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Abstract 

Currently, there are many methods to determine the forces and energy necessary to deform cells. 

These methods, however, are slow and require testing outside of the body. In this paper, we 

propose a theoretical method to recover the energy and force vs. indentation curves produced by 

the deformation using an Atomic Force Microscope. The theory depends on parameters such as 

Young’s modulus, object length, and Poisson’s ratio, which are obtained by fitting our 

mathematical expressions to experimental force vs. indentation curves. Thus, our results provide 

a systematic way to measure those material parameters in general, but in particular in soft matter 

where the materials are highly heterogeneous and their properties are often dependent on 

external stresses. 

Introduction 

The Atomic Force Microscope (AFM) is one of the favored tools scientists use for micro and 

nano scale imaging and, of particular interest to the work presented here, soft biological 

nanoparticles, which include blood plasma, red blood cells, and white blood cells [1]. The AFM 

is able to achieve accuracies that standard microscopes cannot because of its capabilities of nano-

meter spatial resolution and piconewton force sensitivity. In its most common version, the AFM 

utilizes a sensor made up of a cantilever rod with a tip at its hanging end. When the tip touches 

or interacts in non-contact with the surface of the particle under observation, the AFM records 

the tip height and the cantilever’s angular deflection; these measurements then enable various 

quantities to be extracted via mathematical, computational postprocessing. Our main goal in this 

thesis is to develop a theoretical model of the sample under study which in turn allows us to 

compute the energy and force versus separation curves produced by the indentation of the sample 

by the AFM tip. This analysis will help us understand how external forces affect cell 

deformation. In the end, we hope that this knowledge will elucidate how certain physical 

parameters such as Young’s Modulus and Poisson’s Ratio affect the force/deformation 

connection. 

 The type of indentation just described and the corresponding force-distance measurement 

is uniquely suited for study via AFM. Due to its direct contact with the specimen, the AFM 

provides mechanical information about the cell that otherwise would not be accessible. We first 
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will provide a general equation that connects the energy and force with the indentation distance 

and the corresponding cell deformation.  

 Our proposed method would also be useful in determining cell contraction and overall 

shape. Cellular contraction, an ongoing research subject, is a phenomenon that drives various 

processes in the body. However, contracting cells only provide a small amount of force and 

stress, which are difficult to monitor inside the body [2]. Regardless of the progress made in 

recent years, there are still many limitations that prevent the determination of these forces. To 

solve these issues, study is often done in vitro, outside the body, which is incredibly difficult, 

cost prohibitive, and slow. Our proposed theoretical method would guide the experiments and 

thus provide a justification for the deployment of these scarce resources. 

 In this paper, I will first explain the theory and background to our work. I will explain the 

method in which we solved the general equations for computing the energy and the force on an 

object. Then I will share the results of our computations regarding specific examples. Finally, I 

will compare our theoretical model to actual experiments conducted in other universities to 

determine the accuracy of our theory.   

Theory 

The starting point for any theory of elasticity is Hooke’s law, a foundational concept used in 

introductory physics courses as well as in advanced research. Developed by British physicist 

Robert Hooke [3] in 1678, he described it as “ut tensio, sic vis” or “the extension is proportional 

to the force.” In its simplest form, Hooke’s law is known as: 

�⃗� = −𝑘 �⃗�            (1) 

where �⃗� is the force acting on the system, k is a proportionality constant dependent on the 

spring, and �⃗� is the displacement from equilibrium. Today’s modern theory of elasticity 

generalizes Hooke’s law to three dimensions such that the strain of an object is proportional to 

the stresses applied to it. These stresses and strains often are non-uniform fields within the body, 

and the proportionality factor is no longer a constant; instead, it is a tensor represented by the 

elasticity matrix [4]. For a three-dimensional system with non-uniform stresses and 

corresponding strains, Hooke’s law is generalized as: 
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�⃗� = 𝐷 𝜀            (2) 

where �⃗� is the stress vector field, D is the elasticity matrix, and 𝜀 is the local strain vector. These 

quantities are given explicitly by: 

𝐷 =

(
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        (4)                  
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        (5)  

In equation 3, 𝜆 and 𝜇 are the Lamè constants given in terms of the physically measurable 

quantities Young’s Modulus 𝑌 and Poisson’s ratio 𝜈 such that  

𝜇 =
𝑌

2(1 + 𝜈)
     (6) 

and 

𝜆 =
𝑌 𝜈

(1 + 𝜈)(1 − 2𝜈)
     (7) 

