
Machine Learning Approaches for Particle Image Velocimetry

Presented to the S. Daniel Abraham Honor Program

in Partial Fulfillment of the

Requirements for Completion of the Program

Stern College for Women
Yeshiva University

April 27, 2021

Talya H. Stehley

Mentor: Professor Joshua Waxman, Computer Science,

Table of Contents

Machine Learning Approaches for Particle Image Velocimetry ... 1

Introduction .. 3

Background ... 5

Neural Networks ..6
Perceptrons .. 7

Gradient Descent and Backpropagation .. 12

Loss ... 15
Convolutional Neural Networks ... 17

Particle Image Velocimetry ... 18

CNNs for Optical Flow .. 19

Comparing Pre-trained Models .. 21

Noisy Data ... 23

Conclusion ... 27

Future Work .. 27

Training New Models ... 27

Other Potential Avenues .. 28

Introduction

Particle image velocimetry, or PIV for short, is a technique in fluid dynamics for

visualizing and analyzing complex flow in liquids and gasses. It has many applications, such as

optimization of aerodynamics or hydrodynamics in vehicle design. There are also emerging

biomedical applications, where it is used to assess blood flow through the heart (Sampath et al.,

2018). Generally, the experimental process involves seeding a flow system with particles that are

lightweight such that they do not disrupt the system, and reflective, such that they are visible on

camera when illuminated by a laser. (Though in the biomedical case, image is obtained using an

echocardiogram (Sampath et al., 2018)). Two exposures are taken, and then the task is to

determine flow vectors from the displacement of the particles in the two images.

Figure 1: Example of a PIV image pair

Figure 2: Visualization of the particle flow vectors between the two images in the above pair

Current state-of-the-art methods to determine flow vectors are effective but can be slow

and difficult to get right. Recent research has been applying machine learning to the task, in the

hopes of getting accurate results quickly. The purpose of my research has been primarily to

compare the accuracy of two similar recent methods: one proposed by Cai et al. in 2019 (Cai et

al., 2019), and another by Zhang and Piggiot in 2020 (Zhang and Piggott, 2020), with the

eventual goal of testing new methods. Both papers train an existing neural network, LiteFlowNet

on the same synthetic PIV dataset, but the papers each use different training methods. My intent

was to compare the accuracy of the two trained networks, with the eventual goal being to try

other training methods to see how they compare. In addition to training LiteFlowNet, the Cai

paper proposes a modified version of the network with improved accuracy, but for the purposes

of this paper, I have chosen to focus on the models based on the same underlying network in

order to evaluate the effects of various methods of training. The code and data from both original

papers is available online.

 I have been doing this research as part of my internship at the Naval Research

Laboratory, with help from Alisha Sharma and Kaushik Sampath. Training and inference for this

project have been performed on a compute cluster with a GPU there.

Background

Machine learning is an umbrella term for algorithms that can change the way they solve

problems in response to the data they are given. This process is referred to as training. Machine

learning is usually done with artificial neural networks, which are complex collections of smaller

units for processing data. While machine learning has existed for many years, it has seen an

explosion of research and use in the past decade. It has been used to process and find patterns in

data that would be difficult, expensive, or impossible to analyze using traditional methods.

Increasing availability of large datasets have enabled progress in some domains (Zhou et al,

2017). Another major factor leading to the recent leap forward in machine learning is the use of

graphical processing units, or GPUs for general computing. Originally designed for the purpose

of 3d rendering, it’s become apparent that GPUs are useful for any task that, like the graphical

applications for which GPU hardware was originally designed, benefit from significant

parallelization of math done on matrices. Cryptocurrency mining is one such application, at one

point popular enough to cause a shortage of GPUs (Sexton, 2017). Machine learning, and more

specifically, deep learning, involving neural networks with many layers, is the other major

application that strongly benefits from use of a GPU. Non-graphical uses of GPUs, known as

general-purpose GPU computing, or GPGPU have been facilitated by APIs like NVIDIA’s

CUDA, OpenCL, and AMD’s ROCM, all of which make it relatively simple to write code in

high level languages that takes advantage of GPUs. This capability has been highly beneficial for

the development of neural network code (Heller, 2017).

Neural Networks

While many of the ideas underlying modern deep learning with neural networks have

been around since the 80s and 90s, only in the last decade has the computational power existed to

make significant use of them. StyleGAN (Karras et al., 2020), is a trained neural network that

produces human faces that are often indistinguishable from the real thing. Science fiction author

Arthur C. Clarke is quoted as saying that “Any sufficiently advanced technology is

indistinguishable from magic.” (New Scientist) But it is crucial to remember that machine

learning is not magic. Machine learning’s strengths can also be its weaknesses. Neural networks

may identify patterns in their training data, but they may not be the patterns we want it to pick up

on. The field is littered with tales like that of the dog/wolf differentiator that actually only

learned to detect snow in an image (Ribeiro et al, 2016). In one well-publicized instance,

Amazon had to stop using a recruiting AI they had developed after it became clear that it was

under-rating female applicants (Dastin, 2018). That Amazon AI wasn’t designed to be sexist, but

it had been trained on hiring data from a male-dominated workplace in a male-dominated field,

and had picked up on that hiring pattern on its own. Still, despite the technology’s pitfalls, it can

do impressive things.

So, what is a neural network? Artificial neural networks were originally based on

mathematical models for describing the neurons in an animal brain, but they have use beyond

and outside their original use in biological modeling (Cios, 2017). In biology, neurons are the

major cells making up the brain. A neuron consists of three major parts: the soma, or main body

of the cell, the dendrites, which accept input from other neurons, and the axon, which outputs an

action potential to other neurons (Animatlab, 2011). Neurons release an action potential only

once a certain threshold of input from other neurons is reached (Animatlab, 2011).

Perceptrons

 Perceptron was an early example of an artificial neuron, conceived of and implemented

in the late 50s by Frank Rosenblatt, then a psychologist at Cornell Aeronautical Laboratory

(Lefkowitz, 2019). Unlike the more complex networks that would follow, it consisted of what

would be considered a single layer. This consisted of a weighted sum of several inputs, which

fed into a step function returning one of two possible values (Wallis). In one demonstration, it

was able to distinguish between punch cards marked on the left from punch cards marked on the

right, without explicit direction to do so (Lefkowitz, 2019).

