form $ � x^px� y^py� z^pz. We obtain

H �1

2
pppx � yq2 � ppy � xq2 � p2

zq �
1

2
px2 � y2q

� 1

ω2

�
3̧

i�1

mi

ri
� mi

ri

�
Ri

ri


2�
Ci

20

2



p3 sin2 φi � 1q

�

�1

2
pp2
x � p2

y � p2
zq � ypx � xpy

� 1

ω2

3̧

i�1

�
mi

ri
� mi

r3
i

Cip3 sin2 φi � 1q


,

(4.24)

where Ci � Ri
2Ci

20{2. Thus, the equations of motion (4.20) are equivalent to Hamilton’s

equations for the Hamiltonian given by (4.24).
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Remark 4.3.1. In the special case when m3 � 0 and only the mass m2 is oblate we have

ω �
b

1� 3C2
20 �

c
1� 3R2

2C
2
20

2
.

The resulting model is the circular restricted three-body problem with one oblate body,

and the above formula agrees with the one in [McC63, SR76, AGST12]. Furthermore,

if m2 has no oblateness, i.e. C2
20 � 0, we have ω � 1, and the resulting model is the

classical circular restricted three-body problem. There are other models of the restricted

three-body problems are studied such as the ones withoblate primaries, relativistic and

radiation effects in [BS16,BU18].

4.4 Hill four-body problem with three oblate bodies

In this section we perform the Hill approximation on the spatial, circular, restricted four-

body problem with oblate bodies in shifted coordinates. Using rescaled variables and

a limiting procedure, the masses m1 and m2 are ’sent to infinite distance’ and thus a

neighborhood of m3 can be studied in detail.

4.4.1 Hill’s approximation

The main result is as follows:

Theorem 4.4.1. Transform the Hamiltonian (4.24) with the following procedures:

(i) shift the origin of the reference frame such that it coincides with m3;

(ii) perform a conformal symplectic scaling which is given by

px, y, z, px, py, pzq Ñ m
1{3
3 px, y, z, px, py, pzq;

(iii) rescale the average radius of each heavy body as Ri � m
1{3
3 ρi for i � 1, 2, 3;
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(iv) expand the resulting Hamiltonian as a power series in m
1{3
3 , and

(v) neglect all the terms of order Opm1{3
3 q in the expansion.

Then, we obtain the following Hamiltonian describing the Hill four-body problem with

three oblate bodies:

H �1

2
pp2
x � p2

y � p2
zq � ypx � xpy

� 1

2

����p1� µq
�

3w2

4
� 1
	

u5
�
µ
�

3p2�wq2
4

� 1
	

v5

�
x2

�
��p1� µq

�
3p4u2�w2q

4
� 1
	

u5
�
µ
�

3p4u2�w2q
4

� 1
	

v5

�
y2

�
�
p1� µq6w

?
4u2�w2

4

u5
� µ6p2�wq?4u2�w2

4

v5

�
xy �

�p1� µq
u3

� µ

v3



z2

�

�
��p1� µqc1

u3


�
3
�z
u

	2

� 1



�
�µc2

v3

	�
3
�z
v

	2

� 1



� 1

px2 � y2 � z2q 1
2

� c3

px2 � y2 � z2q 3
2

�
3z2

x2 � y2 � z2
� 1


�
,

(4.25)

where 1, u, v represent the sides of the triangular central configuration as in Section 3.3,

w � 1� u2 � v2, µ � m2

m1�m2
, and ci :� ρ2

iC
i
20{2 � m

� 2
3

3 Ri
3C

i
20{2, for i � 1, 2, 3.

Proof. We begin with the Hamiltonian (4.24), we first shift the origin of the coordinate

system px, y, zq to the location of the mass m3 (i.e. Hektor), via the following change of

coordinates

ξ � x� x3, η � y � y3, ζ � z,

pξ � px � y3, pη � py � x3, pζ � pz.
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And the Hamiltonian becomes

H �1

2

�ppξ � y3q2 � ppη � x3q2 � p2
ζ

�
� pη � y3qppξ � y3q � pξ � x3qppη � x3q

� 1

ω2

3̧

i�1

�
mi

r̄i
� mi

r̄i

�
Ri

r̄i


2�
Ci

20

2



p3 sin2 φi � 1q

�

�1

2
pp2
ξ � p2

η � p2
ζq � ηpξ � ξpη � pξx3 � ηy3q � 1

2
px2

3 � y2
3q

� 1

ω2

3̧

i�1

�
mi

r̄i
� mi

r̄i

�
Ri

r̄i


2�
Ci

20

2



p3 sin2 φi � 1q

�
,

(4.26)

where r̄2
i � pξ� x̄iq2�pη� ȳiq2�ζ2 � pξ�x3�xiq2�pη�y3�yiq2�ζ2, with x̄i � xi�x3,

ȳi � yi � y3. Note that r̄3 � r3. Being a constant term, �1
2
px2

3 � y2
3q plays no role in

the Hamiltonian equations and it will be dropped in the following computation. Since

sinφi � ζ
r̄i

for each mass mi, we have

H �1

2
pp2
ξ � p2

η � p2
ζq � ηpξ � ξpη � pξx3 � ηy3q

� 1

ω2

3̧

i�1

�
mi

r̄i
� mi

r̄i

�
Ri

r̄i


2�
Ci

20

2


�
3

�
ζ

r̄i


2

� 1

��
.

(4.27)

Expanding the terms
1

r̄1

and
1

r̄2

in Taylor series around the new origin of coordinates,

we obtain

f 1 :� 1

r̄1

�
¸
k¥0

P 1
k pξ, η, ζq,

f 2 :� 1

r̄2

�
¸
k¥0

P 2
k pξ, η, ζq,

where P j
k pξ, η, ζq is a homogeneous polynomial of degree k, for j � 1, 2. With some



88

computations and simplifications, we obtain

P i
0 �px̄i2 � ȳi

2q� 1
2 � r�1

i3 ,

P i
1 �

x̄i
r3
i3

ξ � ȳi
r3
i3

η

P i
2 �

1

2

�
3x̄2

i

r5
i3

� 1

r3
i3



ξ2 � 1

2

�
3ȳ2

i

r5
i3

� 1

r3
i3



η2 � 1

2

�
� 1

r3
i3



ζ2

�
�

3x̄iȳi
r5
i3



ξη,

(4.28)

for i � 1, 2, where r13 � ppx1 � x3q2 � py1 � y3q2q1{2 � u, and r23 � ppx2 � x3q2 �
py2 � y3q2q1{2 � v. Similar to that in the case of restricted four body problem in Section

4.1.1, we notice that P 1
0 and P 2

0 are constant terms and play no role in the Hamiltonian

equations, so they will be dropped from equation (4.27) in the following calculations. We

now perform the following conformal symplectic scaling with multiplier m
�2{3
3 , given by

ξ � m
1
3
3 x , η � m

1
3
3 y , ζ � m

1
3
3 z,

pξ � m
1
3
3 px , pη � m

1
3
3 py , pζ � m

1
3
3 pz,

(4.29)

where, with an abuse of notation, we call again the new variables x, y, z, px, py and pz.

Being consistent with the scale change, it is necessary to introduce the scaling transfor-

mation of the average radius of the three bodies as follows

R2
i � pm1{3

3 ρiq2 � m
2{3
3 ρ2

i , with ρi � m
�1{3
3 Ri, for i � 1, 2, 3. (4.30)

The motivation of the choice of the power of m3 is driven by the fact that in this way the

gravitational force becomes of the same order of the centrifugal and Coriolis forces (see,

e.g., [MS82]). Conformal symplectic scaling with multiplier m
�2{3
3 yields the following

the Hamiltonian in the new variables, which we still denote by H:

Hpx, y, z, px, py, pzq � m
�2{3
3 Hpm

1
3
3 x,m

1
3
3 y,m

1
3
3 z,m

1
3
3 px,m

1
3
3 py,m

1
3
3 pzq.
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The resulting Hamiltonian H is now in the form:

H �m� 2
3

3

�
1

2
pm

2
3
3 p

2
x �m

2
3
3 p

2
y �m

2
3
3 p

2
zq

�m
2
3
3 ypx �m

2
3
3 xpy �m

1
3
3 xx3 �m

1
3
3 yy3

� 1

ω2

�¸
k¥1

m1m
k
3
3 P

1
k px, y, zq �

¸
k¥1

m2m
k
3
3 P

2
k px, y, zq

� m1m
2
3
3

r̄1

�
ρ1

r̄1


2�
C1

20

2


�
3

�
z

r̄1


2

� 1

�

� m2m
2
3
3

r̄2

�
ρ2

r̄2


2�
C2

20

2


�
3

�
z

r̄2


2

� 1

�

�m
2
3
3

r̄3

� m
2
3
3

r̄3

�
ρ3

r̄3


2�
C3

20

2


�
3

�
z

r̄3


2

� 1

���
.

After cancellations we obtain

H �1

2
pp2
x � p2

y � p2
zq � ypx � xpy �m

� 1
3

3 xx3 �m
� 1

3
3 yy3

� 1

ω2

�
m
� 1

3
3 m1P

1
1 px, y, zq �m

� 1
3

3 m2P
2
1 px, y, zq

�
¸
k¥2

m
k�2
3

3 m1P
1
k px, y, zq �

¸
k¥2

m
k�2
3

3 m2P
2
k px, y, zq

� m1

r̄1

�
ρ1

r̄1


2�
C1

20

2


�
3

�
z

r̄1


2

� 1

�

� m2

r̄2

�
ρ2

r̄2


2�
C2

20

2


�
3

�
z

r̄2


2

� 1

�

� 1

r̄3

� 1

r̄3

�
ρ2

3

r̄2
3


�
C3

20

2


�
3

�
z

r̄3


2

� 1

��
.

(4.31)

Following the expansion of the resulting Hamiltonian as a power series in m
1{3
3 , we will

then neglect all the terms of order Opm1{3
3 q in the expansion, as in the classical Hill theory

of lunar motion ( [MS82]).

To compute the contribution of the different terms in (4.31), we make use of equations
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(4.28) and (3.43). Thus, we obtain

�m� 1
3

3

�
xx3 � yy3 � m1P

1
1

ω2
� m2P

2
1

ω2

�
��m

� 1
3

3

��
x3 � m1x̄1

ω2u3
� m2x̄2

ω2v3

	
x�

�
y3 � m1ȳ1

ω2u3
� m2ȳ2

ω2v3

	
y
�

��m
� 1

3
3

��
x3 �m1x̄1

�
1� 3C13

ω2u5



�m2x̄2

�
1� 3C23

ω2v5




x

�
�
y3 �m1ȳ1

�
1� 3C13

ω2u5



�m2ȳ2

�
1� 3C23

ω2v5




y

�
��m

� 1
3

3

��
x3 �m1x̄1 �m2x̄2 �m1x̄1

3C13

ω2u5
�m2x̄2

3C23

ω2v5



x

�
�
y3 �m1ȳ1 �m2ȳ2 �m1ȳ1

3C13

ω2u5
�m2ȳ2

3C23

ω2v5



y

�
.

(4.32)

Using equations (3.51) and (3.53) we have

x3 �m1x̄1 �m2x̄2 � x3 �m1px1 � x3q �m2px2 � x3q � 0 (4.33)

and similarly, using equations (3.52) and (3.53) we have

y3 �m1ȳ1 �m2ȳ2 � 0.

Thus equation (4.32) becomes

�m� 1
3

3

��
m1x̄1

3C13

ω2u5
�m2x̄2

3C23

ω2v5



x�

�
m1ȳ1

3C13

ω2u5
�m2ȳ2

3C23

ω2v5



y

�
. (4.34)

Recalling the Cij notation, we obtain

Cij �Ci � Cj �
�
R2
iC

i
20

2
� R2

jC
j
20

2

�
� m

2
3
3

�
ρ2
iC

i
20

2
� ρ2

jC
j
20

2

�

:�m
2
3
3Kij

(4.35)

for i � j.



91

From equation (3.43), ω2 � 1� 3C12 � 1�m
2
3
3K12 and thus

1

ω2
� 1

1�m
2
3
3K12

� 1�m
2
3
3K12 �Opm

4
3
3 q. (4.36)

Now we neglect the higher order terms in equation (4.36) and equation (4.34) becomes

m
� 1

3
3

��
m1x̄1

3m
2
3
3K13

u5
�m2x̄2

3m
2
3
3K23

v5

�
x

�
�
m1ȳ1

3m
2
3
3K13

u5
�m2ȳ2

3m
2
3
3K23

v5

�
y

�
.

(4.37)

Since in the procedures of Hill approximation, we are neglecting all terms of order of

m
1{3
3 . It follows that the expressions (4.37) and (4.32) will be neglected. Combining the

corresponding terms for the second-degree polynomials P i
2 in the Hamiltonian (4.31) and

using (4.36), we obtain

� 1

ω2

�
m1P

1
2 �m2P

2
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�
.

(4.38)

Notice that quadratic polynomial consists of the quantities x̄1, x̄2, ȳ1 and ȳ2 that depend

on m3. While the terms of order of m
1{3
3 are neglected, we use equation (3.71) to evaluate
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the corresponding quantities:

x̄1 � �w
2
, x̄2 � 2� w

2
, ȳ1 � ȳ2 � �1

2

?
4u2 � w2, (4.39)

where we recall that w � 1� u2 � v2. Thus, the quadratic polynomial (4.38) becomes
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(4.40)

In the Taylor expansions f i, for i � 1, 2, the expressions of order k ¥ 3 in the

Hamiltonian are of the form

¸
k¥3

m
k�2
3

3 m1P
1
k px, y, zq �

¸
k¥3

m
k�2
3

3 m2P
2
k px, y, zq.

Since they can be written in terms of positive exponents of m
1{3
3 , they are neglected in

the Hill approximation. The terms that are left in the Hamiltonian (4.31) are
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(4.41)

Notice that the terms r̄1, and r̄2 also depend on m3. Let m3 Ñ 0, we have r̄1 Ñ u and

r̄2 Ñ v. Also, we recall r̄3 � r3 � px2 � y2 � z2q 1
2 which we now denote by r. When all
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terms of order m
1
3
3 are neglected in equation (4.31), we obtain the Hamiltonian as
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3p4u2�w2q
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µ
�
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4
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y2
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p1� µq6w
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4u2�w2

4

u5
� µ6p2�wq?4u2�w2
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v5

�
xy
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�
�p1� µq

u3
� µ

v3
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�
�p1� µqc1

u3


�
3
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� 1



�
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3
�z
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	2
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�1

r
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�c3

r3

	�
3
�z
r

	2

� 1


�
,

(4.42)

where we denote µ � m2{pm1�m2q, r � px2�y2�z2q 1
2 , and ci :� ρ2

iC
i
20{2 � m

� 2
3

3 Ri
3C

i
20{2.

We refer to the Hamiltonian (4.42) as the Hill’s approximation. It can be thought of

as the limiting Hamiltonian, when the primary and the secondary are sent at an infinite

distance. The approximation allows us to study the motion of the infinitesimal particle

in an Opm1{3
3 q neighborhood of m3. Remarkably, the angular velocity ω associated to

the triangular central configuration does not appear in the limiting Hamiltonian. We
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introduce the gravitational potential as

pUpx, y, zq �
��p1� µq

�
3w2

4
� 1
	

u5
�
µ
�

3p2�wq2
4

� 1
	

v5
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��p1� µq
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3p4u2�w2q

4
� 1
	

u5
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µ
�
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3
�z
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(4.43)

and the effective potential as

pΩpx, y, zq � 1

2
px2 � y2q � pUpx, y, zq. (4.44)

The equations of motion associated to (4.42) can thus be written as:

:x� 2 9y � pΩx,

:y � 2 9x � pΩy,

:z � pΩz.

Remark 4.4.2. One of the main advantages of the Hill approximation is that it yields a

much simpler Hamiltonian than for the circular restricted four-body problem. Particallt,

the effective potential (4.23) has three singularities, corresponding to the positions of

the three heavy bodies in the latter.while there is only one singularity, corresponding to

the position of the tertiary in the former. Furthermore, the effect of the primary and

the secondary are included in the effective potential (4.44) is represented by a quadratic
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polynomial in x, y, z.

Remark 4.4.3. In the case when Ci
20 � 0 for i � 1, 2, 3, we have that u � v � w � 1

and the Hamiltonian in (4.42) is the same as the one obtained in Section 4.1.1 [BGG15].

Furthermore, its quadratic part coincides with the quadratic part of the expansion of

the Hamiltonian of the restricted three-body problem centered at the Lagrange libration

point L4. Notice that in the case of µ � 0, we obtain the classical lunar Hill problem,

after some rotation of the coordinate axes as in Section 4.4.2.

Remark 4.4.4. Our model is an extension of the classical Hill’s approximation of the

restricted three-body problem, with the major differences that we consider a four-body

problem which takes into account the effect of the oblateness coefficients Ci
20, i � 1, 2, 3;

compare with [Hil78, MS82, BGG15]. We remark that an approach similar to ours was

adopted in [MRPD01], where a Hill’s three body problem with oblate primaries has been

considered.

4.4.2 Hill’s approximation applied to the Sun-Jupiter-Hektor

system

Consider the Sun-Jupiter-Hektor system, we use the following data (see Section 2.2):

C20 Average radius(km) Mass(kg)

Sun C1
20 � �5.00� 10�6 R1 � 695, 700 M1 � 1.989� 1030

Jupiter C2
20 � �14, 736� 10�6 R2 � 69, 911 M2 � 1.898� 1027

Hektor C3
20 � �0.476775 R3 � 92 M3 � 7.91� 1018

For the normalized units, we use the average distance Sun-Jupiter 778.5� 106 km as

the unit of distance, while the mass of Sun-Jupiter-Hektor 1.990898� 1030 kg as the unit

of mass. With these unit quantities, we have the average radius R1 � 8.936416 � 10�4,

R2 � 8.980218�10�5, R3 � 1.18176�10�7, massesm1 � 0.9990467, m2 � 9.533386�10�4

and m3 � 3.97308�10�12. Let r12 � 1, we obtain r13 � u � 1�5.94154�10�11 and r23 �
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v � 1�1.99318�10�12 from the system (3.43). In terms of the unit distance r12 � 1 (the

Sun-Jupiter distance is 778.5� 106 km), the difference between the distances r13 and r12

is 0.0462549 km, while the difference between the distances r23 and r12 is 0.00155169 km.

