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Introduction 
 

Particle image velocimetry, or PIV for short, is a technique in fluid dynamics for 

visualizing and analyzing complex flow in liquids and gasses. It has many applications, such as 

optimization of aerodynamics or hydrodynamics in vehicle design. There are also emerging 

biomedical applications, where it is used to assess blood flow through the heart (Sampath et al., 

2018). Generally, the experimental process involves seeding a flow system with particles that are 

lightweight such that they do not disrupt the system, and reflective, such that they are visible on 

camera when illuminated by a laser. (Though in the biomedical case, image is obtained using an 

echocardiogram (Sampath et al., 2018)). Two exposures are taken, and then the task is to 

determine flow vectors from the displacement of the particles in the two images. 

 

Figure 1: Example of a PIV image pair 



 

Figure 2: Visualization of the particle flow vectors between the two images in the above pair 

Current state-of-the-art methods to determine flow vectors are effective but can be slow 

and difficult to get right. Recent research has been applying machine learning to the task, in the 

hopes of getting accurate results quickly. The purpose of my research has been primarily to 

compare the accuracy of two similar recent methods: one proposed by Cai et al. in 2019 (Cai et 

al., 2019), and another by Zhang and Piggiot in 2020 (Zhang and Piggott, 2020), with the 

eventual goal of testing new methods. Both papers train an existing neural network, LiteFlowNet 

on the same synthetic PIV dataset, but the papers each use different training methods. My intent 

was to compare the accuracy of the two trained networks, with the eventual goal being to try 

other training methods to see how they compare. In addition to training LiteFlowNet, the Cai 

paper proposes a modified version of the network with improved accuracy, but for the purposes 

of this paper, I have chosen to focus on the models based on the same underlying network in 

order to evaluate the effects of various methods of training. The code and data from both original 

papers is available online. 



 I have been doing this research as part of my internship at the Naval Research 

Laboratory, with help from Alisha Sharma and Kaushik Sampath. Training and inference for this 

project have been performed on a compute cluster with a GPU there. 

Background 
 

Machine learning is an umbrella term for algorithms that can change the way they solve 

problems in response to the data they are given. This process is referred to as training. Machine 

learning is usually done with artificial neural networks, which are complex collections of smaller 

units for processing data. While machine learning has existed for many years, it has seen an 

explosion of research and use in the past decade. It has been used to process and find patterns in 

data that would be difficult, expensive, or impossible to analyze using traditional methods. 

Increasing availability of large datasets have enabled progress in some domains (Zhou et al, 

2017). Another major factor leading to the recent leap forward in machine learning is the use of 

graphical processing units, or GPUs for general computing. Originally designed for the purpose 

of 3d rendering, it’s become apparent that GPUs are useful for any task that, like the graphical 

applications for which GPU hardware was originally designed, benefit from significant 

parallelization of math done on matrices. Cryptocurrency mining is one such application, at one 

point popular enough to cause a shortage of GPUs (Sexton, 2017). Machine learning, and more 

specifically, deep learning, involving neural networks with many layers, is the other major 

application that strongly benefits from use of a GPU. Non-graphical uses of GPUs, known as 

general-purpose GPU computing, or GPGPU have been facilitated by APIs like NVIDIA’s 

CUDA, OpenCL, and AMD’s ROCM, all of which make it relatively simple to write code in 

high level languages that takes advantage of GPUs. This capability has been highly beneficial for 

the development of neural network code (Heller, 2017).  



Neural Networks 
 

While many of the ideas underlying modern deep learning with neural networks have 

been around since the 80s and 90s, only in the last decade has the computational power existed to 

make significant use of them. StyleGAN (Karras et al., 2020), is a trained neural network that 

produces human faces that are often indistinguishable from the real thing. Science fiction author 

Arthur C. Clarke is quoted as saying that “Any sufficiently advanced technology is 

indistinguishable from magic.” (New Scientist) But it is crucial to remember that machine 

learning is not magic. Machine learning’s strengths can also be its weaknesses. Neural networks 

may identify patterns in their training data, but they may not be the patterns we want it to pick up 

on. The field is littered with tales like that of the dog/wolf differentiator that actually only 

learned to detect snow in an image (Ribeiro et al, 2016). In one well-publicized instance, 

Amazon had to stop using a recruiting AI they had developed after it became clear that it was 

under-rating female applicants (Dastin, 2018). That Amazon AI wasn’t designed to be sexist, but 

it had been trained on hiring data from a male-dominated workplace in a male-dominated field, 

and had picked up on that hiring pattern on its own. Still, despite the technology’s pitfalls, it can 

do impressive things. 

So, what is a neural network? Artificial neural networks were originally based on 

mathematical models for describing the neurons in an animal brain, but they have use beyond 

and outside their original use in biological modeling (Cios, 2017). In biology, neurons are the 

major cells making up the brain. A neuron consists of three major parts: the soma, or main body 

of the cell, the dendrites, which accept input from other neurons, and the axon, which outputs an 

action potential to other neurons (Animatlab, 2011). Neurons release an action potential only 

once a certain threshold of input from other neurons is reached (Animatlab, 2011). 



