Logistic Regression and Text Classification as part of the

Yeshiva University Computer Science Capstone Project

Thesis Submitted in Partial Fulfillment
of the Requirements

of the Jay and Jeanie Schottenstein Honors Program

Yeshiva College
Yeshiva University

May 2023

Jacob Silbiger

Mentor: Professor Dave Feltenberger, Computer Science



It O UCTION . cuu. eereeeeeereeneeeereeneeeereseeceressessessssssssssssesssssssessssssssssssssssssssssssssssssssssssssssssssssessesssssssosssnes 3

Logistic Regression 3
How Logistic Regression WOTKS.........c..iiiuiiiiiiiiiiie ettt 5
SIGMOTA FUNCHON. .....eiiiieiieciie ettt et e et e e e e teeebeeseeesbeessaesnseensnaans 5
Understanding the CoetfiCIeNtS..........c.eoeiiiiiiiiiicciie e e e 7
How to Use logistic regression in Python — SKlearn.............ccceovevviiiniiiiiiinieniieieceeiee 7
Logistic Regression and Text ClassifiCation...........cceecvieeiieeeiiieeiieeeie e eeiee e e evee e 9

Computer Science Capstone Project 12

NTe) 220 E 0 D F2 Y £ 1< A RSP PS 13
Turning Sefaria Data Into Readable Data for the Model............cccoovviviiiiiiienieniieiecieeee 14
RESUILS. ...ttt et e et e e aa e e e st e e etaeeetaeeeataeennbeeennreeenraenn 15

Precision, Recall, F1-SCOTE, ACCUIACY ........ccouieiiieiiieriieeiienieeieesieeeteeneaesereesseeesseensaesnseens 15
TP, TN, FP, FINL .ottt ettt ettt e saeenaeeneens 15
A2 ettt b ettt b ekttt be et eenene 17
P PP PPPTOPPRPPRY 18
TT2DIN ettt ettt ettt bbbtttk h ettt a et sttt b st e e ene 19
P 7 PP 20
DRI .ttt h ettt bttt ne 21
CONCIUSION. . cccinneiiitieciieiiiteecineessteesssneesssseessssesssssesssssesssssesssssesssssessssssssssesssssasssssesssssassssasssssases 22



Introduction

Text classification is a machine-learning task of assigning labels to a given text. The texts
can be categorized based on topics or the sentence’s sentiment like this is a positive or negative
sentence. In my capstone project, we were tasked with correctly labeling texts from the Sefaria
dataset. The project aims to create a machine-learning model to predict a given Hebrew text’s
correct topic or topics. One of my tasks in the project was building logistic regression models for
text classification. The results of these models became the initial performance bar to measure the
results of other models created in the project. This paper aims to explain what logistic regression

is, how to use it, and how it applies to our project.

Logistic Regression

Logistic regression is a machine-learning model used for classification tasks.
Classification is when the machine learning model assigns the item to a given category or
multiple categories. The model returns a probability of what classification it believes the item

belongs to.

Logistic regression is sometimes used as the benchmark model as it is one of the simplest
to create. It is also more straightforward than most neural networks. Because we know the

coefficients (Wl... Wn), we can easily interpret the results from a logistic regression model. Some

downsides are that the model can sometimes overfit with a more complex dataset. This means
that the model learns to fit the given data but can not apply it to new data. There are ways to help
minimize this issue called L1 and L2 regularization. Also, the data must be linearly separated, as
the model can not learn complex relationships. Logistic regression has a linear decision

boundary, meaning the cutoff between y = 0 and y = 1, is a straight line. As seen in this image,



the first two rows are non-linearly separated data. There cannot be a line such that it can divide
the data linearly into categories. Therefore, the accuracy of the logistics regression model is low.

While the last row is linearly separated data, and the accuracy is 0.95

Input data Logistic Regression

(Grobler et al.)

Logistic regression models can also be sensitive to outlying data, which can skew the

model. Fortunately, for text classification, logistic regression works reasonably well (Grover).



As mentioned, other machine learning models can be used for text classification. These
models are more complex than logistic regression and can sometimes lead to better results.
Nevertheless, the simplicity and efficiency of logistic regression make it a great benchmark tool

before starting the more advanced methods and models (Grover).