At the simplest level a perceptron with one input can be described as output =

weights*inputs (Shen)

Figure 3: Example of a Perceptron

As you can see from the diagram, regardless of how many inputs a perceptron takes, it

can only represent a linear equation. Weights are assigned to various forms of input. Using

Rosenblatt’s demonstration problem, sorting punch cards, as an example, these parameters could

represent places a hole in the card could be. Say x0 represents whether the card is punched on the

left and x1 represents whether or not the card is punched on the right. What truly distinguishes

the perceptron from an elementary linear equation to solve the same problem is that at the start,

the model does not know how the cards should be sorted. Say we assign both weights (w in the

diagram) to 1, and set a threshold of 2, meaning that if the weighted sum is greater than or equal

to 2, the card is moved.

Now the operator gives the machine a stack of cards. Some are punched on the right, and

some are punched on the left. The first card is punched on the left, so x0 =1, x1 = 0, wx0 =1 and

wx1 =0. The weighted sum is 1, which is less than 2, and the card is correctly moved to the left.

Next, the operator feeds the machine a card punched on the right. This means that wx0 = 0, wx1 =

1, and the weighted sum is 1. This is lower than the threshold so the card is incorrectly moved to

the left. We tell the machine that it has made a mistake, and misclassified our card. This is where

the perceptron learning rule comes in. The perceptron learning rule is the algorithm for

determining the ideal weights for the inputs of a perceptron (AI Learning). The rule is applied

here by adding the x values to the weights (If the machine’s mistake had been in the opposite

direction, meaning we had obtained a value above the threshold that should have been below the

threshold, we would subtract the x values from the weights) (Hagan et al., 2016). When we apply

the perceptron learning rule, adding the x values to the weights, we add 0 to w0 and 1 to w1,

meaning that now w0 =1, and w1 = 2. Now that the perceptron has adjusted its weights, it behaves

slightly differently. When a card punched on the right is passed into the machine now, wx0 =0,

and wx1=2. The weighted sum is 2, and the card is correctly sorted to the right. The perceptron

has been taught to distinguish the cards based on a NAND relationship, Right NAND Left,

where putting the card to the right would be equivalent to “true” for that logical operation.

And in fact, many logical relationships can be implemented with a perceptron. And the

beauty is that there is no need to specify that relationship explicitly. With the perceptron learning

rule, the perceptron can learn from the examples it is given. For another example, say we have

the same setup as before, with a perceptron and punch cards. This time the cards may be punched

on the left side, the right side, on both sides, or on neither side. This time, the we wish to

separate the unpunched cards from the punched cards, meaning the relationship we want to

implement is an inclusive OR relationship. We’ll call the two possible piles “True” and “False”.

Once again, we reset all the weights to 1 and set the threshold at 2, so that if the weighted sum is

smaller than 2, the card is placed in the “False” pile. First, we give the machine an unpunched

card. This means x0 = 0, x1 = 0, so wx0 = 0 and wx1 = 0. The weighted sum is 0, smaller than 1,

and the card is correctly placed in the “False” pile. Next, we feed the machine a card punched

only on the left. We find that wx0 = 1 and wx1 = 0. The weighted sum is equal to 1, so that card

is incorrectly classified as “False”. Using the perceptron learning rule, we add the values of x to

their corresponding weights, so that w0 =2, and w1 =1. Now, when we run a card punched on

both sides through, wx0 = 2 and wx1 = 1, the weighted sum is greater than 2, it is correctly placed

in the “True” pile. Finally, we pass in a card punched only on the right. We find that wx0 = 0,

wx1 = 1, and the card is incorrectly placed in the “False” pile. We alert the machine to its error,

and it once again uses the perceptron learning rule, updating the weights by adding the associated

inputs. Now w0 = 2 and w1 =2, and the perceptron is fully trained to sort based on an inclusive

OR relationship. With these weights, anything passed in previously will be correctly sorted.

Despite starting with the same initial conditions as before, the perceptron now functions

following a completely different logical rule, one it uses not because it was told to, but because it

determined that it was the requirement based on the data.

But what if we wanted to sort based on an XOR relationship? What if we wanted cards

punched once in the “True” pile, regardless of whether that hole is punched on the left or the, and

we wanted cards punched twice or not all in the “False” pile? The perceptron has learned other

logical operations, so it seems like it should be able to learn XOR. As before, we set the weights

at 1 and threshold at 2, so that any value under the threshold is considered “False”. Then we start

sending in our cards. First, we send in a card that is punched on the left, so wx0 = 1, wx1 = 0. The

weighted sum is 1, and under the threshold, so the card is incorrectly sorted as “False”. As

before, we apply the perceptron learning rule, adding the inputs to the relevant weights. Now w0

= 2, w1 =1. Next, we send in a card punched on both sides. We find that wx0 = 2, wx1 = 1, so the

weighted sum is 3, which is over the threshold. The double-punched card is incorrectly placed in

the “True” pile. We apply the perceptron learning rule again. This time, since the output was

over the threshold, we subtract the inputs from the weights, meaning that now w0 = 1, w1 = 0,

and the problem with this tool for this problem has become clear. If we pass in another card

punched only on the left, it would again be sorted incorrectly “False”, we would increase w0 by

1, only to have to decrease it again when the perceptron incorrectly puts a double-punched card

in the “True” pile. Perceptrons can do some things, but they can’t do everything.

Rosenblatt demonstrated that a perceptron could function as a binary classifier, but the

perceptron has a major limitation. What was proved by Marvin Minsky, a contemporary of

Rosenblatt’s, and AI researcher at MIT (Lefkowitz, 2019), was that a singular perceptron could

only classify linearly separable data, or any data that when plotted, could be separated using a

straight line. Every logical operation except XOR and NXOR (Wallis) is linearly separable, but

plenty of potentially classifiable things are not.

