
Logistic Regression and Text Classification as part of the

Yeshiva University Computer Science Capstone Project

Thesis Submitted in Partial Fulfillment

of the Requirements

of the Jay and Jeanie Schottenstein Honors Program

Yeshiva College

Yeshiva University

May 2023

Jacob Silbiger

Mentor: Professor Dave Feltenberger, Computer Science

Introduction..3

Logistic Regression.. 3

How Logistic Regression Works... 5

Sigmoid Function...5

Understanding the Coefficients..7

How to Use logistic regression in Python – Sklearn..7

Logistic Regression and Text Classification..9

Computer Science Capstone Project..12

Sefaria Dataset... 13

Turning Sefaria Data Into Readable Data for the Model... 14

Results..15

Precision, Recall, F1-score, Accuracy... 15

TP, TN, FP, FN...15

...למוד 17

18...תורה

..תפלה 19

..תשובה 20

..ישראל 21

Conclusion.. 22

Works Cited..24

Introduction
Text classification is a machine-learning task of assigning labels to a given text. The texts

can be categorized based on topics or the sentence’s sentiment like this is a positive or negative

sentence. In my capstone project, we were tasked with correctly labeling texts from the Sefaria

dataset. The project aims to create a machine-learning model to predict a given Hebrew text’s

correct topic or topics. One of my tasks in the project was building logistic regression models for

text classification. The results of these models became the initial performance bar to measure the

results of other models created in the project. This paper aims to explain what logistic regression

is, how to use it, and how it applies to our project.

Logistic Regression
Logistic regression is a machine-learning model used for classification tasks.

Classification is when the machine learning model assigns the item to a given category or

multiple categories. The model returns a probability of what classification it believes the item

belongs to.

Logistic regression is sometimes used as the benchmark model as it is one of the simplest

to create. It is also more straightforward than most neural networks. Because we know the

coefficients , we can easily interpret the results from a logistic regression model. Some(𝑤
1
... 𝑤

𝑛
)

downsides are that the model can sometimes overfit with a more complex dataset. This means

that the model learns to fit the given data but can not apply it to new data. There are ways to help

minimize this issue called L1 and L2 regularization. Also, the data must be linearly separated, as

the model can not learn complex relationships. Logistic regression has a linear decision

boundary, meaning the cutoff between and is a straight line. As seen in this image,𝑦 = 0 𝑦 = 1,

the first two rows are non-linearly separated data. There cannot be a line such that it can divide

the data linearly into categories. Therefore, the accuracy of the logistics regression model is low.

While the last row is linearly separated data, and the accuracy is 0.95

(Grobler et al.)

Logistic regression models can also be sensitive to outlying data, which can skew the

model. Fortunately, for text classification, logistic regression works reasonably well (Grover).

As mentioned, other machine learning models can be used for text classification. These

models are more complex than logistic regression and can sometimes lead to better results.

Nevertheless, the simplicity and efficiency of logistic regression make it a great benchmark tool

before starting the more advanced methods and models (Grover).

How Logistic Regression Works
Logistic regression is similar to linear regression using independent and dependent

variables. Logistic regression requires the linear relationship between the independent variable 𝑋

and the dependent variable, the known outcome . The formula for a linear relationship is𝑌

. Where represents the data variables, is𝑦 = 𝑏 + 𝑤
1

* 𝑋
1
 + 𝑤

2
* 𝑋

2
+ … + 𝑤

𝑛
+ 𝑋

𝑛
𝑋

𝑖
𝑦

the predicted outcome, and is the y-intercept when we set all values to 0, are the𝑏 𝑋 𝑤
1
... 𝑤

𝑛

coefficient, also known as the weights. The goal of regression models is to change the

coefficients, , to minimize the difference between the actual value and the predicted𝑤
1
... 𝑤

𝑛
𝑌 𝑦

value from the formula for all values. This is known as the cost function (Gupta)𝑌