How Logistic Regression Works

Logistic regression is similar to linear regression using independent and dependent
variables. Logistic regression requires the linear relationship between the independent variable X
and the dependent variable, the known outcome Y. The formula for a linear relationship is

y =b + w, * X1 +w, * X2 oot w o+ Xn. Where Xi represents the data variables, y is
the predicted outcome, and b is the y-intercept when we set all X values to 0, W .. W are the

coefficient, also known as the weights. The goal of regression models is to change the

coefficients, w W to minimize the difference between the actual Y value and the predicted y

value from the formula for all Y values. This is known as the cost function (Gupta)

Sigmoid Function

Logistic regression can only predict a probability between 0 and 1 because it uses the
“Sigmoid Function.” This is the probability that the object is in a given class, with a probability
greater than 0.5 meaning that the object is in the given class and less than 0.5 being not in the
class. Similarly, if the result is closer to 0 or 1, then the model is more confident that the item is

in that particular group. The sigmoid function is used in many machine learning models where

one tries to predict between two classes. The sigmoid function formula is 6(z) = ﬁ, where
+e

z represents the formula on which we want to apply the sigmoid function. So using the



regression formula to the sigmoid formulaz = b + w, * X +w * X, +.. +tw+X,

2

1
+e—( btw X +w X+ tw +X )

we arrive at the function o(z) =

1
l1+e?

Sigmoid Function o(z) =

-10 -5 0 5 10
z=2w;x; + bias

For logistic regression, we need a cost function for each label, 0 and 1. The cost function is

— log(o(2))if y = land — log(1 — o(z2)) if y = 0. Which can be combined into one
formula /] ==Y ((yl_ * log(o(zi)) + (1 - yl,) *log(1 — o(zi)))) for all y values. The goal

of the model is to minimize J, this achieved through applying the gradient descent algorithm on



each weight. The formula for gradient descentis: 8 =0 — a 2O here 0 represents
new j oldj a(ej) j

each weight (Wl... Wn). a is a constant and is known as the learning rate (Pant).

Understanding the Coefficients

Since logistic regression aims only to predict values between 0 and 1. the goal of our

equation is 0(z) = log (ﬁ), or the log of probability that y = 1 is divided by the

probability that y = 0. This is known as logit(p) and also log-odds. Therefore, when we

change w, we are changing the probability of log (%). When we increase w, we increase

the probability of Y = 1, when we decrease w, we decrease the probability of Y = 1, increasing

the probability of Y = 0 (Kisselev).

How to Use logistic regression in Python — Sklearn

A simple and efficient way to use logistic regression is using the Scikit Learn library. To
build a model, one imports the logistic regression tool and then calls the logistic regression
method LogisticRegression(). The logistic regression method allows us to pass in parameters,
from helping with overfitting to changing the starting coefficients. In any case, the base model

with no parameters works well.

To train the model, one passes in the data by calling LogisticRegressionModel.fit(X.,y),
where X is the data and y is the results. So now we have a trained model, and we can use the
model to make predictions on new data. We can also call predict(X) and pass in new data to
predict the results of unseen data. The model also had a method called predict proba(X), which

allows us to see the probabilities for each class for any X we pass in. There is also a method



called score(X,y) which returns the accuracy of the given test data and labels. Here is a demo
code from the Scikit Learn website (>>> indicates a line of code, no arrows indicate output to the
screen). In this case, the iris data is set to X and y, then it makes a logistic regression model and
calls fit passing in the X and y data. The code then calls predict, predict_proba on the first two
pieces of X data, and score on all of the X data to show the different possible ways to view the

model results:

>>> from sklearn.datasets import load _iris
>>> from sklearn.linear_model import LogisticRegression
>>> X,y =load iris(return X y=True)
>>> clf = LogisticRegression(random_state=0).fit(X, y)
>>> clf.predict(X[:2, :])
array([0, 0])
>>> clf.predict_proba(X[:2, :])
array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
[9.7...e-01, 2.8...e-02, ...e-08]])
>>> clfiscore(X, y)
0.97...

