
1

Abstract

The first part of the thesis is devoted to radial symmetry and monotonicity of so-

lutions for fractional elliptic and parabolic equations, we consider problems involving the

n-dimensional fractional Laplacians including elliptic equations and parabolic equations.

We also consider the problems involving fractional Monge-Ampére operators. The thesis is

mostly devoted to presenting our original work on the progress obtained in the development

of direct methods that can effectively deal with the above problems.

Part 1: Method of Moving Planes and Its Applications: Radial symmetry and

monotonicity of solutions for fractional elliptic and parabolic equations and systems

It mainly includes the direct method of moving planes. We illustrate how the direct

method of moving planes work by applying them to elliptic problems and parabolic prob-

lems:

We study fractional elliptic equations




(−∆)
α
2 u(x) = f(u(x)), x ∈ B1(0),

u(x) ≥ 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

under some conditions on f , we show that solutions u(x) are radially symmetric and

monotone decreasing about the origin.
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We study fractional elliptic system:





(−∆)
α
2 u(x) = f(v(x)), x ∈ B1(0),

(−∆)
β
2 v(x) = g(u(x)), x ∈ B1(0),

u(x), v(x) ≥ 0, x ∈ B1(0),

u(x), v(x) ≡ 0, x /∈ B1(0),

under some conditions on f and g, we show that solutions u(x) and v(x) are radially

symmetric and monotone decreasing about the origin.

And we study fractional parabolic equations




∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) > 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) ≡ 0, x /∈ B1(0),

under some conditions on f , we show that solutions u(x, t) are radially symmetric and

monotone decreasing about the origin, where we use direct method of moving plane to

show above.

We study fractional parabolic system:




∂u
∂t

+ (−∆)
α
2 u(x, t) = f(v(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

∂v
∂t

+ (−∆)
β
2 v(x, t) = g(u(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≥ 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≡ 0, x /∈ B1(0),

under some conditions on f and g, we show that solutions u(x, t) and v(x, t) are radially

symmetric and monotone decreasing about the origin. We use the method of moving plane
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to show radial symmetry and monotonicity of solutions of those systems.

Part 2: Method of Sliding and Its Applications: Monotonicity and one-dimensional

symmetry of solution of fractional parabolic and Monge-Ampére equations

We also show how the sliding method work by applying them to fractional parabolic

equations and problems involving fractional Monge-Ampére operators.

We also study fractional parabolic equations in a bounded domain:





∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

We assume that u is monotone increasing in Ωc and Ωc, we also assume that f is non-

increasing about u and is uniformly Lipschitz continuous in u, then u(x, t) is monotone in-

creasing with respect to xn in Ω. We use the sliding method to show monotonicity and one-

dimensional symmetry of the solution of this fractional parabolic equation in the bounded

domain.

We also study problems involving fractional Monge-Ampére operators in bounded do-

mains:




∂u
∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

We assume that u is monotone increasing in Ωc and Ωc, we also assume that f is non-

increasing about u and is uniformly Lipschitz continuous in u, then u(x, t) is monotone

increasing with respect to xn in Ω. We use the sliding method to show monotonicity and

one-dimensional symmetry of solutions of fractional Monge-Ampére equations in bounded

domains.
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We also study problems involving fractional Monge-Ampére operators in unbounded

domains, here, we proved the Gibbon’s conjecture, Let u(x, t) be an entire solution of:

∂u

∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Rn × (−∞,∞)

with condition

|u(x, t)| ≤ 1

and

lim
xn→±∞

u((x′, xn), t) → ±1

uniformly in x′ = (x1, · · · , xn−1). Also, f(t, |x|, u) is non-increasing near u(x, t) = ±1.

Then u must be strictly increasing with respect to xn, and it depends on xn only.

We use the sliding method to show the monotonicity of solutions of fractional Monge-

Ampére equations in unbounded domains. Also, we would show that u must be strictly

increasing with respect to xn and it depends on xn only.

To this end, we introduce several new ideas and developed a systematic approach which

may also be applied to investigate qualitative properties of solutions for many other frac-

tional parabolic problems.

The second part of the thesis is devoted to free long flight in infinite horizon Lorentz

Gas. In this work, we are interested in the length of a few consecutive long free flights in

infinite horizon Lorentz Gas. In dimension D = 2, it is well known that a flight of length

T � 1 is typically followed by a flight of length C
√
T . Here, we extend this result to any

dimension D.

The main theorem we want to prove is:

In D ≥ 2 and under some conditions. There exists a stochastic process X1,X2, ... so
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that for any finite n and for any sets Ai ⊂ R with Leb(∂Ai) = 0,

lim
T→∞

ν0(τ1 > T, τi ∈ AiT
1/Di−1

, i = 1, ..., n)

ν0(τ1 > T )
= P(Xi ∈ Ai, i = 1, ..., n).

We divide our proof into some parts. For some special cases such that D ≥ 2 and n = 1,

we generate the theorem for special case such that:

lim
T→∞

ν0(τ1 > T, τ1 ∈ A1T, i = 1)

ν0(τ1 > T )
= P(X1 ∈ A1) ∼

1

A
.

Let D = 2, D = R2 \ ∪z∈Z2B(z, r) with
√
2/4 < r < 1/2. This condition ensures

that principal corridors exist and they are parallel to coordinate hyperplanes. There ex-

ists a stochastic process X1,X2, ... so that for any finite n and for any sets Ai ⊂ R with

Leb(∂Ai) = 0,

lim
T→∞

ν0(τ1 > T, τi ∈ AiT
1/2i−1

, i = 1, ..., n)

ν0(τ1 > T )
= P(Xi ∈ Ai, i = 1, ..., n).

In higher dimensions, we follow by Marklof-Strömbergsson’theory to prove the theorem:

There exists a continuous function Ψ : R+ → R so that for all ξ,

lim
T→∞

(ν̂ × λT )(τ > ξT
D−2
D ) =

∫ ∞

ξ

Ψ(ξ′)dξ′.

Followed by Marklof-Strömbergsson’theory but with some adjustments, there exists a con-

tinuous density function Φ so that for all ξ, ξ̄, [a, b] ⊂ [0, 1]

lim
T→∞

(ν × λT )(τ ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w ∈ [a, b]) =

∫ ξ̄

ξ

∫ b

a

Φ(ξ, w)dwdξ.
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The function Φ is explicitly given by

Φ(ξ, w) =





νy({M ∈ Xq(y) : (Zd + α)M ∩ (Υ(0, ξ, 1) + z)}) if α ∈ q−1Zd

νy({g ∈ X(y) : Zdg ∩Υ(0, ξ, 1) + z) = ∅}) if α /∈ Qd

Based on this theorem, if we have one single collision, we would have the following result:

There exists a continuous density function Φ, ψ so that for all ξ, ξ′,

lim
T→∞

(ν × λT )(τ1 ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w1 ∈ [a, b]

τ2 ∈ [ξ′T
D−2
2D , ξ̄′T

D−2
2D ], w2 ∈ [a′, b′])

=

∫ ξ̄

ξ

∫ b

a

Φ(ξ, w)

∫ ξ̄′

ξ′

∫ b′

a′
ψ(ξ′, w′, ξ, w)dwdξ.

where

ψ(ξ′, w′, ξ, w) = Φ(

√
κ

8

1√
ξ(1− w)

ξ′,

√
8

κ

√
ξ(1− w)w′)

For k collisions, we would have the following:

There exists continuous density functions Φ, ψ, · · · so that for all ξ, ξ2, · · · , ξk,

lim
T→∞

(ν × λT )(τ1 ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w1 ∈ [a, b], · · · ,

τk ∈ [ξkT
D−2
2D , ξ̄kT

D−2
2D ], wk ∈ [ak, bk])

=

∫ ξ̄1

ξ1

∫ b1

a1

Φ(ξ1, w1)

∫ ξ̄2

ξ2

∫ b2

a2

ψ(ξ1, w1, ξ2, w2)

∫ ξ̄3

ξ3

∫ b3

a3

ψ(ξ2, w2, ξ3, w3) · · ·
∫ ξ̄k

ξk

∫ bk

ak

ψ(ξk−1, wk−1, ξk, wk)

dwkdξkdwk−1dξk−1 · · · dw1dξ1

To this end, we hope the ideas employed here would be helpful for research in Long

flights in Lorentz Gas.
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6.6.3 Show ū(x, 0) ≡ 0, v̄(x, 0) ≡ 0 for x ∈ Rn . . . . . . . . . . . . . . 179

6.6.4 Derive a contradiction for large k for Uk . . . . . . . . . . . . . . . 182

6.6.5 Conclude the solution is radially symmetric and monotone decreasing189

Chapter 2: Method of Sliding and Its Applications: Monotonicity of solutions of

fractional parabolic and Monge-Ampére equations 190
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1 Introduction

1.1 Backgrounds

This dissertation focuses on studying nonlinear elliptic and parabolic partial differ-

ential equations, especially on fractional elliptic equations, fractional parabolic equations,

fractional elliptic systems, fractional parabolic systems, also on parabolic Monge-Ampére

operator.

The fractional Laplacian is a non-local operator that has gained much attention in recent

years due to its ability to model diverse physical phenomena, such as anomalous diffusion,

turbulence, and water waves. It is also of great interest in finance and probability theory.

Here are a few examples about applications of fractional Laplacian:

1. Anomalous diffusion: The fractional Laplacian can be used to model anomalous

diffusion, where the diffusion process is slower than normal. This phenomenon is

observed in many physical systems, such as plasma physics [17], porous media [20],

and biological systems [18].

2. Image processing: The fractional Laplacian can be used in image processing to re-

move noise and enhance image edges [32].

3. Financial mathematics: The fractional Laplacian is used in financial mathematics to

model the behavior of asset prices and to price American options [28].

4. Nonlinear partial differential equations: The fractional Laplacian appears in many

nonlinear partial differential equations, such as the fractional Allen-Cahn equation:

∂u

∂t
= ε2(−�)αu− f(u)
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the fractional Burgers equation:

∂u

∂t
+ u · �u = ν(−�)α

and the fractional Navier-Stokes equations:

∂u

∂t
+ u · �u = −�P

ρ
+ ν(−�)αu

where ρ is the density, P is the pressure.

5. Quantum mechanics: The fractional Laplacian appears in the study of relativistic

quantum mechanics [26].

6. Geophysical fluid dynamics: The fractional Laplacian appears in the study of quasi-

geostrophic flows and geographical fluid dynamics [1].

7. Population dynamics: The fractional Laplacian appears in the study of population

dynamics, where it can be used to model the spread of infectious diseases [16].

In contrast to the usual differential operators, such as the regular Laplacian, the frac-

tional Laplacian is a non-local operator, meaning that its value at a point depends on the

values of the function in the whole space, rather than near that point. This non-locality gives

rise to a number of unique mathematical properties that make the fractional Laplacian an

important tool for modeling non-local phenomena.

The study of the fractional Laplacian and its applications is an active area of research,

with many open questions and challenges. Over the past two decades, researchers have

developed several methods for studying the fractional Laplacian and its properties, here we

use the method of moving Planes.
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The method of moving Planes is a technique used to study and prove certain qual-

itative properties, like the symmetry, existence/nonexistence and regularity properties for

the solutions of various kinds of problems. The basic idea of the method is to consider a

family of parallel planes, and to study how the solution to the PDE changes as the plane

moves along a certain direction. By carefully choosing the direction of the plane and the

parameters of the family of planes, one can often prove that the solution to the PDE is ei-

ther symmetric with respect to some plane, or monotone in some direction. The method

was first introduced by A.D. Alexandrov in the 1950s, and has since been used in many

different areas of mathematics.

In the second part of the thesis, we also use sliding method to deal with fractional

Laplacian equation and Fractional Monge-Ampére operators. Berestycki and Nirenberg

[19] originally introduced the renowned sliding method to establish qualitative properties

of positive solutions to local elliptic equations. Later on, a direct sliding method was de-

veloped by Wu and Chen [22], which has proved to be valuable in many applications such

as deriving monotonicity, one-dimensional symmetry, uniqueness, and nonexistence of so-

lutions to elliptic equations and systems involving fractional Laplacians and p-Laplacians.

Detailed information can be found in [[40], [48], [23], [24]], and an exhaustive survey in

[41]. This direct method avoids the need for classical extension methods established in [25]

and overcomes the difficulties caused by the non-locality of fractional operators. Moreover,

this direct sliding method can be applied to extend and prove Gibbons’ conjecture in the

settings of other fractional elliptic equations involving various nonlocal operators (cf. [[44],

[43], [31], [29], [30]]). In contrast, there have been few studies on Gibbons’ conjecture for

entire solutions of parabolic equations, except for a recent article by Chen and Wu [42], in

which they developed an appropriate sliding method to prove the Gibbons’ conjecture for
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entire solutions of the following fractional reaction-diffusion equation.

We hold a strong conviction that the ideas and methods presented here can be read-

ily employed to investigate diverse nonlocal problems that involve more comprehensive

operators and nonlinearities.
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1.2 Previous Methods for the Fractional Equations

In this section, we will introduce the commonly used definition of the fractional Lapla-

cian in this section, followed by a more comprehensive account of the advancements made

in both indirect and direct methods.

This fractional Laplacian is a pseudo-differential operator defined by

(−∆)su(x) ≡ Cn,sP.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

≡ Cn,s lim
ε→0+

∫

Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy, (1.1)

for any real number 0 < s < 1, where P.V. stands for the Cauchy Principal value.

Let

L2s ≡
{
u : Rn → R

∣∣
∫

Rn

|u(x)|
1 + |x|n+2s

dx < +∞
}
.

Then the operator (−�)s is well defined on the functions u in L2s ∩ C1,1
loc . One can see

from the definition (1.1) that it is nonlocal. For example, consider u(x) > 0 in B1(0) and

u(x) ≡ 0 in Rn\B1(0). Given any xo ∈ Rn\B1(0), it’s easy to see that all derivatives of u

vanish at xo.

In comparison, we have

(−∆)su(xo) ≡ Cn,sP.V.

∫

Rn

u(xo)− u(y)

|x− y|n+2s
dy

≡ Cn,sP.V

∫

B1(0)

−u(y)

|x− y|n+2s
dy < 0.

In other words, even u is identically 0 in a neighborhood of a point, (−�)su(x) still

may not vanish.

Therefore, traditional methods on local differential operators, such as on Laplacian −�
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may not work on this nonlocal operator. Caffarelli and Silvestre [4] addressed this challenge

by introducing the extension method, which transformed the nonlocal problem into a local

one in higher dimensions.

For a function u : Rn → R, let U : Rn × [0,∞) → R become its extension such that





div(y1−2s � U) = 0, (x, y) ∈ Rn × [0,∞),

U(x, 0) = u(x), x ∈ Rn

(1.2)

Then

(−�)su(x) = −Cn,s lim
y→0+

y1−2s∂U

∂y
, x ∈ Rn

This extension method is a potent tool that has sparked significant interest in the study

of equations involving the fractional Laplacian, resulting in a series of fruitful outcomes.

(see [2],[10])

In both reference [2] and [10], when authors proved the fractional Laplacian problem on

(−�)su, they had to restrict the condition that 2s ≥ 1.

The reason for the usual constraint 2s > 1 is that the method of moving planes requires

this condition to be met when applied to the solutions U of the extended problem:

zdiv(y1−2s � U) = 0, (x, y) ∈ Rn × [0,∞) (1.3)

It appears that relaxing the condition 2s ≥ 1 is not possible if one intends to apply the

method of moving planes to the extended equation. Then how about when 0 < 2s < 1?

By taking into account the corresponding integral equation, this case can be effectively

addressed. In [9], [11], the authors showed that if u ∈ Hs(Rn) is a positive weak solution
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of

(−�)su = up(x), x ∈ Rn (1.4)

then it also satisfies the integral equation:

u(x) = C

∫

Rn

1

|x− y|n−2s
up(y)dy (1.5)

They utilized the method of moving planes in integral forms to establish the radial

symmetry in the critical case and the non-existence of positive solutions in the subcritical

case for (1.5)

The equivalence between pseudo differential equation (1.4) and integral equation was

also established in [49] by employing a Liouville theorem for 2s-harmonic functions.

The above methods only apply to fractional Laplacian equations, there are many other

non-local operators. In addition, when dealing with equations that feature uniformly elliptic

nonlocal operators,

Cn,s lim
ε→0

∫

Rn\Bε(x)

a(x− z)(u(x)− u(z))

|x− z|n+2s
dz = f(x, u) (1.6)

where

0 < c0 ≤ a(y) ≤ C1, y ∈ Rn

And for equations that involve fully nonlinear nonlocal operators, such as the fractional

p-Laplacian:

(−�)spu(x) = Cn,s lim
ε→0

∫

Rn\Bε(x)

|u(x)− u(z)|p−2(u(x)− u(z))

|x− z|n+sp
dz
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and more generally,

Fs(u(x)) ≡ Cn,s lim
ε→0

∫

Rn\Bε(x)

G(u(x)− u(z))

|x− z|n+2s
dz = f(x, u) (1.7)

([3] has the introductions of these operators) To the best of our knowledge, there are no

extension methods or integral equation methods that are effective for these types of opera-

tors. This serves as a motivation for us to develop direct approaches for general nonlocal

operators.

In [8], Chen, Li and Yan Li introduced a direct method of moving planes for the frac-

tional Laplacian, and utilized it to obtain symmetry, monotonicity, and non-existence of so-

lutions for various semi-linear equations involving the fractional Laplacian. Furthermore,

the direct approach is applicable in studying the qualitative characteristics of solutions for

uniformly elliptic problems 1.6 and fully nonlinear problem 1.7 (see [33] and [14])

Based on this direct method of moving plane, in this paper we first study the following

parabolic equations involving the fractional Laplacian:

∂u

∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ B1(0)× (−∞,∞), (1.8)

where 0 < s < 1

For each fixed t ∈ R, the fractional Laplacian acting on x is defined as

(−∆)su(x, t) = Cn,sP.V.

∫

Rn

u(x, t)− u(y, t)

|x− y|n+2s
dy

= Cn,s lim
ε→0+

∫

Rn\Bε(x)

u(x, t)− u(y, t)

|x− y|n+2s
dy,

where P.V. stands for the Cauchy principal value. It is easy to see that for u ∈ C1,1
loc∩L2s,



9

(−∆)su is well defined, where

L2s =

{
u(·, t) ∈ L1

loc(Rn)
∣∣
∫

Rn

|u(x, t)|
1 + |x|n+2s

dx < +∞
}
.

It is known that as s → 1, the fractional Laplacian (−∆)s goes to the regular Laplacian

−∆, in the sense that for each fixed x, (−∆)su(x) → −∆u(x).

We start with an equation whose domain is unit ball centered at origin with t in (−∞,∞),

in which case u(x) is bounded. Assume that u ∈ C1,1
loc (Ω) and is continuous on Ω̄. Assume

f(t, |x|, u) satisfies the following assumptions:

(f1) f(t, |x|, u) is decreasing in |x|.

(f2) Assume that f is uniformly Lipschitz continuous in u. i.e:

|f(t, |x|, u)− f(t, |x|, v)| ≤ c|u− v|, ∀(x, t) ∈ B1(0)× (−∞,∞)

The application of direct method of moving plane to study the parabolic equation 1.8

involving the fractional Laplacian is detailedly shown in section 5, before that, we would

introduce the direct methods for the fractional equations in section 3 and 4.

1.3 Our Direct Methods for the Fractional Single Equations and Sys-

tems

In this section, I will introduce direct method of the moving planes. Detailed proofs

will be given in the next chapter.
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xλx

Σλ

Tλ

Figure 1: Moving Planes n-Dimensions.

1.3.1 Direct Method of the Moving Planes for single equations

In [5], Chen and Li have developed a systematic approach for applying the method of

moving planes to nonlocal problems, whether on bounded or unbounded domains. Decades

ago, Chen and Li introduced approaches for local elliptic operators in their publication [12]

and summarized them in their book [7]. These approaches, including the narrow region

principle and decay at infinity, have been widely used by researchers to solve various prob-

lems. In addition, they established a parallel system for the fractional Laplacian using

elementary methods, making it easily applicable to a variety of nonlocal problems.

In our thesis, we apply and generalize this method from n-dimensional Euclidean space

Rn to unit ball B1(0). To gain a general understanding of our method, let us consider a

simple example in unit Ball B1(0).

Assume that u(x) is a positive solution to some radially symmetric equation in the unit

ball B1(0). In order to show that u is also radially symmetric, we first choose any direction
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to be the x1 direction and let

Tλ = {x ∈ Rn | x1 = λ for λ ∈ R},

be the moving plane and

Σλ = {x ∈ Rn | x1 < λ}

be the region to the left of the plane, and

xλ = {(2λ− x1, x
′) | x = (x1, x

′) ∈ Rn}

and

Ωλ = Σλ ∩ B1(0)

be the intersection of B1(0) and Σλ.

Assume that u is a solution of pseudo differential equation (−�)su = f(x), x ∈ B1(0).

To compare the values of u(x) with:

uλ(x) = u(xλ)

We denote

wλ = u(xλ)− u(x)

The first step is to show that for λ sufficiently negative, we have

wλ(x) ≥ 0, x ∈ Ωλ (1.9)
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This provides a starting point to move the plane. Then in the second step, we move the

plane to the right as long as inequality (1.9) holds to its limiting position to show that u is

symmetric about the limiting plane. A Narrow region principle is used to prove (1.9). Since

wλ is an anti-symmetric function:

wλ(x) = −wλ(x
λ)

we first prove a Narrow region principle for elliptic functions:

Narrow Region Principle for fractional elliptic equations

Theorem 1.1. (Narrow region principle for an elliptic problem) Let Ωλ = Σλ ∩ B1(0), Ωλ

is a bounded narrow region in Σλ, assume that u(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
, if




(−∆)su(x) = f(u(x)), u(x) > 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(−∆)swλ(x) = cλwλ(x), x ∈ Ωλ

then for λ sufficiently close to −1, we have

wλ(x) ≥ 0, x ∈ Ωλ

The proof of this theorem involves using a contradiction argument at a negative mini-

mum of wλ, as one will observe.

Also, in the fractional parabolic equation, we use a Maximum principle as an ingredi-

ents.

Maximum Principle for fractional parabolic equations
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Theorem 1.2. (Maximum principle on a parabolic cylinder) Assume that





∂w
∂t

+ (−∆)sw = c(x, t)w(x, t), x ∈ Ωλ × [t, T ],

w(xλ, t) = −w(x, t), x ∈ Ωλ × [t, T ],

w(x, t) ≥ 0, x ∈ Σλ\Ωλ × [t, T ],

Then for λ sufficiently close to −1, we have

w(x, t) ≥ min{0, inf
Ωλ×[t,T ]

w(x, t)}, w ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])

The proof of this theorem also involves using a contradiction argument at a negative

minimum of w, as one will observe.

1.3.2 Direct Method of Moving Planes for the Systems

Considerable findings have been amassed for fractional systems that entail operators of

the same order. For example, in [47], Systems characterized by comparable fractional or-

ders and fairly comprehensive nonlinearities were analyzed by Yu. By utilizing the method

of moving planes in integral forms, the author acquired symmetry for positive solutions.

Such results on the system have also been proved in [27] and [15]. Nevertheless, there have

been few presentations to date that address equations with varying orders. In [21], They in-

troduced the iteration method as a novel approach to tackle such problems, which facilitates

the establishment of various maximum principles - a crucial aspect for the method of mov-

ing planes - concerning fractional equations. The notation employed below is consistent

with that introduced earlier.

