Abstract

Gravitational and Electrostatic

Potential Fields and Dynamics of Non-spherical Systems

This thesis is devoted to several aspects of the n-body problem in the context of
two models of interest: the gravitational n-body problem and the electrostatic n-body
problem.

In the case of gravitational n-body problem, we study central configurations of three
oblate bodies, the Hill approximation of the restricted four body problem with three
oblate heavy bodies, and we find the equilibrium points of the Hill approximation and
determine their linear stability. Also in the case of the gravitational n-body problem,
we find equilibrium shapes of an irregular body, when the gravitational potential and
the rotational potential balance each other. In particular, we find equilibrium dumbbell
shapes.

In the context of the electrostatic n-body problem, we use variational methods to find
approximate solutions of the Poisson-Boltzmann equation, representing the electrostatic
potential produced by charged colloidal particles.

This research is motivated by applications to astrodynamics, dynamical astronomy

and atomic force microscopy.
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Chapter 1

Introduction

This thesis is devoted to several aspects of the n-body problem in the context of the
following models of interest: the gravitational n-body problem and the electrostatic n-
body problem. The thesis is organized as follows. Chapter 2 includes some background
information about Spherical Harmonics Expansion, which is a fundamental method to
study the gravitational potential. An example of obtaining the Spherical Harmonics
coefficients for an asteroid follows and we use it for the models we investigate in the
later chapters in this thesis. In Chapter 3 Section 3.1.1, we recall some basic notions
on central configuration. In Section 3.2, we show the existence and uniqueness of a
scalene triangular central configurations of three oblate bodies, which is one of the main
results in this thesis. Then we compute the positions of the bodies in such a central
configuration relative to some rotating frame as a follow up. In Chapter 4, Section 4.3
we consider a restricted four-body problem, with a precise hierarchy between the bodies:
two larger bodies and a smaller one, all three of oblate shape, and a fourth, infinitesimal
body, in the neighborhood of the smaller of the three bodies. The three heavy bodies
are assumed to move in a plane under their mutual gravity, and the fourth body to
move in the 3-dimensional space under the gravitational influence of the three heavy
bodies, but without affecting them. Then, assuming that these three bodies are in a

scalene triangular central configuration as shown in Chapter 3, in Chapter 4 Section 4.4



we perform a Hill approximation of the equations of motion describing the dynamics of
the infinitesimal body in a neighborhood of the smaller body. Through the use of Hill’s
variables and a limiting procedure, this approximation amounts to sending the two larger
bodies to infinity. In the Section 4.5 for the Hill approximation of the four-body problem
with three oblate bodies, we find the equilibrium points for the motion of the infinitesimal
body and determine their linear stability. It provides another main result of this thesis.
As a motivating example, we identify the three heavy bodies with the Sun, Jupiter, and
the Jupiter’s Trojan asteroid Hektor, which are assumed to move in a triangular central
configuration.

In general the gravitational field of a body is described as a multipolar expansion
involving spherical coordinates [Kau66]. Using spherical harmonic expansion leads to a
very good approximation of the gravitational potential of spherical like shapes, as well
as of more irregular shapes at points in space that are relatively far away from the
body. However the spherical harmonic expansion does not give good approximation for
the gravitational potential of irregular shaped bodies at points that are close to, or on
the surface of irregular shaped bodies. Given that asteroids often have (very) irregular
shapes, it is useful not only to assume that the asteroid is oblate, but also consider a
more irregular shape, such as a dumbbell. We assume that the object can be modeled
as an in-compressible fluid. This assumption is justify by the astronomical observation
that many asteroids are 'rubble piles’ formed by the aggregation of particles, which
behave similarly to in-compressible fluids. In Chapter 5 we describe the shape in terms
of cylindrical coordinates, which are most naturally adapted to the symmetry of the
body, and we express the potential generated by the rotating body as a simple formula
in terms of elliptic integrals. The equilibrium shapes that the body can attain are given
by equipotential surfaces that correspond to the solution to an isoperimetric problem,
which we solve via the variational method. We give an example where we apply this

method to a two-parameter family of dumbbell shapes, and find approximate numerical



solutions to the corresponding isoperimetric problem. We investigate the problem of
determining the shape of a rotating celestial object- e.g., a comet or an asteroid- under
its own gravitational field. We also describe the gravitational potential of an irregularly
shaped body as a simple formula in terms of elliptic integrals. More specifically, we
consider an object symmetric with respect to one axis- such as a dumbbell- that rotates
around another axis which is perpendicular to the symmetry axis.

Finally in Chapter 5 we consider a special case of the electrostatic n-body problem
that is described by the Poisson Boltzmann equation. We use the variational method to
study the colloidal system formed by an Atomic Force Microscope Tip and a Charged
Particle in Electrolyte. A variational principle to the nonlinear Poisson-Boltzmann equa-
tion in three dimensions is used to first obtain solutions to the electrostatic potential
surrounding a pair of spherical colloidal particles, one of them modeling the tip of an
Atomic Force Microscope. Specifically, we consider the Poisson Boltzmann action in-
tegral for the electrostatic potential produced by charged interacting colloidal particles
and propose an analytical ansatz solution. This solution introduces the density and its
corresponding electrostatic potential parametrically. The Poisson Boltzmann action is
then minimized with respect to the parameter. Polynomial-exponential approximations
for the parameters as functions of tip- particle separation and boundary electrostatic
potential are obtained. With that information, tip-particle energy-separation curves are
computed as well. Finally, based on the shape of the energy-separation curves, we study
the stability properties predicted by this theory.

Throughout the thesis, there are works based on different models and the main results
are listed as follows:

Main results of the thesis
Chapter 2

Consider a frame centered at the barycenter of the targeted body, the body rotates with



the angular velocity © about its axis. The gravitational potential is of the form:

r r

V(r,0,¢) = e (5) > P (sin )y cos(m(¢ + 1)), (1.1)

n=0

where © represents the frequency of the spin of Hektor. Notice that (s is time inde-
pendent while Cy is time dependent. However, it has averaging effect as zero if the
targeted body spins fast and thus the higher order terms are neglected for the models in
this thesis.

Chapter 3

We consider a system of three oblate bodies and describe the gravitational potential of
each body in terms of spherical harmonics.We only retain the most significant ones, C%,
(the Cy term for the i-body). The gravitational potential of each body in Cartesian

coordinates is:

v (P (R0 ) e

where m; is the normalized mass of the i-th body, r is the distance from an arbitrary
point in space to m;, R; is its average radius in normalized units, and the gravitational
constant is also normalized as ¢4 = 1. Defining C; = RizCéo/ 2 and Cj; = C; + Cj, we

obtain the following proposition.

Proposition 1.0.1. In the three-body problem with all bodies oblate, for every fized value
I of the moment of inertia there exists a unique central configuration, which is in general
a scalene triangle.

Moreover, the body with the larger C; is opposite to the longer side of the triangle, where

the C;’s are assumed to satisfy some ordering e.q., Cy < Cy < Cs, then r13 < ro3 < rpo.

Assuming one of the legs of the scalene triangle to be 1, we have the two legs to be

uniquely determined and we denoted them having lengths of u and v. Together with



the assumption of center of mass at origin and normalized mass, we have the following

proposition.

Proposition 1.0.2. In the synodic reference frame, the coordinates of the three bodies

in the triangular central configuration, satisfying the constraints

(xg =21’ + (p —n)? = 1,
(x5 —21)* + (ys —1)* = o,
(z3 — 22)* + (ys —1p)* = v°
miT1 + moxs + maxs = 0,
miyr + mays + myys = 0,
my+ms+mg = 1,
no o= 0,
are given by
T, = — \/mg + wmams + u?ms3,
v =0,
vy —2m2 — 2u*m3 — 2wmaoms + 2my + wmg’

2\/m% + wmamg + u*m3
1 (4u? — w?)m} (1.3)
2775 m3 + wmamg + u?m3’
—2m2 — 2u*m? — 2wmaoms + wmsy + 2u’my

xr3 = 3 52 )
2\/m2 + wmaoms + ums

1 (4u? — w?)mj3
Ys =+ = 2 2, 2"
2\l m5 + wmams + u*ms;

Corollary 1.0.3. Assume that only the body ms is oblate, i.e. Cyy = Cay = 0. We

obtain the following result: In the three-body problem with one oblate body ms, for every

fized value I of the moment of inertia there exists a unique central configuration, which



18 an 1sosceles triangle with ri3 = ro3.

Corollary 1.0.4. In the case when only the body of mass ms is oblate, by the Proposition

we have ri3 = u =193 =v, sow =1+ u®>—0v? =1, so the formulas (3.55) become

Ty = — \/m% + mamg + u?m3,
v =0,
B —Qm% — 2u2m§ — 2maoms + 2mqy + mg
" 24/m3 + moms + u?m3 7
- 1\/ (du? — 1)m2 (1.4)
2775 m3 + mams + um3’
s = —Qm% — 2u2m§ — 2moms + mo + 2u2m3,

24/m3 + mamg + u?m?

1 (4u? — 1)m3
75 m3 4+ momg + u?m3’

Chapter 4

The Hamiltonian for the restricted four-body problem is:
L, 2 2 1 ¢ m; My Z
H = 5(2% +p, +02) +Yp. — TPy — EZ; (T_i + T_?Ci(?’r_ig - 1)) :

where C; = RfC’%O/ 2, R; is the average radius, C%; is the Cy coefficient of i-body and
ri = ((x —2:)* + (y — y:)? + (2 — z)?)/2. With masses m; = my = ms, we have
Theorem 1.0.5. Transform the Hamiltonian as follows:

(i) shift the origin of the reference frame so that it coincides with ms;

(11) perform a conformal symplectic scaling given by (z,y, 2, Pz, Py, D2) — mé/g(x, Y, 2y Day Pys Dz );
(iii) rescale the average radius of each heavy body as R; = mé/gpi forv=1,2,3;

/3

. . . . . . 1
(iv) expand the resulting Hamiltonian as a power series in ms'”, and



(v) neglect all the terms of order O(m?l)/g) in the expansion.

Then

([0 a(e )

1
H =5 (pz +py +p2) +ype — 20y — 3 + x

(1_,“)(@_1) M(MQ)
2

_l’_

ud v

w/4u2 —w? 6(2—w)v4u2 —w?
((1—/~6)6 y peely )xy_ (1—p) u)zzl

(1.5)

where 1,u,v represent the sides of the triangular central configuration as shown, w =

. IC
L4+u? =02, p=-"2— andc; := p?Ci,/2 = my *REC%,/2, i = 1,2, 3.
i Cao 3 13090

mi1+msa’

Numerical Results: We then obtain the equilibrium positions and their stability charac-
ters in the case of the Sun-Jupiter-Hektor system:

i) Eigenvalues of z-equilibria at (+0.6935267570, 0, 0)

2.5069424783, —2.5069424783,
2.0704830660z, —2.07048306601,

1.9995877290¢, —1.9995877290¢.

Stability type: center x center x saddle.



i1) Eigenvalues of y-equilibria at (0, £7.7545750772,0)

0.98901573257, —0.98901573251,
0.14036873267, —0.14036873261,

1.0013166944:, —1.0013166944%

Stability type: center x center x center.

iii) Eigenvalues of z-equilibria at (0,0, £0.0008923544)

—37514.04321 + 0.9999999997:, —37514.04321 — 0.99999999977,
37514.04321 + 0.9999999997:,  37514.04321 — 0.9999999997¢,

53052.86869¢, —53052.86869¢,

Stability type: center x complex saddle.
Analytical Results: With the tool of Hill’s approximation, we are able to verify analyti-
cally the linear stability of the equilibrium positions in the case of the Sun-Jupiter-Hektor

system.

Proposition 1.0.6. Consider the equilibria on the z-azis. For p € (0,1/2], one pair
of eigenvalues 1s purely imaginary, and the two other pairs of eigenvalues are complex
conjugate, with the imaginary part close to +i for ¢y = co = 0 and for cs negative and

sufficiently small. The linear stability is of center x complex-saddle type.

Proposition 1.0.7. Consider the equilibria on the y-axis. For p € (0,1/2] for ¢; =
co = 0 and for c3 negative and sufficiently small, one pair of eigenvalues is always purely
imaginary, and there exists ., depending on c3, where the other two pairs of eigenvalues
change from being purely imaginary to being complex conjugate. The linear stability

changes from center x center x center type to center x complex-saddle type.

Proposition 1.0.8. Consider the equilibria on the x-axis. For € (0,1/2], forc; = ¢ =



0 and for c3 negative and sufficiently small, two pairs of eigenvalues are purely imaginary,
and one pair of eigenvalues are real (one positive and one negative). The linear stability

is of center x center X saddle type.

Chapter 5
Consider a solid of revolution generated by z — f(z). The gravitational potential at an

arbitrary point 7 of cylindrical coordinates (s, ¢, z) is given by

Vo) =~ | =

Body |7 — 17|

d>7r, (1.6)

where 77 is a generic point inside the body. Using the property of Bessel functions, we

have
Z

Ug = —27Gp ’ f(zl)dzl J_'—OO di: JO(kS)Jz(kf(Z/))eldzz’l (1.7)
0

—20

0
Let I/ (a,b, s) := f Vi (ax) Jo(bx)e dx
0
Function I,y is indeed known in a closed form in terms of Elliptical functions [KIB12]

such that

11_01 (CL, b> S) =

1 [2\7 .

ab s s
E 2 _p? K|[+— —b)A——H(a— h 1.
—E+ (a*—b )2\/% ]+7Tasgn(a b) - (a—b), where (1.8)

Ta

_ (2ﬁ+2 V:(aﬁfé)p H(a—b) = 0 ifa—b<0
1 ifa—b=20

|a7b| S
—2 1I(v, K
a+b (a+b)2+s2 (’ )

Proposition 1.0.9. The gravitational potential at a point of cylindrical coordinates

(s,¢,2) exerted by a body generated by revolving the graph of z — f(2), |z| < 2z is
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given by
Uo = ~2mGp | 2 ST, 5.1z = 2. (1.9)

%
Considering the rotation of the body about the s-axis, total potential is expressed as
the sum of gravitational potential and a non-inertial rotational potential. Consider the

family of shapes

F2) =/ (1= (2/20)) (14 (8/1 = B) (2/0)°) (1.10)

Urotal = — QWGp JO dZ,f(Z,)IIOI(f(Z,), f(Z)v |Z - Z,|)

20

_ ;LfQ(Z)Wz _ %zzuﬂ
For each w we compute the potential at each location of z for fixed v and #. We aim to
find the nominally constant potential by comparing minimum values of the normalized
standard deviation o/(|u|) for fixed v and S.
For this isoperimetric problem, in Section 5.3, for w = 0.1,0.2, ..., 1.0 we find the values at
the parameters v and § for which o/(|u|) attains relatively small values, and we generate
the corresponding shapes.
Chapter 6
Consider a colloidal system, we aim to investigate the interaction energy, which is de-
scribed by Poisson Boltzmann Equation, between two particles. With the charge density

of the solvent, we have:

), (1.11)

where M is the ion bulk concentration of electrolyte, T is the absolute temperature, e the

ion charge magnitude of anions and cations, € is the dielectric constant of the surrounding
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fluid and kp is the Boltzmann’s constant. Considering the dimensionless form: [McL89]

V2o = —sinh (1.12)
where ¢ represents the dimensionless electrostatic potential. Equation (5.91) can be de-

rived from a variational principle, by applying Euler-Lagrange to the action

1
I= J [5 | ¢ |* + cosh(p) — 1]dV (1.13)
Space

where V' is the volume. The minimum of I occurs for the function ¢ that satisfies the
Euler-Lagrange equation, which gives rise (5.91). We propose an ansatz for the density

and corresponding electrostatic potential which depends on the parameter £,

o, 2) = poe sV E—D =3Il G+ 03] (1.14)

where ¢ is the Dirichlet boundary condition, d is the center-to-center separation between
the two spherical colloids and k is a constant refers to an inverse Debye length times the

radius of the interacting particles. The functional forms for the k.
B(p) d
kpest = (A(p) — 0.1)eA@-01% 4 0.1 (1.15)

where A(p) is the polynomial approximation between the linear parameter-n-intercepts
and g, B(p) is the polynomial approximation between the other linear parameter-slope
and ¢y, and d is the separation. Notice that A(y) and B(y) are known explicitly.

Furthermore, we obtain the energy as a function of separation d [HC92]

BAd) =5 | drp.d)Vila) (1.16)

where to recall p is density and ¢ is voltage, which are now known from the previous
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section. For each boundary condition, the integral is performed for the corresponding
optimal value of k£ and thus provides the sought sphere-sphere energy-separation curves.
For each boundary condition, the integral in (6.16) is performed for the corresponding
optimal value of k. Equation (1.16) then provides the sought sphere-sphere energy-
separation curves as shown in Figure 1.1. Based on the shape of the curves, we can draw

conclusions regarding the stability properties predicted by this theory.

Energy
100
80
— 1
60 — 2
— 3
40 — 4
— 5
20 — 6
—_— —— — 7
M . q :
10 20 30 40 50

Figure 1.1: The energy-separation curves for ¢y from 1 to 8.
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Chapter 2

Gravitational Potential -Spherical Har-

monics Expansion

This chapter is devoted to the exposition of some basic notions concerning the gravita-
tional potential expressed in spherical harmonics expansion. We follow the exposition
of [Boy97b] and [Bal94]. Then we use the Trojan asteroid— Hektor as an example to

obtain its spherical harmonics coefficients.

2.1 Background

2.1.1 Gravitational Potential Expressed in Spherical coordinates

Consider two point masses m; and ms, located at position vectors X; and X, in R?
moving under Newtonian gravitational law. That is, the force F' between the two masses

my and my separated by a distance r9; is given by

Gmim
F=-"1"2
T2
where ro; = || X5 — X ||. Since the negative sign of the force indicates only the direction,

we choose to use the convension without the negative sign in the following work. By the



14

F12=F21

—
F21 Fll

my my

Figure 2.1: m; exerts a force Fi5 on my while my exerts a force Fy; on my. Fy is
equivalent to —Fb; by the Newton’s third law.

Newton’s second law, the acceleration a of an object is directly proportional to its mass

m, i.e.

Therefore, the force exerted on m; is expressed as a vector form is given by

Gm1m2 AX_JQ — Xl

2
U531 721

F=m1d’=

However, as is easily demonstrated

Xog— Xy 0 1
T%l 8X12-7’21’

where XE and X;l are the ¢ — th components of X 1 and fg respectively. Hence,

0 .
5X1¢ (7,_21)7 ?

X; = Gma =1,2,3.

Since gravity is a conservative force, it follows that
71 =VV

Gmo
ro1 ’

where V' = which is known as the gravitational potential.

Definition 2.1.1 (Gravitational Potential energy). Due to the gravitational force of

attraction, any two objects with masses m; and ms located on a distance ry; apart
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perform work done and hence they have potential energy. The gravitational potential

energy of the system of two bodies is defined as

Gm1m2
U= .
21

Note that gravitational potential V', is directly related to gravitational potential en-
ergy U and the potential energy of mass m; as U = m; V.

Now we consider a continuous mass distribution instead of a point mass in the standard

X1

g

av>e

g

Figure 2.2: Continuous density distribution.

(x,y, z) Cartesian coordinate system, let the mass my at X, to be Svmz p()fg)d3)52, where
p()@) is the local mass density and d3X, represents a volume element. We have the

gravitational potential at X as

V(X)) = L Md?’fz, (2.1)

21

where G is the gravitational constant. The gravitational potential field is a scalar field
given by (2.1) where V(X)) is the gravitational potential energy of a unit mass in a

gravitational field g. And g is the gradient of the potential energy V()zl), that is,

ov oV oV

g=VV = (é‘_x’é‘_y’g)

The divergence of the vector field ¢ is defined as

V- VV(X)) = V?V = 47Gp(X))
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VA 3

>

>y

Figure 2.3: From Cartesian Coordinate (x,y, z) to Spherical Cooridinate (r, 6, ¢).

by applying the differential form of Gauss’s law for gravity. If the vector X, is outside
of the body of mass mo, then we have p()?l) = 0. Thus we have the equation as
V-VV(X 1) = 0, which is known as the Lapalce’s equation. Consequently, the gravitation
potential V satisfies the Laplace’s equation, that is

RV BV RV

ot e 0. (2.2)

It is an important property of the potential energy which we will be using in later com-
putation of spherical harmonics. Now, it is convenient to adopt spherical coordinates
(r,0,¢), aligned along the z-axis. These coordinates are related to the regular Cartesian

coordinates for masses m; and msy as follows:

x = rsinfcoso
y = rsinfsin ¢ (2.3)

z =rcosb,

where 0 < ¢ < 27 is the azimuthal angle, 0 < 6 < 7 is the polar angle, and r is the radial
distance of the point in the three-dimensional space. Let r5; be the distance between X;

and Xo, r =| X; | and v’ =| X, |.
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Now we have

V(X,) = fﬁp(fz)d3)22

G o e (2.4)
= f = = = = p(XQ)d3X2
VI X |2 =2X - Xot | X, P

Since X - Xp = 1’ cosy where 7 is the angle between the vectors and by the spherical

law of cosine [Svel8], we have
cosy = cosfcos @ + sinfsin @’ cos(¢p — ¢').

Thus, we have

X, - Xy = rr'(cos 0 cos 0 + sinOsin ' cos(¢ — ¢')).

Let
F = cosy
= sin A sin 6’ (cos ¢ cos ¢’ + sin @ sin ¢') + cos O cos §' (2.5)
= sinfsin @’ cos(¢ — ¢') + cosf cosb'.
Then

Gp X2 d3X2

Jvm \/ —2LF 4+ 1

Applying the Binomial Theorem, we obtain

_ LTI SN AP I )l Got Tt PPN
(1—-2—F+(—))2=1+( 2)( 3"+r2)+ 51 ( 2T3"+(r)) +
r! 2 3rF?
_1+??_27“2 22
B r! Ly, r'3
_1+T3"+2(r)(33" 1)+O(T3).

(2.6)
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Notice that the above expansion coincides with Legendre Polynomials, which is an n-th

degree polynomial expressed as:

1 d°

_ (2 n —
P,(z) = S dx”(x )" n=0,1,2,..
Py(F) =1
1 ad 1
1 d? 1d
P (F) = ———=(F* - 1) = - —=2(F* - 1)(2F
1 d 3 )
= —— = — -1
Qd?(? F) 2(33r )
We now have
- 1 = 7‘
V(X)) =] Gl X)) ? F)dX,
Ving —
) . ; (2.8)
== GpXQZ— PlCOS’)/dXQ
" IV, -0

Consider the case without rotation, we have the difference between ¢ and ¢’ as 0.

That is,

F = cosfcost +sinfsiné cos0
= cosfcosf + sinfsin & (2.9)

= cos(f — 0"

With v = 0 — ', we simply have the expansion with only Legendre polynomials, which
define the zonal surface spherical harmonics. Instead of expanding the terms P(cos~y)
with

cosy = cosf cos ' + sinfsin ' cos(¢p — ¢')

n (2.8), we trace back to the general solutions to the Laplace’s equation in spherical co-

ordinates since the potential energy V()Z 1) satisfies the Laplace’s equation as in equation



(2.2).
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Starting with the spherical coordinates as in equations (2.3) The unit vectors in the

spherical coordinate system are functions of position; it is convenient to express them in

terms of the spherical coordinates:

>

-

D>

T T xT+yy+ 22
T or r

= Zsinfcos ¢ + ysinfsin ¢ + 2 cos b

_ S_Z _ —@singsind + gsinf cos ¢
|| S_Z || \/Sin2 G(Sin2q§—|— cos? (b)
(2.10)
= —Zsin¢ + gy cos ¢
= ngS X T

= 3 (cos ¢ cosf) — (—sin pcos ) + 2(—sin® ¢sin @ — sin @ cos® @)

=z cosfcoso + ycoshsing — Zsinb,

where 2, ¢ and 2 are the orthogonal unit vectors associated with the Cartesian coordinate

system and 7, gg and 6 are the orthogonal unit vectors associated with the spherical

coordinate system. Using the expressions obtained above, we can derive the following
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relationships:

o
oo

— = —2sinfsin ¢ + §sin b cos ¢

) (2.11)
% = —Zcos¢ —ysing = —(7sinf + 6 cos )
¢
o0
o0
or

0 ~
§—¢ = —xsin¢cosf + ycospcosf = ¢cosb

=0

=0

2.1.2 Laplacian in Spherical Coordinates

The path increment dr can then be expressed in spherical coordinates as follows:

dr' = d(rr)

= rdr + rdr

) ) . (2.12)
= rdr + r(%dr + %d@ + %dqﬁ)

= #dr + Ordf + ¢r sin 0de.

Consider any scalar field u as a function of the spherical coordinates r, # and ¢. Then

we have

ou ou ou
du = gdr + %dG + %dgb

Note that we can express du as

du = Vu - dr,
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where the del operator V represents gradient. Thus, we have

a—udr + a—dd) + 6—dq§ Vu - d

v (2.13)
= (Vu),dr + (Vu)erdd + (Vu),rsin 6d¢

And therefore, we obtained

ou
(Vu)r—g
10u
- - 2.14
(Vayo = = (214
1 oJu
(Vu)s = r81n95_¢
and
0 0o o 0
V=Tt vo8 t rein62e
Now we have the Laplacian in spherical coordinates as
o 00 6 0.  ou Hou o ou
2, — Y. (p= _
Viu =V (Vo) = (15 * 728 T rsmeos Uar T rae trsme g
o0 ou 0ou b ou
===+ -=+ ———=—)
or> or rdd rsinf oo (2.15)

+08(8u+96u+ ) @)
rod or  rdfd  rsinf oo

¢ 0 ou Hou b ou
+rsin06gb(r6r+r69+rsin98¢)
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With the partial derivatives derived earlier, we have

@_éa_u+éa2u_ ¢ %4__& a2u>
or?  r200 rdfor r?sinfde  rsin€ dpor

0 ou Pu  Fou H0*u  Ocosh du 6 Pu
+—(0— +7 et e e+ — )
r or orof r 80 ro60? rsin®00¢  rsinf dpod

V2u =¢(7

N (¢s1n96 +¢00896u+é o*u
rsin 6 or 5r6¢ r 00 rdbop
_ Psinf + 6 cosf 5u ¢ 2u (2.16)
rsin 6 5gz§ rsin 0 0¢p?
*u 1ou 1% 10u  cosf Ou 1 %
G G o Tt Ca e T i 6
:(82_u+28u)+(l82_u+ cost du o 1 62_u)
or:2  ror r2 00  r?sinf 00 r2sin? 6 02
10, ,0u 1 0 ou 1 J%u

sin 6

7“267“( or +7‘231n«95‘9( 5€) r2sin2057¢2'

Therefore the Laplacian in Spherical coordinates can be expressed as

2 10,00y 1 0, 0,0, 1 &
V= (r 6T)+7’28in059(8m859)+r2sin295¢2

2.1.3 Laplace’s Equation

Laplace’s equation is obtained by taking the divergence of the gradient of the potential,

say 1. It is a second order differential equation such that
V) = 0. (2.17)

As we have derived in Section 2.1.2; we have the Laplace’s equation expressed in spherical

coordinates as
1 ¢
sin 6 00

oy, 1 P
(Slneﬁ) + —sin2067¢2 =

_l’_

(2.18)
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We note that this equation can be solved by separation of variables. Consider the poten-

tial expressed as a product of functions R(r), ©(f)and ®(¢), that is

b(r,0,¢) = R(r)0©(0)(¢).

Substituting the product into the Laplace’s equation (2.18), the derivatives are now the

total derivatives as shown below.

d , ,dR(r) R(r) d , . dO(0) R(r)O(0) d*®(¢p)
a(ﬁ dr )0(0)2(¢) + sin 6 @(sm QW)(I)( sin” 6 dg? =0 (2.19)
Dividing by R(r)O(6)®(¢) throughout the equation, we obtain
1 d, ,dR(r) 1 d, . ,do(d) 1 *O(0)
WE(TQ i) e@emaae 0y ) B(0)sin0 dg2 (220)

The first term is now depending on r only and thus it must be a constant. We choose to
have [(l+1) to be the separation constant. This allows us to have the ordinary differential

equation for R(r) as:

1 d ,dR(r),
That is,
d , ,dR(r) _
) < U1+ DR() =0,

This equation has the linearly independent solution of the form

ATZ7 Br—(l-‘rl)

such that

R(r) = Arl + Br—(#+D
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where A and B are constants which will be determined by given boundary equation
and/or conditions. Since the part of equation (2.20) that is associated with R(r) is
separated to be a constant, the remainder of the Laplace equation is

1 d de() 1 2o

(l+1) + ————-(sinb 7 )+®(¢)sin20 e

©(6) sin 6 df =0

Multiplying by sin? @, we obtain

Smei(sin do(0)

O(0) do

1 26(0)
0 )" B

I(1+1)sin®0 + =0

in which we see that the last term on the left hand side of the equation is a function
depends only on ¢. Similar to R(r), the last term is now separable and it leads to the
well-known Legendre and Associated Legendre Equations [AH12].

The separated equation for ®(¢) is

1 d&?d
—_— (gb) = const.

(¢)  de?

Similarly to the previous case, we will choose the constant to be —m?. Since the solution
of the equation has to be a single value, m is required to be either a positive or negative

integer. The constant —m? allows us to justify the solution precisely:

1)
®(¢) dg?
o)
g = ) (2.21)
F(9) +m?®(¢) =0

d¢?



25

The solution is of the form of 7. Tts characteristic equation is (y* +m?) = 0 and implies

v = £ma. Therefore we have the solution as

B(0) = e,

or the general solution as a sum of real functions

O(p) = A, cos(me) + B,, sin(ma),

where A,, and B,, are some constants.
With separating the function for ®(¢) we have the original Laplace equation (2.18) left
with ©(6). Dividing

d d0(0)

1 <2 2 . O i S A
I(l+1)sin“0 —m —|—sm6@(0) de(sm@ 7 )=0
by ©(0), we have
(I(1 + 1) sin? @ — m?)©(0) + sin Gi(sin GM) = 0. (2.22)
df do
Let u = cos @, then % = —sinf and
d d du .o d

Substituting equation (2.23) into the Laplace equation 2.22, we obtain

d do
c 2 2 . . _
(I(I + 1) sin“ 0 — m*)© + sin Hdu(sm ‘gdu) 0
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and thus we can now change the entire equation depending on wu instead of 6:

11+ 1)(1 = u?) — m?)O(u) + (1 — u2)di((1 ENUCIOI, (2.24)

U du

2.1.4 Associated Legendre and Legendre Equations

The equation (2.24) derived from the Laplace equation (2.18) in the previous section can

be written as follows by dividing the whole equation by (1 — u?):

d*O(u)
J— 2 N —
(1 —u?) T 2u T

Mﬂzaﬂ)—l’f’;

)O(u) = 0. (2.25)

This is known as the Associated Legendre equation. It is an equation expressed as a
function of cos# and the solutions to the Associated Legendre equation are also polyno-
mials, which are known as the Associated Legendre polynomials.

