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We study the quantum-classical correspondence of an experimentally accessible system of inter-
acting bosons in a tilted triple-well potential. With the semiclassical analysis, we get a better un-
derstanding of the different phases of the quantum system and how they could be used for quantum
information science. In the integrable limits, our analysis of the stationary points of the semiclassical
Hamiltonian reveals critical points associated with second-order quantum phase transitions. In the
nonintegrable domain, the system exhibits crossovers. Depending on the parameters and quantities,
the quantum-classical correspondence for the lowest energy state holds even for very few bosons.
We discuss how this state in the region of repulsive (attractive) interaction of the nonintegrable
model could be explored for quantum information storage (quantum sensing).

I. INTRODUCTION

Studies of the quantum-classical correspondence pro-
vide insights into the properties of both the quantum
system and its classical counterpart. Level statistics as
in full random matrices [1], for example, is a quantum
signature of classical chaos [2, 3]. In the other direction,
classical chaos and instability are related with the expo-
nential growth of the out-of-time-ordered correlator [4–
10], and unstable periodic orbits explain the phenomenon
of quantum scarring [11–14]. In this work, we use the
quantum-classical correspondence to characterize a sys-
tem of interacting bosons in a triple-well potential and
locate its quantum phase transition points.

Previous semiclassical analyses of three coupled Bose-
Einstein condensates have revealed a dynamical transi-
tion from self trapping to delocalization [15, 16]. The
quantum dynamics in triple well traps have since been
extensively investigated [17–30]. When quantum gases,
such as chromium or dysprosium, are loaded into triple
well potentials [31], dipolar interactions need to be taken
into account [31] and they lead to various ground-state
phases [31–34]. An integrable version of this dipolar
model in one dimension, solvable with the algebraic
Bethe ansatz, was derived in [35], and by tilting the
potential, this model can be brought to the chaotic do-
main [36]. The tilt is an additional control parameter
that expands the versatility of the model and allows for
its possible application as an atomtronic switching de-
vice [36] and as a generator of entangled states [37]. This
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is the system that we analyze here, both in its integrable
and nonintegrable regimes.

With the semiclassical Hamiltonian of our triple-well
system, we find the stationary points of the classical
dynamics and use them to identify the critical points
of quantum phase transitions. We show that there are
two integrable limits that exhibit second-order quantum
phase transitions. One critical point is accessed by vary-
ing the interaction strength between the bosons with re-
spect to the tilt of the potential, while the tunneling am-
plitude between the wells is zero, and the other point is
found by changing the interaction strength with respect
to the tunneling amplitude, while the tilt is zero. The dif-
ferent phases are characterized by different values of the
occupation numbers of the wells, which serve as good or-
der parameters. In the nonintegrable domain, where the
three Hamiltonian parameters are nonzero, the system
exhibits crossovers.

We find that the nonintegrable model presents two in-
teresting features with potential applications. In the re-
gion of attractive interaction, the occupation numbers of
the wells at the edges of the chain are highly sensitive
to the amplitude of the tilt, which could be explored for
developing quantum sensors. In the opposite region of re-
pulsive interaction, the ground state is protected against
changes of the interaction strength and of the tilt ampli-
tude around zero, which makes this state a good candi-
date for the storage of quantum information.

In addition, we analyze how the quantum-classical cor-
respondence for the lowest energy state depends on the
total number of bosons. This point is related with the
question of how many particles are needed for a system to
reveal many-body features [38–45], a subject of current
experimental interest [46, 47]. In the absence of interac-
tion, the agreement is exact for a single boson, since the
system is in the semiclassical limit. In the presence of
tunneling and interaction, and for a finite range of val-
ues of the tilt, the coincidence between the quantum and
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semiclassical results can also hold for a single particle de-
pending on the quantity and whether the interaction is
attractive or repulsive.

The paper is organized as follows. Section II describes
the Hamiltonian and the stationary points. Section III is
dedicated to the analysis of the three integrable limits of
the model and Sec. IV to the analysis of the nonintegrable
regime. Our conclusions are presented in Sec. V.

II. QUANTUM AND CLASSICAL
HAMILTONIANS

In this section, after describing the quantum Hamilto-
nian, we explain its semiclassical limit and how to deter-
mine the stationary points.