Narrow Region Principle for fractional elliptic systems
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Consider





(−∆)
α
2 u(x) = f(v(x)), x ∈ B1(0),

(−∆)
β
2 v(x) = g(u(x)), x ∈ B1(0),

u(x), v(x) ≥ 0, x ∈ B1(0),

u(x), v(x) ≡ 0, x /∈ B1(0),

(1.10)

where α, β ∈ (0, 2)

Theorem 1.3. (Narrow Region principle for elliptic Fractional System) Let Ωλ = Σλ ∩

B1(0), Ωλ is a bounded narrow region in Σλ, assume that Uλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
,

Vλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)

if




(−∆)
α
2 Uλ(x) ≥ fv(ξ(x))Vλ(x), x ∈ Ωλ,

(−∆)
β
2 Vλ(x) ≥ gu(η(x))Uλ(x), x ∈ Ωλ,

(1.11)

then for λ sufficiently close to −1, we have




Uλ(x) ≥ 0, x ∈ Ωλ,

Vλ(x) ≥ 0, x ∈ Ωλ,

(1.12)

We also introduce Narrow region principle for parabolic fractional systems:

Narrow Region Principle for fractional parabolic systems
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Consider





∂u
∂t

+ (−∆)
α
2 u(x, t) = f(v(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

∂v
∂t

+ (−∆)
β
2 v(x, t) = g(u(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≥ 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≡ 0, x /∈ B1(0),

(1.13)

where α, β ∈ (0, 2)

Theorem 1.4. (Narrow region principle on a parabolic cylinder) Let Ωλ = Σλ∩B1(0), Ωλ

is a bounded narrow region in Σλ, assume that Uλ(x, t), Vλ(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩

L2s]× C1([t, T ]), and Uλ(x, t), Vλ(x, t) are lower semi-continuous on Ω̄. If




∂Uλ

∂t
+ (−∆)

α
2 Uλ(x, t) ≥ fv(ξ(x, t))Vλ(x, t), (x, t) ∈ Ωλ × [t, T ],

∂Vλ

∂t
+ (−∆)

β
2 Vλ(x, t) ≥ gu(η(x, t))Uλ(x, t), (x, t) ∈ Ωλ × [t, T ],

(1.14)

Then for λ sufficiently close to −1, we have

Uλ(x, t) ≥ min{0, inf
Ωλ×[t,T ]

Uλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (1.15)

and

Vλ(x, t) ≥ min{0, inf
Ωλ

Vλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (1.16)

1.3.3 Sliding Method

The method of moving planes has been extensively utilized in studying qualitative prop-

erties of solutions, particularly to prove monotonicity, symmetry, and non-existence of so-
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lutions. In contrast, sliding methods, though less popular, are mainly employed to derive

monotonicity and uniqueness of solutions.

When applying these methods to equations involving non-local operators defined by

singular integrals, such as the fractional Laplacian defined by

(−∆)su(x) = Cn,sP.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

it is necessary for the kernel of the operator to be monotone when using the method of

moving planes, as we will explain below. In contrast, sliding methods do not have such a

requirement.

For example, given a fractional elliptic equation:




(−∆)su(x) = f(u(x)), x ∈ B1(0) ⊂ Rn,

u(x) ≡ 0, x ∈ Bc
1(0).

(1.17)

One wants to use the method of moving planes to show that u are radially symmetric

about the origin. One common approach is to select a direction arbitrarily, such that choose

the direction to be the x1-direction and let

Tλ = {x ∈ B1(0) | x1 = λ for λ ∈ R}

be the moving planes,

Ωλ := {x ∈ B1(0) | x1 < λ}

be the region to the left of the hyperplane Tλ, and

xλ := (2λ− x1, x2, ..., xn)
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be the reflection of x with respect to Tλ. Consider

wλ(x) := uλ(x)− u(x),

It is obvious that wλ is an anti-symmetric function, i.e. wλ(x
λ) = −wλ(x). The proof will

be carried out in the following two steps.

Step 1 We first show that for λ > −1 and sufficiently close to −1,

wλ(x) ≥ 0, x ∈ Ωλ (1.18)

This provides a starting point to move the plane Tλ.

Step 2 We continuously move the plane Tλ to the right along the x1-axis as long as

(1.18) holds to its limiting position Tλ0 with

λ0 := sup{λ ≤ 0 | wµ(x) ≥ 0, ∀x ∈ Ωµ, µ ≤ λ}

We prove that λ0 = 0, which implies that u must be radially symmetric and monotone

decreasing about the origin due to the x1 direction can be chosen arbitrarily.

Based on the above, it is evident that the crucial step is to establish (1.18), which is

commonly done by utilizing the maximum principle for anti-symmetric functions wλ. The

simplest form of this principle is presented below.

Theorem 1.5. (Maximum principles) Let Ω be a subset of Σλ, suppose




(−∆)swλ(x) ≥ 0, x ∈ Ω,

wλ(x) ≥ 0, x ∈ Σλ\Ω
(1.19)
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then

wλ(x) ≥ 0, x ∈ Ω (1.20)

Proof. We argue by contradiction, if (1.20) does not hold, there exists a point xo ∈ Ω such

that

wλ(x
o) = min

Ω
wλ(x) < 0

By the definition of the fractional Laplacian, we have

(−∆)swλ(x
o)

= Cn,sPV {
∫

Σ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy +

∫

Rn\Σλ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy +

∫

Σλ

wλ(x
o) + wλ(y)

|xo − yλ|n+2s
dy}

It is easy to verify that

|xo − y| < |xo − yλ| (1.21)

for any y ∈ Σλ.

Consequently

(−∆)swλ(x
o) ≤ Cn,s

∫

Σλ0

2wλ(x
o)

|xo − yλ|n+2s
< 0

which contradicts (1.19). Therefore, we must have wλ ≥ 0 in Ω.

The arguments presented above demonstrate that establishing the monotonicity (1.21)

of the fractional Laplacian’s kernel is necessary for proving the maximum principles for
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anti-symmetric functions. However, in practice, there are numerous non-local operators

that lack such monotonicity. Below are some examples:

• Uniformly elliptic fractional operator

(−∆)sau(x) = Cn,sP.V

∫

Rn

a(x− y)(u(x)− u(y))

|x− yλ|n+2s
dy

where the function a(·) is uniformly bounded from above and away from 0. Note that

the kernel a(x−y)
|x−y|n+2s is generally not monotone, unless some additional conditions are

imposed on the weight function a(·).

More generally,

Lu(x) = Cn,sP.V.

∫

Rn

(u(x)− u(y))K(x, y)dy

where

λ

|x− y|n+2s
≤ K(x, y) ≤ Λ

|x− y|n+2s

for some 0 < λ ≤ Λ

• Nonlocal Monge-Ampere operator

Dsu(x) = inf{P.V
∫

Rn

u(y)− u(x)

|A−1(y − x)|n+2s
dy | A > 0, detA = 1}

where A are positively definite matrixes.

In particular, in order these Ds to obey the maximum principle, we require the mini-
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mum eigenvalue of the above family of matrixes be bounded away from 0

λmin(A) ≥ θ > 0

and we call the resulting operator Dθ
s is kind of uniformly elliptic.

Since the required monotonicity is absent, applying the method of moving planes to de-

rive qualitative properties of solutions for nonlocal problems involving the aforementioned

operators is not feasible. Instead, one can utilize the sliding method. The key advantage of

the sliding method is that general maximum principles for solutions are established, rather

than for anti-symmetric functions. Apart from establishing one-dimensional symmetry of

solutions in the entire space, the sliding method can also be used to prove monotonicity of

solutions on bounded domains, obtain uniform lower bounds for solutions in unbounded

domains, and prove non-existence of solutions for certain fractional inequalities

1.3.4 Monotonicity in bounded domains

This subsection presents evidence that the sliding method can be employed to derive the

monotonicity of solutions for nonlocal equations with uniformly elliptic fractional operators

in bounded domains. The primary concept is based on comparing values of the solution

of the equation at two distinct points, where one point is obtained by sliding the domain

in a given direction, and the domain is then slid back to its initial position. The general

uniformly elliptic operator L mentioned earlier will be used as an example.

Theorem 1.6. (Monotonicity of solution of uniformly elliptic equation)

Let Ω be a bounded domain in Rn which is convex in the xn-direction. Assume that
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u(x) ∈ C1,1
loc (Ω) ∩ L2s is a solution of





Lu(x) = f(u(x)) x ∈ Ω,

u(x) = ϕ(x), x ∈ Ωc,

(1.22)

where the nonhomogeneous term f is supposed to be Lipschitz continuous and the ex-

terior function ϕ satisfies H:

For any three points x = (x′, xn), y = (x′, yn) and z = (z′, zn) lying on a segment

parallel to the xn axis, yn < xn < zn with y, z ∈ Ωc, we have

ϕ(y) < u(x) < ϕ(z), x ∈ Ω (1.23)

and

ϕ(y) ≤ ϕ(x) ≤ ϕ(z), x ∈ Ωc (1.24)

Then u is monotone increasing with respect to xn in Ω. That is:

u((x′, xn + τ), t) > u((x′, xn), t) for (x′, xn), (x
′, xn + τ) ∈ Ω and t ∈ R, where

x′ = (x1, · · · , xn−1) ∈ Rn−1

Proof. Let τ > 0, it suffices to show that u(xτ ) > u(x) for any points

x = (x′, xn) and xτ = (x′, xn + τ) ∈ Ω

Let Ω be a bounded domain in Rn, which is convex in the xn-direction. By sliding Ω
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xn

xτ

x Dτ

Ωτ

Ω

Figure 2: sliding method

downward τ units, we obtain Ωτ :

Ωτ = Ω− τen, en = (0, 0, · · · , 1)

Define

Dτ = Ωτ ∩ Ω

and

τ̃ = sup{τ | τ > 0, Dτ �= ∅}

and

W τ (x) = uτ (x)− u(x) in Dτ

then W τ satisifes

LW τ (x) = f(uτ (x))− f(u(x)) (1.25)



23

Now we proceed in two steps.

Step 1 Using the assumption (H) and the continuity of u, it is obvious that

Wλ(x) > 0, x ∈ Dτ (1.26)

for τ sufficiently close to τ̃ , which provides a starting point for sliding the domain along

the xn-axis.

Step 2 Continue to decrease τ as long as (1.26) holds, we claim that the limiting position

is τ = 0, If not, then there exists τ0 > 0 and a point xo ∈ Dτ0 such that W τ0(xo) = 0, then

LW τ0(xo) = f(uτ0(xo))− f(u(xo)) = 0 (1.27)

and xo is the minimum point in Rn, which is ensured by the assumption (H). A combi-

nation of the definition of the uniformly elliptic fractional operator L, equation (1.27), and

the fact W τ0 ≥ 0 yields that W τ0(x) ≡ 0 in Rn. This is a contradiction with the assumption

(H).

From the above argument, one may see the essence of sliding. In general, equation

(1.28) is not good, and from which one cannot use any maximum principle to derive

W τ (x) > 0. However, if one can show that at beginning it holds W τ (x) > 0, then this

must be true during the entire process of the sliding. Because once it is violated, we would

arrive at a good equation (1.27) which would enable us to apply a maximum principle to

derive a contradiction.
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1.3.5 Monotonicity in unbounded domains

This subsection presents evidence that the sliding method can be employed to derive

the monotonicity of solutions for nonlocal equations with uniformly elliptic operators in

unbounded domains. The primary concept is based on comparing values of the solution

of the equation at two distinct points, where one point is obtained by sliding the domain

in a given direction, and the domain is then slid back to its initial position. The general

uniformly elliptic operator L mentioned earlier will be used as an example.

Theorem 1.7. (Monotonicity of solution of uniformly elliptic equation)

Let Ω be a bounded domain in Rn which is convex in the xn-direction. Assume that

u(x) ∈ C1,1
loc (Ω) ∩ L2s is a solution of

Lu(x) = f(u(x)), x ∈ Rn,

with condition

|u(x)| ≤ 1

and

u((x′, xn)) → ±1

uniformly in x′ = (x1, · · · , xn−1). Also, f(|x|, u) is non-increasing near u(x) = ±1. Then

u must be strictly increasing with respect to xn, and it depends on xn only.

where the nonhomogeneous term f is supposed to be Lipschitz continuous.

Then u is monotone increasing with respect to xn in Ω. That is:

u((x′, xn + τ), t) > u((x′, xn), t) for (x′, xn), (x
′, xn + τ) ∈ Ω and t ∈ R, where
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xn

xτ

x Dτ

Ωτ

Ω

Figure 3: sliding method

x′ = (x1, · · · , xn−1) ∈ Rn−1

Proof. Let τ > 0, it suffices to show that u(xτ ) > u(x) for any points

x = (x′, xn) and xτ = (x′, xn + τ) ∈ Ω

Let Ω be a bounded domain in Rn, which is convex in the xn-direction. By sliding Ω

downward τ units, we obtain Ωτ :

Ωτ = Ω− τen, en = (0, 0, · · · , 1)

Define

Dτ = Ωτ ∩ Ω

and

τ̃ = sup{τ | τ > 0, Dτ �= ∅}
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and

W τ (x) = uτ (x)− u(x) in Dτ

then W τ satisifes

LW τ (x) = f(uτ (x))− f(u(x)) (1.28)

Now we proceed in two steps.

Step 1: Begin sliding Ωτ downward τ units along the xn axis

So then

|x| < |xτ |

We will show that for τ sufficiently close to τ̃ , that is, when τ is sufficiently large, Dτ

is narrow, we have

W τ (x) ≤ 0, x ∈ Dτ

Step 2: Decrease τ as long as W τ (x) ≤ 0 holds to its limiting position

We would show the limit position is τ = 0. In second step, we would divide the proof

into two cases, one is |xn| ≤ M , the other is |xn| ≥ M . For |xn| ≤ M , we want to show

sup−M≤xn≤M W τ0(x) < 0. Otherwise,

sup
−M≤xn≤M

W τ0(x) = 0

then there exists a sequence {xk} ⊂ Rn−1 × [−M,M ] such that

W τ0(xk) → 0 (1.29)
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as k → ∞

Then there exists τ0 > 0 and a point xo ∈ Dτ0 such that W τ0(xo) = 0, then

LW τ0(xo) = f(uτ0(xo))− f(u(xo)) = 0

and xo is the maximum point in Rn. A combination of the definition of the uniformly

elliptic fractional operator L, and the fact W τ0 ≤ 0 yields that W τ0(x) ≡ 0 in Rn. So that

W τ0
k converges uniformly to 0.

For all m ∈ N, we have

u∞(x′, xn) = u∞(x′, xn + τ0) = u∞(x′, xn + 2τ0) = · · · = u∞(x′, xn +mτ0)

If xn is sufficiently negative and m is sufficiently large, then

u∞(x′, xn) → −1

and

u∞(x′, xn +mτ0) → 1

This is a contradiction, therefore, sup−M≤xn≤M W τ0(x) < 0 must be true.

Now we only need to prove when |xn| ≥ M , τ0 > 0

W τ (x) ≤ 0, ∀τ ∈ (τ0 − δ, τ0], (1.30)
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Otherwise,

sup
Rn\(Rn−1×[−M,M ])

W τ (x) = A > 0, ∀τ ∈ (τ0 − δ, τ0]

then there exists a sequence {xk} such that

W τ (xk) → A > 0

as k → ∞

Then there exists a sequence {εk} → 0 such that

U τ
k (x

k) = W τ (xk) + εkψk(x
k) = A

Then there exists x̄k such that

U τ
k (x̄

k) = max
Rn

U τ
k (x

k) = A

By the definition of uniformly elliptic operator, we have

LU τ
k (x̄

k) ≈ (−�)s(U τ
k )(x̄

k) ≥ c0

We also have

LU τ
k (x̄

k) = f(W τ (x̄k))− f(W (x̄k)) = 0

This is a contradiction, therefore, supRn\(Rn−1×[−M,M ]) W
τ (x) = A < 0, ∀τ ∈ (τ0 −

δ, τ0] must be true.

In both cases we show the limiting position is τ = 0. After we have completed the



29

second step, we would prove ∀τ > 0, W τ (x) < 0.

Thus we have completed proof of monotonicity of solution of uniformly elliptic equa-

tion in the whole space. In the last section, we would show u(x) depends on xn only, that

is, u(x) = u(xn).

If we replace uτ (x) by u(x + τν), the argument still holds according to the above

process, where ν = (ν1, ν2, ν3, · · · , νn) with νn > 0 is an arbitrary vector that points

upward. With the similar arguments as in Step 1 and Step 2, we can obtain that, for each of

such ν,

u(x+ τν) > u(x)

∀τ > 0 Let νn → 0, by continuity of u, we have that for arbitrary ν with νn = 0

u(x+ τν) ≥ u(x)

By replacing ν by −ν, we also have

u(x) ≥ u(x+ τν)

for arbitrary ν with νn = 0, So we have

u(x+ τν) = u(x) (1.31)

(1.31) means that u is independent of x′ = (x1, x2, · · · , xn−1). Therefore, u(x) = u(xn).
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2 Direct Method of the Moving Planes for Single Equa-

tions

In this chapter, I will prove the principles shown in section 1.

2.1 Narrow Region Principle

2.1.1 Narrow Region Principle for fractional elliptic equations

We first provide a simpler proof for a well-known maximum principle for s-super har-

monic functions.

Theorem 2.1. (Narrow region principle for an elliptic problem) Let Ωλ = Σλ ∩ B1(0), Ωλ

is a bounded narrow region in Σλ, assume that u(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
, if




(−∆)su(x) = f(u(x)), u(x) > 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(−∆)swλ(x) = cλwλ(x), x ∈ Ωλ

(2.1)

then for λ sufficiently close to −1, we have

wλ(x) ≥ 0, x ∈ Ωλ (2.2)

Proof. Suppose otherwise, (2.2) does not hold, then wλ is negative somewhere, hence there

exists an xo ∈ Ωλ such that

wλ(x
o) = min

Ωλ

wλ(x) < 0
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It follows that

(−∆)swλ(x
o)

= Cn,sPV

∫

Rn

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy

≤ Cn,s{
∫

Σλ0

wλ(x
o)− wλ(y)

|xo − yλ|n+2s
dy +

wλ(x
o) + wλ(y)

|xo − yλ|n+2s
dy}

= Cn,s

∫

Σλ0

2wλ(x
o)

|xo − yλ|n+2s

Denote

d = dis[x0, Tλ] ≤ width(Ωλ)

We also have
∫

Σλ0

1

|xo − yλ|
dy ≥ c

d2s

So we deduce

(−∆)swλ(x
o) ≤ c

d2s
wλ(x

o) (2.3)

We also have

cλ(x
o)wλ(x

o) ≤ c

d2s
wλ(x

0)

Then we derive

c

d2s
≤ cλ(x

o)

Which is a contradiction for d sufficiently small, since cλ(x) is bounded.

Therefore, (2.2) must be valid.

So far, we have proved the theorem 2.1.
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Then we introduce a maximum principle for fractional parabolic equations.

2.2 Maximum Principle

2.2.1 Maximum principle for fractional parabolic equations

Theorem 2.2. (Maximum principle on a parabolic cylinder) Assume that





∂w
∂t

+ (−∆)sw = c(x, t)w(x, t), x ∈ Ωλ × [t, T ],

w(xλ, t) = −w(x, t), x ∈ Ωλ × [t, T ],

w(x, t) ≥ 0, x ∈ Σλ\Ωλ × [t, T ],

(2.4)

Then for λ sufficiently close to −1, we have

w(x, t) ≥ min{0, inf
Ωλ×[t,T ]

w(x, t)}, w ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ]) (2.5)

Proof. If (2.5) does not hold, then the lower semi-continuity of w(x, t) on Ω̄λ × [t, T ]

guarantees that there exists an (xo, to) ∈ Ωλ × [t, T ] such that

w(xo, to) = min
Ωλ×(t,T ]

w < 0

And one can further deduce from condition (2.4) that (xo, to) is in the interior of Ωλ ×

[t, T ]
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We have

(−∆)sw(xo, to)

= Cn,sPV

∫

Rn

w(xo, to)− w(y, to)

|xo − y|n+2s
dy

≤ Cn,s{
∫

Σλ0

w(xo, to)− w(y, to)

|xo − yλ|n+2s
dy +

w(xo, to) + w(y, to)

|xo − yλ|n+2s
dy}

= Cn,s

∫

Σλ0

2w(xo, to)

|xo − yλ|n+2s

Also we have
∫

Σλ0

1

|xo − yλ|n+2s
dy ≥ c

d2s

Thus,

(−∆)2sw(xo, to) ≤ cw(xo, to)

d2s
< 0 (2.6)

We deduce

cλ(x
o, to)w(xo, to) ≤ cw(xo, to)

d2s
+

∂w(xo, to)

∂t

= cλ(x
o, to)w(xo, to) ≤ cw(xo, to)

d2s

Then we derive

c

d2s
≤ cλ(x

o, to)

for λ sufficiently close to −1, d would be sufficiently small, since cλ is bounded, we

derive a contradiction. Therefore, (2.5) must be valid. So far, we have proved the Theorem

2.2.
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3 Direct Method of the Moving Planes for Systems

Having witnessed the effectiveness and efficiency of the direct method of the moving

planes for solving single equations that include fractional Laplacians, we naturally con-

sidered the possibility of extending this method to a broader range of problems, such as

fractional systems and higher-order fractional equations.

3.1 Narrow Region Principle for A Fractional Systems

3.1.1 Narrow Region Principle for elliptic Fractional Systems

Theorem 3.1. (Narrow Region principle for elliptic Fractional System) Let Ωλ = Σλ ∩

B1(0), Ωλ is a bounded narrow region in Σλ, assume that Uλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
,

Vλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)

if




(−∆)
α
2 Uλ(x) ≥ fv(ξ(x))Vλ(x), x ∈ Ωλ,

(−∆)
β
2 Vλ(x) ≥ gu(η(x))Uλ(x), x ∈ Ωλ,

(3.1)

then for λ sufficiently close to −1, we have




Uλ(x) ≥ 0, x ∈ Ωλ,

Vλ(x) ≥ 0, x ∈ Ωλ,

(3.2)

Proof. Suppose otherwise, (3.2) does not hold, then Uλ is negative somewhere, hence there

exists an xo ∈ Ωλ such that such that

Uλ(x
o) = min

Ωλ

Uλ(x) < 0
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By the defining integral of the fractional Laplacian, we have

(−∆)
α
2 Uλ(x

o)

≤ Cn,α

∫

Σλ

2Uλ(x
o)

|xo − yλ|n+α

Denote

d = dis[x0, Tλ] ≤ width(Ωλ)

We have
∫

Σ

1

|xo − yλ|n+α
dy ≥ c

dα

Hence

(−∆)
α
2 Uλ(x

o) ≤ c

dα
Uλ(x

o) < 0

On the other hand, we have

(−∆)
α
2 Uλ(x

o) = f(vλ(x
o))− f(v(xo)) < 0

. Therefore, by the monotonicity of f , we have

Vλ(x
o) < 0

This implies that there exists some x̄ ∈ Ωλ such that

Vλ(x̄) = min
ΩVλ

Vλ(x) < 0
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Following the same argument, we can derive that

(−∆)
β
2 Vλ(x̄) ≤

cVλ(x̄)

dβ
< 0

By assumption, We have

fv(ξ(x))Vλ(x
o) ≤ (−∆)

α
2 Uλ(x

o) ≤ c

dα
Uλ(x

o)

So we derive

dα

c
fv(ξ(x))Vλ(x

o) ≤ Uλ(x
o)

By assumption, we have

(−∆)
β
2 Vλ(x̄)− gu(η(x̄))Uλ(x̄) ≥ 0

We derive

0 ≤ (−∆)
β
2 Vλ(x̄)− gu(η(x̄))Uλ(x̄)

≤ cVλ(x̄)

dβ
− gu(η(x̄))Uλ(x̄))

≤ cVλ(x̄)

dβ
− gu(η(x̄))Uλ(x

o)

≤ cVλ(x̄)

dβ
− gu(η(x̄))(fv(ξ(x

o))Vλ(x
o)
dα

c
)

≤ cVλ(x̄)

dβ
− gu(η(x̄))(fv(ξ(x

o))Vλ(x̄)
dα

c
)

≤ cVλ(x̄)

dβ
(1− gu(η(x̄))fv(ξ(x

o))
dα+β

c2
)
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If λ is sufficiently close to −1, d would be sufficiently small,

gu(η(x̄))fv(ξ(x
o))

dα+β

c2
<< 1

and

Vλ(x̄) < 0

So we derive

cVλ(x̄)

dβ
(1− gu(η(x̄))fv(ξ(x

o))
dα+β

c2
) < 0

This contradiction shows that (3.2) must be true. So far, we have proved the theorem

3.1.

