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CHAPTER I

INTRODUCTION

1.1 Quantum mechanics developed in the first quarter of
the twentieth century as scientists studied the motions of
electrons and other constituents of atoms. At first they
assumed that the laws and concepts of classical mechanics
and electromagnetism controlled the motion of atoms also.
According to classical ideas an electron in accelerated
motion around the nucleus of an atom would radiate energy.
'As the electron lost energy it would decrease its action.
The system might also absorb radiation in which case the
energy and action would increase. However, the classical
treatment could not account for the precise radiations
which observation detected in the hydrogen atom.

The inadequacies of classical mechanics led Planck and
Bohr to modify the theory. 1In trying to account for the
theory of incandescence Planck introduced the idea of discrete
guantum states into physics. Whereas it was previously
assumed that particles moved along a continuous path and
could end up in any position, this theory related the
position of the electron to changes in guantum states.
Planck assumed that when radiant heat or energy is emitted
it takes the form of sudden bursts, each representing a
quantity of energy equal to the product of a universal
constant and the frequency of vibration in the emitted

radiation. He represented the universal constant by the



letter h and called it a gquantum of action. Today the
constant is referred to as Planck's constant. Similarly
Planck assumed that energy is absorbed in discrete amounts.

In 1913 Bohr published his theory on the spectra of the
hydrogen atom. 1In this paper he applied Planck's ideas
to the nuclear atom model put forth by Rutherford. Bohr
assumed that atoms exist only in sharply defined states or
levels whose energy differs by fixed amounts. There are
no intermediate states. He also assumed that radiation
occurs only through transition between two stationary
states.

This original formulation of gquantum mechanics by
Planck and Bohr was soon found to be inadequate. It did
not accurately describe the precise energy levels of the
quantum states, or why certain drops in quantum states
were more numerous than others. NoO means were given to
calculate the probability of a particle being in a particu-
lar state. The theory could also not account for differences
between experimental observation of the states, and the
anticipated results of the theory.

Some of the attempts made to refine the original guantum
theory include the matrix method of Heisenberg, and the wave
and quantum mechanics of DeBroglie and Schrodinger. Although
these theories approach gquantum mechanics in different ways,
they have all been shown to be mathematically eguivalent.

In 1924 DeBroglie postulated that the duality between

the wave and particle nature of light is also applicable to



the behavior of particles such as electrons and protons.
Later in 1926, Schrodinger elaborated the theory into the
formal mathematical structure of wave mechanics. Schrodinger
showed that matter waves must satisfy a partial differential
equation subject to certain boundary conditions, and
acceptable solutions may be obtained only for certain values
of the energy. Concurrently Heisenberg was giving a different
formulation of the laws of mechanics. Heisenberg felt that
the theory should deal only with observable guantities.
Because an atom could only be observed by making it change
from one stationary state to another, observables with their
initial and final states were represented by a matrix.
Schrodinger showed that Heisenberg's matrix method was
equivalent to wave mechanics.

There remained some defects of principle in Schrodinger's
theory. For one, the spin of an electron had not been
explained. For another the theory was not in harmony with the
theory of relativity. Dirac and Neumann simultaneously
gave more general formulations of quantum mechanics that
resolved these difficulties. Dirac's theory implied the
existence of particles called positrons, identical to the
electron except for the sign of the electric charge.

In 1926 Max Born suggested that the intensity of the
DeBroglie wave associated with an electron, or the square of
the state function amplitude, is proportional to the
probability of finding the electrons in that place in space

for which the intensity is calculated. The electron is



most likely to be found where the square of state function
has most amplitude. This probability model was a new concept
in physics. From the time of Newton classical physics

had assumed that there was a course for all motions in nature.
Born now said that the most we can hope to know about atomic
processes is a set of possible outcomes of various experi-
ments, and the probability of their occurences in repeated
experiments.

Heisenberg developed this idea in his uncertainty
principle. This principle states that the act of observing
position and momentum of particles interferes with the
motion of the particle. It is impossible to determine
both accurately at the same time. This statistical theory
has some problems in that it endows particles with infinite
energy, but much of it is still used today.

In the years since 1930 many more microscopic particles
have been discovered. Thus quantum theory has become more

complicated and much additional work is still being done.

1.2 In this section we shall examine some of the mathemati-
cal concepts used in quantum theory. The probability model
of the atom led to the definition of a function Y called the
state function, such that the probability that a particle

is in an interval I is given by

j|w(x,t)|2dx
I

where x represents the position of the particle and t the time.



The position and other quantities that may be measured
for a particle are called observables. Associated with any
observable quantity a there is an operator A such that the
expected or average value a of a is given by (Ay,¥). In
the applications of the theory that follow we shall examine
two types of observables. One of them is momentum. The
momentum of a particle is defined to be mass times velocity.

We may represent this as p = mdx where p is the momentum
dt

and m the mass. It can be shown that the expected wvalue of
(=]

p is given by p = J (LY) ¥(x,t)dx = (Ly,y) where LY = -ihy' (x)

- 0

and h is Planck's constant. One may choose units so that
the constant h is 1.
In the other applications we shall examine the kinetic

energy of a particle. The kinetic energy T of a particle is
2
1

given by T = %ﬁ . The expected value of T is then B

Choosing units such that m = 1 we define the kinetic energy

(2y,0).

operator H041= sz = =-yY"(x). Total energy is the sum of the
kinetic energy and the potential energy. Letting v(x)
represent potential energy, we let H = H0+v be the total
energy operator. H is called the Hamiltonian. With a
suitable choice of units the state function satisfies
Schrodinger's equation iVy' (t) = HVY.

In scattering experiments we examine the behavior of
a particle both before and after being shot into a region
where it is subject to potenfial forces. The potential

forces are assumed to be negligible both before and after



the particle enters the region. The potential is often a
target that the particle interacts with for only a short
duration of the experiment. Most of the time the particle
is too far from the target for it to have any effect. Thus
at a sufficient interval of time before and after hitting

a target the particle is governed by H When the particle

0°
gets close to the target its movement is governed by H.

If there is a state function Y- (t) to represent the motion

of the ﬁarticle long before entering the region, we call it
an incoming asymptotic state. Then Y- satisfies iy'- = How—.
Similarly we let Y+ (t) be the state function representing

the motion of the particle long after entering a region.

The function Y+ is called the outgoing asymptotic state

and satisfies iy+'= 0¢+. The function ¥ should satisfy

iy' = HY where Hl[l(t) —tpi(t)“ > 0as t + + ©», We call a
function Y possessing both incoming and outgoing asymptotic
states, a scattering state. In experimental physics it is
important that there be as many scattering states as possible.
Defining e_itﬂw = Jwe_itAdE(A)w where E(A) is the spectral

-0 . .
family it can be shown that ¢ (0) = lim eltHe—ltﬁowi(O).

trtoo
The above discussion motivates the definition of the
tH

e-ltHOw where H and H, are

wave operators Wiy = lim et 0

trio
self adjoint operators on Hilbert spaces and Yy the state
function. In physics the wave operator exists if a particle
does not get trapped within a target. Besides its application

with short range potentials such as the target discussed



above, the wave operators play a large role in theoretical
mathematics. One important question of mathematics is when
the wave operator exists. In general one must impose
rather strong restrictions in order that the wave operator
exist. The Hilbert spaces must be infinite dimensional and
in any significant application H must have a pure continuous
spectrum as well. It is unrealistic to expect scattering
for an eigenelement.

Another question asked about the wave operator is
whether it is complete. The completeness of the wave operator
tells us whether the motion of a particle is essentially the
same long before and long after interacting with a target.

We say that a wave operator is complete if every weHC(HO) is
the value at t=0 of incoming and outgoing asymptotic states
for scattering states where HC(HO) = {f/E(u)f = E(A)f when

u > A} and E()A) is the spectral family.

In many scattering problems it is necessary to consider
self adjoint operators HO,H operating in different Hilbert
spaces KO,M respectively. Such problems arise, for example
with wave equations and Maxwell's equation. We then need

to define an operator J mapping KO to . The wave operator

it

is defined as Wiy = lim e Hy e_ltHOt and the existence and

trtoo
completeness of the wave operator have the same physical
significance as the wave operator discussed above. The two
Hilbert spaces enable us to study the motion of a particle
when it goes from a region of unrestricted motion to a

region of restricted motion. For example a particle may



be shot into a region with a wall. In some of the applica-
tions that follow we shall consider this situation in one

dimension.



CHAPTER 1II

PRINCIPAL RESULTS

The main theorem of this chapter states conditions for
the existence of a self-adjoint operator H, given HO,A,B,J
as defined below. It also notes some of the properties of
this operator. 1In the next chapter we shall give examples
of operators that satisfy this theorem and for which the
wave operator exists and is complete.

IE Il and 12 are open subsets of the real line we
shall write I;CCI, if I, is bounded and Tl cI,.

We let H_,H and K be Hilbert spaces, H, a self-adjoint

0’
operator on KO and J a bounded linear operator from XO to A
such that R(J) is dense in . Let A and B be linear operators
from KO to K'such that the domain D(HO)C'D(A)f\D(B) and

J*J maps D(Ho) to D(B). We shall assume the following

(2.1) I. Im[(JHOu,Ju) + (Au,BJ*Ju)] = 0, ueD(HO)

3 0 £ B(ARO(E))* is closable. Letting Qo(z) be
the closure of B(ARO(E))* and Go(z) = I + Qo(z)

1, we assume that Go(z)

where Ro(z) = (Ho—z)
is bounded and has a bounded inverse on K

for z in an open set and its conjugate image.

III. There exists an open subset A of R such that

CA has measure 0 and for each ICCA there is

a constant CI such that

a(uARo(s+ia)H2 + IBRO(s+ia)H2) < CI' a>0, s€I



IV (B(BJORO(z))*)* = BJO(BRO(E))* where

= *
Jo J*J.

Theorem 2.1: There exists a self-adjoint operator H on ¥

with

the following properties. H is uniquely determined

by (a) on R(J).

(2.2)

(2.3)

(a) The resolvent R(z) = (H—z)-l exists for z in
an open set and its conjugate image and satisfies

the second resolvent equation.
R(z)J - JRy(z) = —(BJ*R('z'))*ARO(z)
(b) HJ DJ(H0+B*A)

We now proceed with the proof of Theorem 2.1. We

define

(2.4) T(z) = Ry(z) - (ARO(E))*GO(z)'lsRO(z).
Note that

(2.5) T(z)* = Ry (Z) - (BRo(z))*GO*(E)'lARO(E)'

In proving Theorem 2.1 we shall make use of the

following lemmas.

Lemma 2.1: T(z) is injective and satisfies the first

resolvent equation

T(z) = T(g) = (2-3) T(z) T(g)

Proof: Multiplying (2.4) on the left by B and taking

the closure we have
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i 1

BT (z) = BR,(z) - QO(Z)GO(Z)_ BR, (2)

(I-Qy (2)Gy (2) 1) BR (2)

(I-(14Q (2)-I) G,(2)™") BR;(2)

= (I—I+Go(z)-1)BR0(z)

-1
Go(z) BRO(z)

Thus we have

1

(2.6) BT (z) Go(z)_ BR (z)

We can now show that T(z) is one-one. We let T(z)u = 0.
Then uED(BRO(z)) and by (2.6) BRO(z)u = 0. By (2.4)
Ro(z)u = 0. Hence u=0 and T(z) is one-one.

We now verify that T(z) satisfies the first resolvent

equation. We have
(z=5)T(2)T(L)

= (2-2)R,(2)Ry(2)

1

- (z=2)Ry(2) (AR (T)) *Gy (z) "BR( (%)

1

- (z-1) (AR, (Z)) *G, (z) "BR;(z)R,(2)

h & 1

+ (z-1) (AR (2)) *G (z) "BR; (2z) (AR (T)) *G, (1) "BRg (1) .

Since Ro(z) satisfies the first resolvent equation

RO(Z) - Ry(z) = (z-c)Ro(z)Ro(L) we have



(z=z) T(z) T(¢)

= Ry(2) - Ry(z)

1 1

= (AR, (Z))*G( (5) "BRy (L) + (AR, (T))*G, (%) "BR, (L)
- (AR, (2))*G (2) 'BR(2z) + (AR, (2))*G,(z) TBR, (1)
+ (AR (2)*G, (2) T'B(AR,(Z))*G, (2) "1BR, (2)
- (AR, (Z))*G, (2) 1B (AR, (D)) *G (2) "1BR, (2) .
Note that
Gy (2) 700 (2065 (@)™ = 6y ()7t - 6y () They ()7t
and that
Gy (2) M,y (216 (1)t = 6 (2) 7t - 6 (2) e, ()7L,
Hence the last two terms are equivalent to
(AR, (2)) *G, (2) T1BR (1) - (AR (Z))*G, (2) "te, (2) TiBR, (2)

= (ARO(E))*GO(Z)—IBRO(L) + (ARO(E))*Go(z)_lGo(é)-lBRO@J.