Sigmoid Function
Logistic regression can only predict a probability between 0 and 1 because it uses the

“Sigmoid Function.” This is the probability that the object is in a given class, with a probability

greater than 0.5 meaning that the object is in the given class and less than 0.5 being not in the

class. Similarly, if the result is closer to 0 or 1, then the model is more confident that the item is

in that particular group. The sigmoid function is used in many machine learning models where

one tries to predict between two classes. The sigmoid function formula is , whereσ(𝑧) = 1

1+𝑒− 𝑧()

represents the formula on which we want to apply the sigmoid function. So using the𝑧

regression formula to the sigmoid formula ,𝑧 = 𝑏 + 𝑤
1

* 𝑋
1
 + 𝑤

2
* 𝑋

2
+ … + 𝑤

𝑛
+ 𝑋

𝑛

we arrive at the function .σ(𝑧) = 1

1+𝑒
− 𝑏 + 𝑤

1
*𝑋

1
 + 𝑤

2
*𝑋

2
+… + 𝑤

𝑛
+𝑋

𝑛()

For logistic regression, we need a cost function for each label, 0 and 1. The cost function is

and . Which can be combined into one− 𝑙𝑜𝑔(σ(𝑧)) 𝑖𝑓 𝑦 = 1 − 𝑙𝑜𝑔(1 − σ(𝑧)) 𝑖𝑓 𝑦 = 0

formula for all y values. The goal𝐽 =− ∑ ((𝑦
𝑖

* 𝑙𝑜𝑔(σ(𝑧
𝑖
)) + (1 − 𝑦

𝑖
) * 𝑙𝑜𝑔(1 − σ(𝑧

𝑖
))))

of the model is to minimize , this achieved through applying the gradient descent algorithm on𝐽

each weight. The formula for gradient descent is: where represents θ
𝑛𝑒𝑤 𝑗

= θ
𝑜𝑙𝑑 𝑗

− 𝑎 ∂𝐽(θ)
∂(θ

𝑗
) θ

𝑗

each weight (). is a constant and is known as the learning rate (Pant).𝑤
1
... 𝑤

𝑛
𝑎

Understanding the Coefficients
Since logistic regression aims only to predict values between 0 and 1. the goal of our

equation is , or the log of probability that is divided by theσ 𝑧() = 𝑙𝑜𝑔 𝑃 𝑌=1{ }
𝑃 𝑌=0{ }() 𝑦 = 1

probability that . This is known as and also log-odds. Therefore, when we𝑦 = 0 𝑙𝑜𝑔𝑖𝑡(𝑝)

change , we are changing the probability of l . When we increase , we increase𝑤
𝑖

𝑜𝑔 𝑃 𝑌=1{ }
𝑃 𝑌=0{ }() 𝑤

𝑖

the probability of , when we decrease , we decrease the probability of , increasing𝑌 = 1 𝑤
𝑖

𝑌 = 1

the probability of (Kisselev).𝑌 = 0

How to Use logistic regression in Python – Sklearn
A simple and efficient way to use logistic regression is using the Scikit Learn library. To

build a model, one imports the logistic regression tool and then calls the logistic regression

method LogisticRegression(). The logistic regression method allows us to pass in parameters,

from helping with overfitting to changing the starting coefficients. In any case, the base model

with no parameters works well.

To train the model, one passes in the data by calling LogisticRegressionModel.fit(X,y),

where X is the data and y is the results. So now we have a trained model, and we can use the

model to make predictions on new data. We can also call predict(X) and pass in new data to

predict the results of unseen data. The model also had a method called predict_proba(X), which

allows us to see the probabilities for each class for any X we pass in. There is also a method

called score(X,y) which returns the accuracy of the given test data and labels. Here is a demo

code from the Scikit Learn website (>>> indicates a line of code, no arrows indicate output to the

screen). In this case, the iris data is set to X and y, then it makes a logistic regression model and

calls fit passing in the X and y data. The code then calls predict, predict_proba on the first two

pieces of X data, and score on all of the X data to show the different possible ways to view the

model results:

