
Mathematical Stochastic Models for DNA

Thesis Submitted in Partial Fulfillment

of the Requirements

of the Jay and Jeanie Schottenstein Honors Program

Yeshiva College

Yeshiva University

May 2023

Yonah Moise

Mentor: Professor Peter Nandori, Mathematics

Mathematical Stochastic Models for DNA
An Honors Thesis in Partial Fulfillment of the Requirements for the Yeshiva
University Jay and Judy Schottenstein Honors Program, May 2023, under

the supervision of Professor Peter Nandori

Yonah Moise1

1Yeshiva University, Department of Mathematics

Due May 2023

Abstract

Kimura’s neutral theory of molecular evolution gave rise to several models by which
to study genetic data. Such models include the infinite alleles model and the infinite
sites model. We studied these models, and present them here in an clear and algorith-
mic style. We coded these models in Python, using Monte Carlo methods to calculate
probabilities and perform tests of hypothesis against real-world data.

Contents

1 Background 2
1.1 Notation to Describe an Allelic Partition . 3

1.1.1 Example . 3

2 Infinite Alleles Model 3
2.1 Infinite Alleles Assumption . 3
2.2 Hoppe’s Urn Model . 4

2.2.1 Chinese Restaurant Process . 5
2.3 A Sufficient Statistic for θ . 5
2.4 Sample Homozygosity . 5
2.5 Computer Simulations . 6

2.5.1 Simulation with Drosophila persimilis Genetic Data from Coyne (1976) 7
2.5.2 Simulation with Drosophila pseudo-obscura Genetic Data from Singh,

Lewontin, and Felton (1976). 8
2.5.3 Simulation with Y chromosome Genetic Data from Underhill et al.

(1997) . 9

1

3 Infinite Sites Model 10
3.1 Model Description . 10
3.2 Computer Simulations . 11

3.2.1 Node Objects . 11
3.2.2 Function ”build tree()” . 11
3.2.3 Function ”older MC sim()” . 12
3.2.4 Results . 13

4 Appendices 14
4.1 Appendix 1 – Infinite Alleles Monte Carlo Python Simulation 14
4.2 Appendix 2 – Infinite Sites Monte Carlo Python Simulation 18

References 21

1 Background

With the availability of new data, questions regarding expectation, variance, distribution,
etc. of protein and genetic polymorphisms began to arise. Back in the 1960s, molecular
polymorphism data began to be produced. Researchers ran-out different enzymes on gels
and, observing different mobilities, classified them into different types. The observed distri-
butions of these data could not be predicted or explained by classical population genetics.
Thus, new models were needed to answer questions such as: what should we expect to see?
how many alleles? what level of heterozygosity? Furthermore, in the 1980s, genetic sequence
polymorphisms began to be examined. New questions started to arise, such as: what is the
distribution along the genome? Looking at pairwise differences between sequences, does it
matter if we sample from the same individual or from different individuals? Does it matter
if we sample from the same geographic location or from different locations? What about
differences between species? None of the dynamic systems models which existed could help
with these questions.

One such new model that was created was Kimura’s neutral theory of molecular evolu-
tion, which posits that most genetic variation is due to mutations and genetic drift. The
view of Kimura’s theory is basically that genetic polymorphism data represent the outcome
of a single, highly complex, non-repeatable evolutionary history. Now, since (according to
Kimura) the pattern of genetic variation is stochastic, stochastic processes were needed to
analyse this. However, the inherent problem with this approach is in trying to interpret the
single outcome of a stochastic process. This is inherently different from experiments where
replication is possible; for a stochastic process, the probability of exact replication is very
small.

The stochastic process known as ’the coalescent’ presents a coherent statistical framework
for analyzing genetic polymorphism data. It’s a way of taking Kimura’s diffusion theory and
running it backwards in time instead. Indeed, the coalescent has played a central role in

2

population genetics for well over 30 years.

Coalescent models follow the genealogy (ancestry) of genes backward in time, starting
from the present. This turns out to be a very powerful way of thinking about genetic poly-
morphism. It leads to elegant mathematics, powerful simulation algorithms (because instead
of simulating the whole population forwards in time, you can just simulate the ancestry of
the things you actually sampled backward in time).1

But to run models algorithmically, and use the data generated by stochastic processes
to evaluate real-world genetic data, we have to run models forwards in time. Regarding the
work done for this thesis, we have used Monte Carlo simulations (based on simulations of
infinite alleles model and infinite sites model, which produce synthetic ’genetic’ data for our
purposes) to analyze real genetic data.

1.1 Notation to Describe an Allelic Partition

We presently explain the two salient notational terms used to describe an allelic partition.
The two elements are j and aj. The term j describes how many times an allele appears in
the sample population. And the term aj describes how many alleles appear j times in the
sample population. Thus, adding up all the aj terms gives us the total number of alleles
found in the sample population. Furthermore, multiplying each aj term by its corresponding
j term, and then summing all these products, gives us the size of the sample population. In
mathematical terms: n =

∑n
j=0 j · aj.