3.1.2 Narrow region principle for parabolic Fractional Systems

Theorem 3.2. (Narrow region principle on a parabolic cylinder) Let Ωλ = Σλ∩B1(0), Ωλ

is a bounded narrow region in Σλ, assume that Uλ(x, t), Vλ(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩

L2s]× C1([t, T ]), and Uλ(x, t), Vλ(x, t) are lower semi-continuous on Ω̄. If




∂Uλ

∂t
+ (−∆)

α
2 Uλ(x, t) ≥ fv(ξ(x, t))Vλ(x, t), (x, t) ∈ Ωλ × [t, T ],

∂Vλ

∂t
+ (−∆)

β
2 Vλ(x, t) ≥ gu(η(x, t))Uλ(x, t), (x, t) ∈ Ωλ × [t, T ],

(3.3)

Then for λ sufficiently close to −1, we have

Uλ(x, t) ≥ min{0, inf
Ωλ×[t,T ]

Uλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (3.4)



38

and

Vλ(x, t) ≥ min{0, inf
Ωλ

Vλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (3.5)

Proof. If (3.5) does not hold, then the lower semi-continuity of Uλ(x, t) on Ω̄λ × [t, T ]

guarantees that there exists an (xo, to) ∈ Ωλ × (t, T ] such that

Uλ(x
o, to) = min

Ωλ×(t,T ]
Uλ < 0

By the defining integral of the fractional Laplacian, we have

(−∆)
α
2 Uλ(x

o, to)

≤ Cn,α

∫

Σλ

2Uλ(x
o, to)

|xo − yλ|n+α

Similar to the argument before, we have

∫

Σλ

1

|xo − yλ|n+α
dy ≥ c

dα

Also, since (xo, to) is the minimum,

If

to < T

∂Uλ

∂t
(xo, to) = 0

If

to = T
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∂Uλ

∂t
(xo, to) ≤ 0

Following from

(−�)
α
2 Uλ(x

o, to) ≤ Cn,α

∫

Σλ

2Uλ(x
o, to)

|xo − yλ|n+α

We have

(−�)
α
2 Uλ(x

o, to) ≤ cUλ(x
o, to)

dα

We deduce

∂Uλ(x
o, to)

∂t
+ (−∆)

α
2 Uλ(x

o, to)

≤ cUλ(x
o, to)

dα
+

∂Uλ(x
o, to)

∂t
,

< 0,

On the other hand, we have

∂Uλ(x
o, to)

∂t
+ (−∆)

α
2 Uλ(x

o, to) = f(vλ(x
o, to))− f(v(xo, to)) < 0

Therefore, by the monotonicity of f , we have

Vλ(x
o, to) < 0

This implies that there exists some (x̄, t̄) ∈ Ωλ0 × (t, T ] such that

Vλ(x̄, t̄) = min
Ωλ0

×(t,T ]
Vλ < 0
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So that

∂Vλ

∂t
(x̄, t̄) = 0

Following the same argument, we can derive that

(−∆)
β
2 Vλ(x̄, t̄) ≤

cVλ(x̄, t̄)

dβ
< 0

We have

fv(ξ(x, t))Vλ(x
o, to) ≤ cUλ(x

o, to)

dα
+

∂Uλ(x
o, to)

∂t

we derive

fv(ξ(x
o, to))Vλ(x

o, to) ≤ cUλ(x
o, to)

dα
< 0

so we derive

dα

c
fv(ξ(x

o, to))Vλ(x
o, to) ≤ Uλ(x

o, to)

So we have

∂Vλ

∂t
(x̄, t̄) + (−∆)

β
2 Vλ(x̄, t̄)− gu(η(x̄))Uλ(x̄) ≥ 0

:= (−∆)
β
2 Vλ(x̄, t̄)− gu(η(x̄))Uλ(x̄) ≥ 0
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We derive

0 ≤ (−∆)
β
2 Vλ(x̄, t̄)− gu(η(x̄, t̄))Uλ(x̄, t̄)

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))Uλ(x̄, t̄))

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))Uλ(x

o, to)

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))(fv(ξ(x

o, to))Vλ(x
o, to)

dα

c
)

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))(fv(ξ(x

o, to))Vλ(x̄, t̄)
dα

c
)

≤ cVλ(x̄, t̄)

dβ
(1− gu(η(x̄, t̄))fv(ξ(x

o, to))
dα+β

c2
)

If λ is sufficiently close to −1, d would be sufficiently small,

gu(η(x̄, t̄))fv(ξ(x
o, to))

dα+β

c2
<< 1

and

Vλ(x̄, t̄) < 0

So we derive

cVλ(x̄, t̄)

dβ
(1− gu(η(x̄, t̄))fv(ξ(x

o, to))
dα+β

c2
) < 0

This contradiction shows that (3.5) must be true. So far, we have proved theorem 3.2.
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4 Our main results

4.1 Part 1: Method of Moving Planes and Its Applications: Radial

symmetry and monotonicity of solutions for fractional elliptic and

parabolic equations and systems

4.1.1 Fractional elliptic single equations

In section 5, we want to show radial symmetry and monotonicity of solution of frac-

tional equations, where the equations here are represented by fractional elliptic equations

and fractional parabolic equations. Section 5 is divided into two subsections, in the first

subsection, we use moving of plane method to prove radial symmetry and monotonicity of

fractional elliptic equations, where the elliptic equations are given by:




(−∆)
α
2 u(x) = f(u(x)), x ∈ B1(0),

u(x) ≥ 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(4.1)

We want to prove the following theorem:

Theorem 4.1. (Radial Symmetry of solution of elliptic fractional equation)




(−∆)
α
2 u(x) = f(u(x)), x ∈ B1(0),

u(x) ≥ 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(4.2)
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where B1 is a unit ball.

Let 0 < α, β < 2, and suppose that u(x) ∈
(
C1,1

loc (Ω)∩C(Ω̄)
)

is positive bounded clas-

sical solutions of equation (5.1), and assume f(|x|, u) satisfies the following assumptions:

(X1) f(|x|, u) are decreasing in |x|.

(X2) Assume that f is uniformly Lipschitz continuous in u. i.e:

|f(|x|, u1)− f(|x|, u2)| ≤ c|u1 − u2|, ∀x ∈ B1(0),

then u(x) is radially symmetric and monotone decreasing about the origin, i.e.

u(x) = u(|x|)

.

u(x1) > u(x2), |x1| < |x2|

.

In the process to show u(x) here is monotone and radial symmetric about the origin

using moving of plane method, we should give the plane an initial position to start, where

in this initial position wλ(x) = uλ(x)−u(x) is non-negative, so the Narrow region theorem

in the unit ball is avoidable to be an ingredient here, we first prove:

Theorem 4.2. (Narrow region principle for an elliptic problem) Let Ωλ = Σλ ∩ B1(0), Ωλ
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is a bounded narrow region in Σλ, assume that u(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
, if





(−∆)su(x) = f(u(x)), u(x) > 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(−∆)swλ(x) = cλwλ(x), x ∈ Ωλ

(4.3)

then for λ sufficiently close to −1, we have

wλ(x) ≥ 0, x ∈ Ωλ (4.4)

After we have an initial position to handle moving plane, we move the plane continu-

ously to the right until its limiting position as long as wλ holds, define

λ0 = sup{λ ≤ 0 | wµ(x) ≥ 0, ∀x ∈ Ωµ, µ ≤ λ}

We show λ0 = 0 by contradiction. Suppose λ0 < 0, we show that the plane Tλ0 can be

moved further to the right. First of all, we show wλ0(x) > 0 for x ∈ Ωλ0 , then we let the

moving plane go back a little bit, show wλ0(x) ≥ co > 0 for x ∈ Ωλ0−δ.

To prove

wλ0(x) ≥ co > 0, x ∈ Ωλ0−δ

by contradiction, suppose there exists some sequences xk ∈ Ωλ0−δ such that wλ0(xk) →

0 for xk → xo ∈ Ωλo−δ, by regularity theory, wλ0(xk) converges uniformly to w̄(xo) = 0.

We have

(−∆)sw̄(xo) = cλ(x
o)w̄(xo) = 0
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We also have

(−∆)sw̄(xo) = Cn,sPV

∫

Rn

−w̄(y)

|xo − y|n+2s
dy ≤ 0

That forces

w̄(y) ≡ 0, ∀y ∈ Rn

Same routine, by regularity theory, there exists some sequences xk such that u(xk)

converges uniformly to ū(x), f(u) converges uniformly to f̄(u) for x ∈ Ωλo .

By a Strong Maximum principle:

Lemma 4.3. (Strong Maximum Principle for (−∆)sū = f̄(ū).

Assume that ū(x) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]




(−∆)sū(x) = f̄(ū), x ∈ Ωλ,

ū(x) ≥ 0, x ∈ Ωλ

(4.5)

we have either

ū(x) > 0, x ∈ B1(0)

or

ū(x) ≡ 0, x ∈ Rn

If ū(x) > 0, x ∈ B1(0), w̄(x) > 0 somewhere, but we already derive w̄(x) ≡ 0, hence

we must have ū(x) ≡ 0, x ∈ Rn. Thus, we know u(xk) converges to 0 uniformly.
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In order to derive a contradiction for large k, Let

wk(x) ≡ wλ0(xk) = mk (4.6)

Let

vk(x) = wk(x)− 2mk (4.7)

with a minimum point x̄k, now for sufficiently large k,

(−∆)svk(x̄k) = cλo(x̄k)wk(x̄k)

and

(−∆)svk(x̄k) ≤
c

[d(x̄k, Tλo)]
2s
vk(x̄k) ≤ −c1mk

which is a contradiction, so we have proved

wλ0(x) ≥ co > 0, x ∈ Ωλ0−δ

Since wλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all

λ ∈ (λ0, λ0 + ε), we have

wλ ≥ 0, x ∈ Ωλ0−δ

By Narrow region theorem, we derive

wλ ≥ 0, x ∈ Ω−
λ \Ωλ0−δ
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We conclude that for all λ ∈ (λ0, λ0 + ε)

wλ(x) ≥ 0, x ∈ Ωλ

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and

wλ0 ≥ 0, ∀x ∈ Ωλ0

Similarly, one can move the plane Tλ from λ = 1 to the left and show that

wλ0 ≤ 0, ∀x ∈ Ωλ0

Now we have shown that

λ0 = 0

and

wλ0 ≡ 0, x ∈ Ωλ0

This completes the setp 2.

So far, we have proved that u is symmetric about the plane T0. Since the x1 direction

can be chosen arbitrarily, we have actually shown that u is radially symmetric about origin.

Since wλ(x) �≡ 0, x ∈ Tλ, ∀0 < λ < λ0, if there exists xo such that xo is the minimum
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point, from the above process, on one hand,

(−∆)swλ(x
o) ≤ 0

On the other hand,

(−∆)swλ(x
o) = 0

This forces

wλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin.

4.1.2 Fractional parabolic single equations

From subsection 5.5, we use moving of plane method to prove radial symmetry and mono-

tonicity of fractional parabolic equation, where the parabolic equation is given by:




∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) > 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) ≡ 0, x /∈ B1(0),

(4.8)

We want to prove the following theorem:

Theorem 4.4. (Radial Symmetry of solution of fractional parabolic equation)




∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) > 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) ≡ 0, x /∈ B1(0),

(4.9)

where B1(0) is a unit ball.
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Let 0 < s < 1, and suppose that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
× (−∞,∞) is a positive

bounded classical solution of equation (5.17), and assume f(t, |x|, u) satisfies the following

assumptions:

(f1) f(t, |x|, u) are decreasing in |x|.

(f2) Assume that f is uniformly Lipschitz continuous in u. i.e:

f(t, |x|, u1)− f(t, |x|, u2) ≤ c|u1 − u2|, ∀x ∈ B1(0),

then u(x, t) is radially symmetric and monotone decreasing about the origin. i.e.

u(x, t) = u(|x|, t)

u(x1, t) > u(x2, t), |x1| < |x2|.

.

In the process to show u(x, t) here is monotone and radial symmetric about the origin

using moving of plane method, we should give the plane an initial position to start, where in

this initial position wλ(x, t) = uλ(x, t)−u(x, t) is non-negative, so the Maximum principle

in the unit ball is avoidable to be an ingredient here, we first prove:

Lemma 4.5. (Maximum principle on a parabolic cylinder) Assume that




∂w
∂t

+ (−∆)sw = c(x, t)w(x, t), x ∈ Ωλ × [t, T ],

w(xλ, t) = −w(x, t), x ∈ Ωλ × [t, T ],

w(x, t) ≥ 0, x ∈ Σλ\Ωλ × [t, T ],

(4.10)
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Then for λ sufficiently close to −1, we have

w(x, t) ≥ min{0, inf
Ωλ×[t,T ]

w(x, t)}, w ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ]) (4.11)

Let

w̄ = em(t−t)wλ(x, t), m > 0

∂w̄

∂t
+ (−�)sw̄ = c̄w̄

By Lemma, we have

w̄(x, t) ≥ min{0, inf
x∈Ωλ

w̄(x, t)}, ∀(x, t) ∈ Ωλ × (t, T )

Thus

em(t−t)wλ(x, t) ≥ min{0, inf
x∈Ωλ

wλ(x, t)}

So

wλ(x, t) ≥ e−m(t−t) min{0, inf
x∈Ωλ

wλ(x, t)}

wλ(x, t) is bounded from below. Let t → −∞, wλ(x, t) →≥ 0.

Therefore,

wλ(x, t) ≥ 0

After we have an initial position to handle moving plane, we move the plane continu-

ously to the right until its limiting position as long as wλ holds, define

λ0 = sup{λ ≤ 0 | wµ(x, t) ≥ 0, ∀(x, t) ∈ Ωµ × R, µ ≤ λ}



51

We show λ0 = 0 by contradiction. Suppose λ0 < 0, we show that the plane Tλ0 can be

moved further to the right. First of all, we show wλ0(x, t) > 0 for (x, t) ∈ Ωλ0 ×R, then we

let the moving plane go back a little bit, show wλ0(x, t) ≥ co > 0 for (x, t) ∈ Ωλ0−δ × R.

To prove

wλ0(x, t) ≥ co > 0, x ∈ Ωλ0−δ

by contradiction, suppose there exists some sequences (xk, tk) ∈ Ωλ0−δ × R such that

wλ0(xk, tk) → 0 for xk → xo ∈ Ωλo−δ.

Let

wk(x, t) = wλ0(x, t+ tk)

by regularity theory, wk(x, t) converges uniformly to w̄(x, t).

Since

wk(xk, 0) = wλ0(xk, tk) → 0

w̄(xo, 0) = 0

We have

(−∆)sw̄(xo, 0) = cλ(x
o, 0)w̄(xo, 0) = 0

We also have

(−∆)sw̄(xo, 0) = Cn,sPV

∫

Rn

−w̄(y, 0)

|xo − y|n+2s
dy ≤ 0

That forces

w̄(y, 0) ≡ 0, ∀y ∈ Rn

Same routine, Let uk(x, t) = u(x, t + tk), by regularity theory, there exists some se-

quences xk such that uk(x, t) converges uniformly to ū(x, t), f(0, u) converges uniformly
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to f̄(0, u) for x ∈ Ωλo .

By a Strong Maximum principle:

Lemma 4.6. (Strong Maximum Principle for ∂ū
∂t

+ (−∆)sū = f̄(t, ū)).

Assume that ū(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])





∂ū(x,t)
∂t

+ (−∆)sū(x, t) = f̄(t, ū), (x, t) ∈ Ωλ × [t, T ],

ū(x, t) ≥ 0, (x, t) ∈ Ωλ × [t, T ]

(4.12)

we have either

ū(x, 0) > 0, x ∈ B1(0)

or

ū(x, 0) ≡ 0, x ∈ Rn

If ū(x, 0) > 0, x ∈ B1(0), w̄(x, 0) > 0 somewhere, but we already derive w̄(x, 0) ≡ 0,

hence we must have ū(x, 0) ≡ 0, x ∈ Rn. Thus, we know uk(x, t) converges to 0 uniformly.

In order to derive a contradiction for large k, Let

wk(xk, 0) ≡ wλ0(xk, tk) = mk (4.13)

Let

vk(x, t) = wk(x, t)− 2mkη(εk(t− tk)) (4.14)
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with a minimum point (x̄k, t̄k), now for sufficiently large k,

(−∆)svk(x̄k, t̄k) = −∂wk

∂t
(x̄k, t̄k) + cλo(x̄k, t̄k + tk)wk(x̄k, t̄k)

with

−∂wk

∂t
(x̄k, t̄k) ∼ εkmk

and

(−∆)svk(x̄k, t̄k) ≤
c

[d(x̄k, Tλo)]
2s
vk(x̄k, t̄k) ≤ −c1mk

which is a contradiction, so we have proved inf wλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ × R

Since wλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all

λ ∈ (λ0, λ0 + ε), we have

wλ(x, t) ≥ 0, (x, t) ∈ Ωλ0−δ × R

By Narrow region theorem, we derive

wλ(x, t) ≥ 0, (x, t) ∈ Ω−
λ \Ωλ0−δ × R

We conclude that for all λ ∈ (λ0, λ0 + ε)

wλ(x, t) ≥ 0, x ∈ Ωλ × R
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This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and

wλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 × R

Similarly, one can move the plane Tλ from λ = 1 to the left and show that

wλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 × R

Now we have shown that

λ0 = 0

and

wλ0 ≡ 0, (x, t) ∈ Ωλ0 × R

This completes the setp 2.

So far, we have proved that u is symmetric about the plane T0. Since the x1 direction

can be chosen arbitrarily, we have actually shown that u is radially symmetric about origin.

Since wλ(x, t) �≡ 0, x ∈ Tλ, ∀0 < λ < λ0, if there exists (xo, to) such that (xo, to) is the

minimum point, from the above process, on one hand,

(−∆)swλ(x
o, to) ≤ 0

On the other hand,

(−∆)swλ(x
o, to) = 0



55

This forces

wλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin.

4.1.3 Fractional elliptic systems

In section 6, we want to show radial symmetry and monotonicity of solution of fractional

systems, where the systems here are represented by fractional elliptic systems and fractional

parabolic systems. Section 6 is divided into two subsections, in the first subsection, we use

moving of plane method to prove radial symmetry and monotonicity of fractional elliptic

systems, where the fractional elliptic systems are given by:




(−∆)
α
2 u(x) = f(v(x)), x ∈ B1(0),

(−∆)
β
2 v(x) = g(u(x)), x ∈ B1(0),

u(x), v(x) ≥ 0, x ∈ B1(0),

u(x), v(x) ≡ 0, x /∈ B1(0),

(4.15)

From the fractional systems given, it is easy to have




(−∆)
α
2 Uλ(x) ≥ fv(ξ(x))Vλ(x),

(−∆)
β
2 Vλ(x) ≥ gu(η(x))Uλ(x),

(4.16)

We want to prove the following theorem:
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Theorem 4.7. (Radial Symmetry of solution of elliptic fractional system)





(−∆)
α
2 u(x) = f(v(x)), x ∈ B1(0),

(−∆)
β
2 v(x) = g(u(x)), x ∈ B1(0),

u(x), v(x) ≥ 0, x ∈ B1(0),

u(x), v(x) ≡ 0, x /∈ B1(0),

(4.17)

where B1 is a unit ball.

Let 0 < α, β < 2, and suppose that u(x), v(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)

are positive

bounded classical solutions of equation (6.1), and assume f(v(x)), g(u(x)) satisfies the

following assumptions:

(X1) f(·) is non-decreasing in v(·) , g(·) is non-decreasing in u(·).

(X2) Assume that f, g are uniformly Lipschitz continuous in u, v. i.e:

|f(v1)− f(v2)| ≤ c|v1 − v2|,

|g(u1)− f(u2)| ≤ c|u1 − u2|,

then u(x), v(x) are radially symmetric about the origin and monotone decreasing about the

origin, i.e.

u(x) = u(|x|), v(x) = v(|x|)

u(x1) > u(x2), v(x1) > v(x2), |x1| < |x2|.

.

In the process to show u(x), v(x) here is monotone and radial symmetric about the

origin using moving of plane method, we should give the plane an initial position to start,
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where in this initial position Uλ(x) = uλ(x) − u(x) and Vλ(x) = vλ(x) − v(x) are non-

negative, so the Narrow region theorem in the unit ball is avoidable to be an ingredient here,

we first prove:

Theorem 4.8. (Narrow Region principle for elliptic Fractional System) Let Ωλ = Σλ ∩

B1(0), Ωλ is a bounded narrow region in Σλ, assume that Uλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
,

Vλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)

if





(−∆)
α
2 Uλ(x) ≥ fv(ξ(x))Vλ(x), x ∈ Ωλ,

(−∆)
β
2 Vλ(x) ≥ gu(η(x))Uλ(x), x ∈ Ωλ,

(4.18)

then for λ sufficiently close to −1, we have




Uλ(x) ≥ 0, x ∈ Ωλ,

Vλ(x) ≥ 0, x ∈ Ωλ,

(4.19)

After we have an initial position to handle moving plane, we move the plane continu-

ously to the right until its limiting position as long as Uλ, Vλ holds, define

λ0 = sup{λ ≤ 0 | Uµ(x) ≥ 0, Vµ(x) ≥ 0, ∀x ∈ Ωµ, µ ≤ λ}

We show λ0 = 0 by contradiction. Suppose λ0 < 0, we show that the plane Tλ0 can be

moved further to the right. First of all, we show Uλ0(x) > 0, Vλ0(x) > 0 for x ∈ Ωλ0 , then

we let the moving plane go back a little bit, show Uλ0(x) ≥ co > 0, Vλ0(x) ≥ co > 0 for

x ∈ Ωλ0−δ.
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To prove





Uλ0(x) > co > 0, x ∈ Ωλ0−δ,

Vλ0(x) > co > 0, x ∈ Ωλ0−δ,

(4.20)

by contradiction, suppose there exists some sequences xk ∈ Ωλ0−δ such that Uλ0(xk) →

0 for xk → xo ∈ Ωλo−δ, by regularity theory, Uλ0(xk) converges uniformly to Ū(x).

We have

(−∆)
α
2 Ū(xo) ≥ c̄(xo)V̄ (xo) = 0

We also have

(−∆)
α
2 Ū(xo) = Cn,αPV

∫

Rn

−Ū(y)

|xo − y|n+α
dy ≤ 0

That forces

Ū(y) ≡ 0, ∀y ∈ Rn

Same routine, by regularity theory, there exists some sequences xk such that u(xk)

converges uniformly to ū(x), f(u) converges uniformly to f̄(u) for x ∈ Ωλo .

By a Strong Maximum principle:

Lemma 4.9. (Strong Maximum Principle for (−∆)
α
2 ū = f(v̄(x))).

Assume that ū(x) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]




(−∆)
α
2 ū(x) = f̄ , x ∈ Ωλ,

ū(x) ≥ 0, x ∈ Ωλ

(4.21)

we have either

ū(x) > 0, x ∈ B1(0)
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or

ū(x) ≡ 0, x ∈ Rn

If ū(x) > 0, x ∈ B1(0), we know λ0 < 0, Ū(x) > 0 somewhere, but we already derive

Ū(x) ≡ 0, hence we must have ū(x) ≡ 0, x ∈ Rn.

In order to derive a contradiction for large k, Let

Uk(xk) ≡ Uλ0(xk) = mk (4.22)

Let

ak(x) = Uk(x)− 2mk (4.23)

with a minimum point x̄k, now for sufficiently large k,

(−∆)
α
2 ak(x̄k) = (−∆)

α
2 Uk ≥ fv(ξ(x̄k))Vk(x̄k)

and

(−∆)
α
2 ak(x̄k) ≤

c

[d(x̄k, Tλo)]
α
ak(x̄k) ≤ −c1mk

which is a contradiction, so that we have proved (4.20). Since Uλ, Vλ depends on λ contin-

uously, there exists ε > 0 and ε < δ, such that for all λ ∈ (λ0, λ0 + ε), we have




Uλ(x) ≥ 0, x ∈ Ωλ0−δ,

Vλ(x) ≥ 0, x ∈ Ωλ0−δ,
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By Narrow region theorem, we derive





Uλ(x) ≥ 0, x ∈ Ω−
λ \Ωλ0−δ,

Vλ(x) ≥ 0, x ∈ Ω−
λ \Ωλ0−δ,

We conclude that for all λ ∈ (λ0, λ0 + ε)





Uλ(x) ≥ 0, x ∈ Ωλ0 ,

Vλ(x) ≥ 0, x ∈ Ωλ0 ,

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and




Uλ0(x) ≥ 0, ∀x ∈ Ωλ0 ,

Vλ0(x) ≥ 0, ∀x ∈ Ωλ0 ,

Similarly, one can move the plane Tλ from λ = 1 to the left and show that




Uλ0(x) ≤ 0, ∀x ∈ Ωλ0 ,

Vλ0(x) ≤ 0, ∀x ∈ Ωλ0 ,

Now we have shown that

λ0 = 0
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and





Uλ0 ≡ 0, x ∈ Ωλ0 ,

Vλ0 ≡ 0, x ∈ Ωλ0 ,

This completes the step 2.