As explained, logistic regression allows one to look at the coefficients ( W Wn) and to

see what is important for the model. The Scikit logistic regression model has a built-in method
called call coef which allows one to view the model’s coefficients

(Sklearn.linear _model.logisticregression).



Logistic Regression and Text Classification

To use the logistic regression model, one needs both the x and y values to be numbers or
a list of numbers. To use logistic regression for text classification, one needs a way to turn texts
and the classification topic into numbers that make sense and that the model can understand. For
the topics, one can easily say if the text is in the topic, then return 1; if the text is not, then return

0.

For the texts, there are a couple of ways to turn the text into usable numbers. The first
way is called Bag of Words. This way is the simplest and still produces good results. The Bag of
Words is just a list of all other words seen in the data, and for each text, observe how many times

a word appears from the vocabulary list. Here is an example from a Medium article:

Let’s take an example to understand this concept in depth.

“It was the best of times”

“It was the worst of times”

“It was the age of wisdom”

“It was the age of foolishness”

We treat each sentence as a separate document and we make a list of all words from all
the four documents excluding the punctuation. We get,

‘It’, ‘was’, ‘the’, ‘best’, ‘of”, ‘times’, ‘worst’, ‘age’, ‘wisdom’, ‘foolishness!

The next step is the create vectors. Vectors convert text that can be used by the machine

learning algorithm.

' This list of words is called a vocabulary and the order of this list stays the same. The vectors
based on this list can be applied to all documents. For example, the word “it” will always
represent the first item in the vector, for any document using this vocabulary.



We take the first document — “It was the best of times” and we check the frequency of
words from the 10 unique words.

“it"=1

“was” =1

“the” =1

“best” =1

“of’=1

“times” = 1

“worst” =0

“age”=0

“wisdom” =0

“foolishness” =0

Rest of the documents will be:

“It was the best of times” =[1,1,1,1,1,1,0,0, 0, 0]

“It was the worst of times” =[1,1,1,0,1, 1,1, 0,0, 0]

“It was the age of wisdom”=[1,1,1,0,1,0,0, 1, 1, 0]
“It was the age of foolishness” =[1,1,1,0,1,0,0, 1,0, 1]

(D'Souza)

Now that we have turned the text into a numerical representation, we can pass this data into the

logistic regression model (D'Souza).

Like the logistic regression model, Scikit also has a tool for creating a bag of words
called sklearn.feature extraction.text.CountVectorizer. This tool also allows us to do

preprocessing on the data, for example, set all letters to lowercase or remove all



non-alphanumeric characters. Here is the example code from the Scikit Learn website. First, we
take a dataset. In this case, “corpus” is the list of sentences. Then we call the CountVectorizer()
to create a bag of words vectorizer method. Then we make the bag of words for the texts by
calling fit_transform(corpus), passing in the corpus data, and saving the output to a variable
called X. Next, one can use get feature names out() can be used to show the words in the

vocabulary. The last line shows the texts saved as these new frequency lists

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> corpus = [

... ‘“This is the first document.’,

.. ‘This document is the second document.’,

.. “And this is the third one.’,

.. ‘Is this the first document?’,

]

>>> vectorizer = CountVectorizer()

>>> X = vectorizer.fit_transform(corpus)

>>> vectorizer.get feature names out()

array([‘and’, ‘document’, ‘first’, ‘is *, ‘one’, ‘second’, ‘the’, ‘third’,
‘this’], ...)

>>> print(X.toarray())

[[011100101]

[020101101]

[100110111]

01110010 1]]



(Sklearn.feature_extraction.text. CountVectorizer)

Another way to fit the data is using TF-IDF. TF-IDF stands for term frequency-inverse
document frequency. TF-IDF evaluates how important a word is to a document compared to all
other documents. The significance increases proportionally based on the number of times a word
appears in a given document but is balanced by the frequency of that word in all of the
documents. TF-IDF scores can be created by calling
sklearn.feature extraction.text. TfidfVectorizer

(D'Souza)(Sklearn.feature extraction.text. TfidfVectorizer).

