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Abstract

We explore the implications of ambiguity (Knightian uncertainty) and risk for innovation
decisions through the lens of real options. Our hypotheses are supported by a real options
model, and are based on a new risk- and outcome-independent measure of ambiguity. We
expect ambiguity to decrease innovation investment, whereas risk should increase innovation
investment. The latter prediction is also consistent with prior work. Empirically, we find a
consistently significant negative effect of ambiguity on R&D investment, as well as on patents
and citations. We also find a significant positive effect of risk on R&D, but the effect of risk on
patents and citations is negative and significant, which suggests that in the face of higher risk
firms may wait and delay patenting. The effect of ambiguity is more important for high tech

firms, which invest heavily in research and in patenting, consistent with our intuition.
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1 Introduction and Relation to the Literature

A large and growing body of literature investigates the determinants of innovation decisions, in-
cluding industry competition (Aghion et al., 2005), institutional ownership (Aghion et al., 2013)
and organizational structure (Lerner et al., 2011, Seru, 2014, Bernstein, 2015). Special attention
has been paid to risk as a driver of innovative activity. However, risk, the uncertainty of outcomes,
usually measured by the variance of equity returns, assumes a unique known distribution of future
outcomes. In reality, it may be very difficult (and, perhaps, impossible) to predict a distribution of
future outcomes for a new innovative product such as a new drug (Krieger et al., 2017). Therefore,
the concept of ambiguity—the uncertainty of probabilities—seems a natural lens through which
managers may also assess future prospects. Our paper introduces a new fully developed concept
of ambiguity which is theoretically sound and empirically testable, to investigate how each type of
uncertainty affects the innovative decision, and which type of uncertainty may be more salient for
innovating firms.

Several early studies analyzed investment decisions as real options (Brennan and Schwartz, 1985,
McDonald and Siegel, 1986). Building on this concept, Schwartz (2004) and Kraft et al. (2018)
view R&D and patent decisions as real options, implying a positive effect of risk on R&D. Bloom
(2007, 2014) shows, however, that risk can negatively affect R&D investment, due to adjustment
costs and an increase in the value of the option to wait.

As in Schwartz (2004), Bloom (2014) and Kraft et al. (2018), we consider patent and R&D
decisions as real options. However, while in these studies the values of real options are subject
to risk only, a different strand of literature shows that option values are significantly affected by
ambiguity (Izhakian and Yermack, 2017, Augustin and Izhakian, 2019). Our testable hypotheses
combine the insights from these two approaches, and are supported by a one-period stylized model
of an optimal investment decision through the lens of real options in the presence of ambiguity
(presented in the Appendix).

Experimental studies show that decision makers tend to be ambiguity averse in the sense dis-
cussed in this paper. Ellsberg (1961) and Halevy (2007) show that, while making decisions, decision
makers prefer alternatives involving clear probabilities (risk, the known unknowns) over alterna-
tives involving vague probabilities (ambiguity, the unknown unknowns), even if normative theories

(Von-Neumann and Morgenstern, 1944, Savage, 1954) imply indifference. This phenomenon of am-



biguity aversion has been shown to be economically relevant and to persist in experimental market
settings and among business owners and managers.!

The effect of ambiguity on investment decisions is very different than the effect of risk. Any
investor will invest more as risk goes up, since higher risk increases the upside potential and the
value of the option. However, intuitively, an ambiguity-averse investor overweights the likelihood
of bad outcomes and underweights the likelihood of good outcomes (e.g., Tversky and Kahneman,
1992, Izhakian, 2017).2 Thus, higher ambiguity reduces the perceived attractiveness of investment
opportunities (i.e., a lower perceived expected payoff), which negatively affects investment decisions.

While ambiguity may affect any investment decision, in practice, we expect our ideas to have
more bite in cases where there is high uncertainty regarding the future prospects of the investment
in question, rather than say, in renovations or expansions of existing product lines. For example, it
would be difficult to view an investment in refurbishing an office building as a real option. However,
an investment in a new lab, for example, may create a real option to commercially license a new
drug, and thus is closer to our hypotheses. The former would appear under capital expenditures
(CAPEX) and the latter would appear under R&D in firms’ accounting statements. This distinction
is consistent with the accounting treatment of R&D as expenses and the requirement, on the other
hand, to depreciate CAPEX investments. At the same time, following Kumar and Li (2016), we take
into account the possibility that R&D expenditures might actually understate long-run innovative
capacity investments. Therefore, while in our main tests we measure innovation investments using
R&D expenses, in a robustness test we use the sum of R&D and CAPEX, and we find that the
results continue to hold.

We find a significant negative effect of ambiguity on measures of innovation in various stages
of product development including R&D investment and patents. These findings are consistent
with our stylized model and are also in line with Herron and Izhakian (2017), who show that
ambiguity matters to firm payout policies. Our study is also related to the literature studying
the effect of risk on corporate real investments which comes up with a mixed verdict. One strand
in this literature concludes that risk increases corporate investments. This literature goes back a

few decades. Early work (e.g., Hartman, 1972, Abel, 1983) suggests that since the marginal value

!See, for example, Mangelsdorff and Weber (1994), Viscusi and Chesson (1999), Abdellaoui et al. (2005), Du and
Budescu (2005), Maffioletti and Santoni (2005), Wakker et al. (2007).

*Behavior consistent with this way of thinking was found in several experimental studies (e.g., Wu and Gonzalez,
1999, Abdellaoui and Kemel, 2013, Crockett et al., 2019).



product of capital is a convex function of the risk faced by the firm, greater risk raises the marginal
valuation of one additional unit of capital, thereby increasing investment. The other strand in
this literature concludes that risk decreases corporate investments due to the irreversibility effect:
delaying the decision to invest in order to wait for new information (e.g., Bernanke, 1983, Pindyck,
1988). In other words, the opportunity cost associated with an irreversible investment increases
in risk. However, according to Caballero (1991) and Abel and Eberly (1994), even in the presence
of irreversibility, risk has a non-negative effect on investment if the firm operates in a competitive
market (see also Abel and Eberly, 1994). Bloom (2007, 2014) follows these ideas and shows that
in a dynamic framework risk may lead firms to react slowly or to reduce investment. We indeed
document a significant negative effect of risk on patents and citations, which is consistent with
Bloom’s (2007) framework. However, in our sample, we find a significant positive effect of risk on
R&D decisions, which is consistent with the real options perspective.?

Other empirical treatments of the effect of risk on innovation investment include Bernstein
et al. (2017) who suggest that macroeconomic risk, measured by negative housing shocks, reduces
employees’ interest in risky and exploratory projects. Krieger et al. (2017) investigate the tradeoff
between conservative and riskier investments in drug development.

The remainder of this paper is organized as follows. Section 2 presents a discussion of ambiguity
and develops the hypotheses. Section 3 describes the sample selection and data construction,
including the estimates of the ambiguity and risk variables that are central to our investigation.

Section 4 presents the empirical methodology, and 5 reports the results. Section 6 concludes.

2 Ambiguity

2.1 Decision theoretic framework

There have been several earlier theoretical studies of ambiguity, and our work extends and gener-
alizes their thinking. A path-breaking set of papers provides an initial axiomatization for decision

making in the presence of ambiguity (Gilboa and Schmeidler, 1989, Schmeidler, 1989). However,

3In a recent contribution, related, but distinct from ours, Kumar and Li (2018) document a positive association
between idiosyncratic volatility and the response rate of subsequent innovation-related investment (either R&D or
the sum of R&D and CAPEX). In Kumar and Li (2018), the response rate of innovation-related investment is defined
as the absolute percentage change in innovation investment. This result is interpreted in light of a feedback model in
which idiosyncratic volatility proxies for investors’ private information regarding the prospects of the firm’s innovation
projects.



these papers do not separate ambiguity from attitude towards ambiguity. Later studies develop a
theory where ambiguity is separated from preferences for ambiguity but, in these studies, prefer-
ences are outcome-dependent (e.g., Klibanoff et al., 2005, Nau, 2006, Chew and Sagi, 2008).

To derive a risk-independent measure of ambiguity, preferences for ambiguity must be outcome
independent, so that the measure itself is outcome-independent. To illustrate, consider an inno-
vation investment whose payoff is determined by a flip of an unbalanced coin, and for which the
manager does not know the odds of heads or tails. The payoff of the innovation investment is
$1,000,000 in case of heads and $0 in case of tails. Suppose that prior to flipping the coin, the
payoff in case of heads is suddenly changed to $2,000,000. Since this change in payoff provides
no new information about the probabilities involved, the manager has no reason to change the
assessed probabilities or the perceived degree of ambiguity. In other words, ambiguity is outcome-
independent up to a state space partition, since it applies exclusively to probabilities. However,
the risk does increase in this example, since it is outcome-dependent.?

Izhakian’s (2017) expected utility with uncertain probabilities (EUUP) framework introduces
outcome-independent preferences for ambiguity, which allow us to distinguish the concepts of risk
and ambiguity, and to specify distinct preferences with respect to both. Importantly, EUUP allows
us to measure ambiguity independently of risk and of the attitude toward risk (Izhakian, 2018).
Under EUUP, a decision maker acts as if she solves a two-stage decision-making problem. In the
first stage, she forms a representation of perceived probabilities for each relevant event, based on
her perceived ambiguity and her attitude toward this ambiguity. In the second stage, she considers
the expected utility associated with a set of possible outcomes, where the expectation is taken
with respect to her perceived probabilities. The main idea of EUUP is that in the presence of
ambiguity (i.e., when probabilities are uncertain), preferences for ambiguity are applied exclusively
to probabilities (outcome-independence) such that aversion to ambiguity is defined as aversion to
mean-preserving spreads in probabilities. As such, the Rothschild and Stiglitz (1970) approach,
typically applied to outcomes when examining risk, is applied to probabilities when examining
ambiguity. In this framework, an ambiguity-averse decision maker overweights the probabilities
of bad outcomes and underweights the probabilities of good outcomes. In particular, the higher

the ambiguity or the aversion to ambiguity, the lower the perceived probabilities of good outcomes

“A similar example is presented in Izhakian (2018).



and the higher the perceived probabilities of bad outcomes. As a result, when ambiguity rises, the
perceived expected utility computed with perceived probabilities falls. We formally describe this
decision theory framework in the Appendix.

Based on EUUP, Izhakian (2018) shows that the degree of ambiguity can be measured by
the volatility of probabilities—just as the degree of risk has been measured by the volatility of
outcomes. This measure accounts for the variance of all moments of the outcome distribution, and

can be utilized in empirical investigations.?

2.2 Real options view

Innovation investments (R&D or patent) can be viewed as real options. Consider, for example, a
decision to invest in a new drug or a new technology. The firm will make an initial investment
in innovation only if the value of the option created is positive, given the “exercise price” (i.e.,
the eventual outlay for production). R&D provides the foundation to develop a new enterprise.
However, the firm can also decide to shelve the drug at a later stage if more information suggests
that the likelihoods of unfavorable outcome are high. Patents create real options as well. For
example, an article in the trade publication Tomorrow’s Pharmacist (Torjesen, 5/12/2015) states
an open secret in the industry: “Pharmaceutical companies will patent any molecule that shows
promise early in the development process.”® In general, the drug development process, with the
various phases of FDA approval, can be viewed as a sequence of real options.

It is well known that the value of a (real) option increases in risk. In contrast, this is not the
case for the effect of ambiguity. When valuing a real option using EUUP or any other frameworks
of decision making under ambiguity, decision makers act as if they overweight the probabilities
of bad outcomes (out of the money) and underweight the probabilities of good outcomes (in the
money). Thus, ambiguity reduces the perceived value of the option. As we show in the appendix, a
real option, valued by an ambiguity-averse decision maker, declines in value as ambiguity increases
and increases in value as risk increases. In particular, the higher the ambiguity, the lower is the
perceived probability of a positive payoff, which the decision maker uses to form the expected value

of the (real) option. For a similar reason, employees tend to exercise their options early when the

®The EUUP measure of ambiguity is employed in several empirical studies using equity market data (e.g., Izhakian
and Yermack, 2017, Brenner and Izhakian, 2018, Augustin and Izhakian, 2019).

Shttps: //www.pharmaceutical-journal.com/publications/tomorrows-pharmacist/drug-development-the-journey-
of-a-medicine-from-lab-to-shelf/20068196.article?first Pass=false.



expected ambiguity increases (Izhakian and Yermack, 2017) and CDS spreads decrease in ambiguity
(Augustin and Izhakian, 2019).

Assuming no conflicts of interest, managers act to maximize the value of the firm. Thus,
higher perceived risk encourages innovative investments. In contrast, higher perceived ambiguity
suppresses innovative investments. Next, we provide a simple illustrative numerical example that

shows how our intuition works. A more developed theoretical model is provided in the Appendix.

2.3 Binomial example

Consider a one-period binomial real option for a project which requires an eventual investment of
$100. Suppose that the payout of the project may either be H = $120 or L = $80. The firm can buy
the option to invest and then decide whether or not to invest the required amount when the state of
the world materializes. In the case of the high payoff (i.e., H = $120) the option pays the difference
between the investment I (which is $100) and the project’s value (i.e., H — I = $120 — $100). If
the low case materializes, the firm will not pursue the investment. For simplicity, assume that the
risk-free rate is zero.

Suppose that the manger is risk neutral.” When the probabilities of both the bad and the good
outcomes are known to be 50% (no ambiguity is present), the variance of the probabilities is 0.
Therefore, the value of the option (in terms of expected utility) is C' = 0.5 x (120 — 100) = 10. If
the variance of the payoff of the project increases, such that the outcomes in the good and bad
states are respectively 130 or 70 (i.e., a higher but mean-preserving spread), then the value of the
option increases to C' = 0.5 x (130 — 100) = 15. Thus, an increase in risk is associated with a higher
value of the option. This is naturally less pronounced for risk-averse decision makers or different
but going in the same direction for Black and Scholes type models.?

To examine the impact of ambiguity, assume instead that the future payoffs remain the same,
80 or 120, but the probabilities of these future payoffs occurring are ambiguous. The distributions

of payoffs can be either (0.4,0.6) or (0.6,0.4). The manager, who does not have any information

"The EUUP framework allows different combinations of risk attitudes and ambiguity attitudes. Typically, we
expect decision makers to be both risk-averse and ambiguity-averse. However, in order to focus on ambiguity, the
current example is a simplification in which we have a risk-neutral but ambiguity-averse investor. While options in
general can be valued using a framework similar to Black and Scholes, there is no market for the real options we
consider in our setting, so arbitrage based option pricing may not be possible.

8Consider, for example, a risk-averse decision maker with the utility function U (c¢) = y/c. In this case, the value
(in terms of expected utility) of the option on the less risky asset is C' = 0.5 x /120 — 100 = 2.24, while the value of
the option on the more risky asset is C' = 0.5 x /130 — 100 = 2.74.



regarding the precision of these probability estimates, acts as if she assigns an equal weight to
each state probability distribution. Thus, the expected probability of the good state is E [¢ (H)]| =
0.5x0.440.5x0.6 = 0.5 and its variance is Var [p (H)] = 0.5% (0.4—0.5)240.5x (0.6 —0.5) = 0.01.
The same values apply for the bad state. This implies that the degree of ambiguity (expected
variance of the probabilities, see Appendix) is U% = 0.5 x 0.01 + 0.5 x 0.01 = 0.01.

In EUUP, an ambiguity-averse decision maker forms perceived probabilities by certainty equiv-
alent probabilities and uses them to assess her expected utility. A certainty equivalent probability
is the unique certain probability value that the decision maker is willing to accept in exchange for
the uncertain probability of a given event. This is analogous to the certainty equivalent outcome

(based on risk). By Equation (11) in Appendix A, the perceived probability of the preferable pay-

off is E [p (H)] x (1 + }rf/,/(')Var [ (H )]), where ¢ (+) is the marginal probability (probability mass

)
function), and —?’((.')) is the coefficient of (constant absolute) ambiguity aversion.

Assume first an ambiguity-neutral decision maker. The preference for ambiguity of this decision
maker is characterized by a linear function Y (), implying that perceived probabilities are equal
to the expected probabilities. Accordingly, the value of the option (in terms of expected utility)
remains the same and equal to C'= 0.5 x (120 — 100) = 10.