In the particular case of m = 0, we obtain a simpler equation

(1— u2)d2z<2“) — Qudi)iiu) +1(I+1)0(u) = 0. (2.26)

This is known as the Legendre equation and the solutions to the Legendre equation are
polynomials, which are known as the Legendre polynomials.
In this section, we start with solving the Legendre equation for Legendre polynomials.
Then we make use of the Legendre polynomials to solve the associated Legendre equation
for Associated Legendre polynomials.
To simplify the notation we let g = ©(u), then the Legendre equation becomes

d?qg

d
(-t 2u£ (1 + 1)g = 0. (2.27)
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By the product rule of differentiation, we have

d 2,49 _
@((1 —u )@) +1(l+1)g =0.

In order to give the general solution to the equation, we consider

Then we have

y = 2u(u® — 1)1

Multiplying by 1 — u? to 3', we obtain

(1 —u)y = —2lu(u® —1) (228

= —2luy

Thus we can easily obtain

(1 —u?)y + 2luy =0

Now let v = 1 — u? and performing k-times differentiation by using Leibniz rule, that is,

dk % (’f) ), (k=i+1)
— vy = C)oVy .
1= ()

Since v is a second order polynomial, only three terms of the above sum will survive.

dk
W[vy'] = vy * Y 4 ko'y® 4 Bk — 1)p@yt-D

u (2.29)
k(k—1
(1= )y — 2y ® — 2¥y<k—n
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Similarly, we apply the Leibniz rule on the product 2luy.

dk
%[QZuy] — 2uy™ + 20ky*+
We now have
d* d*
T [vy'] + T [2luy] = 0

becomes
(1 —u?)y** ) — 2kuy™® — k(k — 1)y* Y + 20uy® + 2nky*Y = 0.
Let Kk =1+ 1, we have
(1 — )y —2(1 + Duy™ — (1 + 1)(D)yV + 20uy™V 42101 + 1)y =0
and it simplifies to
(1 —u?)y"? —2uy™™D + (1 4+ 1))y = 0.

This is indeed the Legendre equation (2.27) with

This shows that

2 l
clw(u —1) (2.30)

where ¢; is a constant satisfies the Legendre equation. For normalization, ¢; is chosen to
be 575 such that expression (2.30) is 1 when u is 1 and thus

1 d o,

ﬂw(u —1)! = P(u),
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which is known as the Legendre polynomials (i.e. Rodrigues’ formula). In the case of
considering a m-times differentiation to the Legendre equation, we apply the Leibniz rule

to the products vg”, —2ug’ and (I(I + 1) — m(m + 1))g as follows:

dm
d_[vg//] _ Ug(m+2) Qmug(erl) m(m _ 1)g(m)
um
am / (m+1) (m)
d—[—2ug] = —2ug 2myg
um
d” (m)
T [l(l+Dg]=1(1+1)

Thus we obtain a new differential equation
(L —u?) (¢")" —2(m + Du(g"™) + (I(I + 1) — m(m + 1))g"™ =0, (2.31)
where g™ = L= g(u). Now we consider
o™ = (1 =) fw) (232

and we need to find such a function f. To determine r and the condition for f, we first

computer the first and second derivative of the expression (2.32) as follows:

[9") = —2ru(l —u®)"7Vf 4 (1 — ) f (2.33)
[g™) = (1 —u?) f'—dru(1—u®) " f —2r (1 =) frdr(— e (1—u?) S
(2.34)

Substitute the expressions (2.33) and (2.34) into equation (2.31), we have

(1—u2) f"—2u(m+1+2r) f'+ (z(z 1) m(m 4 1) —2p 4 =D dr(m 1)) F=0

1 —u?

(2.35)
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Notice that with » = —*, we recover equation (2.25) with ©(u) = f. Therefore, the
function

_ 1wy 2.36

fy = (1) % g, (2.36)

where g(u) is a solution to the Legendre equation (2.26). The solution to the Associated
Legendre equation (2.25). With positive integers [ and m is known as Associated Legendre

polynomials and it is denoted as P/™(u) such that

m

B (u) = (1—u?)? m—mmﬂ(u). (2.37)

Since we do not have computation for derivatives with negative index, we define P (u)
with positive m. However, we can use extend it to negative m by rewriting equation
(2.37) with Pj(u) defined through Rodrigues’ formula. We have

" my2 d™ 1 d
P (u) = (1 —u?) Tum (ﬁw(uz - 1)

(2.38)
1 gy m dl-i—m ) .
Replacing m by —m now, we obtain the extension to negative values of m:
. 1 m dlfm
() = o (L= ) e (u® = 1)
Recall that u = cosf, we have the solution to the Laplace’s equation (2.17) as
U(r,0,¢) = R(r)O(0)2(¢)
e} l .
— Z (Al,mrl + Blymr_(lH)) (P (cos0)) (ezm‘b) (2.40)
_1 ’

~
Il
=]

m

(Al,mrl + Bl7mr_(l+1)) }/Qm7
l

~
Il
=]

-
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where Y™ is the spherical harmonics that is defined in Section 2.1.5.

2.1.5 Spherical Harmonics

In general, the Associated Legendre polynomials is defined in the previous section 2.1.4

P = (1— )L (pyu)),

du™

with —1<u <1, m>=0and ! >m.

Although differentiating a negative number of times is not defined, this problem does not
occur in the Associated Legendre polynomials. As shown in Section 2.1.4, the Rodrigues’
formula allows us to extend the range of m to —{ < m < [. Hence the definition of P"
is also valid for negative m without loss of generality.

Assuming m is non-negative, we start with the Rodrigues’ formula

1 l+m
PM(u) = 5 (1= u?)™P——(u® = 1)’
24! dul+m
) . Lo l l (2.41)
= g1 - )™ g L+ 1) (w = 1)]

Now using the Leibniz rule to evaluate the derivative, it yields

l+m

1 (I+m)!  d(z+ 1) dT™ " (x—1)
pm = _—(1— 2\m/2
(1) 2ll!( w) 7;0 ri(l+m—r)l  dar dxl+rm=r

Considering the two derivative factors in a term in the summation, we note that the
first is non-zero only for » < [ and the second is non-zero for [ + m —r < [. These two

conditions combine to yield m < r <.
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Performing the derivatives, we obtain

1 ' l+m)! Du+ D) (w— 1)
pm = — (1 — 2 m/2
() 211!( w) Z drll+m—n) (I—r)! (r—m)! (2.42)
2.42
l l—r+m/2 r—m/2
_ (- 1)m/2l'(l+m Z (w — 1) m2 (y — 1)/ '
=l +m =)l —r)i(r —m)!
For the derivation of P, ™ (u), we perform the steps similarly as above
Il —m) ' D% (u— 1)+%
Plfm(u) _ (_1)7m/2 ( m) (u + ) (u )
2! =il =m =)l = r)l(r +m)!
Let ¥ = r + m, we have
l[ l_ l U+ 1 I— r+m/2( _ 1)177m/2
p—m _ m/2 '
() = (-1 T; W=7+ m — )7
In this case, we obtain the identity
-m _ m (l B m)' m
B (u) = (=1) = m)!Pz (u). (2.43)

It is now convenient to introduce Spherical Harmonics, which are special functions that
define on the surface of a sphere. Spherical Harmonics form an orthogonal system, so
they set up the base to the expansion of a general function on a sphere. A set of Spherical

Harmonics are defined as

204+ 1 (1 —m)! )
Y™ (6, 6) E\/ = EHZ;!P;"(cos@)em
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withm =—l,—-l+1,....,l—1,land [ =0,1,2,.... Notice that

(2.44)

= (=1)"Y/™(0,9)

= (—1)"Y™(0, )

where Y, (6, ¢) denotes the conjugate of ¥, (6, #). The condition of the orthogonality
isl' <1,

21 T
f dgbf sin 0dOY;™" (0, §) Y™ (0, ) = 01 G- (2.45)
0 0

A general function ¢(f, ¢) is expanded in terms of the Spherical Harmonics as
9(0.0) = Y AT (0,9),
I,m

with
27 T
A = | do | dosingy(0.0)y7 0.0)
0 0

The angular part of the solutions to the Laplace equation is contained in the product of
the azimuthal function ®(¢) and the polar function ©(). The azimuthal function com-
prise a complex exponential ¢™? and the polar function is a solution to the associated
Legendre equation P/™(cos®).

Considering that most applications of spherical harmonics require only real-valued spher-

ical functions, as the gravitational potential that we are working on, it is convenient for
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us to define the real-valued spherical harmonics function as follows:

V2Re(Y™) = V2K cos(me) P (cos 6) ifm>0

Yim(0,0) =4 Y2 = KOP(cos 6) iftm=0

V2Im(Y™) = 2K sin(| m | ¢)P™ (cos8)  if m < 0
\

with 1/2 as a normalized factor and where

Fom 20+ 1 (1 —m)!
L 4 (L+m)l

The real functions Y;,,(0, ¢) are known in the literature as spherical harmonics of the

first kind and they are divided into three categories:

(I) When m = 0, it is known as zonal harmonics.

(IT) When [ = m, it is known as sectorial harmonics.

(IIT) When [ # 0 and [ # m, it is known as tesseral harmonics.

The three types of surface harmonics represent different types of surface changes; graph-

ical representation of the three types of surface harmonics is provided below.

Figure 2.4: Graphical views from the side of objects. The left and right picusre represent
the zonal and tesseral harmonics respectively while the middle one represents sectorial
harmonics.

Modeling an object by the zonal harmonics appear as a circle while viewing the
described object from the top since the changes of the shape is happened to have some

of the horizontal slides of the sphere cut off. This provides that zonal harmonics do not
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depend on longitudes. Modeling an object by sectorial harmonics appear as splitting as
"triangles” while viewing from the top since the changes of the shape is sectional cut
off of a sphere along longitude. Modeling an object by tesseral harmonics appear as
a "checkerboard” while viewing from the top since the changes of the shape is cutting

pieces out like a ”checkerboard” in general.

Figure 2.5: Graphical views from the top of the objects. The left and right picusre
represent the zonal and tesseral harmonics respectively while the middle one represents
sectorial harmonics.

2.1.6 Gravitational Potential in Spherical Harmonics Expan-
sion

Since the gravitational potential (2.1) satisfies the Laplace’s equation as discussed, we
have V' in the form of equation (2.40). Remark that in the case of our interest, a
potential in free space vanishing at infinity and thus A; ,,, must be zero in (2.40). Consider
the gravitational potential V' in spherical coordinates as an orthogonal expansion using

spherical harmonics, we have

0 l
V(r,0,¢) = Z % ) Z P (cos 0)[Cym cos(me) + S, sin(mo)] (2.46)
m=0

where Cj,, and S;,, are the spherical harmonics coefficients and M is the mass of the
body. Note that in the case of gravity field, we adopt the convention to be real for the

expansion functions.
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2.1.7 Derivation of Spherical Harmonics Coefficients of a triax-

ial Ellipsoid

The solution to the Laplace’s equation as in equation (2.40) is expressed by a series of
spherical harmonics Y;™, which consists of two terms. The two terms are known as the

spherical surface harmonics and defined as Y,%, and Y}% :

B/ (cosB) cos(m¢) = Y5,
| (2.47)

P["(cost) sin(me) = Y5,
Note that the orthogonal property of the Spherical Harmonics is of use in the following
text. In this thesis, we consider the shape of triaxial ellipsoid with semi-major axes

a > b > c. Of our interest, the gravitational potential (2.46) has the the coefficients S,

are all zeros due to the symmetry of triaxial ellipsoid. We have

0 l
V(r,0,¢) = Z % )! Z P (cos 0)[Cym cos(me)]. (2.48)
= m=0
Consider
o 1
B = Z Z P (cos0)Cy,y, cos(mo) (2.49)
I=0m=0

Multiply both sides of the equation by Py (cos6) and cos(m'®) (i.e. Y©..) , we have

w 1
BPy (cos 0) cos(m'¢) = Z Z P (08 0)Clpm cos(me) P (cos 0) cos(m' @)
o (2.50)
= g ; Z;, (2 = Som) fv P{,”/(cos 0) cos(m'¢)dV = Cy,,.

This provides us a way of determining the coefficient C),, [Bal94]. With the symmetric
property, we have Cy,. 1, = 0 and Cyp, 941 = 0 and thus we only consider the even terms.

As shown in equation (2.50), we use the property of orthogonality and normalization
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of spherical harmonics. Similarly, we obtain the coefficient Cy 5, of the gravitational

potential (2.46) as in [Bal94] and [Boy97al:

B (20 —2m)!
Mr'2 (21 + 2m)!

Coram = (2 = dom) J P22 P2 (cos 0) sin 0 cos(2me)drdfde.  (2.51)
v

Considering M = Bal94], we have

47rach [

3 (21—2m)!

C m = 7
22 dmaber' (21 + 2m)!

(2 — Som) f r2T2 P2 (cos 0) sin 0 cos(2me)drdfde  (2.52)
\%

where r is the radius of mass m while a,b and ¢ are the semi-axes of the ellipsoid aligned
with the z-, y- and z-axes respectively such that a > b > c.

The integral of (2.52) is given by [Boy97b]
2 D(6,¢)
f f J 212 P2m (cos 0) sin 6 cos(2me)drdfde.

Following the derivation of [Boy97b|, we first integrate with respect to the radial coordi-

nate r, then

D 2043
f 7’2l+2d7" _ D
. 2+ 3

1 cos’¢ sin?¢ cos? 0 SICTE)
:2l+3[( a? b2 )sin’ 6 + c? ] (2.53)
1 1
20+ 3 (Asin?0 + Bcos20) =z
where A = =5 ¢ + “n s ¢ and B =
Second, consider the integral with respect to the angle 6
" 2m : 1
Py"(cos @) sin 0 —dbf
0 (Asin®60 + Bcos26) 2 254
(2042 )‘lim (_1)2' J*Tr cog2l—2m=2i g i 2m+2i+1 edg (2.54)
= m)! .
= 22m 220 — 2m — 20)!(2m + 4) ! (Asin®6 + B cos? 9)%
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by using another definition of the Legendre polynomial, that is,

t( ) (_1)1(1_u2)?+2ul—m—21

Pm™(w) = (I+m)! .
("u) = (L4 m) 2m2i(] — m — 24)\(m + )il

(2.55)

2
i=0

which differs from equation (2.42) by rewriting the combination of terms. Let u = tan?

and consider A and B as variables, we have

(21 + Qm)!lim s (—1)1" _ J’r cosQlTQ’”_%Gsian”i;Gde
izo (20 = 2m = 2))!(2m + )il Jo  (Asin®60 + Bcos?6)
I—m i
=21 +2m)! ZE) 92m+2i (9] — 27(71 i)22')!(2m + )l
(=4l gmt gt f sin 6 0
(20 + D) oBI=m=1 0A™ T Jo (Asin? 6 + Bcos?6) =
N (=1

—(21 + 2m)! .
(21 +2m) ZE) 22m+2i(2] — 2m — 20)1(2m + 1)\
(—4)”! al—m—i am—&-z‘ JOO du

(20 + 1)1 OBEm-i 9A™ 1} (Au + B)3
l—m ] —m—t '
(—1)’ (=4)e omt omt 2
—(20 + 2m)! . - -
(21 +2m) ZO 22m+2i(2] — 2m — 2i)!(2m + i)ld! (2 + 1)l 9BI-m—i o4y

=2]!

(21 + 2m)! li” Kimi

(20 + 1)) & Amtiil

(2.56)

where
(m + Z) !62l72m72i+1

Kipi = (_1)i(2m + )l —m — )il

Notice that A involves angle ¢, which is the left over term to be considered in the integral

(2.52). The last step for solving the integral, we take the integration with respect to ¢.
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Let ¢ = 2¢, we have
T cos(2me)de
0 Am+i+l

_ JQ” cos(2mao)d¢

cos? ¢ sin? ¢ ;
0 (a2 + ~ )m+z+1

(@)t 2T cos(2me)de
( J (

a262)m+i+1 cos? ¢ sin? ¢)m+i+1
a? b2
2m
:(ab)2m+2i+2f cos 2mf¢2 __do
o (b2cos? ¢ + a?sin® p)mtitl
2w
- 2mao
_ (ab)2mH2ie? J cos d 2.57
( ) 0 (a2+b25a2+b2 cos? ¢ + a2+b2J2ra27b2 sin2 ¢)m+i+1 ¢ ( )
2m
- 2mao
—(ab 2m+2¢+2f cos d
(ab) 0 (#(cos2 ¢ + sin? ¢) — “2;’2 (cos? ¢ — sin? @) )mtitl ¢
~(abyme | ) 08 2mo o
—9(ab 2m+2i+2j cos map d
( ) 0 (a2J2rb2 — a25b2 (COS(w))m'H"'I ¢
, 1 T cos ma)
=2(ab)2m+2z+2 : J s e : d’QD
(ab)™ =t Jo (%5 — %5 cosy)m it

Notice that the integral above is in fact the Laplace’s second integral [MS]:

Definition 2.1.2 (Laplace’s Second Integral for P (z)). If n and m are positive integers

and m < n,

min o gm 1T cos me
Fi@) = (=1) (n—i—m)!wL (gj-|-\/x27_1cos¢)n+ld¢

2 2 . . . .
Now we let “225 =z and m + ¢ = n, we can easily express the integral in terms of

associated Legendre polynomials

T cos m amti—m) o a? + b
J @21 b2 a2 b2 il ¢ = (_1) W m+z(W)
o ("2 — 3 cosY) ' (2.58)
! m 0%+ b
= (_1) (m + Z)|7TPm+z( 2ab )



40

We thus have

CQl,Zm
_ 3 120 -2m)! s Zf A=2m=Zi(gpymre (a2 + b2)
- RY (2m+i)(21+1 om) 2m+i)!(l—m—z’)! mE 9ah

=0

(2.59)

Indeed, this expression could be further simplified by the idea of Ivory’s theorem [Dan89]—
instead of depending on the value of a, b and ¢, the gravitational field of a homogeneous
triaxial ellipsoid at any exterior point depends only on its mass and any two of the quan-
tities a? — b2, b* — ¢ and a® — 2.

The Spherical harmonics form an orthogonal set of functions, so we can apply the Ivory’s
theorem such that each of the Harmonics coefficients depends only on a = a? — ¢ and
B = b* — 2. It implies that for any two ellipsoids with different value of a, b and ¢ but
identical values of o, § and masses, their gravitational potentials are the same. We may
reduce the terms of Cy 9, by applying the idea to an ellipsoid that is equivalent to the
one in which we are interested but with the shortest axis as zero (i.e. ¢ = 0).

Now with a = /o, b = /B and ¢ = 0, we have only one non-zero term left from the

series— when i =1 —m

3 120 —2m)! m (aﬂ) a+p
Corom = — 2 — dom ) (—1 Il ——=). 2.60
2ham T RA (20 4 3) (21 + 1)!( om) (1) (I +m)! (2«/04&) (2.60)
Expanding the Legendre polynomial again as defined in (2.55), we have
int(L5m i a miil m—2i
P 50y = (14 m) (Z D0 - G GE) T
movaB L4 2m+2i (] — m — 20\ (m + i)l
int(l_Tm) i a+f3 m 40 oat+B \l—m—2i
()l (D)'A = () () (2.61)
Frd 2m+2(] —m — 20)!(m + 4)l4!
5m) 1) BHi(a=Bym+2i(_ atByl-m—2i
o Z il o

zmm [—m —20)\(m + )l
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312 —2m)!
R2 (21 + 3)(20 + 1)!

|~

(2 = Gom)(—1)'" % ()

CZ[,Qm =

) (2 +21)(agﬁ)m+2i(a2ﬂ)l—m—2i

; 2mA2(l —m — 2i)l(m + 1)l

(2.62)

_ 3 (21 — 2m)! (2 o) (015) % Z (e ﬁ)erQz( #)lfmfm
int(lmm . .

. 3 l'(2l — 2m)' (2 _5 ) t(z ) (QT_ﬁ)mJFQZ(_%Lﬁ)l*m*zl

CRE@+3) DN A gmei(l—m = 2i)l(m + i)l

Since this is the harmonic coefficient for the equivalent ellipsoid it must be the coefficient
for the original ellipsoid and thus « and 5 can be rewritten in terms of a, b and ¢ without

loss of generosity.

3 (21 — 2m)! 2 52)m+22 [ — (a i
r222m (2] 4+ 3)(20 + 1 16:(1 — 9% ) (m + )il
(2.63)

C(2l,2m =

Notice that coeflicients Co; o,,, are all non-dimensional.

Remark 2.1.3. In the formula of Cy2,,, variable r carries the unit of kilometers while
the term a? — b? carries the unit of square kilometer. In the first fraction of (2.63), we
have r?" as the denominator and thus it has the unit of (km)?* in the denominator. The
numerator of the fraction of summation has the term (a? —b%)™"2?* which carries the unit
of (km)*m*+2) while the term [¢® — $(a® + b?)]'""™~% carries the unit of (km)!=m=20).
With the multiplication, it gives (km)Xm+20+2(0=m=2) — (km)2 which is the same as the
unit we obtained from the denominator of the first fraction. A cancellation performed

for simplification, we obtain a no-unit quantity as the coefficient Cy; 2,,. Therefore, it is

a non-dimensional quantity.

Other than the coefficients .S, are all zeros, all the coefficients (Y, with either [ or
m as odd number are also zeros. Thus, the coefficients that contribute to the gravity

as non-zeros terms are those of the form Cy,, for [;m = 0,1,2,... [Sch16]. Since we
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consider a triaxial ellipsoid, the shape of its body is defined by the equation

It follows that the first few terms of the spherical harmonics Cy 9y, for [,m = 0,1,2, ...

can be written as the following explicit formula [Sch16]:

5R? 2
Ca )
Cio == (Ch +2C3) (2.64)
Cio = 2 (ChCh)
Cio = 5:Cha

where R is the normalized mean radius of the body.

2.2 Data of Trojan Asteroid 624 Hektor and its Spher-
ical Harmonic Coefficients Computation

The spherical harmonic coefficients of a homogeneous tri-axial ellipsoid are given by:

Z’I’Lt(l Ut 2 m+4i 2 2 l—m—41
3 (W2 =m)! a? — b)) — 5(a® + 0]
(2 —
Com = Rl 2m(z+3)(z+1) dom) Z 167 (=m= Z)!(m;%)!z!

where dg,, is Kronecker symbol, a, b, ¢ are the semi-major radius of the tri-axial ellipsoid
and Ry is a scale length. According to the reference [Johll] we have Hektor is approxi-
mately 416 x 131 x 120 km in size and the equivalent radius (i.e., the radius of a sphere
with the same volume as the asteroid) is Ry = 92 km. Therefore a = 208km, b = 65.5km

and ¢ = 60km; we take the scale length equal to the mean radius of Hektor, which is
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approximately 92km.

Using the above formula, the following values for the first (non-zero) spherical harmonic

coefficients are obtained:

Cho = —0.4768, Chy = 0.2302,
Cio= 0.7143, Cuo=—0.0784, Cyy= 0.0095,
Coo = —1.5477, Cga = 0.0768, Cgq=—0.0025, Ceg= 0.0002

Among the above data, both Cyy and Cy, are significant to the gravitational potential.
The sectional cut along the latitude of the body is described by the coefficient Cys.
Due to the fact that Hektor spins as fast as 6.921 + 0h [Johl1l], the averaging effect of
the coefficient Cyy is zero. While spinning fast, the effect of Cys can be considered as
averaging out all the sectional cuts of the body. Therefore we opt out the effect of Cy

in the following chapters.
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Chapter 3

Central Configurations of Oblate bod-
ies

This chapter is devoted to give some background information about central configuration
as well as the derivation of the triangular central configurations of the model of three
oblate bodies under mutual gravitational interaction. We will also consider the particular
case when only one of the three bodies is oblate.

We note that there exist papers in the literature (e.g., [APHS16]), which consider systems
of three bodies, with one of the bodies non-spherical, which are assumed to form an
equilateral triangle central configuration. Such assumption, while it may lead to very
good approximations, is not physically correct. Thus we aim to present the central

configuration of the model that we are interested in.

3.1 Background

3.1.1 Central Configuration

The n-body problem study the motion of n—point masses in RY moving under their

mutual gravity, where N = 1,2 or 3, assuming that the gravitational constant G = 1 the
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equations of motion can be written as

. - - oUu
M — Z memy(qr 3611) VU= & (3.1)
k=1 k=l HQk - QlH an

where my, is the body mass for k£ = 1,2, ..., n, g, is the position vector of the mass my, U

is the Newtonian potential such that U = %, _; "™ and ry, = | — gi for | # k. Notice
that the potential U only depends on the mutual distances. Denote q = (¢1, 42, G35 -+, Gn ),
and M = Nn x Nn diagonal matrix with NV copies of each mass along the diagonal. Then

equation (3.1) can be written as
Mg = VU(q), (3:2)

where V is the Nn dimensional gradient given by V = (Vy,...,V,,) where V; is the

N-dimensional gradient.

Definition 3.1.1 (Central Configuration). A Central Configuration in the n— body
problem is a particular position of the n— particles where the position and acceleration
vectors are proportional, with the same constant of proportionality. In other words we

have

Ge(t) = vae(t), (3.3)
forall t and kK =1,2,...,n.

Consider the center of mass is fixed at the origin, equation (3.3) says that all of the
accelerations are pointing towards the center of mass, which is the origin, under our
assumption. Multiplying both side of equation (3.3) by myg, and taking a summation

over k, we have

Z MGy - Qe = 72 miqi, (3.4)
k k
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where - refers to dot product in RY. Thus, we have

quVkU = ’ykaqi. (3.5)
k k

Next we introduce moment of inertia by the following definition:

Definition 3.1.2 (Moment of Inertia). The moment of inertia is given by

j=1

where m; is the mass for the j* body and g; is the position vector of the mass m;.

Now, the equation (3.4) becomes

Dae U =11 (3.6)
P

Furthermore, we have

ZkakU ZQkZ T — qr)

3
2l — al]
mymy mpmy
Tk +Z%Z — k)
Z ; la — H3 = la— a H3
mkal—Qk mkak_Ql)
DXy e Z D e
ko I<k <k (3.7)
o (@ — qr)
= 2—3(% — @)
o — al
_ _Z mym (g — qr)?
= o —alP

=_U

The relationship above shows that the constant

N=— (3.8)
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that introduces a negatively proportionality in a central configuration. Denote M =

my +mso +---+m,. Using the assumption of having the center of mass at origin, we have

D mimgry =Y mimyllg — g4
% 7

= ZTrLZTrL]HqZH2 - QZmiiji g+ Zmz‘ijQj||2
i,j 1,7 ]

(3.9)
=MI — QZmiqi (ijqj> + MI
i J
=2MI.
Moreover,
Zmimjr?j =2M] — QZmimjrfj =2M]I.
i i<j
Thus the moment of inertial I can also be written as
I = 1 2 3.10
= M Z mimjrij. ( . )

i<j

As the moment of inertia I can be written in terms of the mutual distances, we can find

its relation with the potential U easily. Using the equation of motion, we now obtain

0
Mq(t) = YMq(t) = v ) mpqr = 1 —— (myqi)
Zk: 2 ; 0 (3.11)

VU(q) = %WI (q)

Since the central configurations are invariant under scaling, we may as well normalize the
central configuration by setting I = 1, a normalized central configuration will be resulted
in this case . We observe that equation (3.11) is a Lagrange multiplier problem, with v as
the Lagrange multiplier. It is well known that this delicate balancing of the gravitational
forces in equation (3.8) gives rise to some remarkable solutions of the n-body problem.

In this chapter, we found the scalene triangular central configuration as a solution to a
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restricted four body problem with three heavy oblate bodies. In this thesis, the notion
of Central Configuration and the results on this chapter are important for an application
on the Hill approximation as shown in Chapter 4.

For instance, in the case of point masses, for n = 3, the only non-collinear central
configuration is that the masses lie on the vertices of an equilateral triangle, which is
known as the Lagrange central configuration. It is one of the first explicit solutions given

in the three-body problem. We will consider this central configuration in the next section.

Definition 3.1.3 (Homographic solution). A solution q(t) = (¢1(t), g2(t), ..., ¢, (t)) of the
n—body problem is called homographic if the configuration of the bodies remains similar

with itself for all time t.

In other words, there exists a scalar function P = P(t) > 0 and an orthogonal ma-
trix Q(t) € SO(3), such that qx(t) = P(t)Q2(t)qx(0), for k = 1,2,...,n, where ¢(0) =
(q1(0), ..., qn(0)) in RY is a central configuration. Homographic solutions are the config-
urations that are invariant under scaling and rotation and it is often called the self-similar
configurations. A special class of homographic solutions consists of those for which the

shape of the configuration remains unchanged.

Definition 3.1.4 (Relative equilibrium). A solution of the n-body problem where the

configuration formed by the bodies stays self-congruent is called a relative equilibrium.

In the following sections, we are particularly interested in obtaining the relative equi-

librium solution for some special cases.

3.1.2 Central Configuration for the Three-Body Problem with
All Three Point Masses the— Lagrange central configu-

ration

Consider three point masses are interacting under the Newton’s gravitational force such

that m; = mo = mg. We refer my as the primary body, msy as the secondary, and ms
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as the tertiary. we obtain the following system of equations of motion. Below ¢, ¢2,q3 €

R%(N = 2):
. ( ) 1 N ( ) 1
miqr = mamol\q2 — q1)y 3 T UM3\g3 — q1)7——— 3>
11 1maldz = QT 1malgs — QT T
j (01 = ) 5 + mama(gs — ) — (3.12)
MmaGo = mamy(q1 — @) ————= + mamgz(qs — @@) —————, :
242 2mqL — Q) 2305 — Q)] s
i (02— ) + mama gz — 1) —
msqgs = mami\q1 — q3)7 3 T MaMal\q2 — 41) 73>
the gravitational constant is normalized to G = 1. Denote r;; = |¢; — ¢;||, for ¢ # j,

q = (q1, 2, q3), and M = diag(my, my, ma, ma, m3, m3) the 6 x 6 matrix with 2 copies of

each mass along the diagonal. Then (3.12) can be written as
Mé — VU(q), (3.13)

where

1 1 1
Ulq) = mams <—> +mymg (—) +mams (—) (3.14)
12 713 793

is the potential for the three body problem. Assuming the center of mass is fixed at the
origin, we have

3
Mq = Z m;q; =0, (3.15)

i=1
Following the notation and derivation in section 3.1.1, we have equation (3.8). As the
moment of inertia I can be written in terms of the mutual distances, the conditions for

U to have a critical point on the fixed I are

mims

2

- = YM1MaT 9
T12

moinsg 2

— = YMaMmsTys (3.16)

T23

msm; 9

- = YM3mirsy

731
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1

which has the only solution of 715 = 193 = 131 = (—%) g. This solution is an equilateral
triangle while v is a scale parameter— one of the first explicit solutions given in the three-
body problem was the Lagrange central configuration, where three bodies of different
masses lie at the vertices of an equilateral triangle [Geil6,Eas93], with each body traveling

along a specific Kepler orbit [Bell8].