Perceptrons 
 

 Perceptron was an early example of an artificial neuron, conceived of and implemented 

in the late 50s by Frank Rosenblatt, then a psychologist at Cornell Aeronautical Laboratory 

(Lefkowitz, 2019). Unlike the more complex networks that would follow, it consisted of what 

would be considered a single layer. This consisted of a weighted sum of several inputs, which 

fed into a step function returning one of two possible values (Wallis). In one demonstration, it 

was able to distinguish between punch cards marked on the left from punch cards marked on the 

right, without explicit direction to do so (Lefkowitz, 2019). 

At the simplest level a perceptron with one input can be described as output = 

weights*inputs (Shen) 

 

Figure 3: Example of a Perceptron 

As you can see from the diagram, regardless of how many inputs a perceptron takes, it 

can only represent a linear equation. Weights are assigned to various forms of input. Using 

Rosenblatt’s demonstration problem, sorting punch cards, as an example, these parameters could 

represent places a hole in the card could be. Say x0 represents whether the card is punched on the 



left and x1 represents whether or not the card is punched on the right. What truly distinguishes 

the perceptron from an elementary linear equation to solve the same problem is that at the start, 

the model does not know how the cards should be sorted. Say we assign both weights (w in the 

diagram) to 1, and set a threshold of 2, meaning that if the weighted sum is greater than or equal 

to 2, the card is moved. 

Now the operator gives the machine a stack of cards. Some are punched on the right, and 

some are punched on the left. The first card is punched on the left, so x0 =1, x1 = 0, wx0 =1 and 

wx1 =0. The weighted sum is 1, which is less than 2, and the card is correctly moved to the left. 

Next, the operator feeds the machine a card punched on the right. This means that wx0 = 0, wx1 = 

1, and the weighted sum is 1. This is lower than the threshold so the card is incorrectly moved to 

the left. We tell the machine that it has made a mistake, and misclassified our card. This is where 

the perceptron learning rule comes in. The perceptron learning rule is the algorithm for 

determining the ideal weights for the inputs of a perceptron (AI Learning). The rule is applied 

here by adding the x values to the weights (If the machine’s mistake had been in the opposite 

direction, meaning we had obtained a value above the threshold that should have been below the 

threshold, we would subtract the x values from the weights) (Hagan et al., 2016). When we apply 

the perceptron learning rule, adding the x values to the weights, we add 0 to w0 and 1 to w1, 

meaning that now w0 =1, and w1 = 2. Now that the perceptron has adjusted its weights, it behaves 

slightly differently. When a card punched on the right is passed into the machine now, wx0 =0, 

and wx1=2. The weighted sum is 2, and the card is correctly sorted to the right. The perceptron 

has been taught to distinguish the cards based on a NAND relationship, Right NAND Left, 

where putting the card to the right would be equivalent to “true” for that logical operation. 



And in fact, many logical relationships can be implemented with a perceptron. And the 

beauty is that there is no need to specify that relationship explicitly. With the perceptron learning 

rule, the perceptron can learn from the examples it is given. For another example, say we have 

the same setup as before, with a perceptron and punch cards. This time the cards may be punched 

on the left side, the right side, on both sides, or on neither side. This time, the we wish to 

separate the unpunched cards from the punched cards, meaning the relationship we want to 

implement is an inclusive OR relationship. We’ll call the two possible piles “True” and “False”. 

Once again, we reset all the weights to 1 and set the threshold at 2, so that if the weighted sum is 

smaller than 2, the card is placed in the “False” pile. First, we give the machine an unpunched 

card. This means x0 = 0, x1 = 0, so wx0 = 0 and wx1 = 0. The weighted sum is 0, smaller than 1, 

and the card is correctly placed in the “False” pile. Next, we feed the machine a card punched 

only on the left. We find that wx0 = 1 and wx1 = 0. The weighted sum is equal to 1, so that card 

is incorrectly classified as “False”. Using the perceptron learning rule, we add the values of x to 

their corresponding weights, so that w0 =2, and w1 =1. Now, when we run a card punched on 

both sides through, wx0 = 2 and wx1 = 1, the weighted sum is greater than 2, it is correctly placed 

in the “True” pile. Finally, we pass in a card punched only on the right. We find that wx0 = 0, 

wx1 = 1, and the card is incorrectly placed in the “False” pile. We alert the machine to its error, 

and it once again uses the perceptron learning rule, updating the weights by adding the associated 

inputs. Now w0 = 2 and w1 =2, and the perceptron is fully trained to sort based on an inclusive 

OR relationship. With these weights, anything passed in previously will be correctly sorted. 

Despite starting with the same initial conditions as before, the perceptron now functions 

following a completely different logical rule, one it uses not because it was told to, but because it 

determined that it was the requirement based on the data. 



