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We propose a mechanism to suppress heating in periodically driven many-body quantum systems
by employing sufficiently long-range interactions and experimentally relevant initial conditions. The
mechanism is robust to local perturbations and does not rely on disorder or high driving frequencies.
Instead, it makes use of an approximate fragmentation of the many-body spectrum of the non-driven
system into bands, with band gaps that grow with the system size. We show that when these
systems are driven, there is a regime where decreasing the driving frequency decreases heating and
entanglement build-up. This is demonstrated numerically for a prototypical system of spins in one
dimension, but the results can be readily generalized to higher dimensions.

Periodically driven quantum systems continue to pro-
duce fascinating physics and phenomena inaccessible to
their static counterparts. Some notable examples in-
clude the Kapitza pendulum [1], dynamical localiza-
tion [2–4], Floquet topological insulators [5–7], dynami-
cal phase transitions [8], induced many-body localization
(MBL) [9–13], and Floquet time-crystals [14–18]. How-
ever, a key obstacle to realizing new phases of matter in
driven systems is that typically the drive heats up the
system to a featureless infinite-temperature state where
all correlations and observables become trivial [19–22].

In one-dimensional systems, heating can be suppressed
with the inclusion of sufficiently strong disorder, which
leads to the formation of the Floquet-MBL phase [13,
20, 23–25]. Alternatively, heating can be suppressed at
any dimension, whether the system is clean or disor-
dered, by considering driving frequencies greater than
the single-particle excitation energy, such that the ab-
sorption of a photon from the drive will always result
in a multiparticle process [26–32]. Under these condi-
tions the system will spend a significant amount of time
in a nontrivial metastable state – a phenomenon called
Floquet-prethermalization [26–32]. It has been recently
demonstrated with nuclear spins using nuclear magnetic
resonance techniques [33] and with ultracold atoms in a
driven optical lattice [34].

If the driving frequencies are smaller than the single-
particle excitation energy, the system can efficiently ab-
sorb energy from the drive, which results in fast heating
to infinite temperature [35]. But is this the fate of all
driven quantum systems? In this Letter, we show that
the answer is negative. Heating can actually be sup-
pressed in any dimension and for frequencies smaller than
the single-particle excitation if the system has sufficiently
long-range interactions.

The physics of non-driven systems with power-law de-
caying interactions, r−α (where r is the distance between
two bodies), has gained considerable attention due to ex-
perimental realizations in trapped ions [36–40], where the
range of the interactions can be tuned. A particularly
intriguing regime is α < d (d being the dimension of
the system), where conventional thermodynamics does

not apply [41]. Power-law decaying interactions occur
in various systems, from spin glasses and magnetically
frustrated systems to atomic, molecular, and optical sys-
tems [42–46]. They are associated with phenomena that
are absent for neighboring interactions [47–54]. They are
known to affect transport [55–61], destroy many-body lo-
calization [62–67], and facilitate the propagation of cor-
relations [53, 54, 68–70].

While for α > d , the physics is many times only quan-
titatively different from the physics of systems with lo-
cal interactions (α → ∞), novel physics often emerges
for slowly decaying interactions, α < d. An example
is the emergence of a Hilbert space fragmentation into
weakly connected subspaces. If the dynamics starts in
one of these subspaces, it can be effectively described
by a local Hamiltonian for a long time [71, 72], so de-
spite the presence of long-range interactions, features
that are usually associated with short-range interactions
may be observed, such as the logarithmic growth of en-
tanglement [52, 73], light-cone evolution [71, 74], and self-
trapping [75]. On the other hand, if the initial state spans
multiple subspaces, the dynamics violates the general-
ized Lieb-Robinson bound and leads to the instantaneous
spread of correlations [36–38, 54].

The behavior of periodically driven systems with
power-law decaying interactions was studied in [76–79].
For α > d and large driving frequencies, exponentially
slow heating and the emergence of Floquet prethermal-
ization were obtained [26–29, 77]. In this prethermal
regime, a novel non-equilibrium phase of matter dubbed
the prethermal time-crystal [78], which is similar to the
MBL-time crystal [14–16], has been argued to exist. For
α < d, the general expectation is that to achieve a
prethermal plateau, the system needs both to be in the
high-frequecy regime and to be finite. The second con-
dition arises since the single-particle excitation energy
increases with system size and therefore for fixed fre-
quency, the prethermal plateau shrinks as the system size
increases [77].