Proposition 3.1.5 (Equilateral triangular centeral configuration). In the three-body
problem with all three point masses, for every fived value I of the moment of inertia

there exists a unique central configuration, which is an equilateral triangle.

3.1.3 Location of the Bodies in the Equilateral Triangular Cen-

tral Configuration

We now compute the expression of the location of the three bodies in the equilateral
triangular central configuration, relative to a synodic frame that rotates together with
the bodies, with the center of mass fixed at origin, and the location of m; on the negative
r-semi-axis. In R3 (N = 3), we have ¢; = (4, y;, 2;) as the position vector of the i" body
with mass m;, for ¢ = 1,2,3. Assuming the normalization of masses and the masses lie
on the xy-plane, we have 2221 my = 1, z = 0 for all bodies. Instead of fixing the value of

the moment of inertia I, we fixed the length of the equilateral triangle to be 1. It gives



us the system of equations

(g — 351)2 + (Y2 — y1)2 =1
(s —21)° + (3 —w1)* = 1

(x5 —22)” + (Y3 —y2)® = 1

mix1 + Moxo +mgxs = 0,
miyr + may2 + mayz = 0,
my+mg+mg = 1,

y1 = 0
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(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)

(3.23)

Solving the system of equations, we obtain the location of the Lagrangian equilateral

triangle central configuration and the positions of the vertices is given by the following

formulas:

(X3:Y3)
@ 1my
S
|
4 \
e i
7 1
/// \\
/7 1
r13:1/// .‘
, \
/// .|r23_1
‘\
1
1
\
// \..
m, - \
S + >
k! S \
(XI:Y1) Tl - )
(X27YZ)

Figure 3.1: Equilarteral triangular central congfiguration.
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B —|K|y/m3 + mams + m?

T K y
Y1 = 07
21 = 0,
o | K |[(ma — mg)ms + mq(2mg + ms3)]
y =
2KA/m3 + mamy + m3

B —+/3ms ms
Y2 2m§ m% + moms + m%’ (324)
Z9 = 07

N |K]|
xr3 = )

2\/m§ + mams + m3

B \3 m3
3= 2m2% m3 4+ mamg + m3’
Z3 = 0,

where K = mg(ms —ma) +mq(msa + 2mg3). See [BP13]. We note that as ms3 goes to zero

the limiting position of the three masses is given by:

Ty = —Ma, =0 2z2=0
T = 1-— ma, Y2 = 07 2y = 07 (325)
IgZH%, 93:\/757 23:07

which represent the positions of the primaries and of the L, equilibrium point in the

planar circular restricted three-body problem.

3.2 Central Configuration for the Three-Body Prob-

lem with All Three Oblate Bodies

In the case of an oblate body, we describe the gravitational potential of the body in terms

of spherical harmonics as in Chapter 2, and we only retain the most significant one, that



23

is the coefficient Cyg, which is also denoted by —.J,.

We start by finding the triangular central configurations formed by the three heavy
bodies my, mo and mg. Consider three heavy, oblate bodies with normalized masses
my1 = my = msy such that Z§:1 m; = 1. We denote the oblateness coefficient by C%, for

each body m;. The corresponding gravitational potential in Cartesian coordinates is:

e =" M () () (3(2) ) (3.20)

where m, is the normalized mass of the i body, r is the distance from m,;, R; is its
average radius in normalized units, and the gravitational constant is also normalized as
G = 1. When the bodies have oblate shapes, C, < 0. The case of C, > 0 corresponds
to prolate shapes. Consider the rotating frame in the spherical coordinates, we have the

approximation of the gravitational potential for the body of mass m; to be expressed as

o= () ()0
_ m? . mT <§> ( 220) (3sin¢? — 1),

for i = 1,2,3, where m; is the normalized mass of the i body (the sum of the three

masses is the unit of mass), R; is the average radius of the i"* body in normalized
units, the gravitational constant is normalized to 1, sin¢ = z/r. We want to find the
triangular central configurations by following the approach in [APC13]. By the definition
of central configuration, the three bodies lie in the same plane and therefore we set in
the gravitational field (3.27). We obtain z = 0 (i.e.¢ = 0) and thus

m;  Cymy

Vilg) = ——+ =35 (3.28)




o4

where ¢ = (x,y) is the position vector of an arbitrary point on the plane, r = |¢| is the

distance from m;, and we denote

Cy = R} J3,/2 > 0. (3.29)

Let g; be the position vector of the mass m;, for ¢ = 1, 2, 3, in an inertial frame centered
at the barycenter of the three bodies. The combination of the gravitational potentials

(3.28) and the notation (3.29) yields the equations of motion of the three bodies:

miGr = mima(gz — q1) ! i _+mm(q Q)_ . s
11 = mima(q2 — 1 - 1ms(qs — 1 -
oz =l llez — @] ] llgs — @l llas — @]
. ( ) [ 1 3C1 ] N ( ) [ 1 3Cy; ]
Maqa = MaMi\g1 — 42 - maMms3{gqs — g2 -
o = @l fla = aof° ] llgs — @2[® llas — @2 ]
. ( ) [ 1 3C1s | N ( ) [ 1 3C12
ms3gs = msmiiqi — g3 - mima\g2 — q1 -
| las — ail* gz — anll® a2 — ai]* g2 —a® )
(3.30)
where the terms C;; represents the sum of C' for the i"* and j* bodies, that is,
Oij =C; + Cj for ¢ # j € {1,2,3} (331)
and the gravitational constant is normalized to G = 1. With r;; = |¢; — ¢;]|, for @ # j,

q = (q1, ¢, q3), and M = diag(my, my, mg, ma, mg, m3) the 6 x 6 matrix with 2 copies of

each mass along the diagonal, equation (3.30) can be written as a compact form:
Mg = VU(q), (3.32)

where

1 C 1 C 1 C.
U(Q) = Mmimsy <_ - %) + mims (— — %) + moms (— — %) (333)

T12 712 T13 713 T'23 T'a3
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is the potential for the system of three oblate bodies problem. Assuming the center of

mass fixed at the origin, we have

3
Mq = > m;q; = 0. (3.34)
i=1
Relative equilibrium solutions for the motion of the three bodies are of interest. Note
that they are characterized by the fact they become equilibrium points in a uniformly
rotating frame.
The 6 x 6 block diagonal matrix that consists of 3 diagonal blocks is denoted by R(6);

it takes the form

cos(f) —sin(6) € S0(2).
sin(f)  cos()

Consider q(t) = R(wt)z(t) for some w € R where z = (21, 23, 23) € R®, we have,

i = wRz(t) + Ra(t)

i = w’Ra(t) + wRz(t) + wRz(t) + Ra(t) (3.35)

= W Rz(t) + 2wRz(t) + Ra(t),

where

R cos(wt) — sin(wt) and (3.36)
sin(wt)  cos(wt)

Aol sin(wt) — cos(wt) e —cos(wt)  sin(wt) (3:37)
cos(wt)  —sin(wt) —sin(wt) —cos(wt).

When 6 = 0, we have R(A) = Id. And thus we follow with using 6 = 0 to evaluate R, R
and R. We obtain

R = R = = —1Id (3.38)
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Substituting q(t) = z + 2w.Jz — w?z in equation (3.32), we obtain
M (z +2wJz — w2z) = VU,

where J is the block diagonal matrix consisting of 3 diagonal blocks of the form

J = . (3.39)

The condition for an equilibrium point of (3.27) such that z = 0 and z = 0 yields the
algebraic equation

VU(z) + w*Mz = 0. (3.40)

A solution z of the three-body problem satisfying (3.40) is referred to as a central
configuration. This is equivalent to Z; = —w?z;, for i = 1,2,3, which means that the
accelerations of the three masses are proportional to their corresponding position vectors,
and all accelerations are pointing towards the center of mass. Hence, the solution q(t) is
a relative equilibrium solution if and only if q(t) = R(wt)z(t) with z(f) being a central
configuration solution. Note that the rotation R(wt) is a circular solution of the Kepler’s
problem. Let I(z) = z' Mz = Y, m;|z|* be the moment of inertia. Since it is in a
quadratic form, we have gradient VI(z) = (MT + M)z. Notice that M is a diagonal
matrix, and thus it is symmetric (M7 = M). We then obtain VI(z) = 2Mz. It is easy
to see that this is a conserved quantity for the motion, that is, I(z(t)) = I for some I for
all . With Mz = 0, normalization on masses such that Z?Zl m; = 1 and following the
derivation shown in Section 3.1.1 as in equation (3.10), we have the moment of inertia

can be written as:

I(z) = Z mimj|z — 2] = Z mimgry;. (3.41)

1<i<j<3 1<i<j<3
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Alternatively, we can use Lagrange’s second identity to show the above relationship (see,
e.g., [GN12]). In conclusion, central configurations correspond to critical points of the
potential U on the sphere z/ Mz = 1, which can be obtained by solving the Lagrange
multiplier problem

Vf(z)=0, I(z) - =0, (3.42)

where f(z) = U(z) + sw?(I(z) — I). In the above, we used the fact that VI(z) = 2Mz.

Since both U and I can be written in terms of r;; = ||z — z;| for 1 <i < j < 3, we
solve the problem (3.42) in these variables. This reduces the dimension of the system
(3.42) from 7 equations to 4 equations. Denote r = (r12,713,723), and let f(r) be the
function f expressed in the variable r, that is f(r(z)) = f(z). Using the chain rule, we
have V,.f - (%) = V., f(z). For z1, 25, z3 are not collinear, it is easy to see that the rank
of the matrix (Z£) is maximal (for details, see [CLPC04, APC13]). As we are looking
for triangular central configurations, this condition is satisfied. Thus, V, f (r) =0 if and

only if V,f(z) = 0. In addition, we recall the moment of inertia as in equation (3.10).

We can now solve the system (3.42) in the variable r. We obtain

1 3C12 2 _
= — =72 —wrpy =0
7"%2 7“‘112 12 ’
1 3C 2
o — S —wiry =0,
4 13 13
1 3C5: 2
o — S —wiryy =0,
723 723
2 + 2 + 2 [_
[ M2l p + MMl + MaMsTyz = 1.

It gives us the system of equations

1 30512 — W2,
12 12
1 3C 2
DT e =W,
{ 13 13 (343)
1 _ 3Ch _ 2
A
2 2 2 _ T
M1MaT{y + M1Mmgris + Momgrys = 1.
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Note that the function

has negative derivative
3 15C
h/(’f’) = _ﬁ W 0

for r > 0 and C' < 0, and thus A is injective as a function of r. In addition, we note
that lim,_,o k(1) = +o0 and lim,_,, = —w? < 0. And therefore, for each of the first three
equations in the system (3.43), and for a fixed w, there exists a unique solution r;; =
rij(w). Consider the first equation of the system (3.43). Taking implicit differentiation

with respect to w, we have

id?”lg 15012 dTlg

- — 9
riy dw réy,  dw s e
d7’12 . —2w ( ’ )
dw % - —1%’;12 '

For r15 > 0 and (5 < 0, we have % < 0, provided w > 0. Similarly, we obtain % < 0,
and % < 0.
Consider the right-hand side of the last equation in the system (3.43) as a function

of w. We denote it as F'(w), that is
F(w) = mimariy(w) + mamsrys(w) + mimsriz(w) (3.46)
and its derivative with respect to w is
Fl(w) = 2m1m27“12% + 2m1m37“13% + 2m2m3r23%. (3.47)

Recall that % < 0, we thus have F'(w) < 0. Therefore, there exists a unique w such that

F(w) = I. Next, we study the dependence on the unique solution r;; on C;;. Consider r
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as the unique solution of
1 3C 9

—_—— — =W
r3 rd ’

the implicit differentiation with respect to C' yields

dr T

E__r2—50<0'

It shows that r is a decreasing function in C. If the C;’s satisfy some ordering such as
Cy < O € O3, then (9 < Uy < (3, and hence ri3 < r93 < r15. Thus, we have proved

the following result:

Proposition 3.2.1. In the three-body problem with all bodies oblate, for every fized value
I of the moment of inertia there exists a unique central configuration, which is in general
a scalene triangle.

Furthermore, the body with the larger C; is opposite to the longer side of the triangle.

Remark 3.2.2. The last statement of Proposition 3.2.1 is similar to the elementary ge-

ometry theorem saying that, in a triangle, the largest angle is opposite the longest side.
Surprisingly, the masses of the bodies do not play a role in the ordering of the sides.

Remark 3.2.3. The triangular central configurations corresponding to different values
of w are not similar to one another, as shown by the following counterexample. Let
Cis = —0.1, C13 = —0.2, and Cy3 = —0.3. For w = 1 solving (3.43) yields 5 = 1.07937,
ri3 = 1.13577, ro3 = 1.18063. For @ = 2 solving (3.43) yields 715 = 0.730867, 73 =
0.788914, 753 = 0.831688. We have

M2 147683, % = 1.43967, 2 = 1.41956.

12 i3 23

This situation is very different from the case of point masses (no oblateness), when all

triangular central configurations are equilateral triangles.
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Remark 3.2.4. If the unit of distance is rescaled by a factor of «, that is, the quantities
r;; and R; get rescaled by a factor of a, then C; and Cj; get rescaled by a factor of o due
to (3.29) and (3.31). Therefore w gets rescaled by a factor of a~%/2, and I gets rescaled

by a factor of @ due to (3.43).

3.3 Location of the Bodies in the Scalene Triangular
Central Configuration

In this section we compute the expressions of the locations of the three bodies in the
scalene triangular central configuration, relative to a synodic frame that rotates together
with the bodies. Assuming the center of mass at the origin, and the location of m; on the
negative x-semi-axis. In addition we assume that the masses lie on the plane such that
z = 0. Instead of fixing I the moment of inertia, we fix one of the leg of the triangular
configuration to be one without loss of generality. It simplifies further computation of the
exact location of the vertices of the triangular central configuration in later computation.
We fix r5 = 1, and let r13 = u, and r93 = v, where v and v are uniquely determined

by the system (3.43). For convenience, we denote w = 1 + u? — v? to yield the following

result:
(X3,y3)
2 1my
.
/ ‘\'\
r=u’ |
- =V
\
\
|
|
“\\
m, |
=T \‘ >
(x1,y1) ST
na=1 TTTem
(X2,%2)

Figure 3.2: Scalene triangular central configuration.
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Proposition 3.3.1. In the synodic reference frame, the coordinates of the three bodies

in the triangular central configuration, satisfying the constraints

(x2 —21)* + (2 —1)* = 1, (3.48)
(x5 —21)* + (ys —n)? = o, (3.49)
(w3 = 22)* + (3 —y2)° = 2%, (3.50)
mixy + moxs + mars = 0, (3.51)
miyy + mays + mays = 0, (3.52)
mi +mo +m3g = 1, (353)
»vo= 0, (3.54)
are given by
T =— \/mg + wmams + u?ms3,

n :07

_ —2m3 — 2uPm3 — 2wmams + 2my + wms

XTo = ;
2\/m§ + wmamg + u*m3
1 (4u? — w?)mj3 (3.55)
Y2775 m3 + wmamg + utm3’
—2m3 — 2u*m3 — 2wmamg + wmy + 2u*ms
T3 = )

24/m3 + wmams + u2m3
1 (4u? — w?)m3

Ys=+35 2 2,72°
2\ m5 + wmamsg + u*ms

Proof. With the assumptions introduced in Section 3.2 and 3.3, we begin with the fol-
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lowing system

my+mo +msz =1, (1)
miry + Mmaxe + maxz = 0, (2)
miyr + maya + mays = 0, (3)
| @2—21)* + (2 —y)* =1, (4) (3.56)
(3 — 21)* + (y3 —y1)? =, (5)
(6)
(7)

(x5 — 902)2 + (y3 — y2)2 = V7,

\?/120-

Since (3) and (7) implies

Yo = ——Y3, (3.57)
me

and thus we have equations (4) and (5) become

m2
(21 —29)* = 1— m—%y%, Al
(x5 —x1)? = u® — y3, (B)
And thus
2
m
Ty —Xo+ T3 — T = —Wgyé‘f— u? y%
2

(3.58)
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On the other hand, the equation (7) in the system (3.56) yields

($3 - 902)2 =0 — (y3 - y2)2
2 2 m3.\ o

=v° —y3(1 + —

v ?Jg( mg)

(3.59)

And thus we have

2
msz o 2 2 2 2 UERY:
— —y2 U —yi =0t -y (1 + —
mgy3 Y3 ?/3( m2)

2 2 2
2 2 2 % 2 m% 4 :23 4 3 9v/ 2 2 2 212
= 4(u” —y5 —u gy3+ﬁy3)_4 293_4( y3)(v* =1 —u”) + (v° =1 —u”)
2 2 2
(3.60)
2
:>4%(v2—1—u2)y§—4y§—4u223y§:(v2—1—u2)2—4u2
2,3, 9 2 2 % 2 212 2
= 34— —1—-v") —4—4u"—) = (v =1 —u)" —4u
2 2
v2—1—u?)? — 42
gL ) _ (3.61)
478 (2 — 1 —u?) — 4 — 4u?—3
me mj
(vV2 =1 —u?)? — 4u?
= Y3 = m2
478 (2 — 1 —u?) — 4 — 4u?—3
mo m3
and
21— 2)2 — 4y2
Yo = T G v) - : (3.62)
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Now we will make use of the equation (1) of the system (3.56). Let

A=mi—m=q/l-3}
(3.63)
B =123 — 11 = q/u®—13.
Then we have
To = 1 — A,
(3.64)
r3 =1x1 + B.

Thus we have

myxy + ma(xy — A) + mg(xy + B) =0

= M1T1 + MaX1 + M3T1 = mgA — mgB (365)
= xl(ml + mo + mg) = moA — m3B,
and since one of our assumptions is m; + mo + mz = 1, we have
T = mgA — mgB
ey 1 m3[(v? — 1 — u?)? — 4u?]
mi[47 (v2 — 1 —u?) — 4 — du? 3]
- (v2—1—u?)? —4u? 2
mg ()2 —02) — 4 — 42
4mi(v? —1—u?) —4—4u e
ma[47a (0?2 — 1 —u?) — 4 — 4u2%§] —m2[(v? — 1 —u?)? — 4u?]
— T 2[4 m: m2
ma[47e (v — 1 —u?) — 4 — 4u2m—§]
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man/—(2ma — ma(v? — 1 — u2))2 — ma/—(2u2mz — my(v2 — 1 — u?))?

A/ Amama(v2 — 1 — u?) — 4m2 — 4u?m?

ma(msz(v? — 1 —u?) — 2my) — m3(2u’msz — ma(v? — 1 — u?))

24/m3 + utm3 — mama(v? — 1 — u?)

—2m3 + 2mams(v? — 1 — u?) — 2u*m3

3.67
2\/m§ + u?mi — mama(v? — 1 — u?) ( )

2 2 2 2,
—m5 + mams(v® — 1 —u®) — u*m;

N/ mE +utm? — mamz(v2 — 1 — u?)

—(m2 — moms(v? — 1 — u?) + u?m?)

A/mE 4+ u2m3 — mamz(v? — 1 — u?)

We are now getting the expression of x5 and x3.

5132:331—14

—(m2 — mams(v? — 1 — u?) + u?m?)

A/ mE 4+ u2m3 — mamy(v? — 1 — u?)
) m3[(v? — 1 — u?)? — 4u?]
ma[47 (v? — 1 —u?) —4 — 4u22—§]
. —(m2 — mams(v? — 1 — u?) + u?m?)
A/ mE 4+ u2m3 — mamy(v? — 1 — u?)
dmomg(v? — 1 — u?) — 4m3 — 4u?m? — m3(v? — 1 — u?)? + 4u?m}
4(mamg(v? — 1 — u?) —m3 — u?m3)
. —2(m3 — mama(v? — 1 — u?) + u*m3) — (2my — mz(v? — 1 — u?))
24/m3 + uPm?} — mama(v? — 1 — u?)
. —(2m3 — 2mam3(v? — 1 — u?) + 2u*m3 + 2my + m3(v? — 1 — u?))
24/m3 + u2m3 — mams(v? — 1 — u?)
(3.68)
and

r3=x1+ B
0 21 _ 2 2.2
N (m22 m2m23(v u?®) + u*ms3)
M3+ utm2 — mamz(v: — 1 — u?) (3.69)
vl [(v2 — 1 —u?)? — 4u?]

[4m8 (02 — 1 — u?) — 4 — du2"5]
2
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_ —(m3 —myms(v® — 1 —u?) + u’m3)

> =
M3+ utm3 — mamz(v2 — 1 — u?)
dmomzu?(v? — 1 — u?) — du*m3 — m3(v? — 1 — u?)?
4(maoms(v? — 1 — u?) — m3 — u?m3) (3.70)
. —2(m3 — mamz(v? — 1 — u?) + u?m3) + (2u*msz — ma(v? — 1 — u?))
24/m3 + u?m3 — mama(v? — 1 — u?)
. _ —(2m3 — 2mama(v? — 1 — u?) + 2u*m3 — 2u*ms + ma(v? — 1 — u?))

24/m3 + u?m} — mams(v? — 1 — u?)
For convenience, we now denote w = 1+u?—v? and substitute w for the above cooridates.

We obtain the formulas (3.55). O

Remark 3.3.2. For future reference, we note that if we let mg — 0 in (3.55), we obtain

T1 = —My, y1 =0,
To = —Mo + 1, Yo = 0, (371)

— w _ 1
T3 = —My + 9y Y3 = 5\/4162 — w2

3.4 Central Configurations for the Three-Body Prob-

lem with One Oblate Body

In this section, we consider three heavy bodies, of masses m; = mo = mg, with only the
tertiary body with mass mg being oblate, in which we only take into account the term
corresponding to Coy = —Js in the potential (3.27) as in section 3.2 for ¢ = 3. It implies
the assumption thatC}, = C3, = 0. We write the approximation of the gravitational
potential of the tertiary in both Cartesian and spherical coordinates in the frame of the

tertiary and rotating together with the body:

s =222 () () (-
_ s, (%y (%) (3sing? — 1),

r r r

(3.72)
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where mj is the normalized mass of the tertiary body with the sum of the three masses
as the unit of mass, R3 is the average radius of mass mgs in normalized units with the
distance between m; and ms as the unit of distance, the gravitational constant G is
again normalized to 1, and sin ¢ = z/r. And the potential for the primary and secondary

bodies with normalized masses m; and ms are

Vi(z,y,2) = % and Vo(z,y, 2) = % (3.73)
respectively. Similar to Section 3.2 we want to find the triangular central configurations
formed by the masses mq, mo and mgs. Following the notations in Section 3.2, we note
that in the special case when C; = C3 we have Ci3 = C1 + C3 = Cs + C3 = Cs3. In
this case, the second and third equations of the system (3.43) are identical, and, since
the function h defined in the equation (3.44) is injective as a function of r, it follows
that r13 = 793. Thus the central configuration is an isosceles triangle. This situation
occurs, for example, if we assume that only the body ms is oblate, i.e. C3y = Czy = 0

and therefore we have obtained the following:

Corollary 3.4.1. In the three-body problem with one oblate tertiary body with mass ms,
for every fized value I of the moment of inertia there exists a unique central configuration,

which 1s an isosceles triangle with ri3 = ro3.

We note that, while [APC13] studies central configurations of three oblate bodies (as
well as of three bodies under Schwarzschild metric), the isosceles central configuration
found above is not explicitly shown there (see Theorem 4 in [APC13]).

In order to put this in quantitative perspective, we use the data from Section 2.2
in equation(3.29) and we obtain Cjy, = 3.329215 x 107, Letting u = 113 = ro3 = 1,
we obtain v = rjp = 0.9999999999999967 = 1.0 — 3.3 x 107! from the system (3.43).

Practically, this isosceles triangular central configuration is almost an equilateral triangle.
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3.5 Location of the Bodies in the Isosceles Triangu-
lar Central Configuration

We now compute the expressions of the locations of the three bodies in the isosceles
triangular central configuration, relative to a synodic frame that rotates together with
the bodies. With the center of mass fixed at the origin, and the primary body located
on the negative x-semi-axis and the assumption that the masses lie in the z = 0 plane,

we have the following result.

Remark 3.5.1. Similar to Section 3.3 we want to find the location of the isosceles triangu-
lar central configurations formed by the masses my, mo and ms. Following the notations
in Section 3.3, in the case when only the tertiary body with mass mg is oblate, by Propo-
sition 3.3.1 we have ri3 = u = 793 = v, so w = 1 + u? —v? = 1, and thus the formulas

(3.55) become

T = — \/mg + mams + u?ms3,

Y1 :07
—2m2 — 2u*m32 — 2moms + 2my + m3
2\/m§ + moms + u?m}

. 1\/ (4u? — 1)m2 (3.74)

2\l m3 + mams + u?m3’

To =

Y

_ —2m3 — 2uPm3 — 2mymg + my + 2u’ms

Ta =
3 2 2 202
ms + MaoMms + u“ms

1 (4u2 — 1)m3
%375 m3 4+ mamg + u?m3’

Y
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(x1,y1) e '
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Figure 3.3: Isosceles triangular central configuration.

3.6 Location of the Bodies in the Equilateral Trian-
gular Central Configuration

With the oblateness coefficient Cyy to be zero for all three bodies, we have the case in
terms of point masses. We follow the computations in Section 3.3 and we have u = 1 and
v = 1, we want to recover the locations of vertices of the equilateral triangular central

configuration as shown in Section 3.1.3 equation (3.24)

Remark 3.6.1. In the case when none of the bodies are oblate we have v = v = 1 and
w = 1. From the system (3.74) we obtain the Lagrangian equilateral triangle central

configuration rjs = re3 = ri3 = 1. The position given (3.74) are equivalent to the
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following formulas (see, e.g., [BP13]):

. —|K|\/m3 + mamz + m3
1 =

K b

Y1 = 07
i | K |[(ma — mg)ms + mq(2mg + ms3)]

2 — )

2K\/m§ + mams + m3
V3ms (3.75)

Yo = — )

? 2\/m§ + mams + m3

_ K]
xr3 = )
2\/m§ + mamg + m3
\/37712

Ys

- 24/m3 + momg + m3’

where K = mg(mg — ma) + my(ma + 2mg). Notice that the coordinates of the locations
in equations (3.75) are expressed in terms of my, my and ms, while the formulas in (3.55)
are expressed in terms of my, m3. Using the assumption of the normalization of masses,
we have the relation anzl = 1 and thus we can make a substitution of m; = 1 —mgq—ms
in formulas (3.75). It follows that the corresponding expressions are equivalent. One
minor difference is that in formulas (3.75) the position of x; is not constrained to be on
the negative z-semi-axis, as we assumed for formulas (3.55). Note that the position of
xy in formulas (3.75) depends on the quantity sign(K). When sign(K) > 0, we have
|K|/K =1, and the equations (3.55) become equivalent with the formulas (3.75).

As a reference, when mz — 0, we have the limiting position of the three masses in

formulas (3.75) given by:

T = —My, U = 07 21 = 07
T = 1-— ma, Y2 = 07 2y = 07 <376)
1'3:172%, y3:\/7§7 23:07

with (z1,y1) and (z9,y2) representing the position of the primary and secondary bodies,
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respectively, and (z3,ys) representing the position of the equilibrium point L, in the
planar circular restricted three-body problem. Note that when m3 = 0 and my := p,
we recover the coordinates (3.24) of L4 in the restricted three body problem with one
mass at (z1,y1,21) = (—u,0,0), a second mass at (z2,ys,22) = (1 — 1,0,0) and the L

equilibrium point at (x3,ys, 23) = (% — K \/757 0).

3.7 Conclusions

In this chapter, we consider the three-body problems with different conditions— three
oblate bodies, one oblate body and three point masses — and we obtain their correspond-
ing triangular central configuration. It is well known that for the restricted three-body
problem (with three point-masses) the only non colinear central configuration is given by
an equilateral triangle. This is one of the first explicit solutions given in the three-body
problem was the Lagrange central configuration, where three bodies of different masses
lie at the vertices of an equilateral triangle. To begin this chapter, we first consider the
three-body problem with three heavy oblate bodies and we find that the corresponding
triangular central configurations is given by a scalene triangle. Furthermore, we find the
locations of the vertices of the scalene triangular central configurations formed by the
three oblate bodies. The results of the scalene triangular central configurations (i.e. the
case for three oblate bodies) allow us to reduce to the special case of having only one
oblate body in the three-body problem. In the three-body problem with one oblate body,
there exists a unique central configuration, which is an isosceles triangle. In addition, we
find the locations of the vertices of such an isosceles triangular central configurations. At
the end of this chapter, we are able to recover the equilateral triangular central config-
uration and the locations for its vertices in the absence of oblateness on the three-body

problem (i.e. the case for three point masses).
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Chapter 4

Hill Four-Body Problem with Three
Oblate Bodies

Hill approximation of the lunar problem is a classical approximation of the restricted
three body problem, which has been used to write accurate series solutions for the mo-
tion of the Moon. Similarly on a restricted four body problem [BGG15], we perform a
symplectic scaling, in which we aim to send the two massive bodies to infinity, we then
expand the potential as a power series in ms, and take a limit as ms goes to zero. As a
motivating example, we consider the dynamics of the moonlet Skamandrios of Jupiter’s
Trojan asteroid Hektor. Other than the moonlet, we can also consider the small body
as a spacecraft orbiting Hektor. The system Sun-Jupiter-Hektor-Skamandrios plays a
relevant role for several reasons. Being the largest Jupiter Trojan, Hektor has one of
the most elongated shapes among the bodies of its size in the Solar system. And it
is one of the few Trojan asteroids to possess a moonlet (see, e.g., [DLZ12] for stability
regions of Trojans around the Earth and [LC15] for dissipative effects around the tri-
angular Lagrangian points). Astrodynamics is another motivation for us to study the
dynamics of a small body near a Trojan asteroid. NASA is preparing the first mission
to the Jupiter’s Trojans— Lucy is planned to be launched in October 2021 to flyby and

visit seven different asteroids including Trojans asteroids.
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4.1 Background

4.1.1 Hill’s approximation on a Restricted Four-Body Problem

The model of a restricted four-bodies problem

Consider an equilateral triangular central configuration with three point masses located
on the vertices while moving under mutual Newtonian gravitational attraction in circular
periodic orbits around their center of mass at origin. A fourth body of infinitesimal mass
is moving under the gravitational attraction of the three bodies, without affecting their
motion. This model is known as the equilateral restricted four body problem [Bell§],
in which we assume that the three masses are m; > my > ms, where m; refer to the
primary body, ms the secondary, and mjs the tertiary. With dimensionless coordinates,
the equations of motion of the infinitesimal body relative to a synodic frame of reference

that rotates together with the three point masses are:

P2 =Q,
ij—2i=Q,
F=Q,

where
3

1 m;
ey, 2) = 52 +0%) + ),

i i

ri=A/(r —x)2+ (y—y)? + 220 =1,2,3

and (x;,y;) denotes the zy—coordinates of the body mass m; for i = 1,2,3. Multiplying

the equations by 2z, 2y and 22 respectively, we have

24 — divy = 224,

29y + day = 2y,
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22z = 220,
Summing the equations, we have
22 + 2yy + 222 = 220, + 2yQ), + 22Q),
=i+ +22=20-C

= C =20 — (22 + % + £?)