A. Quantum Hamiltonian

We consider N bosons in an aligned three-well poten-
tial [see Fig. 1]. The quantum Hamiltonian is given by

Ĥ =
U

N

(
N̂1 − N̂2 + N̂3

)2
+ ε
(
N̂3 − N̂1

)
+

J√
2

(
â†1â2 + â†2â1

)
+

J√
2

(
â†2â3 + â†3â2

)
, (1)

where N̂k = â†kâk is the number operator of the well k, âk
(â†k) is the annihilation (creation) operator, U represents
both the onsite interaction strength and the strength of
the interactions between wells, and it is rescaled by N ,
J is the tunneling amplitude between wells, and ε is the
tilt. The Hamiltonian is invariant under the interchange
of wells 1 and 3 when ε = 0, and it conserves the total
number of bosons, N = N1 +N2 +N3, having dimension
D = (N + 2)!/(2!N !). Our analysis is conveniently done
in the Fock basis representation, |N1, N2, N3〉.

V0

tilt

tilt
<latexit sha1_base64="pwvSSUb8VQ70udZzmYDF8Wegr7g=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoYxnBxEByhL3NXLJkb/fc3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9oGpVphg2mhNKtiBoUXGLDciuwlWqkSSTwIRreTP2HJ9SGK3lvRymGCe1LHnNGrZNaHUwNF0p2yxW/6s9AlkmQkwrkqHfLX52eYlmC0jJBjWkHfmrDMdWWM4GTUiczmFI2pH1sOyppgiYcz+6dkBOn9EistCtpyUz9PTGmiTGjJHKdCbUDs+hNxf+8dmbjq3DMZZpZlGy+KM4EsYpMnyc9rpFZMXKEMs3drYQNqKbMuohKLoRg8eVl0jyrBhfV4O68UrvO4yjCERzDKQRwCTW4hTo0gIGAZ3iFN+/Re/HevY95a8HLZw7hD7zPH07JkCY=</latexit>✏
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FIG. 1. Schematic representation of the three-well system.

The Hamiltonian presents three integrable limits:
(A) U = 0U = 0U = 0, ε 6= 0, J 6= 0;
(B) J = 0J = 0J = 0, U 6= 0, ε 6= 0;
(C) ε = 0ε = 0ε = 0, U 6= 0, J 6= 0.

As we show next, (B) and (C) exhibit quantum phase
transitions at the critical points U = ε/4 and U = −J/2,
respectively. The model becomes nonintegrable when J ,
U and ε are nonzero.

B. Classical Hamiltonian and Stationary Points

The classical Hamiltonian is obtained using coherent
states [48], |α〉 = |α1, α2, α3〉, where αk =

√
Nk exp(iφk).

It leads to

Hcl =
〈α|Ĥ|α〉

N
(2)

=
U

N
(N1 −N2 +N3)

2
+ ε (N3 −N1)

+J
√

2
[√

N1N2 cos(φ1 − φ2) +
√
N2N3 cos(φ2 − φ3)

]
.

To simplify our analysis, we introduce a convenient set
of classical variables, ρk =

√
Nk/N . In addition, since

the quantum Hamiltonian conserves the total number of
particles, we also impose the constraint N = N1 +N2 +
N3. The classical Hamiltonian now becomes

H̄cl =
Hcl

N
=U

(
ρ21 − ρ22 + ρ23

)2
+ ε
(
ρ23 − ρ21

)
+J
√

2 [ρ1ρ2 cos(φ1 − φ2) + ρ2ρ3 cos(φ2 − φ3)]

+λ
(
1− ρ21 − ρ22 − ρ23

)
, (3)

where λ is the Lagrange multiplier associated with the
constraint.

The dynamical variables of the classical system are the
ρk’s and the phase differences φk,k+1 = φk − φk+1. To
find the stationary points, we first compute the partial
derivatives in the phase-difference variables,

∂H̄cl

∂φ12
= sinφ12 = 0

∂H̄cl

∂φ23
= sinφ23 = 0, (4)

which gives φ12 = nπ and φ23 = mπ, where n,m are
integers.