Now assume instead an ambiguity-averse decision maker with a constant absolute ambiguity
aversion —%((_')) =1 = 2. Due to aversion to ambiguity, this decision maker does not form perceived
probabilities through a linear compounding of probabilities, but aggregates probabilities in a non-
linear way as described above. As a result, the value of the option (in terms of expected utility)
becomes C = 0.5 x (1 —2 x 0.01) x (120 — 100) = 9.8.% For a decision maker with higher aversion
to ambiguity, say n = 4, the value of the option (in terms of expected utility) drops even further to
C=05x(1-4x0.01) x (120 — 100) = 9.6. Thus, an increase in aversion to ambiguity decreases
the option value. In the data, we naturally cannot observe either aversion to ambiguity or to risk.
However, we can compute the degree of ambiguity.

Assume now that the ambiguity of the payoff of the project increases. For example, if future
payoffs are distributed either (0.3,0.7) or (0.7,0.3) with equal likelihood (a mean-preserving spread
in probabilities), then the expected probability of the good (and the bad) state remains unchanged:
Elp(H)] =0.5x0.340.5%x0.7 = 0.5, but the variance of its probabilities increases to Var [¢ (H)| =

9When the decision maker is risk-averse with the utility function U (c) = /¢, the value (in terms of expected
utility) is C = 0.5 x (1 — 2 x 0.01) x /120 — 100 = 2.19.



0.5 x (0.3 — 0.5)2 + 0.5 x (0.7 — 0.5)2 = 0.04, implying a degree of ambiguity of U?[X] = 0.04.
Assuming a coefficient of ambiguity aversion 1 = 2, the value of the option then drops to C' =
0.5 x (1 —=2x0.04) x (120 — 100) = 9.2.

This simple example illustrates our main predictions based on the real options view. An increase
in risk (variance of outcomes) increases the value of the real option, thus increasing the investment
in innovation. In contrast, an increase in ambiguity decreases option value, leading to a lower
investment in innovation. Since risk has been investigated extensively in prior studies, we propose
a hypothesis based on our simple real options model, and a competing hypothesis based on Bloom

(2007, 2014). To our knowledge, there is no competing hypothesis regarding ambiguity.

2.4 Hypotheses

We propose two competing hypotheses for the effect of risk on innovation.

Hypothesis 1a Investments in innovation are higher for higher degrees of firm (project) risk.
Hypothesis 1b Investments in innovation are lower for higher degree of firm (project) risk.

Hypothesis la coincides with Schwartz (2004) and Kraft et al. (2018), and follows directly from
the stylized model presented in the Appendix and illustrated by the binomial example in Section 2.3.
This hypothesis also coincides with earlier corporate investments literature (e.g., Hartman, 1972,
Abel, 1983). Hypothesis 1b is motivated by Bloom (2007, 2014), who argues that when R&D
is below the optimum, firms may want to raise R&D, but higher risk induces a pause in R&D
investment (“delay effect”). This hypothesis also coincides with the idea that, as risk increases, the
option to wait increases in value (e.g., Bernanke, 1983, Pindyck, 1988).

Higher ambiguity always implies lower perceived probabilities of the good states (in which the
innovative investment bears fruit), and therefore a lower value of the (real) option. A lower value

of the real option results in less investment in R&D or less patenting.

Hypothesis 2 Investments in innovation are lower for higher degrees of firm (project) ambiguity.

Below we test these hypotheses on R&D and patent data.



3 Data

The primary data sources for the analysis are the intraday trade and quote (TAQ) data for the
estimation of the degrees of ambiguity and risk; the patent database of Kogan et al. (2017) for
historical information on patents; and Compustat for accounting data. In robustness tests, we also
use institutional ownership data from the Thompson Reuters 13F database!?, as well as the Bushee

(1998) classification of institutional owners.

3.1 Sample construction

In order to construct our sample, we start with all firm-quarters with strictly positive sales and
assets in the Compustat Fundamentals Quarterly files for fiscal years 1993-2016. We start our
sample in 1993, since the TAQ data, which we use to compute our ambiguity and risk measures,
is available only from 1993. We organize the data by calendar quarter-year. For example, the first
quarter of 2000 includes all firm-quarters with fiscal quarter ending in February, March or April
2000. We augment this dataset with the entire history of patents for Compustat firms using the
Kogan et al. (2017) patent dataset.!!

Next, we attempt to identify firm reorganizations that are not accompanied by a change in the
Compustat firm identifier (gvkey). Specifically, following Bloom et al. (2013), whenever we observe
extremely large jumps (greater than 200% or lower than -67%) in annual sales, employment, or
assets, we treat the firm as a new entity and assign it a new identifier (new gvkey), even if the
Compustat gvkey remains the same. This approach is more general than including a full set of
gukey fixed effects, because it allows the fixed effect to change over time, when the firm undergoes
major changes.

As in most other papers on patents, our measure of the patenting process is patent applications.
However, patent applications are observed only conditional on the patent being eventually granted.
Since our patent data (Kogan et al., 2017) ends in 2010, we are missing patents applied for in the
later years of our sample period, but granted after 2010. To reduce this truncation bias (Dass et al.,

2017), and following Dong et al. (2017), we drop the last two years of the patent data, ending the

YOFollowing Ben-David et al. (2018), after June 2013, we calculate institutional ownership using the 13F data parsed
directly from the SEC EDGAR filings system, and available on WRDS.

The Compustat Fundamentals Annual file starts in 1950. The Compustat Fundamentals Quarterly file starts in
1962, but the coverage is sparse until 1982. For each firm, we use the entire patent history from the Kogan et al.
(2017) dataset, starting in 1925, the first year of CRSP data.



patent sample in 2008. Furthermore, patent citations are subject to truncation, because we only
observe citations made by patents granted by 2010. To correct for this bias, we scale the citation
count for each patent by the average number of citations received by all patents in the same 3-digit
USPTO technology class and filed in the same year. This is the so-called fixed-effects approach
from Hall et al. (2001)

We use the historical SIC code from CRSP to identify industries; when the historical SIC code
is missing in CRSP, we use the historical SIC code from Compustat. When both are missing,
we use the SIC code of the largest business or operating segment from the Compustat Segment
Files. We exclude utilities (SIC codes 4900-4999), financials (SIC codes 6000-6999), public service,
international affairs firms and non-operating establishments (SIC codes 9000-9999). For R&D, the
sample period is 1993-2016.

Since our paper analyzes the effect of ambiguity on both R&D and patenting, we present
empirical results for three different samples: the sample of firms with at least one quarter of positive
R&D expenditures (R€D Sample), the sample of firms with at least one patent application (Patent
Sample), and the sample of firms with at least one citation (Citation Sample), conditional on
non-missing data for all variables of interest during the sample period (1993-2016 for R&D and
1993-2008 for patents and citations). This is common for papers on innovation, given that if we
include the universe of all firms, most of them have neither any patents nor positive R&D. For all
samples, we require firms to have available data for at least four quarters for all variables of interest.
In addition, for the Patent Sample and the Citation Sample, we require firms to have at least four
years (16 quarters) of patent data before the first quarter in the sample (the pre-sample period).
For firms that enter Compustat after 1993, we use the first four years of data as the pre-sample
period, and we include the following years in the sample.!?

In some specifications, in order to eliminate microstructure effects that might affect our measures
of ambiguity and risk, we exclude penny stocks, very small firms and very young firms. Penny stocks
are stocks with a price less than $5 at the end of the quarter. Very small firms are firms with a
market capitalization less than $10 million at the end of the quarter. Very young firms are firms
with less than 5 years in Compustat.

There are 105,037 firm-quarters for 4,053 different firms in the R&D Sample, 54,093 firm-

12Gee the discussion in Section 4 of the Blundell et al. (1999) pre-sample mean scaling fixed effect estimator.
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quarters for 2,108 different firms in the Patent Sample, and 51,392 firm-quarters for 1,967 different
firms in the Citation Sample. The R&D and Patent samples do not overlap completely: for quarters
ending on or before December 31, 2008 (the period when the two samples potentially overlap) only
43,090 firm-quarters are in both samples, while 29,900 firm-quarters are only in the R&D Sample,

and 11,003 firm-quarters are only in the Patent Sample.'3

3.2 Measures of innovation

The hypotheses derived by our stylized model of real options under ambiguity and risk apply in
principle to “investment projects.” However, the main source of ambiguity and risk is the innovative
activity of the firm, rather than say, routine maintenance. As discussed above, the accounting
treatment of R&D (expensing) seems to recognize that R&D buys you an option, rather than a
known asset that needs to be depreciated, as is the case for CAPEX. Kumar and Li (2016) point
out that part of the capital expenditures of innovative firms may in fact reflect investments in
innovative capacity, such as the construction of a research facility or purchasing patents. Hence,
R&D expenditures might actually understate the actual investment in innovation for these firms.
To address this concern, we measure innovation by both R&D and the sum of R&D and CAPEX,
as well as patents and citations.

Our measures of innovation intensity are defined as follows. RD_ASSETS.y1 is defined as
research and development expenses in quarter ¢ + 1, scaled by total assets at the beginning of
the quarter. It is possible that the firm adjusts its R&D with a lag. Thus, to reflect a potential
delayed response of R&D to ambiguity and risk, we also analyze the R&D intensity one year ahead,
RD_ASSETS41. 1+4, which is defined as total research and development expenditures in the four
quarters t + 1...% + 4, scaled by total assets at the beginning of quarter ¢ + 1. For robustness, we
use two alternative measures of investment in innovation: RD_CAPEX _ASSFETS;,1 is the sum of
R&D and CAPEX, scaled by total assets at the beginning of quarter, and RD_ADJ_ASSETS; 1
is R&D scaled by assets at the beginning of the quarter, adjusted to include capitalized R&D. To
eliminate the effect of outliers, we drop firm-quarters with RD_ASSETS, RD_ CAPEX_ASSETS
or RD_ADJ_ASSETS above the 99t percentile.

'3The fact that 20.34% (11,003 out of 54,093) of firm-quarters in the Patent Sample do not have positive R&D
expenditures during the sample period is consistent with Koh and Reeb (2015), who find that a significant number
of firms with missing R&D in Compustat actually file and receive patents.

11



To measure innovation intensities, we also consider patents and citations, up to three years
(12 quarters) ahead. PATENTS;+1 is the number of patents applied for during the quarter,
conditional on being granted by 2010. To reduce the bias caused by the application-grant lag,
following Dong et al. (2017), we end the sample for patents and citations regressions in 2008. We
follow numerous innovation papers, including recent contributions (e.g., He and Tian, 2013, Dong
et al., 2017), and use citation counts as a proxy for the quality of the firm’s patents (i.e., citations-
weighted patents, Trajtenberg, 1990). CITATION S;41 is the number of citations received by
2010 by the patents that the firm filed during quarter ¢ + 1, excluding self-cites, and corrected for
citation truncation using the fixed-effects approach described by Hall et al. (2001). Namely, the
raw number of citations, excluding self-cites, is scaled by the average number of citations received

by all patents in the same 3-digit USPTO technology class filed in the same year.

3.3 Estimating ambiguity

Our goal is to analyze the effect of ambiguity on innovation, and ideally, we would like to estimate
the ambiguity associated with the firm’s innovative projects. In practice, we can only observe stock
returns. Therefore, our empirical measure is the ambiguity extracted from a company’s equity.
Intuitively, ambiguity represents the uncertainty in future outcome probabilities, as opposed to
risk, which measures the uncertainty in future outcomes. As leverage may affect the measure of
ambiguity estimated from equity data, we compute unlevered intraday returns using the book value
of total debt and the market value of equity estimated at every five-minute interval.!*

Utilizing the EUUP framework, the degree of ambiguity can be measured by the volatility of

uncertain probabilities, just as the degree of risk can be measured by the volatility of uncertain

outcomes. Formally, the measure of ambiguity is defined as:

6*(x] = [ Bly @) Varlo (o) da. (1)
where ¢ (+) is an uncertain probability density function; and the expectation E [-] and the variance
Var [-] are taken with respect to the second-order probability measure £ on a set P of probability
measures (Izhakian, 2018).1> Equation (1) represents a probability-weighted average of the vari-

ances of probabilities. The measure of ambiguity, defined in Equation (1), is distinct from aversion

“The correlation between the ambiguity measure computed using unlevered returns and the one computed using
(levered) stock returns is almost 0.99, so unlevering the returns does not drive the results.
"In a finite state space, 0% [X] = 3_, E [ (2;)] Var [p (z;)], where ¢ (-) is an uncertain probability mass function.
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to ambiguity. The former, which is a matter of beliefs (or information), is estimated from the
data, while the latter, which is a matter of subjective attitudes, is endogenously determined by the
empirical estimations.

We follow recent literature and estimate the empirical degree of firm-level ambiguity using
intraday stock data from the TAQ database (e.g., Izhakian and Yermack, 2017, Augustin and
Izhakian, 2019). We compute the degree of ambiguity for each stock each month and use its
trailing three-month moving average.

As investors share the same information set, all have an identical set of priors over the intraday
return distribution. Each prior in the set is represented by the observed daily intraday returns
on the firm’s equity, and the number of priors in the set depends on the number of trading days
in the month. The set of priors thus consists of 18-22 realized distributions over a month. For
practical implementations, we discretize return distributions into n bins B; = (rj,7;—1] of equal
size, such that each distribution is represented as a histogram. The height of the bar of a particular
bin is computed as the fraction of daily intraday returns observed in that bin, and thus represents
the probability of the returns in that bin. Equipped with these 18-22 daily return histograms, we
compute the expected probability of being in a particular bin across the daily return distributions,
E [P (By)], as well as the variance of these probabilities, Var [P (B;)]. To this end, an equal likelihood
is assigned to each histogram.'® Using these values, the monthly degree of ambiguity of firm 7 is

then computed as follows:

0? [r4]

= WZE S]] Var [P, [B)]]. (2)

To minimize the impact of bin size on the scale of ambiguity, we apply a variation of Sheppard’s
correction and scale the probability weighted-average variance of probabilities to the size of the
bins by \/ﬁ’ where w = r; j —r; j_1.

In our implementation, we sample five-minute stock returns from 9:30 to 16:00 to eliminates
micro-structure effects (Andersen et al., 2001, Ait-Sahalia et al., 2005, M.Bandi and R.Russell, 2006,

Y.Liu et al., 2015). Thus, we obtain daily histograms of up to 78 intraday returns. If we observe

16This is consistent with the principle of insufficient reason, which states that given n possibilities that are indis-
tinguishable except for their names, each possibility should be assigned a probability equal to % (Bernoulli, 1713,
de Laplace, 1814). It is also consistent with the idea of the simplest non-informative prior in Bayesian probability
(Bayes et al., 1763), which assigns equal probabilities to all possibilities; and the principle of maximum entropy
(Jaynes, 1957), which states that the probability distribution which best describes the current state of knowledge is
the one with the largest entropy.
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no trade in a specific time interval for a given stock, we compute returns based on the volume-
weighted average of the nearest trading prices. We ignore returns between closing and next-day
opening prices to eliminate the impact of overnight price changes and dividend distributions. We
drop all days with fewer than 10 different five-minute returns, then we drop months with fewer
than 10 intraday return distributions. In addition, we drop extreme returns (+5% log returns over
five minutes), as many such returns are due to improper orders that are often later canceled by the
stock exchange.

For the bin formation, we divide the range of daily returns into 162 intervals. We form a grid of
160 bins, from —40% to +40%, each of width 0.5%, in addition to the left and right tails, defined as
(00, —40%] and (+40%, +00), respectively. We compute the mean and the variance of probabilities
for each interval, assigning equal likelihood to each distribution (i.e., all histograms are equally
likely).!” Some bins may not be populated with return realizations. Therefore, we assume a normal
return distribution and use its moments to extrapolate return probabilities. That is, P; [B;] =
[<I> (155 piy i) =@ (1513 4, 04) ] , where @ (-) denotes the cumulative normal probability distribution,
characterized by its mean p; and the variance o? of the returns. As in French et al. (1987),
we apply the Scholes and Williams (1977) adjustment for non-synchronous trading to estimate
variance of returns.'® This adjustment further eliminates any micro-structure effects caused by bid-
ask bounce, although our use of five-minute returns minimizes micro-structure effects.'® Finally,
AMBIGUITY;;, our measure of ambiguity of firm 7 in quarter ¢, is the average of the monthly

ambiguity U2 [r;] over all months during quarter ¢.2°

17"The assignment of equal likelihoods is equivalent to assuming that the daily ratios £ are Student’s-t distributed.
When £ is Student’s t-distributed, cumulative probabilities are uniformly distributed (e.g., Proposition 1.27, page 21
Kendall and Stuart, 2010).