= H=—-Q+ (&% + y* + 2%

1 1 2 m;
= H = (@ + 3" +2) = 5@ + ) - i

i=1 ¢

Performing the transformation = = p, + vy, y = p, — x, 2 = p,, we have the Hamiltonian

3
1 1 m;
H = S((po+9)° + (= ) + (p)?) = 50 +4%) = D 00
i=1
\ (4.1)
N R
- 2px py pz +ypx xpy r:

i=1

with respect to the standard symplectic form @w = dp, A dv + dp, A dy + dp. A dz
on T*Q where Q = (xvya Z7px>py7pz) : (l’, Y, Z) 7 (xla Y1, zl); (x27y27 22)7 ($3>y37 23)' This
symplectic structure allows us to rewrite the Hamiltonian equations as & = J 7 H(x),

where

0 Id
J= , (4.2)

—Id 0

and = = (2,9, 2, ps, Py, D). Notice that H(z,y, 2, pe, py,p.) = H(x,y, 2,7,9, 2).

Hill’s Approximation Applied to a Restricted Four-Body Problem

In this section we will study the limiting Hamiltonian of the restricted four body problem

when m3 — 0. We use a procedure similar to that in [BGG15], by performing a symplectic

/3 /3

. . 1 . . . . . 1 .
scaling depending on mj'", expanding the Hamiltonian as a power series in ms'" in a
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1
neighborhood of the small mass mg3, and neglecting all terms of order O(mj ) or higher.
Then we obtain a limiting Hamiltonian, which is a three-degree of freedom system. The

resulting Hamiltonian depends on a parameter . which becomes equal to the mass of the

m2

secondary ms in normalized units i.e. p = 2.

Consider the Hamiltonian of the restricted four body problem with the center of mass
coordinates at mg, we have equation (4.1). We first make the change of coordinates as

follow:

T — T+ T, Yy —ytys, gz
(4.3)
Pz = Pz — Y3, Py =Pyt T3, Pz Pz

We obtain the Hamiltonian

1

H =3[ - ys)® + (py + 23)° + 2] + (Y + y3) (0o — y3) — (@ + 23)(py + 23)
3
_ N\
o1 i
1
= 5[0z = 2pays +43) + (0, + 20y + 03) + 0]+ ype —yys T yspe — Y5 (4.4

2 = m
— TPy — XTX3 — T3Py — T3 — -
i=1 *
1 Sm; 1
= SO+ 1y + 1)+ upe — apy — (s + yys) — 3, — 5 (7 + 35)
i=1 "
Since the term of (23 + y3) is a constant, we drop it in the computation and we obtain

1 3 m,
H = 5(p; + 1) +P2) + ype — apy — (w57 + ysy) = ), (4.5)
i=1 't
where 72 = (v + 23 — ;) + (y+ys —vi)* + 22 = (v + T)* + (y+ 4:)* + 2% for i = 1,2, 3.

Expanding the terms % and % in Taylor series round the new origin of coordinates, we

obtain
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1
fl = Fl = Zplfl(xvyvz)

. k=0 (4.6)
f2 === ZPkQ({E,y,Z)

2 >0

where P,g (x,y,2) is a homogenous polynomial of degree k for j = 1,2. Notice that we

neglect the constant terms. With some computations, we have
Pi= (52 +52) % =1y (4.7)

for i = 1,2, where 713 = (21 — 23)% + (y1 —y3)*)"?, and ro3 = ((22 — 3)% + (y2 — y3)?) /2.

Notice that P} and P? are constant terms and play no role in the Hamiltonian equa-

tions, so they will be dropped in the following calculations. Now we perform the follow-
1 1 1 1 1
ing symplectic scaling * — m3iz, y — m3y, 2 — M3z, pr — M3Py, Py — M3p, and
1 2
p. — m3p, with multiplier m4 *, obtaining

_2 1 1 1 1 1 1 1 1 1
H=my? [5[(m§pz)2 + (m3py)? + (mip.)* + miymip, — mizmip, — miar,

1 1 1
+miyys —mi Y. miPl(x,y, 2) —m3 > maP(x,y,2) — s
k=1 k=1 msrs
Lo o9 5 3 3 5 pl —3 2
= §(pm+py+pz)+ypx—xpy—m3 Tx3 + Mg yys —mg > P —mg ® P;
k=2 k=2 1 (4.8)
_Zm?)s mlPkl(x7y7Z)_2m33 7712Pk2(x7y7z)_T
k=2 k=2 3

1 1
= — (3 + P} + P2) + Ypx — apy — Mg * (w23 + yys + my Pl + maPY)

2
k—2 k=2 1
= Z ms® my Pz, y,2) — Z ms® moPE(z,y,2) — —
]
k=2 k=2
where
oft oft oft
P =2 0,002 + Z(0,0,0)y + 2 (0,0,0)=
ox oy 0z (4.9)
_I1—ﬂ73x+yl—y3 '
73 713 4
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and similarly we have

2 2 2
P2 = aai(o,o,O)x + %(070,0)11 + %(07070)2
x Y < (4.10)
T2 — T3 Y2 — Y3
= . T+ o3

where 7; = \/(ZE:}, — ;)% + (y3 — y;)%. Note that the first partial derivative with respect

to the variable z is given by
fi=—Zfori=12.

z

Therefore, we obtain
74(0,0,0) = f£.(0,0,0) = ;Z(O,O, 0) =0 and f? (0,0,0) = —1.

Recall that the three bodies form an equilateral triangle configuration with length equal

to 1 by assumption and thus we have the relation on m; = 1 — mgy — ms.

_1
msg 3(1’31‘ + Y3y + mlpll + MQPE)

1 T1 — X —
= Mg 3[1'3$ + Y3y + (1 — My — mg)(lr_—33)x + (1 — My — mg)wy
1 1
Ty — T —
+m2( 2_3 3)x+m2(y2_3y3)y]
T2 T2
-4 (z1 — x3) (z1 — x3) (21— x3) (T2 — x3) -4
e 3 + - 0 — + + 3
ms *[xs 3 ma 3 ms 3 ma = Jz +msg *[ys
n (3/17:393) —my (41 _—3193) — ms (11 _—393) m (y2 _—3y3)] Y
1 ™ 8] T2

_ _1
=mg [z + ma(xe — 21) — mg(x1 — x3)|T + mg * Y1 + Moy — 1) — ms(y1 — ys) ]y

(4.11)

Together with the general expressions of the coordinates of the three bodies that are
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given by equation (3.24), we obtain

_1
mg *[y1 +mi(y2 — 1) — ms(yr — ys)]

1 —/3ms \/ m3 V3 mj

ol 2m§ m3+m2m3+m§) 3(277125 m%+m2m3+m§)] (4.12)

:m§m2(—\/§)\/ L +m

2 2
2 ms + mamg + ms3

\/g ma

2 \/m%—i-QOg—i-m% .

Wwin

(

Similarly, we have

1
ms * |1 + ma(re — 1) — mg(z1 — 23)]

=

= my *[x1(1 — ma) + maxy — max1 + T3mM3]

. (4.13)
= mg *[z1my + zama + z3m3)]
= 0.
Thus the Hamiltonian becomes
1 1 1
H = (07 + 0+ P2) + ype — apy — — —mi Py —=ma P} + O(m3). (4.14)
3

1
Neglecting the terms of order O(mj3) by taking the limit m3 — 0; we mean to send the
primary and the secondary bodies at an infinity distance and their total mass becomes
infinite.

For the computation of P}, we have

1
]321 = §[x2fm(0, 0,0) + 2y fy2(0,0,0) + 22 f..(0,0,0) + 2y f,,(0,0,0) + nyyy(O, 0,0)
+ y2f4(0,0,0) + 22£,.(0,0,0) + yz£,.(0,0,0) + 2*f..(0,0,0)]

1
= 5107 £22(0,0,0) + 22y £,(0,0,0) + £, (0.0,0) + 2°£..(0,0,0)]

(4.15)

Recall from Section 3.6 we have that when mg = 0 and mqy := p, restricted three body
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problem with one mass at (z1,y1,21) = (—4,0,0), a second mass at (z2,¥s,22) = (1 —

i,0,0) and the third oneat (x3,ys, 23) = (% — U, */73, 0) and thus we have

(4.16)

Similarly, we have

1
P22 = §[$2fm|(0,0,0) + xyfyz‘(0,0,0) + xzfzr’(0,0,0) + ﬂfyf:cyko,o,o) + y2fyy|(0,0,0)

+ Y2 [yl (0,0,0) T T2 f2z]0000) + Y2 fyzl000) + szzz‘(0,0,0)]

1

= §[x2fzz|(0,0,0) + 22y fayl0.00) + ¥ Fuyl000) + 2° Fol000)] (4.17)

1. 53(xg — 23) 3(y2 —ws) (w2 —w3)  53(y2 —w3)® | o
2[:1: P + 2xy e +y P + 2%(=1)]
3, 33,9 1,

— =z

B IR

With the above computations, the limiting Hamiltonian

1 1
H = S+ Py +p2) +ype —opy = = —muPy —muoP} (4.18)

becomes

1
2 2 2
Py + DL+ pY) + Ype — TPy — —(1—
(pz + Py +p2) + yps — 2Dy T (1—p)
3, 3W3 0,9 1, 3, 3W3 .9 1,
(ge" +ay—— +y'g = 527) —ul(gr” —ay——+y°' g — 52
4 8 2

H:

N | —

X (4.19)

3
= 5(]9525 + pz + pz) + YDz — TPy — [gl’Q + (1 — QM)x
1

+ ].
A x? 4+ y? + 22
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4.2 Data on the Sun-Jupiter-Hektor-Skamandrios sys-
tem

The application for the model that we develop below is the case of the Sun-Jupiter-
Hektor-Skamandrios system. Since we will demostrate the application in this chapter, it
will be useful to extract some data for this system from [JPL, MDCR*14, Des15]. Our
target asteroid — Hektor is the largest Trojan asteroid that is approximately located at
the Lagrangian point L, of the Sun-Jupiter system. According to [Des15], Hektor’s size
is is approximately 416 x 131 x 120 km, while the equivalent radius ,that is, the radius
of a sphere with the same volume as the asteroid, is Ry = 92 km!. It is observed that
Hektor’s shape can be approximated by a dumb-bell figure. Furthermore, Hektor spins
very fast that it has a rotation period of approximately 6.92 hours (see the JPL Solar
System Dynamics archive [JPL]).

The moonlet with 12 + 3km diameter, which is known as Skamandrios, was detected
orbiting around Hektor at a distance of approximately 957.5 km, with an orbital period of
2.965079 days; see [Des15]. The orbit is observed to be highly inclined, at approximately
50.1° with respect to the orbit of Hektor, which justifies the system refers to as a model
of the spatial restricted four-body problem rather than the planar one; see [MDCR " 14].

According to [JPL], the inclination of Hektor is approximately 18.17°. Although a
more refined model should include a non-zero inclination, we will consider that Sun-
Jupiter-Hektor move in the same plane, due to the assumption is needed in order for the
three bodies to form a central configuration. Furthermore, we assume that the axis of
rotation of Hektor is perpendicular to the plane of motion.

In this work, we use the values of m; = 1.989 x 10%° kg, ms = 1.898 x 10%", and
ms = 7.91 x 10'® kg for the masses of Sun, Jupiter and Hektor respectively. Having

Sun-Jupiter as the average distance, we use the value 778.5 x 10% km.

!Note that [Des15] claims that there are some typos in the values reported in [MDCR™14].
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Figure 4.1: Order of magnitude of the different perturbations acting on the moonlet
as a function of its distance from Hektor. The terms Gm, Sun and Jupiter denote,
respectively, the monopole terms of the gravitational influence of Hektor, the attraction
of the Sun and that of Jupiter. J, represents the perturbation due to the non-spherical
shape of Hektor. The actual distance of the moonlet is indicated by a vertical line.

In Figure 4.1 we show the comparison between the strength of different forces acting
on the moonlet: the Newtonian gravitational attraction of Hektor, Sun, Jupiter, and the
effect of the non-spherical shape of the asteroid, limited to the so-called .Jy coefficient,

which will be introduced in Section 4.2.1.

4.2.1 The gravitational field of a non-spherical body

It is well known that the gravitational potential of a general (non-spherical) shape can be
expanded in terms of spherical harmonics (see, e.g., [CG18]). In this thesis, we will only
use the truncation up to the second order, which is known as the zonal harmonics due
to the reasons provide in Chapter 2. In other words, we are approximating the body by
an an oblate shape (i.e., an ellipsoid of revolution obtained by rotating an ellipse about
its minor axis). Relative to a reference frame centered at the barycenter of the body,

this potential is given in spherical coordinates (r, ¢,6) as in Section 3.2 equation (3.27).
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Recall that Cy is a negative number for an oblate body Csy and notice that the positive
quantity —Cly is often denoted by J,, and the study of the motion of particle relative to
the gravitational field (3.27) is referred to as the Jy problem.

In the case of an ellipsoid of semi-axes a = b > ¢, we have the explicit formula
( [Boy97a]) for Cyy as in Section 2.1.7 equation (2.64). Recall the dimensions of Hektor
from Section 2.2, we have a = 208 km, b = 65.5 km, ¢ = 60 km and Ry = 92 km, as
in [Des15]. We obtain

Cyy = —0.476775

as the zonal coefficient for Hektor (see Section 2.2). Consider the value of C3, com-
puted from Section 2.2 being different from the corresponding value of 0.15 reported
in [MDCR™"14]. We note that it is due to the different estimates for the size of Hektor,
following [Des15]. We note that the oblateness for the Sun is a subject of active debate,
and several different values can be found in the literature. In this thesis, we use the
measurements from [KBES12], that is C3, = —5.00 x 107 for the oblateness coefficient

of Sun. For Jupiter’s oblateness coefficient we use the value Cay = —14,736 x 107S.

4.3 Equations of motion for the restricted four-body
problem with three oblate bodies

Similar to the first part of Section 4.1.1, in this section we consider the dynamics of
an infinitesimal mass under the influence of the three heavy oblate bodies. A fourth
body of infinitesimal mass, such as the moonlet Skamandrios or a spacecraft, is moving
under the gravitational attraction of the three bodies, without affecting their motion.
The dynamics of the fourth body is modeled by the spatial, circular, restricted four-body
problem. It means that the moonlet is moving under the gravitational attraction of

Hektor, Jupiter and the Sun, without affecting their motion which remains on circular
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orbits and forming a triangular central configuration as in Section 3.2. With (z;, y;, 2;)
representing the (x,y, z)-coordinates in the synodic reference frame of the body of mass
m;, the equations of motion of the infinitesimal mass relative to a synodic frame of

reference that rotates together with the three heavy oblate bodies is given by

0 -
.. .00~
GO
=T,
: 0z

where the effective potential Q = Q(z,y, 2) is given by

~_1222 3@@&2 50 L2
Q—2w(x —i—y)—i—Z Ti+7“i - 5 (3sin” ¢; — 1)

=1

where r; = ((z —2;)* + (y —yi)* + 22)% is the distance from the infinitesimal body to
the mass m;, sin ¢; = z/r;, w is the angular velocity of the system of three bodies around
the center of mass, and C%, is the oblateness coefficient of mass m;, for i = 1,2,3. We
notice that w depends on the oblateness parameters. Following the notation in Section
3.3 equations (3.48), (3.49) and (3.50) we have 5 = 1, 3 = u and ro3 = v. With the

relations shown in equation (3.43) we have that the angular velocity is given by

W = 4/ 1-— 3012, (421>

where we recall from Section 3.2 equation (3.31) that Cjy = C;+Cy = R2C3,/2+ R2C3%,/2.

Rescaling the time ¢ = 2, we have the relative to the new time s the mean motion is
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normalized to 1. Thus we obtain

o0

b0y C g
T — 2y pw
o5
y+2r = i Qy, (4.22)
o)
Z = — = Qza
i 0z

with the effective potential Q = Q(x,y, z) given by

1l 9 lgmi mz‘RiQCéo 2
Q—§(x —i—y)—i—EZ(T—z—i—r—l(T—z) 5 (3sin®¢; — 1) | . (4.23)

i=1

The equations of motion (4.22) have the total energy H defined as a conserved quantity:

1
H zi(z’:2 + 92+ %) - Q,

1
=5 (@ +9° + %)

3 2 %
— [%(:ﬁ +y°) + %; (T—: + T—; <%> (%) (3sin® ¢; — 1))] :

Performing the transformation = p, +y, ¥y = p, — « and z = p,, we now switch to the
Hamiltonian setting And thus the Hamiltonian passes to have the symplectic coordinates
(%,Y, 2, D, Py, D) relative to the symplectic form @ = x A p, +y A py + 2 A p,. We obtain

1 1
H =5 ((p: + y)? + (py —x)* +p?) — §($2 + %)

3 2 i
— LQ < M + i (E) <%) (3sin? ¢; — 1))
we\i= T e \ T 2

1 2 2 2
=5 (0% + 9y +p2) + ype —ap,

L (e, M
- — (E + %C,-(?) sin? ¢ — 1)) ,

2 .
wrio\ T ?

(4.24)

where C; = R;2C%,/2. Thus, the equations of motion (4.20) are equivalent to Hamilton’s
20

equations for the Hamiltonian given by (4.24).
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Remark 4.3.1. In the special case when m3 = 0 and only the mass ms is oblate we have

2,12

The resulting model is the circular restricted three-body problem with one oblate body,
and the above formula agrees with the one in [McC63, SR76, AGST12]. Furthermore,
if my has no oblateness, i.e. C3, = 0, we have w = 1, and the resulting model is the
classical circular restricted three-body problem. There are other models of the restricted
three-body problems are studied such as the ones withoblate primaries, relativistic and

radiation effects in [BS16,BU18].

4.4 Hill four-body problem with three oblate bodies

In this section we perform the Hill approximation on the spatial, circular, restricted four-
body problem with oblate bodies in shifted coordinates. Using rescaled variables and
a limiting procedure, the masses m; and msy are ’sent to infinite distance’ and thus a

neighborhood of ms can be studied in detail.

4.4.1 Hill’s approximation

The main result is as follows:

Theorem 4.4.1. Transform the Hamiltonian (4.24) with the following procedures:
(i) shift the origin of the reference frame such that it coincides with ms;

(i1) perform a conformal symplectic scaling which is given by
1/3
(.Y, 2. D2 Dy =) = 15> (2, Y, 2, Do Dy P );

111) rescale the average radius of each heavy body as R; = ml/gpi ori=1,2,3;
3
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1/3

(iv) expand the resulting Hamiltonian as a power series in ms'”, and

(v) neglect all the terms of order O(mé/g) in the expansion.

Then, we obtain the following Hamiltonian describing the Hill four-body problem with
three oblate bodies:

1
H =§(pi + P+ p2) + Ype — Ty

—w)?
[(0mn (o) ey

x
ud v

ﬂ‘”(M_l)

where 1,u,v represent the sides of the triangular central configuration as in Section 3.3,

) 2o
w=1+u*—v* p= "2 and ¢; := p?Cl,/2 = my > RLC%,/2, fori=1,2,3.

mi+msg’

Proof. We begin with the Hamiltonian (4.24), we first shift the origin of the coordinate
system (x,y, z) to the location of the mass mgs (i.e. Hektor), via the following change of

coordinates

€=$—ZB3, n=y-1ys, sza

Pe =Pz + Y3, Dy =Dy — T3, D¢ =Dz
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And the Hamiltonian becomes

H =3 (e~ 95 + (g + 23" + 1)
+ (1 + y3)(pe — y3) — (£ + x3)(py + @3)

_$Z;< ’ (f) (%0)(381112@—1)) (4.26)

1
=5 (0 + 1y + P¢) + npe — Epy — (€5 + mys) — 5 (5 + )

1 my; my; Rz 2 C%O )
_EZ:Z;(f_Z—FF_z(f_z) (2 )(35111 o —1) 1,

where 77 = (£ —Z;)* + (n—4:)* + = (+as—x:)* + (n+ys —vi)* + (2, with T; = z; — 3,

;i = ¥; — y3. Note that r3 = r3. Being a constant term, —%(x% + y2) plays no role in
the Hamiltonian equations and it will be dropped in the following computation. Since
sin ¢; = FQ for each mass m;, we have

1
H =5 (p¢ + py + 1) + npe — &py — (§2 + 1193)

il @0 )
wiioL o o\ 2 T

1
Expanding the terms — and — in Taylor series around the new origin of coordinates,
1 )

(4.27)

we obtain

fl = Fi = Zpkl(g?nvg)?
L k=0
1

== > PEM©),

=
W
o

where P,f (&,1,¢) is a homogeneous polynomial of degree k, for j = 1,2. With some
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computations and simplifications, we obtain

. 1
Py =(+ )7 =1y,

T 77
Pl ==&+ 2
T'i3 i3

Sl /32 1 1 /352 1 1/ 1 (4.28)
Py =3 <—5——3>52+—< 5 ——3>772+—(——3)C2
Tiz Ti3 2\ 13 T 2 i3

+ ( 5y > &n,
T3

for i = 1,2, where ri3 = ((x1 — 23)% + (y1 — vy3)?)

2 = w, and 793 = ((z9 — x3)% +

(y2 — y3)?)"? = v. Similar to that in the case of restricted four body problem in Section
4.1.1, we notice that Py and P§ are constant terms and play no role in the Hamiltonian
equations, so they will be dropped from equation (4.27) in the following calculations. We

/

now perform the following conformal symplectic scaling with multiplier mg 218 given by

1
ﬁzmx, n:mgya C=m3z,

Jun W |

(4.29)

1 1 1
Pe =M3Pz s Py ="M3py, D¢ =MzPz,
where, with an abuse of notation, we call again the new variables z, y, z, p,, p, and p..
Being consistent with the scale change, it is necessary to introduce the scaling transfor-
mation of the average radius of the three bodies as follows

R? = (mzl,,/spi)2 = mg/‘g’p?, with p; = mgl/?’Ri, for i =1,2,3. (4.30)

)

The motivation of the choice of the power of mj3 is driven by the fact that in this way the

gravitational force becomes of the same order of the centrifugal and Coriolis forces (see,

2/

e.g., [MS82]). Conformal symplectic scaling with multiplier mg 3 yields the following

the Hamiltonian in the new variables, which we still denote by H:

1 1 1 1 1 1
o —2/3 3 3 3 3 3 3
H(x,y,2,p5,Dy,02) = Mg~ H(mix, miy, m3 z,m3py, m3p,, m3ip,).
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The resulting Hamiltonian H is now in the form:

2 2 1 1
3 3 3 3
+ M3 YPy — M3 TPy — M3 TT3 — M3 YY3

k
- (Z myims; Pk, (x,y,2 Z moms3 P2 (z,y, 2)

e
) <%> () —1>

(F) () )]

1 1

1
H 2(px+py+pz)+ypx_xpy $l’3—m3 ny

1 _1 _1
= — (g mi Pl )+ my ma P,y 2)

2

3
mims ( p1

+ —

™ T

2
moms3 ( p2
+— | =
T2 T2

After cancellations we obtain

b2 b2
+Zm33 mlpli(x>yaz)+zm33 mQPk?(x>yaz)
k=2 k=2

HOIGLOR
OISO
L)) )

Following the expansion of the resulting Hamiltonian as a power series in mé/ 3, we will
then neglect all the terms of order O(mé/ 3) in the expansion, as in the classical Hill theory

of lunar motion ( [MS82]).

To compute the contribution of the different terms in (4.31), we make use of equations



(4.28) and (3.43). Thus, we obtain

1

3 m1P11

l:mg + yys + 2
w

-1 miT1  Mals
_ 3
- [(:vg t s w2u3 * w23 ) (y3 t s

3C
|:<.T3 + mla?l (1 + ;3> + mg.l?g (
_ 3C3
+ | y3 + M1y 1 + 25 + m2y2

3 3013
T3 + M1 + MaZo + MiTq
w2ubd

w?

+m2P12]

W=

1

3013

(93 + miy1 + maye + m1y1

Using equations (3.51) and (3.53) we have

_1 mzyz
w2v3 y
3023
020° x

+ Moo

mala

|
),

3023)
x

e2))

T3 + MiTy + maZo = x3 + my(xy — x3) + ma(xe —x3) =0

and similarly, using equations (3.52) and (3.53) we have

Y3 + mayr + maeys = 0.

Thus equation (4.32) becomes

Recalling the C;; notation, we obtain

R2Ci R2CY 2
C’Z-joz-JrC’j:( 22204- J22O>=m§’ <P

:—m3K

for ¢ # j.

2

o
i050+

PJQ' Cg 0
2

90

(4.32)

(4.33)

(4.34)

(4.35)
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From equation (3.43), w? =1 — 3Cjy = 1 — m3 K}5 and thus

1 1 2 4
————— =14+ mi K+ O(m3). (4.36)

2

2 2
w
1 —m§K12

Now we neglect the higher order terms in equation (4.36) and equation (4.34) becomes

2
3
—% 3m3 K13 _ 3m3 K23
m mlxl— + Molog———— | @
3 ud VP

3m K 3m K

(4.37)

Since in the procedures of Hill approximation, we are neglecting all terms of order of
é/ ® Tt follows that the expressions (4.37) and (4.32) will be neglected. Combining the

corresponding terms for the second-degree polynomials Pj in the Hamiltonian (4.31) and
using (4.36), we obtain

—i (m1P + m2P2)

3z2 1 my [ 372 1
A4 (-2
7"13 713 2 s  Ti3
my 2 310
— -]z —|—m1< >:p
2 ( 7’:{’3) 7"?3
Mo

3z2 1 mo (375 1
+ (TQ—T)$2+—2(TQ—T)@/2
2 Toz  Tag 2 T23  Tas (4.38)
mo 1 2 nggz ’
t— |3 )2 +my = Ty
2 T'23 T'23

1 Sm@% 3m2£% ma mo 2
Y N T
2 U v U v

u® v ud v
omiT1y 6MaZoly m m
+( 15191 n 252y2) 2y + (__31__32) 22]_
U v U v

Notice that quadratic polynomial consists of the quantities Z1, o, 7; and 7, that depend

on mg. While the terms of order of mzl/ ? are neglected, we use equation (3.71) to evaluate
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the corresponding quantities:

(4.39)

where we recall that w = 1 + u? — v%. Thus, the quadratic polynomial (4.38) becomes

3w? 3(2—w)?
[y (o)
2

+ x
ud

Vo

3(4u—w?) ) (3(4u27w2) . )
m ( 1 A AW (4.40)
- 5 + 5 Yy
u v

1
u® v

my ma
3 +—3>22 .
U v

1,2, the expressions of order £k > 3 in the

<m16w—v422w? 1y SE— IV AE —w? V4u2w2> (
+ - Ty —

In the Taylor expansions [, for i

Hamiltonian are of the form

k=2 k=2
3 1 3 2
E ms® mi P, (2,9, 2) + E ms® me Py (z,y, 2).
k>3 k>3

Since they can be written in terms of positive exponents of mé/ 3, they are neglected in

the Hill approximation. The terms that are left in the Hamiltonian (4.31) are

1A @ EE) ) @ (6 )

) r (4.41)
FDEE )

Notice that the terms 7, and 75 also depend on mg. Let mz — 0, we have r; — u and

7o — v. Also, we recall 73 = r3 = (x2 + 9% + 22)% which we now denote by r. When all
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1
terms of order m; are neglected in equation (4.31), we obtain the Hamiltonian as

1
H ==(p2 +p, +p2) + yps — Tpy

2
w? —w)?
(- (2 -1) +u(%—1) 22

2

(4.42)

1
u® v

Ty

2

(1 N N) 6wv4Au2 —w?2 M6(2—w)\4/4u2—w2 )

) () ) ()

, 2
where we denote 1 = my/(my+my), r = (22412 +22)2, and ¢; == p2Cly/2 = my * RLC, /2.

]

We refer to the Hamiltonian (4.42) as the Hill’s approzimation. It can be thought of
as the limiting Hamiltonian, when the primary and the secondary are sent at an infinite
distance. The approximation allows us to study the motion of the infinitesimal particle
in an O(mé/ 3) neighborhood of m3. Remarkably, the angular velocity w associated to

the triangular central configuration does not appear in the limiting Hamiltonian. We



introduce the gravitational potential as

. (1—u)(¥—1)

1
(1 ’u) (3(4u247w2) 1) m (3(4u247w2) 1)
+ G + o5
wA 4du —w —w \/4u27w2
i (1 - ,Uf)ﬁ 442 : _ NG(Q )4 ry
ud v 2
Q= m) 2
u3 v3 /) 2
_ 2 2
L (A=ma 3(5)_1 +(@) 3(5)_1
ud u v3 v
1
r

and the effective potential as

~ 1 ~
Qz,y,2) = §(x2 +y3) + Uz, y, 2).