Practically, the scalene triangle central configuration is almost an equilateral triangle.

The parameters that appear in the Hamiltonian (4.42) are

c1 �m� 2
3

3 R2
1C

1
20{2 � �7.958816� 10�5,

c2 �m� 2
3

3 R2
2C

2
20{2 � �2.368673� 10�3,

c3 �m� 2
3

3 R2
3C

3
20{2 � �1.327161� 10�7.

(4.45)

The mass ratio that appears in the Hill approximation is µ � m2{pm1�m2q � 0.0009533386.

We note that for the case of considering the restricted four-body problem (without the

Hill approximation) described by the Hamiltonian (4.24), the oblateness effect is given

by the coefficients

C1 �R2
1C

1
20{2 � �1.996488� 10�12,

C2 �R2
2C

2
20{2 � �5.941874� 10�11,

C3 �R2
3C

3
20{2 � �3.32921544� 10�15,

(4.46)

which are much smaller then the corresponding normalized values ci, for i � 1, 2, 3 as

in (4.45). By means of having the numerical values of the parameters involved to be

relatively larger, the Hill approximation is more convenient to use for numerical compu-

tations. We also note that we have the ordering

C2   C1   C3,

with the corresponding ordering of length

r13 � u   r23 � v   r12 � 1.
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The analogy here between these two orderings agree with Proposition 3.2.1.

4.4.3 Hill’s approximation in rotated coordinates

In this section we consider the Hamiltonian of the Hill approximation in a rotated refer-

ence frame, and thus the quadratic part of the effective potential (4.44) is diagonalized.

Corollary 4.4.5. The Hamiltonian (4.25) is equivalent, via a rotation of the coordinate

axes that diagonalizes the quadratic part of the effective potential, to the Hamiltonian

H � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy

�
�

1� λ2

2



x2 �

�
1� λ1

2



y2 � 1

2

�p1� µq
u3

� µ

v3



z2

�
�p1� µqc1

u3


�
3
�z
u

	2

� 1



�
�µc2

v3

	�
3
�z
v

	2

� 1



� 1

px2 � y2 � z2q1{2 �
c3

px2 � y2 � z2q3{2
�

3z2

x2 � y2 � z2
� 1



,

(4.47)

where λ2 and λ1 are the eigenvalues corresponding to the rotation transformation in the

xy-plane, given by (4.50).

Proof. With a rotation on the xy-plane, we re-write the Hamiltonian in equation (4.25)

in the rotated coordinates, which are more suitable for the further analysis. We adopt

the following notation

U � 3w2

4
� 1, V � 3p2� wq2

4
� 1, Z � 3p4u2 � w2q

4
� 1,

W1 � 6w
?

4u2 � w2

4
, W2 � 6p2� wq?4u2 � w2

4
.

(4.48)
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The planar effective potential restricted to the xy-plane (i.e., z � 0) is given by

pΩpx, yq ��1� p1� µqU
u5

� µV

v5



x2

2
�
�

1� p1� µqZ
u5

� µZ

v5



y2

2

�
�p1� µqW1

u5
� µW2

v5



xy

2

�
�p1� µqc1

u3



�
�µc2

v3

	
� 1

r
�
�c3

r3

	
,

which can be written in matrix notation as

pΩ � 1

2
qTMq �

�p1� µqc1

u3



�
�µc2

v3

	
� 1

‖q‖
� c3

‖q‖3
,

where q � px, yqT and

M �

��� 1� p1�µqU
u5

� µV
v5

1
2

�
p1�µqW1

u5
� µW2

v5

	
1
2

�
p1�µqW1

u5
� µW2

v5

	
1� p1�µqZ

u5
� µZ

v5

��
. (4.49)

In order to obtain the eigenvalues of M , we solve the characteristic equation detpM �
λIq � 0, which yields

λ2 �
�

2� p1� µqpU � Zq
u5

� µpV � Zq
v5



λ

�
�

1� p1� µqU
u5

� µV

v5


�
1� p1� µqZ

u5
� µZ

v5



� 1

4

�p1� µqW1

u5
� µW2

v5


2

� 0,

λ1 � 1

2

�
2� 2p1� µq

u5
� 2µ

v5
� 3p1� µq

u3
� 3µ

v3
� 3

u3v3

?
∆



,

λ2 � 1

2

�
2� 2p1� µq

u5
� 2µ

v5
� 3p1� µq

u3
� 3µ

v3
� 3

u3v3

?
∆



.

(4.50)

where

∆ � pµu3 � p1� µqv3q2 � µp1� µquv ��u4 � v4 � 2u2 � 2v2 � 2u2v2 � 1
�
.
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When u and v approach 1, which is the case when c1, c2, c3 approach 0, we have λ1, λ2 ¡ 0

and λ1 � λ2.

Since the matrix M is symmetric, its eigenvalues λ1 and λ2 are real. Notice that

the corresponding eigenvectors of λ1 and λ2 are orthogonal. Let v1 and v2 be the unit

eigenvectos for λ1 and λ2 respectively (i.e. Mv1 � λ1v1 and Mv2 � λ2v2). These

eigenvalues are given explicitly in Section 4.4.4. The associated matrix C � colpv2, v1q
is orthogonal, i.e., CT � C�1. Hence, C defines a rotation in the xy-plane. Now we can

express the equations of motion for the planar case as

:q � 2J 9q �Mq � q

}q}3
� 3c3q

‖q‖5
,

where

J �

��� 0 1

�1 0

��
.
Substituting the linear change of variable q � Cq̄ with q̄ � px̄, ȳqT and multiplying C�1

from the left, we obtain

C�1C:q̄ � 2C�1JC 9q̄ � C�1MCq̄ � C�1Cq̄

‖q̄‖3
� 3c3C

�1Cq̄

‖q̄‖5
.

The matrix D � C�1MC is in fact a diagonal matrix such that D � diagpλ2, λ1q, that

is ‖Cq̄‖3 � ‖q̄‖3. And therefore the equation becomes

:q̄ � 2C�1JC 9q̄ � Dq̄ � q̄

‖q̄‖3
� 3c3q̄

‖q̄‖5
.

Recall that v1 � pv11, v12qT , v2 � pv21, v22qT and C � colpv2, v1q. Since C is unitary, we
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have C�1 � CT . Furthermore, we have

C�1JC �

��� 0 v12v21 � v11v22

�pv12v21 � v11v22q 0

��
.
A straightforward computation shows that v12v21�v11v22 � 1, which implies C�1JC � J .

The relation C�1JC � CTJC � J shows that the matrix C is symplectic by definition.

Hence, the change of coordinates is symplectic. Thus, the equations of motion can be

written as

:q̄ � 2J 9q̄ � Dq̄ � q̄

‖q̄‖3
� 3c3q̄

‖q̄‖5
.

For µ P r0, 1
2
q, we obtain the equations

:x̄� 2 9ȳ � Ω̄x̄

:ȳ � 2 9x̄ � Ω̄ȳ

(4.51)

with

Ω̄px̄, ȳq �1

2
pλ2x̄

2 � λ1ȳ
2q � p1� µqc1

u3
� µc2

v3
� 1

}q̄} �
c3

}q̄}3
. (4.52)

We remark the symmetry properties from the expressions for Ω̄x̄ and Ω̄ȳ as:

Ω̄x̄px̄,�ȳq � Ω̄x̄px̄, ȳq , Ω̄ȳpx̄,�ȳq � �Ω̄x̄px̄, ȳq.

Using these properties, we observe that the equations (4.51) are invariant under the

transformations of x̄ Ñ x̄, ȳ Ñ �ȳ, 9x̄ Ñ � 9x̄, 9ȳ Ñ 9ȳ, :x̄ Ñ :x̄ and :ȳ Ñ �:ȳ. If we now
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return back to the spatial problem, we need to replace Ω̄ by

Ω̄px̄, ȳ, z̄q �1

2
pλ2x̄

2 � λ1ȳ
2q � 1

2
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r
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.

(4.53)

Furthermore, we can write Ω̄px̄, ȳ, z̄q � 1
2
x̄2 � 1

2
ȳ2 � Ūpx̄, ȳ, z̄q, where

Ūpx̄, ȳ, z̄q �
�
λ2 � 1

2
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2
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r
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r3
� 3c3z̄
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r5
.

(4.54)

In conclusion, the Hamiltonian in the new coordinates is now given by (note that we

omit the bars for x, y and z for simplification of notations):

Hpx, y, z, px, py, pzq � 1

2
pp2
x � p2

y � p2
zq � ypx � xpy

�
�

1� λ2

2



x2 �

�
1� λ1

2



y2 � 1

2

�p1� µq
u3

� µ

v3



z2

�
�p1� µqc1

u3


�
3
�z
u
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� 1



�
�µc2

v3

	�
3
�z
v

	2

� 1



� 1

r
� c3

r3
� 3c3z

2

r5
.

With the substitution of r � px2 � y2 � z2q 1
2 , we obtain (4.47).

Remark 4.4.6. In the case of having Ci
20 � 0 for i � 1, 2, 3 and µ � 0 in (4.47), we obtain

the Hamiltonian for the classical lunar Hill problem, see, e.g., [MS82].
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4.4.4 Expressions for the eigenvectors of the rotated Monodromy

matrix M

With the martix (4.49), the explicit expressions of the eigenvectors v1, v2 associated to

the eigenvalues (4.50), respectively are shown below. Let

Θ :�
?
�u4 � v4 � 2u2 � 2v2 � 2u2v2 � 1,

we have

v1 �
�� �p1� µqp�v7 � p1� u2qv5q � µp�u7 � p1� v2qu5q�Θ,

p1� µqpv9 � 2p1� u2qv7 � v5p1� u4qq

� µpu9 � 2p1� v2qu7 � u5p1� v4qq

�
?

2u2v2
a
pp1� µqv3 � µu3q2 � µp1� µquvΘ2

�
,

v2 �
�� �p1� µqp�v7 � p1� u2qv5q � µp�u7 � p1� v2qu5q�Θ,

p1� µqpv9 � 2p1� u2qv7 � v5p1� u4qq

� µpu9 � 2p1� v2qu7 � u5p1� v4qq

�
?

2u2v2
a
pp1� µqv3 � µu3q2 � µp1� µquvΘ2

�
.

(4.55)

4.5 Linear stability analysis of the Hill four-body

problem with oblate bodies

In this section we aim to obtain the equilibrium points, which are associated to the

potential in equation (4.53) for our model of Hill four-body problem with oblate bodies.

Furthermore, we analyze their linear stability.
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4.5.1 The equilibrium points of the system

In order to find the equilibrium points of equation (4.47), we have to solve the following

system:

Ωx � 0

Ωy � 0

Ωz � 0

,////.////-ñ

�
λ2 � 1

r3
� 3c3

r5
� 15c3z

2

r7



x :� Ax � 0�

λ1 � 1

r3
� 3c3

r5
� 15c3z

2

r7



y :� By � 0�

γ � 1

r3
� 9c3

r5
� 15c3z

2

r7



z :� Cz � 0

,//////.//////-
where Ω is the effective potential (4.53) (again we omit the bars), and

γ :� �
�p1� µq

u3
� µ

v3

�
� 6p1� µqc1

u5
� 6µc2

v5
. (4.56)

We first note that the expressions A and B cannot simultaneously equal to 0 due to the

relations

A�B � λ2 � λ1

and λ1 � λ2. Since ci ¤ 0 for i � 1, 2, 3 and λ1 � λ2, we have

A� C � λ2 � p1� µq
u3

� µ

v3
� 6p1� µqc1

u5
� 6µc2

v5
� 6c3

r5
¡ 0

and hence the expressions A and C or B and C in the above system cannot simultaneously

equal to 0. A similar argument holds for expressions B and C. This implies that, for

example, if A � 0, then B � 0 and C � 0, so y � z � 0 and x is given by the equation

A � 0; the same reasoning applies for the other combinations of variables. Consequently,

we have all equilibrium points must lie on the x-, y-, z-coordinate axes. Precisely, we

have the following results.

(i) Equilibrium points on the x-axis In the case A � 0, B � 0, C � 0, we must
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have y � z � 0. From A � 0 and z � 0 we infer

hAprq :� λ2 � 1

r3
� 3c3

r5
� 0.

We have h1Aprq �
3

r4
� 15c3

r6
¡ 0, since c3   0; also, limrÑ0 hAprq � �8 and

limrÑ8 hAprq � λ2 ¡ 0. Hence, the equation hAprq � 0 has a unique solution

r�x ¡ 0, yielding the equilibrium points p�r�x, 0, 0q.

(ii) Equilibrium points on the y-axis In the case B � 0, A � 0, C � 0, we must

have x � z � 0. From B � 0 and z � 0 we infer

hBprq :� λ1 � 1

r3
� 3c3

r5
� 0.

We have h1Bprq �
3

r4
� 15c3

r6
¡ 0, since c3   0; also, limrÑ0 hBprq � �8 and

limrÑ8 hBprq � λ1 ¡ 0. Hence, the equation hBprq � 0 has a unique solution

r�y ¡ 0, yielding the equilibrium points p0,�r�y , 0q.

(iii) Equilibrium points on the z-axis In the case C � 0, A � 0, B � 0, we must

have x � y � 0, so z � �r. Hence C � 0 implies

γ � 1

r3
� 6c3

r5
� γr5 � r2 � 6c3

r5
� 0.

Since c1, c2 ¤ 0 we have that γ   0. Let hCprq � γr5 � r2 � 6c3. We have h1Cprq �
5γr4�2r   0; also, limrÑ0 hCprq � �6c3 ¡ 0 and limrÑ�8 hCprq � �8. Hence, the

equation hCprq � 0 has a unique solution r�z ¡ 0, yielding the equilibrium points

p0, 0,�r�z q.

In the case of the Sun-Jupiter-Hektor system, in normalized units, we obtain λ1 �
0.002144499689960222, λ2 � 2.9978555002506795 and the equilibrium points location are



105

given as follows:

x y z

x-equilibria �0.6935267570 0 0

y-equilibria 0 �7.7545750772 0

z-equilibria 0 0 �0.0008923544

Note that the x-equilibria and the y-equilibria also exist in the case of the Hill’s redis-

tricted four body problem (i.e., without oblateness), as in [BGG15]. The locations of the

equilibria, in the case of Hektor, are very close to the ones as in the case of an oblate

tertiary. Precisely, we have the following

x y z

x-equilibria �0.6935265657 0 0

y-equilibria 0 �7.7545747024 0

In conclusion, the x-equilibria and the y-equilibria are the ones inherits from the Hill’s

restricted four body problem (with non-oblate bodies). In other words, the Hill’s prob-

lem with oblate bodies are continuations of the ones for the Hill’s restricted four body

problem. Contrarily, the z-equilibria do not exist for the Hill’s restricted four body prob-

lem. Nevertheless, these z-equilibria are a continuation of the equilibria that appear in

the J2-problem; see Section 4.2.1. For the J2-problem, we can compute the distance

from the z-equilibria to the center, as r̂z � R3p�3C20q1{2. Applying this formula for the

Hektor’s case, the numerical result is very close to the one found from the approximation

in this section. To summarize, the Hill restricted three-body problem has 2 equilibrium

points while the Hill’s restricted four-body problem has 4 equilibrium points, and the

Hill four-body problem with oblate bodies has 6 equilibrium points.

Notice that there is a rescaling procedure performed in the Hill’s approximation. In

order to compute the distance of the equilibrium points from the barycenter in real unit,
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we need to multiply by m
1{3
3 and the unit of distance (i.e. Sun-Jupiter). Consequently, the

x-equilibrium points, the y-equilibrium points and the z-equilibrium points are located

at a distance of 85, 512.774 km, 956, 149.451 km and 110.028 km from the barycenter

of Hektor respectively. Recall the dimension of Hektor, the smallest semi-minor axis

is 60 km. Subsequently, we have the z-equilibrium points are located outside but very

close to the body of the asteroid. The computation of the distances uses the value of

C3
20 � �0.476775, which is obtained from Section 4.2.1. If we use C3

20 � �0.15, as

provided by [MDCR�14] instead, we obtain that the z-equilibrium points are at 62 km

from the barycenter. It follows that the z-equilibrium points are located right at the

surface of the asteroid.

Since the shape of an asteroid is not known, it is difficult to determine the asteroid’s

oblateness and thus, it is worth studying the effect of a range of values of the oblateness

parameter. In order to understand the effect, we plot the dependence on the C3
20, within

the range of �0.001 and �0.95, of the distance from the z-equilibrium point to the

barycenter (in km). We remark that for some values, the z-equilibrium points are outside

the Brillouin sphere (which is the smallest sphere that contains the body), while for some

others they are inside. The z-equilibria that are outside are an artifact of the model, as

they do not make physical sense. However, the z-equilibria that are inside the Brillouin

sphere of the asteroid are physically possible. See Section 4.7 for further information.

4.5.2 Linear stability of the equilibrium points

In this section, we study the linear stability of the equilibrium points that found in

Section 4.5 in the case of Hektor.
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Figure 4.2: The dependence of the z-equilibrium point distance on C3
20.