After cancelling out appropriate terms we have

d.

(z-2) (T(2)-T(2)) = Ry(z) - Ry(%) - (AR, (Z))*G,(2z) ~ BR,(2)
- -1
+ (AR, (T))*G (Z) "BR; (%)
= T(z) - T(L)+ o

Lemma 2.2: T(z)* is injective.



Proof: Multiplying (2.5) on the left by A and taking

the closure we have

AT(z)* = AR, (Z) - Qo*(E)GO*(E)'lARO(E>

(I-QO*(E)GO*(E)'l)ARO(E)

(I- (Qy* () +I-1)Gy* (2) 1) AR (2)

= (I-I+G,* (2) "1)AR, (2)

GO*(E)'lARO(E).

Thus we have

1

(2.7) AT (z)* = GO*(E)’ ARO(E).

Now let T(z)*u=0. Then by (2.7) ARO(E)u==O and

by (2.5) RO(E)u==O. Hence u=0. O
Lemma 2.3: J*JT(z)* = T(z)J*J
Proof: Recall that by hypothesis (B(BJORO(z))*)* =

BJO(BRO(E))*. Thus BJO(BRO(E))* is closed. Since J, maps
D(HO) to D(B) these operators are densely defined, and
hence B(BJORo(z))* and BJORO(z) are closable. We shall
denote their closures by [B(BJORO(z))*] and [BJORO(z)].
Now define S(z) ='G42)BJ0(BR0(§))*. We shall prove

that

(2.8) S(zZ)* = S(z). First note that (2.1) implies that

13

(2.9) JORO(z) - RO(Z)JO = (BJORO(’z'))*ARO(z) - (ARO(—Z_))*[BJORO(Z)].
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Now

S(z)* [B(BJORO(E))*]GO(E)*

[B(BI (R (2)) *] (1+Q, (Z) *)

(B(B(Ro(z)J0+(BJOR0(E))*ARO(z)))*)*

(B(B(J0R0(2)+(ARO(E))* [BJOROGH]))*)*

S(z) by (2.9).
Next note that

GO(Z)[BJORO(Z)]

(1+Q4 (2) ) [BI R, (2) ]
= [BI4R,(2)] + [B(AR,(Z))*] [BI4R, (2)]
= BR;(2)J, + [B(BJORO(E))*]ARO(z)

Thus we have

(2.10) Go(z)[BJORO(z)] = BRO(z)JO + [B(BJORO(E))*]ARO(z).
Now let
(2.11) F(z) = (AR, (Z))*([BIRy(2)] - Go(z)_lBRo(z)Jo).

We shall prove that F(z)* = F(z). By (2.10) we have
(2.12) F(z) = (AR)(Z))*([BI,R,(2)] - Go(z)‘l(co(z)

X [BIGR;(2)] - [B(BI)R,(Z))*]AR, (2)))
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(AR; (2)) * ([BI4R,(2z)] - [BI4R,(2)] +

Gy (2) T [B(BI R (2)) *1AR (2))

(ARO(?))*Go(z)'l[B(BJORO(E))*]ARo(z)

F(z) by (2.8).

Next note that

T(z)J0 = Ro(z)J0 - (AR(.)('::.T))*GO(Z)-l

BR, (z)J
= Ry(2)J, + F(z) - (ARO(E))*[BJORO(z)] by (2.11),

Thus T(}I)J0 = RO(‘z‘)J0 + F(z) - (ARO(z))*[BJORO(E)].

Similarly
3,T(@)* = I R (2) - JO(BRO(E))*Go*(z)’lARo(z),
By (2.11)
F(Z)* = (BIRy(Z))*AR,(2) - J,(BR (2))*Gy* (z) 1aR, (z) .

Thus JOT(E)* = JORO(z) + F(z)* - (BJORO(E))*ARO(z)

= J,R,(2z) + F(z) - (BJORO(E))*ARO(z)

= RO(Z)JO + F(z) - (ARO(E))*[BJORO(z)].
By (2.9) we have JOT(E)* = T(z)J,. This proves Lemma 2.3. 0

Lemma 2.4: If veD(T*) then Im(Jv,JT*v) = 0.

Proof: Lemma 2.4 is equivalent to



(2.13%) (J(T*-2z)v,Jv) = (Jv,J(T*-2Z)v) ,

Let u; = (T*-z)v and u, = (T*-z)v. Then v = T*(z)u1 = T*(Z)uz.

The expression in (2.13) is equivalent to (Ju J T*(E)uz)

l’

(JT*(E)ul,JuZ) or (ul,J*JT*(E)uZ) = (ul,T(E)J*Juz). This

last equality is satisfied by Lemma 2.3. 0
Lemma 2.5: T*(z) satisfies

(2.14) HJT*(z)uu <C iJul, Zz non real

Proof: Equivalently we shall show that

HJv"2 < C "J(T*—z)vuz. Letting z = x + iy we have

HJ(T*-z)v"2 "JT*vn2 - 2xRe (Jv,JT*v) + 2yIm(Jv,JT*v)

+ (x2+y2) nJvu2

= |aT*v|? - 2xRe (dv,IT*v) + x2|av|? + yP|av]|?

> (JaTrv]? - 2]x||av] JaTrv] + xP|av)?) + yP|av|?

= (| IT*v] —IXIHJv“)z + y2 ||Jv|‘2 > yZHJvu2

This proves the lemma. o
Now put

(2.15) R(z)Ju = JT*(z)u. By Lemma 2.5 Ju = 0 implies
that JT*(z)u = 0. Therefore R(z)Ju = 0 by (2.15). This
implies that R(z) is well defined on R(J). We can now define

R(z) on R(J). Since J has dense range, for any u€¥ we may set




(2.16) u = lim Jun and define
n—)co
(2.17) R(z)u = lim R(z)Jun. Since
n-o
nR(z)Jun - R(z)JumH = HJT*(z)un - JT*(z)umﬂ = IJT*(Z)(un—um)ﬂ

< cC ﬂJ(un-um)" by Lemma 2.5 and this last expression approaches
zero by (2.16), we see that the limit in (2.17) exists. To

show that it is unique let

(2.18) u = lim Ju_ = lim Jv and
n-—+o n n--co T
(2.19) w, = lim JT*(z)u W, = lim JT*(z)v_.
l n—)m n ! 2 n-)-cn n
s = - = * s
Then "wl wzﬂ le JT*(z)un+JT*(z)un JT*(z)vn-FJT (z)vn wzﬂ

- * - * ot
< nwl JT (z)un" + HJT*(z)un JT*(z)vnﬂ + lJT (z)vn wzﬂ.
The first and third terms approach zero by (2.19). Moreover,
* - -
"JT (z)un JT*(z)vnﬂ_i C IJun JvnH by Lemma 2.5, and

HJun-Jvn" + 0 by (2.18). Hence Wy = W, and the limit is

unique. In addition we show that u 0 implies that

R(z)u = 0. Let lim Ju_ = 0. Then R(z)u = lim JT*(z)uk
but "JT*(z)ukuf_C “Jukﬂ + 0. So R(z) is well defined

on R(J). By (2.15) uR(z) Juﬂ = IJTﬂth = € ﬂJuﬂ by Lemma

2.5 so we see that R(z) is a bounded operator on R(J). Clearly

it is also bounded on R(J) = .

L7
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Lemma 2.6: R(z) has nullity zero.
Proof: Let R(z)Ju = 0. Then JT*(z)u = 0 by (2.15) and

T(z)J*Ju = 0 by Lemma 2.3. Since T(z) and J* are injective
we have Ju = 0. To show that R(z) is one-one on R(J) we

let w = 1lim Juk and R(z)w = 0. Then 1lim R(z)Juk = 0.

koo koo

This implies by (2.16) that lim JT*(z)uk = 0. Hence by

ko
Lemma 2.3 lim T(z)J*Juk = 0. Thus we have T(z)J*w = 0.
k>
But both T(z) and J* are one-one and hence w = 0. O
Lemma 2.7: R(z) satisfies the first resolvent equation.
Proof: On R(J) we have

R(z)Ju - R(¢)Ju = JT*(z)u - JT*(z)u

Il
I

J(T* (z)u-—T*{(L)a) (L=2)JT*(z)T*(Z)u

(t-z)R(z)R(Z)Ju.

(z=2)R(2)JIT*(z)u

Similarly on R(J) let w = lim Ju, .
ko

Then R(z)w - R(z)w = 1lim R(z)Juk - R(Q)Juk.

k>

lim (;—z)R(z)R(Z,)Juk

koo

(z=z)R(2)R(L)W O

Lemma 2.8: R(z)* = R(Z)

Proof: We shall first_show that Lemma 2.8 holds on R(J).



We have
R(z)*Ju = J* 1J*R(z)*Ju
=X *"1 -
= J T(z)J*Ju
= ga—3 * *
=J J*IT(z)*a
= JT(z) *u
= R(z)Ju by (2.15) and Lemma 2.3.
On R(J) let w, = lim Juk. Then R(z)*w = lim R(z)*Juk
k> k>
= lim R('z‘)Juk = R(Z)w. |
koo
Lemma 2.9: R(z) has dense range.
Proof: We shall first prove that it suffices to show
that R(z)* is one-one. Let R(z)* be one-one and (R(z)u,v) = 0

for all u€D(R(z)). By the definition of the adjoint VvED(R(z))*
and R(z)*v = 0. This implies that v = 0. Thus R(z) has

dense range.

We shall now show that R(z)* is one-one. Since R(z)*
= R(z) by Lemma 2.8, and R(z) is one-one by Lemma 2.6, we

have that R(z)* is also one-one. This proves the lemma. O
1

By Lemmas 2.5 through 2.9 we may define H - z = R(z)
where H has dense domain. Since R(z) satisfies the first

resolvent equation this determines H uniquely. Since R(z)

is closed, H is closed. In addition (H=-z)* = (R(Z)-l)* =

(R(z)*)_l = R(E)-1 = H - z. Hence H* = H and H is self adjoint.

19



Before proving that R(z) satisfies the second resolvent
equation, we shall prove that T*(z) satisfies the second

resolvent equations

(2.20) T(z)* - RO(E) = - (BR; (z) ) *AT (z) *
and
(2.21) T(z)* - RO(E) = -(BT(z))*ARO(E)

We have by 2.5

1

- (BR, (2)) *G* (Z) "AR; (Z)

(2.22) T*(z) - RO(E)
= —(BRO(z))*AT(Z)* by (2.7).

By the definition of T(z) we also have

- (AR, (2)) *G (2) 1

T(z) - Ro(z) BRO(z)

-(ARO(E))* BT(z) by (2.6).

Taking the adjoint

T(z)* - Ry(z) = -(BT(z)* AR;(2) ,
This proves (2.21).

We can now prove that R(z) satisfies (2.2). We

have

R(z)Ju JRo(z)u

JT* (z)u - JRO(z)u

J(T*(z)u - Ro(z)u)

20



-J(BT(E))*ARO(z)

- (BT (2)J*%)* AR, (z)
= -(BJ*R(E))*ARO(Z) and this proves the

second resolvent equation.

We are now ready to prove that HJ33J(H0+B*A).
Let uED(J(H0+B*A)). Since uED(HO) we may let v = (Ho-z)u.

Applying (2.2)

R(z)Jv - JRy(z)v = - (BJ*R(z))* AR, (z)V.
Thus

R(z)Jv - Ju = - (BJ*R(z))* AR, (2)v.
Hence Ju = R(z)Jv + (BJ*R(z))*Au

R(z)Jv + R(z)JB*Au for uGD(J(H0+B*A)).

So JueD(H) and (H-z)Ju = Jv + JB*Au.
= J(Ho—z)u + JB*Au.

This gives HI2J (H0+B*A) 8

We can now show that (2.2) determines H uniquely on

R(J). We have by (2.2) and (2.5)
R(z)Ju = JRy(z)u - (BJ*R(E))*ARO(z)u

(J - (BJ* R(E))*A)Ro(z)u

= (J - (BJ*R(Z))*A)(T(z)* + (BR, (z))* AT(2)*) by (2.20).
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Thus R(z)Ju = JT*(z)u + J(BR,(z))* AT(z)*
- (BJ*R(Z))*AT(z)*
- (BJ*R(z))* A(BR,(z))* AT(Z)* .
The last three terms are equivalent to
J(BR,(z))* AT(z)* - (BJ*R(z))* G,*(z)AT(z)*
= J(BRy(z))* AT(z)* - J(BT(z))* AR, (z)

and this is zero by (2.20) and (2.21). Thus R(z)Ju = JT*(z)u.
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CHAPTER III

APPLICATIONS

In this chapter we give a few applications of Theorem

2.1 and show that the wave operator Wf = lim el -ltHOf
troo

exists and is complete.