1.1.1 Example

Let us turn to the data found in Coyne’s 1976 study to serve as an example through which
to get used to this notation. Coyne found ”23 alleles in 60 family lines at the xanthine dehy-
drogenase locus of Drosophila persimilis” [D08, page 15] with the following allelic partition:

a1 = 18, a2 = 3, a4 = 1, a32 = 1.

If we sum the aj terms, we get 23. Let us reproduce this operation explicitly: 18 + 3 +
1+1 = 23. Furthermore, the operation

∑n
j=0 j ·aj does indeed produce 60. Let us reproduce

the salient parts of this operation explicitly: 18 ·1+3 ·2+1 ·4+1 ·32 = 18+6+4+32 = 60.

2 Infinite Alleles Model

2.1 Infinite Alleles Assumption

We assume that so many possible alleles exist that each new mutation produces a new allele.
Kimura explained the rationale for this assumption by arguing that ”if a gene consists of 500

1The material in this section up to this point is heavily quoting or paraphrasing from a 2018 lecture by
Magnus Nordborg [N18]. The quotation marks have been removed in this section for improved readability.

3

nucleotides, the number of possible DNA sequences is 4500 = 10log10 4·500 = 10500·
log 4
log 10 ≈ 10301.

Since a single-base mutation has the potential to change the original-sequence to 3 · 500 =
1500 of the 4500 sequences, the probability of reverting to the original-sequence with a second
single-base mutation is 1

1500
– and ”thus, the total number of possible alleles is essentially

infinite” [D08, page 14].

2.2 Hoppe’s Urn Model

We begin with a mutation-opportunity of weight θ. (θ = 4N · µ is related to the mutation
rate µ [D08, page 10].) Since this is the only option, we select the mutation-opportunity
and our first allele (with a weight of 1) is produced. Now we can select either the mutation-
opportunity (to produce a new-allele) or a copy of this allele (to produce another offspring,
with weight 1, of this allele). As the process progresses, and there is a greater variety of
different alleles, we say that either the mutation-opportunity is selected or some copy of
some allele is selected.

When a new-allele is created, we represent it and its descendants in a new tree. Selecting
a copy of some allele in the Hoppe’s Urn (HU) process corresponds to a coalescent event –
that is, a branching on a tree.

At each moment in time, some event occurs (either a mutation event or a coalescent
event) – which is determined by following the uniform distribution. Starting at time k = 0,
mutations occurs at rate θ

θ+k
, and coalescent events occur with probability k

θ+k
. After the

final time (i.e. the final event), there are n = k + 1 lineages/descendants [D08, page 16].

Below, in figure 2.1, we present a picture which depicts a forest of trees after a run of the
HU-model:

Figure 2.1: Example of a Hoppe’s Urn Forest [D08, page 16].

4

2.2.1 Chinese Restaurant Process

Joyce and Tavaré (1987) ”added bookkeeping to keep track of the history” of an HU-process
[D08, page 20]. By viewing the historical process as a permutation, we construct a ”cycle
decomposition” to store the historical data (which may be reconstructed-in-full from the
decomposition) [D08, page 21].

We will number the genes by the order that they were produced in the HU-process. A
new allele starts a new cycle. A new copy of an allele is inserted into the same cycle, in the
left-most position of the cycle.

See figure 2.2 below, where we present part of the Hoppe’s Urn process that we depicted
above in figure 2.1, as an example of this decomposition:

Figure 2.2: Example of a Chinese Restaurant Process Decomposition [D08, page 21].

2.3 A Sufficient Statistic for θ

A theorem from Watterson (1975) says that E(Kn) ∼ θlog(n), where Kn is the number of
different alleles in the sample population, and n is the size of the sample population [D08,
page 17].
Furthermore, we know from Durrett’s Theorem 1.13 that Kn is a sufficient statistic for
estimating θ [D08, page 22]. Thus, if we know Kn (the number of different alleles), then we
have a sufficient statistic by which to estimate θ – that is, we estimate θ with Kn

log(n)
.

2.4 Sample Homozygosity

Sample homozygosity is ”a random variable that gives the probability that in the given
sample two randomly chosen members are identical” [D08, page 24]. Watterson (1977)
presented a version of the sample homozygosity, which ”represents the probability that two
individuals chosen with replacement are the same” [D08, page 25-26]. His formula is

Fn =
n∑

j=1

aj ·
(
j

n

)2

,

5

”where aj is the number of alleles with j representatives” [D08, page 25]. Thus, this statistic
relies on allelic partition data.