But what if we wanted to sort based on an XOR relationship? What if we wanted cards 

punched once in the “True” pile, regardless of whether that hole is punched on the left or the, and 

we wanted cards punched twice or not all in the “False” pile? The perceptron has learned other 

logical operations, so it seems like it should be able to learn XOR. As before, we set the weights 

at 1 and threshold at 2, so that any value under the threshold is considered “False”. Then we start 

sending in our cards. First, we send in a card that is punched on the left, so wx0 = 1, wx1 = 0. The 

weighted sum is 1, and under the threshold, so the card is incorrectly sorted as “False”. As 

before, we apply the perceptron learning rule, adding the inputs to the relevant weights. Now w0 

= 2, w1 =1. Next, we send in a card punched on both sides. We find that wx0 = 2, wx1 = 1, so the 

weighted sum is 3, which is over the threshold. The double-punched card is incorrectly placed in 

the “True” pile. We apply the perceptron learning rule again. This time, since the output was 

over the threshold, we subtract the inputs from the weights, meaning that now w0 = 1, w1 = 0, 

and the problem with this tool for this problem has become clear. If we pass in another card 

punched only on the left, it would again be sorted incorrectly “False”, we would increase w0 by 

1, only to have to decrease it again when the perceptron incorrectly puts a double-punched card 

in the “True” pile. Perceptrons can do some things, but they can’t do everything. 

Rosenblatt demonstrated that a perceptron could function as a binary classifier, but the 

perceptron has a major limitation. What was proved by Marvin Minsky, a contemporary of 

Rosenblatt’s, and AI researcher at MIT (Lefkowitz, 2019), was that a singular perceptron could 

only classify linearly separable data, or any data that when plotted, could be separated using a 

straight line. Every logical operation except XOR and NXOR (Wallis) is linearly separable, but 

plenty of potentially classifiable things are not.  



Though artificial neurons were proven to have their limits, that did not mean research 

into their uses was a dead end. In the 1970s and 80s (Hagan et al., 2016) it was discovered that 

more complex data could be classified by chaining together multiple individual artificial 

neurons. A perceptron with its input dependent on the output of another perceptron could deal 

with nonlinear classifications. This approach is known as a multi-layer perceptron or a neural 

network (AI Learning). Going back to our XOR problem, if we allow ourselves more than one 

perceptron, we can chain them together to differentiate based on the XOR relationship. A XOR 

B can also be expressed as (A OR B) AND (!A OR !B) (Hagan et al., 2016).  

 

Figure 4: Multilayer Perceptron 

We can build that using what we know already. We can see how this might work if we 

treat trained perceptrons like the logic gates they have learned to imitate. We can hook the input 

up to two separate perceptrons, train them on the two OR relationships, then hook the output of 

those perceptrons to a third perceptron, and train that to distinguish an AND relationship. Now 

we have a multilayer perceptron. What we would consider the first layer would be the part 



consisting of the two perceptrons connected to the inputs. The second layer would consist of the 

single perceptron connected to the output. 

Gradient Descent and Backpropagation 
 

Now that it is established that a solution for an XOR classifier exists for this 

configuration of perceptrons, the next question is how one would train such a thing. Trainability, 

after all, is one of the big advantages of the neural approach, but if one can only train individual 

perceptrons, there would seem to be no real benefit to chaining them together. But there is a 

process for training a multilayer network, known as gradient descent (Nielsen, 2015). To perform 

gradient descent, we must introduce the concept of loss, or error. Several functions exist for 

determining this value, and they will be discussed in greater depth further on. Whichever loss 

function we decide to use, we use it by running input through the network, then finding the loss 

between the desired output and the actual output, then applying gradient descent (Hagan et al., 

2016). Gradient descent is in essence, an optimization. One can conceptualize the loss as a 

function of the weights and input. In any particular example, the inputs would function as 

constants, since the input is the input, and the weights are changeable variables. The goal is to 

find the set of weights that is the minimum of this loss function (Nielsen, 2015). In its simplest 

form, one would find the the derivative of the loss with respect to each of the weights (Hagan et 

al., 2016). We would use that derivative to the adjust the parameter weights in the correct 

directions to minimize future losses (Nielsen, 2015). The appropriate step size is problem-

dependent, and the parameter governing the degree to which weights can shift in a single 

iteration is referred to as the learning rate. This learning rate needs to be low enough that the 

algorithm doesn’t overshoot the minimum it is meant to be locating, but high enough that the 

training process can be completed before the heat death of the universe. With enough iterations 



of this optimization, we should be able to minimize the loss (Nielsen, 2015), meaning that the 

output of the trained neural network should be more accurate than it would have been before 

training. 