Since the cosines of the phase differences are limited
to ±1, they can be absorbed as a phase to ρk. This
means that to obtain the stationary points, we can use
the simplified Hamiltonian,

H̄eq =U
(
ρ21 − ρ22 + ρ23

)2
+ ε
(
ρ23 − ρ21

)
+J
√

2 (ρ1ρ2 + ρ2ρ3)

+λ
(
1− ρ21 − ρ22 − ρ23

)
, (5)

and solve the following fours equations in the variables
(ρ1, ρ2, ρ3, λ),

∂H̄eq

∂ρ1
=
∂H̄eq

∂ρ2
=
∂H̄eq

∂ρ3
=
∂H̄eq

∂λ
= 0. (6)

The values of the phase differences are then simply in-
ferred from the sign of ρkρk+1, a positive (negative) value
for ρkρk+1 implies that φk,k+1 is zero (φk,k+1 = π).
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TABLE I. Case U = 0U = 0U = 0: Exact expressions for the energies and variables (N1, N2, N3, φ12, φ23) of the three stationary points.

Stationary point Energy E/N N1/N N2/N N3/N (φ12, φ23)

x1 0
J2

2(ε2 + J2)

ε2

(ε2 + J2)

J2

2(ε2 + J2)
(0, π)

x2 −|ε|
√
ε2 + J2

ε

[ε2 + J2 +
√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2
J2

2(ε2 + J2)

[ε2 + J2 −
√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2
(π, π)

x3
|ε|
√
ε2 + J2

ε

[ε2 + J2 −
√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2
J2

2(ε2 + J2)

[ε2 + J2 +
√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2
(0, 0)

III. INTEGRABLE LIMITS

The analysis of the integrable points provides the min-
imum energies of the semiclassical limit exactly and
serves as a preparation for the study of the nonintegrable
regime.

A. Case U = 0U = 0U = 0

In the absence of interaction, U = 0, there is no phase
transition. This regime is referred to as Rabi in the case
of two wells and no tilt [49] and the term has been bor-
rowed also for the tilted triple-well potential [36]. The
solution of Eq. (6) reveals three stationary points, x1,
x2, and x3. The expressions for the energies and for the
variables (N1, N2, N3, φ12, φ23) of these critical points are
provided in Table I. The sign of J does not affect the re-
sults, so we fix J > 0. For ε < 0 the minimum energy
comes from x3 and for ε > 0 it comes from x2, as illus-
trated in Fig. 2 (a).

The dependence of the occupation number of the wells
on J/ε for the stationary point with lowest energy is
shown in Fig. 2 (b). When |ε| � |J |, the bosons are
confined to well 1, which is understandable, since this is
the deepest well. As the magnitude of the hopping am-
plitude gets larger than the magnitude of the tilt, the
particles spread through the wells. In the extreme sce-
nario of |ε| � |J | [not reached in Fig. 2 (b)], where the
wells are nearly symmetric, half of the bosons become
localized in well 2 and the other half splits equally be-
tween the wells 1 and 3 due to the symmetry between
these wells.

1. Quantum-classical correspondence: U = 0

The results for the energy and for the mean values
of the occupation numbers, 〈Ψ0|N̂k|Ψ0〉, for the ground
state |Ψ0〉 of the quantum Hamiltonian are also depicted
in Figs. 2 (a)-(b) with circles. There is excellent agree-
ment with the semiclassical results. In fact the agree-
ment is perfect for even a single particle, because the
model in the absence of interaction is in the semiclassical
regime. When N = 1, there are just three eigenstates, all
of them coherent, which can be verified from the perfect
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FIG. 2. Case U = 0U = 0U = 0: Energies of the 3 stationary points (a)
and occupation numbers N1, N2, and N3 for the minimum
energy state (b); J > 0 and N = 20. Solid lines are for the
semiclassical results and circles for the quantum ground state.

coincidence with the semiclassical values. For N > 1,
the quantum coherent states correspond to the minimal,
intermediate, and maximal equilibrium points obtained
in the semiclassical limit.

B. Case J = 0J = 0J = 0

Following the definition in Ref. [49], the case J = 0
is an extreme Fock regime, where quantum tunneling
is forbidden and the occupation number (Fock) states
are the eigenstates of the Hamiltonian. The solution of
Eq. (6) for the semiclassical limit gives 5 different sta-
tionary points, x1, x2, x3, x4, and x5, whose energies
and variables (N1, N2, N3, φ12, φ23) are given in Table II.