So far, we have proved that u, v are symmetric about the plane T0. Since the x1

direction can be chosen arbitrarily, we have actually shown that u, v are radially symmetric

about origin.

Since Uλ(x) �≡ 0, x ∈ Tλ, ∀0 < λ < λ0, if there exists xo such that xo is the minimum

point, from the above process, on one hand,

(−∆)
α
2 Uλ(x

o) ≤ 0

On the other hand,

(−∆)
α
2 Uλ(x

o) = 0

This forces

Uλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin. Same

reason for v.

4.1.4 Fractional parabolic systems

In the second subsection, we use moving of plane method to prove radial symmetry and

monotonicity of fractional parabolic systems, where the fractional parabolic systems are
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given by:





∂u
∂t

+ (−∆)
α
2 u(x, t) = f(v(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

∂v
∂t

+ (−∆)
β
2 v(x, t) = g(u(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≥ 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≡ 0, x /∈ B1(0),

(4.24)

From the fractional systems given, it is easy to have





∂Uλ

∂t
(x, t) + (−∆)

α
2 Uλ(x, t) ≥ fv(ξ(x, t))Vλ(x, t),

∂Vλ

∂t
(x, t) + (−∆)

β
2 Vλ(x, t) ≥ gu(η(x, t))Uλ(x, t),

(4.25)

We want to prove the following theorem:

Theorem 4.10. (Radial Symmetry of solution of parabolic fractional system)




∂u
∂t

+ (−∆)
α
2 u(x, t) = f(v(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

∂v
∂t

+ (−∆)
β
2 v(x, t) = g(u(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≥ 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≡ 0, x /∈ B1(0),

(4.26)

where B1 is a unit ball.

Let 0 < α, β < 2, and suppose that u(x, t), v(x, t) ∈
(
C1,1

loc (Ω)∩C(Ω̄)
)
×(−∞,∞) are

positive bounded classical solutions of equation (6.22), and assume f(v(x, t)), g(u(x, t))

satisfies the following assumptions:

(M1) f(·) is non-decreasing in v(·) , g(·) is non-decreasing in u(·).
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(M2) Assume that f, g are uniformly Lipschitz continuous in u, v. i.e:

|f(v1)− f(v2)| ≤ c|v1 − v2|,

|g(u1)− f(u2)| ≤ c|u1 − u2|,

then u(x, t), v(x, t) are radially symmetric about the origin and monotone decreasing about

the origin, i.e.

u(x, t) = u(|x|, t), v(x, t) = v(|x|, t)

u(x1, t) > u(x2, t), v(x1, t) > v(x2, t), |x1| < |x2|

.

In the process to show u(x), v(x) here is monotone and radial symmetric about the

origin using moving of plane method, we should give the plane an initial position to start,

where in this initial position Uλ(x) = uλ(x) − u(x) and Vλ(x) = vλ(x) − v(x) are non-

negative, so the Narrow region theorem in the unit ball is avoidable to be an ingredient here,

we first prove:

Theorem 4.11. (Narrow region principle on a parabolic cylinder) Let Ωλ = Σλ ∩ B1(0),

Ωλ is a bounded narrow region in Σλ, assume that Uλ(x, t), Vλ(x, t) ∈ [C1,1
loc (Ωλ)∩C(Ω̄λ)∩

L2s]× C1([t, T ]), and Uλ(x, t), Vλ(x, t) are lower semi-continuous on Ω̄. If




∂Uλ

∂t
+ (−∆)

α
2 Uλ(x, t) ≥ fv(ξ(x, t))Vλ(x, t), (x, t) ∈ Ωλ × [t, T ],

∂Vλ

∂t
+ (−∆)

β
2 Vλ(x, t) ≥ gu(η(x, t))Uλ(x, t), (x, t) ∈ Ωλ × [t, T ],

(4.27)



64

Then for λ sufficiently close to −1, we have

Uλ(x, t) ≥ min{0, inf
Ωλ×[t,T ]

Uλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (4.28)

and

Vλ(x, t) ≥ min{0, inf
Ωλ

Vλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (4.29)

After we have an initial position to handle moving plane, we move the plane continu-

ously to the right until its limiting position as long as Uλ, Vλ holds, define

λ0 = sup{λ ≤ 0 | Uµ(x, t) ≥ 0, Vµ(x, t) ≥ 0, ∀(x, t) ∈ Ωµ × R, µ ≤ λ}

We show λ0 = 0 by contradiction. Suppose λ0 < 0, we show that the plane Tλ0 can

be moved further to the right. First of all, we show Uλ0(x, t) > 0, Vλ0(x, t) > 0 for

(x, t) ∈ Ωλ0×R, then we let the moving plane go back a little bit, show Uλ0(x, t) ≥ co > 0,

Vλ0(x, t) ≥ co > 0 for (x, t) ∈ Ωλ0−δ × R.

To prove




inf Uλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ × R,

inf Vλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ × R,
(4.30)

Let

Uk(x, t) = Uλ0(x, t+ tk)

by contradiction, suppose there exists some sequences xk ∈ Ωλ0−δ such that Uλ0(xk, tk) →

0 for xk → xo ∈ Ωλo−δ, by regularity theory, Uk(x, t) converges uniformly to Ū(x, t).
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We have

∂Ū(xo, 0)

∂t
+ (−∆)

α
2 Ū(xo, 0) = (−∆)

α
2 Ū(xo, 0) ≥ c̄(xo, 0)V̄ (xo, 0) = 0

We also have

∂Ū(xo, 0)

∂t
+ (−∆)

α
2 Ū(xo, 0) = (−∆)

α
2 Ū(xo, 0) ≤ 0

That forces

Ū(y, 0) ≡ 0, ∀y ∈ Rn

Let uk(x, t) = u(x, t + tk), same routine, by regularity theory, there exists some se-

quences xk such that uk(x, t) converges uniformly to ū(x, t), f converges uniformly to f̄

for x ∈ Ωλo .

By a Strong Maximum principle:

Lemma 4.12. (Strong Maximum Principle for ∂ū
∂t

+ (−∆)
α
2 ū = f(v̄(x, t))).

Assume that ū(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])




∂ū(x,t)
∂t

+ (−∆)
α
2 ū(x, t) = f(v̄(x, t)), (x, t) ∈ Ωλ × [t, T ],

ū(x, t) ≥ 0, (x, t) ∈ Ωλ × [t, T ]

(4.31)

we have either

ū(x, 0) > 0, x ∈ B1(0)

or

ū(x, 0) ≡ 0, x ∈ Rn
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If ū(x, 0) > 0, x ∈ B1(0), we know λ0 < 0, Ū(x, 0) > 0 somewhere, but we already

derive Ū(x, 0) ≡ 0, hence we must have ū(x, 0) ≡ 0, x ∈ Rn.

In order to derive a contradiction for large k, Let

Uk(xk, 0) ≡ Uλ0(xk, tk) = mk (4.32)

Let

ak(x, t) = Uk(x, t)− 2mkη(εk(t− tk)) (4.33)

with a minimum point (x̄k, t̄k), now for sufficiently large k,

(−∆)
α
2 ak(x̄k, t̄k) = (−∆)

α
2 Uk ≥ −∂Uk

∂t
(x̄k, t̄k) + fv(ξ(x, t))Vk(x̄k, t̄k)

and

(−∆)
α
2 ak(x̄k, t̄k) ≤

c

[d(x̄k, Tλo)]
α
ak(x̄k, t̄k) ≤ −c1mk

which is a contradiction, so we have proved (4.32)

Since Uλ, Vλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all

λ ∈ (λ0, λ0 + ε), we have




Uλ(x) ≥ 0, x ∈ Ωλ0−δ,

Vλ(x) ≥ 0, x ∈ Ωλ0−δ,
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By Narrow region theorem, we derive





Uλ(x) ≥ 0, x ∈ Ω−
λ \Ωλ0−δ,

Vλ(x) ≥ 0, x ∈ Ω−
λ \Ωλ0−δ,

We conclude that for all λ ∈ (λ0, λ0 + ε)





Uλ(x) ≥ 0, x ∈ Ωλ0 ,

Vλ(x) ≥ 0, x ∈ Ωλ0 ,

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and




Uλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 × R,

Vλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 × R,

Similarly, one can move the plane Tλ from λ = 1 to the left and show that




Uλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 × R,

Vλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 × R,

Now we have shown that

λ0 = 0
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and





Uλ0 ≡ 0, (x, t) ∈ Ωλ0 × R,

Vλ0 ≡ 0, (x, t) ∈ Ωλ0 × R,

This completes the step 2.

So far, we have proved that u, v are symmetric about the plane T0. Since the x1

direction can be chosen arbitrarily, we have actually shown that u, v are radially symmetric

about origin.

Since Uλ(x, t) �≡ 0, (x, t) ∈ Tλ × R, ∀0 < λ < λ0, if there exists (xo.to) such that

(xo, to) is the minimum point, from the above process, on one hand,

(−∆)
α
2 Uλ(x

o, to) ≤ 0

On the other hand,

(−∆)
α
2 Uλ(x

o, to) = 0

This forces

Uλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin. Same

reason for v.
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4.2 Part 2: Method of Sliding and Its Applications: Monotonicity of

solutions of fractional parabolic and Monge-Ampére equations

4.2.1 Fractional parabolic equations in Bounded domains

In section 9, we use sliding method to prove the monotonicity of solution of fractional

parabolic equation in a bounded domain, where the fractional parabolic equation is given

by:





∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

(4.34)

We want to prove the following theorem:

Theorem 4.13. (Monotonicity of solution of fractional parabolic equation)

Let Ω be a bounded domain in Rn which is convex in the xn-direction. Let 0 < s < 1,

and suppose that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
× (−∞,∞) is a positive bounded classical

solution of




∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

(4.35)

We impose some conditions on u. Let u(x, t) = ϕ(x, t) in Ωc, suppose H:

For any three points x = (x′, xn), y = (x′, yn) and z = (x′, zn) lying on a segment

parallel to the xn axis, yn < xn < zn with y, z ∈ Ωc, we have

ϕ(y, t) < u(x, t) < ϕ(z, t), (x, t) ∈ Ω× R (4.36)
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and

ϕ(y, t) ≤ ϕ(x, t) ≤ ϕ(z, t), (x, t) ∈ Ωc × R (4.37)

Assume that f is non-increasing about u and is uniformly Lipschitz continuous in u. i.e:

f(t, |x|, u1)− f(t, |x|, u2) ≤ c|u1 − u2|, ∀x ∈ Ω,

Then u(x, t) is monotone increasing with respect to xn in Ω, i.e: for any τ > 0, we have

u((x′, xn + τ), t) > u((x′, xn), t) for (x′, xn), (x
′, xn + τ) ∈ Ω and t ∈ R,

where x′ = (x1, · · · , xn−1) ∈ Rn−1

In the process to show u(x) here is monotone using sliding method, we begin sliding

Ωτ downward τ units along the xn axis, we should give the plane an initial position to start,

where in this initial position W τ (x) = uτ (x)− u(x) is non-negative, so the Narrow region

theorem in the bounded region is avoidable to be an ingredient here, we first prove:

Lemma 4.14. (Narrow Region principle on a parabolic cylinder) Let D be a bounded

narrow region in Rn. Assume that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
∩ L2s × [t, T ]. W τ (x, t) =

uτ (x, t)− u(x, t) is lower semi-continuous on D̄ × [t, T ], and satisfies




∂W τ

∂t
+ (−�)sW τ = c(x, t)W τ (x, t), (x, t) ∈ D × [t, T ],

W τ (x, t) ≥ 0, (x, t) ∈ (Rn \D)× [t, T ],

(4.38)

where c(x, t) is bounded from below in D. Let dn(D) be the width of D in the xn-direction.

Then:

W τ (x, t) ≥ 0, (x, t) ∈ D × [t, T ] (4.39)
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Moreover, we have either W τ (x, t) > 0 in D × R or W τ (x, t) ≡ 0 in Rn × R:

Let

W̄ = em(t−t)W τ (x, t), m > 0

So then

∂W̄

∂t
+ (−�)sW̄ = c̄W̄

By Narrow region theorem,

W̄ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}, ∀(x, t) ∈ D × (t, T )

Thus

em(t−t)W τ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}

So

W τ (x, t) ≥ e−m(t−t) min{0, inf
x∈D

W̄ (x, t)}

W τ (x, t) is bounded from below. Let t → −∞, W τ (x, t) →≥ 0.

Therefore,

W τ (x, t) ≥ 0

The inequality provides a starting point, from which we can carry out the sliding. Now

we decrease τ as long as W τ (x, t) ≥ 0 holds to its limiting position. Define

τ0 = inf{τ | W τ (x, t) ≥ 0, ∀(x, t) ∈ Dτ × R, 0 < τ < τ̃}

We show τ0 = 0 by contradiction. Suppose τ0 > 0, we will show that Ωτ can be

slid upward a little bit more and we will have W τ (x, t) ≥ 0. First of all, we show
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W τ0(x, t) > 0 for (x, t) ∈ Dτ0 × R, then we let Ωτ can be slid upward a little bit more,

show infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R.

To prove

infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R

by contradiction, suppose there exists some sequences (xk, tk) ∈ Dτ0−ε × R such that

W τ0(xk, tk) → 0 for xk → xo ∈ Dτ0−ε.

Let

Wk(x, t) = W τ0(x, t+ tk)

by regularity theory, Wk(x, t) converges uniformly to W̄ (x, t).

Since

Wk(xk, 0) = W τ0(xk, tk) → 0

W̄ (xo, 0) = 0

We have

∂W̄

∂t
(xo, 0) + (−∆)sW̄ (xo, 0) = cτ (xo, tk)W̄ (xo, 0) = 0

We also have

(−∆)sW̄ (xo, 0) = Cn,sPV

∫

Rn

−W̄ (y, 0)

|xo − y|n+2s
dy ≤ 0

That forces

W̄ (y, 0) ≡ 0, ∀y ∈ Rn

Same routine, Let uk(x, t) = u(x, t + tk), by regularity theory, there exists some se-

quences xk such that uk(x, t) converges uniformly to ū(x, t), f(0, u) converges uniformly
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to f̄(0, u) for x ∈ Dτ0 .

By a Strong Maximum principle:

Lemma 4.15. (Strong Maximum Principle for ∂ū
∂t

+ (−∆)sū = f̄(t, ū)).

Assume that ū(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])





∂ū(x,t)
∂t

+ (−∆)sū(x, t) = f̄(t, ū), (x, t) ∈ Dτ × [t, T ],

ū(x, t) ≥ 0, (x, t) ∈ Dτ × [t, T ]

(4.40)

we have either

ū(x, 0) > 0, x ∈ Dτ

or

ū(x, 0) ≡ 0, x ∈ Rn

If ū(x, 0) > 0, x ∈ Dτ , W̄ (x, 0) > 0 somewhere, but we already derive W̄ (x, 0) ≡ 0,

hence we must have ū(x, 0) ≡ 0, x ∈ Rn.Thus, we know u(x, tk) converges to 0 uniformly.

In order to derive a contradiction for large k, Let

Wk(xk, 0) ≡ W τ0(xk, tk) = mk (4.41)

Let

Vk(x, t) = Wk(x, t)− 2mkη(εk(t− tk)) (4.42)
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with a minimum point (x̄k, t̄k), now for sufficiently large k,

(−∆)sVk(x̄k, t̄k) = −∂Wk

∂t
(x̄k, t̄k) + cτ0(x̄k, t̄k + tk)Wk(x̄k, t̄k)

with

−∂Wk

∂t
(x̄k, t̄k) ∼ εkmk

and

(−∆)sVk(x̄k, t̄k) ≤
c

[d(x̄k, Tλo)]
2s
Vk(x̄k, t̄k) ≤ −c1mk

which is a contradiction, so that we have proved infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε×R

Now we can carve out from Dτ0 a closed set K ⊂ Dτ0 such that Dτ0\K is narrow.

Since

W τ0(x, t) > 0, (x, t) ∈ Dτ0 × R

We have

W τ0(x, t) ≥ C0 > 0, in K (4.43)

Since W τ is continuous with respect to τ , for small ε > 0, we have:

W τ0−ε(x, t) ≥ 0, in K (4.44)

According to (H), we have

W τ0−ε(x, t) ≥ 0, in (Dτ0−ε)c
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It is obvious that (Dτ0−ε\K)c = K ∪ (Dτ0−ε)c, then





∂W τ0−ε

∂t
+ (−∆)sW τ0−ε = c(x, t)W τ0−ε(x, t), (x, t) ∈ Dτ0−ε\K × R,

W τ0−ε(x, t) ≥ 0, (x, t) ∈ (Dτ0−ε\K)c × R,
(4.45)

By Narrow Region theorem, we have

W τ0−ε(xk, tk) ≥ 0, (x, t) ∈ Dτ0−ε\K × R (4.46)

From this and (4.44), we obtain W τ (x, t) ≥ 0 for τ ∈ (τ0 − ε, τ0) which contradicts the

definition of τ0.

Since W τ (x, t) �≡ 0, (x, t) ∈ Dτ × R, ∀0 < τ < τ̃ , if there exists (xo, to) such that

(xo, to) is the minimum point, from the above process, on one hand,

(−∆)sW τ (xo, to) ≤ 0

On the other hand,

(−∆)sW τ (xo, to) = 0

This forces

W τ ≡ 0

which contradicts (H)

Thus we have proved the Theorem.
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4.2.2 Fractional parabolic Monge-Ampére equations in Bounded domains

In section 9.4, we use sliding method to prove the monotonicity of solution of parabolic

Monge Ampere equation in a bounded domain, where the parabolic Monge Ampere equa-

tion is given by:





∂u
∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

(4.47)

We want to prove the following theorem:

Theorem 4.16. (Monotonicity of solution of parabolic Monge Ampére equation)

Let Ω be a bounded domain in Rn which is convex in the xn-direction. Let 0 < s < 1,

and suppose that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
× (−∞,∞) is a positive bounded classical

solution of




∂u
∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

(4.48)

We impose some conditions on u. Let u(x, t) = ϕ(x, t) in Ωc, suppose H:

For any three points x = (x′, xn), y = (x′, yn) and z = (x′, zn) lying on a segment

parallel to the xn axis, yn < xn < zn with y, z ∈ Ωc, we have

ϕ(y, t) < u(x, t) < ϕ(z, t), (x, t) ∈ Ω× R (4.49)

and

ϕ(y, t) ≤ ϕ(x, t) ≤ ϕ(z, t), (x, t) ∈ Ωc × R (4.50)
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Assume that f is uniformly Lipschitz continuous in u. i.e:

f(t, |x|, u1)− f(t, |x|, u2) ≤ c|u1 − u2|, ∀x ∈ Ω,

then u(x, t) is monotone increasing with respect to xn in Ω, i.e: for any τ > 0, we have

u((x′, xn + τ), t) > u((x′, xn), t) for (x′, xn), (x
′, xn + τ) ∈ Ω and t ∈ R,

where x′ = (x1, · · · , xn−1) ∈ Rn−1

In the process to show u(x) here is monotone using sliding method, we begin sliding

Ωτ downward τ units along the xn axis, we should give the plane an initial position to start,

where in this initial position W τ (x) = uτ (x)− u(x) is non-negative, so the Narrow region

theorem in the bounded region is avoidable to be an ingredient here, we first prove:

Lemma 4.17. (Narrow Region principle on a parabolic cylinder) Let D be a bounded

narrow region in Rn. Assume that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
∩ L2s × [t, T ]. W τ (x, t) =

uτ (x, t)− u(x, t) is lower semi-continuous on D̄ × [t, T ], and satisfies




∂W τ

∂t
−Dθ

su
τ +Dθ

su = c(x, t)W τ (x, t), (x, t) ∈ D × [t, T ],

W τ (x, t) ≥ 0, (x, t) ∈ (Rn \D)× [t, T ],

(4.51)

where c(x, t) is bounded from below in D. Let dn(D) be the width of D in the xn-direction.

Then:

W τ (x, t) ≥ 0, (x, t) ∈ D × [t, T ] (4.52)

Moreover, we have either W τ (x, t) > 0 in D × R or W τ (x, t) ≡ 0 in Rn × R:
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Let

W̄ = em(t−t)W τ (x, t), m > 0

So then

∂W̄ (x, t)

∂t
−Dθ

s ū
τ (x, t) +Dθ

s ū(x, t) = c̄(x, t)W̄ (x, t)

By Narrow region theorem,

W̄ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}, ∀(x, t) ∈ D × (t, T )

Thus

em(t−t)W τ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}

So

W τ (x, t) ≥ e−m(t−t) min{0, inf
x∈D

W̄ (x, t)}

W τ (x, t) is bounded from below. Let t → −∞, W τ (x, t) →≥ 0.

Therefore,

W τ (x, t) ≥ 0

The inequality provides a starting point, from which we can carry out the sliding. Now

we decrease τ as long as W τ (x, t) ≥ 0 holds to its limiting position. Define

τ0 = inf{τ | W τ (x, t) ≥ 0, ∀(x, t) ∈ Dτ × R, 0 < τ < τ̃}

We show τ0 = 0 by contradiction. Suppose τ0 > 0, we will show that Ωτ can be

slid upward a little bit more and we will have W τ (x, t) ≥ 0. First of all, we show

W τ0(x, t) > 0 for (x, t) ∈ Dτ0 × R, then we let Ωτ can be slid upward a little bit more,
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show infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R.

To prove

infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R

by contradiction, suppose there exists some sequences (xk, tk) ∈ Dτ0−ε × R such that

W τ0(xk, tk) → 0 for xk → xo ∈ Dτ0−ε.

Let

Wk(x, t) = W τ0(x, t+ tk)

by regularity theory, Wk(x, t) converges uniformly to W̄ (x, t).

Since

Wk(xk, 0) = W τ0(xk, tk) → 0

W̄ (xo, 0) = 0

W̄ ≥ 0

So (xo, 0) is the minimum.

We have

∂W̄

∂t
(xo, 0)−Dθ

s ū
τ0(xo, 0) +Dθ

s ū(x
o, 0) = cτ (xo, tk)W̄ (xo, 0) = 0

so we derive

Dθ
s ū(x

o, 0)−Dθ
s ū

τ0(xo, 0) = 0

We also have

Dθ
s ū(x

o, 0)−Dθ
s ū

τ0(xo, 0) ≤ −c0cC − η < 0
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Which is a contradiction, therefore, we have proved

infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R

Now we can carve out from Dτ0 a closed set K ⊂ Dτ0 such that Dτ0\K is narrow. We

have

W τ0(x, t) ≥ c0 > 0, in K (4.53)

Since W τ is continuous with respect to τ , for small ε > 0, we have:

W τ0−ε(x, t) ≥ 0, in K (4.54)

According to (H), we have

W τ0−ε(x, t) ≥ 0, in (Dτ0−ε)c × R

It is obvious that (Dτ0−ε\K)c = K ∪ (Dτ0−ε)c, then by a Narrow region theorem




∂W τ0−ε

∂t
−Dθ

su
τ0−ε +Dθ

su
τ0−ε = c(x, t)W τ0−ε(x, t), (x, t) ∈ Dτ0−ε\K × R,

W τ0−ε(x, t) ≥ 0, (x, t) ∈ (Dτ0−ε\K)c × R,
(4.55)

we have W τ0−ε(x, t) ≥ 0, we obtain W τ (x, t) ≥ 0 for τ ∈ (τ0 − ε, τ0) which contradicts

the definition of τ0, so that τ0 = 0.

4.2.3 Fractional parabolic Monge-Ampére equations in the whole space

In section 9.7, we want to show the monotonicity of Monge-Ampere operator in whole

space and depends on xn only.
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where the parabolic Monge Ampere equation is given by:

∂u

∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Rn × (−∞,∞) (4.56)

We want to prove the following theorem:

Theorem 4.18. Let u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
∩ L2s × [t, T ] be a solution of

∂u

∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Rn × (−∞,∞) (4.57)

with condition

|u(x, t)| ≤ 1

and

u((x′, xn), t) → ±1 (4.58)

uniformly in x′ = (x1, · · · , xn−1). Also, f(t, |x|, u) is non-increasing near u(x, t) = ±1.