Computer Science Capstone Project

The Sefaria website is a library of Jewish texts and their interconnections in Hebrew and
other translations. Sefaria, a non-profit organization, has been one of the leaders in online Jewish
texts and education over the past decade. Utilizing their library of several hundred million words
of Jewish texts, they have begun to develop a catalog of topics. Anyone looking to learn more
can search the topics catalog to find sources from various works of their online library, all in one

place (4bout Sefaria).

Until now, Sefaria’s topic text taggings have been based on (and limited to) entries in
Aspaklaria, an encyclopedia of Jewish thought. They are looking for ways to expand their
tagging to the rest of the texts in their online library. To help their efforts, we have made several
machine learning models that can learn from previously labeled texts to tag more unlabeled texts
in the Sefaria library. Our basic approach is to make a binary classifier for each topic, where,

based on a confidence threshold, the model will label a text as belonging or not belonging to a



topic. As mentioned, my role was to create the logistic regression models to be used as the

benchmark model to compare the other models against.

Sefaria Dataset

The data given to us by Sefaria was from an encyclopedia named Aspaklaria. The dataset
contained the text, the reference location, the topic, and other fields relating to the text or used

for Sefaria’s internal use. Here is a sample of the data:

_id pm_ref topic segment_level raw_ref match_text_asp solution text index ent author score index_guess match_text_sef is_sham

Genests
UL FERERIET % QT AT e
Soid" Leviticus (o e VO aasy pm atn - |Exodus  ur 2 0>
- : * s 000
2 Leviticus (1] 1N A6.750000 |Leviticuss o nwaw 17 1900 0.0

e ) TR
‘5dc51a31bHBd219d8e5693) L 0 ORTMI TN orified  ,1aw
Aot 3 manoh..,

]

27 NS’ A
W23 0D YN
R R L s T TV

30 nash i

{Sold:  Deuteranomy oAt MIN 0T YN easy pm
3¢ > nvao 10 ! i = ona Deuteronomy 1

1 . . Bt y n 31076823
"5dc51a3100f6d219d8e50135) 2312 3 a3} n N wown varified . fife

waen |Deuteranc

Berakhat
AT |Shabbat W
Sold Berakhot gp Anem Bit4 : easy pm Lihl Berakhot ” T 00000 Y E o 0.0
: . S - 2 gy ) ) D8 TN 0373 erakhal 2 21.500000 Fuvin 01 TN 003 ]
Sdc51a3 10601602 10dBe5efaT 213 a) verified o2 “aa "
1 o'me on |Pesachim eI oo
|Rosh Hash

2

From here, we extracted the texts, topics, and reference locations to create a smaller
dataset that was easier to use. We also cleaned the texts of any punctuation or non-Hebrew

characters and removed any duplicates or missing data.



text pm_ref topic

0 2 qUW' YU 72 731 NaW ATN 12 YA WK WD L., Leviticus 15:13 n7'ao
1 N 7N N2 wnwn K201 0 YN 2w nns? il ... Deuteronomy 23:12 N7
2 D'7210 DN DI TIYaN DN X701 NTIN' 120 17 K Berakhot 2b:13 N7
3 17'oK1 720 K7 P20 720 P90 71207 T'W KNV INANL... Eruvin 35b:2 n7au
4 Y N0 an Di¥nn 73 INImY Inx TN 20 INNT... Pesachim 7b:9-12 n71a0
102334 nnnaa N1a NN NI0TD VoW NYoIYI NO1D No1on 75 .., Leviticus 11:2-22 nniox ni7oxn
102335 I 17211 NNNILN K7 'WOI NIN D'P7X "ITX NN NN Ezekiel 4:14 nniox ni7oxn
102336 AR TIT N7 IR K'Y Y TAY IR Y., Il Samuel 9:2-11 N2'Y
102337 INXI?7 NYWA'DN Y1 XA'Y NN YRINN BYNn Nay TITl... Il Samuel 16:1-4 N2'Y
102338 TaV AN D 210N FTAY )70 TR nwion nR'... |l Samuel 19:27-30 N2'Y

102338 rows x 3 columns

In the end, there were 102,338 rows of data.

For the logistic regression benchmark, we created models for the top five most prevalent
topics’ 72wn‘,’7%o0¢ AN, 1nY’, and oxw>” with 998, 894, 837, 711, and 695 texts,

respectively.