B ¢ We shall prove the following theorem,

~

Theorem 3.1: Let H, be the self-adjoint operator associated

with D2 in ﬂo = Lz(—w,W) where D = % é;. We let Ju be the
restriction of u to (0,). Thus J maps Ho to X = L2(0,w).

{v(o+), qzv] where q;

Take Au = {-u'(0+), qlu} and Bv

and q, are real valued functions in L2 and A,B: KO > d e

L2(—w,w) with D (A)
x>0+

D (B) {u€L2/q2u,u'€L2}.

Then there exists an operator H with the properties of

Theorem 2.1.

Proof: To prove the existence of H we first note that
since q, qZELZ
x+1 5
sup J |qi(y)| dy < e for i = 1,2
X X

and thus D(HO)CID(ql)f\D(qz) [5, p. 35], If uED(HO) then

u,u"EL2 and thus u'ELZ. Hence lim u'(x) and lim u(x)
x+0+ x>0+

exists [5, p. 38].

{uELz/qlu,u'eEL2 and lim u'(x) exists},
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We have that D(HO)CID(A)rID(B). Next note that

(Ju,v) = J u(x)vx)dx = (u,J*v)
0

Thus J*V

{ v if x> 0

0 if x< 0
and J*J =
X (0,)
We now verify (2.1)
Im[JHOu,Ju) + (Au,BJ*Ju) ]

o o, 2
(3.1 = Im[] (D2u(x))u(x)dx-u'(0+)u(0+)-+j ql(x)qz(x)[ubd|dx:].
0 0

The first term in (3.1) is -Im J u" (x)u(x)dx,
0

Integrating by parts this is

(3.2) -Im(u' (x)u(x) | = J |u'(x)|2dx). Since u, u'€L2
0 0

the first term in (3.2) is Im u'(0+)u(0+). Since J lu'(x)lzdx
0

is real the second term in (3.2) is zero. Thus the sum of
the first two terms in (3.1) is zero. The third term in (3.1)
is zero because q, and q, are real valued functions. Thus we
have that (3.1) equals zero and this proves (2.1).

In verifying some of the remaining conditions of

Theorem 2.1 we shall use the formula [5, p. 160].

(3.3) R.(z)u(x) = =ir f eiklx-ylu(y)dy where k® = z and
0 2ky ) o

Im k > 0.




25

Note that (-T{)2 = z and Im(-k) > 0 so

R

(Eulie s J o ilx-vly (yay |

0 2ki
Also note that
a _a,1 ® ik| x-y|
% RO(Z)\J Ix 2kT J.we u(y)dy)
1 a X ik(x-y) ® ik (y=x)
= gy = [I_ﬁe ) u(y)dy +IX e u(y)dy‘\
i . 4 X
- Zii [élkx lkxu(x) & 1k J e1k(x—y)u(y)dY
_ —1kxeikx (x) - ik J eik(y-x)u(y)dg]
X
Hence
X o . _
(3.4) = R,(z)u = %—[ f IR (XY) y(yray - J etk ¥ x)u(y)dgll
-0 X
and
a o = 1 Jx ~iK (x-y) ) J“’ ~iK (y-x)
3:5 -— R = = e u(y)dy e u(y)dy
(3:5) ax Rolz)u =3 [_m y .
We have AR, (Z)u = {(-R_(z)u) ' (0+), d;Rg (z)ul
1 0 %y -iky
= {—7 e fu(y)dy - e
0
u(Y)dYI quo(E)u}
Thus (A R0 (-z_)u,{vl,vz}) = __V_:_L_ L‘: eikyu (y)dy + Y_J: Jo e_lkyu(y)dy
2 2

+ (gyRg (z)u,v,)

s vt s e

TSI EEi—————
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We can now show that a ,]ARO(s+ia)|2 < CI‘

We have ARo(z)u

0 . © .
- {-!2__ U e-lkyu(y)dy y f elkyu(y)d;, ? quo(Z)u}
0

Thus
0 . © .
|arg (210)? = 3 | [ e ugay - Joelkyu(y)dYIZ
2
* [qa1Ry (2) 0]
1, (9 -iky 2 . 1, (% iky 2
(3.6) £l 7] j e u(y)dy| © + 5[ I e u(y)dy|
- 0

+ "quO(z)uH2

The first term in (3.6) is bounded by

0 0 0
2
%( J eny|u(y)|dy)2_<_% Ie“ydyj e"Y|u(y)| “ay

o0 =00

0
L f%' J enylu(Y)Ide where k 0 + in and z = s + ia

—co

o” - n2 + i(20n). Since a 20n this is

0
o] 2 o 2
= J enylu(Y)l dy < gﬂuﬂ .
-0
The second term in (3.6) is bounded by

1 © R e
2H f ™™ u(y)|ay)? < foe Yay) Joe "Y|u(y) | ay
0

R e

UL TN R e

FiT Y
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1 2 0o 2
o hel” =zh9”-
The last term in (3.6) is
1 o 4 x
= flql(x)lzlj ek 1%¥ly (v) ay| 2ax
4| k| —o
- 2, [ _-2n|x-y]| 2
— 4|k|2 [a; (x)[7(| e dy)(f [ u(y)| “ay)dx
1
d B 2
= 4lx|%n 9] |u)-
: A L 1 2. .2
Since |o| < |k| this is bounded by =——— E R

4|k|on

’ ; 1 2 2 s
But a = 20n so this is §é|k|lql" fu] ©- If we let A = R - {0}

then ICCA must be bounded away from zero. Letting C > 0
be a lower bound for |s| in I we have |z|2 = s° +
1 1
Thus |z| > |[c| and |k]| 3|C|2. Hence T%T < |c| 2. We have
that (3.6) is bounded by
Cc
2 2 i ¢ 32 v 2
Sul? + Shul? + 2 layl’ful® = = ol

2a|c|2

and therefore

aﬂARo(s+ia)H2 <Cr,

-
We now show that a|BR(s+ia)]® < Cy.

B had &=

T

WG B YImmIrT T s

LD e WS

T IR T



We have

N I | i
(3.7) | BRy (s+ia)u]® = |5 [welkly'u(y)dylz
2
+ JaRg (2) v

The first term on the right hand side of (3.7) is bounded by

1 % 2
= f e Y |u(y) |dy
4|k|2|) =

il

[o¢] ©
= -2ny 2
g2 ey [ el ® ay

1 2
= u
4lk|2n' I

1 2
4|k|oniu"

1 2
= alklnuﬂ .

The last term of (3.7) is bounded by

T - 2
L || el lay
4| k| =

This proves the third condition of Theorem 2.1.

Next we show that B(ARO(E))* is closable. We have

already shown that

-V - v © s
— | iky P | I e—lkyu( va

-0

28

1M ey 111
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+ (quo(E)u, v,)

-v v
1 -iky 3 ik
= T X, 00® T T X (0,0 @ Y+ Ry(2)ayvy)
-v . v
~1iky + 1 eJ‘ky + R (z)qlv2

So (ARO(E))*{vl,vz} = —;l e

Applying B we have

v o .
(3.8) B(ARO(E))*{vl,v2} = {75 + E%T J elkly'ql(y)vz(y)dy,
“d;  —iky 9 iky
5 1° T X0 T V1 X (0,m)®

Hence

v .
|B (AR (2))*(v),v,d] = (I + g fe”“y’qlw)vz(y)dyl2

e o]

-q ; q - 5.1
+ 2 -iky 2 iky 3
H—i— vle X(-w,O)‘+ 5 vl x(o’w)e + qZRO(Z)qlVZH )

v o s
1,1 f elklqul (y)v, (y)dy]
- 00

-q - q - ;
* H 2 R : LRY 4 quo<z)q1V2"

—— Ve X(-w,0) ¥ 7 V1 X(0,2)¢

1 1 * _-tlyl
(3.9) £ ?2""1' * 3TRT J_me Iql(y)vz(y)ldy
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k) -iky 9, ik
— o Y
+ ”2 v,e X (=,0)] * - V1 X (0,0)® " + [9,R,(2)q, v,

where kK = s + it. The second term in (3.9) is

=]

< TR| f_mlqlmllvz(y)ldy < sty Hagl vl = ¢ @) v,

where Cl(z) + 0 as Imz -+ «®, The square of the third term

“in (3.9) is

2

v 0
——i— J |, (v) | 2e*ay

2
v -€ 0
2 2t
=—i {J qu(y)l?'eZtydy+ L!qz(Y)l e ydy]

2

A4 0
- 2
g == [e 2tqu2"2 + f_elqz(y)l dy‘ ,

BN

0

Letting € = 1 and C = [ |q2(y)|2dy we note that
T €

il >

C > 0 as € =» 0. We have

95 -iky < vl ﬁz/E 2.2
Pube AT TR o b o L

= C,(z)|v,| where C,(z) + 0 as t > .

The square of the fourth term in (3.9) is bounded by

v ©
=2t
—l-J |, (v) |Pe™#Hay
2 Jo

2

v 5 = ® 2_-2t
= 1 U |q2(y)|2e 2tay + J la, (y)| e ydy]
4 0 >




31

v, [ (e m
1 2 -2t
& quz(y)l dy + e” € J lqz(y)lzdy |
4 | /0 € i
2 i
v B € 1
< 2 J la, (v) |2y + e72%q )2 | |
4 [ /0 g
i 2
Now letting Cg = f lqz(y)l dy we note that C,. * 0 as & + 0.
0
We have
93 iky
| ViX(0,=)® | < C3(2) [ vy]

where C3(z) >+ 0 as t » », We shall show that the last

norm in (3.9) is less than or equal to C4(z)ﬂv2n where

C4(z) + 0 as Imz -+ «, By (3.3)

I(Ro(z)qlu,qzv)l

- lﬁf f ek IxYly (yyuiyray GEVE ax
< f f el g (y)ve | e, uly) | axdy
-2 kl -0/ = .f
<3 klj J mlql(y)lIv(x)llqz(x)u(y)ldxdy ]r
2 2 fis
kI[Jqul (y) v (x) | dxdy}7 U}n la, (x)u(y) | dxdy} |;E
i
g

bazl I¥1 Db 1ol .

. o - — g T o
~ B s D BV X I

L
Hence quRo(Z)qIVZH . .,r F/2uqln fa,] [val = C4(2)|v,]
2|2




1
Thus | B (AR, (2))*{v) v }| < 3lvi| + ¢ (2)]v,]
+ C2(z)|v1| + C3(z)|v1| + C4(z)Hv2ﬂ
= v, | (G*Cc(2)) + |v,|c, (2)
1! (7%C5 21%6
where Ci(z) - 0 as t » o, We have

B (AR, (2)) *{v,,v,}{

/v, 124]v,] * /breg (2)) 24c, (2)

|A

= |y} /Geg(2)) 2e, (2)2
Note that the constant on the right is less than one for
t sufficiently large. This shows that B(ARO(E))* is
bounded and therefore closable, that Go(z) is bounded and
that Go(z)—l is bounded for Imz sufficiently large.

In addition we can show that GO(z) is the sum of an

invertible operator and a compact operator. We have

(I+B(AR0(z))*){vl,v2}

3v o
_ 1 i ik| y|

9  _ix q
- _< Y _<
, V1% " X(-=,0) o V1X(0,) ¢

iky . (I+q2RO(z)qlv2}

R e S e e e T

NIRRT EREY W

SRt _F t. 25 BN

AT TR



3v o
BBl {71 Vz} * {%ki f et l”’ql(wvz(y)dy.

-q . q )
2 -iky - iky
—_— X(-w,o) & N V1X(0,)® ¥ quo(z)qlv2

3v
The operator {——l, vz} is invertible. We shall show that
2

the second operator is compact. Let |v2 nl < C. Then
’

—

<
1 ik|y] : 1 -t|y|
| Fxi J_me ql(y)vz'n(y)oyl g—z—lklﬁe !ql(y)vzln(Y)ldy

1
< 2| k| IqlﬂﬂVZ,nﬂ < Czlvz,nl where

CZ is a constant depending on z. Hence

©
J elkyql(y)vz,n (y)dy

| =

ki

has a convergent subsequence.

Now let Ivl,nl < C. Then a subsequence of v;

converges to vl and

93 -iky

q sk
=@ 5 ¢ T Xe=,0)
2 ’

2 — -
2 = X(_wlo) (Vl:n Vl) i lvl,n vll

and this approaches zero as n - =, Similarly if |vl nl
14

q :
< C then 75 Vl,nx(o,w)elky has a convergent subsequence.