The point x2 (x5) exists only if |U | ≥ |ε|/4, because
according to Table II, for |U | < |ε|/4, the occupation
number N3 (N2) becomes negative. One also sees in Ta-
ble II that changing the sign of ε simply interchanges
x1 with x4 and x2 with x5, so we assume that ε > 0.
When U < ε/4, the minimum energy is determined by
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TABLE II. Case J = 0J = 0J = 0: Exact expressions for the energies and variables (N1, N2, N3, φ12, φ23) of the five stationary points.
The points x2 and x5 exist only if |U | ≥ |ε|/4.

Stationary point Energy E/N N1/N N2/N N3/N (φ12, φ23)
x1 U + ε 0 0 1 arbitrary

x2 − ε2

16U
+
ε

2
0

1

2
+

ε

8U

1

2
− ε

8U
arbitrary

x3 U 0 1 0 arbitrary
x4 U − ε 1 0 0 arbitrary

x5 − ε2

16U
− ε

2

1

2
+

ε

8U

1

2
− ε

8U
0 arbitrary

the stationary point x4, while for U > ε/4, the minimum
energy is given by x5. At U = ε/4, there is a bifurcation,
as shown in Fig. 3 (a), which indicates a phase transition.

The phase transition is of second order. This can be
verified by defining an arbitrary unitary vector, v =
v1x + v2y and ∇ =

(
∂
∂U ,

∂
∂ε

)
, and using the directional

derivative in the plane (U, ε). The first derivatives(
(v · ∇)

E4

N

)∣∣∣∣
U=ε/4

=

(
(v · ∇)

E5

N

)∣∣∣∣
U=ε/4

= v1 − v2,

are equal, but not the second derivatives for v2 6= 4v1,(
(v · ∇)2

E4

N

)∣∣∣∣
U=ε/4

= 0(
(v · ∇)2

E5

N

)∣∣∣∣
U=ε/4

= − (v2 − 4v1)
2

8U
,

which, according to the Ehrenfest criterion [50], implies
a second-order phase transition.

For the stationary point with lowest energy, N3 = 0,
so in Fig. 3 (b) we show only N1 and N2 as a func-
tion of U/ε. These two occupation numbers are good
order parameters and clearly mark the phase transition
at U = ε/4. For U < ε/4, the lowest energy is obtained
by having all bosons on well 1, while for U > ε/4, the
bosons distribute between well 1 and well 2, and they
become equally distributed when U � ε.

1. Quantum-classical correspondence: J = 0

Since the quantum Hamiltonian is diagonal in the Fock
basis |N1, N2, N3〉, finding the energy of the ground state
comes down to finding the set of non-negative integers
(N1, N2, N3) that minimizes the expression

U

N
(N1 −N2 +N3)

2
+ ε (N3 −N1) (7)

and satisfies N1+N2+N3 = N . As seen in Fig. 3 (a), the
quantum-classical correspondence for the lowest energy is
excellent. In fact, for U < ε/4, where all the bosons are
on well 1, the agreement holds for any number of bosons,
including the limiting case N = 1. When U > ε/4, to
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FIG. 3. Case J = 0J = 0J = 0: Energies of the 5 stationary points (a)
and the occupation numbers N1 and N2 for the minimum
energy state (b); ε > 0 and N = 20. Solid lines are for the
semiclassical results and circles for the quantum ground state.
N3 is zero for the lowest energy state.

lower the energy, the system needs to decrease the term
U
N (N1 −N2 +N3)

2
, which can be achieved by placing

part of the bosons on well 2. The quantum-classical
agreement for the energy is good for small values of N
when the number of particles is even, N = 2, 4, while for
an odd number, larger N ’s are needed.

In the case of the occupation numbers, since the
mean values 〈Ψ0|N̂k|Ψ0〉 are integers, when U > ε/4,

a large number of particles is needed for 〈Ψ0|N̂1|Ψ0〉 and

〈Ψ0|N̂2|Ψ0〉 to properly follow the classical curves, as
shown in Fig. 3 (b). The exception is the case where
U � ε and N1 = N2, for which the quantum-classical
agreement holds for any even N .
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TABLE III. Case ε = 0ε = 0ε = 0: Exact expressions for the energies and variables (N1, N2, N3, φ12, φ23) of the five stationary points.
The points x4 and x5 exist only if |U | ≥ |J |/2. Notice that N1 = N3.