The scalar quantities 𝜎𝑖, 𝜏𝑖𝑗, 𝜀𝑖, and 𝛾𝑖𝑗 are the normal stresses, the shear stresses, the normal 

strains, and the shear strains respectively. The stresses and strains can be calculated explicitly 

from local deformations in the system. Let �⃗⃗�(�⃗�, �⃗�, 𝑧) be the deformation field of the cell in its 

equilibrium position produced by external forces. Then 
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𝜀𝑖 =
𝜕𝑅𝑖

𝜕𝑥𝑖
      (8)    

 𝛾𝑖𝑗 =
𝜕𝑅𝑖

𝜕𝑥𝑗
+
𝜕𝑅𝑗

𝜕𝑥𝑖
     (9) 

The strain, colloquially defined as the measure of the deformation in the material, is the 

dimensionless vector displacement component of a localized point relative to the same physical 

point of the body in unstressed equilibrium in units of the mesh side length. We will characterize 

the equilibrium, the unstrained starting shape of the body, by a parameter 𝑏0, and its final, 

strained, position by b. The precise form of this characterization will be explained later, but we 

advance here that it will serve to model the indentation of a spheroid by a sharp pin. Therefore, 

the transformation 𝑏0 → 𝑏 induces the vector displacement for the strain at all points within the 

body. We propose in this thesis to build the strains 𝜀  from the transformation 𝑏0 → 𝑏 to model 

how the system deforms and its deformation field, which would then determine the energy and 

the concomitant force of that deformation. We will present a system of equations that determines 

the shape of the object before and after this indentation. Utilizing these equations, we can then 

use equations (8) and (9) to build the strain vector (𝜀). This strain vector multiplied by the matrix 

D (Equation 3) returns the stress on the object, which expresses the internal forces that particles 

in a material exert on their neighboring particles.  

 In order to define �⃗� and 𝜀, we first need to construct the system of equations to define the 

shape of the body. To model the system, by adding a depth-parameter b we modified a cardioid 

[5] such that the individual components of �⃗⃗�(𝑥, 𝑦, 𝑧) can be modeled as: 

�⃗� = 𝐿 (2 𝑎 𝑆𝑖𝑛[𝜃]{1 + 𝑏 𝑎 𝐶𝑜𝑠[𝜃]}) 𝐶𝑜𝑠[𝜙]       (10) 

�⃗� = 𝐿 (2 𝑎 𝑆𝑖𝑛[𝜃]{1 + 𝑏 𝑎 𝐶𝑜𝑠[𝜃]}) 𝑆𝑖𝑛[𝜙]       (11) 

𝑧 = 𝐿 (2 {1 + 𝑏 𝑎} − 2 𝑎 𝐶𝑜𝑠[𝜃]{1 + 𝑏 𝑎 𝐶𝑜𝑠[𝜃]} + 2 𝑏 𝑎 (𝑎 − 1))  (12) 

The cardioid corresponds to setting b to zero in equations (10) through (12). By introducing the 

parameter b, we achieve the following properties for the object’s shape. First, the deformation is 

larger at the object’s surface (a =1).  As a is reduced from one toward zero, the strain diminishes. 

That is, bulk points sense the indentation to a lesser extent than surface points do. Second, 

towards the surface, points close to the indenter (𝜃 = 𝜋) deform more than those close to the 
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substrate. Third, the sharp indenter produces a cusp at the contact point. As complete as this 

description is, and as rich in physical content, we appreciate the possibility of pushing the model 

further toward physical agreement. For example, when dealing with discrepancies between 

theory and reality, one consideration is the reality that at some small scale, tips can no longer be 

infinitely acute and form a finite, blunt surface. This idea, however, will not be pursued any 

further in this study. We leave it as an open problem.   

 In this model, L is a constant dependent on the linear dimensions of the object, a is a 

deformed variable radial coordinate between 0 and 1, and 𝜃 and 𝜙 are variable coordinates in the 

polar plane with 𝜃 having a range between 0 and 𝜋 and 𝜙 having a range of 0 and 2𝜋. Most 

importantly, b is the shape parameter and is related to the indentation deformation (Figure 1, 2). 