Although the we know the weights affect the loss, actually determining the loss in terms 

of the weights so that we know how to change them seems difficult. The specific algorithm for 

obtaining that gradient of the weights is known as backpropagation, and was only invented in the 

70s (Nielsen, 2015). The loss function in its simple form seems would seem to be a function of 

the final network output, since it is determined the gap between the final network output and the 

expected output, but that output is affected by the network weights, which is how we can have 

that understanding of the loss as a function of the network weights (Nielsen, 2015). The 

backpropagation algorithm goes back layer by layer, from the output to the input, finding loss in 

terms of the preceding layer weights, those weights in terms of the weights before them, and so 

on and so forth, eventually calculating that necessary gradient in its entirety (Nielsen, 2015), 

allowing us to train networks of neurons. 

By chaining artificial neurons together, we would seem to get closer to how a biological 

brain might work. However, a criticism of neural networks research is that since so little is 

understood about the way that human and animal brains operate, there is no reason to assume 

that any artificial neural network will be able to truly understand things the way humans can 

(Watson, 2019).  Regardless of whether or not any hypothetical artificial neural network could be 

said to be truly intelligent, neural networks have, at the very least, proved to be useful, and to be 

an improvement over models that existed in the past for certain tasks.  

When artificial neurons are chained together, several factors affect how the resulting 

network functions. One major task when designing a neural network is determining what data 



neurons pass on to the other neurons in the network. On the individual neuron level, this is done 

through what is known as the activation function. Activation functions is what determines the 

ultimate output of an artificial neuron based on the weighted sum of the input (Sharma, 2017). 

Early artificial neurons used a step function (Wallis), where it would fire if the weighted sum of 

the inputs met a certain threshold (Sharma, 2017). This Boolean output replicates the behavior of 

a biological neuron, which either generates an action potential, or does not generate an action 

potential. This functions like the threshold in our examples of individual perceptrons, where 

either the output is true, or the output is false. This type of activation function is useful for binary 

classifiers, where two mutually exclusive results are possible. However, it is not suited to more 

complex classification tasks, where one wants one result out of multiple possibilities (Sharma, 

2017), which is why many other activation functions exist. The linear activation function is 

proportional to the weighted sum of the neuron’s inputs, which allows for a range of outputs 

(Sharma, 2017). In the example of a classifier, the outcome with the largest output would be 

chosen as the result. Where a step function could be used to classify between two categories 

(assuming separability under limitations established by Minsky), a linear function could classify 

between several possibilities. However, the derivative of the linear function is a constant 

(Sharma, 2017), so when weights are adjusted using the gradient descent algorithms discussed 

earlier, the change in weight will be constant, rather than proportional to the error, meaning that 

even if multiple neurons are used, the network will only be able to classify linearly separable 

data, because multiple linear functions chained together is still a linear function. Only by using a 

nonlinear activation function in the neural network can this limitation be avoided. An example of 

a nonlinear activation function is the sigmoid function. It can be graphed as a curve which is 

steep towards the middle of the range, and less steep near the extremes. This means it tends to 



make a clear distinction (Sharma, 2017) (though nothing will ever be quite as clearly distinct as 

the step function). Like a step function, the sigmoid activation is bounded between 0 and 1. 

Another nonlinear activation function, particularly common in the convolutional neural networks 

used for many computer vision tasks, is known as a rectified linear unit, or ReLu. A ReLu 

activation function is linear when input is positive, and 0 if when the input from the neuron is 

negative (Sharma, 2017). This makes for more efficient networks than some other activation 

functions since it means the relatively high chance of a 0 output means fewer inputs to 

subsequent layers, an important consideration in computer vision where there can be a nearly 

unmanageable number of parameters. However, the gradient of the zero section of the ReLu 

activation is zero, meaning the partial derivatives of those weights will be 0, meaning that when 

gradient descent is applied, there will be no change to those particular weights regardless of 

error, which means that the network could essentially train itself into a corner, where it can no 

longer improve its predictions, because the gradients will not change the weights that need to 

change. One solution to this problem is known as a leaky ReLu, which makes the response to 

negative input a small non-horizontal line, reintroducing a small gradient into the 

backpropagation process, allowing the weights to slowly shift if they are in that condition. Leaky 

ReLu is the activation function used by LiteFlowNet, the neural network with which the 

experimental portion of this paper is concerned (Hui et al., 2017). 

Loss 
 

As networks and the data fed to them grow more complex, so does the process of 

determining error. While with our single perceptron, all we needed to do was to identify the 

whether the error was positive or negative (true instead of false, or false instead of true), and then 

apply the perceptron learning rule, determining error in order to adjust weights is not as simple 



for larger networks. Even when the same general idea of gradient descent and backpropagation is 

being used, there are many ways to approach learning. Some components that make up these 

variable approaches are the loss function, also known as an error function or objective function 

(Nielsen, 2015), and the optimization function. The loss function determines how far the output 

is from what it should be. The optimizer determines how and when gradient descent should be 

applied, shifting the weights in response to the loss (Nielsen, 2015). For a network that only 

needs to output a single number, the loss may very well be something as simple as the difference 

between the network’s output and the correct output. One common loss function, known as Least 

Absolute Deviations, or L1 loss, is that idea applied to larger output data. In many cases the 

output of a neural network will be an array of values. L1 loss is the sum of the differences 

between each individual point and the corresponding value in reference array (Shekhar, 2019). 