Since d,R, (2) is compact [5, p. 185] quo(Z)ql -
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1
2

qleO(i)I (quHO-iIRO(Z))* is the product of a compact

operator and a bounded operator and hence it is compact.

Thus (3.10) is the sum of an invertible operator and a

compact operator.
fact that Go(z) is continuous, as shall be shown later on,
we have that G,(z) is analytic. Thus Go(z)-

and defined everywhere outside of some finite discrete set.

By the first resolvent equation and the

1 is bounded

We now verify that B(BJORO(z))* = BJO(BRO(E))*.

We shall compute B(BJORO(Z))*. We have

JORO(z) =

Thus

BJORO(z)

Hence

X(0,®)

2ki

@ .
J elklx—YIu(y)dy.
—-c0

= {%kl I_welkIYIU(y)dy'q2X(0,°°)R0(z)u} )

(BJyR, (z)u, {vl,vz}) =

Consequently

{ i
(BJ R, (2)) *iv,,V L
070 JrVy =

Since

v
(u, —_l‘e
ki

N

RO(E)u =

-ik|y|

2

-1

——
T

2k1i

L[tk hugiay + (ayx(0,)Ro (2107

+ RO (—Z-)X (0,°°)q2V2) .

o—iklyl —
* Ry (2)X(0,w)92Y2"

o .T(—l l
f o~ iklx=yl (y)ay
-00

34
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we have
B[BJ.R, (z)]*{v ,v2} = —_V._l_ o 7l J e-iilyl
i . 2ki  2ki /-w X(o,m)(Y)qg(Y)V2<Y)dy,

~92 | iKY

-_— Vv

= + q,R,(Z)¥ q,Vv
%L 270" %X (0,) 92 2}

Let B[BJORO(z)]* = {Fllvl + Fi,Vy, Fpyvy + F22v2} where

1 1 (° -ik|yl,
F..v, = —, F.,v, = -—J e o) (Y)a, (Y)v, (y)dy,
111 T oyt f12%2 T T ) (0,) Y/ 92¥IV3
~92V1  -ik|y| -
- y _
Fyvy = = e and F,,v, quo(z)x(o’w)qzvz.
i,
We now compute BJ,(BR, (z))*. We have
1 © =
S | = -ik|y| = }
BRO(z)u = { — J-me u(y)dy, quo(z)u
and |
-v ® = _
(BR.(Z)u, {v.,v,}) = i e lklylﬂ(y)dy + (q,R,(2)u, v,) |
. I
= (u, . elklyl+ R (z)q2v2). |
2ki 0 fiﬂ

: it

Thus (BR0 (z))* = | eikIYI + Ro(z)qzv2 and lig
2ki ﬁ;w

1§

vy iklyl

— 1 _ik|y

J.(BR.(z * = — e i
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Conseguently

= V1 1 ® ik|y|
BJ)(BRy(2))* = {-—= + == J_we ¥ d, (Y)v, (y)dy,

2ki
Y3
DoX (0 ) — oik|¥|
22 (0, )2k e + qZX(O,m)ROqzvz 5
= {Gyv) + Gy, Gyyvy + Gyuv,)
where
v @ .
.. - 1 ik|y|
Gy1V3 =t G122 < ZkT f e q, (y)v, (y)dy,
l -0
v .
_1  ik|y] =
G,V e and G22V2 = q2x(0,w)R0(z)q2v2'

2171 2* (0, )2ki

To show that (B(BJ R, (z))*)* = BJO(BRO(E))* it

Gji‘ It is clear that

suffices to show that Fij*

F..* = G and that F..* = G22. We have

03 0 b 29
—V (o) . —
Ry | -ik|y|
(Frovpvy)e = — [ o L we v, may
2k1i -0
v »
1 _ik|y]|
= (v,, — e d,) .
2" opi X(0,0) 22 12 = (V5,Gyyvp).

* =
Hence F12 G21' We also have

*dyVvy -
(F i My #¥0) 9 W = J =
21V + Vgl y —w2ki ©
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© q 5
= Vl J .—2. elklylvz(y)dy
e 2k

[+ q )
_ 2 Ak|y] _
(vl, J ;;;e vz(y)dy)c = (vl,Glzvz),

-0

Hence F21* = G21 and the last condition is satisfied.

To show that the wave operator W, u = lim g FHg~1tHyp,
t >

exists it suffices to show [6, p. 176] that there is a

number t. such that

0
(3.11) J HAe-ltHOuﬂdt < » and that
t
0
(3.312) limHJe—ltHouﬂ converges to a limit as t » « ,
t>c

We have

"Ae—itHOu" < I(e-itﬂolﬂ'(0+)| + que_itHouH )

Hence (3.11) is equivalent to showing that

(3.13) J] (e_ltHou)‘(0+)|dt < ®
and that
(3.14) Juqle—ltHo u dt < ®

We shall first show these integrals to be finite for

the set of functions whose fourier transforms are of the

kz—iks

form ws(k) = ke , s real. Linear combinations

. T .

ST SRR DTN

NP

A g



of such functions are dense in Lz [5, p. 114]). Hence
the wave operator will exist on a dense set. Since the
domain of the wave operator is a closed subspace, the wave

operator exists everywhere. Setting u = Vg We have

i G ot B
(3.15) e~itHo, o _ilx-s) {-15—51—} (5, p. 115]

= exp
3/2 4 (1+it)

Differentiating with respect to x we get

; 2 2
d _-itH i i(x-3) = (x-s)
(3.16) R 0 u= - exp {———
dx [(2+2it)3/2 (2+42it) >/ 2 {
and
d _-itH 1 (x-5) 2 e e
Iz & OBl £ [ 2 # —F8 anp {ztxs)®
. (4+4t2)3/4 (4+4t2)57z' 4(1+t2) i

Hence

d _-itH 3 2 2

e 0 S -S

dx © u(0+) I s 27 T expy ————
(4+4¢2)3/4 (4+4t2)5/4

= > 3 4 exp L_. + S exp __-S_
(4+4t2)3/ 4(1+t2 (a+4£2)°/4 la+td)] -

Note that
lim t3/2 &%p 4~ -s? o &
tre  444¢2)37/4 4(1+t9 2374
and that
lim t5/252 exp -52 5 _ 52
- T 337 — - * 7377
e g+ael) /4 r(1+t2) 2’4,

Hence J]gk e~ 1tHp u(0+) |dt exists.

4 (1+it)

T TRV S

s 2

2oUU R BE O anf MNSH g

s s

S

O Y e T S O T AV WS e

N RS —
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For u = +§ we also have that lim |Je-itH011I2 = ﬂJqu.

£t
We have the following theorem on the existence of the

wave operator.

Theorem 3.2: If (1+|x[)% q, (x) is in 12 for some o > %

then the wave operator exists. Before proving Theorem 3.2

we shall prove the following Lemmas.

Lemma 3.1: If for each real s there is an a(s) such
that
3
o P 2
(3173 J o J la, (x) (x-5) | 2 exp{:.iﬁz%_} ax|  dt <e
a(s) ~00 2(1+t°)

with the inner integral finite for each t > a(s).

then the wave operator exists for all uGLz.

Proof: By (3.15) we have for u = ws
~itH 2 5 =372 [® 2 (- (x-5)°
Iqle 0 u“ = (4+44t7) I lql(x)(x—s)l exp i—————f—}dt
0 2(1+t7)

By hypothesis this is finite for all real s and t > a.

Hence e_itHO u€D (A) for all such s, t. Moreover e_ltHOIKED(ﬂO).
We have
J Iqle uldt
© 2 %—
- ' 2 - (x-s)
= [(4+4t2) 3/4J ja, () (x-5) | % exp sl Loax|? ae |
-0 2(1+t7)

"BEFETETTYT T XY R O

R TIII—



40

By (3.17) this integral exists. Hence the wave operator

exists for all uGLz.

Lemma 3.2: If x> 0and 0 > ¢c > 1 then e = < %c
X x2
Proof: The Taylor expansion for e” is 1 + x + 5>+ ...

Hence e* > x. Thus for x > 0 @ = @

E

Now take x s i 1

(o]

Then for ¢ < 1 x > x~ and g %c. Next take 0 < x < 1.

b L

Rz i« %c if ¢ > 0. 0

Then e~
We now proceed with the proof of Theorem 3.2. Note

that + < o < 1 implies that 0 < 2(l-a) < 1. Hence by

2
Lemma 3.2
2(1l-a)
—(x-s)2 l+t2
s B T
1+t (x-s) i

Thus
2 o 1-%
& —(x—s; < | - (1+£2) 17 xos ] 2072
2(1+£7) _(x-s)

Also note that |x-s| < (1+|x]|) (1+|s]|). We have

1
© © 2 =
J g=3/2 J Iql(x)(x-s)l2 exp :LE:E% ax| 2 at
§ s 2 (1+t2)

N

< J £=3/2 [I |ql(x)|2(1+[x|)2(1+|s|)2(1+t2)1““|x—s|2“'2dx] at
1 -

1
|q1<x>12(1+|xl>2“<1+lsl>2“dx} 2.

< J ~3/2% 1sag, [J
1

-
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By hypothesis the integral in x is finite. The integral in

t is finite for a > % 0

We have the following corollary to Theorem 3.2,

Corollary 3.1: If there is a B > 1 such that ql(x) < A 8
| x|
for |x| large then the wave operator exists.
Preof It suffices to show that the conditions of
Theorem 3.2 are satisfied for x large. Let a==%u Then
o > %. and
2a
Jql(x)2(1+|x|)2adx < M Jiﬂ’z‘—g—)— dx
| x|
< M2p2¢ JIXI-Zadx
and this is finite for x large if 2a < -1 or a> %. 0

To show the completeness of the wave operator we use
a theorem by Schechter [7] which states that if the following

six conditions hold then the wave operator is complete.

1. There exists a Banach space K and linear
operators A fromJCo to K and B from JCO to K!'
such that D(Ho) CD(A) "D(B), D(H) C D(BJ*)
and (Ju,Hv)-(JHju,v) = (Au,BJ*v) u€D(H;),

vED (H) .

2. There exists an open set A of R such that CA

has measure zero and for each ICCA there is

. 2
a constant CI such that a"ARO(s+1a)" +

i B SERO RSN B WIUIE T BRI B v siirigsmsime i

vemy
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aﬂBRo(s+ia)"2 <C 0 <ac<l, s€1

I

3. The operators Qo(z) = [B(ARO(E))*], Go(z) =
1-Q,(z) and Go(z)_l are bounded and everywhere

defined on K' for Im z # 0.

4. For each ICCH, Qo(z) is uniformly continuous

in the region WI = {z = s+ia/0 < a < 1, s€I}.

5. There is a Zy such that BRO(z)(ARO(zl))* is

a compact operator on K' when Im z # 0.
*)k = Zz))*
6. (B(BJ,R,(2))*) BJ (BR, (2))

We now apply this theorem to our example with
HO,H,A,B,GO(Z) defined as above. Condition 1 is a simple
consequence of Theorem 2.1. We have already verified

conditions 2, 3 and 6.

Since
v ®
1.1 ik|y]

(3.18) B(AR,(2))*{v,,v,} = {— + =— J e q, (Y)v,(y)dy,
(BRgi 1V2 gl I 1 ¥V,
q " q ;
] -iky 2 iky
2; v,e X (=0, 0) + 7; V1X(0,)® * quo(z)qlvz}

by (3.8), for the fourth condition it suffices to show that

each of these operators is uniformly continuous in W;. The
v

first of these operators, —l, is clearly uniformly continuous.
2

2

Since 9, and q, are in L, the last operator, q,R,(z)q, is

-
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uniformly continuous in any WI for I bounded and away
from the origin [5, p. 184]. To show that the second
operator in (3.18) is uniformly continuous in Wy, we

first show that it is uniformly continuous if

(3.19) J (l+[x|)2ql(x)2dx < w,
-0
1 3 1 2.— !2—l
Let z,2' be points in WI and let k" = z,(k")" = z
ik|y|

and Im k,k' > 0. Set f(k) = S‘E‘“‘ . Then f'(k) =

(1klgl—l) eikl¥|  guppose I = (c,d) with ¢ > 0. If
k

k =a+in, z = s + ia and 0 < s = az - n2 then a > cl/2

and consequently

|£' (k)| < (+]|ky[)
C

If k(6) = (1-8)k' + 6k, 0 < 8 < 1 then Re k(8) > c™/? in w_
and f(k) - £(k') = £(k(1)) - £(k(0))
1 1
g j £1(k(6))k'(0)d8 = (k-k') J £1 (k(0))ds.
0 0
Hence
|£(x)-£(k")] < |k-k'|(1+M]y])
C
, 1/2 .
where M is an upper bound for |z| in W . Thus
1 = ik|y| _ X ik' |yl (y)v.,d
2k1 ) __© 9y (YIvy (Y)Y = 77 | © q) (Y)vydy

g i i s i BT DB B RGP B AEB B v e SRy T




£

]

i ;
2 3glk-x"| f_w(1+MlyI)Iq1<y>v2(y>ldy
< 3olk-x'| j_w(l*‘MIYI)z(ql(y))zdylvzl

This proves that the second operator in (3.18) is uniformly

continuous if (3.19) holds. Now for each n set

]

ql,n(X) q; (x) if [x] < n

0 if |x| > n

and
_1 ® ik|y]
FaVa = 21 J_we 9,0 ¥V (¥)dy
_ 3 ® ik|y|
FO(Z)V2 = %1 J_me ql(y)VZ (y)dy
Then

IFa(2)v, - Fo@vyl = Igr [ ¥ @) - a emiv, e

2|

By Holder's inequality this is bounded by

2lk|/f |9y (v)-ay ()] *ay le"z(Y)lde

- 00
2 _]_] l9y sallval < 1/2 19 o llvl-

Since "qi ql" + 0, F (z) converges to F,(z) uniformly in

A B T T
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W On the other hand 9 5 satisfies (3.19) for each n.
’

I.
Hence Fo(z) is uniformly continuous in wI for each n.

This gives the desired result.