The equations of motion associated to (4.42) can thus be written as:

i—29=Q,,
j+2i=Q,,
5 =qQ..
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(4.43)

(4.44)

Remark 4.4.2. One of the main advantages of the Hill approximation is that it yields a

much simpler Hamiltonian than for the circular restricted four-body problem. Particallt,

the effective potential (4.23) has three singularities, corresponding to the positions of

the three heavy bodies in the latter.while there is only one singularity, corresponding to

the position of the tertiary in the former. Furthermore, the effect of the primary and

the secondary are included in the effective potential (4.44) is represented by a quadratic
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polynomial in z,y, z.

Remark 4.4.3. In the case when C% = 0 for i = 1,2,3, we have that u = v = w = 1
and the Hamiltonian in (4.42) is the same as the one obtained in Section 4.1.1 [BGG15].
Furthermore, its quadratic part coincides with the quadratic part of the expansion of
the Hamiltonian of the restricted three-body problem centered at the Lagrange libration
point L,. Notice that in the case of u = 0, we obtain the classical lunar Hill problem,

after some rotation of the coordinate axes as in Section 4.4.2.

Remark 4.4.4. Our model is an extension of the classical Hill’s approximation of the
restricted three-body problem, with the major differences that we consider a four-body
problem which takes into account the effect of the oblateness coefficients C%,, i = 1,2, 3;
compare with [Hil78 MS82, BGG15]. We remark that an approach similar to ours was
adopted in [MRPDO1], where a Hill’s three body problem with oblate primaries has been

considered.

4.4.2 Hill’s approximation applied to the Sun-Jupiter-Hektor

system

Consider the Sun-Jupiter-Hektor system, we use the following data (see Section 2.2):

Ca Average radius(km) | Mass(kg)
Sun Cjo = —5.00 x 107° Ry =695,700 M; = 1.989 x 10%°
Jupiter | C3) = —14,736 x 1075 | Ry = 69,911 M, = 1.898 x 10?7
Hektor | C3, = —0.476775 Rs =92 M =791 x 10

For the normalized units, we use the average distance Sun-Jupiter 778.5 x 10° km as
the unit of distance, while the mass of Sun-Jupiter-Hektor 1.990898 x 10*° kg as the unit
of mass. With these unit quantities, we have the average radius R; = 8.936416 x 1074,
Ry = 8.980218x107°, Ry = 1.18176x 1077, masses m; = 0.9990467, ms = 9.533386 x 10~*

and ms = 3.97308 x 10712, Let 715 = 1, we obtain rj3 = u = 1—5.94154 x 107! and 793 =
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v =1-1.99318 x 1072 from the system (3.43). In terms of the unit distance ;5 = 1 (the
Sun-Jupiter distance is 778.5 x 10% km), the difference between the distances r13 and 71,
is 0.0462549 km, while the difference between the distances 793 and r15 is 0.00155169 km.
Practically, the scalene triangle central configuration is almost an equilateral triangle.

The parameters that appear in the Hamiltonian (4.42) are

_2
c1 =mg P R2C5,/2 = —7.958816 x 1077,
_2
¢y =my *R2C2)/2 = —2.368673 x 102, (4.45)

_2
cs =my 2 R5C5,/2 = —1.327161 x 10",

The mass ratio that appears in the Hill approximation is y1 = msa/(mi+ms) = 0.0009533386.
We note that for the case of considering the restricted four-body problem (without the
Hill approximation) described by the Hamiltonian (4.24), the oblateness effect is given

by the coefficients

C) =RIC5,/2 = —1.996488 x 102,
Cy =R30%,/2 = —5.941874 x 107, (4.46)

C3 =R5C5,/2 = —3.32921544 x 107,

which are much smaller then the corresponding normalized values ¢;, for ¢ = 1,2,3 as
in (4.45). By means of having the numerical values of the parameters involved to be
relatively larger, the Hill approximation is more convenient to use for numerical compu-

tations. We also note that we have the ordering
02 < Cl < Cg,
with the corresponding ordering of length

T13:U<7’23:U<7’12:1.



97

The analogy here between these two orderings agree with Proposition 3.2.1.

4.4.3 Hill’s approximation in rotated coordinates

In this section we consider the Hamiltonian of the Hill approximation in a rotated refer-

ence frame, and thus the quadratic part of the effective potential (4.44) is diagonalized.

Corollary 4.4.5. The Hamiltonian (4.25) is equivalent, via a rotation of the coordinate

axes that diagonalizes the quadratic part of the effective potential, to the Hamiltonian

1

H = (0% + 1, +2) + ype — 2y

() () ()
()G ) (0

1 s 322 )
(xZ +y2 + 22)1/2 (xZ +y2 + 22)3/2 $2 +y2 + 22 ’

(4.47)

where Xy and A\ are the eigenvalues corresponding to the rotation transformation in the

xy-plane, given by (4.50).

Proof. With a rotation on the zy-plane, we re-write the Hamiltonian in equation (4.25)
in the rotated coordinates, which are more suitable for the further analysis. We adopt

the following notation

3(4u? — w?)

U=y g 1,
4 4 4 (4.48)
W 6w/ 4u? — w? W 6(2 — w)v4u? — w?
1 == —’ 2 == .

4
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The planar effective potential restricted to the xy-plane (i.e., z = 0) is given by

Q(x,y)=(1+w+ﬂ)m—2+(1+w+£)y_2

u® vo ) 2 u® vh ) 2

.1 1— 1
- b (U5) ()« -
u lall gl

where ¢ = (z,y)T and

|4 el wy ((1—qu1 _ m)

udb

(4.49)
1 ((1—M)W1 _ @) 14 0=mZ | pz

2 ud v

In order to obtain the eigenvalues of M, we solve the characteristic equation det(M —

AI) = 0, which yields

2 (a0 AU D) iV 2 2)),

u® Vo
1—pn)U V 1—p)z A
+<1+( ") “—5)(1+( #) “—5)
u v u v
2
L (A=W T (4.50)
4 u? vd
1 20—p) 2 3(1—p) 3p 3
—~(2_ _ oH 9
Al 2 ( ub v TS vd o uded ’
1 20—p) 2 3(1—p) 3u 3
)\225(2_ w b u? +5 wdvd A

where

A= (pu’® + (1= pv®)’ — p(l — puv (—u* —v* + 2u® + 20* + 20*0* — 1)
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When u and v approach 1, which is the case when ¢y, co, c3 approach 0, we have A\, Ay > 0
and Ay # Ag.

Since the matrix M is symmetric, its eigenvalues A\; and Ay are real. Notice that
the corresponding eigenvectors of A\; and Ay are orthogonal. Let v; and vy be the unit
eigenvectos for A; and Ay respectively (i.e. Mwv; = Av; and Mwvy = Awvy). These
eigenvalues are given explicitly in Section 4.4.4. The associated matrix C' = col(vq, v;)
is orthogonal, i.e., CT = C'~!. Hence, C defines a rotation in the zy-plane. Now we can

express the equations of motion for the planar case as

. . q 3c3q
§—2J¢g=Mq— =+ 7
lgli*  llall®
where
0 1
J =
-1 0

Substituting the linear change of variable ¢ = C'g with ¢ = (Z, %) and multiplying C~!

from the left, we obtain

C'Cq  3c3C~'Cq

Cl'Cg—207'JCG=C"1MCq— TE + T

The matrix D = C7'MC is in fact a diagonal matrix such that D = diag(\y, \;), that

is [|Cq|]* = ||4]|*>. And therefore the equation becomes

o _ . _ 3636
§—2C'JCG=Dj——— + 22,
lall® — llall®

Recall that vy = (v11,v19)7, vo = (va1,v92)T and C = col(vy, v1). Since C' is unitary, we

]
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have C~! = CT. Furthermore, we have

0 V12V21 — V11V22

ClJC =

—(11121)21 - 11111)22) 0

A straightforward computation shows that v19v9; — 011022 = 1, which implies C1JC = J.
The relation C~*JC = CTJC = J shows that the matrix C is symplectic by definition.
Hence, the change of coordinates is symplectic. Thus, the equations of motion can be

written as

= - _ q 3e3q
q—2Jq=Dq— —= + +=.
lall® ~ lial®
For 4 € [0, 1), we obtain the equations
(4.51)
with
N _ (1—per pes 1 c3
Uz,9) =5 (Mt® + MY*) - —5— ——5 + = — 35 (4.52)
2 u? vio gl gl

We remark the symmetry properties from the expressions for {0z and Qg as:

Q:f(f, —37) = Qi(fag) ) Qg(:ﬁ, —Zj) = _Qf(fag)

Using these properties, we observe that the equations (4.51) are invariant under the

transformations of z — Z, § — -9, T — —2, y — ¢, £ — = and y — —vy. If we now
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return back to the spatial problem, we need to replace Q by

u3 v3

(O E ) ) (@) am
) <3<;>2_1>.

~ 1 1/(1—
Q("Eag7 2) :§(A2j2 + )\lgz) — = (M + ﬂ) 22

=%

C3 3032

( ) (3(§>2__1>'%(é§§) (3<§>2-—1> (4.54)

r3 rd

In conclusion, the Hamiltonian in the new coordinates is now given by (note that we

omit the bars for z, y and z for simplification of notations):

1
H(x,y, %, Do, Py, P=) = = (P2 + 15 + D2) + Ype — Dy
2

() (5 (5 5)
() (@) - (6 )

1 ¢35  3cg2?

r 73 7D

With the substitution of 7 = (22 + y2 + 22)2, we obtain (4.47). O

Remark 4.4.6. In the case of having C%, = 0 for ¢ = 1,2,3 and p = 0 in (4.47), we obtain

the Hamiltonian for the classical lunar Hill problem, see, e.g., [MS82].
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4.4.4 Expressions for the eigenvectors of the rotated Monodromy

matrix M

With the martix (4.49), the explicit expressions of the eigenvectors vy, vy associated to

the eigenvalues (4.50), respectively are shown below. Let

O = v—ut — vt + 20 + 202 + 2uv? — 1,

we have

v == (1= p) (0" + QA+ u*)°) — p(—u" + (1 + ")) 6,
(1—p)(v —=2(1 + u*)v” +0°(1 +u'))
+ p(u? —2(1 +v*)u” + (1 +0?))

—V2u?0? /(1 — p)vd + pu)? — p(l — ,u)uv@ﬂ] :

(4.55)
vy == ((1 = ) (=0 + 1+ u*)0°) — p(—u" + (1 + 0*)u’)) O,

(1— ) (v = 2(1 + u*)v" + 0°(1 + u?))
+ p(u® = 2(1 + v*)u” + P (1 + vt))

V20?0 (1 — p)vd + pud)? — p(l — ,u)uv@2] :

4.5 Linear stability analysis of the Hill four-body
problem with oblate bodies

In this section we aim to obtain the equilibrium points, which are associated to the
potential in equation (4.53) for our model of Hill four-body problem with oblate bodies.

Furthermore, we analyze their linear stability.
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4.5.1 The equilibrium points of the system

In order to find the equilibrium points of equation (4.47), we have to solve the following

system:
Q. —0 ()\2—% %—15;322)95:143::0\
2
Q.=0 (_% %—15:?)2::02:0

where (Q is the effective potential (4.53) (again we omit the bars), and

, (L—p)  p| 6(Q—pa  6uc
7.:_[ ) r] Mo pa ) Bee (4.56)

We first note that the expressions A and B cannot simultaneously equal to 0 due to the

relations

A—B=X— )\
and A1 # Ag. Since ¢; < 0 for 7 = 1,2,3 and \; # Ay, we have

1— 6(1 — 6 6
(I-p)  n_60-—ma 6bucey 6bes

v3 ud Vo 7o

A-C =X+

and hence the expressions A and C or B and C' in the above system cannot simultaneously
equal to 0. A similar argument holds for expressions B and C'. This implies that, for
example, if A =0, then B # 0 and C # 0, so y = z = 0 and z is given by the equation
A = 0; the same reasoning applies for the other combinations of variables. Consequently,
we have all equilibrium points must lie on the z-, y-, z-coordinate axes. Precisely, we

have the following results.

(i) Equilibrium points on the z-axis In the case A = 0, B # 0, C' # 0, we must
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have y = z = 0. From A = 0 and z = 0 we infer

1 3C3
hA(T) :2)\2—5—%?:0.
3 15
We have h/y(r) = i WC?’ > 0, since c3 < 0; also, lim, ,gha(r) = —oo and

lim, 0 ha(r) = A2 > 0. Hence, the equation h(r) = 0 has a unique solution

r¥ > 0, yielding the equilibrium points (7%, 0, 0).

(ii) Equilibrium points on the y-axis In the case B = 0, A # 0, C' # 0, we must

have x = 2 = 0. From B = 0 and z = 0 we infer

1 363
hB(r)::/\l_r_B 7"_5:0
3 15
We have hip(r) = — — % > 0, since ¢3 < 0; also, lim, ,ghp(r) = —oco and
r r

lim, o hp(r) = Ay > 0. Hence, the equation hg(r) = 0 has a unique solution

7% > 0, yielding the equilibrium points (0, £7,0).

(iii) Equilibrium points on the z-axis In the case C' = 0, A # 0, B # 0, we must

have z =y = 0, so z = £r. Hence C' = 0 implies

Since c1, ¢ < 0 we have that v < 0. Let ho(r) = yr® — r? — 6¢3. We have hi(r) =
5yrt—2r < 0; also, lim, o he(r) = —6¢z > 0 and lim,,, , ho(r) = —oo. Hence, the
equation hg(r) = 0 has a unique solution r* > 0, yielding the equilibrium points

(0,0, £7%).

) —"z

In the case of the Sun-Jupiter-Hektor system, in normalized units, we obtain \; =

0.002144499689960222, A\, = 2.9978555002506795 and the equilibrium points location are
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given as follows:

x Y z
z-equilibria | £0.6935267570 | 0 0
y-equilibria | 0 +7.7545750772 | 0
z-equilibria | 0 0 +0.0008923544

Note that the x-equilibria and the y-equilibria also exist in the case of the Hill’s redis-
tricted four body problem (i.e., without oblateness), as in [BGG15]. The locations of the
equilibria, in the case of Hektor, are very close to the ones as in the case of an oblate

tertiary. Precisely, we have the following

x Yy z
z-equilibria | +£0.6935265657 | 0 0
y-equilibria | 0 +7.7545747024 | 0

In conclusion, the z-equilibria and the y-equilibria are the ones inherits from the Hill’s
restricted four body problem (with non-oblate bodies). In other words, the Hill’s prob-
lem with oblate bodies are continuations of the ones for the Hill’s restricted four body
problem. Contrarily, the z-equilibria do not exist for the Hill’s restricted four body prob-
lem. Nevertheless, these z-equilibria are a continuation of the equilibria that appear in
the Jo-problem; see Section 4.2.1. For the Js-problem, we can compute the distance
from the z-equilibria to the center, as 7, = Rs(—3Cq)"2. Applying this formula for the
Hektor’s case, the numerical result is very close to the one found from the approximation
in this section. To summarize, the Hill restricted three-body problem has 2 equilibrium
points while the Hill’s restricted four-body problem has 4 equilibrium points, and the
Hill four-body problem with oblate bodies has 6 equilibrium points.

Notice that there is a rescaling procedure performed in the Hill’s approximation. In

order to compute the distance of the equilibrium points from the barycenter in real unit,
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/3 and the unit of distance (i.e. Sun-Jupiter). Consequently, the

we need to multiply by mé
z-equilibrium points, the y-equilibrium points and the z-equilibrium points are located
at a distance of 85,512.774 km, 956,149.451 km and 110.028 km from the barycenter
of Hektor respectively. Recall the dimension of Hektor, the smallest semi-minor axis
is 60 km. Subsequently, we have the z-equilibrium points are located outside but very
close to the body of the asteroid. The computation of the distances uses the value of
C3, = —0.476775, which is obtained from Section 4.2.1. If we use C3, = —0.15, as
provided by [MDCR™*14] instead, we obtain that the z-equilibrium points are at 62 km
from the barycenter. It follows that the z-equilibrium points are located right at the
surface of the asteroid.

Since the shape of an asteroid is not known, it is difficult to determine the asteroid’s
oblateness and thus, it is worth studying the effect of a range of values of the oblateness
parameter. In order to understand the effect, we plot the dependence on the Cj,, within
the range of —0.001 and —0.95, of the distance from the z-equilibrium point to the
barycenter (in km). We remark that for some values, the z-equilibrium points are outside
the Brillouin sphere (which is the smallest sphere that contains the body), while for some
others they are inside. The z-equilibria that are outside are an artifact of the model, as
they do not make physical sense. However, the z-equilibria that are inside the Brillouin

sphere of the asteroid are physically possible. See Section 4.7 for further information.

4.5.2 Linear stability of the equilibrium points

In this section, we study the linear stability of the equilibrium points that found in

Section 4.5 in the case of Hektor.
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Figure 4.2: The dependence of the z-equilibrium point distance on C3.

The Hamiltonian (4.47) yields the following system of equations

T =g, Uy =20y + (),
Y =1y, Uy =—Uy+ €,

Z =10z, U :Qz’

where € is the effective potential given by (4.53) (again, we omit the overline bar on the
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variables). The second order derivatives of (2 are given by

1 322 3cs3  15c3x?  15c32? N 105¢322% 22

QmZ)\z—ﬁ-i-F-i-F— 7 7 PR
q L., 3y 3¢ 15cy? 15c32® | 105¢52%°
vy 1 r3 rd rd r7 r 0 ,
1 322 9c;  90c3z?  105c327
Q.. =y - ) + 5 + PR + o -
o 3y 1besry 105¢32%2y
Ty 7ﬁ5 7’7 7”‘9 s
0 :31;2 _ 45c31 2 N 105¢323w
Tz rd r7 r9 )
Q _3yz  45czyz N 105¢32%y
Yz 5 7 9 .

To describe the linearized system, we consider the Jacobain such that

J= . (4.58)
Qo Uy D 0 20

Qe Qy Q. -2 0 0

Qy Dy Q. 00 0

With the nature that the equilibria are on the x-axis, y-axis and z-axis, the equilibria

are of the form (£r%*,0,0), (0, £r* 0), (0,0, +r*). In addition, we have the mixed second

) —"y ) —"z

order partial derivatives €1, €2,., €,. vanish at each of the equilibrium points. Hence
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the Jacobian matrix (4.58) evaluated at the equilibria is of the form:

Qs 0 0 020

09, 0 -200

0 0 Q. 000

Furthermore, the matrix (4.59) has the characteristic equation as

(0° = Q2) (" + (4 = Quw — Yyy)p* + Q) = 0. (4.60)

The signs of expressions €2,,, A, B and D determine the stability of the equalibria. In
the case of the Sun-Jupiter-Hektor system, we obtain the following stability character of

the equilibrium positions numerically:

i) Eigenvalues of z-equilibria at (£0.6935267570,0,0)

2.5069424783  —2.5069424783,
2.0704830660z, —2.070483066017,

1.9995877290¢, —1.9995877290z.

Stability type: center x center x saddle.
i1) Eigenvalues of y-equilibria at (0, +£7.7545750772,0)
0.9890157325z, —0.98901573254,

0.14036873262, —0.14036873261,

1.0013166944:, —1.0013166944%
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Stability type: center x center x center.

iii) Eigenvalues of z-equilibria at (0,0, +0.0008923544)

—37514.04321 + 0.9999999997: —37514.04321 — 0.9999999997:
37514.04321 + 0.9999999997:  37514.04321 — 0.9999999997:

53052.86869¢ —53052.86869:

Stability type: center x complex saddle.

We notice that the imaginary part of the ‘Krein quartet’ of eigenvalues of the z-
equilibria is approximately +1, meaning that the motion of the infinitesimal mass around
the equilibrium point is close to the 1 : 1 resonance relative with the rotation of the
primary and the secondary. In Fig. 4.3 we show the behavior of the real part and the
imaginary part of the ‘Krein quartet’ of eigenvalues for a range of r} values between
z = 0.0008923544 (corresponding to the value for Hektor c3 = —1.327161 x 10~7) and
z = 0.009999 (corresponding to c3 = —1.666271 x 107°).Note that the imaginary part
remains close to £1. In Section 4.5.3 we will show an analytic approach and argument
that the real part of the ‘Krein quartet’ of eigenvalues is always non-zero, while the
imaginary part is close to +1 for r¥ sufficiently small. The analytical results help us to
further understand and explain the behavior of both the real and the complex parts of

the ‘Krein quartet’ of eigenvalues observed in Fig. 4.3.

4.5.3 Analytical Results on the Linear Stability of Equilibria

In this section, we consider analytical approaches. Due to the performance of the Hill’s
approximation, we are able to provide some analytical arguments for the linear stability
of the equilibria. Notice that the problem refers to the three parameters, ¢, co and cs,

which make the analysis quite complicated. To simplify the complication, in this section
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Figure 4.3: The dependence of the real part (left) and imaginary part (right) of the
Krein quartet of eigenvalues on the z-equilibrium point. The horizontal axis represents
the distance 7} from the equilibrium point to the origin, the vertical axis the real part
(left), and the absolute value of the imaginary part (right) of the eigenvalues. The former
never changes sign, and the latter stays within 4 x 10~7 from 1.

we will assume that ¢; = c¢; = 0 and study the stability of the equilibria for varying cs for
cs < 0. The justification of this simplifying assumption refers to the contribution to the
gravitational potential (4.43) as in the Hill problem. The contribution to the gravitational
potential (4.43) from the term containing ¢z in a small neighborhood of the tertiary, that
is, for r « 1, is much bigger than the contributions from the terms containing ¢; and cs.
In addition, we rescale the sides of the triangular central configuration (3.43) differently,
namely r13 = ro3 = 1 and 5o = v. Referring to the Remark 3.2.4, we note that rescaling
the unit of distance, the triangular central configuration does not change. Instead, only
the constant c3 get rescaled by a factor. With this rescaling, the computations is made

to be somewhat easier. In this case, the eigenvalues of the matrix M in (4.49) becomes

A = [1 —/1- (u—u2)02(4—v2)]a

(4.61)
[1 + /1= (n— p?)v?(4 — UQ)] )

DO LN W

Ao =

and the constant «y in (4.56) becomes 7 = —1.
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Linear stability of the equilibria on the z-axis

The z-equilibrium points are of the form (0,0, +r*), with

—(r})> = (rf)> —6c3 = 0, (4.62)

z

which yields

o = —(r2)* = (1) (4.63)

Evaluating €., y,, (2., at the equilibrium point yields:

z

Ay = (r2) 7" = 12c5(r2) 7,
1

M= (r7) = 12e3(r7) 7,

z

QI$
ny
Qoo = —1420r5) 7% + 24c3(r?) .
Substituting (4.63) we obtain

Quw =24 Ao+ (rH) 7,

Quy =2+ M + (rH)73, (4.64)

Q.. =—5—2(r")%.

Using (4.50) and denoting d := 1/1 — (u — p2)v%(4 — v%) we can write

3
A= =(1-4d),
§ (4.65)
A = S(1+d).
Also for ¢35 = 0 we have dy = 4/1 — 3( — p?) and
3
)\1() 25(1 - do),
(4.66)

3
A20 25(1 + dp).
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Note that this is the same as the results shown in [BGG15]. For future reference, we

expand d as a power series in the parameter c3 as
d=dy+ dics + O(c3), (4.67)
where the coefficient d; can be obtained from the Taylor’s theorem around c3 = 0 as

dy = — 2(ud_—0/ﬂ). (4.68)

With the characteristic equation given by the equation (4.60) and the condition €2,, < 0

as in equation (4.64), we obtain that the pair of eigenvalues p;o = +(Q..)"/? is purely
imaginary.The ‘Krein quartet’ eigenvalues are given by
—A++A?2—-4B
P3.45,6 = i\/ 5 ; (4.69)
where
A = 4-Qu—Qy = -3y,
= 0.0 = 10+9U2(4—U2)(/L—u2)+ ! + !
ot i TR
Then we have
16 16
D :=A® — 4B =d* — 40 — = —31—90*(4 —v*)(u — p*) — 0.
) V(4 =) (p— p) ) <

Provided that —A > 0 and D < 0, we obtain that the eigenvalues p345¢ as complex

numbers, non-real, non-purely-imaginary, for all parameter values. Now we let p = a+ b



114

be such that p? = —é + #i := a + i, we have the expression
! 3 1 3
2 2\1 2 0t
a+b= <(a +52)2 +Oé> + sign () ((a +62)2 a) 7.

To show that b is approximately +1, or b? ~ 1, for r* ~ 0, note that

b = -

2 2y A
(& +P%)2 —« ZJF

|5

l\DI»— DO

1
3, 9 7 1\ 1
-2 10 + °7 L I
e [( T TR <r:>6) <r:>3]
9 7 11
_ 3, 1 10T Gy F Gy ~
1732 , N
<1O+ 1T Gy +<r:>> MGk
3 1 10+ 27 + G *)3
= — — + —
4 2 % )

9 1
(10+ 1T+ ot o )) t

where T := v?*(4 — v?)(u — p?). Since

9 7
- 10+ 37T + ooy 7
r¥—-0 9 2 1 27
we have that lim,x o0 = =2 + T =1 and so b* ~ 1 for r} ~ 0, as in the case of Hektor.

We obtain the following result:

Proposition 4.5.1. Consider the equilibria on the z-axis. For pe€ (0,1/2], Q,., A and
D are negative. Consequently, one pair of eigenvalues is purely imaginary, and the two
other pairs of eigenvalues are complex conjugate, with the imaginary part close to +i for
c1 = co = 0 and for c3 negative and sufficiently small. The linear stability is of center x

complex-saddle type.



Linear stability of the equilibria on the y-axis

The y-equilibrium points are of the form (0, £, 0), with

M(ry)” = (r})* + 3es = 0,

which yields

(r})? = M(ry)°
g :

C3 =

Evaluating €., y,, (2., at the equilibrium point yields:

1 363
Qe =Ag — = + 2
S

2 12¢5

Qyy =M+ 5 — oo
. (ry)? (ry)?
1 9

sz = - 1 ) 63

R

Substituting c3 from (4.71) we obtain

me :)\2 - )\17
2

Qy, =5\ — ——

SN GRS
O, =—1-—3\+ :

(ry)?
2 9d 7 2
A = 1_3)\1+_(r;“)3 =3_5+_(r;‘)3’

B:W—m@h—%gzewﬁ—@_2).

Expanding ry as a power series in the parameter c3 as

% 2
Ty = Tyo + Ty1C3 + O(c3),
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(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

where +7, is the position of the y-equilibrium in the case when ¢z = 0, which is given
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by 73y = 1/A10; this agrees with the result in [BGG15]. And we have the computation of
Ty yields
—1+ (1/2)dir),

Tyl = s (476)
T’yg

with d; as in formula (4.68). We will also need to expand ﬁ as a power series in the
Yy

parameter c3 as follows

1
o = + Bes + O(c3). (4.77)
y
A straightforward calculation yields
1
(6] :T7
,
vo (4.78)
5B
T'y0
Note that we have dy = %, A = %, di = —m§/3, Tyo = (%)1/3 for p = 1/2. It is easy to see

that dominant part dy of d is a strictly decreasing function with respect to pu € (0,1/2]
and takes values in [1/2,1). The dominant part A\jq of \; is increasing with respect to
€ (0,1/2] and takes values in (0,3/4]. Furthermore, the dominant part 7, of r; is a
strictly decreasing function for u € (0,1/2], where r,(1/2) = {/4/3 and 1,9 — o when
pu — 0. Consequently,the values of r,0 are in the interval [{/4/3, ). From equation

(4.72) we have

1 903

GRS

since r; > 0 and c3 is negative. Therefore, €2,, < 0 for all admissible values of pu.

Using the formulas (4.66) and the expansions (4.67) and (4.77) and for A =4—Q,, —
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Q,,, we obtain

P

(r3)
— 1= B+ s + Olcs)
- 10 (Tyo)g C3

=1- 3)\10 + 2)\10 + 0(63)

>0

for c3 small. Similarly with the formulas (4.66) and the expansions (4.67) and (4.77) and

for B = €2,,$,, using, we obtain

— (3do) (5>\10 - %) +0(cy)

750
= (3d) (5A10 — 2X10) + O(cs)

>0

for c3 small. Lastly, using the formulas (4.66) and the expansions (4.67) and (4.77) and
for D = A? — 4B, we have

2 \? 2
D = (1 — 3)\10 + T) — 4(3d0) (5/\10 - T) + O(Cg)

= (1 — )\10)2 — 12(3 — 2)\10)/\10 + O(Cg).

Note that we have D ~ 1+ O(c3) for 1~ 0 and we have D = —22 4 O(c3) for p=1/2 .
By the intermediate value theorem and thus D changes its sign from positive to negative

for p € (0,1/2], provided c¢3 is small. We have proved the following result:

Proposition 4.5.2. Consider the equilibria on the y-azis. For p e (0,1/2] forcy =c2 =0
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and for c3 negative and sufficiently small, )., is always negative, the coefficients A and B
are always positive, and the value of the discriminant D changes from positive to negative
values. Consequently, one pair of eigenvalues is always purely imaginary, and there exists
Ly, depending on cs, where the other two pairs of eigenvalues change from being purely
imaginary to being complex conjugate. The linear stability changes from center x center

x center type to center x complex-saddle type.

Linear stability of the equilibria on the r-axis

The z-equilibrium points are of the form (£r%,0,0), with

Ao(r3)° — (1) + 3e3 = 0, (4.79)

which yields

3 = (T;)2 _BAQ(T;P‘ (480)

Evaluating €2, €2y, €2.. at the equilibrium point yields:

N T 8
1 9
N M
Substituting c; from (4.80) we obtain
2
Qe =5 — W,
Qyy =M — Ao, (4.82)

2
Q.. =—1-3d + —,
27 (re)?
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Expanding r} as a power series in the parameter cs as

Ty =Tgo + T21C3 + O(cg), (4.83)

where +7r,q is the position of the z-equilibrium in the case when c¢3 = 0, which is given

by r3, = 1/Ag as in [BGG15]. With some computations, we have

Tz1 = . (484)

Next, we expand ﬁ as a power series in the parameter c3
xT

7 o + fles+0(c3), (4.85)

and with a simple calculation, we have the expressions

720
(4.86)
3Tx1
5/ = 1 -

Tx[)

Consider the expression for 2., in equation (4.81) we have

1 X 903
(r)* ()

= s (2 ()~ 9c3)

(r3)°

<0

sz =—-1-

with ¥ > 0 and c¢3 < 0. Therefore, €2,, < 0 for all admissible values of p. Using the
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formula (4.66) and the expansions (4.67) and (4.85) and for A = 4—Q,, —,,, we obtain

2
A=1—3>\20+—+O(63)

(r20)?
=1-— )\20 + O(Cg)
1 3
= —§ — §d0 + 0(03)
<0

for ¢ small. Similarly sing the formula (4.66) and the expansions (4.67) and (4.85) and

for B = Q,,,,, we obtain

B = —(3do) (5)\20 - %) +0(c3)

T'z0

= —(3dy) (5Aa0 — 2X20) + O(c3)

3 3

<0

for ¢z small.
Lastly, with the formula (4.66) and the expansions (4.67) and (4.85) and for D =
A? — 4B, we have

D = (1 — Ay)” + 36doAao + O(c3)

> 0.

for c3 small and thus we have proved the following result:

Proposition 4.5.3. Consider the equilibria on the x-azis. For p € (0,1/2], for c; = ¢y =
0 and for cs3 negative and sufficiently small, 2, is negative, A and B are negative, and
the value of the discriminant D is always positive. Consequently, two pairs of eigenvalues
are purely imaginary, and one pair of eigenvalues are real (one positive and one negative).

