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Introduction

Proteins are vital parts of any organism’s functioning, involved in locomotion, cellular

reproduction, hormone signaling, nutrient absorption, macromolecular synthesis, immune

responses, and just about every other task performed. Proteins are made of linear chains of amino

acids characteristic to the type of protein. The sequence of amino acids in a protein is known as

its primary structure, while the hydrogen and other weak bonds between amino acids give rise to

a protein’s secondary structure, describing certain common and well-defined structures such as

α-helices and β-sheets. A protein’s tertiary structure describes the three dimensional shape of the

entire protein. Finally, the quaternary structure of a protein describes the relationships between

subunits of a protein – units whose shapes would be conserved even if it were removed from the

rest of the protein. Though there are only 20 amino acids commonly used in proteins, their

variations in characteristics – including size, polarity, hydrophobicity, acidity, aromaticity, and

ability to form hydrogen bonds – allow for the extreme diversity seen in the proteome. These

varying characteristics also allow for highly-specific interactions (1).

Proteins are able to interact with other molecules via binding interfaces at their surfaces.

These interactions can even be with other proteins, a protein-protein interaction (PPI). A

protein’s binding interfaces are highly specific to their ligand as a result of their chemical

makeup and the resulting shape dictated by the weak bonds between amino acids. When a

protein binds with its ligand its conformation changes to perform its intended action. This high

specificity is seen, for example, in an adaptive immune response, during which the body makes

many different antibodies in response to an antigen until one is shown to have a very high
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affinity to the antigen. The body then increases production of that specific antibody to attack the

antigen in the body. The resulting antibody is specific to that antigen, and is not useful against

any other antigen the body may come in contact with (1, 2).

The ability to predict an antigen’s epitope(s), those area(s) another protein may bind to,

based solely on its structure is of medical interest as it could provide information about the

antigen’s function and mechanism (3). It would also allow the engineering and production of

proteins designed to interact with a target antigen to promote or inhibit the target’s activity. This

would allow for the engineering of artificial antibodies as soon as an antigen could be identified

and sequenced at low cost and minimum effort.

In the wet lab, finding epitopes has traditionally been done by crystallizing bound

antibody-antigen structures and using methods such as X-ray crystallography and NMR to

determine interacting residues, which has proven to be slow, inefficient, and costly. X-ray

crystallography requires high-quality crystals which can be exceedingly difficult to obtain for

certain proteins (4). NMR is costly and difficult on molecules as large as antibodies (5). In light

of these, cryo-electron microscopy has become the dominant method for epitope discovery, but

remains slow (4). In order to complement these methods and decrease the barriers to epitope

prediction, researchers have turned to computational methods of epitope prediction. These

methods can broadly be divided into two categories – structure based methods, and template

based methods. Structure based methods use data about the target’s structure, including data

about the characteristics of the target’s amino acid composition to predict epitopes. Template

based methods use the query protein’s structure as input and search through a precompiled

database of proteins for similar proteins whose complex structure is known. The query protein is

then superimposed over the protein of known complex structure to identify the query protein’s

3



interfacial residues. This relies on the earlier described principle that a protein’s structure yields

its shape and function; proteins with similar structures and shapes are likely to bind similarly (3).

Although each of these strategies show promise, they each have limiting factors that have

prevented them from being accurate enough for real-world use. Structure based methods are

limited in that combining more features in predictions has demonstrated little effect on

performance. Template based methods work well for proteins that have analogues whose

complex structures are known, but are hampered by the relatively small number of proteins

whose structures have been resolved in wet labs. In order to improve further in the realm of

epitope prediction, work has been done to combine different methods into meta-methods that can

take advantage of the strengths of each of their component methods (6).

ISPIP is a meta-method designed to improve on previous classifiers by choosing

components that use different strategies and using machine learning algorithms to train the

model. It is based on Walder’s Meta-DPI, but replacing PredUs 2.0 with SPPIDER, so that the

three classifiers included are ISPRED4, SPPIDER, and DockPred. Another significant change is

in our strategy for combining results of different technologies. Walder used a logistic regression,

taking into account that any residue can only have one of two possible states – interface or not

interface – which was an improvement over some previous meta-methods that used linear

regression (7). We tested several different algorithms including linear and logistic regression

models, and machine learning models including random forest and xgboost, to find the best way

to combine each of the classifier’s predictions.