18Scholes and Williams (1977) suggest adjusting the volatility of returns for non-synchronous trading as ol =

Ny Nt

Nit ; (ree = Blred)* + 2 — ; (ree —Elree]) (ree—r — Blree]).

9Tn a battery of robustness tests, Brenner and Izhakian (2018) and Augustin and Izhakian (2019) rule out the
concern that U may capture other well-known uncertainty factors including skewness, kurtosis, variance of variance,
variance of mean, downside risk, mixed data sampling measure of forecasted volatility (MIDAS), investors’ sentiment,
and jumps, among several others. Their tests also rule out the concern that the empirical implementation is sensitive
to the selection of bin size and the data frequency.

20We also considered an alternative frequency for our estimates of risk and ambiguity. Using daily data stock data
from CRSP, we extract the intraday return distribution from open, close, high and low price quotes using Garman
and Klass (1980). This method allows us to use all stocks, not only those included in the TAQ database, but we lose
much of the information that intraday volatility allows us to include in the measure described in the text. Thus, it is
a more crude measure of ambiguity. When we ran our regressions on daily data, the results were qualitatively similar
but somewhat less significant.
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3.4 Estimating risk

Along with ambiguity, risk serves as an important explanatory variable in our analysis. For con-
sistency, we compute risk using the same five-minute returns that we use to compute ambiguity.
For each individual firm ¢ on each day, we compute the variance of five-minute intraday returns,
applying the Scholes and Williams (1977) correction for non-synchronous trading and a correction
for heteroscedasticity.?! Each month, we estimate risk as the mean of the daily variance estimates.

In our analysis, as with ambiguity, we use the quarterly mean of monthly risk estimates. RISK; ;.

3.5 Control variables

We control for variables that are known in the literature to be correlated with innovation. Our firm-
level controls include: log sales (LN_SALES);?? Tobin’s Q (Q); log ratio of physical capital per em-
ployee (LN _K _L); cash-flow (CASH_FLOW); leverage (LEV ERAGE); log firm age (LN_AGE);
log of one plus R&D capital (LN_RD_CAPITAL); a dummy for Nasdaq listing (NASDAQ), and
a control variable for missing R&D expenditures in Compustat (MISSING_RD).?3 All variables are
described in detail in Appendix B.

We drop firm-quarters with AMBIGUITY , RISK or CASH_FLOW below the 1% percentile
and above the 995 percentile over the entire sample period. We also drop firm-quarters with K _L
above the 99°* sample percentile. Following Lanjouw and Schankerman (2004), Aghion et al. (2013)
and others, we winsorize ) by setting it equal to 0.10 for values below 0.10 and to 20 for values
above 20. All balance sheet and income statement variables are deflated using the quarterly GDP

deflator from St Louis Fed (2009=100).

3.6 Summary statistics

Table 1 presents descriptive statistics for the R&D Sample (Panel A), and the Patent Sample
(Panel B). In the R6D Sample, the median firm has sales of $75.842 million per quarter, while in
the Patent Sample, the median firm is much larger, with sales of $179.731 million per quarter. The

median firm age, approximated by the number of quarters the firm is listed in Compustat, is 13.5

21Gee, for example, French et al. (1987).

22Recall, that we keep only firm-quarter observation with strictly positive sales and assets.

23We control for missing R&D following Koh and Reeb (2015), who find that a significant number of firms with
missing R&D in Compustat actually file and receive patents.
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years (54 quarters) in the RE&D Sample, and 18 years (72 quarters) in the Patent Sample. Overall,
these differences suggest that R&D investment and patenting may take place at different stages in
the firms’ life cycle.?*

In the R&D Sample, the median (mean) RD_ASSETS is 1.4% (2.1%) per quarter, and 5.2%
(8%) per year.25 We also note that 23.9% of the firm-quarters in the R&D Sample have missing
R&D in the Compustat Fundamentals Quarterly file. For these innovative firms the median (mean)
CAPEX_ASSETS ratio is only 0.8% (1.2%) per quarter, and 3.3% (4.7%) per year.?6 Conditional
on filing at least one patent across all sample quarters (Patent Sample, Panel B), the median (mean)
firm files 2 (24.96) patents per year and receives 1.19 (26.31) citations.?” This indicates that the
distribution of the number of patents and citations is heavily skewed, as previously documented in
the literature.

The median (mean) AMBIGUITY in the R&D Sample (Panel A) is 0.013 (0.02). Given
that AM BIGUITY measures the expected variance of probabilities, this implies that the median
expected standard deviation of probabilities is v/0.013 = 11.4%. The median RISK of 0.002 per
day corresponds to an annualized stock return volatility of approximately /250 x 0.002 = 70.71%
(or, equivalently, /20 x 0.002 = 20% per month).?® The medians for AMBIGUITY and RISK
are quite stable in the R&D Sample (Panel A) and the Patent Sample (Panel B).

We then split the sample in two sub-samples: high-tech and non high-tech industries. Following
Brown et al. (2009), we classify the following seven three-digit SIC code industries as high-tech
industries: drugs (SIC 283), office and computing equipment (SIC 357), communications equipment

(SIC 366), electronic components (SIC 367), scientific instruments (SIC 382), medical instruments

24Part of the difference in firm age between the R&D Sample and the Patent Sample comes from the fact that, for
firms that enter Compustat (broadly speaking, IPO firms) during the sample period, we use the first four years of
data to construct pre-sample means of the dependent count variables (PATENTS and CITATIONS), effectively
removing these years from the actual sample.

25For variables calculated over the four quarters ¢ + 1...t + 4, we require the firm to be in the sample in all four
quarters. For this reason the mean and median for annual variables are not necessarily exactly four times larger than
for the corresponding quarterly variables.

26In untabulated analysis, we also calculated statistics for the sample of firms requiring at least one quarter of
positive CAPEX, instead of one quarter of positive R&D. In that sample, the median (mean) CAPEX_ASSETS
is 0.9% (1.4%) per quarter and 3.8% (5.7%) per year, while the median RD_ASSET'S, R&D divided by total assets,
is 0% (1.2%) per quarter and 0.4% (4.5%) per year.

2TRecall that the number of citations for each patent is scaled by the average number of citations received by all
patents in the same technology class filed in the same year, which corresponds to the fixed-effects approach in (Hall
et al., 2001).

28When we exclude firms with a stock price lower than $5, market capitalization less than $10 million and fewer
than 5 years in Compustat, the median RISK in the R&D Sample falls to 0.001, which corresponds to an annualized
stock return volatility of approximately /250 x 0.001 = 50% (or, equivalently, v/20 x 0.001 = 14.14% per month).
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(SIC 384), and software (SIC 737). This classification to high-tech and non high-tech industries
splits the R€D Sample approximately in half: there are 55,184 firm-quarters (2,460 distinct firms)
in the high-tech sample, and 49,060 firm-quarters (1,738 distinct firms) in the non high-tech sample.
As expected, the R&D intensity is larger in high-tech industries. This is also reflected in the ratio of
R&D to total (R&D plus CAPEX) investment: the median (mean) RD_RATIO is 77.9% (68.2%)
in high-tech industries, and only 18.6% (31.4%) in non high-tech industries. High-tech firms are in
general smaller, younger, have less leverage, less tangible capital and more intangible capital than
non high-tech firms. In addition, high-tech firms appear to have higher risk and lower ambiguity
than non high-tech firms.?’

Table 2 presents averages of within-firm Pearson correlation coefficients for the explanatory vari-
ables for all firms in the R€&D Sample (Panels A and B) and in the Patent Sample (Panel C). Once
we remove penny stocks, very small and very young firms, the correlation between AM BIGUITY
and RISK decreases from 0.025 in Panel A and becomes negative, -0.280 in Panel B. The corre-
lations are very similar in the R&D Sample and the Patent Sample, as well as for high-tech and
non high-tech firms within each sample. For illustrative purposes, Panel C presents correlations for

high-tech firms in the Patent sample.

4 Empirical methodology

In our empirical exploration, we utilize two main models. First, to analyze the effect of ambiguity

on innovation input, we estimate the following model using OLS:
RD,ASSETS@H_:[ =+ 51AMBIGUITY;¢ + ﬁgRISKLt + F/Xl'7t + i + v+ €y, (3)

where 4 stands for the firm and t for the quarter; X;; is a vector of control variables; y; denotes
firm fixed effects; and 14 denotes quarter-year fixed effects. Quarter-year fixed effects absorb any
time effects that are constant across all firms, including seasonality effects. Standard errors are
clustered by firm. The coefficient estimates for this model are presented in Tables 3, 4 and 5.

Second, as common in the patent literature, we estimate the following count model:

E [OUTi,k,t+n|Xi,t; Xis fk, I/t] = exp [Oé + ﬂlAMBIGUIT}/Z7t + 52RISK¢¢ + F/Xi,t + Xi + gk + Vt} y (4)

29Untabulated tests for differences in means and medians for all variables between high-tech and non high-tech
firms are significant at the 1% level, except for the patent variables in the RE&D sample.
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where E [-] stands for expected value; OUT; j, 44, is innovation output—either PATENTS; j; t1n
or CITATIONS, j; t4+n—for firm i, in industry £k in quarter t +n (n = 1...12); X, is a vector
of the firm’s control variables; y; denotes Blundell et al. (1999) pre-sample firm fixed effects; &
denotes industry (3-digit SIC code) fixed effects; and 4 denotes quarter-year fixed effects. We also
estimate the same equation for the total number of patents or citations over each of the following
three years (OUT; k. t+1..4+4, OUT; 145, 448 and OUT; k149, ++12). Standard errors are clustered by
firm. Equation (4) is estimated using both a Poisson and a Negative Binomial model. Estimation
results are presented in Tables 6 and 7.

In the count models for PATENTS and CITATIONS, we follow the recent innovation lit-
erature (e.g., Aghion et al., 2013, Bloom et al., 2013), and control for unobserved, time-invariant,
firm-level heterogeneity using the pre-sample mean scaling fixed effect estimator of Blundell et al.
(1999). This approach exploits the history of patent data for each firm and uses the log of pre-sample
averages of the count dependent variable as a proxy for unobserved heterogeneity. We calculate
pre-sample means of the dependent count variables (PREPATENTS and PRECITATIONS)
starting in the first quarter when the firm (permco) appears in the CRSP dsenames dataset. We
require firms to have at least four years of pre-sample data (16 quarters) in order to calculate
pre-sample averages of the dependent variables. For firms that enter Compustat after 1993 (the
first year of patent data included in our regression sample), we use the first 16 quarters of data to
calculate pre-sample averages, and we include the following quarters in the sample.? In addition
to including the log of PREPATENTS (PRECITATIONS), the count models for PATENTS
(CITATIONYS) include an indicator variable for whether the firm had any patents (citations) in

the pre-sample period.?!

30Bloom et al. (2013) use a similar approach, also requiring 4 years of pre-sample data in their dataset covering
the 1981-2001 period.

311n addition to the pre-sample mean scaling fixed effect, the models in Tables 6 and 7 include three-digit SIC code
fixed effects and year fixed effects. We use three-digit SIC codes instead of four-digit SIC codes because our sample
includes both NYSE/AMEX and Nasdaq firms, and, according to WRDS documentation, CRSP provides only the
three-digit SIC code for Nasdaq firms.
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5 Empirical findings

5.1 R&D investment

Table 3 presents coefficient estimates for OLS regressions for forward one-quarter and one-year R&D
investment, as a function of AM BIGUITY , controlling for RIS K and other explanatory variables.
We find that ambiguity has a negative and significant effect on R&D, while risk has a positive and
significant effect, both one quarter ahead (Column (1)) and one year ahead (Column (2)). These
findings are in line with the predication of our real options model and support Hypotheses 2 and 1a.
Panel B of Table 3 shows that these results are robust to excluding penny stocks (stocks with price
less than $5 at the end of the previous quarter), very small firms (firms with market capitalization
less than $10 million at the and of the previous quarter), and very young firms (firms with less
than 5 years in Compustat).

The effect of ambiguity is driven mainly by high-tech firms: the coefficient estimates on AM BIGUITY
in this sub-sample are larger and significant at the 1% level, both forward one quarter and one year
R&D (Columns (3) and (4)). For non high-tech firms, the effect of ambiguity is not significant
for forward one quarter R&D (Column (5)), and it is only marginally significant forward one year
R&D (Column (6)). The coefficients of all control variables have the expected signs: R&D is higher
in small firms, in firms with high growth opportunities (high @), low tangibility (LN_K_L), low
cash-flows and low leverage. The effect of age is positive and significant in 3 Panel A, but it becomes
insignificant when we exclude firms with less than 5 years in Compustat (Panel B).

In terms of economic magnitude, the coefficient estimates in Table 3 imply that a one standard
deviation increase in AMBIGUITY across all firms (0.021) decreases the R&D intensity one
quarter ahead (RD_ASSETS;11) by —0.016 x 0.021 = —0.00034, which represents approximately
1.4% of the empirical standard deviation of the dependent variable (0.024). In the high-tech sub-
sample, the economic effect is larger: a one standard deviation increase in AMBIGUITY (0.02)
decreases the R&D intensity one quarter ahead by —0.037 x 0.02 = —0.00149, which represents
approximately 3% of the empirical standard deviation of the dependent variable in that sub-sample
(0.025). Similarly, a one standard deviation increase in RISK increases the R&D intensity across
all firms by approximately 6.7% of the empirical standard deviation for all firms (Column (1)),

and by approximately 10.8% of the empirical standard deviation for high-tech firms (Column (3)).
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Thus, the economic effect of ambiguity is lower, but comparable to that of risk. Furthermore, we
see that ambiguity matters to high tech, high growth firms, which by definition are engaged in new
and hard to predict lines of business. Panel B of Table 3 also shows that the effect of ambiguity is
robust to eliminating penny stocks, very small and very young firms, so it is unlikely to be driven
by microstructure effects.3?

Table 4 presents results for different splits of the sub-sample of high-tech firms. To split this
sub-sample, we first calculate the average sales, age and leverage for each firm over all quarters in
the sample. Then we define small firms to be those with average sales below the sample median and
large firms to be those with average sales above the sample median. Similarly, we define young/old
firms and low-leverage/high-leverage firms. The coefficient of AM BIGUITY is significant for small
and large firms, young and older firms, and low-leverage and high-leverage firms. Moreover, it is
larger in absolute value in the sub-samples of small firms (Column (1)), young firms (Column 5),
and low-leverage firms (Column 9). The interaction effect between AMBIGUITY, RISK and
various measures is sometimes significant indicating that the effects may be more important for
specific types of firms.

The finding that the effect of ambiguity is significantly stronger for low-leverage firms, together
with the fact that R&D in general is higher in low-leverage firms, suggests that AMBIGUITY
matters for high growth firms (i.e., firms that engage in higher levels of R&D). In addition, in
low-leverage firms, the ambiguity estimated from stock market data is closer conceptually to the
ambiguity associated with the firm’s assets, since unlevering is not as important. Intuitively, am-
biguity matters more for smaller firms, which have less of a track record and the prospects of their
outcomes may be more difficult to be established. The fact that the effect of ambiguity is stronger
for low-leverage firms makes us confident that our findings in the rest of the paper are not driven
by measurement errors associated with unlevering stock returns.

Table 5 reports additional three robustness tests for our R&D results. First, Panel A shows
that our findings are robust to controlling for institutional ownership. Bushee (1998) finds that,
while total institutional ownership decreases the probability that firms cut R&D in order to reverse

an earnings decline, ownership by transient institutional investors (i.e., investors with diversified

32Recall that to eliminate microstructure effects, we compute ambiguity using five-minute returns and not higher
frequency returns. We also apply the Scholes and Williams (1977) correction, which further eliminates possible
microstructure effects.
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portfolios and high turnover) has the opposite effect. In that latter case, transient institutional
ownership encourages myopic investment behavior. On the other hand, Aghion et al. (2013) find
that institutional ownership increases innovation, as measured by citation-weighted patents. More-
over, using Bushee’s (1989) classification of institutional owners, Aghion et al. (2013) find a positive
effect of institutional ownership on citation-weighted patents for both dedicated and transient in-
stitutional ownership, and no effect for quasi-indexer institutional ownership. Panel A of Table 5
shows that our R&D findings are unaffected when we augment the regression to include institutional
ownership variables. Moreover, the institutional ownership variables themselves are not significant.
In untabulated analysis, we find that our results are also robust to controlling for total institutional
ownership instead of including dedicated and transient institutional ownership separately in the
regression and that total institutional ownership is itself not significant.