Though artificial neurons were proven to have their limits, that did not mean research

into their uses was a dead end. In the 1970s and 80s (Hagan et al., 2016) it was discovered that

more complex data could be classified by chaining together multiple individual artificial

neurons. A perceptron with its input dependent on the output of another perceptron could deal

with nonlinear classifications. This approach is known as a multi-layer perceptron or a neural

network (AI Learning). Going back to our XOR problem, if we allow ourselves more than one

perceptron, we can chain them together to differentiate based on the XOR relationship. A XOR

B can also be expressed as (A OR B) AND (!A OR !B) (Hagan et al., 2016).

Figure 4: Multilayer Perceptron

We can build that using what we know already. We can see how this might work if we

treat trained perceptrons like the logic gates they have learned to imitate. We can hook the input

up to two separate perceptrons, train them on the two OR relationships, then hook the output of

those perceptrons to a third perceptron, and train that to distinguish an AND relationship. Now

we have a multilayer perceptron. What we would consider the first layer would be the part

consisting of the two perceptrons connected to the inputs. The second layer would consist of the

single perceptron connected to the output.

Gradient Descent and Backpropagation

Now that it is established that a solution for an XOR classifier exists for this

configuration of perceptrons, the next question is how one would train such a thing. Trainability,

after all, is one of the big advantages of the neural approach, but if one can only train individual

perceptrons, there would seem to be no real benefit to chaining them together. But there is a

process for training a multilayer network, known as gradient descent (Nielsen, 2015). To perform

gradient descent, we must introduce the concept of loss, or error. Several functions exist for

determining this value, and they will be discussed in greater depth further on. Whichever loss

function we decide to use, we use it by running input through the network, then finding the loss

between the desired output and the actual output, then applying gradient descent (Hagan et al.,

2016). Gradient descent is in essence, an optimization. One can conceptualize the loss as a

function of the weights and input. In any particular example, the inputs would function as

constants, since the input is the input, and the weights are changeable variables. The goal is to

find the set of weights that is the minimum of this loss function (Nielsen, 2015). In its simplest

form, one would find the the derivative of the loss with respect to each of the weights (Hagan et

al., 2016). We would use that derivative to the adjust the parameter weights in the correct

directions to minimize future losses (Nielsen, 2015). The appropriate step size is problem-

dependent, and the parameter governing the degree to which weights can shift in a single

iteration is referred to as the learning rate. This learning rate needs to be low enough that the

algorithm doesn’t overshoot the minimum it is meant to be locating, but high enough that the

training process can be completed before the heat death of the universe. With enough iterations

of this optimization, we should be able to minimize the loss (Nielsen, 2015), meaning that the

output of the trained neural network should be more accurate than it would have been before

training.

Although the we know the weights affect the loss, actually determining the loss in terms

of the weights so that we know how to change them seems difficult. The specific algorithm for

obtaining that gradient of the weights is known as backpropagation, and was only invented in the

70s (Nielsen, 2015). The loss function in its simple form seems would seem to be a function of

the final network output, since it is determined the gap between the final network output and the

expected output, but that output is affected by the network weights, which is how we can have

that understanding of the loss as a function of the network weights (Nielsen, 2015). The

backpropagation algorithm goes back layer by layer, from the output to the input, finding loss in

terms of the preceding layer weights, those weights in terms of the weights before them, and so

on and so forth, eventually calculating that necessary gradient in its entirety (Nielsen, 2015),

allowing us to train networks of neurons.

By chaining artificial neurons together, we would seem to get closer to how a biological

brain might work. However, a criticism of neural networks research is that since so little is

understood about the way that human and animal brains operate, there is no reason to assume

that any artificial neural network will be able to truly understand things the way humans can

(Watson, 2019). Regardless of whether or not any hypothetical artificial neural network could be

said to be truly intelligent, neural networks have, at the very least, proved to be useful, and to be

an improvement over models that existed in the past for certain tasks.

When artificial neurons are chained together, several factors affect how the resulting

network functions. One major task when designing a neural network is determining what data

neurons pass on to the other neurons in the network. On the individual neuron level, this is done

through what is known as the activation function. Activation functions is what determines the

ultimate output of an artificial neuron based on the weighted sum of the input (Sharma, 2017).

Early artificial neurons used a step function (Wallis), where it would fire if the weighted sum of

the inputs met a certain threshold (Sharma, 2017). This Boolean output replicates the behavior of

a biological neuron, which either generates an action potential, or does not generate an action

potential. This functions like the threshold in our examples of individual perceptrons, where

either the output is true, or the output is false. This type of activation function is useful for binary

classifiers, where two mutually exclusive results are possible. However, it is not suited to more

complex classification tasks, where one wants one result out of multiple possibilities (Sharma,

2017), which is why many other activation functions exist. The linear activation function is

proportional to the weighted sum of the neuron’s inputs, which allows for a range of outputs

(Sharma, 2017). In the example of a classifier, the outcome with the largest output would be

chosen as the result. Where a step function could be used to classify between two categories

(assuming separability under limitations established by Minsky), a linear function could classify

between several possibilities. However, the derivative of the linear function is a constant

(Sharma, 2017), so when weights are adjusted using the gradient descent algorithms discussed

earlier, the change in weight will be constant, rather than proportional to the error, meaning that

even if multiple neurons are used, the network will only be able to classify linearly separable

data, because multiple linear functions chained together is still a linear function. Only by using a

nonlinear activation function in the neural network can this limitation be avoided. An example of

a nonlinear activation function is the sigmoid function. It can be graphed as a curve which is

steep towards the middle of the range, and less steep near the extremes. This means it tends to

make a clear distinction (Sharma, 2017) (though nothing will ever be quite as clearly distinct as

the step function). Like a step function, the sigmoid activation is bounded between 0 and 1.