The development of ISPIP has been the work of a team led by Dr. Viswanathan and

including Moshe Carrol, and Alexandra Roffe. My personal contribution was largely in

comparing the results of ISPIP to another predictor, DiscoTope 2.0.
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Methods

ISPRED4

ISPRED4 is a structure based PPI predictor that uses 46 different protein features in 11

groups, shown in Table 1, and a combination of machine learning techniques.

Table 1: Types of Residue Features Used in ISPRED4

Feature Group Number of Features

Sequence Profile 20

Conservation Score 1

Interface Propensity 1

Residue Properties 10

Mutual Information 2

PSICOV 2

Depth Indexes 3

Protrusion Indexes 4

Secondary Structures 3

Average B-factor 1

RSA Difference 1

ISPRED4’s dataset were proteins from among the Docking Benchmark v5 (DBv5) dataset whose

bound and unbound structures had both been obtained by x-ray crystallography and whose

interface residues could unambiguously be mapped from the bound to unbound forms. This
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resulted in a dataset, named DBv5Sel, of 151 protein complexes from DBv5’s original 230. A

support vector machine (SVM) and a grammar-restrained hidden conditional random field

(GRHCRF) were trained on the dataset to produce ISPRED4 (8).

SVMs are a classification method that, in their simplest form, use a linear equation to

classify items into one of two categories based on two characteristics. First, members of a set

whose category are known are plotted on a cartesian plane. A linear equation that best splits the

data into two separate groups is then calculated, and any future points of unknown category are

predicted based on which side of the line they fall (8). An example is shown in Figure 1 (9).

Figure 1: SVM Classification

(Larhmam, CC BY-SA 4.0, via Wikimedia Commons)

In more complex forms, SVMs can use non-linear equations and take into account many

characteristics. In ISPRED4, each surface residue in DBv5Sel was represented as a

46-dimensional vector, and was labeled as interface if it’s solvent-accessible surface area (SASA

or ASA), as calculated by the DSSP program, decreased by 1Å 2 or more between the unbound

monomer and bound complex. Surface residues were defined as those with a relative solvent

accessibility (RSA) – the ratio between a residue’s ASA and its theoretical maximum ASA in a
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tripeptide of Gly-X-Gly – greater than or equal to 20% (10, 11). Although the resulting SVM

could make a prediction about any protein residue (whose features are known), a GRHCRF was

used to further improve results.

SVMs are a very powerful tool, but inherently treat each query item as independent from

one another. In proteins, residues’ physical attachment to each other contradicts this assumption.

For example, an epitope site is unlikely to have interface residues in a ring with a hole in the

middle. Because SVMs cannot understand context though, they might predict such an epitope. In

contrast, a conditional random field (CRF) is a classification technique that does take into

account the classification of nearby elements. This is done by summing weighted feature

functions that each label an element based on properties such as the position of the element in the

set and the label of the previous element. Grammatically-restrained hidden conditional random

fields (GRHCRF) build on CRFs by allowing a pre-defined grammar to be put in place,

restricting possible predictions to those that follow the grammar regardless of the sum of the

feature functions. GRHCRFs allow known patterns and rules to be forced onto a CRF that might

otherwise find solutions outside of those patterns. Combining a GRHCRF with its SVM allows

ISPRED4 to avoid some of the weaknesses of an SVM only approach (12).

ISPRED4 was tested on 22 bound structures that each had less than 30% sequence

identity to any structures in the training set or other structures in the test set, sourced from

CAPRI experiments (10, 13).

DockPred

DockPred is a PPI predictor based on the earlier discovery that protein superfolds –

families of proteins with the same overall structure despite having differing functions – have
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similar binding “supersites”, similar binding sites across the superfold, despite significant

differences in primary structure. This led to the observation that protein binding sites are generic,

and can be predicted by the frequency of receptor residues interacting with other ligands,

regardless of their similarity to the target ligand (14).