L2 loss, also known as Mean Squared Error, is similar, but each individual error is squared 

before being summed up (Shekhar, 2019). Average End Point Error, or EPE, is used for 

validation purposes by Zhang and Piggott (Zhang and Piggott, 2020). It seems to be fairly 

common for evaluating optical flow calculations (Baker et al.), and it is one of the metrics used 

for evaluating performance on the Middlebury optical flow benchmark. It involves finding the 

average difference between values in the network output, and values of the ground truth, but 

does this from the perspective of vectors rather than pixels (Zhang et al., 2017). 

Once we know the loss, we can change the weights to hopefully improve the network. 

Stochastic Gradient Descent, or SGD is a significantly less computationally intensive variant of 

the gradient descent algorithm, which calculates gradient based on a randomly chosen sample of 

the output (Bottou, 2010), at the expense of adding more randomness into the training process. 

Adam is another stochastic optimization method, which has variable step sizes for each 



parameter (Ruder, 2016). This allows training to progress quickly at first, and slow down as it 

approaches the minimum. (Kingma and Ba, 2014). Adam keeps an average of past squared 

gradients that decays exponentially, functioning as a form of momentum (there are also SGD 

variants that use momentum) (Ruder, 2016). Amsgrad is a variant of Adam that determines 

momentum using the maximum of past squared gradients rather than the average, leading to 

better convergence in some cases (Reddi et al., 2018).  

Convolutional Neural Networks 
While there are many different neural network architectures in common use, the one most 

relevant to PIV applications is a type known as a convolutional neural network. Convolutional 

neural networks (or CNNs for short) are designed to take images as input (O’Shea and Nash, 

2015) have been used to great success for computer vision tasks (Cios, 2017). CNNs generally 

contain three types of layer: convolutional layers, pooling layers, and fully connected layers. 

Convolutional layers produce output based on specified parts of the input image, usually using 

ReLu as the activation function (O’Shea and Nash, 2015) The convolution operation involves a 

sort of matrix, significantly smaller than the input image, known as a convolutional kernel. The 

convolutional kernel will slide across the input image, calculating a weighted sum for each 

position, of the data there along with the kernel’s activation map (O’Shea and Nash, 2015). This 

is a relatively efficient way to extract identifiable features from raw image data.  

  

Figure 5: Visual Representation of Convolution from source (Dumolin and Visin, 2016) 



The activation map is how convolution kernels are tuned to pick up on specific features. 

The pooling layers downsample the input they’ve been given, reducing the complexity of the 

model (O’Shea and Nash, 2015), a necessary step for dealing with large complex data like 

images, as well as allowing for aggregation (Dosovitskiy et al., 2015). Max pooling is the most 

common type (O’Shea and Nash, 2015), but more complex pooling methods also exist. The fully 

connected layers then produce output based on the totality of what they’re given from the 

preceding layers, functioning like a more typical neural network in the final stage of inference. 

Unlike the prior layers, each neuron in a fully connected layer is connected to every neuron in 

the layer that follows. The fully connected layers of a CNN convert the representation of the 

image from the convolution and pooling layers to network output. In the case of a classifier, that 

would be the classification. In the case of the optical flow networks be discussed later in this 

paper, that would be a velocity matrix. 

Particle Image Velocimetry 
 

While there has been recent research using neural networks for PIV analysis, there are 

some other more established existing methods for the task. Cross-correlation is one of the 

primary methods for deriving underlying flow vectors from PIV images. The output of that 

method is a sparse vector field (Dabiri). A velocity vector is determined by applying a cross-

correlation algorithm to a specified interrogation area (O’Shea and Nash, 2015). The cross-

correlation operation can be done directly or using a Fast Fourier Transform (O’Shea and Nash, 

2015). Cross-correlation determines the displacement, and along with the known change in time 

between exposures, thus yielding the velocity.  

Optical flow estimation is the other major technique for getting velocity vectors from PIV 

images. As a general concept, optical flow is defined by the way the structure of the light hitting 



a sensor changes (Raudies, 2013). An advantage optical flow estimation methods have over 

cross-correlation is that they are able to produce dense vector output, since analysis is not limited 

by the windowing technique used in cross-correlation. Optical flow estimation has a number of 

applications in the broader world of computer vision. This is beneficial for PIV research, since it 

means that research done for broader vision tasks using optical flow techniques can then be 

turned to PIV, for which optical flow is already an established mode of analysis. Several 

methods exist for optical flow analysis (Raudies, 2013), including methods based on 

convolutional neural networks. 