The linear stability is of center x center x saddle type.
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4.6 Non-linear Stability

Recall that, in the case of the Sun-Jupiter-Hektor system, as well as for ¢; = ¢ = 0
and c3 sufficiently small, the linear stability of the x—equilibria is of center-center-saddle
type, the linear stability of the y—equilibria is of the center-center-center type (for
less than some critical value p.), and the linear stability of the z—equilibria is of the
center-complex saddle type. See Sections 4.5.2 and 4.5.3. We now discuss the non-linear

stability.

4.6.1 The z—equilibria

The eigenvalues of the linearization of the x—equilibria are of the form +\, +iw; and
+iwy. We can use the Lyapunov center theorem as shown below to conclude the existence

of some families of periodic orbits near these points.

Theorem 4.6.1 (Lyapunov Center Theorem). [Eas93] Assume that H is a Hamiltonian

function with associated Hamiltonian system:

&= JVH(z), z e R™. (4.87)
Assume that the system has an equilibrium point with exponents +A1, £Xo, ..., +A\,,
where + A = tiw # 0 is pure imaginary. Assume that none of the ratios i—f, )‘—i’,..., ’/\\—le

1s an integer. Then there exists a one-parameter family of periodic solutions emanating

from the equilibrium point, whose periods tend to 27” when approaching the equilibrium

point along the family.

In our case we have two imaginary frequencies t+iw;, tiws and one pair of real eigen-

w2
w1

values +\. It follows that, unless 2 is an integer, then there must exist two families of

periodic orbits, a 'planar’ family of Lyapunov orbits and a ’vertical’ family of Lyapunov
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orbits. An example of a planar Lyapunov orbit is shown in Figure 4.5.
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(a) Around the negative z— equilibria. (b) Around the positive z— equilibria.

Figure 4.5: Planar Lyapunov orbits around the x— equilibria.

Theorem 4.6.2 (Center Manifold Theorem). [Mei07] Suppose that f is a C* wvector
field, k = 1, with a fized point at the origin. Let the eigenspaces of Df(0) = A be
written E* P E¢@ E°. Then there is a neighborhood of the origin in where there exist C*
invariant manifolds: the local stable manifold, W ., tangent to E*, on which |z(t)| — 0 as
t — oo, the local unstable manifold W}, tangent to E*, on which |z(t)| — 0 as t — —o0,

and a local center manifold W€, tangent to E°.

Moreover, we can invoke the Center Manifold Theorem to establish the existence of

a 4—dimensional center manifold that is tangent to the vector space spanned by the
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eigenvectors corresponding to +iwq, +iwsy. Sufficiently close to the equilibrium point, we
can find a Cantor families of 2—dimensional tori whose frequencies approach w; and wy
when approaching the equilibrium point. The existence of these families of tori follows
from the KAM Theorem (for instance, [JV97] and [Cell0]). Due to the real eigenval-
ues +\, the Lyapunov orbits have 2—dimensional stable and unstable manifolds, and
the 2—dimensional tori have 3—dimensional stable and unstable manifolds. Thus, the
r—equilibrium points are unstable. Each of the stable and unstable manifolds have
branches inside the region of the tertiary (i.e., towards Hektor), as well as the branches

in the exterior region (i.e.,towards the Sun and Jupiter). See Figure 4.6 and 4.7.

(¢ )
) W
Il Il Il Il L L L
K 0. K Y ¥ Y - 30 20 -10 0 10 20 30

(a) Inside the region. (b) Outside the region.

Figure 4.6: Projection of the stable manifold on the xy—plane, and projections of the
zero velocity surface.
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-40

(a) Inside the region. (b) Outside the region.

Figure 4.7: Projection of the unstable manifold on the ry—plane.
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The projection of these stable and unstable manifolds onto the zy—plane are confined
by the Hill regions. The Hill region as shown in Figure 4.4 represents the projection of the
energy manifold {H = h} onto the configuration space. The boundary of the Hill region
is the zero velocity surface. We observe the exterior branches of the stable and unstable
manifolds go around the Hill regions. Based on the numerical experiments, we expect the
existence of transverse homoclinic connection for each of the equilibrium points, as well
as of the transverse heteroclinic connections between the two equilibrium points. By the
Smale Birkhoff Theorem [Bell8], the existence of transverse homoclinic and heteroclinic
connections implies the existence of chaotic dynamics (symbolic dynamics). In practical
applications, the stable and unstable manifolds of periodic orbits or of invariant tori
can be used to design spacescraft trajectories that come from the exterior region, enter
the interior region and orbit around it for some number of turns, and then leave the
interir region and return to the exterior region. Such trajectories require low energy.

For references to applications of invariant manifolds to space mission design see [Bell8|,

[PA13].

4.6.2 The y—equilibria

The eigenvalues of the linearized system at the y—equilibria are of the form +iw;, +iws
and +iws (for p sufficiently small). The KAM Theorem can be used to show the existence
of Cantor families of 3—dimensional tori in a vicinity of these equilibrium points. These
tori are filled with quasi-periodic orbits. An example of a quasi-periodic orbit is shown
in Figure 4.8. We note that in the spatial problem, the existence of the 3—dimensional
KAM tori does not imply stability. This is because the energy manifold is 5—dimensional
(in the 6—dimensional phase space), and the 3—dimensional tori do not separate the
5—dimensional energy manifold into disjoint connected components. In the planar case,
the KAM tori are 2—dimensional and the energy manifold is 3—dimensional (in the

4—dimensional phase space). In this case the existence of 2—dimensional KAM tori
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implies stability.

Figure 4.8: Quasi-periodic orbits around the y—equilibria.

4.6.3 The z— equilibria

The eigenvalues of the linearized system of the z—equilibria are of the form +iw, and +a+
1. We can invoke again the Lyapunov Center Theorem to assert the existence of a family
of periodic orbits near each equilibrium point. Each periodic orbit has 3—dimensional
stable and unstable manifolds. Thus, these equilibrium points are unstable. One problem
that requires future investigation is the existence of transverse homoclinic and heteroclinic
connections associated to these manifolds. An example of an orbit in the neighborhood

of one of the z—equilibrium points is shown in Figure 4.9 and 4.10.

I I
0.02 0015 0.01 0.005 0 0.005 0.01 0015 0

(a) Viewing from above, i.e. in 2D. (b) In 3D.

Figure 4.9: Example of an orbit in the neighborhood of z—equilibrium.
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Figure 4.10: Three-dimentional views of an orbit in the neighborhood of z—equilibrium.

4.7 Existence of ‘out-of plane’ equilibria

The existence of ‘out-of-plane’ equilibria near an oblate asteroid does not agree with the
physical intuition. The z-equilibrium points found in Section 4.5.2 is one of the examples
of ‘out-of-plane’ equilibria since it seems that the combined gravitational force acting on
the infinitesimal mass must be pointing towards the plane of z = 0. Such kind of ‘out-
of-plane’ equilibria appear due to the Js-approximation of the gravitational potential.
The Jo-approximation refers to a truncation of the spherical harmonic series expansion
of the gravitational potential. Such expansion is known to be convergent outside the
Brillouin sphere, which is the smallest sphere that contains the body. However, in general
the nature of the series within the Brillouin sphere is unknown in general. For certain
shapes, such as ellipsoids, the series is divergent inside the Brillouin sphere. The paper
[WWZ18] shows analytically that for a restricted three-body problem with one primary
as a rotational ellipsoid,‘out-of-plane’ equilibrium points do not physically exist. They
further note that the same conclusion can be drawn if both primary and secondary are
rotational ellipsoids. We note that their argument can also be carried out for the Hill
four-body problem with the three heavy bodies as rotational ellipsoids. However we shall
remark that for non-convex shapes, ‘out-of-plane’ equilibria are physically possible. Here

in this section we show a ‘rubble pile’-model which has true ‘out-of-plane’ equilibria.
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The model consists of six balls— four identical larger balls of radius R and two identical
smaller balls of radius r. They are arranged as in the left-side of Fig. 4.11. The centers of
the larger and smaller balls are at (£1,0, £ R) and (£r,0,0) respectively. The condition
that the balls in the configuration are tangent is » = 1/(2(1 + R)). With numerical
integration, we compute the gravitational force along the z—axis and plot as in the right
side of Fig. 4.11. In the plot, the intersections of the graph and the horizontal axis
correspond to the z-values of the ‘out-of-plane’ equilibria. Note that such ‘out-of-plane’
equilibria exist only for certain ranges of values of R, and disappear through a saddle-node

bifurcation. We plan to study families of such configurations in future works;

(b) The gravitational force along the z-
(a) Six-balls ‘rubble-pile’ model. axis.

Figure 4.11: Example model for existence of ‘out-of plane’ equilibria.

many small bodies in the solar system are believed to be formed as ‘rubble piles’,
consisting of smaller elements separated by voids. Therefore, many known asteroids are
observed to have very irregular shapes. With possible applications to space missions that
target asteroids, the study of ‘out-of-plane’ equilibria for asteroids become an interesting

problem.
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4.8 Conclusions

In this chapter we consider a Hill four-body problem with oblate bodies and develop a
rigorous mathematical model for the problem that can be used for analytical studies. In
Chapter 3 we study and determine the triangular central configurations of three-body
problem with different conditions. In particular, we study and determine the triangular
central configurations of three-body problem with oblateness in Section 3.2. In Propo-
sition 3.2.1 we determined the triangular central configurations of three oblate bodies
to be scalene triangles. Moreover, the triangles corresponding to different moments of
inertia are not necessarily similar to one another. This situation is very different from
the case of having three point-masses, that the central configurations are equilateral tri-
angles. Assuming that the three heavy bodies are in such a scalene triangular central
configurations, we begin with the spatial circular restricted four-body problem with three
oblate bodies and perform the Hill approximation. Our Hill approximation and result in
Theorem 4.4.1 are different from the one in the case of three point-masses, due to the
different type of triangular central configuration and of the oblateness effects. The Hill
approximation acts like a ‘magnifying glass’ to 'zoom’ into a neighborhood of the smallest
body, by sending the two larger bodies at infinite distance via a limiting procedure. The
resulting Hamiltonian encounter the effect of the two larger bodies is represented in the
Hamiltonian by a quadratic polynomial, while in the restricted four-body problem their
effect is represented by singular terms. The Hamiltonian resulted from the Hill approxi-
mation provides us a simpler form that allows us to study the equilibrium points and their
stability analytically, as in Proposition 4.5.1, Proposition 4.5.3, and Proposition 4.5.2.
Contrarily, in the restricted four-body problem it is only possible to have such a study
numerically. An interesting result of our model is the presence of ‘out-of-plane’ equilibria.
These may be physically possible only when they are very close to the barycenter of the

smallest body, and only for certain shapes. At the end of this chapter in Section 4.7 we
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further describe a toy-model that has true ‘out-of-plane’ equilibria.
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Chapter 5

Gravitational Potential for Dumb-bell

shaped Body

According to the observational data, mostly optical, the shape of asteroid is typically
non-spherical. The Jupiter’s Trojan 624 Hektor is one example; it can be well approx-
imated by a dumb-bell shape [MBW™*06], which can be well approximated by explicit
functions. In the context of the n-body problem [Taf85], the gravitational field of a
homogeneous celestial object is usually described as a a multipolar expansion naturally
involving spherical coordinates [Kau66]. In this thesis we describe the shape in terms
of cylindrical coordinates instead and we make use of Bessel and Elliptic Functions to
express the gravitational potential generated by the rotating body as a simple formula
in terms of elliptic integrals. This chapter is devoted to provide an overview of Bessel
Functions, Elliptic Integrals as well as the applications of variational principle to the

gravitational potential for a body with any shape in cylindrical coordinate system.
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5.1 Background

5.1.1 Bessel Functions of the First Kind

In this section, we consider a class of functions known as Bessel functions [BDVV*04],
which are the canonical solutions of the Bessel’s differential equation,
2 d%y dy

2 2
[L’ﬁﬁ‘l’@ﬁ‘(l’ —a)y=0 (51)

for an arbitrary complex number «, which refers as the order of the Bessel function.
With order « as integers, the Bessel functions are known as the cylindrical functions or
cylindrical harmonics since they are the solutions to the Laplace’s equation in cylindrical
coordinates (s, @, z), that is,

sy 10, V. 1PV PV

== )+ = = 0. 2
v 363(863)+52 0¢? * 02?2 0 (5:2)

Consider the following generating function with complex variables ¢ and z
()
g(z,t) = 2™\t Vz,t #0

expanded by the Laurent’s theorem in a series with both positive and negative powers of

t. Denote the coefficient of t" for n € Z by J,(z). Then we obtain

o0]
eéz(t—%) — Z Jn(z)tn

=+ J ()t N2t + S () 4+ Js(2)

where

1
In(2) = — w ez () duy
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and C represents the contour as an unit circle enclosing the origin.

Definition 5.1.1 (Bessel coefficient). The Bessel coefficient of order n € Z, denoted as

Jn(z) is given by

where C' is any closed contour encircling the origin once counterclockwise.

Let u = %, we can easily express J,(z) as a power series in z as

1 22
Tu(2) = 5= (5)" L et g, (5.4)

We can further expand the exponential function in the integrand as a power series of z

as follows:

L)Qr (55)

= (g Ltnl 2 =" dt.

1 n :
Jn(2) = i (g) Jct_" Lete ) gt

1

2m

With the contour C' as an unit circle centered at origin, in which the integrand is uniformly

convergent [AW99], we have

1 - i n+2r )T —n—1-—r _t
=5 Z z ct eldt (5.6)

M

Let f(t) = tnf—i“ Since the contour is a positively oriented simple closed curve in the

complex plane and f is analytic except for t = 0, then by the Residue Theorem we have

L Pt = 21 3 Res(f. 1), (5.7)
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At t = 0, the residue of f(t) is

m Un+r>=20andn+reZ

Res(f,t) = (5.8)

0 ifn+r<0andn+recZ.

Therefore, if n > 0 and n € Z, we have

r( )n+2r

zg — TR (5.9)

Definition 5.1.2 (Bessel function of the first kind with order of positive integer). The

Bessel function of the first kind with order n € Z and n > 0 is defined by the equation

Jn(z) _ (%)n;)r'F((_l)r )(2)21”

n+r+1

By an index shift, we can easily extend the expansion of J,(z) for having the order n

as a negative integer, say —m, then

-y SR
rom (5.10)

m+s( )m+2s

0
; (m + s)!s!

Thus, J,(2) = (—=1)"J(z). By the above definition, we may show that J,(2) is a solution
of the linear differential equation (5.2) in variable 2. Dividing the equation by 2%, we
have

d?y ldy n?
— 1—-—)y=0 5.11
s (5,11

which is known as the Bessel’s equation for functions of integer order n. Since J,(2)
possesses a Riemann integral with respect to ¢t and note that g—£ of the function f(t) =

2
t~"1e!~ % is continuous for both variables z and ¢, we carry out the following differenti-



ations with respect to z:

1d
i
zdz (2)
n—1 n
:llz J t—n—le(t—%)dt_l_lLZ_ tfnfle(t*% (_2_Z)dt
22w 2" o 222" Jo 4t
and
d2
227
1L nn—1)2""2( _ | 42 1 nz”_lj 1 2, 2z
= | et w@gr 4 — e (2 dt
omi 2n L R =l AU 2.
1 nzt L2, 22 1,z L2, 22
— el (=20 dt + — () | e T (=20 2at
T o o L el =riC L g
1 =z 2, 2z
= (Zy\n tfnfl - (== dt
23 L ¢ =g
while we have
2
n
(1= "))
2 n—2

272 c 2m 2" Jo

Thus,
d*J.(z)  1dJ,(z) n?
- 1——)J,
dz? * z dz + 3)7n(2)
1,z n+1 22 22
— (= n t*'fl*l 1_ A (t*T)dt
o2 L ( bl
1 z d 1 (t—ﬁ)
= (=" —_ n ) dt
2m'(2) JC dt( )
=0
since t’”’le(t’%) is one-valued. We have proved that

d*J,(z)  1dJ,(z) n?
- 1—
dz? + z dz * 22
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(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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In fact, it is not necessary to have n as an integer for the solution of the Bessel’s equation.
In order to extend the definition of J,(z) to the case for n being any number, real or

complex, we will need the following definitions.

Definition 5.1.3 (Euler’'s Gamma Function). Euler’s expression of the Gamma’s func-

tion I'(z) as an infinite integral is defined by

0
[(z) = J t*tetdt
0

for t € C and Re(z) > 0.

Definition 5.1.4 (Hankel’s Gamma Function). Hankel’s expression of the Gamma’s

function I'(2) as a contour integral is defined by

1 1
——=— | (=t) Fetdt
I'(z) 2« JC( )
where C' is the path starts at ’infinity’ on the real axis, encircles the origin in the positive

direction and returns to the starting point. That is,

1 i (0+)

) =5 ) (—t)"*e~"dt.

where (0+) represents the positively oriented path that encircles the origin.

As shown before in equations (5.12), (5.13) and (5.14), for all values of n, the equation

(5.16) is satisfied by the integral of the form
22
Yy = z”f et dt
c

provided that the integrand resumes its initial value after following the contour C' and

that differentiation under the sign of integration are justified [WWO02]. And thus we have
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extended J,(z) as
1 2 (0+) L2
T(z) = ——(Zym j Fn=Tel=5) gt (5.17)

“omi2) ),
provided that there is a branch point at z = 0. The principal branch of J,(z) is given
by the principal value of (%)n and is analytic in the z— plane along the interval (—oo, 0].
Similarly, we can express the integral (5.17) as a power series and notice that it is an
analytic function of z. Again, we may obtain the coefficients from the Taylor’s series in
the powers of z by differentiating under the sign of integration. That is, J,(z) can be

expressed in terms of Gamma functions as [Kre09]

(5.18)

for any general values of n.

Definition 5.1.5 (Bessel function of the first kind with order of any general number).

The Bessel function of the first kind with order n is defined by the equation

1) = G D s

= (n+r+1

This function J,(z), which is known as Bessel function of the first kind, reduces to
a Bessel coefficient when n is an integer. In general, Bessel functions of the first kind,
denoted as J,(x) are the solutions of Bessel’s differential equation (5.1). The functions
Jn(z) are finite at the origin (i.e. = 0) for integer or positive order n and diverge as

x — 0 for negative or non-integer n. To obtain the recurrance relationsip of Bessel’s



fucntion, we consider the following derivative [Kre09]

dif’z[zfxfs(Z)]Zzi i s+kz+ @)

d

dz

x z

z_l s+k:+1 (Z)()
z x z

:_28+1Zklr s+k:+2 (5)

Multiplying the equation by 2°, we obtain

[\>|H

28

L[] = a2

or

Jea(2) = 20(2) = Ji(2)

— J(2) = 20,(2) = Tea (2).

z

The following plot shows J,(x) for n = 0,1,2,3, ..., 10.

Figure 5.1: Bessel functions of the first kind.
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(5.19)

(5.20)

(5.21)



138

5.1.2 Elliptical Integrals

Let R(z,y) be a rational function of x and y, the integral

f}%xdﬂdx

can be evaluated in terms of elementary functions of the form y = vax +b or y =
Vazr? + bx + ¢ [Hal95]. However, the integral is not easy to evaluate when y? is a cubic

or quartic polynomial. This difficulty leads to the following definition.

Definition 5.1.6 (Elliptic Integral). Let R(z,y) be a rational function of z and y such
that y? is a cubic or quartic polynomial of z (i.e. y* = ax® + bx* + cx + d or y* =

az* + bz® + cx® + dx + €). Then the integral

JR(m, y)dx

is called an elliptic integral.

Elliptical integrals were originally investigated in the study of arc length of ellipses
and they can be considered as generalizations of inverse trigonometric functions. The

general form of an elliptic integral is written as

da, (5.22)

where A(z), B(x), C(x) and D(z) are polynomials in 2 and S(x) is a polynomial of degree
3 or 4. In this section, we are going to provide an overview of the elliptic integrals of the
first, second and third kind. In Legendre’s notation, we have the following definitions

[BF13].

Definition 5.1.7 (Elliptic Integral of the first kind). Let the modulus & be such that
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0 < k? < 1. The incomplete elliptic integral of the first kind is defined as

¢ dp
K k)= —m——.
(6,k) L\/l—k%iﬂze

Definition 5.1.8 (Elliptic Integral of the second kind). Let the modulus & be such that

0 < k? < 1. The incomplete elliptic integral of the second kind is defined as

@
E(¢, k) = J V1 — k2sin? 0df.
0

Definition 5.1.9 (Elliptic Integral of the third kind). Let the modulus & be such that

0 < k? < 1. The incomplete elliptic integral of the third kind is defined as

¢ de
(¢, n, k) = .
(6, ) Jo (1 + nsin®0)v1 — k2 sin* 0

Substituting x = sin 6, the above elliptic integrals take the Jacobi’s form as

The frist kind: K(z, k

v dx
):fo V=21 - k22?)

_ 1 — k222
The second kind: E(x,k) = - (5.23)
The third kind: II(z, n, k) = J :
o (1+nx2)/(1—22)(1 — k222
Notice that the above elliptic integrals are referred as complete when ¢ = 7 in the Leg-

endre’s notation or x = 1 in the Jacobi’s form.

The complete elliptic integral of the first kind in fact arises the problem of simple pen-
dulum [Hal95]. Consider finding the period of a pendulum without the small angle
assumption. Let L be the length of the pendulum, g be the gravitational acceleration,

and 6 be the angle of the displacement of the pendulum from the vertical axis. The
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motion of the pendulum is governed by the differential equation
0" = —% sin 0(t). (5.24)

Writing the equation in the Hamiltonian form, we note that the above equation integrates
and yields

%(9')2 — %COSH =C, (5.25)

where C' is a constant. Assume the pendulum has a maximal displacement of angle «

such that () = 0 so that we have

0? = g(cos@ — cosa),

2 L

and thus

0 = i%\/Q(COS@ — cosa).

Taking the positive value and integrate, we obtain

g, (° do
ft B Jo \/2(cos ¢ — cos a)
(5.26)

_lf do
2 \/siDQQ—sin%‘—S'
2 2

With the substitution of

, k=sin§e[0,1) (5.27)

we obtain

At the maximal displacement we have p = 1 and z%t = 7, that is t = %. So the maximal
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displacement happens for the first time when

L (! dx
- \/;L VI =221 — k2a2) (5:29)

where T is the period of the oscillation. This application on the simple pendulum arises

the elliptic integral of the first kind.
In order to rewrite the integral as a power series expansion, we start with the one in

Legendre’s notation

3 do
- . 5.30
fo 1 — k2sin’ ¢ ( )

By the Binomial theorem, we have

k- [13 ()

i (_%) mk,Zm Jg Sin2m qbdqb
0

m—0

N[ =

) mk2m 2m ¢d¢
(5.31)

In order to evaluate the integral term by term, we have to recall the expansion of the

binomial coefficient in terms of Gamma functions, that is

as well as the definition of the Beta function

us

“Ta+p) =2 f: cos?* ™ ¢ sin? ! pdg. (5.33)

Withazéandﬁzmﬁ-%,wehave

k™. (5.34)
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Applying Euler’s reflection identity, that is

sin(rz)’ (5:35)

then taking z = % + m, the Gamma functions on the numerator in the equation (5.33)

could be written as

; ; emETrEE (5.36)

K(k):i (-)"T(3) TG +m)

m)!

k,?m

m !
T(Lm) sin(n(X +m)) 2m!

2 (=)™ (3)T(E + m)sin(x(2 + m)) T3 + m)
TR

K> 5.37
oy m!m 2m! ( )
2~ m(m!)?
By the following identity
2mT (4 +
(2m — Il = % (5.38)
T
we obtain
T & [(2m— 1IN’
K _ 2m
" 5.39
2~ (em)!! '

y
St (5.40)
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with a < b. In parametric form, we have the equations

x = acosf and y = bsiné. (5.41)

And we have the circumference C such that

C = 4]2 \/azsin20 + b2 cos? 0do

0
3 a?, .,
= 4b O 1= (1= 43)sin®0df (5.42)
3
= 4bf V1 — k?sin®0db,
0
where k? = 1 — Z—; Notice that the integral is in the form of elliptic integral of the second

kind.

Similar to the above computation for solving elliptic integral of the first kind, we obtain

T = om — DI\ k2m
Etk) =3 2 (( (2m)!!) ) 1—2m (543)

m=0

as the power series for the complete elliptic integral of the second kind. Above we pro-
vided the motivational examples for the elliptic integral of the first and second kinds,
and computed in terms of power series. However, the applications for the elliptic integral
of the third kind are relatively complicated.

In general, we evaluate elliptic integrals in a systematic way as follows. Since the gen-
eral form of elliptic integral is as shown in (5.22) where A(x),B(z),C(z) and D(zx) are

polynomials in z, we have

Alw) + B() | C(x) = D(x)y/5()
R(x,A/S(x)) =
V) = s D@ ) - D) (5.44)
_ A@)C() + B)C(2) | —A(x)D(x) — B(a)D(x) ()
)~ DS | Ca) - DHw)5() |
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Hence, we have

R(xz,+/S(x)) = Ri(x) +

(5.45)

where R; and Ry are two rational functions of z only. Focusing on the fraction of Ry(x)
over 4/S(z), we recall that S(z) is a cubic or quartic polynomial in z. Then it would be

convenient to consider the following theorem for factorization.

Theorem 5.1.10. Any quartic polynomial in x with no repeated factors can be written
in the form

[a1(z — c1)? + by(z — c3)*][az(z — c1)? + ba(x — c3)?].

The constants ay, by, as, bs, c1 and co are all real for the coefficients in the quartic

polynomial are real.

Proof. Let Q(x) as any quartic polynomial such that

Q(x) = Fi(z)Fa(x),

where Fi(z) and Fy(x) are quadratic polynomials.

Note that the complex roots (if any) of Q(x) occurs in conjugate pairs, and thus it leads
to the following three cases:

CASE I— Four Real Roots

Let r;, i = 1,2, 3,4 be the real roots of Q(z) such that r; <ry <rz <ry.

Let

Fi(x) = (x —r)(x —ry)

and

Fy(x) = (x —r3)(x — ry)

. Note that an appropriate constant coefficient would be necessary in case the leading

coefficient of Q(x) is not one.
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CASE II— Two Real Roots and Two Complex Roots
Let 7;, i = 1,2 be the real roots of Q(x) and p; + psi be the complex roots.

Let

Fi(z) =(x —r)(x —ry)

and

Fy(x) = a® = 2prz + (p] + p3).

CASE III— Four Complex Roots
Let p; + poi and ps £ pgi be the complex roots of Q(z).
Let

Fi(z) = 2® = 2pz + (p] + p3)

and

Fy(x) = a® = 2p3x + (p3 + pi).

In general, we have Fj(z) and Fy(z) as quadratic polynomials, which are expressed as

Fi(z) = a12® + 2byz + ¢;

and

Fy (1) = asx® + 2byx + co.

Consider a constant « such that Fi(z) —aFy(zx) is a perfect square. Since Fy(x) —aFy(x)
is simply a quadratic polynomial in x, it is a perfect square if and only if the discriminant

is zero, that is,

(201 — 2aby)? — 4(ay — aay)(c; — acy) =0
(5.46)

= (by — aby)? — (a; — aay)(c; — acy) = 0.
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This discriminant is indeed a quadratic in « and has two roots a; and as. Thus, we get

by — a1by 2

a — a1by (5.47)

= (a1 — aja) (v — K;)?,

Fi(x) — a1 Fy(x) = (a1 — agag)[z +

b1 — Oé2b2 2

a1 — Qb (5.48)

= (a1 — awas)(z — Ky)?,

Fy(x) — agFy(x) = (a1 — agag)[z +

where K, = % and K, = —%. Lastly, solving the above equations for Fi(x)
and Fy(x) would obtain the required form. O

In regard to the integral
Ri(z)

v S(z)

we consider the substitution ¢ = el Hence, we have

dx, (5.49)

_ —ft+a
o 1—t
do (v —B)?

dt  a-8 "

(5.50)

This yields

S(x) = [Ai(z — @)* + Bi(z — B)’|[Az(z — @) + Ba(x — B)’]

Az = ) + Bi(x = )°] [Ae(x — a)” + Ba(z — B)’]
(v - B) (v = B)”

= (I — ﬁ)4(A1t2 + Bl)(A2t2 + Bg)

= (z—p) (5.51)

Now the integrand of (5.49) becomes

(a = B)"'dt

Hy (x)[\/(Ath T By (AP 1 By

]
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and R;(z) can now be written as

t(or — B)Rs(t),

where R3(t) is a rational function of ¢.

Theorem 5.1.11 (Lemma). There exist rational functions Ry and Rs such that

Rs(t) + R3(—t) = 2R4(%)

and
Rs(—t) = 2tR5(1?).

ThUS, Rg(t) = R4(t2) + tR5(t2).

The above lemma is introduced to further reduce the integral (5.49) to

j R4 t2) J tR5(t2) dt
A/ (At + By)(Ast? + 32 A/ (A1t + By)(Ast? + By)

Let u = t2, the second integral would be in terms of elementary functions for further
evaluation. Expanding R4(t?) in partial fractions, allows us to reduce the first integral

to the sums of the following;:
I - JtQm[(Ath T+ By)(Ast? + By)] R,
where m is an integer and
II = J (1 4+ Nt) "[(Af® + By)(Agt? + By)] 2dt,

where n is a positive integer and N # 0.