Between the NOX and Docking Benchmark databases, 241 proteins were chosen as the

test set. 13 ligand probes, sharing no sequence similarity to known ligands of the query proteins,

were then computationally docked to the query proteins. ZDOCK and GRAMM generated 2000

docked complexes of each query protein with each of the 13 probes (15, 16). Interface residues,

determined by CSU, were defined as any residue with one atom within 3.5Å of any atom of the

probe, and which establishes legitimate atomic contact as defined by CSU (17). Each residue,

Rik, where i is the position number of the residue and k is the kth docked complex structure, had

an interface value, I(Rik), of 1 if it was determined interface; 0 otherwise. By summing over all

2000 docked structures of each query protein, a residue interface score (RIF), Ni, was determined

for every residue. The top 15 residues with the highest Ni in each protein were considered

interface (14).

SPPIDER

SPPIDER works by taking advantage of a discrepancy between real and predicted values

of surface exposure. RSA predictions of amino acids were found to correlate with surface

exposure in protein complexes, but not with surface exposure in the unbound structures of

individual protein chains. Therefore, large differences in the observed and predicted surface

exposure in the unbound chain (called dSA) signal the location of an interface residue. 435

non-redundant proteins that each had at least two chains, none less than 30 amino acids long;
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contained no DNA or RNA portions; and had at least one chain with less than 50% sequence

identity to any other chain, were used to train a neural network with 19 feature inputs derived

from a sliding window approach. Eleven of the inputs are dSA, calculated for each residue in an

11 residue window centered on the residue of interest. Eight additional features that were

averages computed across the window, seen in Table 2, were also inputs (18). These 19 features

were used to train a neural network to predict PPI sites.

Table 2: Features Averaged Across a Sliding Window

Feature Average Used Definitions

dSA

𝑃
0
+

𝑖=1

𝑁

∑
𝑃
𝑖

𝑑
𝑖

P is the value of the property,
d is the distance to the i-th
residue, and N is the total
number of neighbors in a
15Å residue sphere.

Predicted RSA

Conservation of Charge

Conservation of
Hydrophobicity

Conservation of Size

Conservation of Amino Acid
Type

Contact Number

𝑖=0

𝑁

∑ 𝑃
𝑖
𝑅𝑆𝐴

𝑖
Hydrophobicity

A neural network consists of a number of “layers” of “nodes”. Each node in a layer

receives inputs – either 0 or 1 – from all of the nodes in the previous layer, and sends an output

value – again, 0 or 1 – to all of the nodes in the next layer. Every connection between two nodes

has a weight and each node has a threshold value. If the sum of the weighted inputs to a node is

greater than or equal to the node’s threshold, that node’s output is 1. Otherwise the node’s output

is 0. The weights and thresholds are assigned randomly to begin with, and are slowly changed
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during the training process to decrease error. Given enough layers and fine-tuning of weights,

neural networks have shown to be incredibly capable at classification problems (19).

ISPIP

ISPIP is the meta-method that we have designed, combining SPPIDER, DockPred, and

ISPRED4. Several different methods were tested to combine the results of these methods into

those of ISPIP.

Dataset

Jesperson et al. identified a set of 335 bound antibody-antigen complexes with annotated

interface residues (known interface and non-interface residues). Of these, those antigens with

epitopes on more than one chain were removed; 275 antigen-antibody pairs remained. From the

275, 195 structural analogues with >95% sequence similarity were found from the PDB, and the

interfacial residues from the bound structures were mapped to the unbound antigen analogues

(20). We further limited the dataset to those with <30% sequence identity with any other protein

in the set. This resulted in a boud dataset of 107 bound proteins and an unbound dataset of 76

unbound proteins for the training and testing of ISPIP.