Turning Sefaria Data Into Readable Data for the Model

For each topic, I created its own binary classification model. Either the text is in the topic
or is not. For each topic, I created a dataset from the larger dataset in which half of the texts were
from the topic, and half were not. All texts from the given topic were labeled 1, and the rest were
labeled 0. I then created a bag of words for the new dataset and set each frequency list as the

representation of the texts. I also removed certain words called stopwords, which are words in



(1P

the text but do not add much meaning to the word. In English, this can be the words like “a” or

“the‘,’

The texts were then shuffled and split into two datasets, one to train the model and one to
test how well the model performed. The model does not see this second dataset during training,

and the results from the test dataset indicate how well the model actually learned the data.

The first dataset was used to train a basic logistic regression model, with the bag of word

frequency list as the X and the topic, represented by 0 and 1, as the Y.

Results

Precision, Recall, F1-score, Accuracy

There are four main ways to interpret how well a classifier performed, in this case, the
logistic regression model. The first way is the simplest, which is accuracy. This measures the
number of correct predictions/ all predictions made. This gives us an overview of the model but
does not explain why it performed as well as it did. For example, if there was a dataset with ten

texts, three texts are labeled 0, and 7 are labeled 1, Ytrue =10,0,0,1,1,1,1,1, 1, 1]. Let
us say our model predicts every text as label l,yresults =111,1,1,1,1,1,1,1,1, 1]. Then

our accuracy will be 7 (correct labels)/10 (all labels), which is 70% accuracy. However, this
is still not a good model as it failed to predict any labels where y = 0. Therefore, we use

Precision, Recall, and F1-score to help explain our results.

TP, TN, FP, FN

When dealing with Precision, Recall, and F1-score, we use the terms Positive and

Negative to describe the data. Positive is when the data is in the class (1), and Negative is when



the data is not in the class (0). From here, we have four possibilities: True Positive, True

Negative, False Positive, and False Negative.

True Positive (TP) is when the object is in the class, and the classifier correctly classified it as in

the class (Y true =1, Y prod =1).

False Positive (FP) is when the object is not in the class, and the classifier classifies it incorrectly

as in the class (Y true =0, Y prod =1).

True Negative (TN) is when the object is not in the class, and the classifier correctly classified it

as not in the class (Y true =0, Y prod =0).

False Negative (FN) is when the object is not in the class, and the classifier classifies it

incorrectly as in the class (Y true =0, Y prod =1).

Here is an image representation of the four possibilities:

Actual (True) Values
Positive Negative
8 2
2| @ TP FP
(1] o
S| a
=
E Q
Q
E % FN TN
a|l o
2

We can now understand Precision, Recall, and F1-score with these terms. Precision

measures how many positive predictions the classifier makes are correct. The formula for



Precision is: TP/(TP + FP). Recall measures how many positive cases the classifier labeled
correctly and using the formula: TP/(TP + FN). Fl-score combines these two scores into one
metric. Fl-score is: (2 * Precision * Recall)/ (Precision + Recall). The Fl-score

requires both precision and recall to be high for the F1-score to be high as well (Kanstrén).

Here is an image of the precision, recall, F1-score, and accuracy of the example above:

precision recall fl-score  support

e a.ead a.aa g.a8 3

1 a.7a 1.8a 8.82 7
accuracy e8.78 18

With Precision, Recall, and F1-score, we can now look at the results from the logistic
regression models. For each topic, its model performed between 80% and 90% accuracy as well
as Precision, Recall, and F1-scores, with some scores in the high 90s. As explained, logistic
regression allows us to view the coefficients and see which words are the most important for the
model. In addition, this will enable us to see how well the model learned the language and if it

understands what to look for.

Here are the five models’ results with the top 10 most important words.