The parameter b is introduced, as explained, in such a way that the deformation of the object will 

be enhanced at its boundary while not affecting substantially the center of the body (see Figures 

1 and 2). Taking the Jacobian of the system for the variables a, 𝜃,and 𝜙 and integrating it in a, 𝜃, 

and 𝜙 returns a volume of: 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ ∫ ∫ 𝐽 𝑑𝜙 𝑑𝜃 𝑑𝑎
2𝜋

0

𝜋

0

1

0

→ 𝑉𝑜𝑙𝑢𝑚𝑒 =
32

3
(1 + 𝑏2)𝐿3𝜋     (13) 

Taking the cube root of the result from equation (13) and dividing equations 10, 11, and 12 by 

the cube root of this result normalizes the volume of the system. This gives us: 

�⃗� = 𝐿 (2 𝑎 𝑆𝑖𝑛[𝜃]{1 + 𝑏 𝑎 𝐶𝑜𝑠[𝜃]}) 𝐶𝑜𝑠[𝜙]       (14) 

�⃗� = 𝐿 (2 𝑎 𝑆𝑖𝑛[𝜃]{1 + 𝑏 𝑎 𝐶𝑜𝑠[𝜃]}) 𝑆𝑖𝑛[𝜙]       (15) 

𝑧 = 𝐿 (2 {1 + 𝑏 𝑎} − 2 𝑎 𝐶𝑜𝑠[𝜃]{1 + 𝑏 𝑎 𝐶𝑜𝑠[𝜃]} + 2 𝑏 𝑎 (𝑎 − 1))  (16) 

Using these new equations, we take the new Jacobian of this system and integrate again in 

a, 𝜃, and 𝜙. This returns a volume of 𝐿3 which represents a successful calibration for the volume.  

 Using this calibration, we can now solve for the various values of 𝑅𝑖 for equations (8) and 

(9). 𝑅𝑖 is given by  

𝑅𝑖 = 𝑅𝑖(𝑏 = 𝑏) − 𝑅𝑖(𝑏 = 𝑏0)         (17)        
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where b is the variable deformation parameter and 𝑏0 is the starting value of the deformation 

parameter as discussed above. We will take in this work that 0 < b0 < b < 1 (values of b > 1 give 

double valued shape boundaries which are not physical). 

 One issue with the framework described above is that it defines R as a function of 

�⃗⃗�(𝑥, 𝑦, 𝑧) when it is more naturally given in deformed spherical coordinates a, 𝜃, and 𝜙. To 

bridge this difference, we solved for 𝜀 using Cramer’s rule for linear equations such that: 

𝑊1
𝑊2
𝑊3

=
𝑋1 𝑌1 𝑍1
𝑋2 𝑌2 𝑍2
𝑋3 𝑌3 𝑍3

         (18) 

where 𝑊1 is 
𝜕𝑅𝑖

𝜕𝑎
, 𝑊2 is 

𝜕𝑅𝑖

𝜕𝜃
, and 𝑊3 is 

𝜕𝑅𝑖

𝜕𝜙
.  𝑋𝑖 is the derivative of equation (10) with regards to 

a, 𝜃, and 𝜙 respectively, with similar calculations for 𝑌𝑖 and 𝑍𝑖. 𝜀𝑖⃗⃗⃗ is calculated as: 

  𝜀𝑖⃗⃗⃗ =
det [𝐴𝑖]

det [𝐴]
     (19) 

where 𝐴𝑖 is the matrix formed by replacing the i-th column of A by the column vector W. We 

also utilize this method to solve for the various 𝛾𝑖𝑗. Instead of using equation (9), we reinterpret 

it using Cramer’s method from equation (16) such that: 

𝛾𝑖𝑗 =
det [𝐴𝑖𝑗]

det [𝐴]
+
det [𝐴𝑗𝑖]

det [𝐴]
        (20) 

with similar calculations done for 𝛾𝑖𝑘 and 𝛾𝑗𝑘. 

Now that we can construct 𝜀, and by extension �⃗�, we can evaluate the energy of the system. The 

system of equations modeled by �⃗⃗�(�⃗�, �⃗�, 𝑧) are used to solve for �⃗�, 𝐷, and 𝜀 as discussed before. 

The energy (𝐸𝑠) relates to these parameters such that: 

𝐸𝑠 =
1

2
∭ (�⃗� ∙ 𝜀) 𝑑𝑉

𝑥

𝑉𝑜𝑙𝑢𝑚𝑒

        (21) 

Therefore, for a given initial condition 𝑏0 and a deformation b, we can build the equations 

necessary to compute 𝐸𝑠.  
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Figure 1: When �⃗⃗�(�⃗�, �⃗�, 𝑧) is plotted over 

the ranges of 𝜃 = [−𝜋, 𝜋] and 𝜙 = [0, 2𝜋] 

and a = 1, b = 0, we recover a cardioid 

deformed such that it is a sphere. This 

sphere can be an accurate model for pre-

stressed white blood cells. 