CNNs for Optical Flow 
 

Enter FlowNet. The abstract to Fischer et al’s landmark 2015 paper states that “Optical 

Flow estimation has not been among the tasks where CNNs were successful”, but their work 

changed that (Dosovitskiy et al., 2015). Unlike earlier computer vision tasks to which CNNs 

were applied, any optical flow application requires not just identifying image features, but 

finding the same features in a subsequent image (Dosovitskiy et al., 2015). The FlowNet paper 

was a landmark use of neural networks for optical flow analysis, and while it didn’t outperform 

the variational methods that formed the state-of-the-art at the time (Dosovitskiy et al., 2015), 

from it sprang all manner of sequels and derivatives. The original FlowNet paper proposes two 

architectures for the task, FlowNetSimple, and FlowNetCorr (Dosovitskiy et al., 2015), referred 

to in later works a FlowNetS and FlowNetC. FlowNetSimple stacks the images together and 

feeds them to what the authors describe as a fairly typical CNN. FlowNetCorr initially processes 

the two input images separately, generating meaningful representations individually, before 

using a “correlation layer”, which makes comparisons between the respective feature maps. 

Notably, FlowNet lacks fully-connected layers. 



 In 2017, a different team of researches attempted to build an improved FlowNet, calling 

it FlowNet2.0. They found that they could make significant improvements just by modifying the 

training methods. They also made some architectural improvements, introducing image warping 

and an iterative refinement process that involved stacking multiple subnetworks, each made up 

of an entire FlowNetC or FlowNetS network. In these stacked models, every subnetwork after 

the firsts would get both the input images and the previous network’s flow estimate. 

The LiteFlowNet paper, published in 2018 (Hui et al., 2017), sought to achieve 

comparable performance to FlowNet2.0 using a smaller model size. Like FlowNet2.0, it warps 

the second image towards the first based on earlier flow estimates, but applies warping to 

extracted features rather than to the image as a whole, and does so several times. (Hui et al., 

2017). LiteFlowNet’s two big ideas are pyramidal feature extraction and feature warping. With 

pyramidal feature extraction, details are determined using a course-to-fine framework (Hui et al, 

2). In the feature warping stage, the extracted features of the second image will be warped to the 

first image, to improve the flow estimate(ibid). This is done several times to refine the flow 

estimate(ibid). 

There has been some recent, promising research on the use of machine learning to 

analyze PIV data. Cai et al.’s 2019 paper, “Particle Image Velocimetry Based on a Deep 

Learning Motion Estimator” (Cai et al., 2019), and Zhang and Piggott’s 2020 paper, 

“Unsupervised Learning of Particle Image Velocimetry” (Zhang and Piggott, 2020) both build 

from LiteFlowNet (Hui et al., 2017) and get results comparable to current state of the art. The 

crucial difference between them is that the Cai paper uses a supervised learning method, while 

Zhang and Piggott’s paper uses an unsupervised learning method, where comparison to ground 

truth is not used to train the model. From a high-level point of view, that unsupervised method 



essentially determines error by comparing the what the first image would look like after the 

predicted flow is applied to it, and comparing that to the second image (and repeating this in the 

opposite direction). While the supervised paper’s method of determining error is in more familiar 

territory, comparing actual output to expected output, the exact loss function it used is more 

complex than the loss functions discussed earlier. LiteFlowNet makes predictions at several 

points in the process of generating its final output, the loss function is a weighted sum of all of 

the losses from all of the predictions (Cai et al., 2019). The unsupervised paper, based on the 

same network, uses a similarly multi-scale approach with its loss function, which makes sense 

given that the LiteFlowNet architecture enables this approach. 

Comparing Pre-trained Models  
 

My first goal experimentally, was to test the performance of the existing models myself. 

Code from both networks is publicly available on GitHub. Though both models are based on the 

same underlying network, PIV-LiteFlowNet is based on the original Caffe version of 

LiteFlowNet while UnLiteFlowNet-PIV is based on a PyTorch port of LiteFlowNet (Niklaus, 

2019). I ran that code on a cluster with a GPU, within Singularity containers for each network’s 

requirements. This was itself an undertaking. At first, I had attempted to install an off-the-shelf 

version of Caffe, using the apt package manager, but found that I could not load Cai’s trained 

model. Eventually, it became clear that their model included custom layers, and to use it, their 

modified version of Caffe needed to be built from their code. While Zhang and Piggott’s 

PyTorch model did not require custom compilation, I had initially assumed that I would be able 

test it out on a CPU. However, their correlation layer includes a custom CUDA kernel, with no 

CPU alternative. This means their model cannot be run without an Nvidia GPU, at least not 

without significant modification. Neither of those difficulties are particularly surprising. Code 



from research papers is shared as a courtesy, not as a product. Neither team made any pretense of 

offering their code as a finished PIV solution. It is not overly surprising that research code may 

not always be easy to use without tweaking. 