Stationary point Energy E/N N1/N = N3/N N2/N (φ12, φ23)
x1 U 1 0 (0, π)
x2 J 1/4 1/2 (0, 0)
x3 −J 1/4 1/2 (π, π)

x4 U +
J2

4U

1

4
+

1

8

√
4− J2

U2

1

2
− 1

4

√
4− J2

U2
(π, π) if U/J < −1/2, (0, 0) if U/J > 1/2

x5 U +
J2

4U

1

4
− 1

8

√
4− J2

U2

1

2
+

1

4

√
4− J2

U2
(π, π) if U/J < −1/2, (0, 0) if U/J > 1/2

C. Case ε = 0ε = 0ε = 0

The solution of Eq. (6) for ε = 0 gives ten solu-
tions for (ρ1, ρ2, ρ3) from which only five are different,
x1, x2, x3, x4, and x5. The energies and variables
(N1, N2, N3, φ12, φ23) for these five stationary points are
provided in Table III. Since the three wells have the same
depth (ε = 0) and the Hamiltonian is invariant by switch-
ing wells 1 and 3, all the stationary points have N1 = N3.
Changing the sign of J just interchanges x2 with x3, so
we assume that J > 0. The points x4 and x5 have the
same energy and they only exist for |U | ≥ J/2, when the
Nk’s are real numbers.

In Fig. 4 (a), we show the energies for the five sta-
tionary points as a function of U/J . The minimum
energy corresponds to the stationary points x4 and x5
when U < −J/2, while for U > −J/2, the minimum en-
ergy corresponds to x3. Moving from positive U towards
the negative values, a bifurcation appears at U = −J/2,
which indicates a phase transition. Indeed, using the di-
rectional derivatives in the plane (U, J), we verify that
this is a second-order phase transition.

The occupation numbers presented in Fig. 4 (b) for x4
and in Fig. 4 (c) for x5 behave as typical order param-
eters, exhibiting an abrupt change at the critical point
U = −J/2. When the onsite interaction is attractive
with U < −J , there are two possible scenarios: either
the particles are equally distributed between wells 1 and
3 for x4 [Fig. 4 (b)] or the particles are all contained in
well 2 for x5 [Fig. 4 (c)]. Approaching the phase transi-
tion, there is some leakage between those two scenarios.
For U > −J/2, Fig. 4 (b) and Fig. 4 (c) become identi-
cal, since this is the region determined by x3, where the
bosons get spread out through the wells, half of them
in well 2 and the other half equally distributed between
wells 1 and 3.

1. Quantum-classical correspondence: ε = 0

The presence of two stationary points, x4 and x5, both
with the same minimum energy for U < −J/2, gets
manifested as a degenerate quantum ground state. This
is shown in Fig. 5 (a), where we depict the difference
between the energies of the first excited state and the
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FIG. 4. Case ε = 0ε = 0ε = 0: Energies of the 5 stationary points (a)
and the occupation numbers Nk for the minimum energy state
from x4 (b) and x5 (c); J > 0 and N = 20. Solid lines
are for the semiclassical results and circles for the quantum
ground state. The quantum results for 〈Nk〉 are shown only
for U > −J/2. Results for U < −J/2 are discussed in Sec. IV.

ground state as a function of U/J (circles) and confirm
that E1 − E0 = 0 for U < −J/2.

In Fig. 5 (a), we also show the energy difference be-
tween the second excited state and the ground state as
a function of U/J (triangles). The crossing point for the
curves (E2 − E0)/(NJ) and (E1 − E0)/(NJ) indicates
that E2 = E1, and since at this point the two energy
differences are smaller than 10−1, it can be seen that
E2, E1 ∼ E0. This reflects the semiclassical result at
U/J = −1/2, where the green and red lines in Fig. 4 (a)
coincide, that is, the stationary points x3, x4 and x5 have
the same energy.