2.5 Computer Simulations

In our code, we defined a class of objects called ”Study” – where each genetic study and its
data is treated and analyzed separately. Input into each Study object is N (the number of
simulations), n (sample population size), Kn (number of different alleles or haplotypes), and
the Fn value from those genetic data. For this object, we use our data and the infinite alle-
les model to test whether our null-hypothesis (of neutral theory of molecular evolution) holds.

We wrote a function called ”infiniteAlleles()” – which took inputs of N , n, Kn, and the
Fn value. The function first calls another function to calculate θ using inputs of n and Kn

(using the sufficient statistic described above, in section 3.3). Then Hoppe’s Urn simulations
are run until N number of simulations are ”successful” – that is, for our purposes, that there
are N simulations in which Kn number of different alleles are generated.

For all successful simulations, we list the sizes of each tree (i.e. how many representatives
each allele has), and make a dictionary which counts how many alleles (trees) have the same
number of representatives (descendants). In other words, we calculate the aj values; and
specifically, we create a dictionary in which the keys are j (the number of representatives)
and the value-pairs are aj (the number of trees with with the same number of descendants).

This dictionary (with j and aj data) is then input into another function, with our sample
size number n, that calculates the sample homozygosity (as described above, in section 3.4).
After calculating this value (Fn), we add it do a vector which contains the Fn values of all
successful simulations – which the ”infiniteAlleles()” function returns, and which is stored
as a value of an attribute of this Study object.

We also compare this Fn value (from our successful Hoppe’s Urn simulation) with the
Fn value of the study data (the Fn statistic which is calculated with the j’s and aj’s from
the study’s real-world data). We increment a counter (”larger counter”) each time the
simulation-partition’s Fn is larger than the study-partition’s Fn – thus keeping track of how
many times this occurs. We now use this (”larger counter”) to calculate the p-value.

A p-value is ”the probability of obtaining results at least as extreme as the observed re-
sults of a statistical hypothesis test, assuming that the null hypothesis is correct.” It ”serves...
to provide the smallest level of significance at which the null hypothesis would be rejected. A
smaller p-value means that there is stronger evidence in favor of the alternative hypothesis”
[B23]. For us, the p-value will give us a level of the Fn values for rejecting the null-hypothesis.
Thus, if the Fn from the study’s real-world data is larger than the p-value, then we reject the
null-hypothesis – and say that fitness of the alleles is a factor in the evolution of the gene pool.

We calculate the p-value with the following operation: larger counter
N

. This is the number
of times the successful-simulation-partition’s Fn is larger than the study-partition’s Fn, over

6

the total number of ”successful” simulations.

2.5.1 Simulation with Drosophila persimilis Genetic Data from Coyne (1976)

Coyne’s study found ”23 alleles in 60 family lines at the xanthine dehydrogenase locus of
Drosophila persimilis” [D08, page 15] with the following allelic partition:

a1 = 18, a2 = 3, a4 = 1, a32 = 1.

We created a instance of the Study class for data from Coyne’s study of the Drosophila
persimilis. Watterson (1977) ran N = 1000 successful infinite-allele simulations for his com-
putation experiment, while we ran our code for N = 10, 000 and N = 100, 000 successful
infinite-allele simulations. And Durrett presents 0.2972 as the Fn value of the Coyne data
[D08, page 26]. We used this Fn value, and confirmed by our own calculation (based on the
allelic partition of Coyne’s data which Durrett himself presents) that the Fn value is indeed
107/360 = 0.2972222...

Below are two histograms, which depict the Fn values produced from the infinite-alleles
simulations (on the x-axis), against the number of simulations which produced that same Fn

value (on the y-axis).

Figure 2.3: Coyne, 10,000 simulations. Figure 2.4: Coyne, 100,000 simulations.

Figure 2.3 depicts Fn data from 10, 000 simulations. Zero simulations produced allelic
partitions with an Fn value as extreme/high as that of the Coyne data. Thus, by way of
a Monte Carlo simulation, we have produced an estimated p-value (the probability of ob-
taining an Fn value as high as that of the Coyne data) of 0. Figure 2.4 depicts Fn data
from 100, 000 simulations. Here, a Monte Carlo simulation produces an estimated p-value of
0.00002 – that is, 2

100,000
Fn values produced from the allelic partitions of these Hoppe’s Urn

simulations are as extreme/large as the Fn value produced from the Coyne data. These small
p-values are indicative of the Coyne data not fitting the null-hypothesis of neutral evolution.

7

2.5.2 Simulation with Drosophila pseudo-obscura Genetic Data from Singh,
Lewontin, and Felton (1976).

Singh, Lewontin, and Felton’s study ”found 27 alleles in 146 genes from the xanthine de-
hydrogenase locus of” Drosophila pseudo-obscura [D08, page 15] with the following allelic
partition:

a1 = 20, a2 = 3, a3 = 7, a5 = 2, a6 = 2, a8 = 1, a11 = 1, a68 = 1.