Then u must be strictly increasing with respect to xn, and it depends on xn only.

Step 1: Begin sliding Ωτ downward τ units along the xn axis

So then

|x| < |xτ |

We will show that for τ sufficiently close to τ̃ , that is, when τ is sufficiently large, Dτ

is narrow, we have

W τ (x, t) ≤ 0, (x, t) ∈ Dτ × R

In the process to show u(x) here is monotone using sliding method, we begin sliding
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Ωτ downward τ units along the xn axis, we will show that for τ sufficiently close to τ̃ , that

is, when τ is sufficiently large, Dτ is narrow, we have W τ (x) = u(x) − uτ (x) ≤ 0. Then

we give the plane an initial position to start sliding.

To show that for τ sufficiently large,

W τ (x, t) ≤ 0, (x, t) ∈ Rn × R (4.59)

Otherwise,

sup
Rn×R

W τ (x, t) = A > 0

then there exists a sequence {xk, tk} ⊂ Rn × R such that

W τ (xk, tk) → A > 0

as k → ∞.

Denote xk = (xk
1, x

k
2, · · · , xk

n). Let η ∈ C∞
0 :

η(x, t) =




1, if |x|, |t| < 1,

0, if |x|, |t| ≥ 2

So maxRn×R η(x, t) = 1. Set

ψk(x, t) = η(x− xk, t− tk)

There exists a sequence {εk} → 0 such that

W τ (xk, tk) + εkψk(x
k, tk) = A
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Set

U τ
k (x

k, tk) = W τ (xk, tk) + εkψk(x
k, tk)

Then there exists (x̄k, t̄k) ∈ B1(x
k)× B1(t

k) such that

U τ
k (x̄

k, t̄k) = max
Rn×R

U τ
k (x

k, tk) = A

Therefore

∂U τ
k

∂t
(x̄k, t̄k) = 0

We have

εk = A−W τ (xk, tk)

Therefore

∂W τ

∂t
(x̄k, t̄k) ∼ εk

By the definition of Dθ
s , we have

Dθ
s(W

τ + εkψk)(x̄
k, t̄k) = Dθ

s(U
τ
k )(x̄

k, t̄k) ≈ −(−�)s(U τ
k )(x̄

k, t̄k) ≤ −c0

We also have

Dθ
s(W

τ + εkψk)(x̄
k, t̄k)

≥ inf{P.V
∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy}+ inf{P.V

∫

Rn

εkψk(y, t̄
k)− εkψk(x̄

k, t̄k)

|A−1(y − x̄k)|n+2s
dy}

= Dθ
sW

τ (x̄k, t̄k)− cεk
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We also have

Dθ
sW

τ (x̄k, t̄k)− cεk

= inf{P.V
∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − cεk

= P.V

∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy − εA − cεk

= P.V

∫

Rn

u(y, t̄k)− u(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy − P.V

∫

Rn

uτ (y, t̄k)− uτ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy − εA − cεk

≥ inf{P.V
∫

Rn

u(y, t̄k)− u(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, t̄k)− uτ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − 2εA − cεk

= Dθ
su(x̄

k, t̄k)−Dθ
su

τ (x̄k, t̄k)− 2εA − cεk

=
∂u

∂t
− f(t, |x̄k|, u)− ∂uτ

∂t
+ f(t, |x̄k|, uτ )− 2εA − cεk

=
∂W τ

∂t
+ f(t, |x̄k|, uτ )− f(t, |x̄k|, u)− 2εA − cεk

= f(t, |x̄k|, uτ )− f(t, |x̄k|, u)− 2εA − cεk

When τ is sufficiently large, we have either

1. uτ (x̄k, t̄k) is close to 1 or

2. u(x̄k, t̄k) is close to −1.

Since u(x̄k, t̄k) > uτ (x̄k, t̄k), in case 1, both u(x̄k, t̄k) and uτ (x̄k, t̄k) are close to 1,

while in case 2, both u(x̄k, t̄k) and uτ (x̄k, t̄k) are close to −1. Hence in any case, we can

apply the monotonicity of f to derive that

f(t, |x̄k|, uτ ) ≥ f(t, |x̄k|, u)

Then we have

Dθ
sW

τ (x̄k, t̄k)− cεk ≥ −2εA − cεk → 0
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Finally we derived

−c0 ≥ Dθ
s(W

τ + εkψk)(x̄
k, t̄k) ≥ Dθ

sW
τ (x̄k, t̄k)− cεk ≥ 0

which is a contradiction. So we verified (4.59)

The inequality provides a starting point, from which we can carry out the sliding. Now

we decrease τ as long as W τ (x, t) ≤ 0 holds to its limiting position. Define

τ0 = inf{τ | W τ (x, t) ≤ 0, ∀(x, t) ∈ Rn × R}

We show τ0 = 0 by contradiction, we would divide the proof into two cases, one is

|xn| ≤ M , the other is |xn| ≥ M , in both cases we would show the limiting position is

τ = 0. After we have completed the second step, we would prove ∀τ > 0, W τ (x, t) < 0,

thus we have completed proof of monotonicity of solution of parabolic Monge-Ampere

equation in the whole space. In the last section, we would show u(x, t) depends on xn only,

that is, u(x, t) = u(xn, t).

Suppose τ0 > 0, we will show that Ωτ can be slid upward a little bit more. First of all,

we show sup−M≤xn≤M W τ0(x, t) < 0, if it does not hold, then sup−M≤xn≤M W τ0(x, t) = 0,

then there exists a sequence {xk, tk} ⊂ Rn−1 × [−M,M ]× R such that

W τ0(xk, tk) → 0 (4.60)

as k → ∞
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Denote xk = (xk
1, x

k
2, · · · , xk

n). Let η ∈ C∞
0 :

η(x, t) =





1, if |x|, |t| < 1,

0, if |x|, |t| ≥ 2

So maxRn×R η(x, t) = 1. Set

ψk(x, t) = η(x− xk, t− tk)

There exists a sequence {εk} → 0 such that

W τ0(xk, tk) + εkψk(x
k, tk) = 0

Set

U τ0
k (xk, tk) = W τ0(xk, tk) + εkψk(x

k, tk)

Since we have

U τ0
k (x, t) = W τ0(x, t) ≤ 0, x ∈ Rn\B2(x

k), t ∈ R\B2(t
k)

and

W τ0(xk, tk) + εkψk(x
k, tk) = 0

Then there exists (x̄k, t̄k) ∈ B1(x
k)× B1(t

k) such that

U τ0
k (x̄k, t̄k) = max

Rn×R
U τ0
k (xk, tk) = 0
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By the definition of Dθ
s , we have

Dθ
s(W

τ0 + εkψk)(x̄
k, t̄k) = Dθ

s(U
τ0
k )(x̄k, t̄k) ≈ −(−�)s(U τ0

k )(x̄k, t̄k) ≤ 0

On one hand, similar to the proof in Step 1, we have

Dθ
s(W

τ0 + εkψk)(x̄
k, to) ≥ Dθ

sW
τ0(x̄k, to)− cεk (4.61)

We also have

Dθ
sW

τ0(x̄k, t̄k)− cεk

= inf{P.V
∫

Rn

W τ0(y, t̄k)−W τ0(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − cεk

≥ inf{P.V
∫

Rn

W τ0(y, t̄k)

|A−1(y − x̄k)|n+2s
dy} − inf{P.V

∫

Rn

W τ0(x̄k, t̄k)

|A−1
k (y − x̄k)|n+2s

dy} − εk − cεk

≥ −εk − cεk → 0 (4.62)

Denote uk(x, t) = u(xk, tk), W τ0
k (x, t) = W τ0(xk, tk)

Since u is uniformly continuous, by the Arzela-Ascoli Theorem, we have

uk(x, t) → u∞(x, t) uniformly in Rn × R, as k → ∞

Let k → ∞, by the continuity of f , and from (4.61) and (4.62), we have

W τ0
k (x, t) → 0, x ∈ (B2(0))

c uniformly

Then

u∞(x, t)− uτ0
∞(x, t) ≡ 0, x ∈ (B2(0))

c
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For all m ∈ N, we have

u∞(x′, xn) = u∞(x′, xn + τ0) = u∞(x′, xn + 2τ0) = · · · = u∞(x′, xn +mτ0)

If xn is sufficiently negative and m is sufficiently large, then

u∞(x′, xn) → −1

and

u∞(x′, xn +mτ0) → 1

This is a contradiction, therefore, sup−M≤xn≤M W τ0(x, t) < 0 must be true.

Since sup−M≤xn≤M W τ0(x, t) < 0, so there exists a δ > 0 such that

sup
−M≤xn≤M

W τ (x, t) ≤ 0, ∀τ ∈ (τ0 − δ, τ0], |xn| ≤ M

which contradicts the definition of τ0, therefore, we have τ0 = 0.

Now we only need to prove when |xn| ≥ M , τ0 > 0

W τ (x, t) ≤ 0, ∀τ ∈ (τ0 − δ, τ0],

Since sup−M≤xn≤M W τ0(x, t) < 0, so there exists a δ > 0 such that

sup
−M≤xn≤M

W τ (x, t) ≤ 0, ∀τ ∈ (τ0 − δ, τ0], |xn| ≤ M

which contradicts the definition of τ0, therefore, we have τ0 = 0.
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Now we only need to prove when |xn| ≥ M , τ0 > 0

W τ (x, t) ≤ 0, ∀τ ∈ (τ0 − δ, τ0],

We use the same process of proof by contradiction to prove it, which is no difference as

previous steps. Here I would not write it again. So we have proved τ0 = 0.

Then we will show that u(x) depends on xn only.

If we replace uτ (x) by u(x + τν), the argument still holds according to the above

process, where ν = (ν1, ν2, ν3, · · · , νn) with νn > 0 is an arbitrary vector that points

upward. With the similar arguments as in Step 1 and Step 2, we can obtain that, for each of

such ν,

u(x+ τν) > u(x)

∀τ > 0 Let νn → 0, by continuity of u, we have that for arbitrary ν with νn = 0

u(x+ τν) ≥ u(x)

By replacing ν by −ν, we also have

u(x) ≥ u(x+ τν)

for arbitrary ν with νn = 0, So we have

u(x+ τν) = u(x) (4.63)

(4.63) means that u is independent of x′ = (x1, x2, · · · , xn−1). Therefore, u(x) = u(xn).
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Part 1: Method of Moving Planes and Its

Applications: Radial symmetry and

monotonicity of solutions for fractional

elliptic and parabolic equations and

systems

5 Method of Moving Planes and Its Applications: Radial

symmetry and monotonicity of solutions for fractional

elliptic and parabolic equations

5.1 Radial Symmetry of solutions of fractional elliptic equations

In the following section, as a preliminary to proving the main equation, we will prove the

solution of the elliptic fractional system is radially symmetric using the method of moving

planes which I have explained in the previous sections.

Theorem 5.1. (Radial Symmetry of solution of elliptic fractional equation)




(−∆)
α
2 u(x) = f(u(x)), x ∈ B1(0),

u(x) ≥ 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(5.1)
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where B1 is a unit ball.

Let 0 < α, β < 2, and suppose that u(x) ∈
(
C1,1

loc (Ω)∩C(Ω̄)
)

is positive bounded clas-

sical solutions of equation (5.1), and assume f(|x|, u) satisfies the following assumptions:

(X1) f(|x|, u) are decreasing in |x|.

(X2) Assume that f is uniformly Lipschitz continuous in u. i.e:

|f(|x|, u1)− f(|x|, u2)| ≤ c|u1 − u2|, ∀x ∈ B1(0),

then u(x) is radially symmetric and monotone decreasing about the origin, i.e.

u(x) = u(|x|)

.

u(x1) > u(x2), |x1| < |x2|

.

5.1.1 Basic set-up

For any given λ ∈ R, let

Tλ = {x ∈ Rn | x1 = λ for λ ∈ R}

be the moving planes,

Σλ := {x ∈ Rn | x1 < λ}
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Tλ

x xλ

Ωλ

O x1

Figure 4: Moving Planes on the Unit Ball

be the region to the left of the plane, and

xλ = (2λ− x1, x2, ..., xn)

be the reflection of x about the plane Tλ. and

Ωλ = Σλ ∩ B1(0)

be the intersection of B1(0) and Σλ.

Assume that u(x) is positive solution of equation (5.1). We compare the values of u(x)

with

uλ(x) = u(xλ)

Let

wλ(x) = uλ(x)− u(x),
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Step 1: Begin moving the plane from near the left end of B1(0) along the x1 axis, but do

not reach origin, So then

|xλ| < |x|

we derive

f(|xλ|, uλ)− f(|x|, uλ) ≥ 0

We deduce from the equation (5.1) and (X1), (X2) that wλ satisfies

(−∆)swλ(x)

=
f(|x|, uλ)− f(|x|, u)

uλ(x)− u(x)
wλ(x)

:= cλ(x)wλ(x), (5.2)

where cλ(x) =
f(|x|,uλ)−f(t,|x|,u)

uλ(x)−u(x)
is bounded.

Apparently, Ωλ is a narrow region in the x1 direction for λ very close to −1. For

further application of Narrow Region Principle, We will prove the Narrow region theorems

in Elliptic problem.

5.2 Step 1: show wλ(x) ≥ 0

To show wλ(x) ≥ 0, we would prove a Narrow region theorem for an elliptic problem:

5.2.1 Narrow region theorem for an elliptic problem

Now, in order to prove the radial symmetry of the solution of fractional elliptic equation

(5.3), in step 1, we first show wλ(x) ≥ 0. In step 2, move the plane continuously to the

right until its limiting position as long as wλ(x) ≥ 0 holds.
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Theorem 5.2. (Narrow region principle for an elliptic problem) Let Ωλ = Σλ ∩ B1(0), Ωλ

is a bounded narrow region in Σλ, assume that u(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
, if





(−∆)su(x) = f(u(x)), u(x) > 0, x ∈ B1(0),

u(x) ≡ 0, x /∈ B1(0),

(−∆)swλ(x) = cλwλ(x), x ∈ Ωλ

(5.3)

then for λ sufficiently close to −1, we have

wλ(x) ≥ 0, x ∈ Ωλ (5.4)

Suppose otherwise, (5.4) does not hold, then wλ is negative somewhere, hence there

exists an xo ∈ Ωλ such that

wλ(x
o) = min

Ωλ

wλ(x) < 0

It follows that

(−∆)swλ(x
o)

= Cn,sPV

∫

Rn

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy +

∫

Σ̃λ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy +

∫

Σλ

wλ(x
o)− wλ(y

λ)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ

wλ(x
o)− wλ(y)

|xo − y|n+2s
dy +

∫

Σλ

wλ(x
o) + wλ(y)

|xo − yλ|n+2s
dy}

≤ Cn,s{
∫

Σλ

wλ(x
o)− wλ(y)

|xo − yλ|n+2s
dy +

wλ(x
o) + wλ(y)

|xo − yλ|n+2s
dy}

= Cn,s

∫

Σλ

2wλ(x
o)

|xo − yλ|n+2s
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Tλ

xo
O x1

l

d

Figure 5: Choose l

To estimate the integral above, we may first consider the extreme case where xo
1 = λ.

Then it is easy to see that
∫

Σλ0

1

|xo − yλ|
dy = ∞

This suggests that we may obtain values arbitrarily large by integrating on a domain

that is sufficiently close to the hyperplane P := {y ∈ Rn | y1 = λ}.

Denote

d = dis[x0, Tλ] ≤ width(Ωλ)

Choose a ball centered at xo with radius l, also choose a unit ball centered at xo, as

Figure 5 shows, it is easy to see d ≤ l.

Since

d ≤ |xo − yλ| ≤ 2d
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Then

1

|xo − yλ|
≥ 1

2d

Lemma 5.3. Here we want to prove a lemma that the integral
∫
Σλ0

1
|xo−yλ|dy is greater than

or equal to c
d2s

, so as to use this results in subsequent sections:

∫

Σλ0

1

|xo − yλ|
dy

≥ c

d2s

Proof.

∫

Σλ0

1

|xo − yλ|
dy

≥
∫

Σλ0
∩(B1(xo))\(Bl(xo))

1

|xo − yλ|
dy

≥
∫

D

1

|xo − yλ|n+2s

≥ vol(D) · 1

(2d)n+2s

≥ c(2d)n · 1

(2d)n+2s

=
c

d2s

With the region D shown in Figure 6.

Following from

(−�)swλ(x
o) ≤ Cn,s

∫

Σλ0

2wλ(x
o)

|xo − yλ|n+2s

we deduce

(−∆)swλ(x
o) ≤ c

d2s
wλ(x

o) (5.5)
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Tλ

xo
O x1

l

d

D

Figure 6: The region of D

From (5.3), we deduce

cλ(x
o)wλ(x

o) ≤ c

d2s
wλ(x

0)

Then we derive

c

d2s
≤ cλ(x

o)

Which is a contradiction for d sufficiently small, since cλ(x) is bounded.

Therefore, (5.4) must be valid.

So far, we have proved the theorem 5.2.

(In Figure 5, the region of north-west pattern is Σλ0 ∩B1(x
o) \Bl(x

o). In Figure 6, the

region of north-west pattern is D. )
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5.3 Step 2: Move the plane continuously to the right until its limiting

position as long as wλ(x) ≥ 0 holds.

Define

λ0 = sup{λ ≤ 0 | wµ(x) ≥ 0, ∀x ∈ Ωµ, µ ≤ λ}

In this part, we show that

λ0 = 0

Suppose

λ0 < 0

we show that the plane Tλ0 can be moved further to the right. To be more rigorous, there

exists some ε > 0, such that for any λ ∈ (λ0, λ0 + ε), we have wλ(x) ≥ 0, x ∈ Σλ0

This is a contradiction with the definition of λ0. Hence we must have

λ0 = 0

5.3.1 Show wλ0(x) > 0 for x ∈ Ωλ0

Suppose that λ0 < 0, then the reflection of the curved part of ∂Ωλ0 falls inside B1(0) and

wλ0(x) ≥ 0 for x ∈ ∂Ωλ0 . (See Figure 7)

We want to show wλ0(x) > 0 for x ∈ Ωλ0:

Otherwise, ∃xo ∈ Ωλ0 such that wλo(x
o) = 0

Since wλ0(x) ≥ 0 inside Ωλo , so for wλ0(x
o) = 0, we know xo is the minimum.
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Tλ0T0

reflection of ∂Ωλ0

Figure 7: reflection of the curved part of ∂Ωλ0
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Following from (5.3), we then derive

(−∆)swλ0(x
o)

:= cλ0(x
o)wλ0(x

o)

:= 0

It follows that

0 = (−∆)swλ0(x
o)

= Cn,sPV

∫

Rn

−wλ0(y)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−wλ0(y)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−wλ0(y)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−wλ0(y)

|xo − y|n+2s
dy +

∫

Σλ0

−wλ0(y
λ)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−wλ0(y)

|xo − y|n+2s
dy +

∫

Σλ0

wλ0(y)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

wλ0(y){
1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0 (5.6)

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

wλ0(y) ≥ 0

This implies that

wλ0(y) ≡ 0, y ∈ Ωλ0 . (5.7)
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We derive a contradiction since the plane Tλ0 did not reach the origin. If we take a point

x̄ on the curved part ∂Ωλ0 , then it’s reflection point x̄λ0 is in the interior of the ball, and

hence u(x̄λ0) > 0, therefore, wλ0(x̄) = u(x̄λ0)− u(x̄) > 0, which contradicts (5.7).

We conclude wλ0(x) > 0 for every x ∈ Ωλo .

Next, we want to further derive

wλ0(x) ≥ co > 0, x ∈ Ωλ0−δ (5.8)

I will prove (5.8) by contradiction.

5.3.2 Show w̄(y) ≡ 0, ∀y ∈ Ωλo−δ

Proof : If (5.8) is violated, then ∃xk ∈ Ωλ0−δ such that wλ0(xk) → 0

Without loss of generality, by Bolzano-Weierstrass theorem, ∃ subsequences of xk, here

we still denote this subsequence by xk, such that xk → xo ∈ Ωλo−δ Let

wk(x) = wλ0(xk)

From (5.2), we derive:

(−∆)swk(x)

= f(|xλ0 |, uλ0)− f(|x|, u)

= f(|xλ0 |, uλ0)− f(|x|, uλ0) + f(|x|, uλ0)− f(|x|, u)

≥ f(|x|, uλ0)− f(|x|, u)

=
f(|x|, uλ0)− f(|x|, u)

uλ0(x)− u(x)
wk(x, t)

:= cλ0(x)wk(x),
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So wk satisfies

(−�)swk(x) = cλ0(x)wk(x) (5.9)

By regularity theory for parabolic equations [45], there exists some functions w̄(x) and

c̄(x) such that k → ∞, wk(x) converges uniformly to w̄(x) for x ∈ Ωλo ,

and w̄ satisfies:

(−�)sw̄ = c̄(x)w̄(x)

Since

wk(x) = wλ0(xk) → 0

w̄(xo) = 0

and

w̄ ≥ 0

So xo is the minimum. Also from (5.18), we derive,

(−∆)sw̄(xo)

≥ f(|xo|, uλ0)− f(|xo|, u)

=
f(|xo|, uλ0)− f(|xo|, u)

ūλ0(x
o)− ū(xo)

w̄(xo)

:= cλ(x
o)w̄(xo),

we derive

(−�)sw̄(xo) = 0
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It follows that

0 = (−∆)sw̄(xo)

= Cn,sPV

∫

Rn

−w̄(y)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−w̄(y)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−w̄(y)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y)

|xo − y|n+2s
dy +

∫

Σλ0

−w̄(yλ)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y)

|xo − y|n+2s
dy +

∫

Σλ0

w̄(y)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

w̄(y){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0 (5.10)

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

w̄(y) ≥ 0

This implies that

w̄(y) ≡ 0, ∀y ∈ Rn

5.3.3 Show ū(x) ≡ 0

Let uk(x) = u(xk), then by (5.18), we have

(−∆)suk(x) = f(uk(x))

By regularity theory for parabolic equations [45], there exists some functions ū(x) such
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that as k → ∞, uk(x) converges uniformly to ū(x) for x ∈ B1(0), f(u) converges uni-

formly to f̄(u) for x ∈ Ωλo

and

(−∆)sū(x) = f̄(ū(x))

Since

f(0) ≥ 0

Thus

f̄(0) ≥ 0

In order to show that

ū(x) ≡ 0, x ∈ Rn, (5.11)

we apply the following:

Lemma 5.4. (Strong Maximum Principle for (−∆)sū = f̄(ū).

Assume that ū(x) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]




(−∆)sū(x) = f̄(ū), x ∈ Ωλ,

ū(x) ≥ 0, x ∈ Ωλ

(5.12)

we have either

ū(x) > 0, x ∈ B1(0)
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or

ū(x) ≡ 0, x ∈ Rn

Proof. First, if ū(x) ≥ 0 and ū(xo) = 0, xo then is a minimum, if ū(x) �≡ 0, then

(−∆)sū(xo)

= Cn,sPV

∫

Rn

−ū(y)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−ū(y)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−ū(y)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−ū(y)

|xo − y|n+2s
dy +

∫

Σλ0

−ū(yλ)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−ū(y)

|xo − y|n+2s
dy +

∫

Σλ0

ū(y)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

ū(y){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

< 0

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

ū(y) ≥ 0

and

ū(y) �≡ 0

which, by (5.12), is a contradiction with f̄(0) ≥ 0.

Therefore, we have either ū(x) > 0, x ∈ B1(0) or ū(x) ≡ 0, x ∈ Rn.
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If ū(x) > 0, x ∈ B1(0), we know λ0 < 0, if we take a point x̄ on the curved part

∂Ωλ0 , then it’s reflection point x̄λ0 is in the interior of the ball (see Figure 11) and hence

ū(x̄λ0) > 0, therefore, w̄(x̄) = ū(x̄λ0) − u(x̄) > 0. w̄(x) > 0 somewhere, but we already

derive w̄(x) ≡ 0, hence we must have ū(x) ≡ 0, x ∈ Rn.

Thus, we know u(xk) converges to 0 uniformly.

5.3.4 Derive a contradiction for large k

In order to derive a contradiction for large k, Let

wk(x) ≡ wλ0(xk) = mk (5.13)

which converges to zero.