Another nonlinear activation function, particularly common in the convolutional neural networks

used for many computer vision tasks, is known as a rectified linear unit, or ReLu. A ReLu

activation function is linear when input is positive, and 0 if when the input from the neuron is

negative (Sharma, 2017). This makes for more efficient networks than some other activation

functions since it means the relatively high chance of a 0 output means fewer inputs to

subsequent layers, an important consideration in computer vision where there can be a nearly

unmanageable number of parameters. However, the gradient of the zero section of the ReLu

activation is zero, meaning the partial derivatives of those weights will be 0, meaning that when

gradient descent is applied, there will be no change to those particular weights regardless of

error, which means that the network could essentially train itself into a corner, where it can no

longer improve its predictions, because the gradients will not change the weights that need to

change. One solution to this problem is known as a leaky ReLu, which makes the response to

negative input a small non-horizontal line, reintroducing a small gradient into the

backpropagation process, allowing the weights to slowly shift if they are in that condition. Leaky

ReLu is the activation function used by LiteFlowNet, the neural network with which the

experimental portion of this paper is concerned (Hui et al., 2017).

Loss

As networks and the data fed to them grow more complex, so does the process of

determining error. While with our single perceptron, all we needed to do was to identify the

whether the error was positive or negative (true instead of false, or false instead of true), and then

apply the perceptron learning rule, determining error in order to adjust weights is not as simple

for larger networks. Even when the same general idea of gradient descent and backpropagation is

being used, there are many ways to approach learning. Some components that make up these

variable approaches are the loss function, also known as an error function or objective function

(Nielsen, 2015), and the optimization function. The loss function determines how far the output

is from what it should be. The optimizer determines how and when gradient descent should be

applied, shifting the weights in response to the loss (Nielsen, 2015). For a network that only

needs to output a single number, the loss may very well be something as simple as the difference

between the network’s output and the correct output. One common loss function, known as Least

Absolute Deviations, or L1 loss, is that idea applied to larger output data. In many cases the

output of a neural network will be an array of values. L1 loss is the sum of the differences

between each individual point and the corresponding value in reference array (Shekhar, 2019).

L2 loss, also known as Mean Squared Error, is similar, but each individual error is squared

before being summed up (Shekhar, 2019). Average End Point Error, or EPE, is used for

validation purposes by Zhang and Piggott (Zhang and Piggott, 2020). It seems to be fairly

common for evaluating optical flow calculations (Baker et al.), and it is one of the metrics used

for evaluating performance on the Middlebury optical flow benchmark. It involves finding the

average difference between values in the network output, and values of the ground truth, but

does this from the perspective of vectors rather than pixels (Zhang et al., 2017).

Once we know the loss, we can change the weights to hopefully improve the network.

Stochastic Gradient Descent, or SGD is a significantly less computationally intensive variant of

the gradient descent algorithm, which calculates gradient based on a randomly chosen sample of

the output (Bottou, 2010), at the expense of adding more randomness into the training process.

Adam is another stochastic optimization method, which has variable step sizes for each

parameter (Ruder, 2016). This allows training to progress quickly at first, and slow down as it

approaches the minimum. (Kingma and Ba, 2014). Adam keeps an average of past squared

gradients that decays exponentially, functioning as a form of momentum (there are also SGD

variants that use momentum) (Ruder, 2016). Amsgrad is a variant of Adam that determines

momentum using the maximum of past squared gradients rather than the average, leading to

better convergence in some cases (Reddi et al., 2018).

Convolutional Neural Networks
While there are many different neural network architectures in common use, the one most

relevant to PIV applications is a type known as a convolutional neural network. Convolutional

neural networks (or CNNs for short) are designed to take images as input (O’Shea and Nash,

2015) have been used to great success for computer vision tasks (Cios, 2017). CNNs generally

contain three types of layer: convolutional layers, pooling layers, and fully connected layers.

Convolutional layers produce output based on specified parts of the input image, usually using

ReLu as the activation function (O’Shea and Nash, 2015) The convolution operation involves a

sort of matrix, significantly smaller than the input image, known as a convolutional kernel. The

convolutional kernel will slide across the input image, calculating a weighted sum for each

position, of the data there along with the kernel’s activation map (O’Shea and Nash, 2015). This

is a relatively efficient way to extract identifiable features from raw image data.

Figure 5: Visual Representation of Convolution from source (Dumolin and Visin, 2016)

The activation map is how convolution kernels are tuned to pick up on specific features.

The pooling layers downsample the input they’ve been given, reducing the complexity of the

model (O’Shea and Nash, 2015), a necessary step for dealing with large complex data like

images, as well as allowing for aggregation (Dosovitskiy et al., 2015). Max pooling is the most

common type (O’Shea and Nash, 2015), but more complex pooling methods also exist. The fully

connected layers then produce output based on the totality of what they’re given from the

preceding layers, functioning like a more typical neural network in the final stage of inference.

Unlike the prior layers, each neuron in a fully connected layer is connected to every neuron in

the layer that follows. The fully connected layers of a CNN convert the representation of the

image from the convolution and pooling layers to network output. In the case of a classifier, that

would be the classification. In the case of the optical flow networks be discussed later in this

paper, that would be a velocity matrix.

Particle Image Velocimetry

While there has been recent research using neural networks for PIV analysis, there are

some other more established existing methods for the task. Cross-correlation is one of the

primary methods for deriving underlying flow vectors from PIV images. The output of that

method is a sparse vector field (Dabiri). A velocity vector is determined by applying a cross-

correlation algorithm to a specified interrogation area (O’Shea and Nash, 2015). The cross-

correlation operation can be done directly or using a Fast Fourier Transform (O’Shea and Nash,

2015). Cross-correlation determines the displacement, and along with the known change in time

between exposures, thus yielding the velocity.

Optical flow estimation is the other major technique for getting velocity vectors from PIV

images. As a general concept, optical flow is defined by the way the structure of the light hitting

a sensor changes (Raudies, 2013). An advantage optical flow estimation methods have over

cross-correlation is that they are able to produce dense vector output, since analysis is not limited

by the windowing technique used in cross-correlation. Optical flow estimation has a number of

applications in the broader world of computer vision. This is beneficial for PIV research, since it

means that research done for broader vision tasks using optical flow techniques can then be

turned to PIV, for which optical flow is already an established mode of analysis. Several

methods exist for optical flow analysis (Raudies, 2013), including methods based on

convolutional neural networks.