Now let F(z)vl : € +I? be the third operator in (3.18).

Then
F(z)v, - F(z")v,| = i) v T e
|F(z)vy 1ﬂ‘|2 1X (==, 0) I-
If we set £(k) = e **Y then f£' (k) = —iye-lky. Then

£ (k)| < |y|e"™ < |y| for y < 0. If k(8) = (1-6)k' + 0k
1

then f£(k) - £(k') = (k-k') J £'(k(0))d®. Hence
0

|£(k) - £(k")| < [k-k']|]|y].

Conseguently HF(z)vl - F(z')vl"
92
= n;‘ le(—“’,O) lk_k' | IYI"

1
0

2 2 2
= %lvlllk-knl [J_lyl a, (y) dy} .

This proves that F(z) is uniformly continuous if

0 2 2
(3.20) f (1+]y[) gy (y) “dy < =

o

Now set an(X)= g, (x) if [x| < n
L0 if |x] > n

1€ X (=»,0)* Then

and Fn(vl) =

A S REII R
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9,n . _-ik d -1
. e g ol ¥ .2 ky
n n(Z)Vl (Z)Vlﬂ > " 5 vle X(-oo’O) 2 Vle X(_w’O)ﬂ

1 0 2 -1k
= EIVII/T (Q2,n‘q2) e ydy

-0

1
< 3lvillg a9, -

Thus Fn(Z) converges to F(z) uniformly in WI’ Each qu

satisfies (3.20). gHence F_ (z) is uniformily continuous in

WI for each I. This gives the desired result. The fourth

operator in (3.18) may similarly be shown to be uniformly

continuous. This gives the fourth completeness condition,
To verify the fifth condition we show that BRO(z)

is a compact operator and recall that we have already shown

that ARo(z) is bounded. To show the compactness of BRo(z)

we have

1

BRO(z) - {2ki J eikly'u(y)dy, quO(Z)u}

00

Since q2€L2, quo(z) is a compact [5, p. 184] operator on

L2. To show that the first operator is compact let unGL2
be a sequence such that ﬂunu < C. Then

o . 1 ® -ny
|%ki| J lelk'y“"‘n‘y"d"iz‘lﬂ J-me g (y) | dy

- - 1
& %TET [I-we-ZHIYIdy} % [J-Jun(y)lzdylz
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1 c
< 211 1ol 2 2R

m ’
Since %EI I elklylun(y)dy is a bounded sequence in C

it has a convergent subsequence and hence the operator

BRO(z) is compact. We have proved the following Theorem.

Theorem 3.3: Let the operators HO, H, A, B, J be as in

Theorem 3.1. If (1+|x[)aql(x) is in L? for some a> %

then the wave operator exists and is complete.

3e2 In our next application we shall prove

Theorem 3.4: Let H, be the self adjoint operator associated

Qs

We let Ju be

] b=

with D2 in #. = L2 (~®,») where D =

0 dx*

the restriction of u to (0,®). Thus J maps KO to X = LZ(O,M).

Then take i

Au {-u(0+), qlu} and

Bv {v'(0+), q2v}

where q; and q, are real valued functions in L2 and A, B

K, > C @ 1,2 (= ;o0) and

{uELz/u', qluGLz} and

D(a)

2 and

D(B) {UELZ/U' i q2u€L

lim u' (x) existsl.
x+0+




Then there exists an operator H with the properties of

Theorem 2.1.

Proof: We first note that D(Ho)c D(A) N D(B) as in the

first application. We next verify (2.1). We have

Im[JHOu,Ju) + (Au,BJ*Ju)]

-]

= Im []O(Dzu(x))u(xidx - u(0+)u' (0+) + J ql(x)qzcdlubdlzdx.
0

As in the previous application the last term is zero and
the first term is -Im u'(0+)u(0+) = Im u'(0+)u(0+). This
is the negative of the second term above so Im[JHOu,Ju) +
(Au,BJ*Ju)] = 0.

Since A of this application is the negative of B in
our previous application, and our present B is the negative

of A of the previous application, we have
. 2 . 2
a("ARO(s+1a)" + lBRO(s+1a)ﬂ ) = CI’ a> 0, s€I.

We shall now prove that B(ARO(E))* is closable and

that Go(z) is bounded. We have

1 ® L _
AR, (z)u = |— e'lklylu(y)dy, a,R (z)u}e c o 1°
0 2ki J-w 170
and
S, § iy m L (" iRy gray + (@ R @rusve)
(ARO(Z)U., Vllvz ) = ;Ei— -ooe u y y ql 0 ’ 2
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v

1 ik|y|
= (u, —— e + Ra(2)g4V4) s
-2ki S
v :
1 ik|y|
* =

" a | V1 _iky| _
To compute B(ARo(z)) note that —|—— e =

Yy | _oki

-V . e 7 d
——lelky. Evaluated at 0 this function is ——L. In the

2 2

previous application we showed that

Q

ax
-0

Hence

| =

d
e RO(Z)qIVZ(O) 5

Consequently

B(ARO(E))*{vl.vz}

0 . © .
= {% [-v, + J- e'lkyql(y)vz(y)dy - Joelkyql(y)vz(y)dy],

—q .

2 v elk|y|+ q-Rx (2)QV "
.1 20 12

2ki

We have

EB(ARO(E))*{VI,VZ}H

X - o] o
Ro(z)u(x) = % J elk(x-Y)u(y)dy - J elk(y_x)u(y)dy
X

0 . o
J e lkyql(y)v?_(y)dy = J elkyql(y)V5y)dy

49
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0 _g
1 1 -1k
(3=21) < zlvil + 51 J e Y

00

q; () v, (y)dy|

1, (2 iky 1 ik|y]
+ 3 Ijoe q; (Y)vy(y)ay| + flklnqzvle | + JazRo(2)qyv,] .

The second term in (3.21) is bounded by

0
3 f_metqul(y)llvz(y)ldy

where k = s + it

N

-0

0 >
[J etylvz(y)lzdy]

0
<3 [j etqul(y)lzdyJ |

™| =

0
1 t 2
<5 vl [J_me qul(y)l dyJ .

We have

0 £ 0
2 2 t 2
J e¥a, (v)|“ay = J e™|aq, (v) | “ay + I e™|q; (v)|“ay
- 00 _e

-0
> 0
- 2
< e7%E J la; () [%ay + j la; (v) | “ay
-0 —e

0
Letting € =

““i“

The second term approaches zero as € + 0. Hence

0 .
3 -
7| J e lkyql(y)vz(y)dyl < Cl(z)nvzﬂ where Cl(z) + 0 as

el

Im z & o,

this is bounded by e—/Eﬂqll2 + J lql(y)lzdy.
-c
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The third term in (3.21) is

% Ijoe—tyql(y)vz(y)dy < Cy(2) ] v,

as in the previous calculation.

The square of the fourth term in (3.21) is bounded

> Ivl|2 ® 2 -2ty Ivl|2 2 2 | |2
q,(y)7e dy s ——» |4q =C “(z)]|v
4|k|2 [—m . 4| k| |9l 3 4

where C3(z) + 0 as Imz =+ =,
The last term in (3.21) is bounded by C4(z)“v2" as
in the previous application where C4(z) + 0 as Imz » =,

Thus

= )|
[B(AR, (2)) *{v,,v,}] < 7|vl[ + Cy(2)|vy| + Cy(2)| vy
+ C3(z)|vl|+ C, (2) | v,y
1
< (7+C5(z))|vl| + Cg(2) | v,]

where Ci(z) + 0 as Imz + », This is bounded by

1 2 2
//(7+C5(z)) + Ce(2)” | {vy,vylf

Note that

1 2 2
//(§+C5(z)) + C6(z) <1

for Im z sufficiently large. Hence B(AR,(2))* is closable,

51
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Go(z) is bounded, and Go(z) has a bounded inverse for

Im z sufficiently large.

We have (I+B(AR0(E))*){vl,v2]
0 ;
1 - i
= {7 v, + 3 []W”e g (y)v, () ay - fZelkyql(y)vz(y)dg}.
~92 ik|y|
—= v.e + (I+g,Ra. (2)gq)wv }
ki 1 20 1772

1 1| (9 -iky ® iky
= {7 vl,vz} + {5 J_we q, (y)v, (y)dy - foe q, (Y)vy(y)dy |,

92 o JAkly]

+ g.R.(2)g.V }.
2ki 270 1.2

The first operator is invertible and the second may be shown
to be compact by the same methods used in the first applica-
tion. Later on we shall show that Go(z) is also continuous.
Using the first resolvent equation, it then follows that
Go(z) is analytic outside of a set of measure zero. Thus
Go(z) actually has a bounded inverse for all z outside of
some finite discrete set.

We now verify that (B(BJ,R;(z))*)* = BJ,(BR, (z))*.

We first compute B(BJORO(z))*. We have
BJ R {2tk gyay - [eiRuipa R (2)u
oRo(2) = 1z e Bl oe RANFEX e 28 (00 0

and

52
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0 A S .
(BI Ry (2)u, {v,,v,}) = J e MYy (y)ay - joelkyumdy

-

+ (qzx(o,m)Ro(Z)u' v,)

v . — v .
- ~1 _iky R B 5, =
(B & X (0,075 © T X(0,0) * Ro(2)X(g,0)9pV2) -

Consequently (BI,R(z))*

v <o= v L
_ 1 _iky 1 -iky =
R X(0,#) * Ro(2)X(0,0)%2">"
a |V1 _iky
We have A7 ?; e X (==, 0) (0+) = 0 and

2 2

Evaluated at 0 this is %Vlk. We also have

Hence

B(BJR, (2))* {v;,v,}

iv P i)
I T - e KYq_ (y)v, (y)ay,
5 2 0 2 2

2D B A

B e
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q v ==
=2 iky e 7 -iky —
5 Vle x(_oo’O) 5 qze X(O,m) + quo(Z)X (o’m)qzvz}
{ F1a¥y * FygVse Fpqvy # Fzzvz}
where
iv.k ® —
— 1 N -1iky
F11va s P raple TR JO e T ¥vy(dy,
q 7
- iky A i
FoaVi ” V1€ " X(-w,0)- L q,e 1kyx(0 - and
2 4

Fa2Va = BR(2) X (g, w)93V;

We now compute BJO(BRO(E))*. We have

0 -~ o s
BR, (z)u = {% D_ e Yu(y)ay - foe lkyu(y)d;l a, 0<z)u}

—

Thus

<

. [{p— o -
1 f XYy (yray - [ e~ KYy () ay
2 -0 0

(BRO(E)u, {vlvz})

_ 1 —iky 1 iky
= (@ 3 VX w0 Z ki, =& F R

Hence
— I -iky _ i iky
(BR, (2) ) * {vl,vz} =3 V1X(e=,0)® ViX(0,=)®

+ R(z)qzvz.
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and
J,(BR,(Z))* = - Ly 4 elkyY R (2)
0 '®Ro 271X (0, =) X (0,w) 02957
d 1 ik i
Note that ay(-f vye y) = - % kvlelky. Evaluated at 0+
—ikvl
this is . We have
2

BJ (BRy (Z) ) * {vl,vz}

-ikv 0 . =
I . % -ik i
{ —4 5.[j‘me e, (w)v, (yray - foelkyqz(y)vz(y)dg}.

e iky
Rt q2X(o,w)Ro‘z’q2V2}

= 1611V * GyaVyr Gpyvy + Gppvyd
where
i -ikvl
| S1a¥1 =~ Big¥y
|
o . -
2 fj“me 9, (¥) vy (y)dy foe qa, () v, (y)dy|
e M :33 ¥ tky d G = R, (z)g,v
2171 7 77 1 X0,=)® 7 @09 B2V = 99X (0, o (27922

To show that (B(BJyR, (z))*)* = BJ, (BRo(z))* it suffices to

* - i e 5 * —3
show that Fij GJl. It is clear that Fll G11 and

* =
that F22 G

_ 1o (T o-iky o
22+ We have (F,v,,vi)e = -3 vlfoe q,(¥)v, (y)dy
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* =
Hence F G21' We have

12
© (9 ;T v .
_ 2 ik 1 -ik
S RARRS S J_m 5 1 yx(_w,o)-;— 4 X (g w)|V2 (V) AY
> 92 -iky 93 iky
= Vl J_m(—z-— e X(_w'o)- 2e X(O,w)v2 (Y)dy

= vy 7 [f e, (v, (nay - quz(y)elkyvz(y)df]
. 0

(Vl'G12V2)C ,

-
Hence F21 G12‘

To show that the wave operator exists we again give

w .
conditions under which J IAe-ltHOqut < o, We have
t
0

© 3 o0 " <)
J HAe_ltHO uudt.'i J |e—ltH0 u(o+) |[dt + J q;e
;

0 ts o

-itH,

The second integral is finite under the same conditions as

in the previous application. We shall show that the first

integral is finite for the set of functions whose fourier
-k2-iks

transforms are of the form ws(k) = ke s real.