We created a instance of the Study class for data from Singh, Lewontin, and Felton’s
(SLF) study of the Drosophila pseudo-obscura. Durrett cites the results of a similar process
in his book. Durrett (p. 26; seeming to cite Watterson (1977)) ran N = 2000 success-
ful infinite-allele simulations for his computation experiment, while we ran our code for
N = 10, 000 and N = 100, 000 successful infinite-allele simulations. Furthermore, Durrett
presents 0.2353 as the Fn value of the SLF data [D08, page 26], and we used this Fn value
for consistency with Durrett’s simulations. However, our own calculation of the Fn statis-
tic (based on the allelic partition of SLF’s data which Durrett himself presents) – which
was intended to merely confirm Durrett’s value (again, 0.2353) – found an Fn value of
2513/10658 = 0.235785325577031337...

As before, below are two histograms, which depict the Fn values produced from the
infinite-alleles simulations (on the x-axis), against the number of simulations which pro-
duced that same Fn value (on the y-axis).

Figure 2.5: SLF, 10,000 simulations. Figure 2.6: SLF, 100,000 simulations.

Figure 2.5 depicts Fn data from 10, 000 simulations. The estimated p-value produced
by this simulation was 0.0043. In other words, our Monte Carlo simulation found that
only 43 out of 10,000 simulations produced Fn values as extreme as that of the SLF data.
Figure 2.6 depicts Fn data from 100, 000 simulations. The estimated p-value produced by
this simulation was 0.00431, or 431

100,000
Fn values produced from the allelic partitions of these

Hoppe’s Urn simulations are as extreme/large as the Fn value produced from the SLF data.
These small p-values are large than those of the Coyne data simulations above, but are still

8

small enough that they are indicative of the SLF data not fitting the null-hypothesis of
neutral evolution.

2.5.3 Simulation with Y chromosome Genetic Data from Underhill et al. (1997)

Since ”the infinite alleles model is also relevant to DNA sequence data where there is no
recombination” (such as with Y chromosomes) [D08, page 15], we’ll look at Underhill et al.’s
study. They found 20 distinct haplotypes in 718 Y chromosomes that they studied, with the
following allelic partition:

a1 = 7, a2 = a3 = a5 = a6 = a8 = a9 = a26 = a36 = a37 = 1, a82 = 2, a149 = 1, a266 = 1.

We created a instance of the Study class for data from Underhill’s study of Y chromo-
somes. Durrett does not cite statistics from a similar process as ours, nor does he mention
the Underhill data at all in the section of his book ”Testing the infinite alleles model” [D08,
page 25-26] – thus, it seems that simulations were not run for the Underhill data.

We chose to run our code for N = 10, 000 and N = 100, 000 successful infinite-allele
simulations. Furthermore, Durrett presents 0.2133 as the Fn value of the Underhill data,
and we used this Fn value for consistency with Durrett’s simulations.

Our calculation of the Fn statistic (based on the allelic partition of Underhill’s data which
Durrett presents) found an Fn value of 27493/128881 = 0.213320815..., so we input an Fn

value of 0.2133.

As before, below are two histograms, which depict Fn value data in the same way as
described with regard to the histograms in sections 3.5.1 and 3.5.2.

Figure 2.7: Underhill, 10,000 simulations. Figure 2.8: Underhill, 100,000 simulations.

Figure 2.7 depicts Fn data from 10, 000 simulations. The estimated p-value produced by
this simulation was 0.409 (4090

10,000
simulations produced an Fn value as extreme/high as that

9

of the Underhill data). Figure 2.8 depicts Fn data from 100, 000 simulations. The estimated
p-value produced by this simulation was 0.41355 (41355

10,000
simulations produced an Fn value as

extreme/high as that of the Underhill data). Thus, the probability of obtaining an Fn value
as extreme/large as the Fn statistic from the Underhill data is rather high – indeed, almost
1
2
. At this level probability, the null-hypothesis of neutral evolution (for the alleles studied

in Underhill’s paper) is not something which we would be inclined to reject.

3 Infinite Sites Model

3.1 Model Description

As DNA sequence data became more available, Kimura’s infinite sites model – ”in which
mutations occur at distinct sites” – became more popular [D08, page 29-30]. In the infinite
sites model we have one tree which branches, but branching (i.e. the addition of a lineage) is
independent of new mutations arising. The amount of time that j lineages exist is denoted by
tj, and tj ”has approximately an exponential distribution” [D08, page 31]. The end of any tj
interval is marked by a branching event (not by a new mutation). The location of branching
– that is, which lineage will now be split – follows the uniform distribution UNI(0,1). The
location of the new mutation, i.e. which branch it occurs at, follows the uniform distribution
UNI(0,1) – and the temporal distribution is exponential.

Figure 3.1 contains an illustrated example of a tree produced by the infinite sites model
(the figure also includes the caption from Song’s lecture notes):

Figure 3.1: Example of an Infinite Sites Tree [S21, page 68].