The Hamiltonian (4.47) yields the following system of equations

9x � vx, 9vx � 2vy � Ωx,

9y � vy, 9vy � �vx � Ωy,

9z � vz, 9vz � Ωz,

where Ω is the effective potential given by (4.53) (again, we omit the overline bar on the
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variables). The second order derivatives of Ω are given by

Ωxx �λ2 � 1

r3
� 3x2

r5
� 3c3

r5
� 15c3x

2

r7
� 15c3z

2

r7
� 105c3z

2x2

r9
,

Ωyy �λ1 � 1

r3
� 3y2

r5
� 3c3

r5
� 15c3y

2

r7
� 15c3z

2

r7
� 105c3z

2y2

r9
,

Ωzz �γ � 1

r3
� 3z2

r5
� 9c3

r5
� 90c3z

2

r7
� 105c3z

4

r9
,

Ωxy �3xy

r5
� 15c3xy

r7
� 105c3z

2xy

r9
,

Ωxz �3xz

r5
� 45c3xz

r7
� 105c3z

3x

r9
,

Ωyz �3yz

r5
� 45c3yz

r7
� 105c3z

3y

r9
.

(4.57)

To describe the linearized system, we consider the Jacobain such that

J �

����������������

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ωxx Ωxy Ωxz 0 2 0

Ωyx Ωyy Ωyz �2 0 0

Ωzx Ωzy Ωzz 0 0 0

���������������

. (4.58)

With the nature that the equilibria are on the x-axis, y-axis and z-axis, the equilibria

are of the form p�r�x, 0, 0q, p0,�r�y , 0q, p0, 0,�r�z q. In addition, we have the mixed second

order partial derivatives Ωxy, Ωxz, Ωyz vanish at each of the equilibrium points. Hence
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the Jacobian matrix (4.58) evaluated at the equilibria is of the form:

J �

����������������

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ωxx 0 0 0 2 0

0 Ωyy 0 �2 0 0

0 0 Ωzz 0 0 0

���������������

, (4.59)

Furthermore, the matrix (4.59) has the characteristic equation as

pρ2 � Ωzzqpρ4 � p4� Ωxx � Ωyyqρ2 � ΩxxΩyyq � 0. (4.60)

The signs of expressions Ωxx, A, B and D determine the stability of the equalibria. In

the case of the Sun-Jupiter-Hektor system, we obtain the following stability character of

the equilibrium positions numerically:

iq Eigenvalues of x-equilibria at p�0.6935267570, 0, 0q

2.5069424783 �2.5069424783,

2.0704830660i, �2.0704830660i,

1.9995877290i, �1.9995877290i.

Stability type: center � center � saddle.

iiq Eigenvalues of y-equilibria at p0,�7.7545750772, 0q

0.9890157325i, �0.9890157325i,

0.1403687326i, �0.1403687326i,

1.0013166944i, �1.0013166944i
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Stability type: center � center � center.

iiiq Eigenvalues of z-equilibria at p0, 0,�0.0008923544q

�37514.04321� 0.9999999997i �37514.04321� 0.9999999997i

37514.04321� 0.9999999997i 37514.04321� 0.9999999997i

53052.86869i �53052.86869i

Stability type: center � complex saddle.

We notice that the imaginary part of the ‘Krein quartet’ of eigenvalues of the z-

equilibria is approximately �1, meaning that the motion of the infinitesimal mass around

the equilibrium point is close to the 1 : 1 resonance relative with the rotation of the

primary and the secondary. In Fig. 4.3 we show the behavior of the real part and the

imaginary part of the ‘Krein quartet’ of eigenvalues for a range of r�z values between

z � 0.0008923544 (corresponding to the value for Hektor c3 � �1.327161 � 10�7) and

z � 0.009999 (corresponding to c3 � �1.666271 � 10�5).Note that the imaginary part

remains close to �1. In Section 4.5.3 we will show an analytic approach and argument

that the real part of the ‘Krein quartet’ of eigenvalues is always non-zero, while the

imaginary part is close to �1 for r�z sufficiently small. The analytical results help us to

further understand and explain the behavior of both the real and the complex parts of

the ‘Krein quartet’ of eigenvalues observed in Fig. 4.3.

4.5.3 Analytical Results on the Linear Stability of Equilibria

In this section, we consider analytical approaches. Due to the performance of the Hill’s

approximation, we are able to provide some analytical arguments for the linear stability

of the equilibria. Notice that the problem refers to the three parameters, c1, c2 and c3,

which make the analysis quite complicated. To simplify the complication, in this section



111

0.000 0.002 0.004 0.006 0.008 0.010
0

5000

10000

15000

20000

25000

30000

35000

40000

0.000 0.002 0.004 0.006 0.008 0.010
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 1e 7+9.999996e 1

Figure 4.3: The dependence of the real part (left) and imaginary part (right) of the
Krein quartet of eigenvalues on the z-equilibrium point. The horizontal axis represents
the distance r�z from the equilibrium point to the origin, the vertical axis the real part
(left), and the absolute value of the imaginary part (right) of the eigenvalues. The former
never changes sign, and the latter stays within 4� 10�7 from 1.

we will assume that c1 � c2 � 0 and study the stability of the equilibria for varying c3 for

c3   0. The justification of this simplifying assumption refers to the contribution to the

gravitational potential (4.43) as in the Hill problem. The contribution to the gravitational

potential (4.43) from the term containing c3 in a small neighborhood of the tertiary, that

is, for r ! 1, is much bigger than the contributions from the terms containing c1 and c2.

In addition, we rescale the sides of the triangular central configuration (3.43) differently,

namely r13 � r23 � 1 and r12 � υ. Referring to the Remark 3.2.4, we note that rescaling

the unit of distance, the triangular central configuration does not change. Instead, only

the constant c3 get rescaled by a factor. With this rescaling, the computations is made

to be somewhat easier. In this case, the eigenvalues of the matrix M in (4.49) becomes

λ1 �3

2

�
1�

a
1� pµ� µ2qυ2p4� υ2q

�
,

λ2 �3

2

�
1�

a
1� pµ� µ2qυ2p4� υ2q

�
,

(4.61)

and the constant γ in (4.56) becomes γ � �1.
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Linear stability of the equilibria on the z-axis

The z-equilibrium points are of the form p0, 0,�r�z q, with

�pr�z q5 � pr�z q2 � 6c3 � 0, (4.62)

which yields

c3 � �pr�z q2 � pr�z q5
6

. (4.63)

Evaluating Ωxx, Ωyy, Ωzz at the equilibrium point yields:

Ωxx �λ2 � pr�z q�3 � 12c3pr�z q�5,

Ωyy �λ1 � pr�z q�3 � 12c3pr�z q�5,

Ωzz �� 1� 2pr�z q�3 � 24c3pr�z q�5.

Substituting (4.63) we obtain

Ωxx � 2� λ2 � pr�z q�3,

Ωyy � 2� λ1 � pr�z q�3,

Ωzz � �5� 2pr�z q�3.

(4.64)

Using (4.50) and denoting d :�a1� pµ� µ2qυ2p4� υ2q we can write

λ1 � 3

2
p1� dq,

λ2 � 3

2
p1� dq.

(4.65)

Also for c3 � 0 we have d0 �
a

1� 3pµ� µ2q and

λ10 �3

2
p1� d0q,

λ20 �3

2
p1� d0q.

(4.66)
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Note that this is the same as the results shown in [BGG15]. For future reference, we

expand d as a power series in the parameter c3 as

d � d0 � d1c3 �Opc2
3q, (4.67)

where the coefficient d1 can be obtained from the Taylor’s theorem around c3 � 0 as

d1 �� 2pµ� µ2q
d0

. (4.68)

With the characteristic equation given by the equation (4.60) and the condition Ωzz   0

as in equation (4.64), we obtain that the pair of eigenvalues ρ1,2 � �pΩzzq1{2 is purely

imaginary.The ‘Krein quartet’ eigenvalues are given by

ρ3,4,5,6 � �
d
�A�?

A2 � 4B

2
, (4.69)

where

A � 4� Ωxx � Ωyy � �3� 2
pr�z q3 ,

B � ΩxxΩyy � 10� 9

4
υ2p4� υ2qpµ� µ2q � 7

pr�z q3
� 1

pr�z q6
.

Then we have

D :� A2 � 4B �d2 � 40� 16

pr�z q3
� �31� 9υ2p4� υ2qpµ� µ2q � 16

pr�z q3
  0.

Provided that �A ¡ 0 and D   0, we obtain that the eigenvalues ρ3,4,5,6 as complex

numbers, non-real, non-purely-imaginary, for all parameter values. Now we let ρ � a� ib
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be such that ρ2 � �A
2
�

?
4B�A2

2
i :� α � iβ, we have the expression

a� ib �
�
pα2 � β2q 1

2 � α

2

� 1
2

� signpβq
�
pα2 � β2q 1

2 � α

2

� 1
2

i.

To show that b is approximately �1, or b2 � 1, for r�z � 0, note that

b2 �pα
2 � β2q 1

2 � α

2
� A

4
�
?
B

2

�� 3

4
� 1

2

��
10� 9

4
Υ� 7

pr�z q3
� 1

pr�z q6

 1

2

� 1

pr�z q3
�

�� 3

4
� 1

2

10� 9
4
Υ� 7

pr�z q3 � 1
pr�z q6 � 1

pr�z q6�
10� 9

4
Υ� 7

pr�z q3 � 1
pr�z q6

	 1
2 � 1

pr�z q3

�� 3

4
� 1

2

10� 9
4
Υ� 7

pr�z q3�
10� 9

4
Υ� 7

pr�z q3 � 1
pr�z q6

	 1
2 � 1

pr�z q3

,

where Υ :� υ2p4� υ2qpµ� µ2q. Since

lim
r�zÑ0

10� 9
4
Υ� 7

pr�z q3�
10� 9

4
Υ� 7

pr�z q3 � 1
pr�z q6

	 1
2 � 1

pr�z q3

� 7

2
,

we have that limr�zÑ0 b
2 � �3

4
� 7

4
� 1, and so b2 � 1 for r�z � 0, as in the case of Hektor.

We obtain the following result:

Proposition 4.5.1. Consider the equilibria on the z-axis. For µ P p0, 1{2s, Ωzz, A and

D are negative. Consequently, one pair of eigenvalues is purely imaginary, and the two

other pairs of eigenvalues are complex conjugate, with the imaginary part close to �i for

c1 � c2 � 0 and for c3 negative and sufficiently small. The linear stability is of center �
complex-saddle type.



115

Linear stability of the equilibria on the y-axis

The y-equilibrium points are of the form p0,�r�y , 0q, with

λ1pr�y q5 � pr�y q2 � 3c3 � 0, (4.70)

which yields

c3 �
pr�y q2 � λ1pr�y q5

3
. (4.71)

Evaluating Ωxx, Ωyy, Ωzz at the equilibrium point yields:

Ωxx �λ2 � 1

pr�y q3
� 3c3

pr�y q5
,

Ωyy �λ1 � 2

pr�y q3
� 12c3

pr�y q5
,

Ωzz �� 1� 1

pr�y q3
� 9c3

pr�y q5
.

(4.72)

Substituting c3 from (4.71) we obtain

Ωxx �λ2 � λ1,

Ωyy �5λ1 � 2

pr�y q3
,

Ωzz �� 1� 3λ1 � 2

pr�y q3
,

(4.73)

A � 1� 3λ1 � 2
pr�y q3 � 9d

2
� 7

2
� 2

pr�y q3 ,

B � pλ2 � λ1q
�

5λ1 � 2
pr�y q3

	
� p3dq

�
15
2
� 15d

2
� 2

pr�y q3
	
.

(4.74)

Expanding r�y as a power series in the parameter c3 as

r�y � ry0 � ry1c3 �Opc2
3q, (4.75)

where �ry0 is the position of the y-equilibrium in the case when c3 � 0, which is given
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by r3
y0 � 1{λ10; this agrees with the result in [BGG15]. And we have the computation of

ry1 yields

ry1 �
�1� p1{2qd1r

5
y0

ry0

, (4.76)

with d1 as in formula (4.68). We will also need to expand 1
pr�y q3 as a power series in the

parameter c3 as follows

1

pr�y q3
� α � βc3 �Opc2

3q. (4.77)

A straightforward calculation yields

α � 1

r3
y0

,

β �� 3ry1

r4
y0

.

(4.78)

Note that we have d0 � 1
2
, λ10 � 3

4
, d1 � �m2{3

3 , ry0 �
�

4
3

�1{3
for µ � 1{2. It is easy to see

that dominant part d0 of d is a strictly decreasing function with respect to µ P p0, 1{2s
and takes values in r1{2, 1q. The dominant part λ10 of λ1 is increasing with respect to

µ P p0, 1{2s and takes values in p0, 3{4s. Furthermore, the dominant part ry0 of r�y is a

strictly decreasing function for µ P p0, 1{2s, where ry0p1{2q � 3
a

4{3 and ry0 Ñ 8 when

µ Ñ 0. Consequently,the values of ry0 are in the interval r 3
a

4{3,8q. From equation

(4.72) we have

Ωzz � �1� 1

pr�y q3
� 9c3

pr�y q5

� � 1

pr�y q5
ppr�y q5 � pr�y q2 � 9c3q

  0

since r�y ¡ 0 and c3 is negative. Therefore, Ωzz   0 for all admissible values of µ.

Using the formulas (4.66) and the expansions (4.67) and (4.77) and for A � 4�Ωxx�
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Ωyy, we obtain

A � 1� 3λ1 � 2

pr�y q3

� 1� 3λ10 � 2

pry0q3 �Opc3q

� 1� 3λ10 � 2λ10 �Opc3q

¡ 0

for c3 small. Similarly with the formulas (4.66) and the expansions (4.67) and (4.77) and

for B � ΩxxΩyy using, we obtain

B � pλ2 � λ1q
�

5λ1 � 2

pr�y q3



� p3dq
�

15

2
� 15d

2
� 2

pr�y q3



� p3d0q
�

5λ10 � 2

r3
y0



�Opc3q

� p3d0q p5λ10 � 2λ10q �Opc3q

¡ 0

for c3 small. Lastly, using the formulas (4.66) and the expansions (4.67) and (4.77) and

for D � A2 � 4B, we have

D �
�

1� 3λ10 � 2

r3
y0


2

� 4p3d0q
�

5λ10 � 2

r3
y0



�Opc3q

� p1� λ10q2 � 12p3� 2λ10qλ10 �Opc3q.

Note that we have D � 1�Opc3q for µ � 0 and we have D � �215
16
�Opc3q for µ � 1{2 .

By the intermediate value theorem and thus D changes its sign from positive to negative

for µ P p0, 1{2s, provided c3 is small. We have proved the following result:

Proposition 4.5.2. Consider the equilibria on the y-axis. For µ P p0, 1{2s for c1 � c2 � 0
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and for c3 negative and sufficiently small, Ωzz is always negative, the coefficients A and B

are always positive, and the value of the discriminant D changes from positive to negative

values. Consequently, one pair of eigenvalues is always purely imaginary, and there exists

µ�, depending on c3, where the other two pairs of eigenvalues change from being purely

imaginary to being complex conjugate. The linear stability changes from center � center

� center type to center � complex-saddle type.

Linear stability of the equilibria on the x-axis

The x-equilibrium points are of the form p�r�x, 0, 0q, with

λ2pr�xq5 � pr�xq2 � 3c3 � 0, (4.79)

which yields

c3 � pr�xq2 � λ2pr�xq5
3

. (4.80)

Evaluating Ωxx, Ωyy, Ωzz at the equilibrium point yields:

Ωxx �λ2 � 2

pr�xq3
� 12c3

pr�xq5
,

Ωyy �λ1 � 1

pr�xq3
� 3c3

pr�xq5
,

Ωzz �� 1� 1

pr�xq3
� 9c3

pr�xq5
.

(4.81)

Substituting c3 from (4.80) we obtain

Ωxx �5λ2 � 2

pr�xq3
,

Ωyy �λ1 � λ2,

Ωzz �� 1� 3λ2 � 2

pr�xq3
,

(4.82)
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Expanding r�x as a power series in the parameter c3 as

r�x � rx0 � rx1c3 �Opc2
3q, (4.83)

where �rx0 is the position of the x-equilibrium in the case when c3 � 0, which is given

by r3
x0 � 1{λ20 as in [BGG15]. With some computations, we have

rx1 ��1� p1{2qd1r
5
x0

rx0

. (4.84)

Next, we expand 1
pr�x q3 as a power series in the parameter c3

1

pr�xq3
� α1 � β1c3 �Opc2

3q, (4.85)

and with a simple calculation, we have the expressions

α1 � 1

r3
x0

,

β1 �� 3rx1

r4
x0

.

(4.86)

Consider the expression for Ωzz in equation (4.81) we have

Ωzz � �1� 1

pr�xq3
� 9c3

pr�xq5

� � 1

pr�xq5
ppr�xq5 � pr�xq2 � 9c3q

  0

with r�x ¡ 0 and c3   0. Therefore, Ωzz   0 for all admissible values of µ. Using the
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formula (4.66) and the expansions (4.67) and (4.85) and for A � 4�Ωxx�Ωyy, we obtain

A � 1� 3λ20 � 2

prx0q3 �Opc3q

� 1� λ20 �Opc3q

� �1

2
� 3

2
d0 �Opc3q

  0

for c3 small. Similarly sing the formula (4.66) and the expansions (4.67) and (4.85) and

for B � ΩxxΩyy, we obtain

B � �p3d0q
�

5λ20 � 2

r3
x0



�Opc3q

� �p3d0q p5λ20 � 2λ20q �Opc3q

� �9d0

�
3

2
� 3

2
d0



  0

for c3 small.

Lastly, with the formula (4.66) and the expansions (4.67) and (4.85) and for D �
A2 � 4B, we have

D � p1� λ20q2 � 36d0λ20 �Opc3q

¡ 0.

for c3 small and thus we have proved the following result:

Proposition 4.5.3. Consider the equilibria on the x-axis. For µ P p0, 1{2s, for c1 � c2 �
0 and for c3 negative and sufficiently small, Ωzz is negative, A and B are negative, and

the value of the discriminant D is always positive. Consequently, two pairs of eigenvalues

are purely imaginary, and one pair of eigenvalues are real (one positive and one negative).

The linear stability is of center � center � saddle type.
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4.6 Non-linear Stability

Recall that, in the case of the Sun-Jupiter-Hektor system, as well as for c1 � c2 � 0

and c3 sufficiently small, the linear stability of the x�equilibria is of center-center-saddle

type, the linear stability of the y�equilibria is of the center-center-center type (for µ

less than some critical value µc), and the linear stability of the z�equilibria is of the

center-complex saddle type. See Sections 4.5.2 and 4.5.3. We now discuss the non-linear

stability.