Since linear combinations of these functions are dense in

qut .
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L, the wave operator exists on a dense set. Since the domain

of the wave operator is a closed subspace, the wave operator

exists everywhere. Setting u = ws we have

Ie—itHO u| = |x-s] exp'{-(x—s)z}
(4+4t%) 374 4(1+t2)) -
Hence
O (o | = L8l e {—_S“ZT}
(4+4t°) 4 (1+t7) :
Since

lim
t+o (444t

2 [s] oo {_i_} ls]

22 4 (1+t2) g3

we have that Jle-ltHO u(0+)|dt is finite. Since we also
. —itH 2 . . . - .
have that lim |Je 0 u|© exists as in the first application,
t >0
Theorem 3.2 and Corollary 3.1 apply in this application also.
In proving the completeness of the wave operator the
second, third and last condition have already been verified.

To prove the fourth condition we have Q(z) {vl,vz} =

0 . o .
l[_ -iky _ iky
(3,22} 51 v+ Lme q, (y)v, (y)dy foe q; (Y)vy (y)dy,
q ;
& i vlelRIYl+ quo(z)qlvz}
2ki
!
The operator - — is clearly uniformly continuous in W.

2
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The last operator may be shown to be uniformly continuous as

in the last application. We showed in the previous applica-

tion that
- L P |
|e™HY _ TR <k ek |y] .
Thus
: -iky -ik!
IJ (e ™ —e™ Yyq, (y)v, (v)dy|
-C0
0
< |-k J Iyl lay (¥)v, () |ay
-0
0 1
2 2. 12
2 =%l [ I_w ly[“lay (v) [“ay|“}v,] -
Hence if
® ) 2
(3.23) J (1+]y]) q; (y)"dy < = then the second
-0

operator in (3.22) is uniformly continuous in WI.Letting

qp,,¥) = Jql if |x| <n
0 if [x| > n

\

r 0

e—iky

and Fn(z)v2 ql’n(Y)Vz(Y)dY

) m

g
Fo(2)v, J e Mg (v)v, (v)ay

-0

NN 0\ T | —

= 4y

i
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Then

0 :
P, (2)v, = B2yl = |f &g ) - q vy mayl

2 Iql,n - qlﬂﬂvzn'

Hence Fn(z) converges to Fo(z) uniformly in WI' Each

9 5 satisfies (3.23). Hence Fo(z) is uniformly continuous

r
in WI'

The operator J elkyql(y)vz(y)dy may be similarly
0

L L.

shown to be uniformly continuous in WI'

In the previous application we showed that

ik ik’
k k'
1

where I = (c,d) and M is an upper bound for |z|2 in W..

Hence

d5 AV,
I 2 elklyl _ 271 elk'lylﬂ <
2ki 2k

vl
< |k=k'[] Q+M|y[)a,]-

B e

So if



(3.24) I (l+|y|)2 qz(y)zdy < @ then the first operator

is uniformly continuous in WI. Now set

9 n(X) = Jay(x) if |x| <n
0 if |x| > n
95 nvleiklyI
Fn(z)vl = 2
2ki
Fo(z)vl =
2ki '
92,n ik |y| v,
Then |F_(z) - F.(z)] = |v D9y Yy o T L g, —q..
“ n 0 n H l[ 2ki " — 2[k|” 2,n 2"
Takin -1/2 _ 1
g M to be an upper bound for |z| =TT in W,
this is %—"qz w0, qzﬂlvll. Thus F_(z) converges to

Fo(z) uniformly in WI. In addition 95 5 satisfies (3.24)
4

for each n. Hence Fo(z) is uniformly continuous in WI

for each n.

The fifth condition is verified as in the previous

application. We have the following theorem.

Theorem 3.5:Let HO' H, A, B, J be as in Theorem 3.4. If

(l+|x|)a< ql(x) is in L2 for some a » % then the wave

operator exists and is complete.

363 In our next application we prove
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Theorem 3.6: Let Hy be the self adjoint operator associated

H = =
with D in 0 L ( ,o) ! where D T dax° We let Ju be

the restriction of u to (0,®). Thus J maps

2
H = 2
xo to L (0,) Take
Au = {-u'(0+) + cu(0+), qluJ a real
Bv = { v(0+), q2v} where d and q, are

real valued functions in L2 and A,B : KO - ¢@L2(-m,m)

and

{uELz/u',qluEL2 and lim u'(x) exists},
X+ 0+

D(A)

D(B) {uGLz/u', qzuEI? b

Then there exists an operator H with the properties of

Theorem 2.1.

Note that our first application was the' special case

of this application where a = 0.

Proof of Theorem 3.6: As in the first application we have

D(H0)<ID(A)r7D(B). To verify (2.1) we have

Im[(JHOu,Ju) + (Au,BJ*Ju)]

Im [} (D2u(x))u(x)dx + (-u' (0+) + au(0+) nu(0+)
0

+ joql (x)q2 (x) IU(X) lzdx]'

LY SN tyeewa
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As in the first application the first term is Im u' (0+)u(0+).

The second term is

~Im u' (0+)T(0F) + o Im|u(0+)|2% = ~Im u' (0+)T(0F].

This is the negative of the first term. The third term is

zero.

We shall now show that a(MARO(s+ia)u2 + uBRo(s+ia)]2)

X €

< Cira> 0, s€I. In our previous applications we showed

that aﬂBRo(s+ia)||2 < CI. It remains to show that

a"ARO(s+ia)"2 < CI' We have ARO(z)u = {-(Ro(z)u)'(0+) +
aRO(z)u(0+), qlu}. In the first application we showed that

I(Ro(z)u)'(0+)| < %g ﬂuu2 and that kRO(z)M'@+)[ < gTET Huuz.

The third term we showed to be bounded by %alklﬂuﬂzﬂqzﬂz
and this proves that a"ARO(s+ia)ﬂ2 < Cq-

We can now show that B(ARO(E))* is closable and that

Gy(z) is bounded. We have
AR, (z)u = {-(Ry(z)u)'(0+) + aRy(z)u(0+), g ul

1 — © =
f XYy (yray - f e lkyu(y)d%}
0

- 00

= =i
- 72

o " -iflyI =
Ny J_we u(y)ay, @R (2)ul} .
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- V1 (0 ik V1 [* ik
Thus (AR (z)u, v,y = - -;f e Yu(y)ay + . foe Y u (y)ay

)

av ® -
2 j e'IRIYIu(y)dy * (q)Ry (z)u, v,)

2ki  J-w
w, 1 -iky V1 iky . *V1 ix|y|
= N, e + —x Y + — e + R,(2)q,v,) .
2 " (==,0) 5 7 (0,) 2ki 0 172
So
_ -v _ v . av :
(ARO(Z))*{VI'VZ} - X (—m 0)€ iky § __}_X b elkY % 1 elklyl

+ RO(Z)qlVZ‘

We can now compute B(ARO(E))*{vl,vz]

v av 2
- {_i T f eikly lql (Y)v, (y)dy,
2 2ki 2ki -t

q.v 2 q.v : g,V .
Al -iky 21 iky =21 . ik|¥]

e X (=, 0)® + = X (0,0)€ + o e + QyRy (2)q v, b
Hence

HB(ARO(E))* {vl,vz}ﬂ

v av Lo
2 2ki 2ki -

-q o q . ag,v :
+ | —2 Vix 0)€ LY 4 —2V1X(0 w)elky g —2 L K|y
2 (-ml ) 2 ’ Zki

Wt o i o al oot o
® = v



+ quo (z)qlvzn

olvy| ool J

0 -ty
e g, (y)]||v,(y)|dy
2|x|  2|k| la; W [[va (0]

-0

1
(3.25) <3 lvyl +

eikyI

-iky 9,
e H + I—z- le (0,°‘°)

+ || —
2 le(_mlo)

aqzvl

ik|y|
e + la,R,(2)q, v, [ .
e | + [a,Rg(2)qyv,]

1

The third term is bounded by C(z)lvzl as in the first
application, where C(z) -+ 0 as |Im z| + ». The fourth and
fifth terms are bounded by C(z)lvll as in the first applica-
tion. The sixth term is bounded by C(z)|v,| as in the second
application. Similarly the last term is bounded by
C(z)"vzu as in the first application. The first term in
(3.25) is bounded by C(z)|v1| as shown in the second applica-
tion. Hence |B(AR0(E))*| < 1 for Im z sufficiently large.
Thus B(ARO(E))* is closable and G, (2) is bounded. 1In
addition Go(z) has a bounded inverse for Im z sufficiently
large. We also have that Go(z) is the sum of an invertible
and a compact operator. Since it is also continuous, as we
shall show later on, it is analytic. Thus Go(z) has a
bounded inverse for all z outside of some finite discrete
set.

In the first application we verified that (B(BJoRo(z))*)*

= BJO(BRO(E))*. Thus the operator H of Theorem 2.1 exists.
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We can now show the existence of the wave operator
under the conditions given in the first application.

We have

J | A e 1tHo ujdt

< JI%X e *tHo u(0+) |dt + |a|J|e—itH0 u(0+) |dt + Jﬂqle-itHo ujdt.

Since each of the first two integrals exists as in the previous

applications and (3.12) holds, the wave operator exists

under the same conditions on q, and q, as given previously.

We can now show the completeness of the wave operator.

Condition 1 is a consequence of Theorem 2.1. We have
already verified conditions 2, 3 and 6.

Since Q,(z) {vl,vz}

v av © .
(3.26) - {—l i j e:1¥lg (v)v, (vray,
2 2ki  2ki J-w
d, -iky , 92 iky
T, VX (=, T T 5T ViX(0,.)®
agq .
+ —2— Vlelklyl + quo(Z)qlVZ}:
2ki

for the fourth condition it suffices to prove that each
of these operators is uniformly continuous in Wy The
first, third, fifth and seventh terms of (3.26) were shown
to be uniformly continuous in the first application. The

sixth was shown to be uniformly continuous in the second

65

Prog o i

-
-~

e

-

LIV

R Eecmn



application. Clearly, the second term is also uniformly

continuous in W_. for I bounded and away from the origin.

I
For the fifth condition we verified that BRO(z) is

compact in the first application. We have already shown

that ARo(z) is bounded. We have the following theorem.

Theorem 3.7: Let HO' H, A, B, J be as in Theorem 3.6.

2 for some a:>% then the wave

If (l+|x|)aql(x) is in L

operator exists and is complete.

3.4 In our next application we shall prove
Theorem 3.8: Let Hj, be the self adjoint operator associated
with D in ¥, = L2 . We let Ju be the restriction of
0 ("°°l°°)
2

bu to (0,). Thus J maps Mo to X = L (0,=) " Take

Au = -i beu
bl

By = ——= Vv
bl+6

where b is a real valued bounded function, beEL2 and

b €L2 and b(0) = 0. We take
bl+e

D(Aa) {u€L2/beu€L2}

1l

and

D(B)

L
{uELz/ b ELZ},
b1+8

Then there exists an operator H as in Theorem 2.1.