The infinite sites model can be used to address issues regarding segregating sites (sites
where mutations occur). An example of one such question may be: what is the expected
number of segregating sites in a sample size of n [D08, page 31]. However, questions regard-
ing the age of a mutation may be addressed by this model [S21, page 73]. We focused our

10

simulations on this latter type of issue. Specifically, we designed and ran a Monte Carlo
simulation with the aim of calculating the probability that a segregating site with b1 descen-
dants is older than another segregating site with b2 descendants.

3.2 Computer Simulations

3.2.1 Node Objects

In our code, we defined a class of objects called ”Node.” Each Node object is really a node
(where a branching of the tree occurs) and a particular branch that extends from that event.
Similarly, each node has the potential for two descendants (a left one, and a right one), which
arise when a branching occurs at the end of this current branch/node.

Each Node object also has a list of mutations, in chronological order of their occurrence
on the branch. A Node also has a record of which other Node is its ”parent,” and has an
age attribute (which is updated over time).

3.2.2 Function ”build tree()”

1 – Setting Up:

The function ”build tree()” takes in two inputs: n (the sample size, which is the size the
population of the simulation should be at the end of the simulation) and θ (the statistic we
discussed previously, which is related to the mutation rate).

In the function, we begin by defining the root Node/branch and two other Nodes (which
we call ”left” and ”right”) – which are also the first two descendants of the root Node, from
after the first branching event. We call functions to set these Nodes, ”left” and ”right,” as
the left-descendant and right-descendant (respectively) of the root Node. And then we in-
clude these two newer-nodes in a list of active-Nodes, which lists which Nodes have branches
that are still growing (the current-branch hasn’t hit a branching event yet).

So far, everything has been set-up for the simulation. It is at this point that we set the
absolute-time of our simulation to zero, and we begin moving the simulation forwards in time.

2 – Main While-Loop:

We enter a while-loop, in which we set a time (away from the current-time) for the next
branching-event to occur. We do so by use of an exponential random variable, with a scale
parameter – 1

λ
, where λ is the rate parameter – of 1

number of active Nodes
. Until we reach this time

for the next branching event, we run along each of the active-branches and set times – using
exponential random variables with 1

θ
as the scale-parameter (since θ is the statistic related

11

to the rate-parameter which we use, and the scale parameter is 1
rate-parameter

) – for mutations

to happen. A mutation will occur on that branch if the time set for a mutation (on this
particular branch) occurs before the time for the next branching event (which happens on
one of the active-branches).

Now that we have reached the time for the next branching event, we update the absolute-
time of the simulation. We also check how many active Nodes exist. If we have n active-
Nodes, then we end the simulation – since we are interested in a tree with a certain number
(n) of branches at the end. If fewer than n branches exist, we continue the simulation with
the upcoming branching event.

We use a random integer generator to pick which of the k active-nodes will be split in
this branching event – this ensures that the location of the mutation follows the uniform
distribution. We use the function pop() to remove the Node in question from our list of
active-nodes, and create two new Nodes (”new left” and ”new right”). These Nodes age
attributes are input in terms of absolute-time, and the Node which is being split (i.e. the
Node-in-question which was just popped from the active-nodes list) has it’s left-descendant
and right-descendant attributes set with these new Nodes. And finally, we append these two
new Nodes to the active-nodes list.

3 – Summing Up:

We described above how after an initial setting up part of the code (in this function) we
are dealing with code occurring inside of a while-loop, and that there is a check for whether
there are n-active nodes (in order to determine whether to stop the simulation). Thus, now
that we have described the algorithm inside the while-loop, we understand that the tree
continues to grow and branch, with mutations occurring along the way, until we end up with
n leaves of the tree – n active Nodes – and having reached our desired n, we have grown the
tree to completion.

The function returns the root Node, the active-nodes (or ”leaves” of the tree), the length
of the simulation (i.e. absolute-time at the end of the simulation), and a dictionary with the
mutations (or, to be exact, the mutation-times) from the simulation as keys.

3.2.3 Function ”older MC sim()”

This function, older MC sim(), runs a Monte Carlo simulation with the aim of calculating
the probability that a segregating site with b1 descendants is older than another segregat-
ing site with b2 descendants. The inputs are n (the sample population size), θ (a statistic
related to the mutation rate), b1, b2, and N (the number of infinite sites simulations which
will be run for this Monte Carlo simulation). We have the constraints that 0 < b1 ≤ b2.
In other words, this function aims to calculate the probability that a segregating site with
b1 ̸= 0 descendants is older than another segregating site with a greater or equal number
(b2 ̸= 0) of descendants. We should note however, that the case of b1 = b2 is a trivial case

12

(P = 1
2
). As this is the case, we did not design our code to deal with the trivial case of b1 = b2.