Training ISPIP

Linear Regression

Linear regression is a model of the relationship between one or more independent

variables and one dependent variable, modeled with a number of linear equations. Several

methods exist to fit the regression line to the data, each of whose goal is to minimize the distance
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between the regression line and the data points. Some set of labeled data is required to fit the line

initially, after which the line can be used to predict the value of the independent variable given

known dependent variable values. Figure 2 shows a simple linear regression, with only one

independent variable, on the horizontal axis, and the dependent variable on the vertical axis (22).

Figure 2: Example of Simple Linear Regression
Sewaqu, Public domain, via Wikimedia Commons

The general formula for multiple linear regression, with more than one dependent variable, is

𝑌
𝑖
= β

0
+

𝑘=1

𝑝

∑ β
𝑘
𝑋
𝑖𝑘
+ ϵ

𝑖

where Yi is the i-th observation of the dependent variable, Xik is the i-th observation of the k-th

independent variable, of which there are a total of p, and 𝜀i represents the error in the

measurement of Xi (23).

Logistic Regression

In logistic regression, the probability of an event is modeled on a sigmoid function which

stays close to 0 until rapidly increasing to close to 1. This makes it very useful for binary
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classification purposes such as whether a residue is binding or not. In order to create a model, a

likelihood function is maximized on a set of labeled data. In ISPIP, each residue was used as a

data point and the independent variables were the predictions of each of ISPIP’s constituent

methods (24).

Random Forest

Random forest is a machine learning technique that combines many decision trees to

make a final decision. A decision tree consists of a number of decision nodes that can lead to

either another decision node or to a leaf node which provides a classification. At each decision

node, a data point’s feature values are compared to the condition in the decision node and the

comparison is used to determine which branch the data will continue down. In random forest, a

large number of subsets of the labeled data are created, such that any datum may be repeated in a

single subset (i.e. subsets are created with replacement). This allows the subsets to be more

different from each other than sampling without replacement would allow, which makes the final

predictor more robust. All of the subsets are then assigned the same number of randomly chosen

features of the data, and decision trees are made for each of the subsets, with each using only its

assigned features to classify. Choosing random features ensures that no individual feature with

strong predicting power dominates all of the trees. New data being predicted is then run through

all of the trees in the forest and is classified as whichever classification the majority of the trees

predict (25). In ISPIP each residue is a datum whose features are each of the constituent

predictor’s scores.
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Xgboost

Xgboost is a machine learning algorithm that also uses many decision trees to make its

predictions, but differs from random forest in that its trees are not made from random samples. In

xgboost a number of shallow decision trees (decision trees with few nodes) are combined, where

each tree is designed based on the error residuals of the previous tree. This has the effect of

slowly decreasing the residuals with each additional tree. Xgboost includes several measures to

avoid overfitting a model to its training set, including scaling the results of each tree down with a

learning factor, and including a regularization parameter which makes a leaf more susceptible to

pruning, pruning itself being a way to decrease overfitting by cutting a decision tree short (26).

Cross Validation

In order to be able to score a model’s performance it must be tested on data that is

annotated, but that annotated data should not be part of the training set, so as to avoid issues of

overfitting. To satisfy both of these requirements, cross validation (CV) is used, wherein a

dataset is split into n groups of equal size, consisting of k=n-1 training sets and 1 test set. The

model is then trained on each combination of k-1 training sets and tested on the one remaining,

resulting in k different trainings. Performance metrics are then based on the average of the

parameters found this way used on the test set. ISPIP had similar results using both 5 and 3-fold

CV, so to increase the size of the test set 3-fold CV was kept.

Given enough data, randomly assigning groups can work, but with small datasets

randomly assigned groups can result in one group having a largely disproportionate number of

similar data, which can lead to poor performance when that set is tested on, and falsely deflated

performance figures. In order to avoid this, we curated both bound and unbound datasets to have
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similar numbers of proteins of similar sizes, and similar numbers of proteins from certain high

frequency CATH classifications. CATH is a hierarchical protein database that groups proteins

based on both structural features (class, architecture, and topology) and evolutionary

relationships (homologous structures) (21). Any topology represented by more than 3 proteins in

the bound set were manually distributed through the 4 sets as equally as possible; there were

three such CATH classifications, seen in Table 3. All other proteins were randomly distributed.