4.6.1 The x�equilibria

The eigenvalues of the linearization of the x�equilibria are of the form �λ, �iω1 and

�iω2. We can use the Lyapunov center theorem as shown below to conclude the existence

of some families of periodic orbits near these points.

Theorem 4.6.1 (Lyapunov Center Theorem). [Eas93] Assume that H is a Hamiltonian

function with associated Hamiltonian system:

9x � J∇Hpxq, x P R2n. (4.87)

Assume that the system has an equilibrium point with exponents �λ1, �λ2, ..., �λn,

where �λ1 � �iω � 0 is pure imaginary. Assume that none of the ratios λ2
λ1

, λ3
λ1

,..., λn
λ1

is an integer. Then there exists a one-parameter family of periodic solutions emanating

from the equilibrium point, whose periods tend to 2π
ω

when approaching the equilibrium

point along the family.

In our case we have two imaginary frequencies �iω1, �iω2 and one pair of real eigen-

values �λ. It follows that, unless ω2

ω1
is an integer, then there must exist two families of

periodic orbits, a ’planar’ family of Lyapunov orbits and a ’vertical’ family of Lyapunov
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orbits. An example of a planar Lyapunov orbit is shown in Figure 4.5.

Figure 4.4: Zero velocity curves bounding the Hill regions.

(a) Around the negative x� equilibria. (b) Around the positive x� equilibria.

Figure 4.5: Planar Lyapunov orbits around the x� equilibria.

Theorem 4.6.2 (Center Manifold Theorem). [Mei07] Suppose that f is a Ck vector

field, k ¥ 1, with a fixed point at the origin. Let the eigenspaces of Dfp0q � A be

written Eu
À

Ec
À

Es. Then there is a neighborhood of the origin in where there exist Ck

invariant manifolds: the local stable manifold, W s
loc, tangent to Es, on which |xptq| Ñ 0 as

tÑ 8, the local unstable manifold W u
loc, tangent to Eu, on which |xptq| Ñ 0 as tÑ �8,

and a local center manifold W c, tangent to Ec.

Moreover, we can invoke the Center Manifold Theorem to establish the existence of

a 4�dimensional center manifold that is tangent to the vector space spanned by the
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eigenvectors corresponding to �iω1, �iω2. Sufficiently close to the equilibrium point, we

can find a Cantor families of 2�dimensional tori whose frequencies approach ω1 and ω2

when approaching the equilibrium point. The existence of these families of tori follows

from the KAM Theorem (for instance, [JV97] and [Cel10]). Due to the real eigenval-

ues �λ, the Lyapunov orbits have 2�dimensional stable and unstable manifolds, and

the 2�dimensional tori have 3�dimensional stable and unstable manifolds. Thus, the

x�equilibrium points are unstable. Each of the stable and unstable manifolds have

branches inside the region of the tertiary (i.e., towards Hektor), as well as the branches

in the exterior region (i.e.,towards the Sun and Jupiter). See Figure 4.6 and 4.7.

(a) Inside the region. (b) Outside the region.

Figure 4.6: Projection of the stable manifold on the xy�plane, and projections of the
zero velocity surface.

(a) Inside the region. (b) Outside the region.

Figure 4.7: Projection of the unstable manifold on the xy�plane.
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The projection of these stable and unstable manifolds onto the xy�plane are confined

by the Hill regions. The Hill region as shown in Figure 4.4 represents the projection of the

energy manifold tH � hu onto the configuration space. The boundary of the Hill region

is the zero velocity surface. We observe the exterior branches of the stable and unstable

manifolds go around the Hill regions. Based on the numerical experiments, we expect the

existence of transverse homoclinic connection for each of the equilibrium points, as well

as of the transverse heteroclinic connections between the two equilibrium points. By the

Smale Birkhoff Theorem [Bel18], the existence of transverse homoclinic and heteroclinic

connections implies the existence of chaotic dynamics (symbolic dynamics). In practical

applications, the stable and unstable manifolds of periodic orbits or of invariant tori

can be used to design spacescraft trajectories that come from the exterior region, enter

the interior region and orbit around it for some number of turns, and then leave the

interir region and return to the exterior region. Such trajectories require low energy.

For references to applications of invariant manifolds to space mission design see [Bel18],

[PA13].

4.6.2 The y�equilibria

The eigenvalues of the linearized system at the y�equilibria are of the form �iω1, �iω2

and �iω3 (for µ sufficiently small). The KAM Theorem can be used to show the existence

of Cantor families of 3�dimensional tori in a vicinity of these equilibrium points. These

tori are filled with quasi-periodic orbits. An example of a quasi-periodic orbit is shown

in Figure 4.8. We note that in the spatial problem, the existence of the 3�dimensional

KAM tori does not imply stability. This is because the energy manifold is 5�dimensional

(in the 6�dimensional phase space), and the 3�dimensional tori do not separate the

5�dimensional energy manifold into disjoint connected components. In the planar case,

the KAM tori are 2�dimensional and the energy manifold is 3�dimensional (in the

4�dimensional phase space). In this case the existence of 2�dimensional KAM tori
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implies stability.

Figure 4.8: Quasi-periodic orbits around the y�equilibria.

4.6.3 The z� equilibria

The eigenvalues of the linearized system of the z�equilibria are of the form �iω, and �α�
iβ. We can invoke again the Lyapunov Center Theorem to assert the existence of a family

of periodic orbits near each equilibrium point. Each periodic orbit has 3�dimensional

stable and unstable manifolds. Thus, these equilibrium points are unstable. One problem

that requires future investigation is the existence of transverse homoclinic and heteroclinic

connections associated to these manifolds. An example of an orbit in the neighborhood

of one of the z�equilibrium points is shown in Figure 4.9 and 4.10.

(a) Viewing from above, i.e. in 2D. (b) In 3D.

Figure 4.9: Example of an orbit in the neighborhood of z�equilibrium.
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Figure 4.10: Three-dimentional views of an orbit in the neighborhood of z�equilibrium.

4.7 Existence of ‘out-of plane’ equilibria

The existence of ‘out-of-plane’ equilibria near an oblate asteroid does not agree with the

physical intuition. The z-equilibrium points found in Section 4.5.2 is one of the examples

of ‘out-of-plane’ equilibria since it seems that the combined gravitational force acting on

the infinitesimal mass must be pointing towards the plane of z � 0. Such kind of ‘out-

of-plane’ equilibria appear due to the J2-approximation of the gravitational potential.

The J2-approximation refers to a truncation of the spherical harmonic series expansion

of the gravitational potential. Such expansion is known to be convergent outside the

Brillouin sphere, which is the smallest sphere that contains the body. However, in general

the nature of the series within the Brillouin sphere is unknown in general. For certain

shapes, such as ellipsoids, the series is divergent inside the Brillouin sphere. The paper

[WWZ18] shows analytically that for a restricted three-body problem with one primary

as a rotational ellipsoid,‘out-of-plane’ equilibrium points do not physically exist. They

further note that the same conclusion can be drawn if both primary and secondary are

rotational ellipsoids. We note that their argument can also be carried out for the Hill

four-body problem with the three heavy bodies as rotational ellipsoids. However we shall

remark that for non-convex shapes, ‘out-of-plane’ equilibria are physically possible. Here

in this section we show a ‘rubble pile’-model which has true ‘out-of-plane’ equilibria.
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The model consists of six balls— four identical larger balls of radius R and two identical

smaller balls of radius r. They are arranged as in the left-side of Fig. 4.11. The centers of

the larger and smaller balls are at p�1, 0,�Rq and p�r, 0, 0q respectively. The condition

that the balls in the configuration are tangent is r � 1{p2p1 � Rqq. With numerical

integration, we compute the gravitational force along the z�axis and plot as in the right

side of Fig. 4.11. In the plot, the intersections of the graph and the horizontal axis

correspond to the z-values of the ‘out-of-plane’ equilibria. Note that such ‘out-of-plane’

equilibria exist only for certain ranges of values of R, and disappear through a saddle-node

bifurcation. We plan to study families of such configurations in future works;

(a) Six-balls ‘rubble-pile’ model.

-2 -1 1 2

-3

-2

-1

1

2

3

(b) The gravitational force along the z-
axis.

Figure 4.11: Example model for existence of ‘out-of plane’ equilibria.

many small bodies in the solar system are believed to be formed as ‘rubble piles’,

consisting of smaller elements separated by voids. Therefore, many known asteroids are

observed to have very irregular shapes. With possible applications to space missions that

target asteroids, the study of ‘out-of-plane’ equilibria for asteroids become an interesting

problem.
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4.8 Conclusions

In this chapter we consider a Hill four-body problem with oblate bodies and develop a

rigorous mathematical model for the problem that can be used for analytical studies. In

Chapter 3 we study and determine the triangular central configurations of three-body

problem with different conditions. In particular, we study and determine the triangular

central configurations of three-body problem with oblateness in Section 3.2. In Propo-

sition 3.2.1 we determined the triangular central configurations of three oblate bodies

to be scalene triangles. Moreover, the triangles corresponding to different moments of

inertia are not necessarily similar to one another. This situation is very different from

the case of having three point-masses, that the central configurations are equilateral tri-

angles. Assuming that the three heavy bodies are in such a scalene triangular central

configurations, we begin with the spatial circular restricted four-body problem with three

oblate bodies and perform the Hill approximation. Our Hill approximation and result in

Theorem 4.4.1 are different from the one in the case of three point-masses, due to the

different type of triangular central configuration and of the oblateness effects. The Hill

approximation acts like a ‘magnifying glass’ to ’zoom’ into a neighborhood of the smallest

body, by sending the two larger bodies at infinite distance via a limiting procedure. The

resulting Hamiltonian encounter the effect of the two larger bodies is represented in the

Hamiltonian by a quadratic polynomial, while in the restricted four-body problem their

effect is represented by singular terms. The Hamiltonian resulted from the Hill approxi-

mation provides us a simpler form that allows us to study the equilibrium points and their

stability analytically, as in Proposition 4.5.1, Proposition 4.5.3, and Proposition 4.5.2.

Contrarily, in the restricted four-body problem it is only possible to have such a study

numerically. An interesting result of our model is the presence of ‘out-of-plane’ equilibria.

These may be physically possible only when they are very close to the barycenter of the

smallest body, and only for certain shapes. At the end of this chapter in Section 4.7 we
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further describe a toy-model that has true ‘out-of-plane’ equilibria.
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Chapter 5

Gravitational Potential for Dumb-bell

shaped Body

According to the observational data, mostly optical, the shape of asteroid is typically

non-spherical. The Jupiter’s Trojan 624 Hektor is one example; it can be well approx-

imated by a dumb-bell shape [MBW�06], which can be well approximated by explicit

functions. In the context of the n-body problem [Taf85], the gravitational field of a

homogeneous celestial object is usually described as a a multipolar expansion naturally

involving spherical coordinates [Kau66]. In this thesis we describe the shape in terms

of cylindrical coordinates instead and we make use of Bessel and Elliptic Functions to

express the gravitational potential generated by the rotating body as a simple formula

in terms of elliptic integrals. This chapter is devoted to provide an overview of Bessel

Functions, Elliptic Integrals as well as the applications of variational principle to the

gravitational potential for a body with any shape in cylindrical coordinate system.
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5.1 Background

5.1.1 Bessel Functions of the First Kind

In this section, we consider a class of functions known as Bessel functions [BDVV�04],

which are the canonical solutions of the Bessel’s differential equation,

x2 d
2y

dx2
� x

dy

dx
� px2 � α2qy � 0 (5.1)

for an arbitrary complex number α, which refers as the order of the Bessel function.

With order α as integers, the Bessel functions are known as the cylindrical functions or

cylindrical harmonics since they are the solutions to the Laplace’s equation in cylindrical

coordinates ps, φ, zq, that is,

52V � 1

s

B
Bsps

BV
Bs q �

1

s2

B2V

Bφ2
� B2V

Bz2
� 0. (5.2)

Consider the following generating function with complex variables t and z

gpz, tq � e
1
2
zpt� 1

t
q @z, t � 0

expanded by the Laurent’s theorem in a series with both positive and negative powers of

t. Denote the coefficient of tn for n P Z by Jnpzq. Then we obtain

e
1
2
zpt� 1

t
q �

8̧

n��8
Jnpzqtn

� � � � � J�1pzqt�1 � J1pzqt� J2pzqt2 � J3pzqt3 � � � � ,
(5.3)

where

Jnpzq � 1

2πi

»
C

u�n�1e
1
2
zpu� 1

u
qdu
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and C represents the contour as an unit circle enclosing the origin.

Definition 5.1.1 (Bessel coefficient). The Bessel coefficient of order n P Z, denoted as

Jnpzq is given by

Jnpzq � 1

2πi
pz
2
qn
»
C

u�n�1eu�
z2

4udu,

where C is any closed contour encircling the origin once counterclockwise.

Let u � 2t
z

, we can easily express Jnpzq as a power series in z as

Jnpzq � 1

2πi
pz
2
qn
»
C

t�n�1et�
z2

4t dt. (5.4)

We can further expand the exponential function in the integrand as a power series of z

as follows:

Jnpzq � 1

2πi

�z
2

	n »
C

t�n�1ete
�p z

2
?
t
q2
dt

� 1

2πi
pz
2
qn
»
C

t�n�1et
8̧

r�0

p�1qr
p z

2
?
t
q2r

r!
dt.

(5.5)

With the contour C as an unit circle centered at origin, in which the integrand is uniformly

convergent [AW99], we have

Jnpzq � 1

2πi

8̧

r�0

pz
2
qn�2r p�1qr

r!

»
C

t�n�1�retdt (5.6)

Let fptq � et

tn�1�r . Since the contour is a positively oriented simple closed curve in the

complex plane and f is analytic except for t � 0, then by the Residue Theorem we have

»
C

fptqdt � 2πi
ņ

k�1

Respf, tkq. (5.7)
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At t � 0, the residue of fptq is

Respf, tkq �

$''&''%
1

pn�rq! if n� r ¥ 0 and n� r P Z

0 if n� r   0 and n� r P Z.
(5.8)

Therefore, if n ¥ 0 and n P Z, we have

Jnpzq �
8̧

r�0

p�1qrp z
r
qn�2r

r!pn� rq! . (5.9)

Definition 5.1.2 (Bessel function of the first kind with order of positive integer). The

Bessel function of the first kind with order n P Z and n ¥ 0 is defined by the equation

Jnpzq � pz
2
qn

8̧

r�0

p�1qr
r!Γpn� r � 1qp

z

2
q2r.

By an index shift, we can easily extend the expansion of Jnpzq for having the order n

as a negative integer, say �m, then

J�mpzq �
8̧

r�m

p�1qrp z
2
q2r�m

r!pr �mq!

�
8̧

s�0

p�1qm�sp z
s
qm�2s

pm� sq!s! .

(5.10)

Thus, Jnpzq � p�1qmJmpzq. By the above definition, we may show that Jnpzq is a solution

of the linear differential equation (5.2) in variable z. Dividing the equation by z2, we

have

d2y

dz2
� 1

z

dy

dz
� p1� n2

z2
qy � 0, (5.11)

which is known as the Bessel’s equation for functions of integer order n. Since Jnpzq
possesses a Riemann integral with respect to t and note that Bf

Bz of the function fptq �
t�n�1et�

z2

4t is continuous for both variables z and t, we carry out the following differenti-
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ations with respect to z:

1

z

d

dz
Jnpzq

�1

z

n

2πi

zn�1

zn

»
C

t�n�1ept�
z2

4t
qdt� 1

z

1

2πi

zn

2n

»
C

t�n�1ept�
z2

4t
qp�2z

4t
qdt

(5.12)

and

d2

dz2
Jnpzq

� 1

2πi

npn� 1qzn�2

2n

»
C

t�n�1ept�
z2

4t
qdt� 1

2πi

nzn�1

2n

»
C

t�n�1et�
z2

4t p�2z

4t
qdt

� 1

2πi

nzn�1

2n

»
C

t�n�1et�
z2

4t p�2z

4t
qdt� 1

2πi
pz
2
qn
»
C

t�n�1et�
z2

4t p�2z

4t
q2dt

� 1

2πi
pz
2
qn
»
C

t�n�1et�
z2

4t p�2z

4t
qdt

(5.13)

while we have

p1� n2

z2
qJnpzq

� 1

2πi
pz
2
qn
»
C

t�n�1ept�
z2

4t
qdt� n2

2πi

zn�2

2n

»
C

t�n�1ept�
z2

4t
qdt.

(5.14)

Thus,

d2Jnpzq
dz2

� 1

z

dJnpzq
dz

� p1� n2

z2
qJnpzq

� 1

2πi
pz
2
qn
»
C

t�n�1p1� n� 1

t
� z2

4t2
qept� z2

4t
qdt

� 1

2πi
pz
2
qn
»
C

d

dt
pt�n�1ept�

z2

4t
qqdt

�0

(5.15)

since t�n�1ept�
z2

4t
q is one-valued. We have proved that

d2Jnpzq
dz2

� 1

z

dJnpzq
dz

� p1� n2

z2
qJnpzq � 0 (5.16)
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In fact, it is not necessary to have n as an integer for the solution of the Bessel’s equation.

In order to extend the definition of Jnpzq to the case for n being any number, real or

complex, we will need the following definitions.

Definition 5.1.3 (Euler’s Gamma Function). Euler’s expression of the Gamma’s func-

tion Γpzq as an infinite integral is defined by

Γpzq �
» 8

0

tz�1e�tdt

for t P C and Repzq ¡ 0.

Definition 5.1.4 (Hankel’s Gamma Function). Hankel’s expression of the Gamma’s

function Γpzq as a contour integral is defined by

1

Γpzq �
i

2π

»
C

p�tq�ze�tdt

where C is the path starts at ’infinity’ on the real axis, encircles the origin in the positive

direction and returns to the starting point. That is,

1

Γpzq �
i

2π

» p0�q

8
p�tq�ze�tdt.

where p0�q represents the positively oriented path that encircles the origin.