Second, Panel B of Table 5 shows that our findings are robust to measuring innovation invest-
ment by the sum of R&D and CAPEX. As discussed above, a significant share of capital investment
of R&D-active firms is in fact investment in innovative capacity which are not included in R&D
expenditures, but are instead included in capital expenditures.®® Thus, in this robustness test, the
dependent variable is the sum of R&D and CAPEX, scaled by assets (RD_-CAPEX_ASSETS).
Panel B of Table 5 shows that the results are similar to the results in Table 3, when the dependent
variable is RD_ASSETS, especially for high-tech firms, where the concern that CAPEX might
include innovation investments is greater.3*

Third, Panel C of Table 5 shows that our findings are robust to measuring innovation investment
by R&D adjusted to the book value of total assets including capitalized R&D. As shown in Table 1,
high-tech firms have both smaller size (measured with either assets or sales) and larger stocks of
capitalized R&D expenditures than firms in traditional industries. We follow Chan et al. (2001),
Lev et al. (2005) and Chambers et al. (2002), and adjust the book value of total assets to include

capitalized R&D (RD_CAPITAL). Accordingly, the dependent variable in Panel C, of Table 5 is

33 At the same time, not all investments in innovative capacity would be included in capital expenditures. For
example, the purchase of inventories would be reflected as an increase in total assets, but are not included in capital
expenditures (Kumar and Li, 2016).

31We also regress CAPEX, both one quarter ahead and one year ahead, scaled by assets at the beginning of
quarter t + 1 (CAPEX_ASSETS:;+1 and CAPEX_ASSETSti1..+44) on AMBIGUITY, RISK and the same
control variables as for the R&D regressions. When we require firms to have at least one quarter with positive R&D,
without requiring positive CAPEX, which is the sample used in Tables 3, 4 and 5, we do not find a significant effect of
AMBIGUITY or RISK on CAPEX either one year ahead or one quarter ahead when we exclude penny stocks, very
small firms or very young firms. This suggests that R&D-active firms are different than the other firms, supporting
our real options of innovative (vs. maintenance) investment.
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R&D scaled by adjusted assets (RD_ADJ_AT), where adjusted assets include the book value on
the balance sheet plus capitalized R&D.3> This adjustment, however does not affect our results.
Finally, in untabulated analysis, we find that the results are also robust to excluding observations
with AMBIGUITY and RISK calculated during recession quarters (2001q2-2001g4 and 2008q1-
2009¢2).

In summary, our findings for R&D investment are broadly consistent with the real options view,
supporting Hypotheses 2 and la. Namely, our findings show that investments in R&D decrease
with ambiguity and increase with risk. This is particularly true for the firms that fit the model

best: high-tech firms.

5.2 Patents and citations

We turn now to examine the effect of ambiguity and risk on innovation outputs: patents and cita-
tions. Tables 6 and 7 present results for Poisson and Negative Binomial regressions for PATENTS
(Panel A) and CITATIONS (Panel B), restricting the sample to high-tech firms.*6 We further
exclude penny stocks, very small firms and very young firms. All regression tests include three-digit
SIC code fixed effects, Blundell et al. (1999) pre-sample firm fixed effects, and quarter-year fixed
effects. We run the regression tests separately for each quarter ¢t + 1,...,¢ 4+ 12, but for brevity
we report findings only for quarter ¢ 4+ 1, as well for the combined quarters ¢t +1...¢+4 (Year 1),
t+5...t+8 (Year 2) and t +9...¢t + 12 (Year 3). Importantly, the findings for each of years 1,
2 and 3 are not driven by individual quarters within that year. Table 6 shows that the coefficient
estimates of both AMBIGUITY and RISK are negative. The negative effect of risk on patents
and citations is significant for both variables in Poisson regressions, but ambiguity is no longer
significant in Negative Binomial regressions.

The negative effect of ambiguity on patenting activity is in line with the predictions implied by
the real options concept, supporting Hypothesis 2. We note that, in any setup, an ambiguity averse
manager should invest less as ambiguity increases. Risk is significant and negative throughout,

which is not consistent with the real options concept, stated in Hypothesis la. However, the

35These regressions include the same control variables Table 3, Panel A, with one difference: as we adjust total
assets to include capitalized R&D, we apply the same adjustment to the denominator in Tobin’s Q.

36When we pool high-tech and non high-tech firms together, the results are qualitatively similar, but the significance
is lower. We do not find a significant effect of ambiguity on patents and citation in non high-tech industries, so the
effect in the overall sample is driven by firms in high-tech industries. Therefore, we restrict our analysis to these
industries going forward.
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negative effect of risk on patenting activity is consistent with the ideas in Bloom (2007, 2014).
It may be that the R&D decision is better modeled by a real option whereas patenting decisions
conform better to the dynamic set up in Bloom (2007), and with the idea that the delaying patenting
is more valuable when risk is relatively high.

The bottom part of each panel in Table 6 presents marginal effects, which are defined as dif-
ferences between the predicted number of counts (patents or citations) at the 90" and the 10"
percentiles for both AMBIGUITY and RISK. In the Poisson model, the predicted number of
patents three years ahead at the 10" percentile of AMBIGUITY in the Patent Sample is 6.153,
while the predicted number of patents at the 90" percentile of AMBIGUITY is 5.210. The
marginal effect of ambiguity is thus to decrease the predicted number of patents by about 0.943,
and this effect is statistically significant at the 5% level (Table 6, Panel A). Similarly, the predicted
number of citations received for patents filed three years ahead is 8.438 at the 10" percentile of
AMBIGUITY , but only 7.242 at the 90*" percentile of AMBIGUITY .*" The marginal effect is
-1.196 citations, and is statistically significant at the 10% level (Table 6, Panel B). These marginal
effects are economically important, given that the median (mean) high-tech firm in the Patent Sam-
ple files 3 (30.478) patent applications during a sample year and receives 2.217 (32.882) citations
for these patents, as reported in Panel B of Table 1.

In the Poisson model, the marginal effect of increasing RISK from the 10*" to the 90" percentile
is to decrease the predicted number of patents three years ahead by 4.092 (Table 6, Panel A), and
the predicted number of citations three years ahead by 5.962 (Table 6, Panel B). Our findings thus
lend support to Hypothesis 1b, based on Bloom (2007), suggesting that firms may delay, and hence
decrease, investment in innovation in the face of increased risk.

Next we perform two sets of robustness tests for our patent results. First, Table 7 restricts
the sample to high-tech firms with average number of patents above the sample median. For these
patent-intensive firms, the median (mean) number of patents one year ahead is 13 (63.3), compared
to 3 (30.478) for all high-tech patenting firms, as reported in Panel B of Table 1. The effect of
ambiguity on both patents and citations is stronger for patent-intensive high-tech firms (Table 7)

than for high-tech firms in general (Table 6). In Table 7, AMBIGUITY is significant in both

3TRecall that the citation count for each patent is scaled by the average number of citations received by all patents
in the same technology field filed in the same year, which corresponds to the fixed-effect approach for dealing with
citation truncation discussed in Hall et al. (2001).
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the Poisson and the Negative Binomial regressions. Moreover, in the negative binomial regression
tests of Table 7, the effect of AM BIGUITY completely subsumes the effect of RISK, which is no
longer significant.3?

Second, Table 8 replicates the analysis from Table 6, augmenting the set of controls to include
institutional ownership variables. We find that our patent results are robust to controlling for
institutional ownership. Moreover, in Poisson regressions, we find a positive and significant effect of
dedicated institutional ownership on both patents and citations. The effect of transient institutional
ownership is insignificant in both Poisson and Negative Binomial models. This finding is partly
in line with Aghion et al. (2013), who find a positive and significant effect of both dedicated and
transient institutional ownership on citations. Our patent findings are also robust to controlling for
total institutional ownership instead of including dedicated and transient institutional ownership
separately in the regression. Total institutional ownership is itself not significant.

Overall, Tables 6, 7 and 8 show that both ambiguity and risk have a negative and significant
effect on patents and citations up to three years into the future. The findings for ambiguity are
in line with the prediction from our stylized real options model, while the findings for risk suggest
instead that when faced with increased risk firms may in fact decrease investments in innovation,
consistent with Bloom (2007). The effect of ambiguity is particularly important for high tech firms
engaged in research and patenting, as we expect.

In untabulated analysis, we also find that both the R&D and the patent results are robust to
controlling for the disagreement among analyst forecasts, measured by the standard deviation of the
price forecasts and scaled by the average stock price or by the average forecast. The disagreement of
analyst forecasts itself has a positive and significant effect on R&D, patents and citations, when it
is scaled by the average stock price. On the contrary, when it is scaled by the average forecast, the

effect on R&D is only marginally significant, and the effect on patents and citations is insignificant.

380ne concern with the models presented in Table 7 is the relatively high correlation between AMBIGUITY
and RISK in the sub-sample of patent-intensive high-tech firms. In this sub-sample, the correlation between
AMBIGUITY and RISK is -0.472, compared to -0.264 for the sample used in Table 6. In general, the corre-
lation between AMBIGUITY and RISK is negative and larger in absolute value in sub-samples of large firms.
Izhakian et al. (2018) show that a possible reason for this is that larger firms typically do not have many organic
growth opportunities, and the opportunities that do exist are likely to be typified by ambiguous prospects. Smaller
and younger firms tend to have organic growth opportunities (expansion of existing activities) whose characteristics
are similar to those of the firms assets in place. For robustness, we run the regression tests in Tables 6 and 7 including
only AMBIGUITY , without RISK. The coefficient on AMBIGUITY is always negative and significant at levels
similar to those reported in the tables. This indicates that the correlation between AM BIGUITY and RISK does
not drive the results.

24



6 Conclusion

A number of recent papers document the impact of various factors on innovation. One of the most
important questions in innovation research is the effect of uncertainty on investment in R&D and
in patents, which by definition are both paths into the unknown. We analyze two different types
of uncertainty—ambiguity and risk—which ex-ante may lead to very different firm decisions. We
focus on the distinction between ambiguity and risk as drivers of innovation.

To support our hypotheses, we present a stylized model, which shows that firms should increase
investment in innovative projects as risk increases, but decrease investment as ambiguity, defined
as the expected variance of probabilities, goes up. We contrast these predictions with the ideas
in Bloom (2007, 2014), who suggests that risk may deter innovation. Empirically, we find broad
support for the proposition that firms facing high ambiguity decrease both R&D and patents, as
predicted by our model. This is particularly true for high-tech, high-growth firms, which are the
types of firms expected to be concerned about ambiguity in addition to risk. However, we observe
two different effects of risk on innovation. Riskier firms indeed invest more in R&D, but riskier
firms also file fewer patents and receive fewer citations, which is consistent with the idea that in
uncertain times delay and the option to wait are more valuable.

Our findings may generalize. The fact that ambiguity and risk can have similar, but also
opposite effects, may help explain various phenomena such as ostensible under-investment or over-

investment.
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A Theoretical Appendix

A.1 A Decision Theoretic Model of Ambiguity

This discussion is based on Izhakian (2017). To formally define the uncertain payoff X in EUUP
framework, let (S, &, P) be a probability space, where S is a state space, £ is a o-algebra of subsets of
the state space (a set of events), P € P is a probability measure, and the set of probability measures
P is convex. An algebra II of measurable subsets of P is equipped with a probability measure,
denoted &. The uncertain outcome is then given by the uncertain variable, X : & — R. Denote by
¢ () the (uncertain) marginal probability (probability density or mass function) associated with
the (uncertain) cumulative probability P € P of outcome z. The expected marginal and cumulative
probability of outcome z, taken with respect to the second-order probability measure &, are then

defined respectively by

Elp(2)] = /P o(@)de  and  E[P (1) = /P P (x) de. (5)

and the variance of the marginal probability of outcome x is defined by

2
Varl (@) = [ (o(0) ~Ele@)])de. (©)
With these definitions in place, the expected outcome and the variance of outcomes are computed

using the expected probabilities. That is,

E[X] = /E[gp (z)] xdx and  Var[X] = /E[gp(m)] (x—E[x])Qda:. (7)

Notice that double-struck capital font designates expectation or variance of outcomes with respect to
expected probabilities, while regular straight font designates expectation or variance of probabilities
with respect to second-order probabilities.

Managers have distinct preferences for ambiguity and risk. As usual, preferences for risk are
modeled by a bounded, strictly-increasing and twice-differentiable utility function U : Ry — R.
Risk aversion takes the form of a concave U (-), risk loving takes the form of a convex U (-), and
risk neutrality takes the form of a linear U (). As investors are sensitive to ambiguity, they do not
compound the set of priors P and the prior £ over P in a linear way (compounded lotteries), but
instead they aggregate these probabilities in a non-linear way that reflects their attitude toward
ambiguity. Preferences for ambiguity are defined by preferences over mean-preserving spreads in

probabilities and modeled by a strictly-increasing and twice-differentiable function over probabili-
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ties, T : Ry — R, called the outlook function. Similar to risk, ambiguity aversion takes the form
of a concave T (-), ambiguity loving takes the form of a convex T (), and ambiguity neutrality
takes the form of a linear Y (-). In EUUP, ambiguity aversion is exhibited when an investor prefers
the expectation of an uncertain probability of each payoff over the uncertain probability itself.3?
Note that in EUUP preferences for ambiguity are outcome independent. That is, preferences for
ambiguity apply exclusively to probability of events, independently of the outcomes associated to
these events. Like Tversky and Kahneman’s (1992) cumulative prospect theory, EUUP assumes
that investors have a reference point, relative to which returns are classified as either unfavorable
(loss) or favorable (gain). Accordingly, we normalize U to U (k) = 0, where k is the investors’
reference point.

In the EUUP framework, the manager assesses the expected utility of a risk and ambiguous
payoff by°

W)~ [ U@E) (1= T g o Verlo @ e+ (®)

Perceived Probability of Unfavorable Outcome
T"(1-E[P(2)])
/ka U () Blp (2)] (1 e Vel (g;)]> dz.

Perceived Probability of Favorable Outcome

Notice that when there is no ambiguity (P is a singleton) Equation (8) collapses to the conventional

expected utility W (X) = /U(ZL‘) ¢ (x)dx. When managers are ambiguity neutral (i.e., T () is

"I‘//
g

linear and, therefore = 0), they compound probabilities linearly and Equation (8) collapses to
the conventional expected utility W (X) = / U (z) E[p (x)] dz, assessed using expected probabili-
ties. In contrast, when managers are ambiguity averse (i.e., T (-) is concave), they do not aggregate
probabilities linearly and the intensity of aversion to ambiguity affects the perceived probabilities.
In this case, managers overweight the probabilities of the unfavorable outcomes and underweight

the probabilities of the favorable outcomes. Conceptually, the perceived probability of a given

3%Recall that risk aversion is exhibited when a manager prefers the expected outcome of the uncertain outcome
over the uncertain outcome itself.
40This functional representation is obtained by taking the Taylor expansion of EUUP representation EUUP, pro-

posed by Izhakian (2017). The remainder of this approximation is of order o(/E [le(z) —E[p (I)HS] zdz) as

/|gp (z) — E[p (z)]]dz — 0, meaning that the accuracy of the approximation is equivalent to the accuracy of the

cubic approximation, o (E [|z — E [:c]|3]), in which the fourth and higher absolute central moments of outcomes are
of strictly smaller order than the third absolute central moment as |z — E [z]| — 0, and are therefore negligible.
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outcome is the unique certain probability value that the manager is willing to accept in exchange
for its uncertain probability (a certainty-equivalent probability).

The notion of mean-preserving spreads in probabilities in Equation (8) can be used to derive a
measure of ambiguity (Izhakian, 2018, Theorem 6). This measure, defined as the expected variance

of probabilities, is formally given by

02 [x] = / E [ («)] Var [p (2)] da- (9)

The measure U2 (mho?) can be used either in a continuous state space with infinitely many outcomes
or in a discrete state space with finitely many outcomes.