>>> from sklearn.datasets import load_iris

>>> from sklearn.linear_model import LogisticRegression

>>> X, y = load_iris(return_X_y=True)

>>> clf = LogisticRegression(random_state=0).fit(X, y)

>>> clf.predict(X[:2, :])

array([0, 0])

>>> clf.predict_proba(X[:2, :])

array([[9.8...e-01, 1.8...e-02, 1.4...e-08],

[9.7...e-01, 2.8...e-02, ...e-08]])

>>> clf.score(X, y)

0.97…

As explained, logistic regression allows one to look at the coefficients () and to 𝑤
1
... 𝑤

𝑛

see what is important for the model. The Scikit logistic regression model has a built-in method

called call coef_ which allows one to view the model’s coefficients

(Sklearn.linear_model.logisticregression).

Logistic Regression and Text Classification
To use the logistic regression model, one needs both the x and y values to be numbers or

a list of numbers. To use logistic regression for text classification, one needs a way to turn texts

and the classification topic into numbers that make sense and that the model can understand. For

the topics, one can easily say if the text is in the topic, then return 1; if the text is not, then return

0.

For the texts, there are a couple of ways to turn the text into usable numbers. The first

way is called Bag of Words. This way is the simplest and still produces good results. The Bag of

Words is just a list of all other words seen in the data, and for each text, observe how many times

a word appears from the vocabulary list. Here is an example from a Medium article:

Let’s take an example to understand this concept in depth.

“It was the best of times”

“It was the worst of times”

“It was the age of wisdom”

“It was the age of foolishness”

We treat each sentence as a separate document and we make a list of all words from all

the four documents excluding the punctuation. We get,

‘It’, ‘was’, ‘the’, ‘best’, ‘of’, ‘times’, ‘worst’, ‘age’, ‘wisdom’, ‘foolishness’1

The next step is the create vectors. Vectors convert text that can be used by the machine

learning algorithm.

1 This list of words is called a vocabulary and the order of this list stays the same. The vectors
based on this list can be applied to all documents. For example, the word “it” will always
represent the first item in the vector, for any document using this vocabulary.

We take the first document — “It was the best of times” and we check the frequency of

words from the 10 unique words.

“it” = 1

“was” = 1

“the” = 1

“best” = 1

“of” = 1

“times” = 1

“worst” = 0

“age” = 0

“wisdom” = 0

“foolishness” = 0

Rest of the documents will be:

“It was the best of times” = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

“It was the worst of times” = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

“It was the age of wisdom” = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

“It was the age of foolishness” = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

(D'Souza)

Now that we have turned the text into a numerical representation, we can pass this data into the

logistic regression model (D'Souza).

Like the logistic regression model, Scikit also has a tool for creating a bag of words

called sklearn.feature_extraction.text.CountVectorizer. This tool also allows us to do

preprocessing on the data, for example, set all letters to lowercase or remove all

non-alphanumeric characters. Here is the example code from the Scikit Learn website. First, we

take a dataset. In this case, “corpus” is the list of sentences. Then we call the CountVectorizer()

to create a bag of words vectorizer method. Then we make the bag of words for the texts by

calling fit_transform(corpus), passing in the corpus data, and saving the output to a variable

called X. Next, one can use get_feature_names_out() can be used to show the words in the

vocabulary. The last line shows the texts saved as these new frequency lists

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> corpus = [

... ‘This is the first document.’,

... ‘This document is the second document.’,

... ‘And this is the third one.’,

... ‘Is this the first document?’,

...]

>>> vectorizer = CountVectorizer()

>>> X = vectorizer.fit_transform(corpus)

>>> vectorizer.get_feature_names_out()

array([‘and’, ‘document’, ‘first’, ‘is ‘, ‘one’, ‘second’, ‘the’, ‘third’,

‘this’], ...)