Let

vk(x) = wk(x)− 2mk (5.14)

So

vk(xk)

= wk(xk)− 2mk

so vk(x) attains its minimum at some point, say (x̄k) in Ωλ0−δ.
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Combining (5.13) and (5.14), it is easy to deduce

vk(xk)

= wk(xk)− 2mk

= mk − 2mk

= −mk

Thus

vk(x̄k) ≤ −mk

Then

(−�)svk = cλvk + 2mk

By regularity theory for parabolic equations [45], there exists some functions v̄(x) such

that k → ∞, vk(x) → v̄(x) converges uniformly for x ∈ Ωλo ,

Moreover

(−∆)sv̄ = cλv̄

Passing to a subsequence, (x̄k) → (xo) ∈ Ωλo−δ

wk → w̄ uniformly, and

(−∆)sw̄ = c̄w̄

As we have already derived

w̄(xo) = 0
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Also following from (5.2)

(−∆)sw̄(xo)

≥ f(|xo|, uλ0)− f(|xo|, u)

=
f(|xo|, uλ0)− f(|xo|, u)

ūλ0(x
o)− ū(xo)

w̄(xo)

:= cλ(x
o)w̄(xo),

It is easy to deduct

(−∆)sw̄(xo) = 0

It follows

(−∆)sw̄(xo)

= Cn,sPV

∫

Rn

−w̄(y)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−w̄(y)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−w̄(y)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y)

|xo − y|n+2s
dy +

∫

Σλ0

−w̄(yλ)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y)

|xo − y|n+2s
dy +

∫

Σλ0

w̄(y)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

w̄(y){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

w̄(y) ≥ 0
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This implies

w̄(x) ≡ 0, ∀x ∈ Rn

Similar with above, assume f(0) ≥ 0, for

uk(x) = u(xk)

uk(x) → ū(x)

(−∆)sū = f(ū)

We have

ū(x) ≡ 0

Now for sufficiently large k,

(−∆)svk(x̄k)

= (−∆)swk

= cλo(x̄k)wk(x̄k)

Since we know

(−∆)svk(x̄k)

≤ c

[d(x̄k, Tλo)]
2s
vk(x̄k)

≤ −c1mk
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where c1 > 0.

cλo(x̄k) = o(1) → 0

Finally,

−c1mk ≥ o(1)mk

which is a contradiction with −c1mk ≥ o(1)mk as k → ∞.

Hence, we have proved (5.8).

Since wλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all

λ ∈ (λ0, λ0 + ε), we have

wλ ≥ 0, x ∈ Ωλ0−δ (5.15)

Now apply the Narrow region theorem 1.1 and in our case the narrow region is

Ω−
λ \Ωλ0−δ

By Narrow region theorem, we derive

wλ ≥ 0, x ∈ Ω−
λ \Ωλ0−δ (5.16)

Combining (5.15) and (5.16), we conclude that for all λ ∈ (λ0, λ0 + ε)

wλ(x) ≥ 0, x ∈ Ωλ



111

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and

wλ0 ≥ 0, ∀x ∈ Ωλ0

Similarly, one can move the plane Tλ from λ = 1 to the left and show that

wλ0 ≤ 0, ∀x ∈ Ωλ0

Now we have shown that

λ0 = 0

and

wλ0 ≡ 0, x ∈ Ωλ0

This completes the setp 2.

5.3.5 Conclude the solution is radially symmetric and monotone decreasing

So far, we have proved that u is symmetric about the plane T0. Since the x1 direction can

be chosen arbitrarily, we have actually shown that u is radially symmetric about origin.

Since wλ(x) �≡ 0, x ∈ Tλ, ∀0 < λ < λ0, if there exists xo such that xo is the minimum

point, from the above process, on one hand,

(−∆)swλ(x
o) ≤ 0
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On the other hand,

(−∆)swλ(x
o) = 0

This forces

wλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin.

5.4 Radial Symmetry of solutions of fractional parabolic equations

In the following section, we will try to prove the solution of the parabolic equation with

assumption in section 2.2 is radially symmetric using the method of moving planes.

Theorem 5.5. (Radial Symmetry of solution of fractional parabolic equation)




∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) > 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t) ≡ 0, x /∈ B1(0),

(5.17)

where B1(0) is a unit ball.

Let 0 < s < 1, and suppose that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
× (−∞,∞) is a positive

bounded classical solution of equation (5.17), and assume f(t, |x|, u) satisfies the following

assumptions:

(f1) f(t, |x|, u) are decreasing in |x|.

(f2) Assume that f is uniformly Lipschitz continuous in u. i.e:

f(t, |x|, u1)− f(t, |x|, u2) ≤ c|u1 − u2|, ∀x ∈ B1(0),
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Tλ

x xλ

Ωλ

O x1

Figure 8: Moving Planes on the Unit Ball

then u(x, t) is radially symmetric and monotone decreasing about the origin. i.e.

u(x, t) = u(|x|, t)

u(x1, t) > u(x2, t), |x1| < |x2|.

.

5.4.1 Basic set-up

For any given λ ∈ R, let

Tλ = {x ∈ Rn | x1 = λ for λ ∈ R}

be the moving planes,

Σλ := {x ∈ Rn | x1 < λ}
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be the region to the left of the plane, and

xλ = (2λ− x1, x2, ..., xn)

be the reflection of x about the plane Tλ. and

Ωλ = Σλ ∩ B1(0)

be the intersection of B1(0) and Σλ.

Assume that u(x, t) is a positive solution of equation (5.17). We compare the values of

u(x, t) with

uλ(x, t) = u(xλ, t).

Let

wλ(x, t) = uλ(x, t)− u(x, t).

Step 1: Begin moving the plane from near the left end of B1(0) along the x1 axis, but do

not reach origin,

So then

|xλ| < |x|

we derive

f(t, |xλ|, uλ)− f(t, |x|, uλ) ≥ 0
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We deduce from the equation (1.8) and (f1), (f2) that wλ satisfies

∂wλ

∂t
(x, t) + (−∆)swλ(x, t)

= f(t, |xλ|, uλ)− f(t, |x|, u)

= f(t, |xλ|, uλ)− f(t, |x|, uλ) + f(t, |x|, uλ)− f(t, |x|, u)

≥ f(t, |x|, uλ)− f(t, |x|, u)

=
f(t, |x|, uλ)− f(t, |x|, u)

uλ(x, t)− u(x, t)
wλ(x, t)

:= cλ(x, t)wλ(x, t), (5.18)

where cλ(x, t) =
f(t,|x|,uλ)−f(t,|x|,u)

uλ(x,t)−u(x,t)
is bounded.

Apparently, Ωλ is a narrow region in the x1 direction for λ very close to −1. For

further application of Narrow Region Principle, We will prove the Narrow region theorem

in parabolic problem in the following sections.

5.5 A parabolic problem

In Parabolic case, we add a time dimension on this unit ball with lower edge t = t and

higher edge t = T , denotes this thin cylinder as Ωλ×(t, T ] to be the narrow region we want

to use(See Figure 9).

Now, in order to prove the radial symmetry of the solution of parabolic equation (5.17),

we consider

w̄ = em(t−t)wλ(x, t), m > 0

and wλ ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])
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O

T

tbar

Figure 9: Thin cylinder in Unit Ball

5.6 Step 1: show wλ(x, t) ≥ 0

To show wλ(x, t) ≥ 0, we first show that w̄ can not attain its negative minimum in

Ωλ × (t, T ], to attain this goal, we will first prove a maximum principle in Ωλ × (t, T ].

5.6.1 Maximum principle on a parabolic cylinder

Lemma 5.6. (Maximum principle on a parabolic cylinder) Assume that




∂w
∂t

+ (−∆)sw = c(x, t)w(x, t), x ∈ Ωλ × [t, T ],

w(xλ, t) = −w(x, t), x ∈ Ωλ × [t, T ],

w(x, t) ≥ 0, x ∈ Σλ\Ωλ × [t, T ],

(5.19)

Then for λ sufficiently close to −1, we have

w(x, t) ≥ min{0, inf
Ωλ×[t,T ]

w(x, t)}, w ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ]) (5.20)

Proof. If (5.20) does not hold, then the lower semi-continuity of w(x, t) on Ω̄λ × [t, T ]

guarantees that there exists an (xo, to) ∈ Ωλ × [t, T ] such that

w(xo, to) = min
Ωλ×(t,T ]

w < 0
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And one can further deduce from condition (5.19) that (xo, to) is in the interior of Ωλ ×

[t, T ]

Similar to the argument in Section 4.3.1, we have

(−∆)sw(xo, to)

= Cn,sPV

∫

Rn

w(xo, to)− w(y, to)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ

w(xo, to)− w(y, to)

|xo − y|n+2s
dy +

∫

Σ̃λ

w(xo, to)− w(y, to)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ

w(xo, to)− w(y, to)

|xo − y|n+2s
dy +

∫

Σλ

w(xo, to)− w(yλ, to)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ

w(xo, to)− w(y, to)

|xo − y|n+2s
dy +

∫

Σλ

w(xo, to) + w(y, to)

|xo − yλ|n+2s
dy}

≤ Cn,s{
∫

Σλ

w(xo, to)− w(y, to)

|xo − yλ|n+2s
dy +

w(xo, to) + w(y, to)

|xo − yλ|n+2s
dy}

= Cn,s

∫

Σλ

2w(xo, to)

|xo − yλ|n+2s

Lemma 5.7. Here we want to prove a lemma that the integral of 1
|xo−yλ|n+2s is greater than

or equal to c
d2s

∫

Σλ0

1

|xo − yλ|n+2s
dy

≥ c

d2s
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Tλ0

xo
O x1

2l

d

D

Figure 10: The region of D = B2l ∩ Σ̃λ0

Proof.

∫

Σλ0

1

|xo − yλ|n+2s
dy

≥
∫

D

1

|xo − y|n+2s
dy

≥ vol(D) · 1

(2d)n+2s

≥ c(2d)n · 1

(2d)n+2s

=
c

d2s

Let D = B2l(x
o, to) ∩ Σ̃λ0 . (See Figure 10, the shaded region is region D = B2l(x

o, to) ∩

Σ̃λ0)
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Thus,

(−∆)2sw(xo, to) ≤ cw(xo, to)

d2s
< 0 (5.21)

Combining (5.18) and (5.21), we deduce

cλ(x
o, to)w(xo, to) ≤ cw(xo, to)

d2s
+

∂w(xo, to)

∂t

= cλ(x
o, to)w(xo, to) ≤ cw(xo, to)

d2s

Then we derive

c

d2s
≤ cλ(x

o, to)

for λ sufficiently close to −1, d would be sufficiently small, since cλ is bounded, we

derive a contradiction. Therefore, (5.20) must be valid. So far, we have proved the Lemma

5.6.

Let

w̄ = em(t−t)wλ(x, t), m > 0

From (5.18) we derive

∂w̄

∂t
+ (−�)sw̄ = c̄w̄

with c̄ is still bounded.

This time, we want to show

wλ(x, t) ≥ 0 (5.22)
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Suppose otherwise, (5.22) does not hold, then w̄(x, t) is negative somewhere, hence

there exists an xo ∈ Ωλ and to ∈ [t, T ] such that

w̄(xo, to) = min
Ωλ×(t,T ]

w̄ < 0

If

to < T

∂w̄

∂t
(xo, to) = 0

If

to = T

∂w̄

∂t
(xo, to) ≤ 0

From (5.18), we derive

(−∆)sw̄(xo, to) ≥ c̄(xo, to)w̄(xo, to)

We also have

(−∆)sw̄(xo, to) ≤ c

d2s
w̄(xo, to) (5.23)

We deduce

c

d2s
w̄(xo, to) ≥ c̄(xo, to)w̄(xo, to)

Then we derive

c

d2s
≤ c̄(xo, to)
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Which is a contradiction for d sufficiently small. Thus,

w̄(x, t) ≥ min{0, inf
x∈Ωλ

w̄(x, t)}, ∀(x, t) ∈ Ωλ × (t, T )

Thus

em(t−t)wλ(x, t) ≥ min{0, inf
x∈Ωλ

wλ(x, t)}

So

wλ(x, t) ≥ e−m(t−t) min{0, inf
x∈Ωλ

wλ(x, t)}

wλ(x, t) is bounded from below. Let t → −∞, wλ(x, t) →≥ 0.

Therefore,

wλ(x, t) ≥ 0

if Ωλ is narrow.

5.7 Step 2: Move the plane continuously to the right until its limiting

position as long as wλ(x, t) ≥ 0 holds.

Define

λ0 = sup{λ ≤ 0 | wµ(x, t) ≥ 0, ∀(x, t) ∈ Ωµ × R, µ ≤ λ}

In this part, we show that

λ0 = 0

Suppose

λ0 < 0

we show that the plane Tλ0 can be moved further to the right. To be more rigorous, there
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exists some ε > 0, such that for any λ ∈ (λ0, λ0+ε), we have wλ(x, t) ≥ 0, (x, t) ∈ Σλ0×R

This is a contradiction with the definition of λ0. Hence we must have

λ0 = 0

5.7.1 Show wλ0(x, t) > 0 for (x, t) ∈ Ωλo × R

Suppose that λ0 < 0, then the reflection of the curved part of ∂Ωλ0 falls inside B1(0) and

wλ0(x, t) ≥ 0 for x ∈ ∂Ωλ0 . (See Figure 11)

We want to show wλ0(x, t) > 0 for (x, t) ∈ Ωλo × R

Otherwise, ∃(xo, to) ∈ Ωλo × R such that wλ0(x
o, to) = 0

Since wλ0(x, t) ≥ 0 inside Ωλo × R, so for wλ0(x
o, to) = 0, we know (xo, to) is the

minimum.

Then

∂wλ0

∂t
(xo, to) = 0

Following from (5.18), we then derive

∂wλ0

∂t
(xo, to) + (−∆)swλ0(x

o, to)

≥ f(to, |xo|, uλ0)− f(to, |xo|, u)

=
f(to, |xo|, uλ0)− f(to, |xo|, u)

uλ0(x
o, to)− u(xo, to)

wλ0(x
o, to)

:= cλ0(x
o, to)wλ0(x

o, to),

So that

(−�)swλ0(x
o, to) = 0
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Tλ0T0

reflection of ∂Ωλ0

Figure 11: reflection of the curved part of ∂Ωλ0
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It follows that

0 = (−∆)swλ0(x
o, to)

= Cn,sPV

∫

Rn

−wλ0(y, t
o)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−wλ0(y, t
o)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−wλ0(y, t
o)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−wλ0(y, t
o)

|xo − y|n+2s
dy +

∫

Σλ0

−wλ0(y
λ, to)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−wλ0(y, t
o)

|xo − y|n+2s
dy +

∫

Σλ0

wλ0(y, t
o)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

wλ0(y, t
o){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0 (5.24)

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

wλ0(y, t
o) ≥ 0

This implies that

wλ0(y, t
o) ≡ 0, (y, t) ∈ Ωλ0 × R. (5.25)

We derive a contradiction since the plane Tλ0 did not reach the origin. If we take a

point x̄ on the curved part ∂Ωλ0 , then it’s reflection point x̄λ0 is in the interior of the ball,

and hence u(x̄λ0 , t) > 0, therefore, wλ0(x̄, t) = u(x̄λ0 , t) − u(x̄, t) > 0, which contradicts

(5.25).

We conclude wλ0(x, t) > 0 for every (x, t) ∈ Ωλ0 × R.

However, since t ∈ (−∞,∞), wλ0(x, t) may not be bounded away from 0.
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We want to further derive

inf wλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ × R (5.26)

I will prove (5.26) by contradiction.

5.7.2 Prove by contradiction: Show w̄(y, 0) ≡ 0, ∀(y, 0) ∈ Ωλo−δ × R

Proof : If (5.26) is violated, then ∃(xk, tk) ∈ Ωλ0−δ × R such that wλ0(xk, tk) → 0

Without loss of generality, by Bolzano-Weierstrass theorem, ∃ subsequences of xk, here

we still denote this subsequence by xk, such that xk → xo ∈ Ωλo−δ

Now for each tk(k ≥ k0), Let

wk(x, t) = wλ0(x, t+ tk)

so

wk(xk, 0) = wλ0(xk, tk) → 0

From (5.18), we derive:

∂wk

∂t
(x, t) + (−∆)swk(x, t)

= f(t+ tk, |xλ0 |, uλ0)− f(t+ tk, |x|, u)

= f(t+ tk, |xλ0 |, uλ0)− f(t+ tk, |x|, uλ0) + f(t+ tk, |x|, uλ0)− f(t+ tk, |x|, u)

≥ f(t+ tk, |x|, uλ0)− f(t+ tk, |x|, u)

=
f(t+ tk, |x|, uλ0)− f(t+ tk, |x|, u)

uλ0(x, t+ tk)− u(x, t+ tk)
wk(x, t)

:= cλ0(x, t+ tk)wk(x, t),
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So wk satisfies

∂wk

∂t
(x, t) + (−�)swk(x, t) = cλ0(x, t+ tk)wk(x, t) (5.27)

By regularity theory for parabolic equations [45], there exists some functions w̄(x, t)

and c̄(x, t) such that k → ∞, wk(x, t) converges uniformly to w̄(x, t) for (x, t) ∈ Ωλo ×R,

and w̄ satisfies:

∂w̄

∂t
+ (−�)sw̄ = c̄(x, t)w̄(x, t)

Since

wk(xk, 0) = wλ0(xk, tk) → 0

w̄(xo, 0) = 0

and

w̄ ≥ 0

So (xo, 0) is the minimum.

∂w̄

∂t
(xo, 0) = 0

Also from (5.18), we derive,

∂w̄

∂t
(xo, 0) + (−∆)sw̄(xo, 0)

≥ f(0, |xo|, uλ0)− f(0, |xo|, u)

=
f(0, |xo|, uλ0)− f(0, |xo|, u)

ūλ0(x
o, tk)− ū(xo, tk)

w̄(xo, 0)

:= cλ(x
o, t)w̄(xo, 0),
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we derive

(−�)sw̄(xo, 0) = 0

It follows that

0 = (−∆)sw̄(xo, 0)

= Cn,sPV

∫

Rn

−w̄(y, 0)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−w̄(y, 0)

|xo − y|n+2s
dy +

∫

Σ̃λ0

w̄(y, 0)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

−w̄(yλ, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

w̄(y, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

w̄(y, 0){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0 (5.28)

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

w̄(y, 0) ≥ 0

This implies that

w̄(y, 0) ≡ 0, ∀y ∈ Rn

5.7.3 Show ū(x, 0) ≡ 0

Let uk(x, t) = u(x, t+ tk), then by (5.18), we have

∂uk(x, t)

∂t
+ (−∆)suk(x, t) = f(t+ tk, uk(x, t))
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By regularity theory for parabolic equations [45], there exists some functions ū(x, t)

such that as k → ∞, uk(x, t) converges uniformly to ū(x, t) for (x, t) ∈ B1(0)×R, f(0, u)

converges uniformly to f̄(0, u) for x ∈ Ωλo

and

∂ū(x, t)

∂t
+ (−∆)sū(x, t) = f̄(t, ū(x, t))

Since

f(0, u) ≥ 0

Thus

f̄(0, ū) ≥ 0

In order to show that

ū(x, 0) ≡ 0, x ∈ Rn, (5.29)

we apply the following:

Lemma 5.8. (Strong Maximum Principle for ∂ū
∂t

+ (−∆)sū = f̄(t, ū)).

Assume that ū(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])




∂ū(x,t)
∂t

+ (−∆)sū(x, t) = f̄(t, ū), (x, t) ∈ Ωλ × [t, T ],

ū(x, t) ≥ 0, (x, t) ∈ Ωλ × [t, T ]

(5.30)

we have either

ū(x, 0) > 0, x ∈ B1(0)
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or

ū(x, 0) ≡ 0, x ∈ Rn

Proof. First, if ū(x, t) ≥ 0 and ū(xo, 0) = 0, (xo, 0) then is a minimum, thus we have

∂ū
∂t
(xo, 0) = 0.

If ū(x, 0) �≡ 0, then

(−∆)sū(xo, 0)

= Cn,sPV

∫

Rn

−ū(y, 0)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−ū(y, 0)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

−ū(yλ, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

ū(y, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

ū(y, 0){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

< 0

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

ū(y, 0) ≥ 0

and

ū(y, 0) �≡ 0

which, by 5.30, is a contradiction with f̄(0, ū) ≥ 0.
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Therefore, we have either ū(x, 0) > 0, x ∈ B1(0) or ū(x, 0) ≡ 0, x ∈ Rn.

If ū(x, 0) > 0, x ∈ B1(0), we know λ0 < 0, if we take a point x̄ on the curved part

∂Ωλ0 , then it’s reflection point x̄λ0 is in the interior of the ball (see Figure 11) and hence

ū(x̄λ0 , 0) > 0, therefore, w̄(x̄, 0) = ū(x̄λ0 , 0) − u(x̄, 0) > 0. w̄(x, 0) > 0 somewhere, but

we already derive w̄(x, 0) ≡ 0, hence we must have ū(x, 0) ≡ 0, x ∈ Rn.

Thus, we know u(x, tk) converges to 0 uniformly.

5.7.4 Derive a contradiction for large k

In order to derive a contradiction for large k, we modify tk a bit.

We still denote wk(x, t) by wλ0(x, t+ tk), Let

wk(xk, 0) ≡ wλ0(xk, tk) = mk (5.31)

which converges to zero.

Let

vk(x, t) = wk(x, t)− 2mkη(εk(t− tk)) (5.32)

where η(t) ∈ C∞
0 is a cut-off function such that |η′(t)| ≤ c and

η(t) =




1, |t| ≤ 1,

0, |t| ≥ 2.
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When (x, t) is outside Ωλ0−δ × (tk − 2, tk + 2),

vk(x, t)

= wk(x, t),

When (x, t) is inside Ωλ0−δ × (tk − 2, tk + 2), such that at (x, tk)

vk(x, tk)

= wk(x, tk)− 2mk

The value of vk outside Ωλ0−δ × (tk − 2, tk + 2) is greater than the value of vk inside

Ωλ0−δ × (tk − 2, tk + 2), so vk(x, t) attains its minimum at some point, say (x̄k, t̄k) in

Ωλ0−δ × (tk − 2, tk + 2).

This implies,

∂vk
∂t

(x̄k, t̄k) = 0

Combining (5.31) and (5.32), it is easy to deduce

vk(xk, 0)

= wk(xk, 0)− 2mk

= mk − 2mk

= −mk

Thus

vk(x̄k, t̄k) ≤ −mk
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Let

ṽk(x, t) = vk(x, t+ t̄k)

Then

ṽk(x̄k, 0) = vk(x̄k, t̄k)

Then

∂ṽk
∂t

+ (−�)sṽk = cλṽk + 2mkη(εk(t− tk))

By regularity theory for parabolic equations [45], there exists some functions v̄(x, t)

such that k → ∞, ṽk(x, t) → v̄(x, t) converges uniformly for x ∈ Ωλo ,

Moreover

∂v̄

∂t
+ (−∆)sv̄ = cλv̄

We know

∂vk
∂t

∼ ∂wk

∂t
− 2mkεkc

Therefore we conclude

∂wk

∂t
∼ mkεk

Passing to a subsequence, (x̄k, t̄k) → (xo, to) ∈ Ωλo−δ × [−2, 2]

wk → w̄ uniformly, and

∂w̄

∂t
+ (−∆)sw̄ = c̄w̄

As we have already derived

w̄(xo, to) = 0,
∂w̄

∂t
(xo, to) = 0
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Also following from (5.18)

∂w̄

∂t
(xo, to) + (−∆)sw̄(xo, to)

≥ f(to, |xo|, uλ0)− f(to, |xo|, u)

=
f(to, |xo|, uλ0)− f(to, |xo|, u)

ūλ0(x
o, to)− ū(xo, to)

w̄(xo, to)

:= cλ(x
o, to)w̄(xo, to),

It is easy to deduct

(−∆)sw̄(xo, to) = 0

It follows

(−∆)sw̄(xo, to)

= Cn,sPV

∫

Rn

−w̄(y, to)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−w̄(y, to)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−w̄(y, to)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y, to)

|xo − y|n+2s
dy +

∫

Σλ0

−w̄(yλ, to)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−w̄(y, to)

|xo − y|n+2s
dy +

∫

Σλ0

w̄(y, to)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

w̄(y, to){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

w̄(y, to) ≥ 0



134

This implies

w̄(x, to) ≡ 0, ∀x ∈ Rn

Similar with above, assume f(t, 0) ≥ 0, for

uk(x, t) = u(x, t+ tk)

uk(x, t̄k) = u(x, t̄k + tk)

uk(x, t) → ū(x, t)

∂ū

∂t
+ (−∆)sū = f(t, ū)

We have

ū(x, t) ≡ 0

Now for sufficiently large k,

(−∆)svk(x̄k, t̄k)

= (−∆)swk

= −∂wk

∂t
(x̄k, t̄k) + cλo(x̄k, t̄k + tk)wk(x̄k, t̄k)

Since we know

(−∆)svk(x̄k, t̄k)

≤ c

[d(x̄k, Tλo)]
2s
vk(x̄k, t̄k)

≤ −c1mk
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where c1 > 0

−∂wk

∂t
(x̄k, t̄k) ∼ εkmk

If we assume ∂f
∂u
(t, 0) = 0, as uk → 0 uniformly,

cλo(x̄k, t̄k + tk) = o(1) → 0

Finally,

−c1mk ≥ o(1)mk

or

c1 ≤ −o(1)

Since o(1) → 0 as k → ∞, which is a contradiction with −c1mk ≥ o(1)mk as k → ∞.