Both models were trained with the same dataset (Cai, Zhou, et al., 2019). Each item in 

the dataset consists of two images of a fluid system in motion, and a ground truth. All images are 

256x256 pixel grayscale tiff images. The ground truth is in the Middlebury .flo format, which 

lists the vertical and horizontal components of the flow vector at each point in the image 

(Scharstien, 2007). For a previous paper (Cai, Zhou, et al., 2019), Cai and co-authors had 

simulated some of the flow types directly, including uniform flow, backstep flow (where 

recirculation occurs due to the fluid encountering a step), and flow over a cylinder. Others were 

taken from existing sources, including the 2D DNS turbulent flow (flow with frequent changes in 

pressure and velocity), a surface quasi geographic model (flow of atmosphere across multiple 

isobars, or values of pressure), as well as channel flow, isotropic flow (flow with no directional 

preference,), and magnetohydrodynamic flow (affected by both fluid mechanics and 

electromagnetic forces) from the Johns Hopkins Turbulence Database (JHTDB). This dataset 

comes pre-partitioned into a set for training and a set for testing, both spanning all flow 

conditions included. 

To test the models, I used the test partition included in the Cai dataset. Using both 

models, I ran inference on all image pairs in the test set, then compared normalized output to the 

ground truth, comparing mean squared error between flow conditions and models.  

 

 

 



Flow Type Supervised 
Avg MSE 

Unsupervised 
Avg MSE 

Image Source 

Uniform 4.26E-05 7.57E-2 Cai  
DNS Turbulence 8.94E-3 3.53E-2 http://fluid.irisa.fr/data-eng.htm 

(Memin et al.) 
SQG 1.00E-2 3.5E-2 http://vressegu.github.io/sqgmu/ 

(Resseguir et al., 2016) 
Backstep 1.49E-4 2.00E-3 Cai 
Channel 8.68E-4 3.24E-3 JHTDB 
Channel HD 1.62E-2 8.08E-2 JHTDB 
Isotropic 9.02E-3 3.5E-2 JHTDB 
Magnetohydrodynamic 6.45E-3 2.52E-2 JHTDB 
Cylinder 2.23E-2 1.08E-2 Cai 

Table 1 

 

For most of the flow conditions contained in the Cai dataset, Cai et al.’s supervised 

model produced more accurate output than Zhang and Piggott’s unsupervised model, with one 

exception. In the case of cylinder flow the unsupervised model performs slightly better. The 

physics of flow over a cylinder mean that very small changes to initial conditions have a massive 

effect of the overall flow. Perhaps the seeming discontinuity of this flow type makes it the type 

of condition where an unsupervised model can perform better than a supervised model. 

Noisy Data 
 

One of the advantages claimed by Zhang and Piggott (Zhang and Piggott, 2020) is that 

the unsupervised network should be able to be more robust to noise and other elements that make 

inference on real world data more difficult than it is for idealized synthetic data. We sought to 

test that against a new set of data. Set 001 was generated in house at NRL by Kaushik Sampath. 

All images in this set are generated from the same ground truth, but vary the amount of gaussian 

noise (making up a fraction between 0.0001 an 0.1 of the whole image), mean particle diameter 

(ranging from 3-5 pixels), variation in particle diameter (ranging from 0.5 to 2 pixels), particles 

http://fluid.irisa.fr/data-eng.htm
http://vressegu.github.io/sqgmu/


per pixel (from 0.01 to 0.1) and particle intensity change from frame to frame (between 0 and 1). 

A model that is robust to these variables should be more effective in real-world use, where 

outside conditions and image quality may make an image noisier than simulated images would 

be. Over the set as a whole, the average MSE for PIV-LiteFlowNet is 11.32, and the average 

MSE for UnLiteFlowNet-PIV is 17.07. However, if we only look at examples with greater 

amounts of noise, UnLiteFlowNet-PIV starts to pull ahead. When considering noise only above 

0.06, the average PIV-LiteFlowNet error rises to 23.6, while UnLiteFlowNet-PIV’s average 

mean squared error at that level of noise is only 19.3. Though under ideal conditions, PIV-

LiteFlowNet is more accurate, UnLiteFlowNet-PIV may be more accurate once significant noise 

is added to the image. The UnLiteFlowNet-PIV’s average error rises more slowly than PIV-

LiteFlowNet’s average error, and its standard deviation is relatively stable. UnLiteFlowNet-

PIV’s average mean squared error is better than PIV-LiteFlowNet’s average mean squared error 

at higher levels of noise. Once I had run inference through the models, Kaushik Sampath also did 

some analysis of his own, using L2 loss, as well as calculating standard deviations. When 

compared using L2 loss, UnLiteFlowNet-PIV’s average error is slightly higher than that of PIV-

LiteFlowNet, even at high levels of noise, but its standard deviations are consistently smaller 

once sufficient noise is introduced. It seems when the image is noisy, the supervised model may 

perform better, but may also perform significantly worse than the unsupervised model. The 

unsupervised model by contrast, seems to have a relatively consistent amount of error, in a 

relatively small range. It seems likely that there are applications where the latter behavior would 

be preferable. One may want to have flow data that can be relied on to be at a certain level of 

accuracy, as opposed to data that may be variably accurate and more sharply dependent on 

conditions. However, a researcher using PIV in a more ideal situation where things like noise are 



less of a concern may prefer the unsupervised model, if it would be more accurate in that specific 

scenario. For scenarios with consistently very low noise, PIV-LiteFlowNet would seem to be the 

clear choice between the two. 