CNNs for Optical Flow

Enter FlowNet. The abstract to Fischer et al’s landmark 2015 paper states that “Optical

Flow estimation has not been among the tasks where CNNs were successful”, but their work

changed that (Dosovitskiy et al., 2015). Unlike earlier computer vision tasks to which CNNs

were applied, any optical flow application requires not just identifying image features, but

finding the same features in a subsequent image (Dosovitskiy et al., 2015). The FlowNet paper

was a landmark use of neural networks for optical flow analysis, and while it didn’t outperform

the variational methods that formed the state-of-the-art at the time (Dosovitskiy et al., 2015),

from it sprang all manner of sequels and derivatives. The original FlowNet paper proposes two

architectures for the task, FlowNetSimple, and FlowNetCorr (Dosovitskiy et al., 2015), referred

to in later works a FlowNetS and FlowNetC. FlowNetSimple stacks the images together and

feeds them to what the authors describe as a fairly typical CNN. FlowNetCorr initially processes

the two input images separately, generating meaningful representations individually, before

using a “correlation layer”, which makes comparisons between the respective feature maps.

Notably, FlowNet lacks fully-connected layers.

 In 2017, a different team of researches attempted to build an improved FlowNet, calling

it FlowNet2.0. They found that they could make significant improvements just by modifying the

training methods. They also made some architectural improvements, introducing image warping

and an iterative refinement process that involved stacking multiple subnetworks, each made up

of an entire FlowNetC or FlowNetS network. In these stacked models, every subnetwork after

the firsts would get both the input images and the previous network’s flow estimate.

The LiteFlowNet paper, published in 2018 (Hui et al., 2017), sought to achieve

comparable performance to FlowNet2.0 using a smaller model size. Like FlowNet2.0, it warps

the second image towards the first based on earlier flow estimates, but applies warping to

extracted features rather than to the image as a whole, and does so several times. (Hui et al.,

2017). LiteFlowNet’s two big ideas are pyramidal feature extraction and feature warping. With

pyramidal feature extraction, details are determined using a course-to-fine framework (Hui et al,

2). In the feature warping stage, the extracted features of the second image will be warped to the

first image, to improve the flow estimate(ibid). This is done several times to refine the flow

estimate(ibid).

There has been some recent, promising research on the use of machine learning to

analyze PIV data. Cai et al.’s 2019 paper, “Particle Image Velocimetry Based on a Deep

Learning Motion Estimator” (Cai et al., 2019), and Zhang and Piggott’s 2020 paper,

“Unsupervised Learning of Particle Image Velocimetry” (Zhang and Piggott, 2020) both build

from LiteFlowNet (Hui et al., 2017) and get results comparable to current state of the art. The

crucial difference between them is that the Cai paper uses a supervised learning method, while

Zhang and Piggott’s paper uses an unsupervised learning method, where comparison to ground

truth is not used to train the model. From a high-level point of view, that unsupervised method

essentially determines error by comparing the what the first image would look like after the

predicted flow is applied to it, and comparing that to the second image (and repeating this in the

opposite direction). While the supervised paper’s method of determining error is in more familiar

territory, comparing actual output to expected output, the exact loss function it used is more

complex than the loss functions discussed earlier. LiteFlowNet makes predictions at several

points in the process of generating its final output, the loss function is a weighted sum of all of

the losses from all of the predictions (Cai et al., 2019). The unsupervised paper, based on the

same network, uses a similarly multi-scale approach with its loss function, which makes sense

given that the LiteFlowNet architecture enables this approach.

Comparing Pre-trained Models

My first goal experimentally, was to test the performance of the existing models myself.

Code from both networks is publicly available on GitHub. Though both models are based on the

same underlying network, PIV-LiteFlowNet is based on the original Caffe version of

LiteFlowNet while UnLiteFlowNet-PIV is based on a PyTorch port of LiteFlowNet (Niklaus,

2019). I ran that code on a cluster with a GPU, within Singularity containers for each network’s

requirements. This was itself an undertaking. At first, I had attempted to install an off-the-shelf

version of Caffe, using the apt package manager, but found that I could not load Cai’s trained

model. Eventually, it became clear that their model included custom layers, and to use it, their

modified version of Caffe needed to be built from their code. While Zhang and Piggott’s

PyTorch model did not require custom compilation, I had initially assumed that I would be able

test it out on a CPU. However, their correlation layer includes a custom CUDA kernel, with no

CPU alternative. This means their model cannot be run without an Nvidia GPU, at least not

without significant modification. Neither of those difficulties are particularly surprising. Code

from research papers is shared as a courtesy, not as a product. Neither team made any pretense of

offering their code as a finished PIV solution. It is not overly surprising that research code may

not always be easy to use without tweaking.

Both models were trained with the same dataset (Cai, Zhou, et al., 2019). Each item in

the dataset consists of two images of a fluid system in motion, and a ground truth. All images are

256x256 pixel grayscale tiff images. The ground truth is in the Middlebury .flo format, which

lists the vertical and horizontal components of the flow vector at each point in the image

(Scharstien, 2007). For a previous paper (Cai, Zhou, et al., 2019), Cai and co-authors had

simulated some of the flow types directly, including uniform flow, backstep flow (where

recirculation occurs due to the fluid encountering a step), and flow over a cylinder. Others were

taken from existing sources, including the 2D DNS turbulent flow (flow with frequent changes in

pressure and velocity), a surface quasi geographic model (flow of atmosphere across multiple

isobars, or values of pressure), as well as channel flow, isotropic flow (flow with no directional

preference,), and magnetohydrodynamic flow (affected by both fluid mechanics and

electromagnetic forces) from the Johns Hopkins Turbulence Database (JHTDB). This dataset

comes pre-partitioned into a set for training and a set for testing, both spanning all flow

conditions included.

To test the models, I used the test partition included in the Cai dataset. Using both

models, I ran inference on all image pairs in the test set, then compared normalized output to the

ground truth, comparing mean squared error between flow conditions and models.