As shown before in equations (5.12), (5.13) and (5.14), for all values of n, the equation

(5.16) is satisfied by the integral of the form

y � zn
»
C

t�n�1et�
z2

4t dt

provided that the integrand resumes its initial value after following the contour C and

that differentiation under the sign of integration are justified [WW02]. And thus we have
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extended Jnpzq as

Jnpzq � 1

2πi
pz
2
qn
» p0�q

8
t�n�1ept�

z2

4t
qdt, (5.17)

provided that there is a branch point at z � 0. The principal branch of Jnpzq is given

by the principal value of
�
z
2

�n
and is analytic in the z� plane along the interval p�8, 0s.

Similarly, we can express the integral (5.17) as a power series and notice that it is an

analytic function of z. Again, we may obtain the coefficients from the Taylor’s series in

the powers of z by differentiating under the sign of integration. That is, Jnpzq can be

expressed in terms of Gamma functions as [Kre09]

Jnpzq � 1

2πi
pz
2
qn

8̧

r�0

p�1qr
r!

pz
2
q2r
» p0�q

�8
ett�n�r�1dt

�
8̧

r�0

p�1qr
r!

pz
2
qn�2r 1

Γpn� r � 1q

(5.18)

for any general values of n.

Definition 5.1.5 (Bessel function of the first kind with order of any general number).

The Bessel function of the first kind with order n is defined by the equation

Jnpzq � pz
2
qn

8̧

r�0

p�1qr
r!Γpn� r � 1qp

z

2
q2r.

This function Jnpzq, which is known as Bessel function of the first kind, reduces to

a Bessel coefficient when n is an integer. In general, Bessel functions of the first kind,

denoted as Jnpxq are the solutions of Bessel’s differential equation (5.1). The functions

Jnpxq are finite at the origin (i.e. x � 0) for integer or positive order n and diverge as

x Ñ 0 for negative or non-integer n. To obtain the recurrance relationsip of Bessel’s
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fucntion, we consider the following derivative [Kre09]

d

dz

�
z�sJspzq

� � 1

2s
d

dz

8̧

k�0

p�1qk
k!Γps� k � 1q

�
z

2


2k

� 1

2s

8̧

k�1

p�1qk
k!Γps� k � 1q2k

�
z

4


�
z

2


2pk�1q

� � z

2s�1

8̧

k�0

p�1qk
k!Γps� k � 2q

�
z

2


2k

.

(5.19)

Multiplying the equation by zs, we obtain

zs
d

dz

�
z�sJspzq

� � �Js�1pzq (5.20)

or

Js�1pzq � s

z
Jspzq � J 1spzq

ùñ J 1spzq �
s

z
Jspzq � Js�1pzq.

(5.21)

The following plot shows Jnpxq for n � 0, 1, 2, 3, ..., 10.

Figure 5.1: Bessel functions of the first kind.
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5.1.2 Elliptical Integrals

Let Rpx, yq be a rational function of x and y, the integral

»
Rpx, yqdx

can be evaluated in terms of elementary functions of the form y � ?
ax� b or y �

?
ax2 � bx� c [Hal95]. However, the integral is not easy to evaluate when y2 is a cubic

or quartic polynomial. This difficulty leads to the following definition.

Definition 5.1.6 (Elliptic Integral). Let Rpx, yq be a rational function of x and y such

that y2 is a cubic or quartic polynomial of x (i.e. y2 � ax3 � bx2 � cx � d or y2 �
ax4 � bx3 � cx2 � dx� e). Then the integral

»
Rpx, yqdx

is called an elliptic integral.

Elliptical integrals were originally investigated in the study of arc length of ellipses

and they can be considered as generalizations of inverse trigonometric functions. The

general form of an elliptic integral is written as

fpxq �
»

Apxq �Bpxq
Cpxq �DpxqaSpxqdx, (5.22)

where Apxq, Bpxq, Cpxq and Dpxq are polynomials in x and Spxq is a polynomial of degree

3 or 4. In this section, we are going to provide an overview of the elliptic integrals of the

first, second and third kind. In Legendre’s notation, we have the following definitions

[BF13].

Definition 5.1.7 (Elliptic Integral of the first kind). Let the modulus k be such that



139

0   k2   1. The incomplete elliptic integral of the first kind is defined as

Kpφ, kq �
» φ

0

dθ?
1� k2 sin2 θ

.

Definition 5.1.8 (Elliptic Integral of the second kind). Let the modulus k be such that

0   k2   1. The incomplete elliptic integral of the second kind is defined as

Epφ, kq �
» φ

0

a
1� k2 sin2 θdθ.

Definition 5.1.9 (Elliptic Integral of the third kind). Let the modulus k be such that

0   k2   1. The incomplete elliptic integral of the third kind is defined as

Πpφ, n, kq �
» φ

0

dθ

p1� n sin2 θq
?

1� k2 sin2 θ
.

Substituting x � sin θ, the above elliptic integrals take the Jacobi’s form as

The frist kind: Kpx, kq �
» x

0

dxap1� x2qp1� k2x2q

The second kind: Epx, kq �
» x

0

c
1� k2x2

1� x2
dx

The third kind: Πpx, n, kq �
» x

0

dx

p1� nx2qap1� x2qp1� k2x2q .

(5.23)

Notice that the above elliptic integrals are referred as complete when φ � π
2

in the Leg-

endre’s notation or x � 1 in the Jacobi’s form.

The complete elliptic integral of the first kind in fact arises the problem of simple pen-

dulum [Hal95]. Consider finding the period of a pendulum without the small angle

assumption. Let L be the length of the pendulum, g be the gravitational acceleration,

and θ be the angle of the displacement of the pendulum from the vertical axis. The
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motion of the pendulum is governed by the differential equation

θ2 � � g
L

sin θptq. (5.24)

Writing the equation in the Hamiltonian form, we note that the above equation integrates

and yields

1

2
pθ1q2 � g

L
cos θ � C, (5.25)

where C is a constant. Assume the pendulum has a maximal displacement of angle α

such that θ1pαq � 0 so that we have

1

2
θ12 � g

L
pcos θ � cosαq,

and thus

θ1 � � g
L

a
2pcos θ � cosαq.

Taking the positive value and integrate, we obtain

g

L
t �

» θ
0

dφa
2pcosφ� cosαq

� 1

2

» θ
0

dφb
sin2 α

2
� sin2 φ

2

.
(5.26)

With the substitution of

x � sin φ
2

sin α
2
, ρ � sin θ

2

sin α
2
, k � sin α

2
P r0, 1q (5.27)

we obtain c
g

L
t �

» ρ
0

dxap1� x2qp1� k2x2q . (5.28)

At the maximal displacement we have ρ � 1 and 2π
T
t � π

2
, that is t � T

4
. So the maximal
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displacement happens for the first time when

T

4
�
d
L

g

» 1

0

dxap1� x2qp1� k2x2q , (5.29)

where T is the period of the oscillation. This application on the simple pendulum arises

the elliptic integral of the first kind.

In order to rewrite the integral as a power series expansion, we start with the one in

Legendre’s notation

Kpkq �
» π

2

0

dφa
1� k2 sin2 φ

. (5.30)

By the Binomial theorem, we have

Kpkq �
» π

2

0

8̧

m�0

��1
2

m



p�1qmk2m sin2m φdφ

�
8̧

m�0

��1
2

m



p�1qmk2m

» π
2

0

sin2m φdφ.

(5.31)

In order to evaluate the integral term by term, we have to recall the expansion of the

binomial coefficient in terms of Gamma functions, that is

��1
2

m



� Γp1

2
q

m!Γp1
2
�mq (5.32)

as well as the definition of the Beta function

Bpα, βq � ΓpαqΓpβq
Γpα � βq � 2

» π
2

0

cos2α�1 φ sin2β�1 φdφ. (5.33)

With α � 1
2

and β � m� 1
2
, we have

Kpkq �
8̧

m�0

p�1qmΓp1
2
q

m!Γp1
2
�mq

Γp1
2
qΓp1

2
�mq

2m!
k2m. (5.34)
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Applying Euler’s reflection identity, that is

ΓpzqΓp1� zq � π

sinpπzq , (5.35)

then taking z � 1
2
�m, the Gamma functions on the numerator in the equation (5.33)

could be written as

Γp1
2
�mqΓp1

2
�mq � π

sinpπp1
2
�mqq . (5.36)

The series (5.33) become

Kpkq �
8̧

m�0

p�1qmΓp1
2
q

m! π
Γp 1

2
�mq sinpπp 1

2
�mqq

Γp1
2
qΓp1

2
�mq

2m!
k2m

�
8̧

m�0

p�1qmΓp1
2
qΓp1

2
�mq sinpπp1

2
�mqq

m!π

Γp1
2
qΓp1

2
�mq

2m!
k2m

� π

2

8̧

m�0

Γ2p1
2
�mq

πpm!q2 k2m.

(5.37)

By the following identity

p2m� 1q!! � 2mΓp1
2
�mq?
π

, (5.38)

we obtain

Kpkq � π

2

8̧

m�0

�p2m� 1q!!
2mm!


2

k2m

� π

2

8̧

m�0

�p2m� 1q!!
p2mq!!


2

k2m.

(5.39)

For the elliptic integral of the second kind, we consider an ellipse having the equation

x2

a2
� y2

b2
� 1 (5.40)
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with a   b. In parametric form, we have the equations

x � a cos θ and y � b sin θ. (5.41)

And we have the circumference C such that

C � 4

» π
2

0

a
a2 sin2 θ � b2 cos2 θdθ

� 4b

» π
2

0

c
1� p1� a2

b2
q sin2 θdθ

� 4b

» π
2

0

a
1� k2 sin2 θdθ,

(5.42)

where k2 � 1� a2

b2
. Notice that the integral is in the form of elliptic integral of the second

kind.

Similar to the above computation for solving elliptic integral of the first kind, we obtain

Epkq � π

2

8̧

m�0

�p2m� 1q!!
p2mq!!


2
k2m

1� 2m
(5.43)

as the power series for the complete elliptic integral of the second kind. Above we pro-

vided the motivational examples for the elliptic integral of the first and second kinds,

and computed in terms of power series. However, the applications for the elliptic integral

of the third kind are relatively complicated.

In general, we evaluate elliptic integrals in a systematic way as follows. Since the gen-

eral form of elliptic integral is as shown in (5.22) where Apxq,Bpxq,Cpxq and Dpxq are

polynomials in x, we have

Rpx,
a
Spxqq � p Apxq �Bpxq

Cpxq �DpxqaSpxqqp
Cpxq �DpxqaSpxq
Cpxq �DpxqaSpxqq

� ApxqCpxq �BpxqCpxq
C2pxq �D2pxqSpxq � �ApxqDpxq �BpxqDpxq

C2pxq �D2pxqSpxq
a
Spxq.

(5.44)
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Hence, we have

Rpx,
a
Spxqq � R1pxq � R2pxqa

Spxq , (5.45)

where R1 and R2 are two rational functions of x only. Focusing on the fraction of R2pxq
over

a
Spxq, we recall that Spxq is a cubic or quartic polynomial in x. Then it would be

convenient to consider the following theorem for factorization.

Theorem 5.1.10. Any quartic polynomial in x with no repeated factors can be written

in the form

ra1px� c1q2 � b1px� c2q2sra2px� c1q2 � b2px� c2q2s.

The constants a1, b1, a2, b2, c1 and c2 are all real for the coefficients in the quartic

polynomial are real.

Proof. Let Qpxq as any quartic polynomial such that

Qpxq � F1pxqF2pxq,

where F1pxq and F2pxq are quadratic polynomials.

Note that the complex roots (if any) of Qpxq occurs in conjugate pairs, and thus it leads

to the following three cases:

CASE I— Four Real Roots

Let ri, i � 1, 2, 3, 4 be the real roots of Qpxq such that r1   r2   r3   r4.

Let

F1pxq � px� r1qpx� r2q

and

F2pxq � px� r3qpx� r4q

. Note that an appropriate constant coefficient would be necessary in case the leading

coefficient of Qpxq is not one.
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CASE II— Two Real Roots and Two Complex Roots

Let ri, i � 1, 2 be the real roots of Qpxq and ρ1 � ρ2i be the complex roots.

Let

F1pxq � px� r1qpx� r2q

and

F2pxq � x2 � 2ρ1x� pρ2
1 � ρ2

2q.

CASE III— Four Complex Roots

Let ρ1 � ρ2i and ρ3 � ρ4i be the complex roots of Qpxq.
Let

F1pxq � x2 � 2ρ1x� pρ2
1 � ρ2

2q

and

F2pxq � x2 � 2ρ3x� pρ2
3 � ρ2

4q.

In general, we have F1pxq and F2pxq as quadratic polynomials, which are expressed as

F1pxq � a1x
2 � 2b1x� c1

and

F2pxq � a2x
2 � 2b2x� c2.

Consider a constant α such that F1pxq�αF2pxq is a perfect square. Since F1pxq�αF2pxq
is simply a quadratic polynomial in x, it is a perfect square if and only if the discriminant

is zero, that is,

p2b1 � 2αb2q2 � 4pa1 � αa2qpc1 � αc2q � 0

ùñ pb1 � αb2q2 � pa1 � αa2qpc1 � αc2q � 0.

(5.46)
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This discriminant is indeed a quadratic in α and has two roots α1 and α2. Thus, we get

F1pxq � α1F2pxq � pa1 � α1a2qrx� b1 � α1b2

a1 � α1b2

s2

� pa1 � α1a2qpx�K1q2,
(5.47)

F2pxq � α2F2pxq � pa1 � α2a2qrx� b1 � α2b2

a1 � α2b2

s2

� pa1 � α2a2qpx�K2q2,
(5.48)

where K1 � b1�α1b2
a1�α1b2

and K2 � � b1�αb2
b1�α2b2

. Lastly, solving the above equations for F1pxq
and F2pxq would obtain the required form.

In regard to the integral »
R1pxqa
Spxqdx, (5.49)

we consider the substitution t � x�α
x�β . Hence, we have

x � �βt� α

1� t
dx

dt
� px� βq2

α � β
.

(5.50)

This yields

Spxq � rA1px� αq2 �B1px� βq2srA2px� αq2 �B2px� βq2s

� px� βq4 rA1px� αq2 �B1px� βq2s
px� βq2

rA2px� αq2 �B2px� βq2s
px� βq2

� px� βq4pA1t
2 �B1qpA2t

2 �B2q

(5.51)

Now the integrand of (5.49) becomes

R1pxqr pα � βq�1dtapA1t2 �B1qpA2t2 �B2q
s
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and R1pxq can now be written as

�pα � βqR3ptq,

where R3ptq is a rational function of t.

Theorem 5.1.11 (Lemma). There exist rational functions R4 and R5 such that

R3ptq �R3p�tq � 2R4pt2q

and

R3p�tq � 2tR5pt2q.

Thus, R3ptq � R4pt2q � tR5pt2q.

The above lemma is introduced to further reduce the integral (5.49) to

»
R4pt2qapA1t2 �B1qpA2t2 �B2q

dt�
»

tR5pt2qapA1t2 �B1qpA2t2 �B2q
dt.

Let u � t2, the second integral would be in terms of elementary functions for further

evaluation. Expanding R4pt2q in partial fractions, allows us to reduce the first integral

to the sums of the following:

I �
»
t2mrpA1t

2 �B1qpA2t
2 �B2qs� 1

2dt,

where m is an integer and

II �
»
p1�Ntq�nrpA1t

2 �B1qpA2t
2 �B2qs� 1

2dt,

where n is a positive integer and N � 0.

Reduction formulas can be further done to reduce I and II to a combination of known



148

functions and integral in canonical forms as follow

i.

»
rpA1t

2 �B1qpA2t
2 �B2qs� 1

2dt

ii.

»
t2rpA1t

2 �B1qpA2t
2 �B2qs� 1

2dt

iii.

»
p1�Ntq�1rpA1t

2 �B1qpA2t
2 �B2qs� 1

2dt,

(5.52)

which are known as the elliptic integrals of the first, second and third kinds

respectively. They form an important class of special functions [Hal95]; a class of integrals

and functions that are particularly applicable for classical mechanics and engineering.

Conveniently, general form of elliptic integral can be reduced to a closed expression in

terms of the three special form, namely the Legendre elliptic integrals of the first, second

and third kinds.

5.2 Gravitational Potential in Terms of Elliptic In-

tegrals

In this section, we are interested in modeling the gravitational fields produced by non-

spherical celestial bodies. We note that many asteroids and/or comets have very irregular

shapes; many small bodies in the solar system are observed to be rubble piles meaning

that the small fragments accumulated to form an aggregate body. There are models

that analyze in detail the granular structure of asteroids, and study the tidal stress

corresponding to different particle shapes as in [G�09]. Numerical simulations show that

such granular structures preferentially assume shapes that are close to fluid equilibrium

shapes [T�09]. However the perfect fluid equilibrium shapes are not attained due to

inter-particle friction. Assumig that the object can be modeled as an incompressible fluid,

which is regarded as a first approximation of an aggregate of particles. The problem of

a roatating fluid object brings us to a classical problem in fluid mechanics. We consider
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a self-gravitating in-compressible liquid body floating in space and rotating uniformly

about some fixed axis, which passes through its center of mass. The shape of the self-

gravitating rotating liquid body depends on the pressure from the fluid, its gravity and the

rotational (i.e. in its reference frame, centrifugal) force. Since the fluid has its weigth, the

weight of the fluid exert a pressure from gravity. In addition, the relative movement (i.e.

acceleration) of a liquid produces pressure. Fluid pressure refers to the force acting on

particles in the fluid and it will be neglected in this work since we would consider rotation

around x- axis. Physically, fluid spins as if it were a solid body [WB06]. Centrifugal

force (i.e. the force perpendicular to the axis of rotation) opposes gravity [Abr90] while

rotating.