 

  
Figure 6: Scatter plot of MSE vs gaussian noise 

 
Figure 7: Same images compared using L2 Norm, averaged, and with standard deviation. Plot by Kaushik Sampath 



 Noise is not the only factor that impacts the accuracy of PIV analysis. Another factor 

towards which the supervised model seems to be more sensitive is particles per pixel. Both 

models seem to do better with more particle density, but once again we see a much greater 

degree of variation from the supervised model, especially when the density is low. 

 
Figure 8: MSE vs. Particles Per Pixel 

 
Figure 9: L2 Error vs. Particles Per Pixel. Plot by Kaushik Sampath 

   



Conclusion 
 Machine learning has the potential to make PIV analysis faster, easier, and more robust, 

but the best possible way to perform this task is still an open question. Comparing various 

approaches to learning on the same model, multi-scale supervised learning is more accurate 

under ideal circumstances, but unsupervised learning may perform better in certain flow 

conditions, and especially in noisy conditions. Though the supervised approach may be more 

accurate in many cases, under sub-optimal conditions, its level of accuracy can be far more 

variable than that of the unsupervised model. Both approaches would seem to have their 

advantages. Whether one could build a model combining the accuracy of the supervised model 

with the robustness of the second remains to be seen.   

Future Work 
 
Training New Models 
 

Seeing these results, which showed that both the supervised and unsupervised approaches 

had different advantages with regards to this problem, I wanted to attempt a hybrid training 

method, where I trained a model partially in a supervised fashion, and partially in an 

unsupervised fashion. To do this, I first built a supervised training loop on PyTorch. For 

simplicity’s sake, I started off with a basic EPE loss, because I had noticed that Zhang and 

Piggiot had used the same loss function for validation (and had kindly provided the code in their 

files), and I was also curious to see how a simple loss function stacked up to the more complex 

LiteFlowNet specific loss. I do also intend to implement a hybrid loss with the multi-scale loss. 

This work is still ongoing. I hope to train models using both types of loss, either starting with 

supervised loss, then switching to unsupervised loss, or starting with supervised and switching to 



unsupervised loss. I would also have to investigate to determine if there is an optimal point in the 

training process to switch loss functions. 

Other Potential Avenues 
 
 In general, there is still considerable work to be done in this area. As the FlowNet2.0 

paper makes clear, existing models can be improved significantly, merely by improving the data 

on which they are trained (Ilg et al., 2017). It would be interesting to see if the multi-scale 

supervised model would perform differently if trained with noisier data. In addition to training 

LiteFlowNet, the Cai paper (Cai et al., 2019) also made some enhancements to the underlying 

network which improved its accuracy. It would be interesting to see how the enhanced network 

responds to noise in comparison with the original network, as well as to re-train that enhanced 

network in an unsupervised or semi-supervised fashion. In general, training networks on more 

realistic synthetic data may produce better results. Some optical flow papers mention using a 

“curriculum learning method” where better results are achieved by training the network on 

simpler data before training it on more complex data (Ilg et al., 2017). Perhaps similar techniques 

could be used to lend these PIV models better robustness to noise. 

 Another potential avenue for future research is to incorporate a physics-informed 

approach, embedding more constraints into the network based on the equations that govern fluid 

systems. It seems likely that more accurate results may be achieved by tailoring the network to 

the specific problem of PIV. 

 The study of machine learning based methods for PIV analysis has progressed 

considerably over the past few years, but there may very well still be room for continued 

improvement. Machine learning methods may be more robust to conditions where traditional 

analysis methods struggle. Though training is time and resource intensive, a trained model 



analyzes an image pair quickly, on the order of hundredths of a second per image pair (when 

running on a GPU), which is significantly faster than conventional methods. This could be 

beneficial in applications like medicine, where time may be crucial. Another downside of 

conventional methods, is that while effective, they are complicated to implement as the correct 

parameters for certain things are problem dependent. A mature machine learning solution could 

potentially work more consistently “out-of-the-box”, with fewer adjustments required to obtain 

acceptable output for one’s specific problem. Though existing code can be difficult to get 

running, with its specific dependencies, this is understandable, as that is research code, meant to 

test an idea. Assuming no insurmountable flaws with the method are discovered, it seems likely 

that machine learning methods will become more popular for PIV, and as that happens, we will 

likely start seeing implementations that are more portable and user-friendly, as it shifts from 

being an experimental technique to a new state-of-the art method. It will be interesting to see 

how the technique develops.  
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