Table 3: Highly Represented CATH Classifications

CATH Classification Classification Name Proteins in Bound Set

1.20.1250 Growth Hormone; Chain: A; 7

2.60.40 Immunoglobulin-like 21

3.40.50 Rossmann fold 7

Benchmarking

In order to benchmark ISPIP’s results, in addition to comparing it to its constituent

classifiers it was also compared to the unrelated classifier DiscoTope 2.0. DiscoTope 2.0 is a

classifier designed specifically for the prediction of antigen epitopes. In short, it works by

combining a propensity score that describes the likelihood of any residue being interface given
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its local environment and a surface score that makes residues on the surface of an antigen more

likely to be predicted as interfacial. A DiscoTope score (DS) is calculated as follows:

𝐷𝑆(𝑟, α) =− α · 𝑆𝑆(𝑟) + (1 − α) · 𝑃𝑆(𝑟)

where r is the query residue, is a constant between 0 and 1 found by grid search, SS is theα

upper half-sphere (UHS) surface score, and PS is the log-odds ratio propensity score. The UHS

is calculated by creating a sphere around the query residue’s C𝛼 of radius ksur found through grid

search, drawing a plane through that C𝛼 perpendicular to the C𝛽, and counting the number of C𝛼s

of other residues in the half of the sphere containing C𝛽 (27). The PS is defined as follows:

𝑃𝑆(𝑟, 𝑤, 𝑘
𝑝𝑠
) =

𝑖
∑((0. 8 · (1 −

𝑑
𝑖

𝑘
𝑝𝑠
) + 0. 2) · 𝑙𝑠(𝑟

𝑖
, 𝑤))

where r is the query residue, ri is any residue within a distance kps of r, di is the distance between

r and ri, and ls(ri,w) is the log-odds ratio of ri sequentially averaged over w residues. Both w and

kps were found by grid searches. The log-odds ratio of any given amino acid was calculated by

sliding a 9-residue window over the primary sequence of each protein, assigning each frame to

an epitope or non-epitope group based on the annotation of the center residue, and calculating a

positional weight matrix for both groups. Finally, a log-odds ratio for each type of amino acid

was computed by taking the log of the ratio between the epitope weight matrix value at position

5 for that amino acid to the non-epitope weight matrix value for the same amino acid at position

5. Summing over several nearby residues and giving more weight to residues closer to r, as well

as including the surface score, allows DiscoTope to take into account the local environment of a

residue rather than using only information about the residue itself (28).
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Performance Metrics

In order to evaluate classification techniques, a confusion matrix like that seen in Table 4

is built that shows the number of items predicted positive/negative as they intersect with those

that are truly positive/negative, producing true/false positives and negatives. The aim of any

classifier is to maximize the number of true positives and true negatives while minimizing the

number of false positives or negatives.

Table 4: 2x2 Confusion Matrix

Predicted Positive (PP) Predicted Negative (PN)

Positive (P) True Positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)

In the case of antibodies and antigens, experimentally determined interface residues are

marked positive, while experimentally determined non-interface residues are marked negative.

Because ISPIP and each of its constituent classifiers return a value between 0 and 1 for each

residue rather than predicted positive or predicted negative, some cutoff for predicted interface

must be decided. In order to divide scores into these two classes a method’s output is ranked in

descending order by score. A static method could then be applied, taking the top k residues and

labeling them predicted positive. While some most accurate k may exist, for ISPIP a dynamic

cutoff was used as introduced by PredUS 2.0, , where N is the number of amino𝑘 = 6. 1𝑁0.3

acids at the surface of the protein, which are in turn defined as any amino acid with RSA>0.4 (as

calculated by ISPRED4) (29). This is a more flexible cutoff that takes into account the size and
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shape of a protein. The k residues with the highest scores are labeled as predicted positive, while

all others are labeled as predicted negative.

Several measures have been defined to help summarize the results of a confusion matrix.