TI%b
Classification Report:
precision recall f1l-score support
] .84 .86 0.85 200
1 0.86 0.83 0.85 200
accuracy ©.85 400
macro avg 0.85 0.85 0.85 400

weighted avg 0.85 @.85 0.85 400



mim 1.88557161473863

mima 1.7513817319858984
nnon 1.1147548904169944
TIN%? 1.0971522021731168
N 1.0235339265841212
minn 1.0051676316436446
nmin 0.9984722855095057
TIn% 0.9293945542690933
wITAN 0.8462864728136692
Tin7a 0.8020255526913833

For the topic “7m%” (Learn), precision, recall, and f1-score were all between 83% and
86%. This was a good result as this was the first model to be created and proved to us that the
project could be improved and better scores can be achieved with better machine learning
models. The top words based on coefficient scores usually include similar spellings of the word
or words with added prefixes. However, here the top two words are 7110 and not 71%. This

makes sense as when we use the word “71%”, it typically refers to 7710 learning.

a0
Classification Report:
precision recall fl-score support
% 0.83 0.97 .89 179
1 .97 0.80 0.87 179
accuracy 0.89 358
macro avg 0.90 0.89 0.88 358

weighted avg @.90 0.89 @.88 358



min 2.9261143593607052

mMinn 2.216915394497557
mina 1.934977765258551€
'mIn 1.523830269763671
N 0.9586556404233888
mimn? 0.9401700323843322
nnimn 0.8131713775539398
1PN 0.7798331629745812
NN 0.731592732040227€¢
XN'MINT 0.7255965700195302

For the word “mn” (Torah), the top words include similar spellings of the word or words
with added prefixes. These words appear six times in this topic’s top ten most important words.
This time the Aramaic translation of the word “77In” appears twice. It is also interesting to note
how high the values are, the first value here is almost 3, which shows how important the word is
to the model. It is also interesting to note the high precision of the topic. This model was very

successful in classifying texts that belong to the topic.

baid=hy
Classification Report:
precision recall fl-score support
(] 9.82 0.90 .86 168
1 0.89 ©.80 0.84 167
accuracy 0.85 335
macro avg 0.85 0.85 0.85 335

weighted avg 0.85 0.85 0.85 335



n7on
n7onn
n7ona
In7on
o'mn
770nn
n7on
77onnY
77on'
0'77onn

2.418230504934597

1.917034367108383
1.8542741055291738
1.5387342731282687
1.5231233054743791
1.4576559659567767
1.2829973326074844
1.2588767635084932
1.0782804604643084
0.9555035149990838

For the word “7%9n” (prayer), the top words include similar spellings of the word or

words with added prefixes. This happened 20 times in the top 25 words! The word “mercy”

appears once, and “please” appears once in the top 25.

a=2n

Classification Report:

accuracy
macro avg
weighted avg

precision
0.83

0.95

0.89
.89

recall fl1l-score

0.96
0.80

©.88
0.88

0.89
.87

©.88
0.88
0.88

support

143
142

285
285
285

naIwn
nalwna
NaIvNn
xon
1w
alwn
nawn?
T
a7
xLINN

3.400068435852152

2.538466527592225
2.0786495185417264
0.9500052422909363
0.9036276712612515
0.8323201639131831
0.7214530493199827
0.6750282822861603
0.6721049360198673
0.6423273184148731




For the word “2wn” (repentance), the top words include similar spellings of the word or
words with added prefixes. Also, the word “sin” appears twice. The word 72wn has a score of

3.4, which is the highest single word in any of the models.

LR
Classification Report:
precision recall fl1l-score support
(%) ©.79 0.86 0.82 139
1 @.85 0.77 0.81 139
accuracy 0.82 278
macro avg 0.82 0.82 0.82 278
weighted avg 0.82 0.82 0.82 278
7R 2.3608402214061712
2w 1.2571956127773969
niNIXN 1.0910499539729237
Y 1.087661865986904
D'nyn 1.0793212708911952
7w 0.7566027562180859
D'YITP 0.7463881970762903
022 0.725749811960441
M 0.703393509806045
wITe 0.677328160215359

Looking at the words with the highest coefficients: the word &7, which is the topic
word, and variations of the word appear five times out of the top 25 words. This model also had
a lower recall for texts in the topic, which is the worst performing model compared to the other

four models.

All five models show that words with the highest coefficients are words with the same or
different spellings, and they might also have prefixes or suffixes or words that relate to the topic

word, like MR (nation) with 7% or 7non (knowledge) with 7%, These results show that the



models are reasonably accurate when classifying the topics. Therefore, these models became the
benchmark for the rest of the project, and all future and more advanced models we made for the

project were compared to these results.