>>> print(X.toarray())

[[0 1 1 1 0 0 1 0 1]

[0 2 0 1 0 1 1 0 1]

[1 0 0 1 1 0 1 1 1]

[0 1 1 1 0 0 1 0 1]]

(Sklearn.feature_extraction.text.CountVectorizer)

Another way to fit the data is using TF-IDF. TF-IDF stands for term frequency-inverse

document frequency. TF-IDF evaluates how important a word is to a document compared to all

other documents. The significance increases proportionally based on the number of times a word

appears in a given document but is balanced by the frequency of that word in all of the

documents. TF-IDF scores can be created by calling

sklearn.feature_extraction.text.TfidfVectorizer

(D'Souza)(Sklearn.feature_extraction.text.TfidfVectorizer).

Computer Science Capstone Project
The Sefaria website is a library of Jewish texts and their interconnections in Hebrew and

other translations. Sefaria, a non-profit organization, has been one of the leaders in online Jewish

texts and education over the past decade. Utilizing their library of several hundred million words

of Jewish texts, they have begun to develop a catalog of topics. Anyone looking to learn more

can search the topics catalog to find sources from various works of their online library, all in one

place (About Sefaria).

Until now, Sefaria’s topic text taggings have been based on (and limited to) entries in

Aspaklaria, an encyclopedia of Jewish thought. They are looking for ways to expand their

tagging to the rest of the texts in their online library. To help their efforts, we have made several

machine learning models that can learn from previously labeled texts to tag more unlabeled texts

in the Sefaria library. Our basic approach is to make a binary classifier for each topic, where,

based on a confidence threshold, the model will label a text as belonging or not belonging to a

topic. As mentioned, my role was to create the logistic regression models to be used as the

benchmark model to compare the other models against.

Sefaria Dataset

The data given to us by Sefaria was from an encyclopedia named Aspaklaria. The dataset

contained the text, the reference location, the topic, and other fields relating to the text or used

for Sefaria’s internal use. Here is a sample of the data:

From here, we extracted the texts, topics, and reference locations to create a smaller

dataset that was easier to use. We also cleaned the texts of any punctuation or non-Hebrew

characters and removed any duplicates or missing data.

In the end, there were 102,338 rows of data.

For the logistic regression benchmark, we created models for the top five most prevalent

topics’ ‘תורה’, ‘תפלה’, ‘תשובהלמוד’, ’, and ‘ישראל’ with 998, 894, 837, 711, and 695 texts,

respectively.

Turning Sefaria Data Into Readable Data for the Model
For each topic, I created its own binary classification model. Either the text is in the topic

or is not. For each topic, I created a dataset from the larger dataset in which half of the texts were

from the topic, and half were not. All texts from the given topic were labeled 1, and the rest were

labeled 0. I then created a bag of words for the new dataset and set each frequency list as the

representation of the texts. I also removed certain words called stopwords, which are words in

the text but do not add much meaning to the word. In English, this can be the words like “a” or

“the.”

The texts were then shuffled and split into two datasets, one to train the model and one to

test how well the model performed. The model does not see this second dataset during training,

and the results from the test dataset indicate how well the model actually learned the data.

The first dataset was used to train a basic logistic regression model, with the bag of word

frequency list as the X and the topic, represented by 0 and 1, as the Y.

Results

Precision, Recall, F1-score, Accuracy
There are four main ways to interpret how well a classifier performed, in this case, the

logistic regression model. The first way is the simplest, which is accuracy. This measures the

number of correct predictions/ all predictions made. This gives us an overview of the model but

does not explain why it performed as well as it did. For example, if there was a dataset with ten

texts, three texts are labeled 0, and 7 are labeled 1, . Let𝑌
𝑡𝑟𝑢𝑒

 = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

us say our model predicts every text as label 1, . Then𝑦
𝑟𝑒𝑠𝑢𝑙𝑡𝑠

 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

our accuracy will be , which is 70% accuracy. However, this7 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑎𝑏𝑒𝑙𝑠)/10 (𝑎𝑙𝑙 𝑙𝑎𝑏𝑒𝑙𝑠)

is still not a good model as it failed to predict any labels where . Therefore, we use𝑦 = 0

Precision, Recall, and F1-score to help explain our results.