Flow Type Supervised
Avg MSE

Unsupervised
Avg MSE

Image Source

Uniform 4.26E-05 7.57E-2 Cai
DNS Turbulence 8.94E-3 3.53E-2 http://fluid.irisa.fr/data-eng.htm

(Memin et al.)
SQG 1.00E-2 3.5E-2 http://vressegu.github.io/sqgmu/

(Resseguir et al., 2016)
Backstep 1.49E-4 2.00E-3 Cai
Channel 8.68E-4 3.24E-3 JHTDB
Channel HD 1.62E-2 8.08E-2 JHTDB
Isotropic 9.02E-3 3.5E-2 JHTDB
Magnetohydrodynamic 6.45E-3 2.52E-2 JHTDB
Cylinder 2.23E-2 1.08E-2 Cai

Table 1

For most of the flow conditions contained in the Cai dataset, Cai et al.’s supervised

model produced more accurate output than Zhang and Piggott’s unsupervised model, with one

exception. In the case of cylinder flow the unsupervised model performs slightly better. The

physics of flow over a cylinder mean that very small changes to initial conditions have a massive

effect of the overall flow. Perhaps the seeming discontinuity of this flow type makes it the type

of condition where an unsupervised model can perform better than a supervised model.

Noisy Data

One of the advantages claimed by Zhang and Piggott (Zhang and Piggott, 2020) is that

the unsupervised network should be able to be more robust to noise and other elements that make

inference on real world data more difficult than it is for idealized synthetic data. We sought to

test that against a new set of data. Set 001 was generated in house at NRL by Kaushik Sampath.

All images in this set are generated from the same ground truth, but vary the amount of gaussian

noise (making up a fraction between 0.0001 an 0.1 of the whole image), mean particle diameter

(ranging from 3-5 pixels), variation in particle diameter (ranging from 0.5 to 2 pixels), particles

http://fluid.irisa.fr/data-eng.htm
http://vressegu.github.io/sqgmu/

per pixel (from 0.01 to 0.1) and particle intensity change from frame to frame (between 0 and 1).

A model that is robust to these variables should be more effective in real-world use, where

outside conditions and image quality may make an image noisier than simulated images would

be. Over the set as a whole, the average MSE for PIV-LiteFlowNet is 11.32, and the average

MSE for UnLiteFlowNet-PIV is 17.07. However, if we only look at examples with greater

amounts of noise, UnLiteFlowNet-PIV starts to pull ahead. When considering noise only above

0.06, the average PIV-LiteFlowNet error rises to 23.6, while UnLiteFlowNet-PIV’s average

mean squared error at that level of noise is only 19.3. Though under ideal conditions, PIV-

LiteFlowNet is more accurate, UnLiteFlowNet-PIV may be more accurate once significant noise

is added to the image. The UnLiteFlowNet-PIV’s average error rises more slowly than PIV-

LiteFlowNet’s average error, and its standard deviation is relatively stable. UnLiteFlowNet-

PIV’s average mean squared error is better than PIV-LiteFlowNet’s average mean squared error

at higher levels of noise. Once I had run inference through the models, Kaushik Sampath also did

some analysis of his own, using L2 loss, as well as calculating standard deviations. When

compared using L2 loss, UnLiteFlowNet-PIV’s average error is slightly higher than that of PIV-

LiteFlowNet, even at high levels of noise, but its standard deviations are consistently smaller

once sufficient noise is introduced. It seems when the image is noisy, the supervised model may

perform better, but may also perform significantly worse than the unsupervised model. The

unsupervised model by contrast, seems to have a relatively consistent amount of error, in a

relatively small range. It seems likely that there are applications where the latter behavior would

be preferable. One may want to have flow data that can be relied on to be at a certain level of

accuracy, as opposed to data that may be variably accurate and more sharply dependent on

conditions. However, a researcher using PIV in a more ideal situation where things like noise are

less of a concern may prefer the unsupervised model, if it would be more accurate in that specific

scenario. For scenarios with consistently very low noise, PIV-LiteFlowNet would seem to be the

clear choice between the two.

Figure 6: Scatter plot of MSE vs gaussian noise

Figure 7: Same images compared using L2 Norm, averaged, and with standard deviation. Plot by Kaushik Sampath

 Noise is not the only factor that impacts the accuracy of PIV analysis. Another factor

towards which the supervised model seems to be more sensitive is particles per pixel. Both

models seem to do better with more particle density, but once again we see a much greater

degree of variation from the supervised model, especially when the density is low.

Figure 8: MSE vs. Particles Per Pixel

Figure 9: L2 Error vs. Particles Per Pixel. Plot by Kaushik Sampath

Conclusion
 Machine learning has the potential to make PIV analysis faster, easier, and more robust,

but the best possible way to perform this task is still an open question. Comparing various

approaches to learning on the same model, multi-scale supervised learning is more accurate

under ideal circumstances, but unsupervised learning may perform better in certain flow

conditions, and especially in noisy conditions. Though the supervised approach may be more

accurate in many cases, under sub-optimal conditions, its level of accuracy can be far more

variable than that of the unsupervised model. Both approaches would seem to have their

advantages. Whether one could build a model combining the accuracy of the supervised model

with the robustness of the second remains to be seen.

Future Work

Training New Models

Seeing these results, which showed that both the supervised and unsupervised approaches

had different advantages with regards to this problem, I wanted to attempt a hybrid training

method, where I trained a model partially in a supervised fashion, and partially in an

unsupervised fashion. To do this, I first built a supervised training loop on PyTorch. For

simplicity’s sake, I started off with a basic EPE loss, because I had noticed that Zhang and

Piggiot had used the same loss function for validation (and had kindly provided the code in their

files), and I was also curious to see how a simple loss function stacked up to the more complex

LiteFlowNet specific loss. I do also intend to implement a hybrid loss with the multi-scale loss.

This work is still ongoing. I hope to train models using both types of loss, either starting with

supervised loss, then switching to unsupervised loss, or starting with supervised and switching to

unsupervised loss. I would also have to investigate to determine if there is an optimal point in the

training process to switch loss functions.