We make a while-loop, which will continue until N simulations, in which there is a muta-
tion with b1 descendants and another mutation with b2 descendants, are completed. Inside
the loop, we call build tree() to run an infinite sites simulation. We then correlate the
mutations (returned, as times that they occurred, in a dictionary) with their descendants,
using the following methodology: For each leaf/final-branch of the tree, we look at each
the mutation-times on that branch and on all of its ancestor-branches. For each of those
mutation-times, we enter the dictionary (with mutation-times as keys) and add the current
leaf to a list (which is the value corresponding to this mutation-time/key). Thus, we end up
with a dictionary with mutation-times as keys – for which a list of leaves which contain the
mutation-in-question is the value corresponding to the key.

We then convert the dictionary into a list, and randomly shuffle the list, before finally
converting the list into an ordered-dictionary. In general terms, we do this so that the muta-
tions are not ordered in any more-or-less chronological way (as the mutations were input into
the dictionary originally) that would bias the analysis (which is concerned with probability
connected with the chronology of mutations).

We now will analyze the data from our infinite sites simulation. We iterate through the
mutations-dictionary to check to see if there is a mutation with b1 descendants. If there is,
we select that mutation, that entry of the dictionary (let’s call it ”mutation-b1” for now).
Then we iterate through the dictionary again, and look for a mutation with b2 descendants
– and if it exists, we’ll select that entry too (and term it ”mutation-b2”). Now that we
have a simulation which produced two such mutations, we make note of it by incrementing
a counter (called ”counter”). We then compare the entries to see which mutation is older
(which is easy, since every dictionary-entry’s key is the time that the mutation-in-question
occurred). If mutation-b1 is older than mutation-b2, we increment another counter (called
”success”).

Once ”counter” has reached N (that is, N many simulations with a mutation with b1
descendants and another mutation with b2 descendants were run and analyzed), we calculate
the probability (observed through this Monte Carlo simulation) that the mutation-site with
b1 descendants is older than one with b2 descendants. The calculation is the following: success

N

– that is, the number of times we observed that the mutation-site with b1 descendants is
older than one with b2 descendants, over the total number of simulations which produced a
mutation-site with b1 descendants and another with b2 descendants.

3.2.4 Results

We called the older MC sim() function for ”data from Ward et al. (1991), who sequenced
360 nucleotides in the D loop of mitochondria in 63 humans” [D08, page 30]. We had n = 63,
we chose θ = 1, and N = 1000. We focused on the mutations at positions 296 and 302 in the
sequenced genetic fragment. 28 members of the sample population carried the mutation at
site 296, and 24 members carried the mutation at site 302. Thus we have b1 = 24 and b2 = 28.

13

Figure 3.2: Estimated Probability Monte Carlo Simulation for Ward et al. Data.

As we see in Figure 3.2, the estimated probability (based on a Monte Carlo simulation)
that the mutation with b1 = 24 descendants (in our sample) is older than the mutation with
b2 = 28 descendants is 0.297.

4 Appendices

4.1 Appendix 1 – Infinite Alleles Monte Carlo Python Simulation

Link to view our Google Colab file (”Hoppe urn.ipynb”):
https://colab.research.google.com/drive/18KUeuJMw0wJBXKnNUaiHa25gVI9murop?us

p=sharing.

Below is the text of our code:

from enum import Enum, auto

import math

import random

import plotly.express as px

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

pValue is the p-value, which is the probability of obtaining test results

at least as extreme as the result actually observed (under the assumption

that the null hypothesis is correct). In our case, it is the probability of

producing an allelic partition (with a Hoppe’s Urn simulation, which assumes

neutral theory of molecular evolution for this gene locus - that is, this

evolution of this gene locus is not based on fitness of the mutations,

rather it is a product of stocastic processes) that is as "extreme" (probably

meaning: as unevenly partitioned) as an allelic partition observed in nature.

14

class Study:

def __init__(self,numOfSimulations,n,K_n,StudyFn):

self.numOfSimulations = numOfSimulations #Number of simulations with K_n

#different genes produced.

self.populationSize = n #Population size.

self.numOfDiffGenes = K_n #Number of different alleles (or

#haplotypes) at the gene locus in

#question.

self.StudyFn = StudyFn #F_n statistic, calculated from the

#partition in the study.

self.theta,self.pValue,self.fVals = infiniteAlleles(numOfSimulations,n,K_n,StudyFn)

A function which simulates Hoppe’s Urn, with inputs n and theta.

def generate(n = 60, theta = 5):

num_of_trees = 1 #Start out with 1 tree - the mutation.

tree_sizes = []

for i in range(n):

x = (i+theta) * random.random()

cumsum = 0

old_color = False

for j,value in enumerate(tree_sizes):

cumsum += value

if x < cumsum:

tree_sizes[j] += 1

old_color = True

break

if not old_color:

tree_sizes.append(1)

num_of_trees += 1

return (num_of_trees,tree_sizes)

F_n "is the probability that two individuals chosen with replacement are the

same" (Durrett’s textbook, pp. 25-26). Inputs are n (population size) and a

dictionary with j’s (i.e. number of representatives) as the keys and a_j’s as

the value-pairs (i.e. how many alleles have this number of representatives).

def Fn(n, thisdict): #F_n = sum[a_j * (j/n)^2] for j=1 to n.