In this Letter, we show that it is in fact possible to
suppress heating in systems with long-range interactions
in the low-frequency regime, where the driving frequen-
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cies are smaller than the single-particle excitation energy.
This can be done by taking advantage of the effective
fragmentation of the Hilbert space, which is induced by
interactions with α < d, and by selecting initial states
within one of those approximate subspaces, such that the
energy absorption from the drive becomes ineffective. In
this way, we can achieve prethermal phases whose life-
times grow as the system size increases and which are
viable at any dimension. We demonstrate this behavior
by numerically examining the dynamics of the half-chain
entanglement entropy and the energy absorption in a spin
chain with α < 1.

Model.—We consider a long-range interacting spin
chain of length L described by the Hamiltonian,

Ĥ0 =JzV̂ + Jx

L−1∑
〈i,j〉

σ̂xi σ̂
x
j + hx

L∑
i=1

σ̂xi ; (1)

V̂ =

L−1∑
i<j

1

|i− j| α
σ̂zi σ̂

z
j ,

where σ̂x,y,zi are Pauli operators, Jz is the strength of the

long-range term V̂ and we set Jz = 1, Jx corresponds
to the strength of nearest-neighbor interactions in the
x-direction, and hx is the amplitude of a transverse mag-
netic field. This model is not integrable for any value of
α. For α < 1, the energy becomes super-extensive, which
can be resolved by rescaling the long-range term [80–82].
This is however not done in this work, since our goal is
to stay in close contact with the experiments, where fi-
nite systems are studied and such rescaling is not carried
out [17, 36, 37, 83].

The static Hamiltonian Ĥ0 is periodically driven by
the following time-dependent perturbation,

Ĥ1 (t) = sgn (cos (ωt))

(
hy

L∑
i=1

σ̂yi + hz

L∑
i=1

σ̂zi

)
, (2)

such that the total Hamiltonian is Ĥ (t) = Ĥ0 + Ĥ1 (t).
Here, ω = 2π/T is the driving frequency, sgn (.) is the
sign function, T is the driving period, and hy and hz are
the magnitudes of the magnetic fields along the y- and
z-directions, respectively. We explore the dynamics of
the driven system, Ĥ (t), with α < 1.

To study the heating dynamics, we use the numerically
exact Krylov subspace techniques to evolve the system
in time [84]. Due to the lack of symmetries, we have to
consider the entire Hilbert space of dimension 2L, so we
analyze system sizes up to L = 22. We investigate the
energy density of the static system measured with respect
to the initial state,

ε (t) ≡ 1

L
Tr
[
(ρ̂ (0)− ρ̂ (t)) Ĥ0

]
, (3)

where ρ̂ (t) is the density matrix as a function of time,
and the half-chain entanglement entropy,

S (t) = −Tr [ρ̂A (t) lnρ̂A (t)] , (4)
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Figure 1. Dynamics of the half-chain entanglement entropy
(a,b) and the energy absorption (c,d) for different ranges of
the driving frequencies ω. The infinite-temperature values
are marked by horizontal black dashed lines and the prether-
mal values of S(t) by solid horizontal lines. The dot-dashed
red lines mark the heating time, where the entropy (energy)
reaches the half-way mark between its plateau value (initial
value) and its infinite-temperature value. The initial state
is |ψ(0)〉 = |11 · · · 11011 · · · 11〉, L = 20, α = 0.67, Jx =
0.69, hx = 0.23, hy = 0.21, and hz = 0.19. For these pa-
rameters, Jeff = ∆1 = 10.92.

where ρ̂A (t) = TrB ρ̂ (t) is the reduced density matrix of
the subsystem A consisting of L/2 spins.

Heating suppression.— Figure 1 shows the evolution
with time of the entanglement entropy and the energy
density for L = 20, different frequencies, and the initial
state |ψ(0)〉 = |11 · · · 11011 · · · 11〉, where all the spins,
except the one in the middle, point up. For most frequen-
cies in Fig. 1, the entanglement entropy exhibits three
distinct regimes: an initial growth for a short time, which
is followed by the emergence of a long-lived prethermal
state (Floquet-prethermalization), where S(t) saturates
to a plateau value Sp (horizontal black solid line), after
which the entropy finally reaches an infinite-temperature
value (black dashed line) corresponding to the result by
Page, SPage = (L ln 2 − 1)/2 [85]. The dependence of
the behavior of the energy density on the frequency is
comparable to that for the entropy, it remains constant
during the prethermal phase and eventually goes to its
infinite-temperature value at long-times.