Reduction formulas can be further done to reduce I and I to a combination of known
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functions and integral in canonical forms as follow

( 1
i. | [(Ait? + By)(Aqt? + By)] zdt

r

ii. | 2[(A1t2 + By) (Aot + B,)] 2dt (5.52)

r

iii. | (14 Nt (A2 + By)(Aot? + By)]~2dt,

which are known as the elliptic integrals of the first, second and third kinds
respectively. They form an important class of special functions [Hal95]; a class of integrals
and functions that are particularly applicable for classical mechanics and engineering.
Conveniently, general form of elliptic integral can be reduced to a closed expression in

terms of the three special form, namely the Legendre elliptic integrals of the first, second

and third kinds.

5.2 Gravitational Potential in Terms of Elliptic In-
tegrals

In this section, we are interested in modeling the gravitational fields produced by non-
spherical celestial bodies. We note that many asteroids and/or comets have very irregular
shapes; many small bodies in the solar system are observed to be rubble piles meaning
that the small fragments accumulated to form an aggregate body. There are models
that analyze in detail the granular structure of asteroids, and study the tidal stress
corresponding to different particle shapes as in [G*t09]. Numerical simulations show that
such granular structures preferentially assume shapes that are close to fluid equilibrium
shapes [T*09]. However the perfect fluid equilibrium shapes are not attained due to
inter-particle friction. Assumig that the object can be modeled as an incompressible fluid,
which is regarded as a first approximation of an aggregate of particles. The problem of

a roatating fluid object brings us to a classical problem in fluid mechanics. We consider
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a self-gravitating in-compressible liquid body floating in space and rotating uniformly
about some fixed axis, which passes through its center of mass. The shape of the self-
gravitating rotating liquid body depends on the pressure from the fluid, its gravity and the
rotational (i.e. in its reference frame, centrifugal) force. Since the fluid has its weigth, the
weight of the fluid exert a pressure from gravity. In addition, the relative movement (i.e.
acceleration) of a liquid produces pressure. Fluid pressure refers to the force acting on
particles in the fluid and it will be neglected in this work since we would consider rotation
around z- axis. Physically, fluid spins as if it were a solid body [WB06]. Centrifugal
force (i.e. the force perpendicular to the axis of rotation) opposes gravity [Abr90] while
rotating.

It is easy to prove that the body forms a spherical shape in the absence of rotation. We
would expect rotation to cause changes on the shape of the liquid body— there is an
expansion in the plane perpendicular to the axis of rotation while there is a contraction

occurs along the axis of rotation; the picture is shown on Figure 5.2. In Chapter 2, we

X

P

y

Figure 5.2: A liquid body is rotating along the x-axis.

consider the gravitational potential ® such that

7= |
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where

p is the density of the celestial body
7 is the vector from the origin to the surface of the celestial body

7 is the vector from the origin to an arbitrary point in space.

Instead of a spherical coordinate system and having the negative sign to be dropped as
in Chapter 2, we switch to a cylindrical coordinate system and we keep the negative sign
for the gravitational potential in this chapter. We now consider the points 77 inside the
body produce a gravitational potential at a point 7= z Z + f (z) 7 on the surface. Using

the notation from Section 2.1.1, we have the gravitational potential as equation (2.1)

(X)) = —f Mcﬁxz, (5.54)
Ving

21

we recall r9 = |27 — 23]. We now consider the cylindrical coordinate system as follows.

T = TCcoso
Yy = rsin¢ (5.55)
z =2z,

With this cylindrical coordinate frame (r, ¢, z), consider the points 77 inside the body

produce a gravitational potential at a point 7= z 2 4+ f (z) # on the surface and ®(X;)
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Figure 5.3: From Cartesian Coordinate to Cylindrical Cooridinate (r, ¢, ).

is expressed as

G - S
- J 3 p(Xg)dSXQ
\/Zizl(fczi — x1;)?
G S -
- —— - p(Xo)d* X,
\/7‘2 + 12 — 2rr'(cos g cos ¢ + sinpsin @) + (z — 2’)?
J (Xg)d3X2
\/7“2 + 12 + 2rr’ cos(¢p — @) + (2 — 21)2'
(5.56)
Applying the Lipschitz integral, that is
" e 1
Jo(ka)e™"ldk = ———,
L o(ka)e va? + b?
and we let
a = /12 + 12 + 2rr' cos(¢ — ¢')
(5.57)

b= (z—2)%
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Then

1
2 ) 7 V) — )2
\/07; + 72 4+ 2rr' cos(p — @) + (2 — 2') (5.58)
— J Jo(k;\/r2 + 72 + 211’ cos(¢ — ¢'))6_k‘2_21|dk
0

where Jj is the order zero Bessel function of the first kind. We have shown that the term

of ﬁ can be expressed in terms of the integral of Lipschitz. Furthermore, we
i=1\T2{ —%14

can apply the Neumann’s addition theorem for Bessel functions. The order zero Bessel

function of the first kind can then be written as a Fourier series expansion over Bessel

functions of varying order, that is

Z I (k1) (k1) e™O0=9) = Jo(ka/7T2 + 12 — 21" cos(¢ — ¢)) (5.59)

where J,, is the order m Bessel function of the first kind. Therefore

1 ®© /
= Jo(kA/72 + 12 — 2r1' cos(p — ¢'))e % dk
\/7"2+7“'2+27“r’cos(¢—¢’)+(z—z’)2 L ol \/ (6=¢))
[e'e} e 0}
f D0 Tlkr) T (k)=
0 o
(5.60)
It follows that
(X)) = —Gp J r'dZ dr'dg! 2 f dke™ = J (k) Jp (k') e 7=, (5.61)

m=—0a0

Consider the cylindrical system as in Figure 5.3 with rotation around the x-axis, the total
potential is the sum of the gravitational and rotational potentials. For a given angular

velocity, w, the equilibrium condition on the fluid shape is that the total potential should
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remain constant everywhere on the surface. It is expressed as

U(r,z,¢) = — %Iwz (5.6
= C’7

where ® refers as the gravitational potential, %I w? refers as the rotational potential,

which will be justified later and C' is a constant. In addition, we introduce the notation

Oe

=~

] ;
v (b) Notation for the shape that is inter-

ested in; —zg and zy are the endpoints of

the planet on z—axis where f(z) is the

function that generates the shape of the
(a) A generis shape is shown. planet via revolution on z—axis.

Figure 5.4: In general, the optimal shape of the body is not necessarily to be a dumbbell.

as shown in Figure 5.4.

Integrating with respect to ¢’ first, we will then obtain a simplified integral

27

0 o0 20 ) f(z') . ,
o=—Gp ) J dkzj dz'e == f dr’Jm(kzr’)Jm(k:r)r’J dg/e™ @~
0 —20

m=—a0 0 0

Note that

2
j dg'e™ %) = 216,
0
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/\ /\ /\ Z rma?(f(z)
Z: k/\/ : ~Zo \j

-15 -1.0 -0.5 0.0 05 1‘0 15

f(z)

(a) The function f(z) (i.e. F(z) for dimen- (b) Notation for position vectors and its
sion). distance.

Figure 5.5: Definition for position and function f(z).

where ¢ is a Kronecker function such that

0 ifm=0
S0 = (5.63)

1 ifm#0

and thus the Bessel functions collapse to order zero. That is,

7

1)
=—27rpr dk;f dz' e M=% f Jo(kr") Jo(kr)r'dr’.
—20 0

Using the following identity of the Bessel function

1d 1
—?[Sljl (kSI)] E[Jl(ksl) + S/kJ{ (kSl)]
1
= 2 [Nks) + (ko (ks) — Ji(ks'))] (5.64)
= §'Jo(ks")
We now have
= (* (7 1d
d = —2mpG | dk j dz' e M= f Jo(ks)———[r'Jy(kr')]dr’
JO —20 0 k d !
[ =0 nJo(k
= 27pG | dk J do' e H== yf(r')(h(kf(r')) (5.65)
JO —20
00 !/ 20
= —27mpG dke—kz—Z’IM f(2dz'
Jo

—20
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Let 2/ = zgn/, 2 = zpn and k = %, then we have the dimensionless case

® s Jo(Br) (B 1
o= —27rszoJ arce - )Kl(zo ) F@')dn' (5.66)
0 -1
Nowlet x = K |n—n'|and K = 77> We obtain

dx x 1 x !
® = —2mpGz J e " Jo(————1) ) (————1' f f(n"dn' 5.67
bz (ZOln n|) (ZOln—n’l )_1 () (5:67)

Since we are interested in the potential ® at the surface that is defined by the function

f, we consider the replacement of r as f(n) and " as f(7').

®© dx x 1 x
P = —27T,OGZ()J _xJO( f( ))‘]1 R /
20 | n—n |

o T 20| m—n"| ) B f()dny' (5.68)

Notice that the integral with respect to z is known as the Laplace Transform of the

Bessel /rational integrand. By the equation (2.1) of [KIB12]

o0
It (a,b,s) = f o1y (ax) Jo(br)e™* dx

0

with

_ _f") _ _fm s =1
zoln—n’']’ zoln—n'|’ ’

The function I3 is indeed known in a closed form in terms of Elliptical functions [KIB12].

That is,
1
D = —2mpGizg f af F T (F ), (), 1) (5.69)

where

E + (a® — b?)

1 | 2vab K s s
It b,s) = — K — —bWA—-—-H(a—b 5.70
10 0,5, 5) m[ A N ]+msgn<a A= H(a—b) (570
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and
_ o s Hia—b) = 0 ifa—b<0
(a+b)2+s2 (a-+b)?

1 ifa—0=20
K=K(k) E=E(k) A=Avk)

|(l—b‘ S
= —II UV, K
a+b (a+b)2+s2 ( ’ )

And thus equation (5.69) shows the case in dimensionless notation. With the non-

dimensionless notation, we obtain the following:

Proposition 5.2.1. The gravitational potential at a point of cylindrical coordinates
(f(2),0,2) on the surface of a body generated by revolving the graph of f(z), |z] < 2o is

given by
20

= —21Gp f 02’ f(V I (F(2), £(2), ]2 — 2. (5.71)

—z0

The expression I, for the Proposition 5.2.1 above has the explicit form as follows:

)2 — 2)? (5.72)

For a given body shape generated by the profile function f(z), equation (5.71) gives the
gravitational potential ® as a function of z at any point of the surface. In addition,

equation (5.71) can be easily modified to obtain the exact gravitational potential at any
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point in space, as follows:

Corollary 5.2.2. The gravitational potential at a point in space of cylindrical coordinates
(s,¢,2), exerted by a body generated by revolving the graph of z — f(z), |z| < 29, is given
by

= —21Gp J 42 F() I (F()s 5 |2 — 2)). (5.73)

20

We remark that the formulas (5.71) and (5.73) are very general that they are applica-
ble for any solid of revolution. They give the gravitational potential in terms of a simple
1-dimensional integral with combination of elliptic functions. As shown in Section 5.1.2,
it is known that the elliptic functions have expansions in power series that are convergent,
thus (5.71) and (5.73) can themselves be expanded in convergent power series [BF13].
Note that many numerical computation software packages have been created numerical
computation for elliptic functions. Since the definition of the arguments does not follow a
uniform convention, we must pay attention to the arguments of the function when using
the elliptic functions from standard programming languages such as C, Python, Matlab,
Mathematica. We notice that the definition of elliptic integral can be written as the

function

gj’z’ do
T Jo VaZcos20 + b2sin?0

F(a,b) =

(5.74)

2 #
T Jo cosfva? + b2tan?6

Let t = btan 6 we have the following differential

dt = bsec? 6db

Since sinf = /1 + tant by the Pythagorean trigonometric identity, we have the differ-



ential

b sec 6df
cos

= b v/ 1+ tan®64do

cosf

b £\
— 1 —_—
cos 6 * (b> b
do
= Vb2t

cos

and thus we have
df dt

cosf Vb2 4+ 12

Now F'(a,b) becomes

[ 1 dt

0 Va2 + 2V + 12
[ dt

o /(a2 + %)% +t2)
[ dt

T
—~
L
=
S’

|

[

[

= |

—wo A/ (a2 + 12) (b2 + 12)

[

Let u = % (t — @) and we have the differential

t
1 ab
du=—-{1+ — ) dt.
U 2(+t2)

Note that

2u t ab_ ab
t ot 2 t

ab 2u

b I

t2 t

2

ey 2

t2 t
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(5.75)

(5.76)

(5.77)



159

Since 1 + ‘tl—é’ > 0, we have

1+ 2 gy
12 t
And therefore
du _ 1 u‘
dt 2 dt t (5.78)
du = —.
11— %

In equation (5.76), we handle the integral as

1 J“O dt 1 JO dt N r’ dt
T oo A/ (@2 +2)(02 +12) 7 \Jow /(@2 + )02 +12)  Jo /(a2+ )02 +¢2) )
(5.79)

Substituting u in above integrals, we obtain

7 b—l @ du @ du
(a,)—; _u 27,2 RN YT _u 27,2 2 L 12)42 1 44
—o [1— Y|/ a?b? + (a® + b2t + ¢ —oo |1 = %|y/a?b? + (a® + b2t + ¢

2 JOO du
T J o |1 — %/ a?b? + (a® + b?)t2 + ¢

(5.80)
Notice that
1 y ab
u = — -
2 t
1 a’b?
2 2
:>u:Z(t —2ab+t—2)
, Y —2abt? + a®V? (5.81)
—— U =

4¢2

= 4%t = t* — 2abt? + a*V?

= 20 + t* = 4%t + 2abt?
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And again start with u such that u = % ( — “71’), we can solve for ¢ to obtain

2ut = t* — ab
t* — 2ut = ab
t* —2ut —ab=0
t:%(Qui«/M)
=u+Vu? + ab
t—u = +vu2 + ab.

(5.82)

Substitute expressions from equation (5.81) and equation (5.82) into the function F'(a,b),

we obtain
2 (@ d
Fla,b) == Y
T J o |1 — 2|4 /4ut? + 2abt® + (a® + b2)t2
2 (* du
T J_o |t — u|n/4u? + (a + b)?
2 (* du
T J oo A/4u2 + (a + b)2Vu2 + ab (5.83)
1 du
T

T \/<(“T+b)2 + u2) (ab + u?)

The above computation yields
1
F(a,b) = F (§(a +b), \/ab)
and thus we can apply the iteration of arithmetic-geometric mean as

1
aiv1 = 5(a; + b;)
2 (5.84)

bi+1 = 1/ (Zibi, for i = O, 1,2,3,
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without changing the value of the integral. This iteration converges to and terminates
at M (ag,bp) in the limit of a;, b; as i — oo, that is lim; o a; = lim; 00 b; := M (ag, bo).
The convergence of complete elliptic integrals confirms that the Laplace’s expression

I (a, b, ¢) is a closed form.

In order to compute the total energy U as in equation (5.62), we will need to consider
the rotational energy of the body as well. We express the position vector in cylindrical

coordinates as

r=zZz2+ f(2)r. (5.85)

Consider a generic point on the ring, as shown in Figure 5.7b, has cylindrical coordi-

nates (f (z), ¢, z), so its distance d to the axis has the relation
d* = 22 + (f(2))?sin?(¢). (5.86)

And the moment of inertia around the axis of rotation I, is given by d?. Then we obtain
the rotational potential by placing a unit mass at the location rotating with angular

speed w. And thus we have the rotational energy expressed as

& (2 (2)sin? (6) + ). (5:87)

Following the notation in equation (5.2.1), we obtain

Corollary 5.2.3. The total potential U for the rotating body, evaluated at the surface of

the body, is the sum of the expressions in equations (5.71) and (5.87):

U = —2xGp f 4= FV ), F(2), |2 = 2]) — %wQ( P)sin’ o+ 22, (5.88)

20

Notice that the negative sign for the last two terms constitute the sign of the repulsive

centrifugal force. In conclusion, equation (5.88) can be used in two ways. First, if
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the explicit shape (i.e. asteroid shape) is known, then the gravitational acceleration
g = —VU, on the surface of the object can be computed. Second, an optimal shape
can be obtained for a particular class of shapes (such as dumbbell shapes). This can be
modeled as an isoperimetric problem in which to determine the total potential for the
function that has the smallest variability for the optimal shape of the class.

The shape of equilibrium is obtained for the f (z) for which U a constant, independent
of z. This solution of the nonlinear integral equation, while extremely useful, is not likely
to be solved exactly. Realistically we should explore the minimization problem in the
parameter space of a well suited family of functions instead. In the following section, we

give an example of such a procedure.

5.3 Gravitational Potential of Dumbbell Shaped Body
Derived by Variational Approach

Here we investigate the gravitational potential of dumb-bell shapes, with the goal of de-
termining which dumb-bell shapes can be attained under the effect of gravitational and
rotational forces as shown in the Section 5.2. As a follow up of the previous section, we
consider to apply the result of Section 5.2 on finding the total potential of a dumb-bell
shaped body in a cylindrical system with symmetry. Surprisingly, the problem can be
substantially reduced to a relatively simpler integral.

Consider the shape of dumb-bell, we aim to explore how the shape would affect the po-
tential energy U. We aim to apply the variational principle to the problem— specifically,
we consider the problem as mentioned and propose a function to describe the dumb-bell
shape of the body. This function introduces the body’s shape with parameters and thus
its corresponding gravitational potential parametrically. For each rotational speed w,
the parameters of the function is varied. By computing the gravitational potential with

respect to each particular dumb-bell shape (depending on parameters), we obtain the
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particular parameters that provide us the potential that is approximately constant for
the fixed w. Therefore, we obtain an approximate equipotential surface for some fixed w.
For a given body shape, f(z), equation (5.88) gives the total potential U. Now taking

dumb-bell shapes into consideration, we choose to explore the family of

P - 7\/ (1-0) (14 T5550) (5.8

where z € [—zp, 20], by considering the surface of revolution around the z-axis. The

parameter ~y gives the value F'(0), representing the height of the saddle point, while the

parameter [ controls the convexity. Let z = zyn, we have the dimensionless formula

S os N
/ \ / \ /-\\ y N
// L /,/ \ \\ / \\
/ \ i \ \ / \
| 1 e \ f \ P 4 \t
i fY,:QS \ 1" e '\y
[ al '\ [ Y=t \
1[ \ ' ‘
1 \ | ‘1
| | | |
‘l:: 5 5 ‘ ‘ — -~ ~ !
-2 =-10 20 =1c _:(; I N 20 =1
(a) The function F(z) at zp equals 10, 7 (b) The function F(z) at zp and 7 both
equals 0.5 and /3 equals 0.9. equal 1 (i.e. f(z)) and S equals 0.9.

Figure 5.6: Graphs of the functions of F(z).

Fn) = \/ (1-) (141 257) (5.90)

defined by

(5.91)



164

=7 f(n), forn ==

P =1 () ’

Note that f(n) is the formula of dimensionless (i.e.zg = 1 and v = 1) case. Equation

(5.92)

(5.91) demonstrates the relationship between the formulas of dimensionless and non-
dimensionless case; the two cases differ only by a rescaling. It is both practical for us to
use while performing numerical analysis. In the following context, we are going to use
the notation f(z) for the considered function for the surface.

With the symmetry assumptions with respect to the x- and z-axes as well as the parametriza-
tion in alpha and S, we obtain a dumb-bell shaped body, which rotates with constant
angular speed w around the Cartesian x-axis.

Ideally, we want the total potential U being constant. We evaluate U for some fixed
values of z. By plotting the total potential against z for different v and [, we aim to
find the v and [ that provide us a shape with the total potential that is approximately
constant while varying z, for each fixed w (i.e. the rotation speed).

Consider the dumb-bell shaped celestial body to be symmetric with respect to the z—

axis (generated by the surface of revolution) as shown below.

“\ / //
\ / / N/

(a) A dumb-bell shape is

N

(b) Sagittal section of body of revolution
around the z-axis. All points inside the

formed with symmetry on
the z— axis.

object are within |z| < zp. For a fixed z,
points are in a circular disc of radius r,qz.

Figure 5.7: Graphs of the functions of F(z).
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In the Section 5.2, we have equation (5.88) as the total potential at the surface of an
object. A problem that immediately arise from the equation is that, at the surface of
the object, the gravitational potential ® depends only on z while the rotational potential
additionally depends on ¢. Walking along the ring of Figure (5.7b), ® remains constant
while the rotational potential has sin®¢ of dependence. Clearly the potential cannot
be constant on the family (5.89). Nevertheless, the practical problem of a real celestial
body must be interpreted in the context of rotating not with respect to a fixed axes, but
secularly with respect to all axes perpendicular to z. Under these conditions and owing
to the sin? ¢ factor, oblate shapes will develop perpendicular to z. However these shapes
will eventually develop in other directions, as the axis of rotation rotates. Hence, we
should consider the celestial bodies that after long times compared with the rotational
period 2;” , have cross sections averaged in ¢.Therefore, it is physically sensible to remove

the ¢-dependence, and we do so by considering the effective total potential

1 2

Uerr = 5 .

U (2, ¢) do. (5.93)

It yields

2

Uy = —20Gp | FD LU ) () ]z— 2 de —

—20

if2 (2) w? — %z%ﬂ (5.94)
Finding the f(z) that produces a potential U.s with the least variability for our family
of curves as in equation (5.89) would be the next task. Replacing f(z) in equation (5.94)
by equation (5.89) and performing the integral numerically, we obtain numerical values
of the function U.ss(z, 8,7). We then search, among all pairs of parameters (3, ), that
which produces, for a given w a potential U.¢; with the least variability in z. For the
increment of w as 0.1, the potential at each location of z is computed for each of the
fixed v and 5. We use the standard deviation of the potential over absolute value of

its mean, i.e. T for further evaluation. This quantity is known as the coefficient of



166

variation. It does not only show the extent of variability in relation to the mean, but
also is a dimensionless quantity for comparison and therefore it is very practical for us
to compare the variability of different data sets. In our case, we use it for measuring the
variability of the total potential of all z given by different parameters in this isoperimetric
problem; it provides us the comparison for the best parameters, which control the shape
of the body. Our goal is to find the dumbbell shape that provide relatively constant on
the potential energy. We record the lowest values of ﬁ for the results given by each pair
of v and . The results suggest different interesting dumbbell shape for the body as in
Figure 5.8, 5.9 and 5.10. Some of the shapes obtained below are ’visually’ similar to the
observed shapes of some asteroids and comets, such as 624 Hektor, 103P /Hartley and
8P /Tuttle.

w=0.1 | o/ =0.020.07

of |u|=00748821

y=00%5 B=097

w=0.2 | of|u| =0.05-0.07
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of |1 |=0.05 68046
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¥ = 0.65 B=02
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of |u|=008 282432 of |p|=0.0402647

0.785 0.050 ) — y=0.785 B =0.050

Figure 5.8: Approximate equilibrium shapes for w = 0.1 and w = 0.2.
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5.4 Conclusions

In this chapter, we consider the gravitational potential generated by an axisymmetric
body that rotates around an axis perpendicular to the symmetry axis and derive a rela-
tively simple and useful formula in terms of elliptic integrals. In addition, we formulate
an isoperimetric problem that was applied to finding approximate equilibrium shapes
based on the principle of minimizing the variations of the potential on the surface. As
an example to astrodynamics, we consider a two-parameter family of dumbbell shapes.
Depending on the rotational speed, we compute numerically their shapes with choices of
parameters. With numerical computation and analysis, we obtain the parameters for each
of the rotational speed that the gravitational potential at the surface is approximately
constant.

There also exist exact equilibrium solutions of dumbbell shape as shown in [EHS82];
we notice that such dumbbell shapes are not given by closed form equations. Contrarily,
we provide a family of dumbbell shapes that are given by simple, explicit formulas which
only depend on 2—parameters. We remark that these only correspond to approximate
equipotential surfaces. The family of dumbbell of our choice could be potentially utilized
to find first approximations for irregular shaped asteroids and comets. Furthermore, we
can derive formulas for the gravitational potential generated by such shapes at any point
in space.

Our approach can be extended to modeling the gravitational potential generated by
other families of shapes (depending on more parameters), as well as shapes that are not

generated as solids of revolution.
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Chapter 6

Electrostatic N-Body Problem and the

Poisson Boltzmann equation

In this chapter, we consider a colloidal system. We first give some background informa-
tion about colloidal system and the Poisson-Boltzmann equation. Then the solutions to
the electrostatic potential surrounding a pair of spherical colloidal particles is obtained
by using a variational principle to the non-linear Poisson-Boltzmann equation in three di-
mensions. We consider the Poisson-Boltzmann action integral for the electrostatic poten-
tial produced by charged colloidal particles and we propose an analytical ansatz solution,
which is controlled by two parameters. The solution to the Poisson-Boltzmann action
integral introduces the density and its corresponding electrostatic potential for different
fixed parameter. Then we minimize the Poisson Boltzmann action with respect to the
parameter, for the fixed potential and fixed separation distance. Furthermore, we study
the obtained results and approximate the parameters as functions of tip particle separa-
tion and boundary electrostatic potential are obtained by using polynomial-exponential
relationship. Provided with this information, we compute tip-particle energy separation

and study the stability properties based on the shape of the energy-separation curves.
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6.1 Background

6.1.1 Colloidal System

A colloidal system, which is is one of the three primary types of mixtures in chemistry,
is a liquid system in which very small particles of one substance are distributed evenly
(relatively even) throughout another substance. In this chapter, we focus in a system
with particles ranging from 1 to 1000 nano-meters in diameter. In general, there are
different types of colloidal systems, such as the solid-liquid dispersions (i.e.suspensions),
the liquid-liquid dispersions (i.e.emulsions), and the gas-liquid dispersions (i.e.foams).
They also appear in our daily life; paints, milk, proteins as well as fog are some examples
of colloids [BS15] [EW94]. Considering a colloidal system, one of the central problems
is to determine the stability of colloidal particles. When the particles approach each
other, the interaction leads to the rearrangement of charges in the ambient medium,
outside the colloidal particles. For instance, these interactions could be determined by
the surface charge on the particles and electrolyte concentration. Thus the characteristics
of surface charges play an important role on the stability of colloidal particles and thus
we note that the effect of the electrical double layers controls electrostatic stabilization.
Mathematically, the details of the pair-wise energy as a function of separation of colloidal
particles determine the colloidal stability. Thus the number of valleys of such energy curve

determines the separations of possible equilibrium or meta-equilibrium.

6.1.2 Poisson-Boltzmann Equation

The electric behaviors and/or the electrostatic stabilization of a suspension of charged
colloidal particles in an electrolyte solution depend strongly on the distributions of elec-
trolyte ions and of the electric potential around the particle. Considering the electric

potential in solution, the Poisson-Boltzmann is very useful that it consists of the Poisson
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Figure 6.1: A particle with negaitive charges on the surface. It attracts positively charged
ions while the red mobile ions are either positively or negatively charged.

equation of electrostatics with the Boltzmann distribution. The PB equation is typically
obtained by combining Poisson’s equation [Jac| and the Boltzmann factor [Hil60] for the
distribution of electrostatic energies at a given temperature. This distribution is impor-
tant as it determines the interaction between particles in solution. In this section, we
aim to derive the Poisson-Boltzmann equation [Hol93].

If a charge distribution p(7) = (x,y, 2) is defined, at the point r, with € as a dielectric

constant, we have the Poisson’s equation as

V() =~ ) (61)

where V2p(r) is the Laplace operator VZ¢p(r) = 227“20 + 227“5 + ?;Tf. It expresses the rela-
tionship between a charge distribution p(r) and the electrical potential ¢(r).

Let R; be the region contained a particular ion of the solution. In Figure 6.1, the
particle for which we are interested to determine the electrostatic potential from far is
located in the region R;. There is a layer of opposite charged ions attracted to the
particle; this layer is refer as Ry. And region Rj is simply refer as the solvent that
contains mobile ions outside the double layer (as shown in Figure 6.1). In the simple

case that all mobile ions are univalent, we can refer them as positive and negative ions

with charge +e. and —e., where e, is the charge of an electron. Notice that in the three
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region R;, for i = 1,2,3, the electrostatic potential satisfies Gauss’ law [Hol93] and we

have that in the differential form yields a Poisson’s equation as

Ve(r) =~ p(x), (6.2)

at the point r, where € is the dielectric constant. In order to use the equation (6.1) to
determine the potential ¢(r) in the regions, the charge density functions p(r) must be
defined for each of the region. Consider the region R;. For the particle that is represented

by a series of N charges ¢; at positions r;, where ¢; = z;e., z; € R, and i = 1,..., N, we

can compute the potential in the region R, as

N

pr(r) = Y (6.3)

Y
Pt er)r — i

where €; is the dielectric constant for region 1.