TP, TN, FP, FN
When dealing with Precision, Recall, and F1-score, we use the terms Positive and

Negative to describe the data. Positive is when the data is in the class (1), and Negative is when

the data is not in the class (0). From here, we have four possibilities: True Positive, True

Negative, False Positive, and False Negative.

True Positive (TP) is when the object is in the class, and the classifier correctly classified it as in

the class (Y true =1, Y prod =1).

False Positive (FP) is when the object is not in the class, and the classifier classifies it incorrectly

as in the class (Y true =0, Y prod =1).

True Negative (TN) is when the object is not in the class, and the classifier correctly classified it

as not in the class (Y true =0, Y prod =0).

False Negative (FN) is when the object is not in the class, and the classifier classifies it

incorrectly as in the class (Y true =0, Y prod =1).

Here is an image representation of the four possibilities:

We can now understand Precision, Recall, and F1-score with these terms. Precision

measures how many positive predictions the classifier makes are correct. The formula for

Precision is: . Recall measures how many positive cases the classifier labeled𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

correctly and using the formula: . F1-score combines these two scores into one𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

metric. F1-score is: . The F1-score(2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙)/ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

requires both precision and recall to be high for the F1-score to be high as well (Kanstrén).

Here is an image of the precision, recall, F1-score, and accuracy of the example above:

With Precision, Recall, and F1-score, we can now look at the results from the logistic

regression models. For each topic, its model performed between 80% and 90% accuracy as well

as Precision, Recall, and F1-scores, with some scores in the high 90s. As explained, logistic

regression allows us to view the coefficients and see which words are the most important for the

model. In addition, this will enable us to see how well the model learned the language and if it

understands what to look for.

Here are the five models’ results with the top 10 most important words.

למוד

For the topic ”למוד“ (Learn), precision, recall, and f1-score were all between 83% and

86%. This was a good result as this was the first model to be created and proved to us that the

project could be improved and better scores can be achieved with better machine learning

models. The top words based on coefficient scores usually include similar spellings of the word

or words with added prefixes. However, here the top two words are תורה and not .למוד This

makes sense as when we use the word ,”למוד“ it typically refers to .learning תורה

תורה

For the word ”תורה“ (Torah), the top words include similar spellings of the word or words

with added prefixes. These words appear six times in this topic’s top ten most important words.

This time the Aramaic translation of the word ”תורה“ appears twice. It is also interesting to note

how high the values are, the first value here is almost 3, which shows how important the word is

to the model. It is also interesting to note the high precision of the topic. This model was very

successful in classifying texts that belong to the topic.

תפלה

For the word ”תפלה“ (prayer), the top words include similar spellings of the word or

words with added prefixes. This happened 20 times in the top 25 words! The word “mercy”

appears once, and “please” appears once in the top 25.

תשובה

For the word ”תשובה“ (repentance), the top words include similar spellings of the word or

words with added prefixes. Also, the word “sin” appears twice. The word תשובה has a score of

3.4, which is the highest single word in any of the models.

ישראל

Looking at the words with the highest coefficients: the word ,ישראל which is the topic

word, and variations of the word appear five times out of the top 25 words. This model also had

a lower recall for texts in the topic, which is the worst performing model compared to the other

four models.

All five models show that words with the highest coefficients are words with the same or

different spellings, and they might also have prefixes or suffixes or words that relate to the topic

word, like האומות (nation) with ישראל or חכמה (knowledge) with .למוד These results show that the

models are reasonably accurate when classifying the topics. Therefore, these models became the

benchmark for the rest of the project, and all future and more advanced models we made for the

project were compared to these results.