Proof: Note that (Ju,v) = J b(x)u(x)v(x)dx = (u,J*v),
0
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Thus
J*V = bv if x> 0
0 if x < 0
and
2
J*J = :
& X (0,0)P
We have

Im[(JHOu, Ju) + (Au,BJ*Ju)]

] © 0 '
= Im J b(x)2(Du(x))ulx5dx - Im i f l?—T%%:l—(l()bz(x)[1.1(>':)l2<ix

0 0 b (x)
(3.27) = Im(-i J b(x)zu' (x)u(x)dx) - Im(i f b(x)zlu(X)[zg'(JS() Ix
0 0

The second term in (3.27) is =-Re j b(x)[u(x)]zb'(x)dx.
0

The first term in (3.27) is -Re J b(x)zu'(x)u(xidx
0

1 = 2,d 2
1 Job(x) (G a0 [Fax .

Integrating by parts this is

-2 b2 u|? fo + 3 j0<§x b(x)?) [u(x) | %ax.

Since b(0) = 0 this is

1 r 2,4 2 _ r| |12 ;
= u(x) (5. b(x)“)dx Re u(x) | “b(x)b' (x)dx.

This is the negative of the second term in (3.27). Hence
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the sum in (3.27) is zero.
In verifying the remaining conditions of Theorem 2.1

we shall use a few lemmas.

Lemma 3.3:  If A(x)€L® and Au(x) = A(x)u(x) then
D(Ho) cbD(a).

2 2 2 ; :
Proof: Note that HAmn iC(HHOu“ +“u" Y5 uED(HO) implies

that D(HO)CID(A) for this says that AuEL2 whenever uED(HO)

ikx A

1 u(k)dk

Now let ueD(Hjy) . Since u(x) = —— J e
V2rn ) -e

where G (k) is the Fourier transform of u, we have

lu(x) |2 < 7—_1:- J (1+k2) | & (x) | %ax J (1+k2) "Lax
21r -0 -0

< /3 f_m(1+k2) 6 (k) | 2ak

k2|4 (k) lqu.

=//§f [—J °°Iﬁ(k)lzdk + J

—
— _—

. - " 2
The first term in this expression is I lu(x)lzdx = [uf

-0

by Parseval's identify. Since ki(k) = -ifu'(x)1Y, the
second term is bounded by J | [u' (x)1V]%ax = J [u' (x) | “ax
-0 -0

= ||H0u||2 by Parseval's identity. Thus Iu(X)lzf_C(EUI2 +

ﬂHouﬂz). Multiplying both sides by A(x) and integrating
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with respect to x we get lAuIz < C|A|(|u52+IHoul2).

Hence u€D(A).

X .
Lemma 3.4: Ry(z)u(x) = i j elz(x-y)u(y)dy if Imz > 0
- 00
and
iz (x-y)
Ry (z)u(x) = -i J et? ¥ Y y(y)ay if Im z < o.
x
Proof: To prove the first formula we let (D-z)v = u.
Now
D(e 1 %*y) = e 12X (p-z)v = e"1%Xy
Hence
esia X_.
e 1zxv(x) = v(0) + i I e lzyu(y)dy.
0

Taking absolute values we have
-nx X iz
(3.28) [vix)| = e |v(0) + i j e *%¥yu(y)dy| where
0

2 =0 + in. Since uGL2 the integral J e-lzydy exists.
-0

Thus the only way that the right hand side of (3.28) exists

is if the expression in the absolute value sign tends to

0 as x » o, Thus

0-—iz
v(0) = i J &et2¥y (y)dy.

This gives
x .
vix) = i J e1Z (X7Y)y(y)ay.
-0
This proves the first formula of Lemma 3.4. The second

formula may be proved similarly.
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Lemma 3.5: If f(x)EL2

then |£R)(z)u]? < £]£]*|u]?
where z = s + it and t > 0.

Proof: We have

ko X .
IR @uf’= [ Jee|? |f 25V ugay|%ax

- 00 0

) xX
4 J £ (x) | 2 {f e‘t‘x'y’lu(y>|dy]2dx

) X _ B X _ _
g f | £ (x) |2 f et (XY gy J e t(XY) |y (y) |2ay | ax

-0

o X
<% J £ ) |2 I et XY 4 (y)| ay ax

-c0

1 2 2
< =)

2 1 2
Hence nfRo(z)uﬂ < Eﬂuﬂ . O
For 2 operators A, B we say that B is compact relative
to A or B is A compact if D(A) €D(B) and fu | + fau | < C
implies thatuBun} has a convergent subsequence.
Lemma 3.6: If qGL2 than q is Hy compact.
. 2 2 2
Proof: Recall that if YED(Hj) then [¥(x)]° < c(u]™+ JHM|D).

Since ' (x) = —i— j oKX U (x)kdk, we have
o e

R R T T T T —.
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v () |2 < 2 J k% |y | 2ax = /jL ERTES

V2w J-e 2T
We have
(3.29) e 12+ v l? < cugy]? + v .

Now suppose{¢n}€D(Ho) is a sequence such that IHownﬂ +
H¢n“ < C. Then (3.29) shows that the ¥_(x) and ¥ _'(x) are

uniformly bounded. By the Arzela-Ascoli Theorem there is
a subsequence of the ¢n which converges uniformly in any

bounded interval. If ¥, denotes this subsequence and

ql,b(x) = ql(X) if IXI _<_ b
0 if x| > b
we have
2 b 2 |2
(3.30) lay, (¥ ¥ ) |° = _blq(x)l v (x) - ¥ (x) ] “ax
b 2
< max |V _(x) - ¥_(x)] f lg(x)]“dax > 0 as n,m > =,
o Xib n m _b

Next recall that since qb S qELZ,

1 2
| (ay-a) (wn-wm>ﬂ2 < cos||H0(tbn—wm)|2 + (Il -v.d

SRE T W Bamaiags
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x+1 2 2
where C, = sup J laty)|“ay. 1f Cq < €° < 1 then

0
X X
(3.31) (@-a) (b= )% < efH, (b ~v )12 + 2¢]v_-v |2
. H b n '‘m l - ' 0'"'n "m l el n wml
Hence
Ja@W=v) | < | la-a) W ~v )| + fap W ¥ )] > O
by (3.30) and (3.31) and qy  converges.
Lemma 3.7: If A is H, compact then ARo(z) is compact.
Proof: Let fn be a bounded sequence in L2. Then Ro(z)fn

satisfies nRo(z)fnu + EHORo(z)fnl < C. Thus ARO(z)fn has

a convergent subsequence and ARO(z) is compact.

Lemma 3.8: If g(z) = eizx and Im z > 0 then
lg(z) = g(z')]| 2 |x|]|z = 2"].

ZX

Proof: We have g'(z) = ixet?*. Let z = s + it.

lg?(z) ]| 2 |x|e” tX < |x|. Now let z(8) = (1-8)z' + 6z.

Then

1 1
g(z) - g(z') = Jg'(z(e))Z'(S)de = (2-2') Jg'(z(e))de-

0 0

So
1
lg(z) - g(z")| < |z - z'] j g'(z(6))de
0

1
< |z - z']| J |x|a6 = |z - z']||x].
0

= 4¢C.

Then
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Lemma 3.9: TE

(3.32) J (l+]x])z(ql(x)2+q2(x)2)dx < = then for each

ICCA, quO(z)q2 is uniformly continuous in the region wI
= {z = s+ ia/0 < a < 1, s€I}.

1
(quO(z )qzlv) I

Proof: I(quo(z)qzu,v) -

© X o
[ [ Tlete ey Lt o) g o [ Jugy) |, () v 0 fay ax

et
© X
< |z - 2" f J |x = y|lay x)u(y)|[q, (y)v(x)|dy dx
i
< lz-z2'1 | | +xDa+fyD e xuw)|lay y)vix|dy ax
r°r X l i X
<lz -2 [ <1+Ix|)"'lql<x)u<y)I"‘clydx]2 [J [ arlyh?
1
2

la, (v)v () | ax dy]

< lz = z'[]u]]v| J (l+|x|)Z(ql(X)2+q2(x)2)dx

This proves the lemma.

Lemma 3.10: If qq» qzeLz then [q,Rq(z)qpu| < [a|]aflv]-

Proof: We have
“[* iz (x-y)
I(Ro(z)qzu,qlv)| = IJ J e q, (y)u(y)q; (x)v(x)dx dy |

® X
J J e-t(x-Y)|q2(y)!|u(y)|Iql(x)llv(x)ldx dy

<
- —00

YA

- e

o Bty W

s
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< [logwliveolax [la,mlkw ey

< latladvfivi-

Lemma 3.11: If dq and q, are in L2 quo(z)q2 is uniformly

continuous in Wo for I bounded and away from the origin.

Proof: For each n put ql,n(x) = qq (x), q2,n(x) = g, (x)

0 if |[x| > n. Then

3£ IXl i n and ql,n = q2’n
91, nRo(2)492, 5 — q,Ry (2)ay| < [9;,nRo(2)dp,p ~ ql'nRO(z)qzﬂ

+ |91, nRo (219, ~ 91Ro(2)qy]

< Jay,nll92,n ~ 92l * la20191,n ~ 4l

by Lemma 3.10, and this is bounded by [q,||d; , ~ q,] +

- iforml
ﬂqzuﬂql,n qy]- Thus ql,nRo(Z)qZ.n + qyR,(z)q, uniformly

in W, . The operators q, and q, satisfy (3.32). Hence

i i inuous in W._.
ql,nRO(Z)qZ,n is uniformly continu 1

Lemma 3.12: It L; gEL2 then fRO(z)g is closable, I + [fRo(z)g]
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1

is bounded, and (I+ER0(Z)Q)- is bounded for Im z sufficiently

large. If g is bounded then I +(}R0(z)ﬂ has a bounded

inverse for all z outside of seme finite discrete set.

Proof: By Lemma 3.4 we have
® (X iz (x-y) .
KRO(Z)gu,fv)l = |J I e gly)u(y)dy f(x)v(x) dx|
-0 /=0

o o]

* -t (x-y) g
& LJ etV £ ()u(y)| |9 ()T aya x

-

where z = s + it
(o % 11
< J J et Y| £ (x)u(y) | %ay ax 5
T )
[ 11
X J f etV | g(y)vin) | fay ax |

The square of the second term is

@ x i
J lv(x)| 2 J e EXY) | g (y) | 2ay ax

® X-€ _
= f [ |2 Jf e E (XY [ g (y) | 2ay ax

-0

o x =
& J lv(x)] 2 J e E (XY | g (y) | 2dy ax
-0 X—-€

2 2 o 2 X 2 )
i e"tEHVﬁ fof = + |v(x) | lg(y)|“dy dx if t > O.
< by .

w—F 5 R0 FETY pisarsge
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: 1 X
Lettlng € = — t » « and CE = sup J I g (y) I 2dy
Ve x X-€

we note that C€ + 0 as e+ 0. We have

) X
J Iv(x)lzj la(y) | %ay dxgcenvuz-
= X-€

Similarly the square of the first integral is bounded by
—te, 2, oy 2 2 N 2
e "u" HfH + Keuuu where Ke = sup f(x)"dx »~ 0

X X—-€

as e+ 0. Hence

| (Rg(z)gu,fv)| < //e-teﬂfﬂ2+xe /r;-telg"2+ce ] | v]

and we have HfRO(z)gg < C(z)nuﬂ where C(z) - 0 as Im z + =,
This proves that fRo(z)g is closable, I + [fRo(z)g] is

bounded, and I + [fRO(z)g] has a bounded inverse for Im z

sufficiently large.

We can now show that fRO(z)g is compact if g is
]
bounded. Let Hunﬁ < C. Then ugunl < C'. Hence by

Lemmas 3.6 - 3.7 fRO(z)g u has a convergent subsequence.

Thus fRO(z)g is compact. By Lemma 3.1l and the first

resolvent equation fRo(z)g is analytic outside of a set of
measure zero. Thus the set of all z for which I + [fRo(z)g]

has no bounded inverse is a finite discrete set. 0O
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'
?+6 €L2 and be is bounded we have by
b

Since be,
Lemmas 3.3 - 3.7 that D(Ho)c D(A) nD(B), that
(|l AR, (s+ia) . + | BR_(s+ia) 2) < C W
a “ 0 ﬂ ﬂ o(stia n < Cq- e also have that
B(AR,(2))* is closable, G,(z) is bounded and Go(z)‘l is

bounded and defined for all z outside of some finite discrete
set. Thus the operator H of Theorem 2.1 exists.
To prove the existence of the wave operator, we first

prove its existence for the functions u whose fourier trans-
-k2-iks

forms are of the form Ve = ke . Note that
-itk v 1 [ ® ikx, -k°-iks -itk
[e v.] = J e ke e dk
s e—
V27 -0
1 S ik (x~E~t)-k
o I el % kdk
Y27 -0
® o [k%-ik (x-s-t)]
e J e ik ix=s=t) hyax
Vam —c0

1 © i 2 1 2
= — J e-[k-f(x—s-t)] -z(x-s—t) Kxdk

-0

1 2
== (x~g~t) - :
iy J o leFles=e1® g

Van

-0

Letting z = k - %(x—s—t) this is

s s B AR o Y T

W e ———— e . v —
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We have

We next show that

1 2
4 -—(x=s-t)
Y(t) = 2 4 (x=-s-t)
2V2

is a solution of the differential equation iy '(t) =

HY(t), == < t < ®, Y(0) = y,. Since H=1D this equation

is equivalent to

Qul Qs

-p(t) = 3.