It is easy to prove that the body forms a spherical shape in the absence of rotation. We

would expect rotation to cause changes on the shape of the liquid body— there is an

expansion in the plane perpendicular to the axis of rotation while there is a contraction

occurs along the axis of rotation; the picture is shown on Figure 5.2. In Chapter 2, we

Figure 5.2: A liquid body is rotating along the x-axis.

consider the gravitational potential Φ such that

Φpr, µ, φq � �Gρ
»
d3~r1

ρ

| ~r � ~r1 | (5.53)
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where

ρ is the density of the celestial body

~r1 is the vector from the origin to the surface of the celestial body

~r is the vector from the origin to an arbitrary point in space.

Instead of a spherical coordinate system and having the negative sign to be dropped as

in Chapter 2, we switch to a cylindrical coordinate system and we keep the negative sign

for the gravitational potential in this chapter. We now consider the points ~r1 inside the

body produce a gravitational potential at a point ~r � z ẑ � f pzq r̂ on the surface. Using

the notation from Section 2.1.1, we have the gravitational potential as equation (2.1)

Φp ~X1q � �
»
Vm2

Gρp ~X2q
r21

d3X2, (5.54)

we recall r12 � | ~x1 � ~x2|. We now consider the cylindrical coordinate system as follows.

x � r cosφ

y � r sinφ

z � z,

(5.55)

With this cylindrical coordinate frame pr, φ, zq, consider the points ~r1 inside the body

produce a gravitational potential at a point ~r � z ẑ � f pzq r̂ on the surface and Φp ~X1q
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Figure 5.3: From Cartesian Coordinate to Cylindrical Cooridinate pr, φ, zq.

is expressed as

Φp ~X1q � �
»

Gb°3
i�1px2i � x1iq2

ρp ~X2qd3 ~X2

��
»

Ga
r2 � r12 � 2rr1pcosφ cosφ1 � sinφ sinφ1q � pz � z1q2 � ρp

~X2qd3 ~X2

��
»

Gρp ~X2qd3 ~X2a
r2 � r12 � 2rr1 cospφ� φ1q � pz � z1q2 .

.

(5.56)

Applying the Lipschitz integral, that is

» 8

0

J0pkaqe�k|b|dk � 1?
a2 � b2

,

and we let

a �
a
r2 � r12 � 2rr1 cospφ� φ1q

b � pz � z1q2.
(5.57)
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Then

1a
r2 � r12 � 2rr1 cospφ� φ1q � pz � z1q2

�
» 8

0

J0pk
a
r2 � r12 � 2rr1 cospφ� φ1qqe�k|z�z1|dk

(5.58)

where J0 is the order zero Bessel function of the first kind. We have shown that the term

of 1?°3
i�1px2i�x1iq2

can be expressed in terms of the integral of Lipschitz. Furthermore, we

can apply the Neumann’s addition theorem for Bessel functions. The order zero Bessel

function of the first kind can then be written as a Fourier series expansion over Bessel

functions of varying order, that is

8̧

m��8
JmpkrqJmpkr1qeimpφ�φ1q � J0pk

a
r2 � r12 � 2rr1 cospφ� φ1qq (5.59)

where Jm is the order m Bessel function of the first kind. Therefore

1a
r2 � r12 � 2rr1 cospφ� φ1q � pz � z1q2 �

» 8

0

J0pk
a
r2 � r12 � 2rr1 cospφ� φ1qqe�k|z�z1|dk

�
» 8

0

8̧

m��8
JmpkrqJmpkr1qeimpφ�φ1qe�k|z�z1|.

(5.60)

It follows that

Φp ~X1q � �Gρ
»
r1dz1dr1dφ1

8̧

m��8

» 8

0

dkeimpφ�φ
1qJmpkrqJmpkr1qe�k|z�z1|. (5.61)

Consider the cylindrical system as in Figure 5.3 with rotation around the x-axis, the total

potential is the sum of the gravitational and rotational potentials. For a given angular

velocity, ω, the equilibrium condition on the fluid shape is that the total potential should
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remain constant everywhere on the surface. It is expressed as

Upr, z, φq � Φ� 1

2
Iω2

� C,

(5.62)

where Φ refers as the gravitational potential, 1
2
Iω2 refers as the rotational potential,

which will be justified later and C is a constant. In addition, we introduce the notation

(a) A generis shape is shown.

(b) Notation for the shape that is inter-
ested in; �z0 and z0 are the endpoints of
the planet on z�axis where fpzq is the
function that generates the shape of the
planet via revolution on z�axis.

Figure 5.4: In general, the optimal shape of the body is not necessarily to be a dumbbell.

as shown in Figure 5.4.

Integrating with respect to φ1 first, we will then obtain a simplified integral

Φ � �Gρ
8̧

m��8

» 8

0

dk

» z0
�z0

dz1e�k|z�z
1|
» fpz1q

0

dr1Jmpkr1qJmpkrqr1
» 2π

0

dφ1eimpφ�φ
1q.

Note that » 2π

0

dφ1eimpφ
1�φq � 2πδm0,
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(a) The function fpzq (i.e. F(z) for dimen-
sion).

(b) Notation for position vectors and its
distance.

Figure 5.5: Definition for position and function fpzq.

where δ is a Kronecker function such that

δm0 �

$''&''%
0 if m � 0

1 if m � 0

(5.63)

and thus the Bessel functions collapse to order zero. That is,

Φ � �2πρG

» 8

0

dk

» z0
�z0

dz1e�k|z�z
1|
» fpz1q

0

J0pkr1qJ0pkrqr1dr1.

Using the following identity of the Bessel function

1

k

d

ds1
rs1J1pks1qs � 1

k
rJ1pks1q � s1kJ 11pks1qs

� 1

k
rJ1pks1q � ps1kJ0pks1q � J1pks1qqs

� s1J0pks1q

(5.64)

We now have

Φ � �2πρG

» 8

0

dk

» z0
�z0

dz1e�k|z�z
1|
» fpz1q

0

J0pksq1

k

d

dr1
rr1J1pkr1qsdr1

� �2πρG

» 8

0

dk

» z0
�z0

dz1e�k|z�z
1|J0pkrq

k
fpr1qJ1pkfpr1qq

� �2πρG

» 8

0

dke�k|z�z
1|J0pkrqJ1pkr1q

k

» z0
�z0

fpz1qdz1.

(5.65)



155

Let z1 � z0η
1, z � z0η and k � K

z0
, then we have the dimensionless case

Φ � �2πρGz0

» 8

0

dKe�K|η�η
1|J0pKz0 rqJ1pKz0 r1q

K

» 1

�1

fpη1qdη1. (5.66)

Now let x � K | η � η1 | and K � x
|η�η1| , we obtain

Φ � �2πρGz0

» 8

0

dx

x
e�xJ0p 1

z0

x

| η � η1 |rqJ1p 1

z0

x

| η � η1 |r
1q
» 1

�1

fpη1qdη1 (5.67)

Since we are interested in the potential Φ at the surface that is defined by the function

f , we consider the replacement of r as fpηq and r1 as fpη1q.

Φ � �2πρGz0

» 8

0

dx

x
e�xJ0p 1

z0

x

| η � η1 |fpηqqJ1p 1

z0

x

| η � η1 |fpη
1qq
» 1

�1

fpη1qdη1 (5.68)

Notice that the integral with respect to x is known as the Laplace Transform of the

Bessel/rational integrand. By the equation (2.1) of [KIB12]

I�1
10 pa, b, sq :�

» 8

0

x�1J1paxqJ0pbxqe�sxdx

with

a � fpη1q
z0|η�η1| , b � fpηq

z0|η�η1| , s � 1.

The function I�1
10 is indeed known in a closed form in terms of Elliptical functions [KIB12].

That is,

Φ � �2πρGz0

» 1

�1

dη1fpη1qI�1
10 pfpη1q, fpηq, 1q (5.69)

where

I�1
10 pa, b, sq �

1

πa

�
2
?
ab

κ
E� pa2 � b2q κ

2
?
ab

K

�
� s

πa
sgnpa� bqΛ� s

a
Hpa� bq (5.70)
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and

κ � 2
?
ab?

pa�bq2�s2 ν � 4ab
pa�bq2 Hpa� bq �

$''&''%
0 if a� b   0

1 if a� b ¥ 0

K � Kpκq E � Epκq Λ � Λpν, κq
� |a�b|

a�b
s?

pa�bq2�s2 Πpν, κq

.

And thus equation (5.69) shows the case in dimensionless notation. With the non-

dimensionless notation, we obtain the following:

Proposition 5.2.1. The gravitational potential at a point of cylindrical coordinates

pfpzq, φ, zq on the surface of a body generated by revolving the graph of fpzq, |z| ¤ z0 is

given by

Φ � �2πGρ

» z0
�z0

dz1 fpz1qI�1
10 pfpz1q, fpzq, |z � z1|q. (5.71)

The expression I�1
10 for the Proposition 5.2.1 above has the explicit form as follows:

I�1
10 pfpz1q, fpzq, |z � z1|q �

apz1 � zq2 � pfpzq � fpz1qq2
πfpz1q

� Ep 4fpzqfpz1q
pz1 � zq2 � pfpZq � fpz1qq2 q

� fpz1q2 � fpzq2
πfpz1qapz1 � zq2 � pfpzq � fpz1qq2

�Kp 4fpzqfpz1q
pz1 � zq2 � pfpzq � fpz1qq2 qpz

1 � zq2

� pfpz1 � fpzqq
πfpz1qpfpzq � fpz1qqapz1 � zq2 � pfpzq � fpz1qq2

�Πp 4fpzqfpz1q
pfpzq � fpz1qq2

4fpzqfpz1q
pz1 � zq2 � pfpzq � fpz1qq2 qq

� |z
1 � z|
fpz1q Θpfpz1q � fpzqq

(5.72)

For a given body shape generated by the profile function fpzq, equation (5.71) gives the

gravitational potential Φ as a function of z at any point of the surface. In addition,

equation (5.71) can be easily modified to obtain the exact gravitational potential at any
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point in space, as follows:

Corollary 5.2.2. The gravitational potential at a point in space of cylindrical coordinates

ps, φ, zq, exerted by a body generated by revolving the graph of z ÞÑ fpzq, |z| ¤ z0, is given

by

Φ � �2πGρ

» z0
�z0

dz1 fpz1qI�1
10 pfpz1q, s, |z � z1|q. (5.73)

We remark that the formulas (5.71) and (5.73) are very general that they are applica-

ble for any solid of revolution. They give the gravitational potential in terms of a simple

1-dimensional integral with combination of elliptic functions. As shown in Section 5.1.2,

it is known that the elliptic functions have expansions in power series that are convergent,

thus (5.71) and (5.73) can themselves be expanded in convergent power series [BF13].

Note that many numerical computation software packages have been created numerical

computation for elliptic functions. Since the definition of the arguments does not follow a

uniform convention, we must pay attention to the arguments of the function when using

the elliptic functions from standard programming languages such as C, Python, Matlab,

Mathematica. We notice that the definition of elliptic integral can be written as the

function

F pa, bq � 2

π

» π
2

0

dθ?
a2 cos2 θ � b2 sin2 θ

� 2

π

» π
2

0

dθ

cos θ
?
a2 � b2 tan2 θ

(5.74)

Let t � b tan θ we have the following differential

dt � b sec2 θdθ

Since sin θ � ?
1� tan t by the Pythagorean trigonometric identity, we have the differ-
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ential

dt � b

cos θ
sec θdθ

� b

cos θ

a
1� tan2 θdθ

� b

cos θ

d
1�

�
t

b


2

dθ

� dθ

cos θ

?
b2 � t2

(5.75)

and thus we have

dθ

cos θ
� dt?

b2 � t2

Now F pa, bq becomes

F pa, bq � 2

π

» 8

0

1?
a2 � t2

dt?
b2 � t2

� 2

π

» 8

0

dtapa2 � t2qpb2 � t2q
� 1

π

» 8

�8

dtapa2 � t2qpb2 � t2q

(5.76)

Let u � 1
2

�
t� ab

t

�
and we have the differential

du � 1

2

�
1� ab

t2



dt.

Note that

2u

t
� t

t
� ab

t2
� 1� ab

t

ùñ ab

t2
� 1� 2u

t

ùñ 1� ab

t2
� 2� 2u

t

� 2
�

1� u

t

	
.

(5.77)
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Since 1� ab
t2
¡ 0, we have

1� ab

t2
� 2|1� u

t
|.

And therefore

du

dt
� 1

2
2|1� u

t
|

du � dt

|1� u
t
|
.

(5.78)

In equation (5.76), we handle the integral as

1

π

» 8

�8

dtapa2 � t2qpb2 � t2q �
1

π

�» 0

�8

dtapa2 � t2qpb2 � t2q �
» 8

0

dtapa2 � t2qpb2 � t2q

�
.

(5.79)

Substituting u in above integrals, we obtain

F pa, bq � 1

π

�» 8

�8

du

|1� u
t
|
a
a2b2 � pa2 � b2qt2 � t4

�
» 8

�8

du

|1� u
t
|
a
a2b2 � pa2 � b2qt2 � t4

�

� 2

π

» 8

�8

du

|1� u
t
|
a
a2b2 � pa2 � b2qt2 � t4

(5.80)

Notice that

u � 1

2

�
t� ab

t



ùñ u2 � 1

4

�
t2 � 2ab� a2b2

t2



ùñ u2 � t4 � 2abt2 � a2b2

4t2

ùñ 4u2t2 � t4 � 2abt2 � a2b2

ùñ a2b2 � t4 � 4u2t2 � 2abt2

(5.81)
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And again start with u such that u � 1
2

�
t� ab

t

�
, we can solve for t to obtain

2ut � t2 � ab

t2 � 2ut � ab

t2 � 2ut� ab � 0

t � 1

2

�
2u�

?
4u2 � 4ab

	
� u�

?
u2 � ab

t� u � �
?
u2 � ab.

(5.82)

Substitute expressions from equation (5.81) and equation (5.82) into the function F pa, bq,
we obtain

F pa, bq � 2

π

» 8

�8

du

|1� u
t
|
a

4u2t2 � 2abt2 � pa2 � b2qt2

� 2

π

» 8

�8

du

|t� u|
a

4u2 � pa� bq2

� 2

π

» 8

�8

dua
4u2 � pa� bq2?u2 � ab

� 1

π

» 8

�8

duc��
a�b

2

�2 � u2
	
pab� u2q

� F

�
1

2
pa� bq,

?
ab



.

(5.83)

The above computation yields

F pa, bq � F

�
1

2
pa� bq,

?
ab




and thus we can apply the iteration of arithmetic-geometric mean as

ai�1 � 1

2
pai � biq

bi�1 �
a
aibi, for i � 0, 1, 2, 3, ...

(5.84)
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without changing the value of the integral. This iteration converges to and terminates

at Mpa0, b0q in the limit of ai, bi as i Ñ 8, that is limiÑ8 ai � limiÑ8 bi :� Mpa0, b0q.
The convergence of complete elliptic integrals confirms that the Laplace’s expression

I�1
10 pa, b, cq is a closed form.

In order to compute the total energy U as in equation (5.62), we will need to consider

the rotational energy of the body as well. We express the position vector in cylindrical

coordinates as

~r � z ẑ � f pzq r̂. (5.85)

Consider a generic point on the ring, as shown in Figure 5.7b, has cylindrical coordi-

nates pf pzq , φ, zq, so its distance d to the axis has the relation

d2 � z2 � pfpzqq2 sin2pφq. (5.86)

And the moment of inertia around the axis of rotation I, is given by d2. Then we obtain

the rotational potential by placing a unit mass at the location rotating with angular

speed ω. And thus we have the rotational energy expressed as

�1

2
ω2
�
f 2 pzq sin2 pφq � z2

�
. (5.87)

Following the notation in equation (5.2.1), we obtain

Corollary 5.2.3. The total potential U for the rotating body, evaluated at the surface of

the body, is the sum of the expressions in equations (5.71) and (5.87):

U � �2πGρ

» z0
�z0

dz1 fpz1qI�1
10 pfpz1q, fpzq, |z � z1|q � 1

2
ω2pf 2pzq sin2 φ� z2q. (5.88)

Notice that the negative sign for the last two terms constitute the sign of the repulsive

centrifugal force. In conclusion, equation (5.88) can be used in two ways. First, if



162

the explicit shape (i.e. asteroid shape) is known, then the gravitational acceleration

g � �∇U , on the surface of the object can be computed. Second, an optimal shape

can be obtained for a particular class of shapes (such as dumbbell shapes). This can be

modeled as an isoperimetric problem in which to determine the total potential for the

function that has the smallest variability for the optimal shape of the class.

The shape of equilibrium is obtained for the f pzq for which U a constant, independent

of z. This solution of the nonlinear integral equation, while extremely useful, is not likely

to be solved exactly. Realistically we should explore the minimization problem in the

parameter space of a well suited family of functions instead. In the following section, we

give an example of such a procedure.

5.3 Gravitational Potential of Dumbbell Shaped Body

Derived by Variational Approach

Here we investigate the gravitational potential of dumb-bell shapes, with the goal of de-

termining which dumb-bell shapes can be attained under the effect of gravitational and

rotational forces as shown in the Section 5.2. As a follow up of the previous section, we

consider to apply the result of Section 5.2 on finding the total potential of a dumb-bell

shaped body in a cylindrical system with symmetry. Surprisingly, the problem can be

substantially reduced to a relatively simpler integral.

Consider the shape of dumb-bell, we aim to explore how the shape would affect the po-

tential energy U . We aim to apply the variational principle to the problem— specifically,

we consider the problem as mentioned and propose a function to describe the dumb-bell

shape of the body. This function introduces the body’s shape with parameters and thus

its corresponding gravitational potential parametrically. For each rotational speed ω,

the parameters of the function is varied. By computing the gravitational potential with

respect to each particular dumb-bell shape (depending on parameters), we obtain the
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particular parameters that provide us the potential that is approximately constant for

the fixed ω. Therefore, we obtain an approximate equipotential surface for some fixed ω.