To observe the distinct impact of ambiguity and ambiguity aversion on the value of an investment
opportunity, consider a binomial asset with either low payoff (L) or high payoff (H). Suppose that
the reference point k satisfies L < k < E[X] < H.*' By Equation (8), the value of this asset in

terms of expected utility is

W) = UWER (1 s gg;};vm wy) + (10)
T/ (5 (P (1)

Expected utility in this functional representation is assessed using the manager’s perceived proba-
bilities. Ambiguity and aversion to ambiguity are modeled in Equation (10) through the manager’s

marginal perceived probabilities. Consider the high payoff, H. The expression

Q) = Elo (0] (14 Tr g p ) Vorle (1)) 1)

is the marginal perceived probability of this outcome occurring.*? This marginal perceived proba-

bility is a function of the degree of ambiguity, measured by Var [p (H)], and the investor’s attitude

xre)
RYOh

aversion to ambiguity or a higher degree of ambiguity results in lower marginal perceived probabil-

toward ambiguity, captured by — For an ambiguity-averse manager with — (()) > 0, a higher
ities of good states and higher marginal perceived probabilities of bad states. This in turn implies
a lower perceived expected utility.

Note again that, in this example, if there is no ambiguity, Equation (10) collapses to the

conventional expected utility with the value W (X) = U(L)p (L) + U(H) ¢ (H). If managers

41'We assume that the expected outcome is greater than the reference point; otherwise, a rational decision maker
would not consider the investment opportunity.

“2Note that, since every P € P is additive, 1 — E[P (L)] = E [P (H)]. In this case, the variance of the probabilities
of L is equal to the variance of the probabilities of its complementary event H, so that Var [¢ (L)] = Var [¢ (H)].
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are ambiguity neutral, they compound probabilities linearly and Equation (10) collapses to the
conventional expected utility with the value W (X) = U(L)E[¢ (L)] + U (H)E [p (H)], assessed

using expected probabilities.

A.2 A Stylized model

To support our hypotheses about the effect of ambiguity and risk on investment decisions, we
employ the EUUP framework described above to develop a stylized static real options model.
R&D investment or a patent filing can be considered a real option affected by ambiguity and risk.
Suppose that I is the present value of the costs of developing the product, and V is the present
value of the expected cash flows from this development. The payoff X from owning a product can

then be written as:
V-1 if V>I,
0, if V<I.
Thus, by Schwartz (2004), Brennan and Schwartz (1985) and McDonald and Siegel (1986), the
project can be viewed as a call option, where the payoff of the product is the underlying asset.
Assume a one period model with a zero risk-free rate. Suppose that the cost of developing a
product using the technology is the reference point, i.e., k = I, satisfying 0 < k. By Equation (8),

the value of this (call) option is

e TEPED,
¢ = [TEl@] (14 Trpp g Varle @)]) o (12)

When there is no ambiguity, Equation (12) collapses to the conventional expected utility case;
therefore C' = / b ¢ (x) zdx. When investors are ambiguity neutral, since they compound proba-
bilities linearly, IEquation (12) again collapses to the conventional expected utility, assessed using
expected probabilities; therefore, C' = / h E[p (2)] zdx.

As in Rothschild and Stiglitz (1970),1 an underlying security is said to become riskier if its new
payoffs can be written as a mean-preserving spread of the old payoffs. Accordingly, we assume nei-
ther that risk is measured by the variance of payoffs, nor that that returns are normally distributed
or that the utility is quadratic. Equation (12) suggests that the option value is increasing in the
risk of the payoff of the project, since the option payoff function is convex in the state outcomes.

To see this more clearly, consider a possible payoff x of the project. Assume that the risk of the
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project increases, such that this specific payoff is now x + A or x — A, with equal probabilities,
i.e. z + A is a mean-preserving spread of x. Since the reference point satisfies £ = I, the value of
the call option is positively affected by the magnitude of A: when A < x — I the option value is
unaffected, and when A >z — I, then § (z — I + A) >z — I. Thus, by Equation (12), the value of
the option increases in the risk of the project.*3

In addition to the effect of risk, a higher ambiguity implies lower perceived probabilities of the
good states—a successful R&D, or valuable patent, and therefore a lower value of the option. To
see this, in Equation (12), consider for example a decision maker with constant absolute ambiguity-
aversion. In this case —%((f)) = n, where 7 is the coefficient of absolute ambiguity aversion. Since
aversion to ambiguity implies a positive —%((:)), a higher ambiguity, measured by U2 [X] (which in
this case is equal to the weighted sum of Var [ (z)]), implies lower perceived probabilities (Equation

(11)) and therefore a lower value of the option. A lower value of the real option implies lower

investment in R&D or less patenting activity.

43Note that, assuming normally distributed returns, a quadratic utility function or an exponential utility function
(all imply a mean-variance-ambiguity preference), risk can be measured by the variance of returns, computed using
expected probabilities (Izhakian and Yermack, 2017).
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B Variable Definitions

Variable Definition
AGE Number of quarters in Compustat.
AMBIGUITY The ambiguity measure is defined in detail in Section 3.3.
ASSETS Compustat item atq.
ADJ_ASSETS Assets adjusted for capitalized R&D. Compustat item atq + RD_-CAPITAL
CAPEX Compustat item capexy, adjusted for fiscal year accumulation.

CAPEX_ASSETS
CASH_FLOW

CITATIONS

INSTOWN

INSTOWN_DED

INSTOWN_QIX

INSTOWN_TRA

LEVERAGE
LN_AGE
LN_ASSETS
LN_K_L
LN_MCAP

LN_PRECITATIONS

The ratio of CAPEX to assets at the beginning of the quarter (Compustat item atq).
Cash-flow. Calculated as (Income Before Extraordinary Items + Depreciation and
Amortization) / Assets at the beginning of the quarter. (ibg + dpq) / lagged atq.
The number of citations received by all patents applied for in a given quarter, excluding
self-cites. The number of citations for each patent is scaled by the average number of
citations received by all patents in the same 3-digit USPTO technology class filed in
the same year (Hall et al., 2001).

The ratio of physical capital per employee. Compustat item ppentq divided by the
number of empoyees. We estimate the number of employees at the end of each quarter
by linear interpolation using the values at the beginning and at the end of the fiscal
year from the Compustat Fundamentals Annual file (Compustat item emp). When the
number of employees (emp) is missing either at the beginning or at the end of the fiscal
year, we assign the value from the other year end point, if available, to all quarters
during the year.

Insitutional ownership, from the Thompson Reuters 13F database. Following Ben-
David et al. (2018), after June 2013, we calculate institutional ownership using the 13F
data parsed directly from the SEC EDGAR filings system, and available on WRDS.
Dedicated institutional ownership, ie ownership by institutions with concentrated port-
folio holdings and low turnover, according to the Bushee (1998) classification.
Quasi-indexer institutional ownership, ie ownership by institutions with diversified
portfolios and low turnover, according to the Bushee (1998) classification.

Transient institutional ownership, ie ownership by institutions with diversified portfo-
lios and high turnover, according to the Bushee (1998) classification.

(dlttq + dlcq)/atq

In(1+ AGE)

In(ASSETS)

(

(

In(1+ K_L)

In(MCAP)
(

In(1+ PRECITATIONS)
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LN_PREPATENTS
LN_RD_.CAPITAL
LN_SALES

MCAP

NASDAQ

PATENTS
PRECITATIONS

PRECITATIONS >0
PREPATENTS

PREPATENTS >0
Q

RD

RD_ADJ_ASSETS
RD_ASSETS
RD_CAPEX_ASSETS

RD_CAPITAL

MISSING_RD
RD_RATIO
RISK

SALES

In(14+ PREPATENTS)

In(1+ RD_-CAPITAL)

In(SALES)

Market capitalization. Compustat item prccq X cshoq.

Indicator variable equal to 1 if the stock is traded on Nasdaq at the end of the quarter,

and 0 otherwise.

The number of patents applied for during the quarter.

The quarterly average of the number of citations received for patents applied for during

the presample period. (See the definition of PREPATENTS.)

An indicator variable equal to 1 if PRECITATIONS > 0, and 0 otherwise.

The quarterly average of the number of patents applied for during the presample period

(Blundell et al., 1999). We use the history of patent data for each firm (permco) in

the Kogan et al. (2017) dataset to calculate PREPATENTS. For firms that enter

Compustat after 1993 (the first year in our sample), we use the first four years of data

as the presample period, and we start the sample with the fifth year in Compustat.

An indicator variable equal to 1 if PREPATENTS > 0, and 0 otherwise.

Tobin’s Q. Calculated as (Market value of equity - Book value of equity - Deferred taxes

+ Assets) / Assets. (cshog X precq — ceqq —tzdbg (replaced with zero when missing) +

atq)/atq. (In Table 5, the denominator is atq + RD_-CAPITAL.)

R&D expenditures (Compustat item zrdg, replaced with zero when missing).

The ratio of RD to adjusted assets at the beginning of the quarter (ADJ_ASSETS).

The ratio of RD to assets at the beginning of the quarter (Compustat item atq).

The ratio of total investment (RD+CAPEX) to assets at the beginning of the quarter

(Compustat item atq).

Capitalized R&D expenditures. Following Lev et al. (2005), Chan et al. (2001) and

Chambers et al. (2002), we capitalize the R&D expenditure in the last five years,

using a depreciation rate of 20% per year, or 5% per quarter: RD_-CAPITAL; =
2o RDy—j x (1 — k x 0.05)

An indicator variable equal to 1 if zrdq is missing in Compustat, and 0 otherwise.

RD/(RD + CAPEX)

The risk measure is defined in detail in Section 3.4.

Compustat item saleq.
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Table 1: Descriptive Statistics

This table presents descriptive statistics for the variables used in the analysis. The sample period is 1993-2016 in Panel A and 1993-2008 in Panel B. In Panel A,
the sample consists of all firms with at least four quarters of data for all variables of interest and at least one quarter of positive R&D expenditures in Compustat
during the sample period (R&D Sample). In Panel B, the sample consists of all firms with at least four quarters of data for all variables of interest, four years in the
presample period and at least one patent application filed during the sample period (Patent Sample). Sample construction is explained in detail in Section 3.1. For
variable definitions see Appendix B.

Panel A: R&D Sample

All Firms High-Tech Firms Non High-Tech Firms
N Mean  St. Dev. P25 p50 P75 N Mean  St. Dev. P25 p50 P75 N Mean  St. Dev. p25 p50 P75
RD_AT 4 105,037 0.021 0.024 0.000 0.014 0.032 | 55,184 0.030 0.025 0.012 0.025 0.042 | 49,060 0.011 0.018 0.000 0.003 0.014
CAPEX AT 104,120 0.012 0.013 0.004 0.008 0.015 | 54,669 0.011 0.013 0.003 0.007 0.013 | 48,663 0.013 0.013 0.005 0.009 0.016
RD_RATIO 4+ 103,912 0.507 0.366 0.028 0.600 0.843 | 54,590 0.682 0.290 0.553 0.779 0.901 | 48,538 0.314 0.342 0.000 0.186 0.617
RD_ATiy1. 444 95,369 0.080 0.085 0.015 0.052 0.121 | 48,881 0.117 0.088 0.051 0.100 0.164 | 45,069 0.040 0.060 0.006 0.018 0.047
CAPEX AT41. 444 95,659 0.047 0.047 0.018 0.033 0.061 | 49,449 0.044 0.048 0.015 0.029 0.055 | 44,791 0.052 0.046 0.022 0.038 0.066
RD_RATIO¢ 1. 144 93,753 0.532 0.312 0.264 0.579 0.816 | 47,963 0.692 0.246 0.566 0.766 0.880 | 44,398 0.363 0.283 0.113 0.324 0.573
PATENTS 41 72,990 4.668 23.677 0.000 0.000 2.000 | 39,370 4.503 26.237 0.000 0.000 1.000 | 33,031 4.900 20.326 0.000 0.000 2.000
PATENTS 41, 444 65,636 20.123 97.231 0.000 1.000 7.000 | 34,865 19.642 108.836 0.000 1.000 7.000 | 29,651 20.685 80.992 0.000 1.000 8.000
CITATIONS; 11 72,990 5.023 24.111 0.000 0.000 1.431 | 39,370 5.011 26.604 0.000 0.000 1.250 | 33,031 5.069 20.831 0.000 0.000 1.689
CITATIONS 11 4+4 65,636 21.559 97.844 0.000 0.356 8.593 | 34,865 21.740 109.332 0.000 0.344 8.175 | 29,651 21.315 81.177 0.000 0.467 9.213
AMBIGUITY ; 105,037 0.020 0.021 0.006 0.013 0.025 | 55,184 0.018 0.020 0.005 0.011 0.023 | 49,060 0.022 0.021 0.007 0.015 0.029
RISK, 105,037 0.007 0.010 0.001 0.002 0.009 | 55,184 0.008 0.011 0.001 0.003 0.012 | 49,060 0.005 0.009 0.000 0.001 0.006
SALES, 105,037  505.631  1842.571  19.094  75.842  324.996 | 55,184  223.052 832.795  12.617  37.909  136.851 | 49,060  828.415  2507.670  44.821 181.504  626.448
ASSETS, 105,037 2152.577  8622.008  97.026 344.492 1395.651 | 55,184 1133.060 3974.478  68.011 189.485  726.221 | 49,060 3317.605 11777.210 187.701 682.348 2472.996
MCAP, 105,037 2612.481  8427.358 140.771 478.761 1718.985 | 55,184 2148.203  7968.735 108.642 336.260 1254.447 | 49,060 3149.180  8931.115 203.311 697.360 2357.544
RD_CAPITAL 105,037  188.222 743.536 9.281  34.879  111.286 | 55,184  208.547 725.722  13.465  42.670  127.998 | 49,060  167.009 766.412 5.565  26.830 94.918
Qt 105,037 2.355 1.898 1.303 1.777 2.696 | 55,184 2.677 2.165 1.410 2.033 3.157 | 49,060 1.990 1.458 1.227 1.582 2.214
K_L; 105,037 68.672 127.610  20.684  37.528 71.119 | 55,184 49.985 67.455  16.779  30.805 57.486 | 49,060 90.109 169.893  26.967  46.037 89.984
CASH_FLOW; 105,037 0.008 0.049 0.001 0.020 0.034 | 55,184 0.002 0.056  -0.013 0.018 0.035 | 49,060 0.015 0.039 0.010 0.022 0.034
LEVERAGE, 105,037 0.168 0.187 0.002 0.116 0.274 | 55,184 0.119 0.170 0.000 0.038 0.189 | 49,060 0.223 0.191 0.055 0.205 0.332
AGE 105,037 74.566 60.696  28.000  54.000  105.000 | 55,184 58.134 46.447  24.000  45.000 77.000 | 49,060 93.224 69.047  34.000  72.000  151.000
INSTOW Ny 105,037 0.513 0.303 0.248 0.554 0.777 | 55,184 0.482 0.305 0.209 0.491 0.756 | 49,060 0.548 0.297 0.319 0.609 0.796
INSTOWN_DED, 105,037 0.060 0.087 0.000 0.018 0.090 | 55,184 0.055 0.084 0.000 0.012 0.082 | 49,060 0.064 0.091 0.000 0.025 0.097
INSTOWN_TRA; 105,037 0.133 0.116 0.040 0.108 0.197 | 55,184 0.136 0.122 0.036 0.109 0.204 | 49,060 0.129 0.109 0.044 0.108 0.189
INSTOWN QIX, 105,037 0.293 0.219 0.099 0.264 0.462 | 55,184 0.266 0.216 0.080 0.216 0.421 | 49,060 0.325 0.219 0.139 0.315 0.496
NASDAQ; 105,037 0.609 0.488 0.000 1.000 1.000 | 55,184 0.788 0.409 1.000 1.000 1.000 | 49,060 0.408 0.492 0.000 0.000 1.000
MISSING _RD; 11 105,037 0.239 0.427 0.000 0.000 0.000 | 55,184 0.078 0.268 0.000 0.000 0.000 | 49,060 0.417 0.493 0.000 0.000 1.000
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Panel B: Patent Sample