Recall the free space Green’s function for the Laplace’s equation in R3,

1 1
G N ————— 6.4
(I‘,I’) 47T |r_r/| ( )
where r = (,y, 2) is a point in R3. Tt is a solution to the equation
ViG(r,r') = 6(r — 1) (6.5)

where 0 is the Dirac delta function. Now we apply the Laplacian to both side of equation

(6.3), we obtain

—47TCZ'

RIUEDY

i=1

d(r—r;) (6.6)

€
where 0 is the Dirac delta function.
Consider the region R,. Since it consists of the double layer around the particle, there

is no mobile charges of the solvent are present and thus the charge density is given by
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p(r) = 0. Hence, we have

V¥pa(r) =0 (6.7)

Consider the region R3. Assuming the bulk concentration of ions is M per cubic cen-
timeter for each of the two ions present, one with charge of +e., while the other with
charge of —e.. The distance between the particle and the ions around play an important
role; the amount of positive and negative ions in cubic centimeter differs when getting
close to the particle in R;. In the Debye-Hiickel theory, we have the assumption that the
concentration of one type of ion close by the particle in R; to its concentration far from

the region R; is encountered by the Boltzmann distribution law:

e~ Wilr)/ksT] (6.8)

where T is the absolute temperature, kp is Boltzmann’s constant, and W;(r) is the work
required to move the ion of type ¢ from |r| = 0, (i.e.p(r) = 0) to the point r. In our
simple model, it consists of only two types of ions and we have the required work for the
positive ions as

Wl (I‘) = +6090(r)

while the required work for the negative ions is given by

W, (I‘) = —eCQO(I‘)

Consider the Boltzmann distribution law now, we have M, = Me ¢*®)/ksTl N =

Meteer@/ksT] where we assume that M, = M_ = M far from the region R;. Thus,
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the charge density

p(r) =Mie. — M e,
_Me,e et O/EBT] _ N po eco®)/IsT] (6.9)

= — 2Me,sinh <%(Tr)>

describes the amount of electric charge at any point in R3. With this charge density, the

Gauss’ law for R3 becomes:

) sinh( 220y (6.10)

where M is the ion bulk concentration of electrolyte, T is the absolute temperature,
e the ion charge magnitude of anions and cations, ¢ is the dielectric constant of the
surrounding fluid and kg is the Boltzmann’s constant. The equation (6.10) is known as
the non-linear Poisson-Boltzmann equation. It introduces the Boltzmann distribution of
ions, which provides the distribution of the electric potential in solution with charged ions
present. Being a second-order partial differential equation, the nonline Posson Boltzmann
equation has an exact known solution only for one-dimensional geometries. We note that
in three dimensions the exact nonlinear Poisson Boltzmann equation is not amenable to
analytical solutions, not even for a simple case of having a single colloidal particle in
the electrolyte. In higher dimensions, Posson Boltzmann equation is commonly solved
numerically. For instance, in the case of having the colloidal particle charge or voltage low,
the Poisson Boltzmann equation can be linearized, in which case solutions for spherical
[BR73] and cylindrical [BIS08] geometries have also been obtained. We also note that in
three dimensions there are analytical and numerical approaches to the nonlinear Poisson
Boltzmann equation for the geometry of sphere-plane as in [HC92], [CHS94], [PSCH95]
and [Zyp06]. In the next section, we present a method to handle the full nonlinear PB

equation in three-dimensions for interacting particles.
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6.2 Colloidal System between an Atomic Force Mi-
croscope Probe and a Charged Particle

The theoretical prediction of the force between an Atomic Force Microscope probe and a
charged particle has been an open problem for scientists and technologists. Particularly,
we are interested in the case when both of the Atomic Force Microscope probes are
immersed in an electrolytic environment [ZE13]. This problem is of interest due to
the importance of understanding the electrostatics biological matters, in which water is
inherently present [McL89]. Recently, Atomic Force Microscope has indeed become the
de facto metrological tool to probe organic and inorganic matter from the micron down
to the nanometer length scales [MVG*16]. In order to measure the interaction forces
between the colloidal particles and the electrolyte, we introduce the probe technique; it
relies on the use of the Atomic Force Microscope. It has the ability to probe in size ranging
from microns to nanomaters because of the sensing element located on the tip and its
climax ranges in size of those length-scales. While immersing in an electrolyte, the tip can
gain surface charge due to pH. On the other hand, it mayof the Atomic Force Microscope
also develop a diffuse charge layer due to the presence of ions in solution [JELZ11]. There
is a natural connection between the measurement of Atomic Force Microscopes in liquid
and colloidal science while the scientific interest is on the interaction between colloidal
particles and their corresponding stability. The Atomic Force Microscope in solution is
our main concern and interest, but the results obtained in this chapter are readily usable
in the system of colloids. For the example of application in this chapter, we focus on a
liquid system in which 1- 1000nm particles are submerged in an ionic solution. As one of
the primary type of mixtures in Chemistry, colloidal systems arouse the concern of their
stability. In other words, we are interested if the system coagulates or remain indefinitely
stable under known conditions, such as concentration.

The presence of charge at their surfaces is the key to determine the stability of col-
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loids; the electrical double layer controls electrostatic stabilization. The rearrangement
of charges in the ambient liquid, outside of the colloidal particles occur due to the inter-
action between particles when they approach each other. Indeed, these interactions are
known to depend on the surface charge on the particles and electrolyte concentration.
The stability of colloidal systems is fascinating theoretically, and critical for industrial
applications.

Consider the pairwise energy as a function of separation of colloidal particles; we can
then determine the stability of the colloidal systems [VO48]. In addition, the valleys of
such function determine the separations of the possible equilibrium. There are different
approaches for obtaining the energy: (i) solve the Poisson-Boltzmann equation, which
yields the charge density and electrostatic potential in the liquid surrounding the colloidal
particles and (ii) solve the linearized PB equation under some conditions so as to obtain
the solutions for certain germetries such as spherical geometry as in [BR73] and cylindrical
geometry as in [BISO8]. In the case of a particular geometry of sphere-plane, we notice
that in there are analytical and numerical approaches to the nonlinear Poisson Boltzmann
equation in the three dimensions as in [HC92], [CHS94], [PSCH95] and [Zyp06].

As a method to tackle the full nonlinear PB equation in three-dimensions for inter-
acting particles, we introduce and present an analytical method— based on the choice
of a parametric trial family of functions, we approximate the solution. Consider the two
particles with interaction, we introduce an ansatz for the charge density function and the
corresponding electrostatic potential parametrically. Then we use the variational method

to minimize the Poisson Boltzmann functional with respect to the parameters.
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Figure 6.2: Two colloidal particles (large, blue) separated by a distance d. The small
red particles represent the ions dissolved in water and are treated as a continuum in the
Poisson-Boltzmann approach. These ions could be different, we show them here with the
same color for graphical simplicity.

6.3 Electrostatics Potential Produced by a Pair of

Colloids

Consider a colloidal particle as shown in Figure 6.1. The schematics of the system of
interest— the two charged spherical colloidal particles of unit diameter are separated by
a distance d, is shown in Figure (6.2). We remark that the unit of length throughout
this section is the particles diameter, or the tip diameter of Atomic Force Microscope.

Notice that equation (6.10) can be written as the dimensionless form [McL89] by defining

e
kT

the dimensionless electrostatic potential p(r) = ®(R) and the dimensionless position

8mne?

vector r = kpTe o

V2o = —sinhp (6.11)

where ¢ represents the dimensionless electrostatic potential. In equation (6.11) the func-

tion ¢ is a function of r. Since n has units of inverse volume, and € is the absolute

8mne?

has units of inverse area. Indeed equa-
' kpTe

dielectric constant of the surrounding fluid
tion (6.11) can be derived from a variational principle, by applying Euler-Lagrange to

the action

I = J [% | V¢ |? + cosh(p) — 1]dV (6.12)
Space
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where V' is the volume. The minimum of I occurs for the function ¢ that satisfies the
Euler-Lagrange equation, which gives rise Equation (6.11). Let z be the axis joining the
centers of the two colloidal particles. The axial symmetry of the problem allow us to

rewrite the action in cylindrical coordinates as

ee] o8} 1
47rf J [5 | 7 |? + cosh(p) — 1|ndndz (6.13)
o Jo

where 7 is the radial polar coordinate in the xy— plane, while the angular polar integra-
tion is readily performed and gives 27. The additional factor of 2 comes from integrating
z in half space and multiplying by 2 due to mirror symmetry. For further evaluation,
we propose the following ansatz for the density and corresponding electrostatic potential

which depends on the parameter k,

o, 2) = poe— s W E=P+rP =31V (457 +n7=3] (6.14)

where ¢ is the Dirichlet boundary condition, d is the center-to-center separation between
the two spherical colloids and £ is a constant that can be interpreted as an inverse Debye
length times the radius of the interacting particles. The intuitive justifications for the
functional form are: (1) its exponential decay characteristic of ionic screening, (2) that at
the surface of the colloids ¢(n, z) = ¢y satisfied the proper boundary conditions , and (3)
that the electrostatic potential between the two colloids tends to zero as d goes to infinity.
Furthermore, a contour plot of the potential around the colloidal particles with respect to
different & is shown in Figure 6.3. There are a few reasons of choosing this potential: (1)
the potential rapidly approach its bulk value away from the spheres, (2) the electrostatic
potential satisfies the Dirichlet boundary conditions, meaning to have a constant value
at the surface of the colloidal particles To find the sought solution to the dimensionless
Poisson Boltzmann equation (6.11), we minimize the PB action functional with respect

to the parameter k. For each of the fixed potential g and fixed separations d, we find
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Figure 6.3: Contour plot of ¢(n, z). The potential is constant ¢, at the surfaces of the
particles, becomes spherical far away while decaying to zero.

the constant & (i.e. minimum point k = k(po, d)) for the proposed ¢(z,y) that minimizes
the action. The obtained data suggests that there is an approximately linear relationship
between the best constant kjes;, and the separation d (with small separations) for each
boundary condition ¢q. Such a relationship is shown in Figure 6.4. Furthermore, it leads
us to study the relationship between the linear relationship and the boundary condition
wo. The polynomial approximations for the functions that relate the linear parameters
(i.e.the slopes and n—intercepts) and the boundary conditions are obtained and shown
in Figure 6.5. Consider the large separations between the colloidal particles, we find that
the best constant k£ converges to 0.1 for all of the boundary conditions ¢,. We remark
that at large separations, we should obtain a simple superposition the potential around a
single sphere. So the feature for the best constant k£ that mentioned should be universal
regardless of the model used. As shown in Figure 6.6, the functional forms for the ky.q

can be described by a simple function as follows

()
Kpest = (A() — 0.1)em01¢ 4 0.1 (6.15)
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Best k vs small separation d

Figure 6.4: Graphs of kp.s; as a function of small separation d, as ¢q is changed. It shows
an approximately linear relationship between kj.s; and small separation d for each .
The black line is drawn to show the average trend between kpes; and .

where A(yp) is the polynomial approximation between the linear parameter-n-intercepts
and g, B(p) is the polynomial approximation between the other linear parameter-slope

and g, and d is the center-to-center separation between the two colloids.

6.4 Colloid Interaction Energy

Indeed, the charge distribution cocurs in the whole space that surrounds the colloidal

particles. Thus we have the energy as a function of separation d [HC92] given by

B =5 | dwoaiia) (6.16)

where we recall that p is density and ¢ is voltage, which are now known from Section 6.3.
In order to obtain the colloid interaction energy, the integral (6.16) is evaluated for the
corresponding optimal value of k for each of boundary conditions. In fact, equation (6.16)
provides the sought sphere-sphere energy-separation curves. These curves are shown in
Figure 6.7. The shape of the curves lead us to the conclusions regarding the stability

properties predicted by this theory.
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Figure 6.5: (a) Polynomial approximation between the linear parameter-slope and the
boundary conditions. This is the slope of kyes vs. d (Figure 6.4). (b) Polynomial ap-
proximation between the n-intercept and the boundary condition. This is the n-intercept

of kpest vs d (Figure 6.4).
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Figure 6.6: With Equation (6.15), curves of kyest as functions of separation d for different
boundary condition are sketched. While in Figure 6.4, we show ky.s; vs d only for small
d, here we show the whole range of d values, from small to large.
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Figure 6.7: The energy-separation curves for g from 1 to 8.

6.5 Conclusions

In this chapter, we consider the problem of colloidal system that consists of two colloidal
particles and we handle the problem by developing a method to tackle the full non-linear
Poisson Boltzmann equation in three dimensions for interacting particles. The major
quantitative result of this application is shown on Figure 6.7; it shows that the particles
attract each other at small separations for all boundary conditions ¢y. We note that
this result is consistent with all the published experimental results in the literature as
in [IA78]. Furthermore, our results indicate that the energy decreases monotonically for
large ¢y due to the repulsion at large separations. In the case for small g, there are
plateaus which suggest the existence of secondary minima [PSCH95]. It is noticeable
that there are local minima for all values of ¢y at distances larger than 30. However,
they cannot be expected to represent experimental behavior since they correspond to
the distances that is too much larger than the size of the particles. From Figure 6.7,
we also remark that the peak positions of the energy curves shift to larger distances as

o increases, which is the same as our expectation. Lastly, in Figure 6.6 we see that
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the behavior of the screening parameter has a strong dependence on distances and its
value reduced by more than 50 percent. This behavior is one of the observations shown
in experimental measurements [PSCH95]. Regarding to the contribution to the Atomic
Force Microscope community, the results in this chapter are practical by comparing the
experimental forces to the derivative of the curves shown in Figure 6.7. In this work, our
model here in this chapter is limited to particles of the same size. However, it is clear that
the extension of our model to having colloidal particles of two different radii correspond
to adding a second parameter to Equation (6.14). With this modification and a proper
choice of theoretical curve, by choosing the proper theoretical curve, we can infer the

charge of the particle interacting with the Atomic Force Microscope tip.



185

Bibliography

[Abr90]

[AGST12]

[AH12]

[APC13]

[APHS16]

[AW99]

[Bal94]

Marek A Abramowicz. Centrifugal force-a few surprises. Monthly Notices

of the Royal astronomical society, 245:733, 1990.

John A Arredondo, Jianguang Guo, Cristina Stoica, and Claudia Tamayo.
On the restricted three body problem with oblate primaries. Astrophysics
and Space Science, 341(2):315-322, 2012.

Kendall Atkinson and Weimin Han. Spherical harmonics and approzima-
tions on the unit sphere: an introduction, volume 2044. Springer Science &

Business Media, 2012.

John Alexander Arredondo and Ernesto Perez-Chavela. Central configu-
rations in the Schwarzschild three body problem. Qualitative theory of

dynamical systems, 12(1):183-206, 2013.

Md Chand Asique, Umakant Prasad, M. R. Hassan, and Md Sanam Suraj.
On the photogravitational R4BP when the third primary is a triaxial rigid
body. Astrophysics and Space Science, 361(12):379, Nov 2016.

George B Arfken and Hans J Weber. Mathematical methods for physicists,

1999.

Georges Balmino. Gravitational potential harmonics from the shape of

an homogeneous body. Celestial Mechanics and Dynamical Astronomy,

60(3):331-364, 1994.



186

[BDVV*04] William E Boyce, Richard C DiPrima, Hugo Villagémez Velazquez, et al.

[Bell8]

[BF13]

[BGG15]

[BISOS)]

[Boy97a]

[Boy97b]

[BP13)

Elementary differential equations and boundary value problems. Ecuaciones

diferenciales y problemas con valores en la frontera. 2004.

Edward Belbruno. Capture dynamics and chaotic motions in celestial me-
chanics:  With applications to the construction of low energy transfers.

Princeton University Press, 2018.

Paul F Byrd and Morris D Friedman. Handbook of elliptic integrals for

engineers and physicists, volume 67. Springer, 2013.

Jaime Burgos-Garcia and Marian Gidea. Hill’'s approximation in a re-
stricted four-body problem. Celestial Mechanics and Dynamical Astronomy,

122(2):117-141, 2015.

Klemen Bohinc, Ales Igli¢, and Tomaz Slivnik. Linearized poisson boltz-
mann theory in cylindrical geometry. Elektrotehniski vestnik, 1(75):82-85,
2008.

W. Boyce. Comment on a formula for the gravitational harmonic coeffi-
cients of a triaxial ellipsoid. Celestial Mechanics and Dynamical Astronomy,

67:107-110, February 1997.

William Boyce. Comment on a formula for the gravitational harmonic coeffi-
cients of a triaxial ellipsoid. Celestial Mechanics and Dynamical Astronomy,

67(2):107-110, 1997.

A.N. Baltagiannis and K.E. Papadakis. Periodic solutions in the Sun-—
Jupiter—Trojan asteroid—Spacecraft system. Planetary and Space Science,

75:148-157, 2013.



[BR73]

[BS15]

[BS16]

[BU1S]

[Cel10]

[CC18]

[CHS94

[CLPCO4]

187

Stephen L Brenner and Robert E Roberts. Variational solution of the
poisson-boltzmann equation for a spherical colloidal particle. The Jour-

nal of Physical Chemistry, 77(20):2367-2370, 1973.
K Birdi and S. Handbook of surface and colloid chemistry. CRC press, 2015.

Nakone Bello and Jagadish Singh. On the stability of triangular points in
the relativistic R3BP with oblate primaries and bigger radiating. Advances
in Space Research, 57(2):576-587, 2016.

Nakone Bello and Aishetu Umar. On the stability of triangular points in
the relativistic R3BP when the bigger primary is oblate and the smaller one
radiating with application on Cen X-4 binary system. Results in Physics,

9:1067-1076, 2018.

Alessandra Celletti. Stability and chaos in celestial mechanics. Springer

Science & Business Media, 2010.

Alessandra Celletti and Catalin Gales. Dynamics of resonances and equi-
libria of Low Earth Objects. SIAM Journal on Applied Dynamical Systems,
17(1):203-235, 2018.

Kwong-Yu Chan, Douglas Henderson, and Frank Stenger. Nonlinear

poisson-boltzmann equation in a model of a scanning tunneling microscope.

Numerical Methods for Partial Differential Equations, 10(6):689-702, 1994.

Montserrat Corbera, Jaume Llibre, and Ernesto Pérez-Chavela. Equilib-
rium points and central configurations for the Lennard-Jones 2- and 3-body
problems. Celestial Mechanics and Dynamical Astronomy, 89(3):235-266,
Apr 2004.



[Dangg]

[Des15]

[DLZ12]

[Eas93]

[EHS82]

[EW94]

[G*09]

[Geil6]

[GN12]

[Hal95)

[HC92]

188

JMA Danby. Book review: Fundamentals of celestial mechanics, /willmann-

bell, 1988. The Observatory, 109:211, 1989.

Pascal Descamps. Dumb-bell-shaped equilibrium figures for fiducial contact-

binary asteroids and EKBOs. Icarus, 245:64 — 79, 2015.

R. Dvorak, C. Lhotka, and L. Zhou. The orbit of 2010 TK7: possible regions
of stability for other Earth Trojan asteroids. Astronomy & Astrophysics,
541:A127, 2012.

Robert W Easton. Introduction to hamiltonian dynamical systems and the

n-body problem (kr meyer and gr hall). STAM Review, 35(4):659-659, 1993.

Yoshiharu Eriguchi, Izumi Hachisu, and Daiichiro Sugimoto. Dumb-bell-
shape equilibria and mass-shedding pear-shape of selfgravitating incom-

pressible fluid. Progress of theoretical physics, 67(4):1068-1075, 1982.
D Fennell Evans and Haakan Wennerstrom. colloidal domain. 1994.

Peter Goldreich et al. Tidal evolution of rubble piles. The Astrophysical
Journal, 691(1):54, 20009.

Hansjorg Geiges. The geometry of celestial mechanics, volume 83. Cam-

bridge University Press, 2016.

Marian Gidea and Constantin P Niculescu. A Brief Account on Lagrange’s

Algebraic Identity. The Mathematical Intelligencer, 34(3):55-61, 2012.

Leon M Hall. Special functions. Awailable in: http://web. mst. edu/”~
Imhall/SPENS/spfns. pdf, 1995.

Douglas Henderson and Kwong-Yu Chan. Potential distribution in the so-
lution interface of a scanning tunneling microscope. Journal of Electroana-

lytical Chemistry, 330(1-2):395-406, 1992.



[Hil78]

[Hil60]

[Hol93]

[IATS]

[Jac]

[JELZ11]

[Joh11]

[JPL]

[JV97]

189

G. W. Hill. Researches in the lunar theory. American Journal of Mathe-
matics, 1(1):5-26, 1878.

TL Hill. An introduction to statistical thermodynamics, adison-wesley.

Reading, MA, 1960.

Michael Jay Holst. Multilevel methods for the poisson-boltzmann equation.

PhDT, 1993.

Jacob N Israelachvili and Gayle E Adams. Measurement of forces between
two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm.
Journal of the Chemical Society, Faraday Transactions 1: Physical Chem-
istry in Condensed Phases, 74:975-1001, 1978.

JD Jackson. Classical electrodynamics (john willey, 1998). Section, 8:352—
356.

Keith E Jarmusik, Steven J Eppell, Daniel J Lacks, and Fredy R Zypman.
Obtaining charge distributions on geometrically generic nanostructures us-

ing scanning force microscopy. Langmuir, 27(5):1803-1810, 2011.

Wm Robert Johnston. Asteroids with satellites. URL: http://www. john-
stonsarchive. net/astro/asteroidmoons. html (accessed 31 October 2017),

2011.

JPL Solar System Dynamics. https://ssd.jpl.nasa.gov/. Accessed:
2018-08-01.

Angel Jorba and Jordi Villanueva. On the persistence of lower dimensional
invariant tori under quasi-periodic perturbations. Journal of Nonlinear Sci-

ence, 7(5):427-473, 1997.



[Kau66]

[KBES12]

[KIB12]

[Kre09]

[LC15]

[MBW*06]

[McC63]

[McL89]

[MDCR™*14]

[Mei07]

190

William M Kaula. Theory of satellite geodesy, blaisdell publ. Co., Waltham,
Mass, 1966.

JR Kuhn, R Bush, M Emilio, and IF Scholl. The precise solar shape and
its variability. Science, 337(6102):1638-1640, 2012.

Eduardo Kausel and Mirza Irfan Baig. Laplace transform of products of
bessel functions: a visitation of earlier formulas. Quarterly of applied math-

ematics, 70(1):77-97, 2012.
Erwin Kreyszig. Advanced engineering mathematics, 10th eddition, 2009.

C. Lhotka and A. Celletti. The effect of Poynting-Robertson drag on the

triangular Lagrangian points. Icarus, 250:249-261, 2015.

F. Marchis, J. Berthier, M.H. Wong, P. Descamps, D. Hestroffer, F. Colas,
I. de Pater, and F. Vachier. Search of binary Jupiter-Trojan asteroids with
laser guide star AO systems: A moon around 624 Hektor. In Bulletin of

the American Astronomical Society, volume 38, page 615, 2006.

S.W. McCuskey. Introduction to celestial mechanics. Addison-Wesley Series

in Aerospace Science. Addison-Wesley, 1963.

Stuart McLaughlin. The electrostatic properties of membranes. Annual

review of biophysics and biophysical chemistry, 18(1):113-136, 1989.

F. Marchis, J. Durech, J. Castillo-Rogez, F. Vachier, M. Cuk, J. Berthier,
M.H. Wong, P. Kalas, G. Duchene, M.A. Van Dam, et al. The puzzling
mutual orbit of the binary Trojan asteroid (624) Hektor. The Astrophysical

journal letters, 783(2):L37, 2014.

James D Meiss. Differential dynamical systems. SIAM, 2007.



[MRPDO1]

IMVG*16]

[PA13]

[PSCHO5]

[Sch16]

[SR76]

[Svel§]

191

V. V. Markellos, A. E. Roy, E. A. Perdios, and C. N. Douskos. A Hill
problem with oblate primaries and effect of oblateness on Hill stability of

orbits. Astrophysics and Space Science, 278:295-304, 2001.
TM MacRobert and N Sneddon. Spherical harmonics, 1967.

Kenneth R. Meyer and Dieter S. Schmidt. Hill’s lunar equations and the
three-body problem. Journal of Differential Equations, 44(2):263 — 272,

1982.

Uros Maver, Tomaz Velnar, Miran Gaberscek, Odon Planinsek, and Matjaz
Finsgar. Recent progressive use of atomic force microscopy in biomedical

applications. TrAC Trends in Analytical Chemistry, 80:96-111, 2016.

Jeffrey S Parker and Rodney L. Anderson. Targeting low-energy transfers

to low lunar orbit. Acta Astronautica, 84:1-14, 2013.

O Pecina, W Schmickler, KY Chan, and DJ Henderson. A model for the ef-
fective barrier height observed with a scanning tunneling microscope. Jour-

nal of Electroanalytical Chemistry, 396(1-2):303-307, 1995.

Daniel J Scheeres. Orbital motion in strongly perturbed environments: ap-

plications to asteroid, comet and planetary satellite orbiters. Springer, 2016.

Ram Krishan Sharma and PV Subba Rao. Stationary solutions and their
characteristic exponents in the restricted three-body problem when the

more massive primary is an oblate spheroid. Celestial Mechanics, 13(2):137—

149, 1976.

Drazen Svehla. Geometrical Theory of Satellite Orbits and Gravity Field.

Springer, 2018.



[T*09]

[Taf85]

VOS]

[WB06]

[WW02]

[WWZ18]

[ZE13)]

[Zyp06]

192

Paolo Tanga et al. Thermal inertia of main belt asteroids smaller than 100

km from iras data. Planetary and Space Science, 57(2):259-265, 2009.

Laurence G Taft. Celestial mechanics. John Wiley and Sons, New York,

1:437, 1985.

EJW Verwey and J Th G Overbeek. Theory of stability of lyophobic col-

loids’ elsevier publishing” co, 1948.

James O Wilkes and Stacy G Birmingham. Fluid Mechanics for Chemical

Engineers with Microfluidics and CFD. Pearson Education, 2006.

Edmund Taylor Whittaker and George Neville Watson. A Course of Modern
Analysis: An Introduction to the General Theory of Infinite Series and of
Analytic Functions, with an Account of the Principal Transcendental Func-

tions. University Press, 1902.

Nan Wu, Xuefeng Wang, and Li-Yong Zhou. Comment on “Out-of-plane
equilibrium points in the restricted three-body problem with oblateness

(research note)”. Astronomy & Astrophysics, 614:A67, 2018.

Fredy R Zypman and Steven J Eppell. Electrostatic force curves in finite-

size-ion electrolytes. Langmuir, 29(38):11908-11914, 2013.

FR Zypman. Exact expressions for colloidal plane—particle interaction forces
and energies with applications to atomic force microscopy. Journal of

Physics: Condensed Matter, 18(10):2795, 2006.



193

Appendix 1

Some Related Results to

Chapter 5

Mass Formula

To find the relationship between the mass and the parameters v and [, we start with

Mass = Volume x density

20
=2 x J TEF?(2)dz x p (6.17)
0

20
= QWpJ F?(2)dz
0

Consider the family of function that we proposed to solve the above integral.

r = (- (2)) (o 25 (2) ) o<
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We solve the integral in equation 6.17 for a formula:

LZO F2(2)ds L 72<[1— (230)2
), (- (2) 15 E) () )

o 26 —1 23 g2
_7_(z+ﬂbw%%_5ﬂ—m%)

2 5 (Qﬁ — ].)ZO _ 620
‘”(°+3u—5) 5@—@)

_ 7220(1 - 32(f:;) - 5(16—ﬁ)>

Therefore, we have the mass formula

26-1 5 > (6.19)

Mass = 27p%2 <1 S 3(1-p5) 5(1-5)
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Potential at z

To find the constant ®g, that is the gravitational potential energy at zy. Fig. 6.8 shows

f(z)

Figure 6.8: For each z and its corresponding f(z), we can locate a point vertically
from z such that the length r is less than f(z). Connecting the point to 2z, a right
triangle formed. The distance between the point to 2, is easily obtained by Pythagorean
theorem. Since the potential energy is expressed as an integral based on the length of
the two vectors —Gp § @3 —L and thus the potential at zy can be obtained easily.

=

that the potential at z; can be easily obtained.

20 F(z)
by = 27mpG ( J rdrdz
J_z Jo 12 + (2 — 29)?
20 q F(z)
= —2mpG ( = J 2rdrdz(r® + (z — 2)?) /?
J—2p 2 0
r70 1 (y2 L \2\1/2 [F(=)
= —2mpG —(T + T 20)°) dz
Joz 2 3 0 (6.20)
("~0
= —2mpG (VEF2(2) + (2 — 20)2 — /0 + (2 — 2)2dz
J—z
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om0 [ (WP T (5 20— (= — )z
J—20

P JM ()2 f20m) + (71— 1)2 — (n— 1)dn
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Let G = (1 —n*)(1 — 8 + Bn?). We aim to solve the integral

VG =B =)y,
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(6.21)

(6.22)

Although the integral is not elemental, we apply numerical approach for solving it. Con-

sider the expression of \/G + (1 — B)(1 —n)? as a power series of 3 up to degree 8.

Notice that the integral is indeed finite and regular for 0 < 8 < 1. Hence, we can solve

the integral numerically. First, for 5 = 0 we have a simplified integral (6.22) as follows:

1 r
f (L—n)+ 1 =n2dz=| —1/1 =02+ 1—2n+n2dy
-1

J
rl
= /1 —2n+ 1ldn
J—1
rl

= \/2 — 2ndn

J—-1

1

1
= —EJ 24/2 — 2ndn
-1

12 !

—=—Z(2—2n)*?
532 2n)

1

-1

- 3| -2y - 2212

(6.23)
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Next, for § = 1 we have a simplified integral (6.22) as follows:
1 1
f VO—%MWH=J7W1—WM (6.24)
—1 —1
Let 4/1 —n? be cosf, we have
1
J V(1= n?)n?dn = fcos2 0 sin 0d0 (6.25)
-1

Taking integration by parts, we obtain

fcos2 sinfdh = — cos®H — 2 f cos” sin 6df
= 3 J cos® fsin 0df = — cos® 0
. (6.26)
- Jcos2 0 sin 6df = —3 cos®
1
=—3(V1- )’
Since the integral (6.24) is evaluating a symmetric function from —1 to 1 and thus we

will have to split the integral for further computation.

| NO=pdn = | =P+ | V=i
- W= - (/T

3 —1 0
L1 (6.27)
=0+-+-—0 :
33
2
-3

Now, back to the integral (6.22). As = 0, we have the solution to the integral (6.22)

as §. Thus we consider the power series of 4/G + (1 — 8)(1 — 1)? with an coefficient of

g. Hence, we have
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WVFE =Py

_f <3«/1 —n  3yT—nn—1)2+2n+1*)p
= +
4\ 42 16v/2
3vI—n(n—1)2+2n+1*)*p VAl U 1)%(2 + 2n + )
a 128v/2 512v/2
15T —n(n —D* 2+ 2n+n?)*B* 21T —n(n—1)°(2+ 2n+1?)°B°
a 8192v/2 - 32768+/2
631 —n(n—1)%2—2n+n*)°8° 99T —n(n—1)7(2+2n+n*)"p"
a 262144+/2 - 1048576+/2
12871 =y — 1)3(2 + 20 + 1*)85° N HO‘T) i
33554432+/2
3 [1 198 126433°  38467275° 12586107415  2155658346134°
42 120120 77597520 42833831040  11002175458560
76218484788433°  183889997504373757  4065005867152492813 58
T 542773989288960  173983735112079360  493150205493069250560

+ o)

(6.28)

To find the coefficient for 39, we simply use the fact that value to the integral (6.22) is
2
§.

For 8 =1, we have

o] vera=aa=apan-

B~ = ool w

— [ VGBI -

. 3 1 196 1264332 B 384672733 B 125861074134
8 42 120120 77597520 42833831040
_21556583461365 B 7621848478843 _ 18388999750437377

11002175458560  542773989288960  173983735112079360
406500586715249281338 1

©493150205493069250560 4
316456352318138813

5191054794663886848

— coefficient of3? =
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And therefore for we have the 9 degree polynomial solution to the integral (6.22) as

3 1 196 1264332 B 384672733 B 125861074134 B 2155658346133°
8 42 120120 77597520 42833831040  11002175458560
7621848478843 3° B 183889997504373737 B 40650058671524928133°

© 542773989288960  173983735112079360  493150205493069250560
316456352318138813,39]

- 5191054794663886848

(6.29)

Thus it provides the polynomial up to degree 9* as a numerical solution to the integral

that we intended to solve.