We have

2
-4 3 P e -
e + -2-(){ S —dx .

p'(t) =

Since e‘_itHo u is the unique solution of iy'(t) = HyY it

-1 -itk v
follows that [5, p. 105] e itHy y = [e ¥g] . We have

T RN Y e o
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1 2
-itH g (x-a=t)
|e 0 | 1.4 | x-s-t|
2v2
and
-itHg A T® ‘%*x's‘t)z 2. 26 %
HAe uﬂ =13 f e (x=s-t) b (x)dx| dt.
-0
Thus
1 2 1
© . w © -=(x-s-t) 2
J jae” 0 ujat = j '% J e ¢ (=a=t) *b 22 (x)dx| 24 .
a a -0

Hence for the functions of the form y_ = ke ¥ ~1KS (3 11) holds

16

N

1 2
& o =1(x-s-t) &
(3.33) J J e 2 (x-s-¢) 2b2® (x)ax|%at < = .
a

In addition since b is bounded (3.12) holds. Hence the

wave operator exists for the functions ws if (3.33) holds.
Since the functions ws are dense in L2, and the domain of the
wave operator is closed, the wave operator exists for all

functions satisfying (3.33).

'
Since be, -%%E-ELZ and b is bounded all the completeness
b

conditions are satisfied by the Lemmas. We have the following

theorem.

Theorem 3.9: Let HO, H, A, B, J be as in Theorem 3.8. If

there is an a such that
1 2 1
® © =x(x-s-t) 5
J [J s 2 (x~2-£) 2622 (x)ax|Zat < w

a

AN -
Aaxodi > ST I s
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then the wave operator exists and is complete.
3.5 We shall prove the following Theorem.

Theorem 3.10: Let H, be the self adjoint operator on L2(—w,m)

o

o Let J = P-1 map xo to ¥ where

-
R [o

associated with D =
H = L2(R,P), LZ(R,P) is L2(R) with the norm Hu"x = IPul.

Take Au = Bu = 0. Then there exists an operator H such

that HJ DJH,. 1In addition the wave operator exists and is

0
complete.
Proof: First note that IJuHx = IP-luHK = |uﬂ ¢ Hence
L

J is a bounded operator. Next note that since Au = Bu = 0
they are defined everywhere and hence D(H0)<ZD(A)fWD(B).

We now verify (2.1). We have
Im[(JHou,Ju)x + (Au,BJ*Ju)x]
= Im(JHju,Ju)y
= Im(P'lou,P'lu)x

= Im(Du,u) 5
L

@

= Im(-1i) f u(x)u' (x)dx

Ed

= -Re f u(x)u' (x)dx

- 00
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J Eklu(x)l dx = -%Iu(x)|2 | =0,

-0 =00

Since A = B 0 we have a(IARo(s+ia)H2 + |BR0(s+ia)|2) < CI.

Also B(ARO(E))* = 0. Hence it is closable and G,(z) = I
is bounded and has a bounded inverse. Also note that
(B(BJ4R,(z))* = BJ,(BRy(z))* = 0. Thus the conditions of
Theorem 2.1 are satisfied and there exists an operator H
such that HJ DJKH0+B*A). Since A = B = 0, we have HJZDJHO.
To show the existence of the wave operator note that
P g ;
J nAe-ltHO undt = 0. Also note that 1lim uJe—ltHO uu = Iuﬂ.
to tro
Hence the wave operator exists.
To prove the completeness of the wave operator, we
have already noted that a(|AR,(s+ia)]” + I]BRO(s+ia)p2) 2 e
and that (B(BJ,R,(z))*)* = BJ,(BR, (z))*. We also have
Qo(z) = 0 is uniformly continuous, and BRO(z)(ARO(zl))* is
compact. Hence the wave operator is complete.
Now note that if HJZDJHO or equivalently if HJ 5JD,

then uED(HO) implies that Ju€D(H) and HP—l = P-lDu. Letting

- - 2 2
v =P lu we have Hv = P lDPv. Thus if (Pv), (Pv)'€EL

then VvED(H) and Hv = P 1lppv.

3.6 We shall prove

- 2
Theorem 3.11: Let Hj be the self adjoint operator on L (-« ,»)

134 et g=p""1 map ¥ to ¥ where
1 dx

associated with D = 0

H = L2(R,P), LZ(R,P) is L2(R) with the norm Iuyx = IPuH.
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Assume that P is a positive function and take

Au {Tu, P-lu}

Bv = {§ Dv, —P—Z(DP)V where A,B : “0 > Lz(-”,“)

2 5 y -
® L (-»,»), 0, 1, § are functions such that (P 1;1) = oT.

1

and & = (P "+l)¢ and
D(A) = {ueLz/'ru, p~lyer?y
D(B) = {veLz/anv, -P"2 (DP)VGLz} .

Then the operator H of Theorem 2.1 exists if the following

conditions are satisfied.

(3.34) 1 P-l. 6. P', T are bounded and in L2.
2. sup (E(X)‘r(x))2 & %
X :
sup (3 (x)P(x) )2 < 1
x

3. aH&u + 28R0(5+ia)un2 < CI for a > 1, and s€I.

Proof: Note that since & is bounded and P is positive.
lo(x)] < —4%151L~ < |§(x)|. Thus ¢ is also bounded. Since
TP T(x)+1

T and P-l are also bounded we have that if uED(HO) then

tu and P tuer®. Thus D(Hy) CD(A). To show that D(H;)C D(B)
let u€D(H,). Since -p~2(DP) is bounded we have that

-p"2 (Dp)ueL®. since u'e€L? and & is bounded we have that

5DueL?. fThis shows that D(H,) CD(B). Thus D(H,)C D(a) ND(B).
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In the last application we showed that Im(JHOu,Ju) =0
so to verify (2.1) it suffices to show that

Im (Au,BJ*Ju) 2 2 % 0. Note that (Ju'v)x = (P-lu,v)x =
L7OL

(u,Pv) o Hence J* = P. We have (Au,BJ*Ju) = (Au,Bu)
L

= (tu,6Du) - (P_lu,P_z(DP)u)

B 1

= (u, (®"Y+1)otDu) + (u,P t (P 1yu)

= (u, (" 2-1)pu) + (u,p t(@p HHu)

= (u,P_l DP-lu) - (u,Du)

1

= (P u,DP-lu) - (u,Du)

= J P-l(x)u(x)(DP_l(x)u(x)) - u(x)Du(x)dx.

So

Im(Au,BJ*Ju) = Re Jp‘l(x)u(x)-g—x(P"l(x)u(x))dx - ReJ'u(x)a"_(;)dx
= %‘Igglp-l(x)u(x)lzdx - % (g§IU(X)|2dx

[+ ]

0 since P

- %Iu(x)|2|

-0

is bounded and uELz(-w,w).

We have

(Au, {v,,v,}) = (tu,v,) + (P~
1~ 2 L2$L2 1l

(u,Tvy) + (u,P” v,)



= (u,Tvl+P-lV2).

-1
* =
Hence A {vl,vz} TV, + P v,

Now let z = s + ia. We have

IARO(z)uH2 < |TRo(z)u|2 + IP-lRO(z)uﬂz

| A

) [P “1,2., .2
g™ + 12 71Oy

by Lemma 3.5 since t, P ‘erZ2,

Now note that

BRO(z)u = {GDRO(z)u, - (fz)(DP)RO(z)u}
= {Fu + z&Ro(z)u, -P-z(DP)RO(z)u}.
Hence
2 . o 2 -2 2
(3.35) HBRO(z)ul £ "ou + zoRO(z)uﬂ + IP (DP)RO(z)uﬂ
< 2H5uﬂ2 + 2[z|2H6Ro(z)u”2 + HP_Z(DP)RO(z)uuz_
We have

H&u" Cﬂulz 3 %Huﬂz for o < t < 1.

A

By Lemma 3.5

2
lz121ery (z)w? < L1210 1512 puPc §oup® for 0 < € < 1, ser.
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The last term in (3.35) is

|22 op)Ry(z)u] % < c]p'R (2)u)? < §pr) Py

By our third hypothesis we have that

a(lARo(s+ia)|2 + |BR0(s+ia)|2)i CI for a > 0 and s€I.

We shall now show that B(ARO(E))* is closable and that

Go(z) is bounded and Go(z) has a bounded inverse for all z

outside of some finite discrete set. We have

B(ARO(E))*{ul.uz} =

{orul + GP “u, + zoRo(z)'rul + zoRo(z)P u,,

-P‘Z(DP)Ro(z)ru1 - P'z(op)ao(z)p'luz}.

Hence
- 2
| B(aR, (2)) *{u; ,u,}]

1 2

- -~ ~-1 -~ = -
= "orul + gP u, + zoRO(z)ru1 + zoRo(z)P “2'

1 2

+ |p'2(DP)RO(z)rul -p'z(op)no(z)p' u,|

2 Cin=1 2
-EI P u2|

C
L. El‘l'ull +
C 2 C 2
< gluyl” 2l

= §1(u;,u,)]?, z = 8 + it. Thus [B(ARy(Z))¥ < 1
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for t sufficiently large. Hence B(ARO(E))* is closable,
Go(z) is bounded, and Go(z) has a bounded inverse for z
sufficiently large.

By the above we have that

I+ B(ARO(E))* {ul,uz}

2§

(3.36) = {ul,uz} + {6rul + 5P u2,0}

~ ~ -1
% {cho(z) + 28R, (z)P u,,

—P—2(DP)R0(Z)Tu -P_Z(DP)RO(Z)P-luZ}.

1
We can show that the sum of the first two operators is
invertible and that the third operator is compact. By (3.34)

uaruluz < %Huluz and HBP—luzﬂz < %Euznz. We have

2 4 2

Ya 1% < 2)8tu,)? + 2)ap 7,

IBTul + 5P
2 2 2
Clug]™ + Jup] ™ = flugeud]

Hence the sum of the first two operators in (3.36) is
invertible. By hypothesis it can easilv be shown that the
third operator in (3.36) is compact. Note that it is also
analytic. Thus Go(z) has a bounded inverse for all z outside

of some finite discrete set.

We can now show that (B[BJI,R,(z)]*)* = BJO(BRO(E))*.

Since BRo(z)u = {GDRO(z)u, —P_2(DP)RO(z)u} we have

ey
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(BRy (z)u,v) = (§DR,(z)u,v) + (-P'Z(Dp)Ro(z)u,v)

= (u,Ry(Z)D(Ev) - Ry(Z) (%) (DP)V).

Thus
(3.37) (BR, (z)) *v = R, (Z)D(5v) - RO(E)(P-Z)(DP)V.
Consequently

B (BJ,R, (2))*u = {3DR,(Z)D (5u) - aDRO(E)(np)(p‘z)u,

-p~% (DP)R, (Z)DGu + B~ 2 (DP)Ry () (P7%) (DP)u)

and

(B (BJ,R, (2) ) *u,v)
= (u,8DR,(z)D3v - (P—z)(DP)RO(z)Dﬁv

- DR, (2) (P72) (DP)v + (72) (DP)R;(2) (P7°) (DP)V)
= (u,8D (R (2)D3v - Ry(z) (B72) (DP)V))

+ (u, (=P"2) (DP) (R, (2)D5V - Ry (z) (P7%) (DP)V))
= (u,B[Ry(2)D8V - Ry(z) (P72) (DP)V]).

Noting that by (3.37)




(BRO(E))*V = Ry (2)DSv - Ro(z)(P_z)(DP)v

this is
(u}B(BRO(E))*v) = (u,BJO(BRO(E))*V);

Thus

(B(BJ)Ry(2))*)* = BJ,(BR,(Z))*.
We have proved Theorem 3.11.

We now examine the existence of the wave operator.

We have

@

J 1ae”*tH ufdt < J Hre_ltHO ujdt + J IP—le_ltHO ujdt .
to o £
Note that this is finite if
(3.38) j j e (x=s=-t) " (t7)dx|"dt < =
t -0
0
and
Gl e '%(x's't)z 3 3 %
(3.39) J J e (x-s-t) " (P T)dx|"dt < =,
£ -0
0
We also have lim !Je—itHO uf = Ju|. In addition all the
to>x

completeness conditions are satisfied. We have the following

theorem.

Theorem 3.12: If Ho, H, A, B, J are as in Theorem 3.11 and

(3.38) and (3.39) hold, then the wave operator exists and

is complete.
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