All Firms High-Tech Firms Non High-Tech Firms
N Mean  St. Dev. p25 p50 p75 N Mean  St. Dev. P25 p50 P75 N Mean  St. Dev. P25 p50 P75
RD_AT, 11 54,093 0.015 0.021 0.000 0.006 0.025 | 21,253 0.028 0.023 0.012 0.024 0.039 | 30,642 0.006 0.014 0.000 0.000 0.007
CAPEX ATy 53,580 0.014 0.014 0.005 0.010 0.018 | 21,013 0.012 0.014 0.004 0.008 0.015 | 30,389 0.015 0.014 0.006 0.011 0.019
RD_RATIO 41 53,457 0.373 0.368 0.000 0.332 0.734 | 20,988 0.636 0.300 0.484 0.725 0.869 | 30,293 0.185 0.290 0.000 0.000 0.363
RD_ATy 1. 144 51,404 0.059 0.075 0.000 0.029 0.092 | 19,626 0.111 0.080 0.053 0.097 0.154 | 29,399 0.024 0.045 0.000 0.007 0.029
CAPEX ATyy1 444 51,198 0.056 0.051 0.023 0.042 0.072 | 19,697 0.051 0.052 0.019 0.035 0.064 | 29,139 0.061 0.051 0.028 0.047 0.078
RD_RATIO 1. 44 50,554 0.399 0.332 0.000 0.386 0.705 | 19,211 0.650 0.255 0.505 0.715 0.849 | 29,004 0.228 0.263 0.000 0.129 0.403
PATENT S+ 54,093 5.904 27.125 0.000 0.000 2.000 | 21,253 7.085 34.044 0.000 0.000 3.000 | 30,642 5.143 21.000 0.000 0.000 2.000
PATENTSi41. 44 49,614 24.961 110.045 0.000 2.000 10.000 | 19,124 30.478 140.099 0.000 3.000 13.000 | 28,178 21.178 82.112 0.000 1.000 8.000
CITATION Si41 54,093 6.240 27.492 0.000 0.000 2.218 | 21,253 7.664 34.018 0.000 0.000 3.222 | 30,642 5.292 21.439 0.000 0.000 1.741
CITATIONS;i1. 144 49,614 26.310 110.504 0.000 1.194 10.988 | 19,124 32.882 139.040 0.000 2.217 14.873 | 28,178 21.709 82.135 0.000 0.718 8.711
AMBIGUITY; 54,093 0.020 0.020 0.007 0.014 0.026 | 21,253 0.017 0.018 0.005 0.011 0.021 | 30,642 0.022 0.020 0.008 0.016 0.029
RISK; 54,093 0.006 0.009 0.001 0.002 0.006 | 21,253 0.007 0.010 0.001 0.002 0.010 | 30,642 0.004 0.008 0.000 0.001 0.004
SALES; 54,093  876.940  2672.365 45.593 179.731  619.041 | 21,253  346.563  1171.853  18.903  62.273  230.131 | 30,642 1271.717  3344.699 111.508  332.100 1059.372
ASSETS,; 54,093 3642.106 13095.580 184.742 683.221 2436.244 | 21,253 1566.752  5027.217  89.648 291.206 1085.435 | 30,642 5186.988 16661.460 374.570 1130.558 3610.753
MCAP, 54,093 4282.845 13187.280 227.109 788.487 2800.276 | 21,253 3356.786 11620.960 148.209 490.609 1826.737 | 30,642 5027.167 14366.080 321.845 1054.188 3567.651
RD_CAPITAL 54,093  232.856 981.724 1.067 28.630 117.353 | 21,253  301.903  1003.115  16.271  57.202  182.172 | 30,642  186.903 975.056 0.000 11.724 78.972
Qt 54,093 2.190 1.654 1.283 1.698 2.485 | 21,253 2.671 2.075 1.461 2.067 3.150 | 30,642 1.844 1.147 1.211 1.534 2.084
K_L; 54,093 84.345 164.961  25.261  42.954 82.457 | 21,253 53.753 57.870  21.468  36.418 63.541 | 30,642  108.068 210.385  29.150 49.615  103.969
CASH_FLOW; 54,093 0.019 0.038 0.012 0.024 0.037 | 21,253 0.013 0.048 0.004 0.023 0.040 | 30,642 0.023 0.029 0.015 0.025 0.036
LEVERAGE; 54,093 0.197 0.180 0.027 0.175 0.308 | 21,253 0.124 0.162 0.000 0.058 0.206 | 30,642 0.247 0.174 0.121 0.238 0.348
AGE 1 54,093 92.473 59.813  41.000  72.000  141.000 | 21,253 66.346 43.566  35.000  52.000 84.000 | 30,642  111.121 62.673  50.000  110.000  170.000
INSTOW N; 54,093 0.554 0.268 0.371 0.603 0.768 | 21,253 0.520 0.286 0.288 0.556 0.766 | 30,642 0.581 0.249 0.440 0.627 0.768
INSTOWN_DED; 54,093 0.081 0.097 0.000 0.046 0.133 | 21,253 0.071 0.094 0.000 0.027 0.117 | 30,642 0.088 0.099 0.000 0.060 0.144
INSTOWN_TRA; 54,093 0.138 0.118 0.049 0.111 0.199 | 21,253 0.142 0.126 0.042 0.112 0.211 | 30,642 0.134 0.110 0.053 0.110 0.190
INSTOWN _QIX; 54,093 0.319 0.205 0.162 0.297 0.454 | 21,253 0.290 0.212 0.116 0.254 0.427 | 30,642 0.342 0.197 0.203 0.324 0.472
NASDAQ; 54,093 0.468 0.499 0.000 0.000 1.000 | 21,253 0.739 0.439 0.000 1.000 1.000 | 30,642 0.287 0.452 0.000 0.000 1.000




Table 2: Correlations

This table presents averages of within-firm Pearson correlation coefficients for the variables used in the analysis. The
sample period is 1993-2016 in Panel A and 1993-2008 in Panel B. In Panel A, the sample consists of all firms with
at least four quarters of data for all variables of interest and at least one quarter of positive R&D expenditures in
Compustat during the sample period (R&D Sample). In Panel B, the sample consists of all firms in the R&D Sample,
excluding penny stocks, very small firms and very young firms. Penny stocks are stocks with a price less than $5
at the end of quarter t. Very small firms are firms with a market capitalization less than $10 million at the end of
quarter t. Very young firms are firms with less than 5 years in Compustat. In Panel C, the sample consists of all
firms in high-tech industries (3-digit SIC codes 283, 357, 366, 367, 382, 384, or 737) with at least four quarters of
data for all variables of interest, four years in the presample period and at least one patent application filed during
the sample period, excluding penny stocks, very small firms and very young firms. In Panel D, the sample is the same
as in Panel C, but restricted to firms above the sample median in terms of the average number of patents applied
for during the sample period. Sample construction is explained in detail in Section 3.1. For variable definitions see
Appendix B.

Panel A: R&D Sample

D ® ® @ 5 ® 0 ® O ) 4y (2
(1) AMBIGUITY: 1.000
(2) RISK, 0.025 1.000
(3) LN_SALES: 0.034  -0.270  1.000
(4) Q¢ -0.052 -0.245 0.018 1.000
(5) LN_K_L¢ -0.005  0.021 0.042 -0.135  1.000
(6) CASH_FLOW; -0.003 -0.086  0.259 0.199  -0.099  1.000
(7) LEVERAGE; 0.012 0.123  -0.006 -0.090 0.110 -0.159  1.000
(8) LN_AGFE¢41 0.097 -0.256 0.304 -0.168 -0.002 -0.095 0.014 1.000
(9) LN.RD_.CAPITAL: 0.068 -0.143 0.297 -0.185 0.144 -0.139  0.042 0.507 1.000
(10) INSTOW Ny 0.004 -0.285 0.206 0.107  -0.007 0.034 -0.092 0.241 0.144 1.000
(11) NASDAQ: -0.045 0.232 -0.144 0.033 -0.033 0.064 -0.103 -0.114 -0.112 -0.039  1.000
(12) MISSING_-RD¢ 41 -0.012 0.058 -0.063 0.027 -0.014 -0.009 0.013 -0.109 0.012 -0.041 -0.019 1.000

Panel B: R&D Sample - Stocks with Price > $5, Market Cap > $10m and Age > 5 Years
1) (2) (3) 4) 5) (6) (M (8 ©) (10) (a1 (12

(1) AMBIGUITY 1.000
(2) RISK: -0.280  1.000
(8) LN_SALES; 0.113  -0.270  1.000
(4) Q¢ 0.021  -0.181  0.003 1.000
(5) LN_K_L¢ -0.020 0.018 0.042 -0.108  1.000
(6) CASH_FLOW; 0.013  -0.051  0.249 0.222  -0.088  1.000
(7) LEVERAGE; -0.025  0.096 0.016 -0.094 0.106 -0.162  1.000
(8) LN_AGFE¢41 0.172 -0.362 0.394 -0.100 -0.006 -0.067 -0.010 1.000
(9) LN.RD_CAPITAL; 0.091 -0.161 0.342 -0.130 0.118 -0.120  0.045 0.439 1.000
(10) INSTOW Ny 0.077  -0.268  0.193 0.077 -0.016 0.010 -0.084 0.316 0.136 1.000
(11) NASDAQ: -0.067  0.237 -0.157 0.045 -0.043 0.072 -0.103 -0.089 -0.136 -0.062  1.000
(12) MISSING_RD¢41 -0.038 0.067 -0.065 0.021 0.001 -0.020 0.019 -0.133 0.083 -0.053 -0.009 1.000

Panel C: Patent Sample - High-Tech Firms, Stocks with Price > $5, Market Cap > $10m and Age > 5 Years

@) 2) ®3) (4) ©) (6) (7) ®) 9) (10) @y

(1) AMBIGUITY; 1.000

(2) RISK; -0.264  1.000

(3) LN_.SALES; 0.067 -0.272  1.000

4) Q¢ -0.056 -0.135 -0.001  1.000

(5) LN_K_L; -0.064 0.053  0.007 -0.110  1.000

(6) CASH_FLOW; 0.010 -0.070 0232 0.261 -0.100 1.000

(7) LEVERAGE; -0.011  0.148 -0.069 -0.091 0.137 -0.151  1.000

(8) LN_AGE; 41 0.155 -0.400 0443 -0.138 -0.051 -0.077 -0.105  1.000

(9) LN.RD_ CAPITAL; 0049 -0.152 0412 -0.171 0.147 -0.142 0.024 0.460  1.000

(10) INSTOW Ny 0.091 -0.325 0.208 0.110 -0.055 0.058 -0.152 0.325 0.116  1.000

(11) NASDAQ; -0.177 0314 -0.261 -0.026 -0.131 0.060 0.031 -0.175 -0.338 -0.042 1.000
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Table 3: Determinants of R&D Investment

The table presents OLS regression coefficients for R&D investment.  The dependent variable is
RD_ASSETS¢+1. The sample period is 1993-2016. In Panel A, the sample consists of all firms with at
least four quarters of data for all variables of interest and at least one quarter of positive R&D expenditures
in Compustat during the sample period (R&D Sample). In Panel B, the sample consists of all firms in the
RE&D Sample, excluding penny stocks, very small firms and very young firms. Penny stocks are stocks with
a price less than $5 at the end of quarter t. Very small firms are firms with a market capitalization less than
$10 million at the end of quarter t. Very young firms are firms with less than 5 years in Compustat. All
regressions in Panel B include the following control variables: LN _SALES;, Q;, LN_K _L;, CASH_FLOW,,
LEVERAGE;, LN_AGE;, LN_RD CAPITAL;, NASDAQ; and MISSING_RD;,1. In columns (1), (3)
and (5), MISSING_RD; is an indicator variable equal to 1 if the firm has missing R&D expenditures in
Compustat in quarter ¢+ 1. In columns (2), (4) and (6), MISSING_RD;; is the number of quarters with
missing R&D in Compustat in the period t+1...t+4. All regressions include firm (new gvkey) fixed effects
and quarter-year fixed effects. Standard errors are clustered by firm. Sample construction is explained in
detail in Section 3.1. For variable definitions see Appendix B. *, ** and *** denote significance at the 10%,
5% and 1% levels respectively.

Panel A: R&D Sample

All Firms High-Tech Non High-Tech
(1) (2) (3) (4) (5) (6)
One Quarter One Year | One Quarter One Year | One Quarter One Year
t+1 t+1...t+4 t+1 t+1...t+4 t+1 t+1...t+4
AMBIGUITY; -0.016%** -0.071%** -0.037*** -0.139%** -0.000 -0.021*
(0.004) (0.014) (0.007) (0.025) (0.004) (0.012)
RISK; 0.161*** 0.609*** 0.246*** 0.874*** 0.048*** 0.234***
(0.016) (0.060) (0.024) (0.093) (0.017) (0.065)
LN_SALES; -0.002%** -0.012%** -0.0047%%* -0.017%%* -0.0017%%* -0.007%**
(0.000) (0.001) (0.001) (0.002) (0.000) (0.002)
Q: 0.001*** 0.006*** 0.001%** 0.006*** 0.001*** 0.005%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
LN_K L, -0.002%** -0.009%** -0.003*** -0.012%** -0.001** -0.004***
(0.000) (0.001) (0.001) (0.002) (0.000) (0.002)
CASH_FLOW, -0.033*** -0.043*** -0.033%** -0.037*** -0.023%** -0.033**
(0.003) (0.009) (0.003) (0.012) (0.004) (0.014)
LEVERAGE, -0.004*** -0.020%** -0.005%*** -0.024%** -0.002% -0.013***
(0.001) (0.004) (0.001) (0.006) (0.001) (0.004)
LN _AGE; 0.002*** 0.004** 0.003*** 0.005 0.002*** 0.004*
(0.000) (0.002) (0.001) (0.004) (0.001) (0.002)
LN_RD CAPITAL, 0.001%** 0.005%** 0.003*** 0.011%** 0.000 0.003***
(0.000) (0.001) (0.001) (0.002) (0.000) (0.001)
NASDAQ; -0.001 -0.005** -0.001 -0.005 -0.001* -0.004*
(0.001) (0.002) (0.001) (0.005) (0.001) (0.002)
MISSING_RDyy; -0.017*** -0.007*** -0.025%** -0.012%** -0.014%** -0.004***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)
Constant 0.027%** 0.128*** 0.031*** 0.159%** 0.019%** 0.066***
(0.003) (0.010) (0.004) (0.016) (0.003) (0.012)
Firm FE Yes Yes Yes Yes Yes Yes
Quarter-Year FE Yes Yes Yes Yes Yes Yes
N 105,037 94,894 55,184 48,365 49,060 44,968
N firms 4,053 3,657 2,460 2,160 1,738 1,586
Adj R2 0.802 0.857 0.756 0.801 0.796 0.876
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Panel B: R&D Sample - Excluding Penny Stocks, Very Small Firms and Very Young Firms

All Firms High-Tech Non High-Tech
(1) (2) (3) (4) (5) (6)
One Quarter One Year One Quarter One Year One Quarter One Year
t+1 t+1...t+4 t+1 t+1...t+4 t+1 t+1...t4+4
Ezcluding Stocks with Price < $5 and Market Cap < $10m
AMBIGUITY: -0.010** -0.068*** -0.025%** -0.119%** -0.000 -0.034%**
(0.005) (0.015) (0.009) (0.031) (0.004) (0.012)
RISK; 0.150%** 0.595%** 0.216%** 0.752%%%* 0.066*** 0.344%%*
(0.021) (0.084) (0.033) (0.131) (0.025) (0.103)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Quarter-Year FE Yes Yes Yes Yes Yes Yes
N 83,963 77,004 41,468 37,003 41,944 38,931
N firms 3,278 3,017 1,926 1,721 1,456 1,361
Adj R2 0.809 0.873 0.765 0.822 0.791 0.887
Excluding Stocks with Price < $5, Market Cap < $10m and Age < 5 years
AMBIGUITY; -0.009** -0.065*** -0.030*** -0.129%** 0.002 -0.034***
(0.005) (0.016) (0.009) (0.034) (0.004) (0.013)
RISK: 0.133*** 0.485*** 0.206*** 0.642%** 0.057* 0.299**
(0.023) (0.091) (0.035) (0.141) (0.030) (0.121)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Quarter-Year FE Yes Yes Yes Yes Yes Yes
N 69,772 64,534 33,050 29,886 36,371 33,894
N firms 2,508 2,342 1,427 1,306 1,170 1,104
Adj R2 0.808 0.878 0.768 0.831 0.779 0.882
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Table 4: Subsample Analysis of R&D Investment in High-Tech Firms

The table presents OLS regression coefficients for R&D investment. The dependent variable is RD_ASSETS;;1. The sample consists of all high-tech
firms (3-digit SIC codes 283, 357, 366, 367, 382, 384, or 737) with at least four quarters of data for all variables of interest and at least one quarter of
positive R&D expenditures in Compustat during the sample period, excluding penny stocks, very small firms and very young firms. Penny stocks are
stocks with a price less than $5 at the end of quarter t. Very small firms are firms with a market capitalization less than $10 million at the end of quarter ¢.
Very young firms are firms with less than 5 years in Compustat. Small (large) firms are firms with average sales below (above) the sample median. Young
(old) firms are firms with average age below (above) the sample median. Low (high) leverage firms are firms with average leverage below (above) the
sample median. The sample period is 1993-2016. All regressions include the following control variables: LN_SALFES;, Q¢, LN_K_L;, CASH_FLOW,,
LEVERAGEy, LN_AGE;y1, LN_.RD_CAPITAL;, NASDAQ; and MISSING_RD;,1. In Panel A, MISSING_RD,,1 is an indicator variable equal
to 1 if the firm has missing R&D expenditures in Compustat in quarter ¢ + 1. In Panel B, MISSING_RD is the number of quarters with missing R&D in
Compustat in the period t 4+ 1...t+ 4. All regressions include firm (new gvkey) fixed effects and quarter-year fixed effects. Standard errors are clustered
by firm. Sample construction is explained in detail in Section 3.1. For variable definitions see Appendix B. *, ** and *** denote significance at the 10%,

5% and 1% levels respectively.