15

sum = 0

for x in thisdict:

j = x

aj = thisdict[x]

sum += aj * (j/n)**2

return sum

Theta^hat is a sufficient statistic for theta = 4N*mu (where mu is the

mutation rate). Theta is related to the mutation rate,

and is used to calculate the probabilities of both a coalescence event

and a mutation event.

Theta^hat = K_n / log(n), where K_n is the number of different alleles,

and n is the population size.

def findTheta(n,kn):

theta = kn/math.log(n)

return theta

Run infinite alleles model. Inputs: N, number of simulations; n, population size;

K_n, number of different alleles/haplotypes; F_n value, calculated from the

partition in the study.

def infiniteAlleles(N,n,kn,FVal):

theta = findTheta(n,kn)

sample_counter = 0 # Counts number of simulations with K_n as the number

of different alleles (i.e. successful simulations).

larger_counter = 0 # Counts number of simulations with an F_n which is

greater than the F_n-value of the study.

fVals = [] # List that records F_n values of successful simulations.

while sample_counter < N: # While-loop that continues until there are N-number

of successful simulations.

new_sample = generate(n,theta) #Run a Hoppe’s Urn simulation.

if new_sample[0] == kn: #Select simulations that have K_n

#as the number of different alleles.

#print(new_sample[1])

sample_counter += 1

MyList = new_sample[1] #List of sizes of the trees

#(i.e. how many representatives

#each allele has; allele has j

16

#representatives)

my_dict = {i:MyList.count(i) for i in MyList} #Make a dictionary that counts

#how many alleles (trees) have

#the same number of representatives

#(descendants); calculate the

#a_j’s. Key:value-pairs, j:a_j.

fVal = Fn(n,my_dict) #Use j’s and a_j’s to calculate F_n.

fVals.append(fVal) #Add to a vector of F_n values.

if fVal > FVal: #Count how many times this

#simulated-partition’s F_n is

#greater than the F_n value of

#the study.

larger_counter += 1

return theta, larger_counter/N, fVals

Coyne (1976), Drosophila persimilis.

FVal = 0.2972

Coyne = Study(100000,60,23,FVal) #N=1000 from book;

#FVal from book, self calculation

#produced 107/360=0.2972222... .

print(Coyne.pValue)

Creating an array of F_n values from the successful simulations.

a = np.array(Coyne.fVals)

Creating histogram with the array of F_n values.

fig, ax = plt.subplots(figsize =(10, 7))

ax.hist(a, bins = 100)

ax.plot(FVal)

Show plot.

plt.show()

#Singh, Lewontin, and Felton (1976), D. pseudoobscura.

FVal = 0.2353

SLF = Study(100000,146,27,FVal) #N=2000 from book;

#the FVal inputed from book, but self calculation

17

produced 2513/10658=0.235785325577031337...... .

print(SLF.pValue)

Creating an array of F_n values from the successful simulations.

a = np.array(SLF.fVals)

Creating histogram with the array of F_n values.

fig, ax = plt.subplots(figsize =(10, 7))

ax.hist(a, bins = 100)

ax.plot(FVal)

Show plot.

plt.show()

#Underhill et al. (1997), Y chromosomes -- 20 distinct haplotypes.

FVal = 0.2133

Underhill = Study(100000,718,20,FVal) #N up to us;

#FVal self calculation produced

#27493/128881=0.213320815...... .

print(Underhill.pValue)

Creating an array of F_n values from the successful simulations.

a = np.array(Underhill.fVals)

Creating histogram with the array of F_n values.

fig, ax = plt.subplots(figsize =(10, 7))

ax.hist(a, bins = 100)

ax.plot(FVal)

Show plot.

plt.show()

4.2 Appendix 2 – Infinite Sites Monte Carlo Python Simulation

Link to view our Google Colab file (”Infinite site model MC simulation.ipynb”):
https://colab.research.google.com/drive/1ZstsyDw2VnXKa7adSsJzNuDSgqGGOQVf?us

p=sharing.