In Fig. 5 (b), we compare the lowest classical energy
(solid line) with the energy of the ground state (sym-
bols). For U < −J/2, the quantum-classical correspon-
dence holds for few bosons, N & 5, and for U � −J/2,
the agreement is very good for as few as N = 2 (not
shown). In contrast, when the interaction becomes re-
pulsive, U/J > 0, a larger number of particles is needed
for a good quantum-classical correspondence, as evident
from the results forN = 10 (triangles), N = 40 (squares),
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FIG. 5. Case ε = 0ε = 0ε = 0: Energy differences E1−E0 (circles) and
E2 − E0 (triangles) in (a); classical energy (solid line) and
quantum ground state energy for N = 10 (triangles), N = 20
(squares), and N = 60 (circles) in (b); energies of the triple-
well system with ε = 0 (blue lines) and of the double well
system (green circles). In (a) and (c): N = 20.

and N = 60 (circles) in Fig. 5 (b).
When it comes to the comparison between the quan-

tum and semiclassical results for the occupation num-
bers, the scenario changes. For U/J ≥ 0, the agree-
ment is already excellent for N = 1 (not shown). This
is understood, because for U = 0, the system is in the
semiclassical regime, as discussed in Sec. III A 1, with
(N1 +N3)/N = N2/N = 1/2; and for U > J , the lowest
energy is reached by vanishing the term U(N1−N2+N3),
so the mean occupation numbers remain the same as
those for U = 0. In Fig. 4 (c), we show the mean values
of the occupation numbers (circles) for U > −J/2 and
N = 20, and the quantum-classical agreement is indeed
excellent. For U < −J/2, due to the degeneracy of the
ground state, any superposition of the packages centered
at |Nx4

1 Nx4
2 Nx4

3 〉 and at |Nx5
1 Nx5

2 Nx5
3 〉 are valid ground

states, so we leave the comparison between the semiclassi-
cal values of Nk’s and 〈Ψ0|N̂k|Ψ0〉 for this range of values
of U to the next section, where all parameters, including
ε, are non-zero, so the degeneracy is lifted.

It is informative to make a parallel between the sym-
metric triple-well potential and the symmetric double-
well potential. By introducing a new annihilation op-

erator b̂ =
√

2â1 =
√

2â3, the quantum Hamiltonian (1)
becomes equivalent to a double-well Hamiltonian,

Ĥ =
U

N

(
b̂†b̂− N̂2

)2
+ J

(
b̂†â2 + â†2b̂

)
. (8)

Both Hamiltonians lead to a symmetry in the spec-
trum, where the eigenvalues changes sign, E → −E,
as the interaction changes from attractive to repulsive,
U/J < 0 → U/J > 0. As |U |/J increases from zero, the

eigenvalues from Ĥ (1) [blue lines in Fig. 5 (c)] approach

those from Ĥ (8) [green circles in Fig. 5 (c)]. This be-
comes evident first for the extreme values, the ground
state energy for U/J < 0 and the highest eigenvalue for
U/J > 0, and it gradually reaches the other levels. In the
limit |U |/J →∞, the Fock states become the eigenstates
and the energies of both models then coincide. In the par-
ticular case of the triple-well system, it is clear that in
this limit, the states |N1, N2, N3〉 and |N2−n,N1+N3, n〉
with 0 ≤ n ≤ N2 have the same energy and the degen-
eracy has order N + 2 [or degeneracy of order (N + 2)/2
for the state in the middle of the spectrum].

IV. NONINTEGRABLE REGIME

For the general case, where U 6= 0, J 6= 0, and ε 6= 0,
analytical solutions are no longer available, so our studies
are numerical. As we explain in the appendix A, to find
N2 it is necessary to solve a seventh degree polynomial,
which in general does not have an analytical solution.

We start the study of this section in comparison with
the one presented in Sec. III C for ε = 0. Here again
we assume that J > 0 and also that ε > 0 (ε < 0
simply exchanges the roles of N1 and N3). As seen in
Fig. 6 (a), by tilting the potential, the bifurcation ob-
served at U/J = −1/2 in Fig. 4 (a) now vanishes. This
implies that for ε 6= 0, there is no longer a phase transi-
tion, but only crossovers. The crossovers can be seen in
two directions as described in the next two paragraphs.

For a fixed value of ε/J < 1, as U/J goes from negative
to positive values, there is a clear change in the behav-
ior of the occupation numbers. For example, as seen in
Figs. 6 (b)-(d) and also in the density plots in Fig. 7 (b),
N2/N is always zero when U/J < −1/2, but it becomes
equal to 1/2 for repulsive interaction.