Those distinct dynamical stages in Fig. 1 were observed
before in Ref. [77], where high driving frequencies were
considered and the dynamics started with initial prod-
uct states in the z-direction with an equivalent number
of spins pointing up and down. But in stark contrast
with previous studies, we find that below a certain fre-
quency value, we can extend the prethermal phase and
postpone heating by decreasing the driving frequency, as
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Figure 2. Heating time, τ∗, as extracted from the entangle-
ment entropy for different system sizes as a function of (a)
frequency and (b) rescaled frequency, ω/∆1. The two vertical
lines on the x-axis in (b) indicate the gaps ∆2 (dashed-dot)
and ∆1 (dashed) for L = 22. The gap ∆1 is equal to Jeff (see
text). As in Fig. 1: initial state |ψ(0)〉 = |11 · · · 11011 · · · 11〉,
α = 0.67, Jx = 0.69, hx = 0.23, hy = 0.21, and hz = 0.19.

shown in Figs. 1 (b,d). Contrary to past studies for which
the heating time increases monotonically with the fre-
quency, we have now a non-monotonic dependence. For
frequencies ω & 11, the heating time grows as ω increases
[Fig. 1 (a,c)], but for a range of frequencies with ω < 11,
the heating time shrinks as ω increases [Fig. 1 (b,d)]. For
frequencies close to ω ∼ 11, the system heats up very
quickly, hinting on a resonant behavior.

To show the frequency dependence more explicitly, we
define the heating time τ∗ as the time when the entan-
glement entropy reaches a half-way mark between its
prethermal plateau and its asymptotic value, S(τ∗) ≡
Sp + [SPage − Sp] /2, which is indicated with dot-dashed
red lines in Figs. 1 (a,b). We see in Fig. 2 (a) that, as
expected, for ω > 11 the heating time increases as we
increase the driving frequency, however, within a range
of values for ω < 11, the heating time increases as we de-
crease ω and these results further improve as the system
size grows. A similar qualitative picture is obtained also
for the heating time calculated from the energy density
ε (t). As we explain next, this unusual dependence on the
frequency is a consequence of the effective fragmentation
of the Hilbert space verified for the non-driven system
when α < 1 [71].

Energy bands.— To better understand the Hilbert
space fragmentation of the static system, let us first ex-
amine the long-range term V̂ of Ĥ0 [Eq. (1)], which for
α = 0 can be written in terms of the collective spin op-
erator M̂z =

∑L
i σ̂

z
i /2 as V̂ =2M̂2

z − L/2. The energy

spectrum of V̂ consists of degenerate bands with the en-
ergies

Eb = 2

(
L

2
− b
)2

− L

2
, b = 0, 1, ..,

L

2
, (5)

where b indicates the number of spins pointing down in
the z-direction, and we designate the corresponding en-
ergy band as the band b. Since the energy of a product
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Figure 3. The lowest energy gaps ∆1 (black lines and circles)
and ∆2 (red lines and circles) as a function of L. The solid
lines indicate the exact calculations for Jx = hx = 0 [Eq.(6)
and Eq.(7)] and the circles are the numerical results for Jx =
0.69 and hx = 0.23.

state with b down-spins is equal to the energy of a state
with L− b down-spins, each band is 2

(
L
b

)
degenerate for

b < L/2. For 0 < α < 1, the degeneracy within each band
of the spectrum of V̂ is partially lifted, but the different
subspaces are still separated in energy. We define the en-
ergy gap between two nearby bands as ∆b ≡ Eb −Eb−1,
which can be obtained analytically. The gap between the
bands b = 0 and b = 1 can be calculated as

∆1 =

L−1∑
r=1

2

rα
∼ 2

1− α
L1−α. (6)

One sees that the gap increases monotonically with sys-
tem size for α < 1. Similarly, we can obtain ∆2,

∆2 =

(
L−1∑
r=2

2

rα
+

L−2∑
r=1

2

rα

)
− 2

L/2−1∑
r=1

2

rα
+

(
2

L

)α
∼ 2 (2− 2α)

1− α
L1−α, (7)

which also increases with the system size, although ∆2 <
∆1.

The other terms of the static Hamiltonian Ĥ0 couple
the states of V̂ . The Jx term connects states within the
same band and states from band b to bands b± 2, while
the hx term connects states of band b to bands b ± 1.
However, if the values of Jx and hx are smaller than the
gap between the bands, they cannot effectively couple
them. Furthermore, the numerical calculations for the
values of ∆1 and ∆2 for Ĥ0 with Jx, hx 6= 0 approach
the gaps between the bands of V̂ in the limit L→∞, as
shown in Fig. 3. This implies that the dynamics starting
from an initial state within one band gets confined to
that approximate subspace for a time that grows with
the system size [71].
Resonant transition.— The periodic driving of Ĥ0 tries

to establish transitions between the different bands, but
for this to happen efficiently it must deposit an amount
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Figure 4. Half-time decay of the fidelity, τF , as a function
of the rescaled frequency ω/∆1. The two vertical lines indi-
cate the gaps ∆2 (dashed-dot) and ∆1 (dashed) for L = 22.
As in Fig. 1: initial state |ψ(0)〉 = |11 · · · 11011 · · · 11〉, α =
0.67, Jx = 0.69, hx = 0.23, hy = 0.21, and hz = 0.19.