 

 

 As briefly discussed above, the parameter b models an indentation by a sharp pin where 

transformation 𝑏 → 𝑏0 induces the vector displacement for the strain at all points within the 

body. The equilibrium will be characterized as the unstrained starting shape of the body defined 

by parameter 𝑏0 and its final, strained position by b. Both 𝑏0 and b can take values between 0 

and 1, provided that 𝑏0 < 𝑏. 1 The parameter b is important based on how it relates to the 

indentation parameter S. S is obtained by determining the deformation the cell underwent from 

the point force. S is the change in position in the cell as the shape undergoes its deformation from 

the point force. The shape of the object is determined by utilizing equations 14, 15, and 16 and 

setting the parameter a to 1 and 𝜃 to π.2 These values determine the overall shape of the object. 

 
1 Should 𝑏0 be greater than b, this would indicate the object was actually becoming unstressed as the pin is being 

removed. 

2 𝜙 can be set to zero since 𝜃 = 𝜋 regardless of 𝜙. 

Figure 2: �⃗⃗�(�⃗�, �⃗�, 𝑧) is plotted over the 

ranges of 𝜃 = [−𝜋, 𝜋] and 𝜙 =

[0, 2𝜋] and a = 1, b = .9, we recover a 

standard three-dimensional cardioid. 

This deformation accurately models a 

sphere under the influence of a 

cantilever point stress. 
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Under this determination, the X and Y dimensions (Equations 14 and 15) will be zero. However, 

the Z dimension (equation 16) returns the following value: 

𝐿 (
6
𝜋)

1
3

(1 + 𝑏2)
1
3

      (22) 

This equation shows us where the point of the Z dimension is at any deformation b. Since S is 

defined by the change in the deformation, we take equation (22) at the initial position 𝑏0 and 

subtract it by the final position b. This leads to S being defined as: 

𝑆 =
𝐿(
6
𝜋)
1
3

(1 + 𝑏0
2)
1
3

−
𝐿 (
6
𝜋)

1
3

(1 + 𝑏2)
1
3

     (23) 

Using this definition of S, we can now determine the force of the indentation. Classically, the 

force is defined as: 

𝐹(𝑥) = −
𝑑𝑈

𝑑𝑥
     (24) 

Where F(x) is the force on the object and 
𝑑𝑈

𝑑𝑥
 is the change in energy, usually over time or a 

distance. In our experiment, this would mean that the force is determined by the change in 𝐸𝑠 

over the distance indented, S. Therefore, F would be defined as: 

𝐹(𝑆) = −
𝑑𝐸𝑠
𝑑𝑆
        (25) 

However, our original conditions (equations 14, 15, 16) are in terms of b, not S. Therefore, we 

calculate the force required to indent the sphere by: 

𝐹(𝑆) = −
𝑑𝐸𝑠
𝑑𝑏

𝑑𝑏

𝑑𝑆
      (26) 
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where 
𝑑𝑏

𝑑𝑆
 is solved by solving Equation 23 for b and taking the derivative of the result with 

respect to S.3 

 

Comparison with Experiments 

Using the methods described above and using Mathematica in algebra mode, we were able to 

find a general method for the energy of the system.4 

 

While the equation is cumbersome, it can simply be cut and pasted for future use.  It saves the 

user the need to do numerical integrations. This equation allows us to calculate the energy stored 

in the body, and by extension the force, as a function of the indentation s (connected to the shape 

parameter b, see equation 23). Y, L, 𝜐, and 𝑏0 are all constants that are material dependent. As an 

example, we calculated the force on an object with parameters 𝑏0 = 0, 𝜐 = 0.25 and arbitrary 

values of L and Y (Figure 3). We see that for small indentations the force-indentation curve 

quickly grows, then becomes linear for some distance. This matches our original expectations. 

The physical indentation of a cell can be modeled using this equation. The initial rapid 

polynomial growth represents the surface tensions opposing the effect of the indenter. The trend 

linearizes once the surface tension ruptures. The final rapid growth is where the cell approaches 

maximum compression. For example, imagine pushing with your thumb against a ball. At first it 

may be difficult to push down, perhaps because of some microscopic architecture that makes the 

 
3 One issue that arose with this method is that it used a lot of computing power and time to solve these equations 

directly. Therefore, we utilized a numeric approach for certain values. The code for this method can be found in 

Appendix 1. 

4 The equation for force is incredibly long and unable to be simplified. Hence, the code is reproduced in Appendix 1 

for convenience. It runs very quickly in Mathematica and allows us to compute the force from the energy of 

indentation incredibly well. 