For a fixed value of U/J , as ε/J increases from zero, N3

decays to zero and N1 increases, as one sees by comparing
Fig. 6 (b), Fig. 6 (c), and Fig. 6 (d) and by examining
the density plots in Fig. 7 (a) and Fig. 7 (b). The change
in the values of N3/N (N1/N) from 1/2 to 0 (from 1/2 to
1) is abrupt when U/J < −1/2. This is evident from the
very narrow lines seen close to ε/J = 0 for which N1 ∼
N3 ∼ 1/2 in the density plots of Fig. 7 (a) and Fig. 7 (c).
When the interaction is repulsive, N3/N decays smoothly
from 1/4 to 0 as ε/J increases and N1/N grows beyond
1/4 reaching a point, close to ε/J ∼ 1, where N1 = N2 =
1/2. If the tilt keeps increasing, so that ε/J > 1, N1

naturally increases aboveN2, but we disregard this trivial
scenario and restrict our discussion to 0 < ε/J < 1.

In the next two subsections, we have a closer look at
the behaviors of the occupation numbers for U/J < −1/2
and for repulsive interaction U/J > 0.
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FIG. 7. Case J, U, ε 6= 0J, U, ε 6= 0J, U, ε 6= 0: Density plots for the semiclassi-
cal results of the occupation numbers for different interaction
strengths and tilt amplitudes.

A. Degeneracy lift for U/J < −1/2U/J < −1/2U/J < −1/2

The ground state degeneracy that the system had for
U/J < −1/2 when ε = 0 is lifted for tiny values of the tilt.
This has a dramatic effect on the values of the occupation
numbers N1 and N3, as seen already for ε/J = 10−3 in
Fig. 6 (b), where N1 and N3 no longer coincide. This high
sensitivity of N1 and N3 to the amplitude of the tilt could
be explored for developing new quantum sensors [51].

When U/J < −1/2, as ε/J increases [Figs. 6 (b)-(d)],
the bosons migrate from well 3 to well 1, as expected,
and well 2 remains empty. For values of the tilt as small
as ε/J = 0.3, all particles are already trapped in well 1
and this picture does not change for larger values of ε/J .
The fact that the state is protected against changes in
the value of the tilt could find application for information
storage.

1. Quantum-classical correspondence: ε, J 6= 0,
U/J < −1/2

In Sec. III C, where ε = 0, we mentioned that the
quantum-classical correspondence for the lowest energy
was excellent for few bosons when U/J < −1/2. For
ε/J = 0.5, this agreement is already good for N = 2.
With respect to the occupation numbers, we postponed
the discussion entirely to the present section, where the
ground state is no longer degenerate. The general trend
goes as follows. For a fixed value of the interaction
strength with U/J < −1/2 and a fixed N > 1, the
agreement between the semiclassical values of Nk’s and
〈Ψ0|N̂k|Ψ0〉 improves as ε/J increases from zero, while
for fixed values of ε/J and N , the agreement is bet-
ter as U/J → −∞. In other words, in the vicinity of
U/J ∼ −1/2, a good quantum-classical correspondence
requires a large number of particles, especially if ε/J is
small and close to the critical point for ε = 0.

B. Robustness of N2N2N2 for U/J > 0U/J > 0U/J > 0

When the interaction is repulsive, the ground state for
0 < ε/J < 0.1 is very similar to that for ε = 0, that is,
the fidelity |〈Ψ0(ε = 0)|Ψ0(ε 6= 0)〉| > 0.9. This means
that there is a good range of values of U/J and ε/J ,
with U/J > ε/J , for which the ground state could be
used for quantum information storage. If one quenches
the parameters of the Hamiltonian within those ranges,
the state remains invariant.

As the tilt further increases, ε/J > 0.1, the fidelity de-
cays significantly, because the particles from well 3 move
to well 1 to keep the energy low. However, the occu-
pation number of well 2 remains practically the same,
N2/N ∼ 1/2, up to ε/J . 1. So even for ε/J > 0.1,
the robustness of the value of N2 could still be used for
information storage.

1. Quantum-classical correspondence: ε, J 6= 0, U/J > 0

With respect to the quantum-classical correspondence,
it was shown in Sec. III C that for repulsive interaction
and ε = 0, the agreement between the quantum and semi-
classical results for the occupation numbers holds for a
single boson. This agreement persists for ε/J < 0.1,
but within a smaller range of values of the interaction,
0 ≤ U/J < 1.