Other Potential Avenues

 In general, there is still considerable work to be done in this area. As the FlowNet2.0

paper makes clear, existing models can be improved significantly, merely by improving the data

on which they are trained (Ilg et al., 2017). It would be interesting to see if the multi-scale

supervised model would perform differently if trained with noisier data. In addition to training

LiteFlowNet, the Cai paper (Cai et al., 2019) also made some enhancements to the underlying

network which improved its accuracy. It would be interesting to see how the enhanced network

responds to noise in comparison with the original network, as well as to re-train that enhanced

network in an unsupervised or semi-supervised fashion. In general, training networks on more

realistic synthetic data may produce better results. Some optical flow papers mention using a

“curriculum learning method” where better results are achieved by training the network on

simpler data before training it on more complex data (Ilg et al., 2017). Perhaps similar techniques

could be used to lend these PIV models better robustness to noise.

 Another potential avenue for future research is to incorporate a physics-informed

approach, embedding more constraints into the network based on the equations that govern fluid

systems. It seems likely that more accurate results may be achieved by tailoring the network to

the specific problem of PIV.

 The study of machine learning based methods for PIV analysis has progressed

considerably over the past few years, but there may very well still be room for continued

improvement. Machine learning methods may be more robust to conditions where traditional

analysis methods struggle. Though training is time and resource intensive, a trained model

analyzes an image pair quickly, on the order of hundredths of a second per image pair (when

running on a GPU), which is significantly faster than conventional methods. This could be

beneficial in applications like medicine, where time may be crucial. Another downside of

conventional methods, is that while effective, they are complicated to implement as the correct

parameters for certain things are problem dependent. A mature machine learning solution could

potentially work more consistently “out-of-the-box”, with fewer adjustments required to obtain

acceptable output for one’s specific problem. Though existing code can be difficult to get

running, with its specific dependencies, this is understandable, as that is research code, meant to

test an idea. Assuming no insurmountable flaws with the method are discovered, it seems likely

that machine learning methods will become more popular for PIV, and as that happens, we will

likely start seeing implementations that are more portable and user-friendly, as it shifts from

being an experimental technique to a new state-of-the art method. It will be interesting to see

how the technique develops.

Works Cited
AI Learning. What is Perceptron | Simplilearn. https://www.simplilearn.com/what-is-

perceptron-tutorial

Animatlab, 2011. Basic explanation of how a neuron works.

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-
ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael Black and Richard

Szeliski. Optical flow evaluation results: Average endpoint error.
https://vision.middlebury.edu/flow/eval/results/results-e1.php

Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gradient Descent.

Proceedings of COMPSTAT'2010:177-186.
http://khalilghorbal.info/assets/spa/papers/ML_GradDescent.pdf

Shengze Cai, Jiaming Liang, Qi Gao, Chao Xu and Runjie Wei. 2020. Particle Image

Velocimetry Based on a Deep Learning Motion Estimator. IEEE Transactions on
Instrumentation and Measurement, 69(6):3538-3554.
https://ieeexplore.ieee.org/document/8793167

Shengze Cai, Shichao Zhou, Chao Xu and Qi Gao. 2019. Dense motion estimation of

particle images via a convolutional neural network. Experiments in Fluids, 60(4).
https://github.com/shengzesnail/PIV_dataset

Krzysztof J. Cios. 2017. Deep Neural Networks—A Brief History. Advances in Data

Analysis with Computational Intelligence Methods:183-200.
https://arxiv.org/ftp/arxiv/papers/1701/1701.05549.pdf

Dana Dabiri. Cross-Correlation Digital Particle Image Velocimetry – A Review.

https://www.aa.washington.edu/sites/aa/files/faculty/dabiri/pubs/piV.Review.Paper.final.pdf

Jeffrey Dastin. 2018. Amazon scraps secret AI recruiting tool that showed bias against

women. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-
scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir

Golkov, Patrick van der Smagt, Daniel Cremers and Thomas Brox. 2015. FlowNet: Learning
Optical Flow with Convolutional Networks. 2015 IEEE International Conference on Computer
Vision (ICCV). https://arxiv.org/pdf/1504.06852.pdf

Vincent Dumolin and Francesco Visin. 2016. A guide to convolution arithmetic for deep

learning. https://github.com/vdumoulin/conv_arithmetic (Source for convolution images)

https://www.simplilearn.com/what-is-perceptron-tutorial
https://www.simplilearn.com/what-is-perceptron-tutorial
http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics
http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics
https://vision.middlebury.edu/flow/eval/results/results-e1.php
http://khalilghorbal.info/assets/spa/papers/ML_GradDescent.pdf
https://ieeexplore.ieee.org/document/8793167
https://github.com/shengzesnail/PIV_dataset
https://arxiv.org/ftp/arxiv/papers/1701/1701.05549.pdf
https://www.aa.washington.edu/sites/aa/files/faculty/dabiri/pubs/piV.Review.Paper.final.pdf
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://arxiv.org/pdf/1504.06852.pdf
https://github.com/vdumoulin/conv_arithmetic

Martin T Hagan, Howard B Demuth, Mark Hudson Beale and Orlando De Jesús. 2016.
Neural network design. 2nd edition.k http://hagan.okstate.edu/NNDesign.pdf

Martin Heller. 2018. What is CUDA? Parallel programming for GPUs.

https://www.infoworld.com/article/3299703/what-is-cuda-parallel-programming-for-gpus.html

Tak-Wai Hui, Xiaoou Tang and Chen Change Loy. 2018. LiteFlowNet: A Lightweight

Convolutional Neural Network for Optical Flow Estimation. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. https://arxiv.org/abs/1805.07036

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy and

Thomas Brox. 2017. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
https://ieeexplore.ieee.org/document/8099662

Terro Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen and Timo

Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. roceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition:8110-8119.
https://arxiv.org/abs/1912.04958

Deiderik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

3rd International Conference for Learning Representations. https://arxiv.org/abs/1412.6980

Melanie Lefkowitz. 2019. Professor’s perceptron paved the way for AI – 60 years too

soon. https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-
soon

Etienne Memin, J Carlier, B Wieneke and F Sarcano. 2021. FLUID Project.

http://fluid.irisa.fr/data-eng.htm (DNS Turbulence used in Cai Dataset)