For a given body shape, f pzq, equation (5.88) gives the total potential U . Now taking

dumb-bell shapes into consideration, we choose to explore the family of

F pzq � γ

d�
1� p z

z0

q2

�

1� β

1� β
p z
z0

q2


, (5.89)

where z P r�z0, z0s, by considering the surface of revolution around the z-axis. The

parameter γ gives the value F p0q, representing the height of the saddle point, while the

parameter β controls the convexity. Let z � z0η, we have the dimensionless formula

(a) The function F pzq at z0 equals 10, γ
equals 0.5 and β equals 0.9.

(b) The function F pzq at z0 and γ both
equal 1 (i.e. fpzq) and β equals 0.9.

Figure 5.6: Graphs of the functions of F(z).

defined by

fpηq �
d�

1� η2


�
1� β

1� β
η2



(5.90)

where η P r�1, 1s and thus

F pzq � γ

d�
1� p z

z0

q2

�

1� β

1� β
p z
z0

q2



� γ

d�
1� η2


�
1� β

1� β
η2


 (5.91)
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:� γfpηq, for η � z

z0

F pzq � γf

�
z

z0


 (5.92)

Note that fpηq is the formula of dimensionless (i.e.z0 � 1 and γ � 1) case. Equation

(5.91) demonstrates the relationship between the formulas of dimensionless and non-

dimensionless case; the two cases differ only by a rescaling. It is both practical for us to

use while performing numerical analysis. In the following context, we are going to use

the notation fpzq for the considered function for the surface.

With the symmetry assumptions with respect to the x- and z-axes as well as the parametriza-

tion in alpha and β, we obtain a dumb-bell shaped body, which rotates with constant

angular speed ω around the Cartesian x-axis.

Ideally, we want the total potential U being constant. We evaluate U for some fixed

values of z. By plotting the total potential against z for different γ and β, we aim to

find the γ and β that provide us a shape with the total potential that is approximately

constant while varying z, for each fixed ω (i.e. the rotation speed).

Consider the dumb-bell shaped celestial body to be symmetric with respect to the z�
axis (generated by the surface of revolution) as shown below.

(a) A dumb-bell shape is
formed with symmetry on
the z� axis.

(b) Sagittal section of body of revolution
around the z-axis. All points inside the
object are within |z| ¤ z0. For a fixed z,
points are in a circular disc of radius rmax.

Figure 5.7: Graphs of the functions of F(z).
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In the Section 5.2, we have equation (5.88) as the total potential at the surface of an

object. A problem that immediately arise from the equation is that, at the surface of

the object, the gravitational potential Φ depends only on z while the rotational potential

additionally depends on φ. Walking along the ring of Figure (5.7b), Φ remains constant

while the rotational potential has sin2 φ of dependence. Clearly the potential cannot

be constant on the family (5.89). Nevertheless, the practical problem of a real celestial

body must be interpreted in the context of rotating not with respect to a fixed axes, but

secularly with respect to all axes perpendicular to z. Under these conditions and owing

to the sin2 φ factor, oblate shapes will develop perpendicular to z. However these shapes

will eventually develop in other directions, as the axis of rotation rotates. Hence, we

should consider the celestial bodies that after long times compared with the rotational

period 2π
ω

, have cross sections averaged in φ.Therefore, it is physically sensible to remove

the φ-dependence, and we do so by considering the effective total potential

Ueff � 1

2π

» 2π

0

U pz, φq dφ. (5.93)

It yields

Ueff � �2πGρ

» z0
�z0

f pz1qL pf pz1q , f pzq , |z � z1|q dz1 � 1

4
f 2 pzqω2 � 1

2
z2ω2 (5.94)

Finding the fpzq that produces a potential Ueff with the least variability for our family

of curves as in equation (5.89) would be the next task. Replacing fpzq in equation (5.94)

by equation (5.89) and performing the integral numerically, we obtain numerical values

of the function Ueff pz, β, γq. We then search, among all pairs of parameters pβ, γq, that

which produces, for a given ω a potential Ueff with the least variability in z. For the

increment of ω as 0.1, the potential at each location of z is computed for each of the

fixed γ and β. We use the standard deviation of the potential over absolute value of

its mean, i.e. σ
|µ| for further evaluation. This quantity is known as the coefficient of
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variation. It does not only show the extent of variability in relation to the mean, but

also is a dimensionless quantity for comparison and therefore it is very practical for us

to compare the variability of different data sets. In our case, we use it for measuring the

variability of the total potential of all z given by different parameters in this isoperimetric

problem; it provides us the comparison for the best parameters, which control the shape

of the body. Our goal is to find the dumbbell shape that provide relatively constant on

the potential energy. We record the lowest values of σ
|µ| for the results given by each pair

of γ and β. The results suggest different interesting dumbbell shape for the body as in

Figure 5.8, 5.9 and 5.10. Some of the shapes obtained below are ’visually’ similar to the

observed shapes of some asteroids and comets, such as 624 Hektor, 103P/Hartley and

8P/Tuttle.

Figure 5.8: Approximate equilibrium shapes for ω � 0.1 and ω � 0.2.
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Figure 5.9: Approximate equilibrium shapes for ω � 0.3 and ω � 0.4, ω � 0.5 and
ω � 0.6.
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Figure 5.10: Approximate equilibrium shapes for ω � 0.7 and ω � 0.8, ω � 0.9 and
ω � 1.
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5.4 Conclusions

In this chapter, we consider the gravitational potential generated by an axisymmetric

body that rotates around an axis perpendicular to the symmetry axis and derive a rela-

tively simple and useful formula in terms of elliptic integrals. In addition, we formulate

an isoperimetric problem that was applied to finding approximate equilibrium shapes

based on the principle of minimizing the variations of the potential on the surface. As

an example to astrodynamics, we consider a two-parameter family of dumbbell shapes.

Depending on the rotational speed, we compute numerically their shapes with choices of

parameters. With numerical computation and analysis, we obtain the parameters for each

of the rotational speed that the gravitational potential at the surface is approximately

constant.

There also exist exact equilibrium solutions of dumbbell shape as shown in [EHS82];

we notice that such dumbbell shapes are not given by closed form equations. Contrarily,

we provide a family of dumbbell shapes that are given by simple, explicit formulas which

only depend on 2�parameters. We remark that these only correspond to approximate

equipotential surfaces. The family of dumbbell of our choice could be potentially utilized

to find first approximations for irregular shaped asteroids and comets. Furthermore, we

can derive formulas for the gravitational potential generated by such shapes at any point

in space.

Our approach can be extended to modeling the gravitational potential generated by

other families of shapes (depending on more parameters), as well as shapes that are not

generated as solids of revolution.
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Chapter 6

Electrostatic N-Body Problem and the

Poisson Boltzmann equation

In this chapter, we consider a colloidal system. We first give some background informa-

tion about colloidal system and the Poisson-Boltzmann equation. Then the solutions to

the electrostatic potential surrounding a pair of spherical colloidal particles is obtained

by using a variational principle to the non-linear Poisson-Boltzmann equation in three di-

mensions. We consider the Poisson-Boltzmann action integral for the electrostatic poten-

tial produced by charged colloidal particles and we propose an analytical ansatz solution,

which is controlled by two parameters. The solution to the Poisson-Boltzmann action

integral introduces the density and its corresponding electrostatic potential for different

fixed parameter. Then we minimize the Poisson Boltzmann action with respect to the

parameter, for the fixed potential and fixed separation distance. Furthermore, we study

the obtained results and approximate the parameters as functions of tip particle separa-

tion and boundary electrostatic potential are obtained by using polynomial-exponential

relationship. Provided with this information, we compute tip-particle energy separation

and study the stability properties based on the shape of the energy-separation curves.
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6.1 Background

6.1.1 Colloidal System

A colloidal system, which is is one of the three primary types of mixtures in chemistry,

is a liquid system in which very small particles of one substance are distributed evenly

(relatively even) throughout another substance. In this chapter, we focus in a system

with particles ranging from 1 to 1000 nano-meters in diameter. In general, there are

different types of colloidal systems, such as the solid–liquid dispersions (i.e.suspensions),

the liquid–liquid dispersions (i.e.emulsions), and the gas–liquid dispersions (i.e.foams).

They also appear in our daily life; paints, milk, proteins as well as fog are some examples

of colloids [BS15] [EW94]. Considering a colloidal system, one of the central problems

is to determine the stability of colloidal particles. When the particles approach each

other, the interaction leads to the rearrangement of charges in the ambient medium,

outside the colloidal particles. For instance, these interactions could be determined by

the surface charge on the particles and electrolyte concentration. Thus the characteristics

of surface charges play an important role on the stability of colloidal particles and thus

we note that the effect of the electrical double layers controls electrostatic stabilization.

Mathematically, the details of the pair-wise energy as a function of separation of colloidal

particles determine the colloidal stability. Thus the number of valleys of such energy curve

determines the separations of possible equilibrium or meta-equilibrium.

6.1.2 Poisson-Boltzmann Equation

The electric behaviors and/or the electrostatic stabilization of a suspension of charged

colloidal particles in an electrolyte solution depend strongly on the distributions of elec-

trolyte ions and of the electric potential around the particle. Considering the electric

potential in solution, the Poisson-Boltzmann is very useful that it consists of the Poisson
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Figure 6.1: A particle with negaitive charges on the surface. It attracts positively charged
ions while the red mobile ions are either positively or negatively charged.

equation of electrostatics with the Boltzmann distribution. The PB equation is typically

obtained by combining Poisson’s equation [Jac] and the Boltzmann factor [Hil60] for the

distribution of electrostatic energies at a given temperature. This distribution is impor-

tant as it determines the interaction between particles in solution. In this section, we

aim to derive the Poisson-Boltzmann equation [Hol93].

If a charge distribution ρp~rq � px, y, zq is defined, at the point r, with ε as a dielectric

constant, we have the Poisson’s equation as

∇2ϕprq � �4π

ε
ρprq, (6.1)

where ∇2ϕprq is the Laplace operator ∇2ϕprq � B2ϕ
Bx2 � B2ϕ

By2 � B2ϕ
Bz2 . It expresses the rela-

tionship between a charge distribution ρprq and the electrical potential ϕprq.
Let R1 be the region contained a particular ion of the solution. In Figure 6.1, the

particle for which we are interested to determine the electrostatic potential from far is

located in the region R1. There is a layer of opposite charged ions attracted to the

particle; this layer is refer as R2. And region R3 is simply refer as the solvent that

contains mobile ions outside the double layer (as shown in Figure 6.1). In the simple

case that all mobile ions are univalent, we can refer them as positive and negative ions

with charge �ec and �ec, where ec is the charge of an electron. Notice that in the three
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region Ri, for i � 1, 2, 3, the electrostatic potential satisfies Gauss’ law [Hol93] and we

have that in the differential form yields a Poisson’s equation as

∇2ϕprq � �4π

ε
ρprq, (6.2)

at the point r, where ε is the dielectric constant. In order to use the equation (6.1) to

determine the potential ϕprq in the regions, the charge density functions ρprq must be

defined for each of the region. Consider the region R1. For the particle that is represented

by a series of N charges ci at positions ri, where ci � ziec, zi P R, and i � 1, ..., N , we

can compute the potential in the region R1 as

ϕ1prq �
Ņ

i�1

ci
ε1|r � ri| , (6.3)

where ε1 is the dielectric constant for region 1.

Recall the free space Green’s function for the Laplace’s equation in R3,

Gpr, r1q � 1

4π

1

|r� r1| (6.4)

where r � px, y, zq is a point in R3. It is a solution to the equation

52Gpr, r1q � δpr� r1q (6.5)

where δ is the Dirac delta function. Now we apply the Laplacian to both side of equation

(6.3), we obtain

52ϕprq �
Ņ

i�1

�4πci
ε

δpr� riq (6.6)

where δ is the Dirac delta function.

Consider the region R2. Since it consists of the double layer around the particle, there

is no mobile charges of the solvent are present and thus the charge density is given by
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ρprq � 0. Hence, we have

52ϕ2prq � 0 (6.7)

Consider the region R3. Assuming the bulk concentration of ions is M per cubic cen-

timeter for each of the two ions present, one with charge of �ec, while the other with

charge of �ec. The distance between the particle and the ions around play an important

role; the amount of positive and negative ions in cubic centimeter differs when getting

close to the particle in R1. In the Debye-Hückel theory, we have the assumption that the

concentration of one type of ion close by the particle in R1 to its concentration far from

the region R1 is encountered by the Boltzmann distribution law:

e�Wiprq{rkBT s, (6.8)

where T is the absolute temperature, kB is Boltzmann’s constant, and Wiprq is the work

required to move the ion of type i from |r| � 8, pi.e.ϕprq � 0q to the point r. In our

simple model, it consists of only two types of ions and we have the required work for the

positive ions as

W1prq � �ecϕprq

while the required work for the negative ions is given by

W2prq � �ecϕprq

Consider the Boltzmann distribution law now, we have M� � Me�ecϕprq{rkBT s, M� �
Me�ecϕprq{rkBT s, where we assume that M� � M� � M far from the region R1. Thus,
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the charge density

ρprq �M�ec �M�ec

�Mece
�ecϕprq{rkBT s �Mece

ecϕprq{rkBT s

�� 2Mec sinh

�
ecϕprq
kBT


 (6.9)

describes the amount of electric charge at any point in R3. With this charge density, the

Gauss’ law for R3 becomes:

52ϕpRq � �p8πMec
ε

q sinhpeϕprq
kBT

q, (6.10)

where M is the ion bulk concentration of electrolyte, T is the absolute temperature,

e the ion charge magnitude of anions and cations, ε is the dielectric constant of the

surrounding fluid and kB is the Boltzmann’s constant. The equation (6.10) is known as

the non-linear Poisson-Boltzmann equation. It introduces the Boltzmann distribution of

ions, which provides the distribution of the electric potential in solution with charged ions

present. Being a second-order partial differential equation, the nonline Posson Boltzmann

equation has an exact known solution only for one-dimensional geometries. We note that

in three dimensions the exact nonlinear Poisson Boltzmann equation is not amenable to

analytical solutions, not even for a simple case of having a single colloidal particle in

the electrolyte. In higher dimensions, Posson Boltzmann equation is commonly solved

numerically. For instance, in the case of having the colloidal particle charge or voltage low,

the Poisson Boltzmann equation can be linearized, in which case solutions for spherical

[BR73] and cylindrical [BIS08] geometries have also been obtained. We also note that in

three dimensions there are analytical and numerical approaches to the nonlinear Poisson

Boltzmann equation for the geometry of sphere-plane as in [HC92], [CHS94], [PSCH95]

and [Zyp06]. In the next section, we present a method to handle the full nonlinear PB

equation in three-dimensions for interacting particles.
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6.2 Colloidal System between an Atomic Force Mi-

croscope Probe and a Charged Particle

The theoretical prediction of the force between an Atomic Force Microscope probe and a

charged particle has been an open problem for scientists and technologists. Particularly,

we are interested in the case when both of the Atomic Force Microscope probes are

immersed in an electrolytic environment [ZE13]. This problem is of interest due to

the importance of understanding the electrostatics biological matters, in which water is

inherently present [McL89]. Recently, Atomic Force Microscope has indeed become the

de facto metrological tool to probe organic and inorganic matter from the micron down

to the nanometer length scales [MVG�16]. In order to measure the interaction forces

between the colloidal particles and the electrolyte, we introduce the probe technique; it

relies on the use of the Atomic Force Microscope. It has the ability to probe in size ranging

from microns to nanomaters because of the sensing element located on the tip and its

climax ranges in size of those length-scales.While immersing in an electrolyte, the tip can

gain surface charge due to pH. On the other hand, it mayof the Atomic Force Microscope

also develop a diffuse charge layer due to the presence of ions in solution [JELZ11]. There

is a natural connection between the measurement of Atomic Force Microscopes in liquid

and colloidal science while the scientific interest is on the interaction between colloidal

particles and their corresponding stability. The Atomic Force Microscope in solution is

our main concern and interest, but the results obtained in this chapter are readily usable

in the system of colloids. For the example of application in this chapter, we focus on a

liquid system in which 1- 1000nm particles are submerged in an ionic solution. As one of

the primary type of mixtures in Chemistry, colloidal systems arouse the concern of their

stability. In other words, we are interested if the system coagulates or remain indefinitely

stable under known conditions, such as concentration.

The presence of charge at their surfaces is the key to determine the stability of col-
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loids; the electrical double layer controls electrostatic stabilization. The rearrangement

of charges in the ambient liquid, outside of the colloidal particles occur due to the inter-

action between particles when they approach each other. Indeed, these interactions are

known to depend on the surface charge on the particles and electrolyte concentration.

The stability of colloidal systems is fascinating theoretically, and critical for industrial

applications.

Consider the pairwise energy as a function of separation of colloidal particles; we can

then determine the stability of the colloidal systems [VO48]. In addition, the valleys of

such function determine the separations of the possible equilibrium. There are different

approaches for obtaining the energy: (i) solve the Poisson-Boltzmann equation, which

yields the charge density and electrostatic potential in the liquid surrounding the colloidal

particles and (ii) solve the linearized PB equation under some conditions so as to obtain

the solutions for certain germetries such as spherical geometry as in [BR73] and cylindrical

geometry as in [BIS08]. In the case of a particular geometry of sphere-plane, we notice

that in there are analytical and numerical approaches to the nonlinear Poisson Boltzmann

equation in the three dimensions as in [HC92], [CHS94], [PSCH95] and [Zyp06].

As a method to tackle the full nonlinear PB equation in three-dimensions for inter-

acting particles, we introduce and present an analytical method— based on the choice

of a parametric trial family of functions, we approximate the solution. Consider the two

particles with interaction, we introduce an ansatz for the charge density function and the

corresponding electrostatic potential parametrically. Then we use the variational method

to minimize the Poisson Boltzmann functional with respect to the parameters.
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Figure 6.2: Two colloidal particles (large, blue) separated by a distance d. The small
red particles represent the ions dissolved in water and are treated as a continuum in the
Poisson-Boltzmann approach. These ions could be different, we show them here with the
same color for graphical simplicity.