V. DISCUSSION

We studied a system of interacting bosons in a triple-
well potential, which can be experimentally realized with
cold atoms. In two integrable limits of the model and
using a semiclassical analysis, we identified two critical
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points associated with second-order quantum phase tran-
sitions. In the nonintegrable regime, the system exhibits
crossovers under changes of the interaction strength or
of the value of the potential tilt with respect to the tun-
neling amplitude. In all cases, we showed that the quan-
tum and semiclassical results for the lowest energy and
the corresponding occupation numbers of the three wells
agree extremely well, and depending on the Hamiltonian
parameters and the quantity, the agreement may hold for
even a single particle.

We found that in certain regions, the lowest energy
state is either very sensitive or robust to changes in the
Hamiltonian parameters, which could find application
for quantum sensing or quantum information storage,
respectively. For attractive interaction, the occupation
numbers of wells 1 and 3 are highly sensitive to the in-
clusion of the potential tilt. For repulsive interaction
and small values of the tilt, the ground state is robust to
changes in both the interaction strength and the tilt.

There are several interesting directions for extensions
of the results presented in this work. They include the
analysis of the higher levels in connection with the notion
of excited state quantum phase transitions; the study of
dynamics, in particular quench dynamics through differ-
ent phases; and the addition of more wells.
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Appendix A: Equations for the nonintegrable regime

For the analysis of the equilibrium points in the non-
integrable regime, we resort again to Eq. (6). This set of
four equations can be reduced to only two if we write ρ1
and ρ3 as functions of ρ2 and L, that is

ρ1 =

√
2

2

Jρ2
L+ ε− 2U (1− 2ρ22)

, (A1)

ρ3 =

√
2

2

Jρ2
L− ε− 2U (1− 2ρ22)

. (A2)

The two equations that determine ρ2 and L become

1

ρ22
− 1 =

J2

2

[
1

[L+ ε− 2U (1− 2ρ22)]
2

+
1

[L− ε− 2U (1− 2ρ22)]
2

]
, (A3)

L+ 2U
(
1− 2ρ22

)
=
J2

2

[
1

L+ ε− 2U (1− 2ρ22)

+
1

L− ε− 2U (1− 2ρ22)

]
. (A4)

Using the definition

X ≡ L− 2U(1− 2ρ22), (A5)

we can reduce Eq. (A3) to one quadratic polynomial in
X2 whose roots determine the expression X(ρ2). In par-
ticular,

X = ±

√√√√ε2 +
Jρ22

2(1− ρ22)

[
J ±

√
J2 + 8

(
1− ρ22
ρ22

)
ε2

]
.

(A6)
For each ρ2, there are 4 possible values of X, of which
only one gives the correct result. The correct result cor-
responds to the value of L in Eq. (A5) that satisfies the
four equations in Eq. (6).

A better option is to eliminate L and reduce Eq. (A3)
and Eq. (A4) to a seventh degree polynomial in ρ22 whose
roots are the equilibrium values of ρ2. Explicitly,

7∑
m=0

Cm(U2, J2, ε2)(ρ22)m = 0. (A7)

The coefficients of this polynomial are shown below,

C0 = −ε2J4, (A8)

C1 = 4ε4J2 + 5ε2J4 + J6 + 64ε2J2U2, (A9)

C2 =− 4ε6 − 12ε4J2 − 12ε2J4 − 4J6

+ 128ε4U2 − 576ε2J2U2 − 16J4U2

− 1024ε2U4, (A10)

C3 =4ε6 + 12ε4J2 + 12ε2J4 + 4J6 − 640ε4U2

+ 1856ε2J2U2 + 80J4U2 + 9216ε2U4, (A11)

C4 =1024ε4U2 − 2560ε2J2U2 − 128J4U2

− 32768ε2U4, (A12)
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C5 =− 512ε4U2 + 1280ε2J2U2 + 64J4U2

+ 57344ε2U4, (A13)

C6 = −49152ε2U4, (A14)

C7 = 16384ε2U4. (A15)

As the roots of a seventh-degree polynomial do not have,
in general, analytical expressions, we resort to numerical
calculations. Taking only the positive solutions for ρ2,
we have at most seven real solutions for each value of
(U, J, ε). With Eq. (A1) and Eq. (A2), we can calculate
the coordinates (N1, N2, N3) and the phases differences
(depending on the sign of ρ1 and ρ3), and using Eq. (5),
we get the energy per particle for each stationary point.
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Bastarrachea-Magnani, P. Stránský, S. Lerma-
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