Below is the text of our code:

18

from enum import Enum, auto

import math

import random

import collections

import plotly.express as px

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

class Node:

def __init__(self, parent=None): #parentID=None, ID=None

self.left = None

self.right = None

self.mutations = []

self.parent = parent

self.age = 0

self.ID = None

self.parentID = None

def set_left(self, x):

self.left = x

def set_right(self, x):

self.right = x

def add_mutation(self, x):

self.mutations.append(x)

def add_age(self, x):

self.age += x

def build_tree(n, theta):

mutations = {}

root = Node()

left = Node(root) #parent is root

right = Node(root) #parent is root

root.set_left(left) #left-branch of old-node is left-new-node

root.set_right(right) #right-branch of old-node is right-new-node

active_nodes = [left, right]

absolute_time = 0

while True:

split_time = np.random.exponential(1/len(active_nodes)) #next un-coalescent

#event is calculated with

#r.v. exp(1/lambda),

19

#where lambda=rate,

#1/lambda is the scale

#parameter.

for node in active_nodes:

#Add mutation events

current_time = 0

while True:

current_time += np.random.exponential(1/theta)

if current_time < split_time:

node.add_mutation(node.age + current_time)

mutations[absolute_time + current_time] = []

else:

break

#Update node age

node.add_age(split_time)

absolute_time += split_time

if len(active_nodes) == n:

break

#Split one node

split_index = random.randint(0,len(active_nodes)-1) #pick node to split;

#random number between

#0 and k-1 (both included)

split_node = active_nodes.pop(split_index)

new_left = Node(split_node)

new_right = Node(split_node)

new_left.add_age(absolute_time)

new_right.add_age(absolute_time)

split_node.set_left(new_left)

split_node.set_right(new_right)

active_nodes = active_nodes + [new_left, new_right]

return (root,active_nodes,absolute_time,mutations)

def older_MC_sim(n,theta,b1,b2,N):

#Simulates whether segregating site with b1 descendants is older than another one

with b2 descendants

#N: number of simlations

#0 < b1 < b2

20

counter = 0

success = 0

while True:

(root,leaves,abs_time,mutations) = build_tree(n,theta)

for leafe in leaves:

curr = leafe

while curr != root:

for mutation in curr.mutations:

mutations[mutation].append(leafe)

curr = curr.parent

items = list(mutations.items())

random.shuffle(items)

mutations = collections.OrderedDict(items)

tree_used = False

for site1 in mutations:

if tree_used:

break

if len(mutations[site1]) == b1:

for site2 in mutations:

if len(mutations[site2]) == b2: #need b2 not equal b1 - because if it is,

#the code would probably pick the same

#mutation for both selections.

counter += 1

if site1 < site2: #site1 < site2 means the value of site2 is bigger,

#i.e. further along in time, and therefore site2

#is younger.

success += 1

if counter == N:

return success / N

tree_used = True

break

References

[B23] Beers, B. ”P-Value: What It Is, How to Calculate It, and Why It Matters,” Investo-
pedia, 28 Mar. 2023.
https://www.investopedia.com/terms/p/p-value.asp.

[C76] Coyne, J.A. ”Lack of genic similarity between two sibling species of Drosophila as revealed
by varied techniques,” Genetics, 84, pp. 593–607, 1976.

21

[D08] Durrett, R. ”Probability Models for DNA Sequence Evolution,” 2nd edition, 2008.
https://services.math.duke.edu/~rtd/Gbook/PM4DNA_0317.pdf.

[JT87] Joyce, P., and Tavaré, S. ”Cycles, permutations and the structure of the Yule process with
immigration” Stoch. Proc. Appl., 25, pp. 309–314, 1987.

[N18] Nordborg M. ”Introduction to the coalescent theory - Lecture 1 by Magnus Nordborg,”
Youtube, Internation Centre for Theoretical Studies. Posted on June 12, 2018. Retrieved on
April 28, 2023.
https://www.youtube.com/watch?v=0j0jW0stbB8.

[SLF76] Singh, R.S., Lewontin, R.C., and Felton, A.A. ”Genetic heterogeneity within elec-
trophoretic “alleles” of xanthine dehydrogenase in Drosophila pseudoobscura,” Genetics, 84,
pp. 609–629, 1976.

[S21] Song Y.S. ”Lecture Notes on Computational and Mathematical Population Genetics,” 2021.
https://people.eecs.berkeley.edu/~yss/Pub/CMPG_lecture_notes.pdf.

[U97] Underhill, P.A. et al. ”Detection of numerous Y chromosome bial- lelic polymorhpisms by
denaturing high performance liquid chromatography,” Genome Research, 7, pp. 996–1005,
1997.

[W91] Ward, R.H., Frazier, B.L., Dew-Jager, K., and Pääbo, S. ”Extensive mitochondrial diversity
within a single Amerindian tribe,” Proc. Natl. Acad. Sci. USA., 88, pp. 8720–8724, 1991.

[W75] Watterson, G.A. ”On the number of segregating sites in genetical models without recombi-
nation,” Theor. Pop. Biol., 7, pp. 256–276, 1975.

[W77] Watterson, G.A. ”Heterosis or neutrality?” Genetics, 85, pp. 789–814, 1977.

22