6.3 Electrostatics Potential Produced by a Pair of

Colloids

Consider a colloidal particle as shown in Figure 6.1. The schematics of the system of

interest— the two charged spherical colloidal particles of unit diameter are separated by

a distance d, is shown in Figure (6.2). We remark that the unit of length throughout

this section is the particles diameter, or the tip diameter of Atomic Force Microscope.

Notice that equation (6.10) can be written as the dimensionless form [McL89] by defining

the dimensionless electrostatic potential ϕprq � e
kBT

ΦpRq and the dimensionless position

vector r �
b

8πne2

kBTε
R,

52ϕ � � sinhϕ (6.11)

where ϕ represents the dimensionless electrostatic potential. In equation (6.11) the func-

tion ϕ is a function of r. Since n has units of inverse volume, and ε is the absolute

dielectric constant of the surrounding fluid, 8πne2

kBTε
has units of inverse area. Indeed equa-

tion (6.11) can be derived from a variational principle, by applying Euler-Lagrange to

the action

I �
»
Space

r1
2
| 5ϕ |2 � coshpϕq � 1sdV (6.12)
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where V is the volume. The minimum of I occurs for the function ϕ that satisfies the

Euler-Lagrange equation, which gives rise Equation (6.11). Let z be the axis joining the

centers of the two colloidal particles. The axial symmetry of the problem allow us to

rewrite the action in cylindrical coordinates as

4π

» 8

0

» 8

0

r1
2
| 5ϕ |2 � coshpϕq � 1sηdηdz (6.13)

where η is the radial polar coordinate in the xy� plane, while the angular polar integra-

tion is readily performed and gives 2π. The additional factor of 2 comes from integrating

z in half space and multiplying by 2 due to mirror symmetry. For further evaluation,

we propose the following ansatz for the density and corresponding electrostatic potential

which depends on the parameter k,

ϕpη, zq � ϕ0e
� k

2
r
?
pz� d

2
q2�η2� 1

2
sr
?
pz� d

2
q2�η2� 1

2
s (6.14)

where ϕ0 is the Dirichlet boundary condition, d is the center-to-center separation between

the two spherical colloids and k is a constant that can be interpreted as an inverse Debye

length times the radius of the interacting particles. The intuitive justifications for the

functional form are: (1) its exponential decay characteristic of ionic screening, (2) that at

the surface of the colloids ϕpη, zq � ϕ0 satisfied the proper boundary conditions , and (3)

that the electrostatic potential between the two colloids tends to zero as d goes to infinity.

Furthermore, a contour plot of the potential around the colloidal particles with respect to

different k is shown in Figure 6.3. There are a few reasons of choosing this potential: (1)

the potential rapidly approach its bulk value away from the spheres, (2) the electrostatic

potential satisfies the Dirichlet boundary conditions, meaning to have a constant value

at the surface of the colloidal particles To find the sought solution to the dimensionless

Poisson Boltzmann equation (6.11), we minimize the PB action functional with respect

to the parameter k. For each of the fixed potential ϕ0 and fixed separations d, we find
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Figure 6.3: Contour plot of ϕpη, zq. The potential is constant ϕ0 at the surfaces of the
particles, becomes spherical far away while decaying to zero.

the constant k (i.e. minimum point k � kpϕ0, dq) for the proposed ϕpx, yq that minimizes

the action. The obtained data suggests that there is an approximately linear relationship

between the best constant kbest, and the separation d (with small separations) for each

boundary condition ϕ0. Such a relationship is shown in Figure 6.4. Furthermore, it leads

us to study the relationship between the linear relationship and the boundary condition

ϕ0. The polynomial approximations for the functions that relate the linear parameters

(i.e.the slopes and η�intercepts) and the boundary conditions are obtained and shown

in Figure 6.5. Consider the large separations between the colloidal particles, we find that

the best constant k converges to 0.1 for all of the boundary conditions ϕ0. We remark

that at large separations, we should obtain a simple superposition the potential around a

single sphere. So the feature for the best constant k that mentioned should be universal

regardless of the model used. As shown in Figure 6.6, the functional forms for the kbest

can be described by a simple function as follows

kbest � pApϕq � 0.1qe Bpϕq
Apϕq�0.1

d � 0.1 (6.15)
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Figure 6.4: Graphs of kbest as a function of small separation d, as ϕ0 is changed. It shows
an approximately linear relationship between kbest and small separation d for each ϕ0.
The black line is drawn to show the average trend between kbest and ϕ0.

where Apϕq is the polynomial approximation between the linear parameter-η-intercepts

and ϕ0, Bpϕq is the polynomial approximation between the other linear parameter-slope

and ϕ0, and d is the center-to-center separation between the two colloids.

6.4 Colloid Interaction Energy

Indeed, the charge distribution cocurs in the whole space that surrounds the colloidal

particles. Thus we have the energy as a function of separation d [HC92] given by

Eϕpdq � 1

2

»
Space

drρϕpdqVϕpdq (6.16)

where we recall that ρ is density and ϕ is voltage, which are now known from Section 6.3.

In order to obtain the colloid interaction energy, the integral (6.16) is evaluated for the

corresponding optimal value of k for each of boundary conditions. In fact, equation (6.16)

provides the sought sphere-sphere energy-separation curves. These curves are shown in

Figure 6.7. The shape of the curves lead us to the conclusions regarding the stability

properties predicted by this theory.
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Figure 6.5: (a) Polynomial approximation between the linear parameter-slope and the
boundary conditions. This is the slope of kbest vs. d (Figure 6.4). (b) Polynomial ap-
proximation between the η-intercept and the boundary condition. This is the η-intercept
of kbest vs d (Figure 6.4).

Figure 6.6: With Equation (6.15), curves of kbest as functions of separation d for different
boundary condition are sketched. While in Figure 6.4, we show kbest vs d only for small
d, here we show the whole range of d values, from small to large.
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Figure 6.7: The energy-separation curves for ϕ0 from 1 to 8.

6.5 Conclusions

In this chapter, we consider the problem of colloidal system that consists of two colloidal

particles and we handle the problem by developing a method to tackle the full non-linear

Poisson Boltzmann equation in three dimensions for interacting particles. The major

quantitative result of this application is shown on Figure 6.7; it shows that the particles

attract each other at small separations for all boundary conditions ϕ0. We note that

this result is consistent with all the published experimental results in the literature as

in [IA78]. Furthermore, our results indicate that the energy decreases monotonically for

large ϕ0 due to the repulsion at large separations. In the case for small ϕ0, there are

plateaus which suggest the existence of secondary minima [PSCH95]. It is noticeable

that there are local minima for all values of ϕ0 at distances larger than 30. However,

they cannot be expected to represent experimental behavior since they correspond to

the distances that is too much larger than the size of the particles. From Figure 6.7,

we also remark that the peak positions of the energy curves shift to larger distances as

ϕ0 increases, which is the same as our expectation. Lastly, in Figure 6.6 we see that
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the behavior of the screening parameter has a strong dependence on distances and its

value reduced by more than 50 percent. This behavior is one of the observations shown

in experimental measurements [PSCH95]. Regarding to the contribution to the Atomic

Force Microscope community, the results in this chapter are practical by comparing the

experimental forces to the derivative of the curves shown in Figure 6.7. In this work, our

model here in this chapter is limited to particles of the same size. However, it is clear that

the extension of our model to having colloidal particles of two different radii correspond

to adding a second parameter to Equation (6.14). With this modification and a proper

choice of theoretical curve, by choosing the proper theoretical curve, we can infer the

charge of the particle interacting with the Atomic Force Microscope tip.
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[EW94] D Fennell Evans and Håakan Wennerström. colloidal domain. 1994.

[G�09] Peter Goldreich et al. Tidal evolution of rubble piles. The Astrophysical

Journal, 691(1):54, 2009.

[Gei16] Hansjörg Geiges. The geometry of celestial mechanics, volume 83. Cam-

bridge University Press, 2016.

[GN12] Marian Gidea and Constantin P Niculescu. A Brief Account on Lagrange’s

Algebraic Identity. The Mathematical Intelligencer, 34(3):55–61, 2012.

[Hal95] Leon M Hall. Special functions. Available in: http://web. mst. edu/˜

lmhall/SPFNS/spfns. pdf, 1995.

[HC92] Douglas Henderson and Kwong-Yu Chan. Potential distribution in the so-

lution interface of a scanning tunneling microscope. Journal of Electroana-

lytical Chemistry, 330(1-2):395–406, 1992.



189

[Hil78] G. W. Hill. Researches in the lunar theory. American Journal of Mathe-

matics, 1(1):5–26, 1878.

[Hil60] TL Hill. An introduction to statistical thermodynamics, adison-wesley.

Reading, MA, 1960.

[Hol93] Michael Jay Holst. Multilevel methods for the poisson-boltzmann equation.

PhDT, 1993.

[IA78] Jacob N Israelachvili and Gayle E Adams. Measurement of forces between

two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm.

Journal of the Chemical Society, Faraday Transactions 1: Physical Chem-

istry in Condensed Phases, 74:975–1001, 1978.

[Jac] JD Jackson. Classical electrodynamics (john willey, 1998). Section, 8:352–

356.

[JELZ11] Keith E Jarmusik, Steven J Eppell, Daniel J Lacks, and Fredy R Zypman.

Obtaining charge distributions on geometrically generic nanostructures us-

ing scanning force microscopy. Langmuir, 27(5):1803–1810, 2011.

[Joh11] Wm Robert Johnston. Asteroids with satellites. URL: http://www. john-

stonsarchive. net/astro/asteroidmoons. html (accessed 31 October 2017),

2011.

[JPL] JPL Solar System Dynamics. https://ssd.jpl.nasa.gov/. Accessed:

2018-08-01.

[JV97] Angel Jorba and Jordi Villanueva. On the persistence of lower dimensional

invariant tori under quasi-periodic perturbations. Journal of Nonlinear Sci-

ence, 7(5):427–473, 1997.



190

[Kau66] William M Kaula. Theory of satellite geodesy, blaisdell publ. Co., Waltham,

Mass, 1966.

[KBES12] JR Kuhn, R Bush, M Emilio, and IF Scholl. The precise solar shape and

its variability. Science, 337(6102):1638–1640, 2012.

[KIB12] Eduardo Kausel and Mirza Irfan Baig. Laplace transform of products of

bessel functions: a visitation of earlier formulas. Quarterly of applied math-

ematics, 70(1):77–97, 2012.

[Kre09] Erwin Kreyszig. Advanced engineering mathematics, 10th eddition, 2009.

[LC15] C. Lhotka and A. Celletti. The effect of Poynting-Robertson drag on the

triangular Lagrangian points. Icarus, 250:249–261, 2015.

[MBW�06] F. Marchis, J. Berthier, M.H. Wong, P. Descamps, D. Hestroffer, F. Colas,

I. de Pater, and F. Vachier. Search of binary Jupiter-Trojan asteroids with

laser guide star AO systems: A moon around 624 Hektor. In Bulletin of

the American Astronomical Society, volume 38, page 615, 2006.

[McC63] S.W. McCuskey. Introduction to celestial mechanics. Addison-Wesley Series

in Aerospace Science. Addison-Wesley, 1963.

[McL89] Stuart McLaughlin. The electrostatic properties of membranes. Annual

review of biophysics and biophysical chemistry, 18(1):113–136, 1989.

[MDCR�14] F. Marchis, J. Durech, J. Castillo-Rogez, F. Vachier, M. Cuk, J. Berthier,

M.H. Wong, P. Kalas, G. Duchene, M.A. Van Dam, et al. The puzzling

mutual orbit of the binary Trojan asteroid (624) Hektor. The Astrophysical

journal letters, 783(2):L37, 2014.

[Mei07] James D Meiss. Differential dynamical systems. SIAM, 2007.



191

[MRPD01] V. V. Markellos, A. E. Roy, E. A. Perdios, and C. N. Douskos. A Hill

problem with oblate primaries and effect of oblateness on Hill stability of

orbits. Astrophysics and Space Science, 278:295–304, 2001.

[MS] TM MacRobert and N Sneddon. Spherical harmonics, 1967.

[MS82] Kenneth R. Meyer and Dieter S. Schmidt. Hill’s lunar equations and the

three-body problem. Journal of Differential Equations, 44(2):263 – 272,

1982.
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Appendix I

Some Related Results to

Chapter 5

Mass Formula

To find the relationship between the mass and the parameters γ and β, we start with

Mass � Volume� density

� 2�
» z0

0

πF 2pzqdz � ρ

� 2πρ

» z0
0

F 2pzqdz

(6.17)

Consider the family of function that we proposed to solve the above integral.

F pzq � γ

d�
1�

�
z

z0


2
�
1� β

1� β

�
z

z0


2

, for 0   β   1
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We solve the integral in equation 6.17 for a formula:

» z0
0

F 2pzqdz �
» z0

0

γ2
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z

z0
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1� β

1� β
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dz
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dz

� γ2
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� β

1� β
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z
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� β
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dz

� γ2 �
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z � 2β � 1

3p1� βq
z3

z2
0

� β

5p1� βq
z5

z4
0


∣∣∣∣z0
0

� γ2

�
z0 � p2β � 1qz0

3p1� βq � βz0

5p1� βq



� γ2z0

�
1� 2β � 1

3p1� βq �
β

5p1� βq



(6.18)

Therefore, we have the mass formula

Mass � 2πργ2z0

�
1� 2β � 1

3p1� βq �
β

5p1� βq



(6.19)
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Potential at z0

To find the constant Φ0, that is the gravitational potential energy at z0. Fig. 6.8 shows

Figure 6.8: For each z and its corresponding fpzq, we can locate a point vertically
from z such that the length r is less than fpzq. Connecting the point to z0, a right
triangle formed. The distance between the point to z0 is easily obtained by Pythagorean
theorem. Since the potential energy is expressed as an integral based on the length of
the two vectors �Gρ ³ d3~r1 1

|r�r1| and thus the potential at z0 can be obtained easily.

that the potential at z0 can be easily obtained.

Φ0 � �2πρG

» z0
�z0

» F pzq
0

rdrdz
1a

r2 � pz � z0q2

� �2πρG

» z0
�z0

1

2

» F pzq
0

2rdrdzpr2 � pz � z0q2q�1{2

� �2πρG

» z0
�z0

1

2

pr2 � pz � z0q2q1{2
1
2

∣∣∣∣F pzq
0

dz

� �2πρG

» z0
�z0

p
a
F 2pzq � pz � z0q2 �

a
0� pz � z0q2dz

� �2πρG

» z0
�z0

p
a
F 2pzq � pz � z0q2 � pz � z0qqdz

� �2πρGz2
0

» 1

�1

p
c
p γ
z0

q2f 2pηq � pη � 1q2 � pη � 1qdη

(6.20)
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� �2πρGz2
0α
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(6.21)

Let G � p1� η2qp1� β � βη2q. We aim to solve the integral

» 1

�1

a
G� p1� βqp1� ηq2dη. (6.22)

Although the integral is not elemental, we apply numerical approach for solving it. Con-

sider the expression of
a
G� p1� βqp1� ηq2 as a power series of β up to degree 8th.

Notice that the integral is indeed finite and regular for 0 ¤ β ¤ 1. Hence, we can solve

the integral numerically. First, for β � 0 we have a simplified integral (6.22) as follows:

» 1
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� 8

3

(6.23)
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Next, for β � 1 we have a simplified integral (6.22) as follows:

» 1

�1

a
p1� η2qη2dη �

» 1

�1

η
a

1� η2dη (6.24)

Let
a

1� η2 be cos θ, we have

» 1

�1

a
p1� η2qη2dη �

»
cos2 θ sin θdθ (6.25)

Taking integration by parts, we obtain

»
cos2 θ sin θdθ � � cos3 θ � 2

»
cos2 sin θdθ

ùñ 3
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cos2 θ sin θdθ � � cos3 θ

ùñ
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cos2 θ sin θdθ � �1

3
cos3 θ

� �1

3
p
a

1� η2q3

(6.26)

Since the integral (6.24) is evaluating a symmetric function from �1 to 1 and thus we

will have to split the integral for further computation.
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(6.27)

Now, back to the integral (6.22). As β � 0, we have the solution to the integral (6.22)

as 8
3
. Thus we consider the power series of

a
G� p1� βqp1� ηq2 with an coefficient of

3
8
. Hence, we have
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42
� 12643β2

120120
� 3846727β3

77597520
� 1258610741β4

42833831040
� 215565834613β5

11002175458560

� 7621848478843β6

542773989288960
� 1838899975043737β7

173983735112079360
� 4065005867152492813β8

493150205493069250560
� Opβ9q

�
(6.28)

To find the coefficient for β9, we simply use the fact that value to the integral (6.22) is

2
3
.

For β � 1, we have

3

8

» 1

�1

a
G� p1� βqp1� ηq2dη � 3

8

ùñ
» 1

�1

a
G� p1� βqp1� ηq2dη � 1

4

ùñ 3

8

�
1� 19β

42
� 12643β2

120120
� 3846727β3

77597520
� 1258610741β4

42833831040

�215565834613β5

11002175458560
� 7621848478843β6

542773989288960
� 1838899975043737β7

173983735112079360

�4065005867152492813β8

493150205493069250560
� 1

4

ùñ coefficient ofβ9 � 316456352318138813

5191054794663886848
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And therefore for we have the 9th degree polynomial solution to the integral (6.22) as

3

8

�
1� 19β

42
� 12643β2

120120
� 3846727β3

77597520
� 1258610741β4

42833831040
� 215565834613β5

11002175458560

� 7621848478843β6

542773989288960
� 1838899975043737β7

173983735112079360
� 4065005867152492813β8

493150205493069250560

� 316456352318138813β9

5191054794663886848

�
.

(6.29)

Thus it provides the polynomial up to degree 9th as a numerical solution to the integral

that we intended to solve.