SIZE AGE LEVERAGE
6 ) ®) @ ®) @) ) ® © (10) an 12)
Small Large All Firms Young Old All Firms Low High All Firms
Panel A: RD_AT one quarter ahead (quarter ¢t + 1)
AMBIGUITY: -0.042%**  -0.026%*  -0.045%**  -0.038** | -0.052*¥**  -0.023*%* = -0.048%**  -0.054*** | -0.050***  -0.023**  -0.058%**  -0.061***
(0.014) (0.011) (0.014) (0.015) (0.015) (0.011) (0.013) (0.014) (0.017) (0.010) (0.017) (0.018)
RISK: 0.247**%  0.225%%*%  (0.213%FF  (0.182%FFF | (.293%F* Q. 171FF*  0.207FFF  0.281FFF | 0.200%**  (0.198%**  (0.210%F*  (0.261%**
(0.040) (0.069) (0.037) (0.042) (0.067) (0.042) (0.035) (0.066) (0.051) (0.048) (0.036) (0.050)
AMBIGUITY, x HIGH 0.020 0.013 0.024 0.031* 0.043** 0.048**
(0.017) (0.019) (0.015) (0.017) (0.019) (0.020)
RISK: x HIGH 0.093 -0.103 -0.109
(0.080) (0.079) (0.068)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 10901 22149 33050 33050 10974 22076 33050 33050 14777 18273 33050 33050
N firms 714 713 1427 1427 714 713 1427 1427 714 713 1427 1427
Adj R2 0.788 0.735 0.768 0.768 0.789 0.740 0.768 0.768 0.768 0.761 0.768 0.768
Panel B: RD_AT four quarters ahead (quarters ¢t +1...t+4)
AMBIGUITY: -0.197*¥%  _0.109%*F  -0.175%FF  _0.172%¥FF | _0.194%*FF  _0.109%**  _0.147FFF  _0.183%** | _0.209%**  _0.100%*F*  -0.257F**  _0.270%**
(0.050) (0.043) (0.052) (0.054) (0.056) (0.040) (0.051) (0.055) (0.063) (0.035) (0.069) (0.072)
RISK, 0.825%** 0.548* 0.662%¥**  0.646*** 1.105%%*  0.459%**  (0.643***  1.048%** | 0.574*¥*¥*  0.661***  0.662*%*F*  (0.907***
(0.150) (0.283) (0.148) (0.168) (0.249) (0.169) (0.141) (0.260) (0.199) (0.186) (0.141) (0.200)
AMBIGUITY; x HIGH 0.062 0.059 0.023 0.066 0.194** 0.215%**
(0.064) (0.071) (0.059) (0.067) (0.076) (0.079)
RISK, x HIGH 0.051 -0.559* -0.523*
(0.320) (0.314) (0.270)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 9888 19998 29886 29886 10402 19484 29886 29886 13637 16249 29886 29886
N firms 653 653 1306 1306 654 652 1306 1306 653 653 1306 1306
Adj R2 0.837 0.819 0.831 0.831 0.842 0.814 0.831 0.831 0.820 0.835 0.831 0.831




Table 5: Determinants of R&D Investment: Robustness Tests

The table presents OLS regression coefficients for R&D investment.  The dependent variable is
RD_ASSETSi; 1 in Panel A, RD_ CAPEX_ASSETS;;1 in Panel B and RD_ADJ_ASSETS;;1 in Panel
C. The sample period is 1993-2016. The sample consists of all firms with at least four quarters of data
for all variables of interest and at least one quarter of positive R&D expenditures in Compustat during
the sample period (R&D Sample), excluding penny stocks, very small firms and very young firms. Penny
stocks are stocks with a price less than $5 at the end of quarter ¢. Very small firms are firms with a market
capitalization less than $10 million at the end of quarter ¢. Very young firms are firms with less than 5
years in Compustat. All regressions include the following control variables: LN_SALFES;, Q:, LN_K _L;,
CASH_FLOW;, LEVERAGE;, LN_AGFE1, LN_RD_ CAPITAL;, NASDAQ; and MISSING_RD,4;.
The denominator used to calculate @y is the book value of assets (Compustat item atq at the end of quarter
t) in Panels A and B, and the book value of assets plus capitalized R&D (Compustat item atq at the end of
quarter ¢ plus RD_CAPITAL;) in Panel C. In columns (1), (3) and (5), MISSING_RD;, is an indicator
variable equal to 1 if the firm has missing R&D expenditures in Compustat in quarter ¢+ 1. In columns (2),
(4) and (6), MISSING_RD;41 is the number of quarters with missing R&D in Compustat in the period
t+1...t+4. All regressions include firm (new gvkey) fixed effects and quarter-year fixed effects. Standard
errors are clustered by firm. Sample construction is explained in detail in Section 3.1. For variable definitions
see Appendix B. *, ** and *** denote significance at the 10%, 5% and 1% levels respectively.

All Firms High-Tech Non High-Tech
) @) ®) @ ®) ©)
One Quarter One Year One Quarter One Year One Quarter One Year
t+1 t+1...t4+4 t+1 t+1...t4+4 t+1 t+1...t4+4

Panel A: Controlling for Institutional Ownership

AMBIGUITY, -0.009** -0.066*** -0.030%** -0.130%** 0.002 -0.035%**
(0.005) (0.016) (0.009) (0.034) (0.004) (0.013)
RISK, 0.129*** 0.478*** 0.198*** 0.629%** 0.055* 0.291**
(0.022) (0.088) (0.035) (0.139) (0.029) (0.117)
INSTOWN_DED:, -0.000 0.005 -0.002 -0.003 0.001 0.006
(0.001) (0.005) (0.002) (0.009) (0.001) (0.004)
INSTOWN_TRA, -0.001 -0.003 -0.002 -0.003 -0.001 -0.004
(0.001) (0.003) (0.001) (0.005) (0.001) (0.004)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year-quarter FE Yes Yes Yes Yes Yes Yes
N 69,772 64,534 33,050 29,886 36,371 33,894
N firms 2,508 2,342 1,427 1,306 1,170 1,104
Adj R2 0.809 0.878 0.768 0.831 0.779 0.882
Panel B: Total Investment (R&D plus CAPEX, RD_CAPEX_ASSETS:+1)
AMBIGUITY: -0.007 -0.063*** -0.028** -0.097** 0.005 -0.045*
(0.006) (0.024) (0.012) (0.049) (0.007) (0.024)
RISK, 0.121%*** 0.569*** 0.188*** 0.632%** 0.032 0.400**
(0.033) (0.138) (0.049) (0.212) (0.043) (0.177)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year-quarter FE Yes Yes Yes Yes Yes Yes
N 69,201 63,632 32,754 29,396 36,092 33,495
N firms 2,495 2,315 1,422 1,292 1,159 1,090
Adj R2 0.698 0.777 0.674 0.750 0.657 0.752
Panel C: Adjusting Total Assets For Capitalized R&D (RD_ADJ_ASSETS:+1)
AMBIGUITY: -0.003 -0.032%** -0.012** -0.057*** 0.002 -0.020**
(0.003) (0.010) (0.006) (0.022) (0.003) (0.010)
RISK: 0.054*** 0.198*** 0.083*** 0.253*** 0.028 0.141*
(0.015) (0.059) (0.022) (0.089) (0.021) (0.082)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Quarter-Year FE Yes Yes Yes Yes Yes Yes
N 69,631 64,102 32,978 29,597 36,310 33,756
N firms 2,500 2,333 1,424 1,299 1,166 1,102

Adj R2 0.814 0.890 420.776 0.837 0.766 0.892



Table 6: Determinants of Patenting Activity in High-Tech Firms

The table presents estimation results for count models for patenting activity. In Panel A, the dependent
variable is PATENTS, and the sample consists of all high-tech firms (3-digit SIC codes 283, 357, 366, 367,
382, 384, or 737) with at least four quarters of data for all variables of interest, four years in the presample
period and at least one patent application filed during the sample period, excluding penny stocks, very small
firms and very young firms. Penny stocks are stocks with a price less than $5 at the end of quarter t. Very
small firms are firms with a market capitalization less than $10 million at the end of quarter ¢. Very young
firms are firms with less than 5 years in Compustat. In Panel B, the dependent variable is CITATIONS,
and the sample is further restricted to firms that have at least one cited patent applied for during the sample
period (the Citation Sample). Marginal effects are calculated as differences in predicted counts at high (90th
percentile of the estimation sample) and low (10th percentile of the estimation sample) AMBIGUITY;
and RISK;, while keeping all other variables at their sample means. The sample period is 1993-2008. All
regressions include three-digit SIC code fixed effects, Blundell et al. (1999) presample firm fixed effects, and
quarter-year fixed effects. Standard errors are clustered by firm. Sample construction is explained in detail
in Section 3.1. For variable definitions see Appendix B. *, ** and *** denote significance at the 10%, 5%
and 1% levels respectively.

Panel A: Patents

Poisson Negative Binomial
M @ ®) @ ®) ®) 6 ®)
One quarter Year 1 Year 2 Year 3 One quarter Year 1 Year 2 Year 3
t+1 t+1...t+4 t+5...t+8 t4+9...t+12 t+1 t+1...t4+4 t+5...t+8 t+9...t+12
Coefficients
AMBIGUITY; -4.742%* -5.659%* -5.780** -5.383%* -1.980 -0.967 -0.671 -0.860
(2.367) (2.363) (2.483) (2.387) (2.054) (1.868) (2.163) (2.254)
RISK, -30.488** -33.495%* -42.265%** -46.488%** -12.470%* -9.992%* -13.594%* -15.199%**
(13.013) (13.356) (14.485) (15.247) (5.795) (5.330) (5.690) (5.804)
LN_SALES; 0.241%%* 0.253%** 0.274%%* 0.261%** 0.189%*** 0.205%** 0.222%* 0.229%**
(0.076) (0.077) (0.078) (0.079) (0.047) (0.046) (0.051) (0.059)
Q: -0.006 0.005 0.029 0.044* 0.034** 0.044*** 0.056*** 0.050%**
(0.028) (0.025) (0.024) (0.023) (0.016) (0.015) (0.017) (0.018)
LN_K_L; 0.701%** 0.722%** 0.791%** 0.838%** 0.340%** 0.328%** 0.369%** 0.408%**
(0.154) (0.144) (0.134) (0.122) (0.063) (0.058) (0.064) (0.071)
CASH_FLOW; 0.874 0.990 1.152 1.606** -0.411 -0.047 0.221 1.646*
(0.721) (0.701) (0.752) (0.811) (0.693) (0.713) (0.788) (0.843)
LEVERAGE; -0.347 -0.342 -0.378 -0.492 -0.156 -0.155 -0.197 -0.203
(0.289) (0.289) (0.312) (0.343) (0.209) (0.212) (0.244) (0.284)
LN_AGE 11 -0.130 -0.144 -0.162 -0.197* 0.007 -0.045 -0.112 -0.199**
(0.099) (0.099) (0.106) (0.117) (0.074) (0.078) (0.087) (0.098)
LN_RD_CAPITAL, 0.318%*** 0.312%** 0.290%** 0.291%** 0.380%*** 0.359%** 0.364*** 0.364***
(0.073) (0.071) (0.072) (0.078) (0.045) (0.043) (0.050) (0.057)
NASDAQ: -0.207 -0.209 -0.216 -0.212 0.106 0.108 0.102 0.075
(0.140) (0.137) (0.133) (0.131) (0.114) (0.112) (0.121) (0.129)
Constant -6.473%** -5.208%** -5.481%** -5.643%** -5.907*** -4.012%%* -3.625%%* -3.725%**
(0.707) (0.683) (0.703) (0.727) (0.530) (0.515) (0.572) (0.635)
Presample Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry (SIC3) FE Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 16,823 15,294 12,985 10,849 16,823 15,294 12,985 10,849
N firms 819 819 768 699 819 819 768 699
Pseudo R-squared 0.208 0.176 0.171 0.165
Marginal Effects
(1) Low Ambiguity 1.452 6.198 6.213 6.153 1.568 6.689 7.048 7.362
(2) High Ambiguity 1.242 5.123 5.165 5.210 1.468 6.475 6.898 7.169
Marginal Effect (2)-(1) -0.211%* -1.075%* -1.048** -0.943** -0.099 -0.214 -0.149 -0.193
(0.102) (0.433) (0.435) (0.404) (0.102) (0.412) (0.480) (0.504)
(3) Low Risk 1.573 6.760 7.180 7.422 1.619 6.932 7.496 7.913
(4) High Risk 0.982 3.980 3.552 3.329 1.335 5.919 5.978 6.089
Marginal Effect (4)-(3) -0.591%* -2.7T9*** -3.627FF* -4.092%** -0.284** -1.013* -1.518%* -1.825%**
(0.243) (1.057) (1.147) (1.196) (0.127) (0.523) (0.609) (0.671)
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Panel B: Citations