Our final project uses more advanced transformer models. Transformers, also known as

attention-based Large Language Models (LLMs), are state-of-the-art models in natural language

processing. They can understand semantics and context in text. They are the underpinning

technology for LLMs like ChatGPT, BingChat, and Bard. Our project uses pre-trained Hebrew

versions of BERT (Bidirectional Encoder Representations from Transformers) models, which we

then fine-tuned for our project. These models all performed better than the logistic regression

models, with the best models scoring 0.95 f1-score. Here are the classification scores of the

transformer models for one of the topics. alephBERT, BEREL, and heBERT are all different

transformer models, and they all performed better than the logistic regression model.

תשובה
model Accuracy Precision

0 Recall 0 F1-score 0 Precision
1 Recall 1 F1-score 1

alephBERT 0.9 0.88 0.93 0.9 0.92 0.86 0.89

BEREL 0.95 0.98 0.94 0.96 0.92 0.98 0.95

heBERT 0.92 0.94 0.92 0.93 0.91 0.92 0.92

Logistic
Regression

0.89 0.97 0.85 0.9 0.79 0.95 0.87

Conclusion
Logistic Regression is a machine-learning technique for classification tasks. The goal is

to find the probability of an item being part of a class. Its simplicity and ability to quickly

understand the coefficients or weights make it a great baseline model for many classification

projects. Its simplicity for text classification made it a prime choice as the baseline model of our

Sefaria text classification project. The Sefaria text classification project can greatly help Sefaria

and many Sefaria users.

For more information and a demo of our project, please visit our GitHub page:

https://torahtexttopictagger.github.io/T4Project/

https://torahtexttopictagger.github.io/T4Project/

Works Cited

“About Sefaria.” About Sefaria, www.sefaria.org/about. Accessed 7 May 2023.

D’Souza, Jocelyn. “An Introduction to Bag-of-Words in NLP.” Medium, 4 Apr. 2018,

medium.com/greyatom/an-introduction-to-bag-of-words-in-nlp-ac967d43b428.

Grover, Khushnuma. “Advantages and Disadvantages of Logistic Regression.” OpenGenus IQ:

Computing Expertise & Legacy, 23 June 2020,

iq.opengenus.org/advantages-and-disadvantages-of-logistic-regression/.

Gupta, Mohit. “ML: Linear Regression.” GeeksforGeeks, 17 Feb. 2023,

www.geeksforgeeks.org/ml-linear-regression/.

Kanstrén, Teemu. “A Look at Precision, Recall, and F1-Score.” Medium, 11 Sept. 2020,

towardsdatascience.com/a-look-at-precision-recall-and-f1-score-36b5fd0dd3ec.

Kisselev, Dina. “A Simple Interpretation of Logistic Regression Coefficients.” Medium, 10 Sept.

2021,

towardsdatascience.com/a-simple-interpretation-of-logistic-regression-coefficients-e3a40a62e8cf

.

Müller, Andreas, and Gaël Varoquaux. “Classifier Comparison.” Edited by Jaques Grobler,

Scikit,

scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-au

to-examples-classification-plot-classifier-comparison-py. Accessed 7 May 2023.

Pant, Ayush. “Introduction to Logistic Regression.” Medium, 22 Jan. 2019,

towardsdatascience.com/introduction-to-logistic-regression-66248243c148.

“Sklearn.Feature_extraction.Text.CountVectorizer.” Scikit,

scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html.

Accessed 7 May 2023.

“Sklearn.Feature_extraction.Text.TfidfVectorizer.” Scikit,

scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sk

learn-feature-extraction-text-tfidfvectorizer. Accessed 7 May 2023.

“Sklearn.Linear_model.Logisticregression.” Scikit,

scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.

linear_model.LogisticRegression.fit. Accessed 7 May 2023.