12 
 

equilibrium position a strong energy minimum. However, once you push a little and distort the 

underlying structure, it would be easy to push until it reaches a point where the ball’s material 

starts “pushing back” and the force required to push down would grow quickly; this last 

phenomenon is because the microscopic cells are being deformed substantially.  

 

Figure 3: Force-indentation depth curve for initial conditions 

𝑏0 = 0, 𝜐 = 0.25, and arbitrary values of L and Y. Force 

grows with indentation depth.  

 To verify the validity of our method, we compared it to published experimental data. The 

first data set we looked at was “Measurement of Young’s Modulus of Vocal Folds by 

Indentation” by Dinesh Chhetri, Zhaoyan Zhang, and Juergen Neubauer [6]. In their paper, the 

authors performed indentation tests using a range of indenter diameters on single and double 

layer silicone rubber models with a range of cover layer thicknesses with known geometry and 

Young’s moduli in order to assess accuracy of the indentation method for stiffness measurements 

and to estimate the Young’s modulus of the vocal fold. However, the important element for our 

research is their experimentation using point forces on an object and determination of the force 

curves of the system. We were able to digitize their data and compare it to our theoretical force 

curves (Figure 4). For this experiment, we used Y = .05 kpa, L = 35 𝜇m, 𝜐 = 0.25 and 𝑏0 = 0.4. 

As shown in Figure 4, the curves are not a perfect match. There is little discrepancy until the end 

of the model. As the conditions for their materials are unknown, the exact constants are unknown 

as well. However, for the assumptions made this is a fairly good match. At the beginning of the 

indentation, the curves are both nearly linear and largely identical. At large indentation depths, 

the curves diverge as the theoretical curve grows polynomialy. One issue that arose in our data is 

that we did not have their values for the Young’s Modulus, length, or 𝜐. The materials that are of 

interest are often so complex and small that literature values of Y are not available. A 
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measurement of Y requires a combination of stress-strain analysis. Therefore, we obtained these 

values ourselves by fitting our model to the experimental curves. 

 The next data set we looked at was “On the Determination of Elastic Moduli of Cells by 

AFM Based Indentation” by Yue Ding, Guang-Kui Xu, and Gang-Feng Wang [7]. In their paper, 

they note that various studies indicate that the cell is supposed to be linearly elastic within small 

ranges of strain based on analysis of AFM indentation data. However, this study does not 

account for the influences of large deformations and surface tension in cells. Their goal was to 

determine the scale of these influences on the elasticity of cells (Figure 5). Again, the original 

conditions were unknown. Therefore, we adjusted our model by floating the variables Y, L, 𝜐, 

and 𝑏0 to best approximate experimental conditions. For this experiment, we used Y = .0001 kpa, 

L = 8.4 𝜇m, 𝜐 = 0.25, and 𝑏0 = 0.4. When comparing this data to the theoretical model, there 

were similar issues as with the previous data set. As shown in Figure 5, the data is not a perfect 

fit. However, both curves are nearly linear at the onset of the experiment. At the end, the 

theoretical model begins to grow polynomialy while the experimental model stops. While it can 

be assumed the experiment did not reach this point in indenting the material, this is just 

speculation and can only be determined by conducting physical experiments on objects with 

known constants. 

 

 

 

                        

Figure 4: Comparison between our theoretical model (solid line) and 

an experimental model (dotted line) (see [6]). For this experiment, 

the model was set to Y = .05 kpa, L = 35 𝜇m, 𝜐 = 0.25, and 𝑏0 =
 0.4.   
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Conclusions 

In this paper we determine that our theoretical model aligns closely with independent 

experimental data. Our theoretical model supports calculating the energy and the force of cell 

deformations of spheroidal objects. One issue that arose with our comparisons is the speculation 

necessary, as we did not know the materials other groups used in their experiments. One way we 

may improve this comparison in the future would be by conducting deformation tests with 

known materials to determine values for the various constants. This would ensure that we can 

accurately prove our model by testing it against known data.  

 

 

 

 

 

 

Experimental Predictive 

Theoretical 

Figure 5: Comparison between the experimental data (dotted line) 

(see [7]) compared to the proposed theoretical model (solid line). 

Since the original conditions are unknown, we adjusted our model by 

playing with the variables Y, L, 𝜐, and 𝑏0. For this experiment, Y = 

.0001 kpa, L = 8.4 𝜇m, 𝜐 = 0.25 and 𝑏0 = 0.4. 
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