of energy on par with the gap between the bands, ω ≈
∆b. For the initial state considered in Fig. 1, the most
relevant bands are b = 0, 1 and 2, with the corresponding
gaps ∆1 and ∆2. To see the dependence of the heating
time on the dominant gap more clearly, we rescale the
driving frequency by the largest gap, ∆1, as shown in
Fig. 2 (b). We see that the heating time τ∗ reaches its
smallest value when ω ≈ ∆1, because at this point we
hit a resonant transition that leads to fast heating. This
can be directly observed also in Fig. 1, where the fastest
heating is indeed verified for ω ≈ ∆1 ≈ 11. Another
drop in the value of τ∗ occurs when ω ≈ ∆2, which may
be due to a multiple photon process, which we do not
analyze in this work. Next, we explain what causes the
suppression of heating as the frequency increases above
∆1 and, especially, when it decreases within the range
∆2 < ω < ∆1.

Non-monotonic frequency dependence.— The maxi-
mum energy required to flip one spin for any initial state,
scales like Jeff ≡

∑
r r
−α ∼ L1−α, with the system size.

For the initial state considered above, Jeff coincides with
the largest gap between the energy bands, Jeff = ∆1.
In the high frequency regime, ω � Jeff, we expect slow
heating, as indeed observed in Fig. 1 (a,c). For ω < Jeff

one might have expected fast heating to occur, however,
because ∆1 = Jeff, one photon from the drive is not suf-
ficient to induce a transition from the band b = 1 of the
initial state to a neighboring band and the dynamics gets
confined to the initial band for a long time, leading to
heating suppression and the emergence of the prether-
mal phase in Fig. 1 (a,c)]. In this case, increasing the
frequency, ω → ∆1, induces heating due to the approach
to the resonant condition. Therefore, heating suppres-
sion can be achieved by going away from the resonant
frequency either by increasing [Fig. 1 (a,c)] or decreasing
[Fig. 1 (b,d)] the driving frequency.

To demonstrate that for frequencies off-resonance to

the gap the dynamics is indeed confined for long-times
to the band of the initial state, we calculate the fidelity
corresponding to the probability to find the evolved state
within the initial band,

Fb (t) = Tr
[
ρ̂ (t) P̂b

]
, P̂b =

∑
k

∣∣V bk 〉 〈V bk ∣∣ , (8)

where P̂b is the projector to the initial band spanned by
the states

∣∣V bk 〉. In Fig. 4, we plot the time τF that it
takes for the fidelity to decay to half of its initial value
for various frequencies and starting from an initial state
in the band b = 1. We obtain a behavior very similar
to that for the heating time τ∗: the fidelity decays fast
for frequencies close to the gap value, ω ≈ ∆1, and as
we move away from it, τF increases significantly. This
corroborates our claim that the suppression of heating
and the emergence of Floquet-prethermalization, that we
observe, are indeed a result of the confinement of the
dynamics to the initial band.

Discussion.— We demonstrate that in periodically
driven spin systems with long-range interactions, heating
can be strongly suppressed not only with driving frequen-
cies larger than the energy it costs to flip a single spin, but
also with frequencies smaller than that energy. This is
due to the formation of energy bands in the many-body
spectrum of the static system, which get further apart
as the system size increases. If the system is initialized
within one band and the drive is off resonance with the
gap between the bands, then heating is significantly sup-
pressed. This results in a non-monotonic dependence of
the heating time on the frequency. For frequencies larger
than the gap, increasing the frequency suppresses heat-
ing, while for frequencies below the gap, increasing the
frequencies enhances heating.

Our results therefore provide a robust way to suppress
heating even for small driving frequencies, which can be
tested in experiments with ion traps [36, 40]. While in
this Letter, due to numerical limitations, we have ex-
plored a one-dimensional system, our results should hold
for any dimension, provided α < d.

In the future, it would be interesting to see if con-
straining a long-range interacting system to a certain en-
ergy band allows to obtain, at least a transient, time-
crystalline behavior, which has been ruled out for α <
d [78]. It would be also interesting to study the effect of
aperiodic drives on heating in such systems [86, 87].
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