The true positive rate (TPR), or recall, describes the fraction of the positive class that was

predicted correctly. Meanwhile, the precision measures the fraction of the predicted positive

class that are correctly labeled. The false positive rate (FPR) measures the fraction of true

negatives misclassified.

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 = 𝑇𝑃

𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 = 𝑇𝑃

𝑃𝑃

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁 = 𝐹𝑃

𝑁

None of these measures are enough to measure the accuracy of a classifier on their own

though. Labeling all queries as positive leads to a TPR of 100%. Similarly, labeling all as

negative results in a 0% FPR. And precision ignores any false negatives, meaning that a high

score can be achieved with an unhelpfully conservative labeling algorithm. To address these

issues, the F1 score and Matthews Correlation Coefficient (MCC) are used. The F1 score is the

harmonic mean between precision and recall.

𝐹
1
= 2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁

Although the F1 score is widely used, ignoring the TN class can lead to deceptively high

scores. The F1 score does a good job marking a classification technique’s ability to mark the

positive class but ignores accuracy in marking the negative class, which is equally important.

The MCC takes into account all four quadrants of the confusion matrix, resulting in a high score

only when a classifier successfully classifies both positive and negative classes.
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𝑀𝐶𝐶 = 𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁
(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

In addition to static scores with a set cutoff for the predicted positive class, dynamic

scoring methods are in use that graphically represent the performance of a classifier given

different cutoffs. In precision-recall curves (PR curves) the threshold (T) is slowly increased and

at each value of T the precision is plotted against the recall. In receiver operator characteristic

(ROC) curves TPR is plotted against FPR in a similar fashion. To quantify these curves the area

under the curve (AUC) is measured. A random classifier produces a PR AUC of . This𝑃
𝑃+𝑁

follows from the fact that for any random subset of the data the portion of that subset in the P

class is equivalent to the portion of the full data set in the P class. In an ROC generated from a

random classifier the P and N classes will be split equally between the PP and PN classes

regardless of the size of those classes. This results in a case where regardless of T,𝐹𝑃𝑅 = 𝑇𝑃𝑅

and an ROC AUC of 0.5.

For benchmarking purposes DiscoTope and ISPIP’s constituent methods were tested on

the same test set as ISPIP. The small test sets used in PPI prediction (e.g. DiscoTope: 15

antigens; ISPIP bound set: 12; ISPIP unbound set: 9) mean that small differences in datasets can

significantly alter results. Additionally, because F1 scores are related to the ratio between positive

and negative test cases, comparisons between F scores calculated on data sets of differing ratios

are incorrect. Comparing all methods on the same data set avoided these and any other obstacles

in comparison.
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Results

Meta-DPI, ISPIP’s predecessor, was shown to successfully outperform the methods of

which it was composed, but with the replacement of PredUs 2.0 by SPPIDER, that finding is not

applicable to ISPIP (7). Therefore ISPIP (with each training algorithm) was tested against its

components in a 3-fold CV as described above. Table 5 shows the f-scores and MCC’s averaged

across the test proteins when ISPIP was trained and all methods were tested on the bound

dataset. Although ISPIP with xgboost did perform better than any other method, it was not

statistically significant by the KS test.

Table 5: 3-Fold CV Results – Bound Training and Test Sets

SPPIDER ISPRED
4

DockPred Linear
Regression

Logistic
Regression

Random
Forest

xgboost

Average
f-score

0.165 0.272 0.207 0.245 0.247 0.275 0.320

Average
MCC

0.055 0.191 0.106 0.156 0.158 0.193 0.246

ROC and PR curves for these tests are seen in Figure 3 (30) below. SPPIDER appears to

do very poorly, performing even worse than a random classifier would (shown by the gray dotted

line) when the cutoff is high.
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Figure 3 : Dynamic Scoring Methods: Training and Testing with Bound Dataset

In practice though, ISPIP is not designed to be used to predict the epitopes of bound

proteins. Ideally, ISPIP should be able to predict the epitopes of unbound antigens, so that

medical intervention could begin with only the isolation of the antigen. And it should ideally be

able to do so with only bound training data, as in a real world use-case bound antigens are easier

to come by. When all methods are tested on unbound antigens, ISPIP trained on the bound

dataset does significantly better. These results are seen in Table 6 and Figure 4 (30).