Hence, we have proved (5.26).

Since wλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all

λ ∈ (λ0, λ0 + ε), we have

wλ(x, t) ≥ 0, (x, t) ∈ Ωλ0−δ × R (5.33)

Now apply the Narrow region theorem 1.1 and in our case the narrow region is

Ω−
λ \Ωλ0−δ × R
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By Narrow region theorem, we derive

wλ(x, t) ≥ 0, (x, t) ∈ Ω−
λ \Ωλ0−δ × R (5.34)

Combining (5.33) and (5.34), we conclude that for all λ ∈ (λ0, λ0 + ε)

wλ(x, t) ≥ 0, x ∈ Ωλ × R

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and

wλ0(x, t) ≥ 0, ∀(x.t) ∈ Ωλ0 × R

Similarly, one can move the plane Tλ from λ = 1 to the left and show that

wλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 × R

Now we have shown that

λ0 = 0

and

wλ0(x, t) ≡ 0, (x, t) ∈ Ωλ0 × R

This completes the step 2.
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5.7.5 Conclude the solution is radially symmetric and monotone decreasing

So far, we have proved that u is symmetric about the plane T0. Since the x1 direction can

be chosen arbitrarily, we have actually shown that u is radially symmetric about origin.

Since wλ(x, t) �≡ 0, (x, t) ∈ Tλ × R, ∀0 < λ < λ0, if there exists (xo, to) such that

(xo, to) is the minimum point, from the above process, on one hand,

(−∆)swλ(x
o, to) ≤ 0

On the other hand,

(−∆)swλ(x
o, to) = 0

This forces

wλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin.

6 Method of Moving Planes and Its Applications: Radial

symmetry and monotonicity of solutions for fractional

elliptic and parabolic systems

While our previous work focused on proving properties of individual equations, it is also

crucial to investigate systems of equations. Expanding our focus to systems of equations,

we can further explore how direct method of moving planes are efficiently to be used to

prove monotonicity of solutions for fractional elliptic and parabolic systems. As always, as

the preliminary for proving monotonicity of solutions for fractional parabolic system, we
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would prove the monotonicity of solutions for fractional elliptic system first.

6.1 Radial Symmetry of solutions of elliptic fractional systems

In the following section, we will prove the solution of the elliptic fractional system is

radially symmetric about the origin and monotone decreasing about the origin using the

method of moving planes.

Theorem 6.1. (Radial Symmetry of solution of elliptic fractional system)





(−∆)
α
2 u(x) = f(v(x)), x ∈ B1(0),

(−∆)
β
2 v(x) = g(u(x)), x ∈ B1(0),

u(x), v(x) ≥ 0, x ∈ B1(0),

u(x), v(x) ≡ 0, x /∈ B1(0),

(6.1)

where B1 is a unit ball.

Let 0 < α, β < 2, and suppose that u(x), v(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)

are positive

bounded classical solutions of equation (6.1), and assume f(v(x)), g(u(x)) satisfies the

following assumptions:

(X1) f(·) is non-decreasing in v(·) , g(·) is non-decreasing in u(·).

(X2) Assume that f, g are uniformly Lipschitz continuous in u, v. i.e:

|f(v1)− f(v2)| ≤ c|v1 − v2|,

|g(u1)− f(u2)| ≤ c|u1 − u2|,

then u(x), v(x) are radially symmetric about the origin and monotone decreasing about the
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Tλ

x xλ

Ωλ

O x1

Figure 12: Moving Planes on the Unit Ball

origin, i.e.

u(x) = u(|x|), v(x) = v(|x|)

u(x1) > u(x2), v(x1) > v(x2), |x1| < |x2|.

.

6.1.1 Basic set-up

For any given λ ∈ R, let

Tλ = {x ∈ Rn | x1 = λ for λ ∈ R}

be the moving planes,

Σλ := {x ∈ Rn | x1 < λ}
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be the region to the left of the plane, and

xλ = (2λ− x1, x2, ..., xn)

be the reflection of x about the plane Tλ. and

Ωλ = Σλ ∩ B1(0)

be the intersection of B1(0) and Σλ.

Assume that u(x), v(x) are positive solutions of equation (6.1). We compare the values

of u(x), v(x) with

uλ(x) = u(xλ), vλ(x) = v(xλ)

Let

Uλ(x) = uλ(x)− u(x), Vλ(x) = vλ(x)− v(x)

Step 1: Begin moving the plane from near the left end of B1(0) along the x1 axis, but do

not reach origin, So then

|xλ| < |x|

We deduce from the equation (6.1) and (X1), (X2) and mean value theorem that Uλ, Vλ
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satisfies

(−∆)
α
2 Uλ(x)

= f(vλ(x))− f(v(x))

=
f(vλ(x))

vpλ(x)
vpλ(x)−

f(v(x))

vp(x)
vp(x)

≥ f(v(x))

vp(x)
[vpλ(x)− vp(x)]

=
f(v(x))

vp(x)
pξp−1(x)Vλ(x)

:= fv(ξ(x))Vλ(x), (6.2)

(−∆)
β
2 Vλ(x)

= g(uλ(x
λ))− g(u(x))

=
g(uλ(x))

up
λ(x)

up
λ(x)−

g(u(x))

up(x)
up(x)

≥ g(u(x))

up(x)
[up

λ(x)− up(x)]

=
g(u(x))

up(x)
pηp−1(x)Uλ(x)

:= gu(η(x))Uλ(x), (6.3)

where

fv(ξ(x)), gu(η(x))

are bounded and positive.

Now, in order to prove the radial symmetry of the solution of elliptic fractional system

(6.1), in step 1, we first show Uλ(x) ≥ 0, Vλ(x) ≥ 0, in step 2, move the plane continuously

to the right until its limiting position as long as Uλ(x) ≥ 0, Vλ(x) ≥ 0 holds.
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6.2 Step 1: show Uλ(x) ≥ 0, Vλ(x) ≥ 0

To show Uλ(x) ≥ 0, Vλ(x) ≥ 0, we would prove a Narrow region theorem for the elliptic

fractional system:

6.2.1 Narrow Region Principle for Elliptic Fractional System

Theorem 6.2. (Narrow Region principle for elliptic Fractional System) Let Ωλ = Σλ ∩

B1(0), Ωλ is a bounded narrow region in Σλ, assume that Uλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
,

Vλ(x) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)

if




(−∆)
α
2 Uλ(x) ≥ fv(ξ(x))Vλ(x), x ∈ Ωλ,

(−∆)
β
2 Vλ(x) ≥ gu(η(x))Uλ(x), x ∈ Ωλ,

(6.4)

then for λ sufficiently close to −1, we have




Uλ(x) ≥ 0, x ∈ Ωλ,

Vλ(x) ≥ 0, x ∈ Ωλ,

(6.5)

Proof. Suppose otherwise, (6.5) does not hold, then Uλ is negative somewhere, hence there

exists an xo ∈ Ωλ such that such that

Uλ(x
o) = min

Ωλ

Uλ(x) < 0

By the defining integral of the fractional Laplacian, we have

(−∆)
α
2 Uλ(x

o)

≤ Cn,α

∫

Σλ

2Uλ(x
o)

|xo − yλ|n+α
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To estimate the integral above, we may first consider the extreme case where xo
1 = λ. Then

it is easy to see that
∫

Σλ

1

|xo − yλ|
dy = ∞

This suggests that we may obtain values arbitrarily large by integrating on a domain that is

sufficiently close to the hyperplane P := {y ∈ Rn | y1 = λ}.

Denote

d = dis[x0, Tλ] ≤ width(Ωλ)

Choose a ball centered at xo with radius l, also choose a unit ball centered at xo, as

Figure 2 shows, it is easy to see d ≤ l.

Since

d ≤ |xo − yλ| ≤ 2d

Then

1

|xo − yλ|
≥ 1

2d

By Lemma 5.3, we have

∫

Σ

1

|xo − yλ|n+α
dy ≥ c

dα

Hence

(−∆)
α
2 Uλ(x

o) ≤ c

dα
Uλ(x

o) < 0 (6.6)
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On the other hand, by assumption 6.2, we have

(−∆)
α
2 Uλ(x

o) = f(vλ(x
o))− f(v(xo)) < 0

. Therefore, by the monotonicity of f , we have

Vλ(x
o) < 0

This implies that there exists some x̄ ∈ Ωλ such that

Vλ(x̄) = min
ΩVλ

Vλ(x) < 0

Following the same argument, we can derive that

(−∆)
β
2 Vλ(x̄) ≤

cVλ(x̄)

dβ
< 0

By assumption 6.2, we have

fv(ξ(x))Vλ(x
o) ≤ (−∆)

α
2 Uλ(x

o) ≤ c

dα
Uλ(x

o)

so we derive

dα

c
fv(ξ(x))Vλ(x

o) ≤ Uλ(x
o)

By assumption 6.3, we have

(−∆)
β
2 Vλ(x̄)− gu(η(x̄))Uλ(x̄) ≥ 0
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We derive

0 ≤ (−∆)
β
2 Vλ(x̄)− gu(η(x̄))Uλ(x̄)

≤ cVλ(x̄)

dβ
− gu(η(x̄))Uλ(x̄))

≤ cVλ(x̄)

dβ
− gu(η(x̄))Uλ(x

o)

≤ cVλ(x̄)

dβ
− gu(η(x̄))(fv(ξ(x

o))Vλ(x
o)
dα

c
)

≤ cVλ(x̄)

dβ
− gu(η(x̄))(fv(ξ(x

o))Vλ(x̄)
dα

c
)

≤ cVλ(x̄)

dβ
(1− gu(η(x̄))fv(ξ(x

o))
dα+β

c2
) (6.7)

If λ is sufficiently close to −1, d would be sufficiently small,

gu(η(x̄))fv(ξ(x
o))

dα+β

c2
<< 1

and

Vλ(x̄) < 0

So we derive

cVλ(x̄)

dβ
(1− gu(η(x̄))fv(ξ(x

o))
dα+β

c2
) < 0

This contradiction shows that (6.5) must be true. So far, we have proved the theorem

6.2.

This completes step 1.
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6.3 Step 2: Move the plane continuously to the right until its limiting

position as long as Uλ(x) ≥ 0 , Vλ(x) ≥ 0 holds.

Define

λ0 = sup{λ ≤ 0 | Uµ(x) ≥ 0, Vµ(x) ≥ 0, ∀x ∈ Ωµ, µ ≤ λ}

In this part, we show that

λ0 = 0

Suppose

λ0 < 0

we show that the plane Tλ0 can be moved further to the right. To be precise, for some

ε > 0 small such λ0 + ε < 0, it holds that for any λ ∈ (λ0, λ0 + ε), Uλ(x), Vλ(x) ≥ 0,

x ∈ Σλ0 .

This is a contradiction with the definition of λ0. Hence we must have

λ0 = 0

6.3.1 Show Uλ0(x), Vλ0(x) > 0 for x ∈ Ωλo

Suppose that λ0 < 0, then the reflection of the curved part of ∂Ωλ0 falls inside B1(0) and

Uλ0(x), Vλ0(x) ≥ 0 for x ∈ ∂Ωλ0 . (See Figure 7)

We want to show




Uλ0(x) > 0, x ∈ Ωλ0 ,

Vλ0(x) > 0, x ∈ Ωλ0 ,

(6.8)
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Suppose otherwise, (6.8) does not hold, then there exists xo ∈ Ω0 such that Uλ0(x
o) = 0.

Since Uλ0(x) ≥ 0 inside Ωλ0 , so for Uλ0(x
o) = 0, we know xo is the minimum.

Following from the argument before, we have

(−∆)
α
2 Uλ0(x

o) ≤ c

dα
Uλ0(x

o) = 0 (6.9)

On the other hand, by assumption 6.2, we have

(−∆)
α
2 Uλ0(x

o) = f(vλ0(x
o))− f(v(xo)) ≤ 0

Therefore, by the monotonicity of f , we have

Vλ0(x
o) ≤ 0

Since Vλ0(x) ≥ 0 inside Ωλ0 , this implies that there exists some x̄ ∈ Ωλ0 such that

Vλ0(x̄) = min
Ωλ0

Vλ0(x) = 0

Following the same argument, we can derive that

(−∆)
β
2 Vλ0(x̄) ≤

cVλ0(x̄)

dβ
= 0

By 6.2, we have

fv(ξ(x))Vλ0(x
o) ≤ (−∆)

α
2 Uλ0(x

o) ≤ c

dα
Uλ0(x

o)
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so we derive

dα

c
fv(ξ(x))Vλ0(x

o) ≤ Uλ0(x
o)

By 6.3, we have

(−∆)
β
2 Vλ0(x̄)− gu(η(x̄))Uλ0(x̄) ≥ 0

We derive

0 ≤ (−∆)
β
2 Vλ0(x̄)− gu(η(x̄))Uλ0(x̄)

≤ cVλ0(x̄)

dβ
− gu(η(x̄))Uλ0(x̄))

≤ cVλ0(x̄)

dβ
− gu(η(x̄))Uλ0(x

o)

≤ cVλ0(x̄)

dβ
− gu(η(x̄))(fv(ξ(x

o))Vλ0(x
o)
dα

c
)

≤ cVλ0(x̄)

dβ
− gu(η(x̄))(fv(ξ(x

o))Vλ0(x̄)
dα

c
)

≤ cVλ0(x̄)

dβ
(1− gu(η(x̄))fv(ξ(x

o))
dα+β

c2
)

If λ is sufficiently close to −1, d would be sufficiently small,

gu(η(x̄))fv(ξ(x
o))

dα+β

c2
<< 1

and

Vλ0(x̄) = 0

So we derive

cVλ0(x̄)

dβ
(1− gu(η(x̄))fv(ξ(x

o))
dα+β

c2
) = 0

This shows that

(−∆)
β
2 Vλ0(x̄)− gu(η(x̄))Uλ0(x̄) = 0
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This implies

gu(η(x̄))Uλ0(x̄) ≤
cVλ0(x̄)

dβ
= 0

and since gu(η(x̄)) is positive and bounded, that means

Uλ0(x̄) ≤
cVλ0(x̄)

dβ
= 0

but we know

Uλ0(x̄) ≥ 0

So we conclude

Uλ0(x̄) ≡ 0 (6.10)

We derive a contradiction since the plane Tλ0 did not reach the origin. If we take a point

x∗ on the curved part ∂Ωλ0 , then it’s reflection point xλ0
∗ is in the interior of the ball, and

hence u(xλ0
∗ ) > 0, therefore, Uλ0(x∗) = u(xλ0

∗ )− u(x∗) > 0, which contradicts (6.10).

We conclude Uλ0(x) > 0, Vλ0(x) > 0 for every x ∈ Ωλ0 .

Next, We want to further derive




inf Uλ0(x) > co > 0, x ∈ Ωλ0−δ,

inf Vλ0(x) > co > 0, x ∈ Ωλ0−δ,

(6.11)

I will prove (6.11) by contradiction.

6.3.2 Show Uλ0(y) ≡ 0, ∀y ∈ Ωλo−δ

Proof : If (6.11) is violated, then ∃xk ∈ Ωλ0−δ such that Uλ0(xk) → 0,
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Without loss of generality, by Bolzano-Weierstrass theorem, ∃ subsequences of xk, here

we still denote this subsequence by xk, such that xk → xo ∈ Ωλ0−δ,

so

Uk(x) = Uλ0(xk) → 0

Following from (6.25), we have

(−∆)
α
2 Uk(x)

= f(vλ0(xk))− f(v(xk))

=
f(vλ0(xk))

vpλ0
(xk)

vpλ0
(xk)−

f(v(xk))

vp(xk)
vp(xk)

≥ f(v(xk))

vp(xk)
[vpλ0

(xk)− vp(xk)]

=
f(v(xk))

vp(xk)
pξp−1(xk)Vλ0(xk)

:= fv(ξ(xk))Vλ0(xk)

:= fv(ξ(xk))Vk(x)

So Uk satisfies

(−�)
α
2 Uk(x) ≥ fv(ξ(xk))Vk(x) (6.12)

By regularity theory for parabolic equations [45], there exists some functions Ū(x) and

c̄(x) such that k → ∞, Uk(x) converges uniformly to Ū(x), and fv(ξ(xk)) converges

uniformly to c̄(x) with c̄(x) ≥ 0.

Since

Uk(xk) = Uλ0(xk) → 0
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Ū(xo) = 0

and

Ū ≥ 0

So xo is the minimum. Following from the argument before, we have

(−∆)
α
2 Ū(xo) ≤ c

dα
Ū(xo) = 0 (6.13)

On the other hand, we have

(−∆)
α
2 Ū(xo)

≥ c̄(xo)V̄ (xo)

≥ 0

but we know

(−∆)
α
2 Ū(xo)

≤ c

dα
Ū(xo)

= 0

So we conclude

(−∆)
α
2 Ū(xo) = 0 (6.14)
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It follows that

0 = (−∆)
α
2 Ū(xo)

= Cn,αPV

∫

Rn

−Ū(y)

|xo − y|n+2s
dy

= Cn,αPV {
∫

Σλ0

−Ū(y)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−Ū(y)

|xo − y|n+2s
dy}

= Cn,αPV {
∫

Σλ0

−Ū(y)

|xo − y|n+2s
dy +

∫

Σλ0

−Ū(yλ)

|xo − yλ|n+2s
dy}

= Cn,αPV {
∫

Σλ0

−Ū(y)

|xo − y|n+2s
dy +

∫

Σλ0

Ū(y)

|xo − yλ|n+2s
dy}

= Cn,αPV

∫

Σλ0

Ū(y){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0 (6.15)

This implies

Ū(y) ≡ 0, y ∈ Rn

6.3.3 Show ū(x) ≡ 0 for x ∈ Rn

Let uk(x) = u(xk), then by (6.2), we have

(−∆)
α
2 uk(x) = f(vk(x))

By regularity theory for parabolic equations [45], there exists some functions ū(x) such

that as k → ∞, uk(x) converges uniformly to ū(x), and f converges uniformly to f̄ , here

we assume:

f ≥ 0

so

(−∆)
α
2 ū(x) = f̄ ≥ 0
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In order to show that

ū(x) ≡ 0, x ∈ Rn (6.16)

we apply the following:

Lemma 6.3. (Strong Maximum Principle for (−∆)
α
2 ū = f(v̄(x))).

Assume that ū(x) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]





(−∆)
α
2 ū(x) = f̄ , x ∈ Ωλ,

ū(x) ≥ 0, x ∈ Ωλ

(6.17)

we have either

ū(x) > 0, x ∈ B1(0)

or

ū(x) ≡ 0, x ∈ Rn

Proof. First, if ū(x) ≥ 0 and ū(xo) = 0, xo then is a minimum,
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If ū(x) �≡ 0, then

(−∆)
α
2 ū(xo)

= Cn,αPV

∫

Rn

−ū(y)

|xo − y|n+α
dy

= Cn,αPV {
∫

Σλ0

−ū(y)

|xo − y|n+α
dy +

∫

Σ̃λ0

−ū(y)

|xo − y|n+α
dy}

= Cn,αPV {
∫

Σλ0

−ū(y)

|xo − y|n+α
dy +

∫

Σλ0

−ū(yλ)

|xo − yλ|n+α
dy}

= Cn,αPV {
∫

Σλ0

−ū(y)

|xo − y|n+α
dy +

∫

Σλ0

ū(y)

|xo − yλ|n+α
dy}

= Cn,αPV

∫

Σλ0

ū(y){ 1

|xo − yλ|n+α
− 1

|xo − y|n+α
}dy

< 0

since

1

|xo − yλ|n+α
− 1

|xo − y|n+α
< 0

and

ū(y) ≥ 0

and

ū(y) �≡ 0

However, we have

(−∆)
α
2 ū(xo) = f̄ ≥ 0

which is a contradiction. Therefore, we have either ū(x) > 0, x ∈ B1(0) or ū(x) ≡ 0,

x ∈ Rn.

If ū(x) > 0, x ∈ B1(0), we know λ0 < 0, if we take a point x̄ on the curved part
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∂Ωλ0 , then it’s reflection point x̄λ0 is in the interior of the ball (see Figure 11)and hence

u(x̄λ0) > 0, therefore, Ū(x̄) = ū(x̄λ0) − ū(x̄) > 0. Ū(x) > 0 somewhere, but we already

derive Ū(x) ≡ 0, hence we must have ū(x) ≡ 0, x ∈ Rn.

Thus, we know u(xk) converges to 0 uniformly.

6.3.4 Derive a contradiction for large k for Uk

In order to derive a contradiction for large k, Let

Uk(xk) ≡ Uλ0(xk) = mk (6.18)

which converges to zero.

Let

ak(x) = Uk(x)− 2mk (6.19)

So

ak(xk)

= Uk(xk)− 2mk

= Uk − 2mk

= −mk

Thus there must be a minimum point x̄k such that

ak(x̄k) ≤ −mk
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Then

(−�)sak = cλak + 2mk

By regularity theory for parabolic equations [45], there exists some functions ā(x) such

that k → ∞, ak(x) → ā(x) converges uniformly for x ∈ Ωλo ,

Moreover

(−∆)sā = cλā

Passing to a subsequence, (x̄k) → (xo) ∈ Ωλo−δ

Uk → Ū uniformly, and

(−∆)sŪ = c̄Ū

As we have already derived

Ū(xo) = 0

Also following from (6.25)

(−∆)
α
2 Ū(xo)

= f(v̄λ0(x
o))− f(v̄(xo))

=
f(v̄λ0(x

o))

v̄pλ0
(xo)

v̄pλ0
(xo)− f(v̄(x, to + tk))

v̄p(xo)
v̄p(xo)

≥ f(v̄(xo))

v̄p(xo)
[v̄pλ0

(xo)− v̄p(xo)]

=
f(v̄(xo))

v̄p(xo)
pξp−1(xo)Vλ0(x

o)

:= fv̄(ξ(x
o))Vλ0(x

o)

This implies

(−∆)
α
2 Ū(xo) ≥ fv̄(ξ(x

o))Vλ0(x
o)
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and

fv̄(ξ(x
o))Vλ0(x

o) ≥ 0

It follows

0 ≤ (−∆)
α
2 Ū(xo)

= Cn,αPV

∫

Rn

−Ū(y)

|xo − y|n+α
dy

= Cn,αPV {
∫

Σλ0

−Ū(y)

|xo − y|n+α
dy +

∫

Σ̃λ0

−Ū(y)

|xo − y|n+α
dy}

= Cn,αPV {
∫

Σλ0

−Ū(y)

|xo − y|n+α
dy +

∫

Σλ0

−Ū(yλ)

|xo − yλ|n+α
dy}

= Cn,αPV {
∫

Σλ0

−Ū(y)

|xo − y|n+α
dy +

∫

Σλ0

Ū(y)

|xo − yλ|n+α
dy}

= Cn,αPV

∫

Σλ0

Ū(y){ 1

|xo − yλ|n+α
− 1

|xo − y|n+α
}dy

≤ 0

since

1

|xo − yλ|n+α
− 1

|xo − y|n+α
< 0

and

Ū(y) ≥ 0

This implies

Ū(y) ≡ 0, ∀y ∈ Rn

Similar with above, for

uk(x) = u(xk)

uk(x) → ū(x)
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(−∆)
α
2 ū ≥ f̄v

We have

ū(x) ≡ 0

Now for sufficiently large k,

(−∆)
α
2 ak(x̄k)

= (−∆)
α
2 Uk

≥ fv(ξ(x̄k))Vk(x̄k)

> 0

Since we know

(−∆)
α
2 ak(x̄k)

≤ c

[d(x̄k, Tλo)]
α
ak(x̄k)

≤ −c1mk

Finally,

−c1mk ≥ 0

which is a contradiction.