Our final project uses more advanced transformer models. Transformers, also known as
attention-based Large Language Models (LLMs), are state-of-the-art models in natural language
processing. They can understand semantics and context in text. They are the underpinning
technology for LLMs like ChatGPT, BingChat, and Bard. Our project uses pre-trained Hebrew
versions of BERT (Bidirectional Encoder Representations from Transformers) models, which we
then fine-tuned for our project. These models all performed better than the logistic regression
models, with the best models scoring 0.95 fl1-score. Here are the classification scores of the
transformer models for one of the topics. alephBERT, BEREL, and heBERT are all different

transformer models, and they all performed better than the logistic regression model.

: e . Precisi
Kl Accuracy Precision Recall 0 |F1-score 0 recision Recall 1 |F1-score 1
model 0 1

alephBERT 0.9 0.88 0.93 0.9 0.92 0.86 0.89

BEREL 0.95 0.98 0.94 0.96 0.92 0.98 0.95

heBERT 0.92 0.94 0.92 0.93 0.91 0.92 0.92

Logistic 0.89 0.97 0.85 0.9 0.79 0.95 0.87

Regression

Conclusion

Logistic Regression is a machine-learning technique for classification tasks. The goal is
to find the probability of an item being part of a class. Its simplicity and ability to quickly

understand the coefficients or weights make it a great baseline model for many classification



projects. Its simplicity for text classification made it a prime choice as the baseline model of our
Sefaria text classification project. The Sefaria text classification project can greatly help Sefaria

and many Sefaria users.

For more information and a demo of our project, please visit our GitHub page:

https://torahtexttopictagger.github.io/T4Project/


https://torahtexttopictagger.github.io/T4Project/

Works Cited

“About Sefaria.” About Sefaria, www.sefaria.org/about. Accessed 7 May 2023.

D’Souza, Jocelyn. “An Introduction to Bag-of-Words in NLP.” Medium, 4 Apr. 2018,
medium.com/greyatom/an-introduction-to-bag-of-words-in-nlp-ac967d43b428.

Grover, Khushnuma. “Advantages and Disadvantages of Logistic Regression.” OpenGenus 1Q:
Computing Expertise & Legacy, 23 June 2020,
ig.opengenus.org/advantages-and-disadvantages-of-logistic-regression/.

Gupta, Mohit. “ML: Linear Regression.” GeeksforGeeks, 17 Feb. 2023,
www.geeksforgeeks.org/ml-linear-regression/.

Kanstrén, Teemu. “A Look at Precision, Recall, and F1-Score.” Medium, 11 Sept. 2020,
towardsdatascience.com/a-look-at-precision-recall-and-f1-score-36b5fd0dd3ec.

Kisselev, Dina. “A Simple Interpretation of Logistic Regression Coefficients.” Medium, 10 Sept.
2021,

towardsdatascience.com/a-simple-interpretation-of-logistic-regression-coefficients-e3a40a62e8cf

Miiller, Andreas, and Gaé€l Varoquaux. “Classifier Comparison.” Edited by Jaques Grobler,
Scikit,

scikit-learn.org/stable/auto examples/classification/plot classifier comparison.html#sphx-glr-au
to-examples-classification-plot-classifier-comparison-py. Accessed 7 May 2023.

Pant, Ayush. “Introduction to Logistic Regression.” Medium, 22 Jan. 2019,

towardsdatascience.com/introduction-to-logistic-regression-66248243c148.



“Sklearn.Feature extraction.Text.CountVectorizer.” Scikit,
scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.CountVectorizer.html.
Accessed 7 May 2023.

“Sklearn.Feature extraction.Text. TfidfVectorizer.” Scikit,
scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text. Tfidf Vectorizer.html#sk
learn-feature-extraction-text-tfidfvectorizer. Accessed 7 May 2023.

“Sklearn.Linear model.Logisticregression.” Scikit,
scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html#sklearn.

linear model.LogisticRegression.fit. Accessed 7 May 2023.