New Scientist. Clarke's three laws. https://www.newscientist.com/definition/clarkes-

three-laws/

Michael A Nielsen. 2015. Neural networks and deep learning. Determination Press.

 http://neuralnetworksanddeeplearning.com/chap1.html#learning_with_gradient_descent,
http://neuralnetworksanddeeplearning.com/chap2.html)

Simon Niklaus. 2019. A Reimplementation of LiteFlowNet Using PyTorch.
 https://github.com/sniklaus/pytorch-liteflownet

Keiron O'Shea and Ryan Nash. 2015. An Introduction to Convolutional Neural
Networks. https://arxiv.org/pdf/1511.08458.pdf

Florian Raudies. 2013. Optic flow. http://www.scholarpedia.org/article/Optic_flow

http://hagan.okstate.edu/NNDesign.pdf
https://www.infoworld.com/article/3299703/what-is-cuda-parallel-programming-for-gpus.html
https://ieeexplore.ieee.org/document/8099662
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1412.6980
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
http://fluid.irisa.fr/data-eng.htm
https://www.newscientist.com/definition/clarkes-three-laws/
https://www.newscientist.com/definition/clarkes-three-laws/
http://neuralnetworksanddeeplearning.com/chap1.html#learning_with_gradient_descent
http://neuralnetworksanddeeplearning.com/chap2.html
https://github.com/sniklaus/pytorch-liteflownet
https://arxiv.org/pdf/1511.08458.pdf
http://www.scholarpedia.org/article/Optic_flow

Shashank Reddi, Satyen Kale and Sanjiv Kumar. 2018. On the Convergence of Adam
and Beyond. International Conference on Learning Representations.
https://paperswithcode.com/method/amsgrad

V. Resseguier and P. Derian. 2016. Surface Quasi-Geostrophic model under Moderate

Uncertainty by vressegu. http://vressegu.github.io/sqgmu/

Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.

 https://ruder.io/optimizing-gradient-descent/

Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. 2016. "Why Should I Trust

You?." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. https://arxiv.org/pdf/1602.04938.pdf

Kaushik Sampath, Thura T. Harfi, Richard T. George and Joseph Katz. 2018. Optimized

Time-Resolved Echo Particle Image Velocimetry– Particle Tracking Velocimetry Measurements
Elucidate Blood Flow in Patients With Left Ventricular Thrombus. Journal of Biomechanical
Engineering, 140(4).
https://asmedigitalcollection.asme.org/biomechanical/article/140/4/041010/371418/Optimized-
Time-Resolved-Echo-Particle-Image?searchresult=1

Daniel Scharstein. 2007. https://vision.middlebury.edu/flow/code/flow-
code/README.txt

Avinash Sharma. 2017. Understanding Activation Functions in Neural Networks.
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-
networks-9491262884e0

 Amit Shekhar. 2019. What Are L1 and L2 Loss Functions?
https://afteracademy.com/blog/what-are-l1-and-l2-loss-functions

Owen Shen. Perceptrons Explained. https://owenshen24.github.io/perceptron/

Michael Sexton. 2017. All Eyes On Graphics Card Shortage, Few Answers Forthcoming.
 https://www.tomshardware.com/news/gpu-shortage-2017,34964.html

Wallis. History of the Perceptron. https://web.csulb.edu/~cwallis/artificialn/History.htm

David Watson. 2019. The Rhetoric and Reality of Anthropomorphism in Artificial
Intelligence. Minds and Machines, 29(3):417-440.
https://link.springer.com/article/10.1007/s11023-019-09506-6

Mingrui Zhang and Matthew D. Piggott. 2020. Unsupervised Learning of Particle Image
Velocimetry. Lecture Notes in Computer Science:102-115. https://arxiv.org/pdf/2007.14487.pdf

https://paperswithcode.com/method/amsgrad
http://vressegu.github.io/sqgmu/
https://ruder.io/optimizing-gradient-descent/
https://arxiv.org/pdf/1602.04938.pdf
https://asmedigitalcollection.asme.org/biomechanical/article/140/4/041010/371418/Optimized-Time-Resolved-Echo-Particle-Image?searchresult=1
https://asmedigitalcollection.asme.org/biomechanical/article/140/4/041010/371418/Optimized-Time-Resolved-Echo-Particle-Image?searchresult=1
https://vision.middlebury.edu/flow/code/flow-code/README.txt
https://vision.middlebury.edu/flow/code/flow-code/README.txt
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://afteracademy.com/blog/what-are-l1-and-l2-loss-functions
https://owenshen24.github.io/perceptron/
https://www.tomshardware.com/news/gpu-shortage-2017,34964.html
https://web.csulb.edu/%7Ecwallis/artificialn/History.htm
https://link.springer.com/article/10.1007/s11023-019-09506-6

Cong-xuan Zhang, Ling-ling Zhu, Zhen Chen, Ding-ding Kong and Xuan Shang. 2017.
An Improved Evaluation Method for Optical Flow of Endpoint Err. Advances in Computer
Science Research (ACRS), 54:313.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved
=2ahUKEwjK0J31nZ_wAhWiMVkFHX49DysQFjABegQIAhAD&url=https%3A%2F%2Fdow
nload.atlantis-
press.com%2Farticle%2F25870830.pdf&usg=AOvVaw10xXUOynUrbYsLV3QUJ9xk

Lina Zhou, Shimei Pan, Jianwu Wang and Athanasios V. Vasilakos. 2017. Machine
learning on big data: Opportunities and challenges. Neurocomputing, 237:350-361.
https://www.sciencedirect.com/science/article/pii/S0925231217300577

https://www.sciencedirect.com/science/article/pii/S0925231217300577

	Machine Learning Approaches for Particle Image Velocimetry
	Introduction
	Background
	Neural Networks
	Perceptrons

	Gradient Descent and Backpropagation
	Loss
	Convolutional Neural Networks

	Particle Image Velocimetry
	CNNs for Optical Flow

	Comparing Pre-trained Models
	Noisy Data

	Conclusion
	Future Work
	Training New Models
	Other Potential Avenues