Poisson Negative Binomial
1) (2) (3) (4) (5) (6) (7) (8)
One quarter Year 1 Year 2 Year 3 One quarter Year 1 Year 2 Year 3
t+1 t+1...t4+4 t4+5...t+8 t+9...t+12 t+1 t+1...t+4 t+5...t+8 t+9...t+12
Coefficients
AMBIGUITY; -5.915%** -6.681%** -5.849** -4.897* -1.521 -1.641 -1.239 -1.510
(2.197) (2.252) (2.464) (2.579) (2.323) (2.010) (2.364) (2.439)
RISK, -36.567FF* -37.451%%* -47.887F** -49.462%** -13.225%* -9.910 -15.072%* -16.482%**
(12.333) (12.720) (14.386) (15.394) (6.445) (6.047) (6.557) (6.379)
LN_SALES, 0.214%%* 0.233%** 0.232%%* 0.211%** 0.177%%* 0.204*** 0.218%** 0.230%**
(0.067) (0.068) (0.071) (0.076) (0.045) (0.045) (0.052) (0.059)
Q¢ -0.002 0.014 0.033 0.043* 0.032% 0.051%** 0.070%** 0.060***
(0.026) (0.025) (0.024) (0.024) (0.018) (0.017) (0.019) (0.022)
LN_K_L; 0.606*** 0.624%** 0.666*** 0.706*** 0.270%** 0.267*** 0.297%%* 0.352%%*
(0.105) (0.098) (0.094) (0.088) (0.060) (0.061) (0.068) (0.076)
CASH _FLOW; 1.088 0.823 1.510%* 1.875%* 0.124 -0.525 0.504 1.578
(0.682) (0.641) (0.677) (0.785) (0.738) (0.787) (0.865) (1.005)
LEVERAGE; -0.227 -0.209 -0.236 -0.374 -0.110 -0.215 -0.307 -0.465*
(0.275) (0.272) (0.298) (0.324) (0.232) (0.230) (0.260) (0.266)
LN_AGE 4+, -0.104 -0.125 -0.168 -0.220* -0.011 -0.062 -0.152 -0.253%*
(0.094) (0.097) (0.110) (0.125) (0.087) (0.091) (0.102) (0.110)
LN_RD_CAPITAL, 0.279%** 0.275%** 0.267*** 0.273%** 0.287** 0.270%** 0.271%** 0.273%**
(0.058) (0.058) (0.066) (0.076) (0.040) (0.041) (0.049) (0.056)
NASDAQ: -0.034 -0.034 -0.056 -0.072 0.237* 0.186 0.155 0.111
(0.128) (0.128) (0.138) (0.145) (0.123) (0.121) (0.135) (0.143)
Constant -5 TT4HFH* -4.529%** -4.452%%* -4.497F** -5.093%** -3.205%** -2.504%** -2.795%**
(0.681) (0.652) (0.689) (0.739) (0.577) (0.614) (0.740) (0.781)
Presample Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry (SIC3) FE Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 16,186 14,731 12,548 10,516 16,186 14,731 12,548 10,516
N firms 775 775 729 669 775 775 729 669
Pseudo R-squared 0.144 0.132 0.127 0.126
Marginal Effects
(1) Low Ambiguity 2.052 8.753 8.694 8.438 2.071 8.901 9.329 9.389
(2) High Ambiguity 1.685 6.980 7.195 7.242 1.969 8.419 8.962 8.956
Marginal Effect (2)-(1) -0.367%** -1.773%** -1.499** -1.196* -0.102 -0.481 -0.367 -0.432
(0.134) (0.589) (0.621) (0.618) (0.156) (0.588) (0.695) (0.693)
(3) Low Risk 2.250 9.590 10.320 10.388 2.159 9.134 9.922 10.077
(4) High Risk 1.279 5.308 4.649 4.425 1.760 7.811 7.720 7.583
Marginal Effect (4)-(3) -0.971%** -4.282%** -5.672%F* -5.962%** -0.399** -1.323* -2.203%* -2.494%%*
(0.315) (1.387) (1.565) (1.676) (0.187) (0.782) (0.924) (0.945)
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Table 7: Determinants of Patenting Activity in Patent-Intensive High-Tech Firms

The table presents estimation results for count models for patenting activity. The dependent variable is
PATENTS in Panel A, and CITATIONS in Panel B. The sample is the same as in Table 6, but restricted
to firms above the sample median in terms of the average number of patents applied for during the sample
period. Marginal effects are calculated as differences in predicted counts at high (90th percentile of the
estimation sample) and low (10th percentile of the estimation sample) AMBIGUITY; and RISK;, while
keeping all other variables at their sample means. The sample period is 1993-2008. All regressions include
three-digit SIC code fixed effects, Blundell et al. (1999) presample firm fixed effects, and quarter-year fixed
effects. Standard errors are clustered by firm. Sample construction is explained in detail in Section 3.1.
For variable definitions see Appendix B. *, ** and *** denote significance at the 10%, 5% and 1% levels
respectively.

Panel A: Patents

Poisson Negative Binomial
1) (2) (3) (4) (5) (6) (7) (®)
One quarter Year 1 Year 2 Year 3 One quarter Year 1 Year 2 Year 3
t+1 t+1...t+4 t+5...t+8 t4+9...t+12 t+1 t+1...t+4 t+5...t+8 t4+9...t+12
Coefficients
AMBIGUITY, -4.792%* -5.602%* -5.527%* -4.963%* -3.980* -3.918%* -4.213%* -3.430
(2.333) (2.334) (2.497) (2.418) (2.053) (1.867) (2.020) (2.136)
RISK: -24.008 -27.669* -35.639%* -39.168%** -5.907 -3.061 -4.299 -6.485
(14.826) (15.229) (16.474) (17.291) (7.186) (6.465) (6.715) (6.845)
LN_SALES, 0.274%%* 0.285%** 0.308*** 0.292%** 0.218%** 0.227+** 0.250%** 0.260%***
(0.082) (0.083) (0.084) (0.088) (0.043) (0.042) (0.047) (0.056)
Q1 -0.009 0.004 0.029 0.046%* 0.026 0.037** 0.058%** 0.057***
(0.027) (0.025) (0.023) (0.023) (0.017) (0.016) (0.017) (0.019)
LN_K_L; 0.686*** 0.706%** 0.776%*%* 0.824%** 0.344%** 0.344%** 0.391%** 0.420%**
(0.156) (0.145) (0.134) (0.122) (0.073) (0.068) (0.075) (0.082)
CASH_FLOW; 0.579 0.684 0.792 1.238 -0.932 -0.708 -0.405 0.418
(0.713) (0.706) (0.760) (0.832) (0.652) (0.672) (0.714) (0.759)
LEVERAGE; -0.330 -0.323 -0.347 -0.461 -0.236 -0.271 -0.323 -0.493*
(0.289) (0.290) (0.315) (0.346) (0.205) (0.204) (0.231) (0.270)
LN_AGE: 11 -0.137 -0.154 -0.171 -0.203* -0.056 -0.086 -0.138* -0.215%*
(0.098) (0.099) (0.107) (0.120) (0.073) (0.074) (0.080) (0.092)
LN_RD_CAPITAL, 0.279%** 0.276*** 0.251%%* 0.253*** 0.331%** 0.313%** 0.302%** 0.292%**
(0.077) (0.075) (0.077) (0.085) (0.044) (0.043) (0.051) (0.059)
NASDAQ: -0.222 -0.228* -0.238* -0.233* -0.061 -0.083 -0.113 -0.144
(0.138) (0.135) (0.133) (0.132) (0.110) (0.110) (0.115) (0.123)
Constant -3.938%** -2.686%** -2.813%** -2.960%** -3.715%** -2.135%** -2.004%** -1.916%**
(0.728) (0.697) (0.776) (0.765) (0.619) (0.596) (0.686) (0.725)
Presample Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry (SIC3) FE Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 9,581 8,738 7,518 6,392 9,581 8,738 7,518 6,392
N firms 409 409 382 352 409 409 382 352
Pseudo R-squared 0.170 0.152 0.150 0.144
Marginal Effects
(1) Low Ambiguity 4.793 20.797 21.439 21.865 5.382 23.369 25.127 26.273
(2) High Ambiguity 4.054 17.000 17.777 18.662 4.684 20.295 21.784 23.549
Marginal Effect (2)-(1) -0.739** -3.797** -3.662** -3.203** -0.698* -3.073%* -3.342%% -2.724
(0.346) (1.514) (1.595) (1.517) (0.362) (1.476) (1.609) (1.694)
(3) Low Risk 4.797 20.833 22.220 23.328 5.175 22.296 24.056 25.699
(4) High Risk 3.971 16.587 16.246 16.193 4.939 21.741 23.164 24.191
Marginal Effect (4)-(3) -0.827 -4.246* -5.974%* -7.134%* -0.235 -0.555 -0.892 -1.507
(0.511) (2.327) (2.703) (3.016) (0.283) (1.165) (1.381) (1.578)
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Panel B: Citations

Poisson Negative Binomial
1) (2) (3) (4) (5) (6) (7) (8)
One quarter Year 1 Year 2 Year 3 One quarter Year 1 Year 2 Year 3
t+1 t+1...t4+4 t4+5...t+8 t+9...t+12 t+1 t+1...t+4 t+5...t+8 t+9...t+12
Coefficients
AMBIGUITY; -6.100%** -6.688%** -5.389** -4.074 -5.776%* -6.417F%* -4.618%* -4.262*
(2.274) (2.350) (2.601) (2.686) (2.295) (2.020) (2.226) (2.312)
RISK; -27.648%* -27.280%* -37.436%* -35.963%* -3.941 0.454 -4.859 -4.985
(13.611) (13.830) (15.814) (16.439) (7.494) (6.628) (6.850) (6.854)
LN_SALES, 0.233%** 0.253*** 0.253*** 0.230*** 0.195%** 0.228%*** 0.241%%* 0.260***
(0.070) (0.071) (0.074) (0.082) (0.040) (0.041) (0.045) (0.054)
Q¢ -0.002 0.014 0.033 0.045* 0.039%* 0.054%** 0.073%** 0.073%***
(0.026) (0.024) (0.024) (0.024) (0.018) (0.018) (0.019) (0.021)
LN_K_L; 0.589*** 0.605%** 0.646%** 0.685%** 0.291%%* 0.310%** 0.355%** 0.393%**
(0.106) (0.099) (0.095) (0.089) (0.065) (0.066) (0.073) (0.078)
CASH _FLOW; 0.893 0.645 1.286* 1.590%* -0.043 -0.677 0.545 0.852
(0.668) (0.639) (0.684) (0.803) (0.676) (0.699) (0.710) (0.839)
LEVERAGE; -0.199 -0.169 -0.196 -0.332 -0.123 -0.170 -0.406* -0.713%**
(0.280) (0.278) (0.305) (0.332) (0.236) (0.228) (0.241) (0.241)
LN_AGE 4+, -0.109 -0.132 -0.178 -0.227* -0.020 -0.048 -0.123 -0.212%*
(0.095) (0.098) (0.113) (0.130) (0.085) (0.086) (0.093) (0.098)
LN_RD_CAPITAL, 0.252%%* 0.249%** 0.239%** 0.245%** 0.228%** 0.205%** 0.186*** 0.169***
(0.060) (0.060) (0.069) (0.082) (0.037) (0.038) (0.045) (0.053)
NASDAQ: -0.063 -0.067 -0.096 -0.117 0.054 0.016 -0.037 -0.097
(0.126) (0.126) (0.137) (0.146) (0.114) (0.113) (0.121) (0.122)
Constant -3.611%%* -2.416%** -2.147FF* -2.052%%* -3.206%** -1.773%** -1.260%* -1.400**
(0.607) (0.583) (0.611) (0.653) (0.497) (0.528) (0.623) (0.594)
Presample Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry (SIC3) FE Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 9,042 8,240 7,090 6,019 9,042 8,240 7,090 6,019
N firms 387 387 359 327 387 387 359 327
Pseudo R-squared 0.108 0.111 0.107 0.106
Marginal Effects
(1) Low Ambiguity 6.745 29.351 29.824 30.026 7.384 32.312 33.443 34.325
(2) High Ambiguity 5.416 22.970 24.752 26.285 5.999 25.540 28.505 29.864
Marginal Effect (2)-(1) -1.329%** -6.381%** -5.072%* -3.741 -1.385%* -6.773%** -4.937** -4.461%*
(0.486) (2.195) (2.406) (2.434) (0.552) (2.144) (2.356) (2.389)
(3) Low Risk 6.666 28.778 30.920 31.802 6.870 29.402 31.846 33.004
(4) High Risk 5.422 23.325 22.918 23.580 6.670 29.505 30.632 31.664
Marginal Effect (4)-(3) -1.245%* -5.454%* -8.002%* -8.223%* -0.199 0.103 -1.214 -1.341
(0.616) (2.775) (3.343) (3.693) (0.377) (1.504) (1.705) (1.842)
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Table 8: Determinants of Patenting Activity in High-Tech Firms: Robustness

The table presents estimation results for count models for patenting activity. The sample and methods are
the same as in Table 6, but augmented to include institutional ownership variables. All regressions include
the following cotrol variables: LN_SALES;, Q¢, LN_K_L;, CASH_FLOW,;, LEVERAGE;, LN_AGFE;,1,
LN_RD_CAPITAL;, NASDAQ;. *, ** and *** denote significance at the 10%, 5% and 1% levels respec-
tively.

Poisson Negative Binomial
6) @ ®) @ ® ®) ™ ®
One quarter Year 1 Year 2 Year 3 One quarter Year 1 Year 2 Year 3
t+1 t+1...t+4 t+5...t+8 t4+9...t+12 t+1 t+1...t+4 t+5...t+8 t4+9...t+12
Panel A: Patents
Coefficients
AMBIGUITY; -4.083* -4.914%* -4.963** -4.402%* -1.971 -0.963 -0.638 -0.755
(2.180) (2.201) (2.414) (2.281) (2.063) (1.874) (2.165) (2.231)
RISK: -36.719%** -39.696%** -46.197*** -47.362%%* -12.430%* -9.382% -11.376%* -13.129%*
(12.632) (12.889) (13.656) (14.643) (5.591) (5.130) (5.588) (5.928)
INSTOWN_DED, 1.280%* 1.243%* 1.176%** 1.353%%* 0.031 -0.031 0.136 0.407
(0.555) (0.493) (0.361) (0.328) (0.346) (0.334) (0.355) (0.377)
INSTOWN_TRA; -0.858** -0.831%* -0.615 -0.419 0.005 0.114 0.413 0.357
(0.383) (0.393) (0.404) (0.434) (0.263) (0.262) (0.277) (0.323)
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Presample Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry (SIC3) FE Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 16,823 15,294 12,985 10,849 16,823 15,294 12,985 10,849
N firms 819 819 768 699 819 819 768 699
Pseudo R-squared 0.208 0.176 0.171 0.165
Marginal Effects
(1) Low Ambiguity 1.422 6.050 6.057 5.954 1.568 6.688 7.033 7.338
(2) High Ambiguity 1.243 5.128 5.168 5.197 1.469 6.475 6.891 7.169
Marginal Effect (2)-(1) -0.180* -0.922%* -0.888** -0.757** -0.099 -0.213 -0.142 -0.169
(0.093) (0.400) (0.420) (0.380) (0.103) (0.414) (0.480) (0.498)
(3) Low Risk 1.600 6.869 7.218 7.303 1.619 6.910 7.399 7.810
(4) High Risk 0.908 3.667 3.345 3.227 1.336 5.958 6.122 6.227
Marginal Effect (4)-(3) -0.693%** -3.202%** -3.873%** -4.076%** -0.283%* -0.953* -1.276%* -1.582%*
(0.227) (0.977) (1.036) (1.108) (0.122) (0.505) (0.603) (0.689)

Panel B: Citations

Coefficients
AMBIGUITY; -5.514%%* -6.206%** -5 177 -3.936 -1.530 -1.624 -1.217 -1.446
(2.108) (2.170) (2.442) (2.514) (2.331) (2.015) (2.363) (2.415)
RISK, -40.684*** -41.274%** -48.471%** -47.067*** -12.689* -8.579 -11.849* -14.398**
(12.252) (12.728) (14.237) (15.226) (6.483) (5.987) (6.585) (6.664)
INSTOWN_DED:; 0.755% 0.769* 0.926%* 1.279%** -0.244 -0.489 -0.318 0.225
(0.421) (0.419) (0.396) (0.448) (0.335) (0.347) (0.384) (0.418)
INSTOWN_TRA; -0.559 -0.522 -0.238 -0.097 0.129 0.342 0.696%** 0.417
(0.351) (0.365) (0.412) (0.445) (0.296) (0.277) (0.317) (0.382)
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Presample Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry (SIC3) FE Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 16,186 14,731 12,548 10,516 16,186 14,731 12,548 10,516
N firms 775 775 729 669
Pseudo R-squared 0.144 0.132 0.127 0.126
Marginal Effects
(1) Low Ambiguity 2.031 8.640 8.525 8.184 2.071 8.888 9.297 9.367
(2) High Ambiguity 1.690 7.001 7.210 7.237 1.968 8.412 8.938 8.953
Marginal Effect (2)-(1) -0.340%** -1.639%** -1.315%* -0.946 -0.103 -0.476 -0.359 -0.413
(0.128) (0.564) (0.611) (0.594) (0.156) (0.589) (0.693) (0.686)
(3) Low Risk 2.282 9.706 10.238 10.062 2.153 9.064 9.729 9.948
(4) High Risk 1.217 5.057 4.567 4.467 1.770 7.916 7.986 7.760
Marginal Effect (4)-(3) -1.065%** -4.648%** -5.671HFH* -5.594%** -0.383%* -1.149 -1.742% -2.188%*
(0.305) (1.359) (1.518) (1.630) (0.187) (0.779) (0.939) (0.988)
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