Table 6: 3-Fold CV Results – Bound Training and Unbound Test Sets

SPPIDER ISPRED4 DockPred Linear
Regression

Logistic
Regression

Random
Forest

xgboost

Average
f-score

0.145 0.189 0.142 0.203 0.194 0.222 0.350

Average
MCC

0.033 0.083 0.031 0.105 0.094 0.129 0.283
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All methods except for ISPIP with xgboost have lower scores in all scoring methods. This is

typical of unbound antigen epitope prediction which proves to be more difficult, likely due to the

decreased amount of training data available. The increase in scores across scoring methods for

ISPIP using xgboost is surprising and speaks towards its success as an epitope predictor. Because

of its success ISPIP using xgboost and bound training data was used for future tests, and moving

forward ISPIP will refer to this version.

Figure 4: Dynamic Scoring Methods: Training on Bound Set; Testing with Unbound Set

Once ISPIP was shown to be better than its parts, it was benchmarked against DiscoTope

2.0. While I was most heavily involved with the data preparation for this comparison, the scores

were finally calculated by other members of the team. The MCC and f-scores are seen in Table 7,

and the ROC and PR curves are seen in Figure 5. The PR and ROC curves show that ISPIP

vastly outperforms DiscoTope 2.0 in the task, especially for unbound antigens.
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Table 7: Comparison of ISPIP and DiscoTope 2.0

ISPIP DiscoTope 2.0

Average f-score on bound test
set

0.320 0.238

Average MCC on bound test
set

0.246 0.135

Average f-score on unbound
test set

0.350 0.171

Average MCC on unbound
test set

0.283 0.050

1) 2)

3) 4)

Figure 5: Discotope and ISPIP Performance: 1) ROC curve and 2) PR curve of bound
test set 3) ROC curve and 4) PR curve of unbound test set
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Conclusion

When trained with xgboost, ISPIP was shown to outperform each of its components and

an unrelated classifier designed specifically for epitope prediction. These results suggest that

ISPIP has very strong predictive power and brings reliably accurate epitope prediction one step

closer. They also highlight the need for more experimentally annotated proteins and antigens so

that computational methods that can theoretically be extremely powerful, have the training the

data they need to reach that point.

Further Work

The individual methods that comprise ISPIP were chosen for their features without

knowing how they would perform in epitope prediction. SPPIDER performed particularly badly,

at times worse than a random classifier, and raises the question whether it should be included at

all. Further research should be done to quantify the effects of each component method on ISPIP

as a whole; it is entirely possible that ISPIP would provide better predictions if it were composed

solely of ISPRED4 and DockPred. Furthermore, while ISPIP does combine methods with

different strategies, none of ISPIP’s constituent methods are so purely template based so as to

satisfactorily replace PredUs 2.0. A true template based approach is being sought out that may

replace one of the other methods or be added to them in a future version of ISPIP. Combining

more orthologous prediction methods should produce the strongest results.

In addition to examining the data classifiers, ISPIP’s dataset should be increased.

Although small datasets are common in the field of epitope prediction due to the lack of
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available data, more sources of antigens are actively being searched for in order to increase the

size of ISPIP’s test set. Results from a larger test set would be even more reliable and provide

greater confidence that ISPIP can be generalized.

While these would help improve facets of ISPIP that already exist, another technique

could add a new dimension of predictive power. Many antigens have more than one epitope,

each binding to a different antibody, but not all of an antigen’s epitopes have necessarily been

experimentally observed binding to antibodies. By separating an antigen’s interface residues into

“patches” calculated based on the distance between groups of residues, individual patches may

have better performance metrics. Additional patches can be interpreted as areas of the antigen

that could bind to an undiscovered antibody, offering otherwise unknown avenues to target the

antigen.
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