Hence, we have proved (6.11).

Since Uλ, Vλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all
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λ ∈ (λ0, λ0 + ε), we have





Uλ(x) ≥ 0, x ∈ Ωλ0−δ,

Vλ(x) ≥ 0, x ∈ Ωλ0−δ,

(6.20)

Now apply the Narrow region theorem ?? and in our case the narrow region is

Ω−
λ \Ωλ0−δ

By Narrow region theorem, we derive




Uλ(x) ≥ 0, x ∈ Ω−
λ \Ωλ0−δ,

Vλ(x) ≥ 0, x ∈ Ω−
λ \Ωλ0−δ,

(6.21)

Combining (6.20) and (6.21), we conclude that for all λ ∈ (λ0, λ0 + ε)




Uλ(x) ≥ 0, x ∈ Ωλ0 ,

Vλ(x) ≥ 0, x ∈ Ωλ0 ,

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0

and




Uλ0(x) ≥ 0, ∀x ∈ Ωλ0 ,

Vλ0(x) ≥ 0, ∀x ∈ Ωλ0 ,
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Similarly, one can move the plane Tλ from λ = 1 to the left and show that





Uλ0(x) ≤ 0, ∀x ∈ Ωλ0 ,

Vλ0(x) ≤ 0, ∀x ∈ Ωλ0 ,

Now we have shown that

λ0 = 0

and





Uλ0 ≡ 0, x ∈ Ωλ0 ,

Vλ0 ≡ 0, x ∈ Ωλ0 ,

This completes the step 2.

6.3.5 Conclude the solution is radially symmetric and monotone decreasing

So far, we have proved that u, v are symmetric about the plane T0. Since the x1 direction

can be chosen arbitrarily, we have actually shown that u, v are radially symmetric about

origin.

Since Uλ(x) �≡ 0, x ∈ Tλ, ∀0 < λ < λ0, if there exists xo such that xo is the minimum

point, from the above process, on one hand,

(−∆)
α
2 Uλ(x

o) ≤ 0

On the other hand,

(−∆)
α
2 Uλ(x

o) = 0
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This forces

Uλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin. Same

reason for v.

6.4 Radial Symmetry of solutions of parabolic fractional systems

In the following section, we will prove the solution of the parabolic fractional system is

radially symmetric using the method of moving planes.

Theorem 6.4. (Radial Symmetry of solution of parabolic fractional system)




∂u
∂t

+ (−∆)
α
2 u(x, t) = f(v(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

∂v
∂t

+ (−∆)
β
2 v(x, t) = g(u(x, t)), (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≥ 0, (x, t) ∈ B1(0)× (−∞,∞),

u(x, t), v(x, t) ≡ 0, x /∈ B1(0),

(6.22)

where B1 is a unit ball.

Let 0 < α, β < 2, and suppose that u(x, t), v(x, t) ∈
(
C1,1

loc (Ω)∩C(Ω̄)
)
×(−∞,∞) are

positive bounded classical solutions of equation (6.22), and assume f(v(x, t)), g(u(x, t))

satisfies the following assumptions:

(M1) f(·) is non-decreasing in v(·) , g(·) is non-decreasing in u(·).

(M2) Assume that f, g are uniformly Lipschitz continuous in u, v. i.e:

|f(v1)− f(v2)| ≤ c|v1 − v2|,

|g(u1)− f(u2)| ≤ c|u1 − u2|,
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then u(x, t), v(x, t) are radially symmetric about the origin and monotone decreasing about

the origin, i.e.

u(x, t) = u(|x|, t), v(x, t) = v(|x|, t)

u(x1, t) > u(x2, t), v(x1, t) > v(x2, t), |x1| < |x2|

.

6.4.1 Basic set-up

For any given λ ∈ R, let

Tλ = {x ∈ Rn | x1 = λ for λ ∈ R}

be the moving planes,

Σλ := {x ∈ Rn | x1 < λ}

be the region to the left of the plane, and

xλ = (2λ− x1, x2, ..., xn)

be the reflection of x about the plane Tλ. and

Ωλ = Σλ ∩ B1(0)

be the intersection of B1(0) and Σλ.

Assume that u(x, t), v(x, t) are positive solutions of equation (6.22). We compare the
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values of u(x, t), v(x, t) with

uλ(x, t) = u(xλ, t), vλ(x, t) = v(xλ, t)

Let

Uλ(x, t) = uλ(x, t)− u(x, t), Vλ(x, t) = vλ(x, t)− v(x, t)

Step 1: Begin moving the plane from near the left end of B1(0) along the x1 axis, but do

not reach origin,

So then

|xλ| < |x|

We deduce from the equation (6.22) and (M1), (M2) that Uλ, Vλ satisfies

∂Uλ

∂t
(x, t) + (−∆)

α
2 Uλ(x, t)

= f(vλ(x, t))− f(v(x, t))

=
f(vλ(x, t))

vpλ(x, t)
vpλ(x, t)−

f(v(x, t))

vp(x, t)
vp(x, t)

≥ f(v(x, t))

vp(x, t)
[vpλ(x, t)− vp(x, t)]

=
f(v(x, t))

vp(x, t)
pξp−1(x, t)Vλ(x, t)

:= fv(ξ(x, t))Vλ(x, t), (6.23)
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∂Vλ

∂t
(x, t) + (−∆)

β
2 Vλ(x, t)

= g(uλ(x, t))− g(u(x, t))

=
g(uλ(x, t))

up
λ(x, t)

up
λ(x, t)−

g(u(x, t))

up(x, t)
up(x, t)

≥ g(u(x, t))

up(x, t)
[up

λ(x, t)− up(x, t)]

=
g(u(x, t))

up(x, t)
pηp−1(x, t)Uλ(x, t)

:= gu(η(x, t))Uλ(x, t), (6.24)

where

fv(ξ(x, t)), gu(η(x, t))

are bounded and positive.

Apparently, Ωλ is a narrow region in the x1 direction for λ very close to −1. For

further application of Narrow Region Principle, We will prove the Narrow region theorem

in parabolic fractional system in the following sections.

In Parabolic case, we add a time dimension on this unit ball with lower edge t = t

and higher edge t = T , denotes this thin cylinder as Ωλ × (t, T ] to be the narrow region we

want to use(See Figure 9).

6.5 Step 1: show Uλ(x, t), Vλ(x, t) ≥ 0

To show Uλ(x, t), Vλ(x, t) ≥ 0, we first show that Uλ(x, t), Vλ(x, t) can not attain its

negative minimum in Ωλ × (t, T ], to attain this goal, we will first prove a narrow region

principle in Ωλ × (t, T ].
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6.5.1 Narrow region principle on a parabolic cylinder

Theorem 6.5. (Narrow region principle on a parabolic cylinder) Let Ωλ = Σλ∩B1(0), Ωλ

is a bounded narrow region in Σλ, assume that Uλ(x, t), Vλ(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩

L2s]× C1([t, T ]), and Uλ(x, t), Vλ(x, t) are lower semi-continuous on Ω̄. If





∂Uλ

∂t
+ (−∆)

α
2 Uλ(x, t) ≥ fv(ξ(x, t))Vλ(x, t), (x, t) ∈ Ωλ × [t, T ],

∂Vλ

∂t
+ (−∆)

β
2 Vλ(x, t) ≥ gu(η(x, t))Uλ(x, t), (x, t) ∈ Ωλ × [t, T ],

(6.25)

Then for λ sufficiently close to −1, we have

Uλ(x, t) ≥ min{0, inf
Ωλ×[t,T ]

Uλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (6.26)

and

Vλ(x, t) ≥ min{0, inf
Ωλ

Vλ(x, t)}, (x, t) ∈ Ωλ × [t, T ] (6.27)

Proof. If (6.26) does not hold, then the lower semi-continuity of Uλ(x, t) on Ω̄λ × [t, T ]

guarantees that there exists an (xo, to) ∈ Ωλ × (t, T ] such that

Uλ(x
o, to) = min

Ωλ×(t,T ]
Uλ < 0

By the defining integral of the fractional Laplacian, we have

(−∆)
α
2 Uλ(x

o, to)

≤ Cn,α

∫

Σλ

2Uλ(x
o, to)

|xo − yλ|n+α
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Similar to the argument in Section 3, by Lemma 5.7, we have

∫

Σλ

1

|xo − yλ|n+α
dy ≥ c

dα

Also, since (xo, to) is the minimum,

If

to < T

∂Uλ

∂t
(xo, to) = 0

If

to = T

∂Uλ

∂t
(xo, to) ≤ 0

Following from

(−�)
α
2 Uλ(x

o, to) ≤ Cn,α

∫

Σλ

2Uλ(x
o, to)

|xo − yλ|n+α

We have

(−�)
α
2 Uλ(x

o, to) ≤ cUλ(x
o, to)

dα

we deduce

∂Uλ(x
o, to)

∂t
+ (−∆)

α
2 Uλ(x

o, to)

≤ cUλ(x
o, to)

dα
+

∂Uλ(x
o, to)

∂t
,

< 0, (6.28)
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On the other hand, by 6.25, we have

∂Uλ(x
o, to)

∂t
+ (−∆)

α
2 Uλ(x

o, to) = f(vλ(x
o, to))− f(v(xo, to)) < 0

Therefore, by the monotonicity of f , we have

Vλ(x
o, to) < 0

This implies that there exists some (x̄, t̄) ∈ Ωλ0 × (t, T ] such that

Vλ(x̄, t̄) = min
Ωλ0

×(t,T ]
Vλ < 0

So that

∂Vλ

∂t
(x̄, t̄) = 0

Following the same argument, we can derive that

(−∆)
β
2 Vλ(x̄, t̄) ≤

cVλ(x̄, t̄)

dβ
< 0

From (6.25), we have

fv(ξ(x, t))Vλ(x
o, to) ≤ cUλ(x

o, to)

dα
+

∂Uλ(x
o, to)

∂t

we derive

fv(ξ(x
o, to))Vλ(x

o, to) ≤ cUλ(x
o, to)

dα
< 0
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so we derive

dα

c
fv(ξ(x

o, to))Vλ(x
o, to) ≤ Uλ(x

o, to)

By 6.25, we have

∂Vλ

∂t
(x̄, t̄) + (−∆)

β
2 Vλ(x̄, t̄)− gu(η(x̄))Uλ(x̄) ≥ 0

:= (−∆)
β
2 Vλ(x̄, t̄)− gu(η(x̄))Uλ(x̄) ≥ 0

We derive

0 ≤ (−∆)
β
2 Vλ(x̄, t̄)− gu(η(x̄, t̄))Uλ(x̄, t̄)

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))Uλ(x̄, t̄))

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))Uλ(x

o, to)

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))(fv(ξ(x

o, to))Vλ(x
o, to)

dα

c
)

≤ cVλ(x̄, t̄)

dβ
− gu(η(x̄, t̄))(fv(ξ(x

o, to))Vλ(x̄, t̄)
dα

c
)

≤ cVλ(x̄, t̄)

dβ
(1− gu(η(x̄, t̄))fv(ξ(x

o, to))
dα+β

c2
) (6.29)

If λ is sufficiently close to −1, d would be sufficiently small,

gu(η(x̄, t̄))fv(ξ(x
o, to))

dα+β

c2
<< 1

and

Vλ(x̄, t̄) < 0

So we derive

cVλ(x̄, t̄)

dβ
(1− gu(η(x̄, t̄))fv(ξ(x

o, to))
dα+β

c2
) < 0
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This contradiction shows that (6.26) and (6.27) must be true. So far, we have proved theo-

rem 6.5.

Define





Ū(x, t) = em(t−t)Uλ(x, t), m > 0,

V̄ (x, t) = em(t−t)Vλ(x, t), m > 0,

(6.30)

Then we have





Uλ(x, t) = e−m(t−t)Ū(x, t), m > 0,

Vλ(x, t) = e−m(t−t)V̄ (x, t), m > 0,

Let

Ū(x, t) = em(t−t)Uλ(x, t), m > 0,

From (6.26), we derive:

∂Ū(x, t)

∂t
+ (−�)

α
2 Ū(x, t) ≥ f̄v(ξ(x, t))V̄ (x, t)

∂V̄ (x, t)

∂t
+ (−�)

β
2 V̄ (x, t) ≥ ḡu(η(x, t))Ū(x, t)

This time, we want to show




Uλ(x, t) ≥ 0,

Vλ(x, t) ≥ 0,

(6.31)

Suppose otherwise, (6.31), does not hold, then Uλ is negative somewhere, by 6.30,
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hence Ū is negative somewhere, hence there exists an xo ∈ Ωλ and to ∈ [t, T ] such that

Ū(xo, to) = min
Ωλ×(t,T ]

Ū < 0

If

to < T

∂Ū

∂t
(xo, to) = 0

If

to = T

∂Ū

∂t
(xo, to) ≤ 0

Hence

∂Ū

∂t
(xo, to) + (−∆)

α
2 Ū(xo, to) ≤ c

dα
Ū(xo, to) < 0

On the other hand, we have

∂Ū

∂t
(xo, to) + (−∆)

α
2 Ū(xo, to) ≥ f̄v(ξ(x

o, to)V̄ (xo, to)

Therefore

f̄v(ξ(x
o, to))V̄ (xo, to) ≤ cŪ(xo, to)

dα
< 0

so we derive

dα

c
f̄v(ξ(x

o, to))V̄ (xo, to) ≤ Ū(xo, to) < 0
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Therefore, we must have

V̄ (xo, to) < 0

This implies that there exists some (x̄, t̄) ∈ Ωλ0 × (t, T ] such that

V̄ (x̄, t̄) = min
Ωλ0

×(t,T ]
V̄ < 0

So that

∂V̄

∂t
(x̄, t̄) = 0

Following the same argument, we can derive that

(−∆)
β
2 V̄ (x̄, t̄) ≤ cV̄ (x̄, t̄)

dβ
< 0

We derive

0 ≤ (−�)
α
2 V̄ (x̄, t̄)− ḡu(η(x̄, t̄)Ū(x̄, t̄)

≤ cV̄ (x̄, t̄)

dβ
− ḡu(η(x̄, t̄))Ū(x̄, t̄))

≤ cV̄ (x̄, t̄)

dβ
− ḡu(η(x̄, t̄))Ū(xo, to)

≤ cV̄ (x̄, t̄)

dβ
− ḡu(η(x̄, t̄))(fv(ξ(x

o, to))V̄ (xo, to)
dα

c
)

≤ cV̄ (x̄, t̄)

dβ
− ḡu(η(x̄, t̄))(f̄v(ξ(x

o, to))V̄ (x̄, t̄)
dα

c
)

≤ cV̄ (x̄, t̄)

dβ
(1− ḡu(η(x̄, t̄))f̄v(ξ(x

o, to))
dα+β

c2
) (6.32)

If λ is sufficiently close to −1, d would be sufficiently small,

ḡu(η(x̄, t̄))f̄v(ξ(x
o, to))

dα+β

c2
<< 1
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Also

Vλ(x̄, t̄) < 0

So we derive

cV̄ (x̄, t̄)

dβ
(1− ḡu(η(x̄, t̄))f̄v(ξ(x

o, to))
dα+β

c2
) < 0

Which is a contradiction. Thus,

Ū(x, t) ≥ min{0, inf
x∈Ωλ

Ū(x, t)}, ∀(x, t) ∈ Ωλ × (t, T )

Thus

em(t−t)Uλ(x, t) ≥ min{0, inf
x∈Ωλ

Uλ(x, t)}

So

Uλ(x, t) ≥ e−m(t−t) min{0, inf
x∈Ωλ

Uλ(x, t)}

Uλ(x, t) is bounded from below. Let t → −∞, Uλ(x, t) →≥ 0.

Therefore,

Uλ(x, t) ≥ 0

if Ωλ is narrow.

Also,

V̄ (x, t) ≥ min{0, inf
x∈Ωλ

V̄ (x, t)}, ∀(x, t) ∈ Ωλ × (t, T )

Thus

em(t−t)Vλ(x, t) ≥ min{0, inf
x∈Ωλ

Vλ(x, t)}



173

So

Vλ(x, t) ≥ e−m(t−t) min{0, inf
x∈Ωλ

Vλ(x, t)}

Vλ(x, t) is bounded from below. Let t → −∞, Vλ(x, t) →≥ 0.

Therefore,

Vλ(x, t) ≥ 0

if Ωλ is narrow.

6.6 Step 2: Move the plane continuously to the right until its limiting

position as long as Uλ(x, t) ≥ 0 , Vλ(x, t) ≥ 0 holds.

Define

λ0 = sup{λ ≤ 0 | Uµ(x, t) ≥ 0, Vµ(x, t) ≥ 0, ∀(x, t) ∈ Ωµ × R, µ ≤ λ}

In this part, we show that

λ0 = 0

Suppose

λ0 < 0

we show that the plane Tλ0 can be moved further to the right. To be more rigorous, there

exists some ε > 0, such that for any λ ∈ (λ0, λ0 + ε), we have




Uλ(x, t) ≥ 0,

Vλ(x, t) ≥ 0,
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for (x, t) ∈ Σλ0 × R

This is a contradiction with the definition of λ0. Hence we must have

λ0 = 0

6.6.1 Show Uλ0 > 0, Vλ0 > 0 for (x, t) ∈ Ωλ0 × R

Suppose that λ0 < 0, then the reflection of the curved part of ∂Ωλ0 falls inside B1(0) and

Uλ0(x, t) ≥ 0, Vλ0(x, t) ≥ 0 for (x, t) ∈ Ωλ0 × R. (See Figure 11)

We want to show




Uλ0(x, t) > 0, (x, t) ∈ Ωλ0 × R,

Vλ0(x, t) > 0, (x, t) ∈ Ωλ0 × R,
(6.33)

Suppose otherwise, (6.33) does not hold, then there exists (xo, to) ∈ Ωλ0 × R such that

Uλ0(x
o, to) = 0.

Since Uλ0(x, t) ≥ 0 inside Ωλ0 × R, so for Uλ0(x
o, to) = 0, we know (xo, to) is the

minimum.

Then

∂Uλ0(x
o, to)

∂t
= 0

Following from the argument before, we have

(−∆)
α
2 Uλ0(x

o, to) ≤ c

dα
Uλ0(x

o, to) = 0 (6.34)
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On the other hand, by 6.25, we have

∂Uλ0(x
o, to)

∂t
+ (−∆)

α
2 Uλ0(x

o, to)

:= (−∆)
α
2 Uλ0(x

o, to)

≥ fv(ξ(x
o, to))Vλ0(x

o, to)

≥ 0

but we know

∂Uλ0(x
o, to)

∂t
+ (−∆)

α
2 Uλ0(x

o, to)

:= (−∆)
α
2 Uλ0(x

o, to)

≤ c

dα
Uλ0(x

o, to)

≤ 0

So we conclude

Uλ0(x
o, to) ≡ 0 (6.35)

We derive a contradiction since the plane Tλ0 did not reach the origin. If xo is on the

curved part ∂Ωλ0 , then it’s reflection point xoλ0 is in the interior of the ball, and hence

Uλ0(x
o, to) = u(xoλ0 , to)− u(xo, to) > 0, which contradicts (6.35).

We conclude Uλ0(x, t) > 0, Vλ0(x, t) > 0 for every x ∈ Ωλ0 × R.

However, since t ∈ (−∞,∞), Uλ0(x, t), Vλ0(x, t) may not be bounded away from 0.
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We want to further derive





inf Uλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ × R,

inf Vλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ × R,
(6.36)

I will prove (6.36) by contradiction.

6.6.2 Prove by contradiction: Show Ū(y, 0) ≡ 0, V̄ (y, 0) ≡ 0, ∀(y, 0) ∈ Ωλo−δ × R

Proof : If (6.36) is violated, then ∃(xk, tk) ∈ Ωλ0−δ × R such that Uλ0(xk, tk) → 0,

Without loss of generality, by Bolzano-Weierstrass theorem, ∃ subsequences of xk, here

we still denote this subsequence by xk, such that xk → xo ∈ Ωλ0−δ,

Now for each tk(k ≥ k0), Let

Uk(x, t) = Uλ0(x, t+ tk)

so

Uk(xk, 0) = Uλ0(xk, tk) → 0
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Following from (6.25), we have

∂Uk

∂t
(x, t) + (−∆)

α
2 Uk(x, t)

= f(vλ0(x, t+ tk))− f(v(x, t+ tk))

=
f(vλ0(x, t+ tk))

vpλ0
(x, t+ tk)

vpλ0
(x, t+ tk)−

f(v(x, t+ tk))

vp(x, t+ tk)
vp(x, t+ tk)

≥ f(v(x, t+ tk))

vp(x, t+ tk)
[vpλ0

(x, t+ tk)− vp(x, t+ tk)]

=
f(v(x, t+ tk))

vp(x, t+ tk)
pξp−1(x, t+ tk)Vλ0(x, t+ tk)

:= fv(ξ(x, t+ tk))Vλ0(x, t+ tk)

:= fv(ξ(x, t+ tk))Vk(x, t)

So Uk satisfies

∂Uk

∂t
(x, t) + (−�)

α
2 Uk(x, t) ≥ fv(ξ(x, t+ tk))Vk(x, t) (6.37)

By regularity theory for parabolic equations [45], there exists some functions Ū(x, t)

and c̄(x, t) such that k → ∞, Uk(x, t) converges uniformly to Ū(x, t) for (x, t) ∈ Ωλ0 ×R,

and fv(ξ(x, t+ tk)) converges uniformly to c̄(x, t) with c̄(x, t) ≥ 0.

and Ū satisfies:

∂Ū

∂t
+ (−�)

α
2 Ū ≥ c̄(x, t)V̄ (x, t)

Since

Uk(xk, 0) = Uλ0(xk, tk) → 0

Ū(xo, 0) = 0
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and

Ū ≥ 0

So (xo, 0) is the minimum.

∂Ū

∂t
(xo, 0) = 0

Following from the argument before, we have

(−∆)
α
2 Ū(xo, 0) ≤ c

dα
Ū(xo, 0) = 0 (6.38)

On the other hand, by 6.25, we have

∂Ū(xo, 0)

∂t
+ (−∆)

α
2 Ū(xo, 0)

:= (−∆)
α
2 Ū(xo, 0)

≥ c̄(xo, 0)V̄ (xo, 0)

≥ 0

but we know

∂Ū(xo, 0)

∂t
+ (−∆)

α
2 Ū(xo, 0)

:= (−∆)
α
2 Ū(xo, 0)

≤ c

dα
Ū(xo, 0)

= 0
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So we conclude

Ū(xo, 0) ≡ 0 (6.39)

We derive a contradiction since the plane Tλ0 did not reach the origin. If xo is on the

curved part ∂Ωλ0 , then it’s reflection point xoλ0 is in the interior of the ball, and hence

u(xoλ0 , tk) > 0, therefore, Uλ0(x
o, tk) = u(xoλ0 , tk) − u(xo, tk) > 0, which contradicts

(6.39).

So we proved 6.36

6.6.3 Show ū(x, 0) ≡ 0, v̄(x, 0) ≡ 0 for x ∈ Rn

Let uk(x, t) = u(x, t+ tk), then by (6.25), we have

∂uk(x, t)

∂t
+ (−∆)

α
2 uk(x, t) = f(vk(x, t))

By regularity theory for parabolic equations [45], there exists some functions ū(x, t)

such that as k → ∞, uk(x, t) converges uniformly to ū(x, t), vk(x, t) converges uniformly

to v̄(x, t) for (x, t) ∈ B1(0)× R and f converges to f̄ .

∂ū(x, t)

∂t
+ (−∆)

α
2 ū(x, t) = f(v̄(x, t)) ≥ 0

Since we assume

f(v̄(x, 0)) ≥ 0

Thus

f̄(v̄(x, 0)) ≥ 0
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In order to show that

ū(x, 0) ≡ 0, v̄(x, 0) ≡ 0, x ∈ Rn (6.40)

we apply the following:

Lemma 6.6. (Strong Maximum Principle for ∂ū
∂t

+ (−∆)
α
2 ū = f(v̄(x, t))).

Assume that ū(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])





∂ū(x,t)
∂t

+ (−∆)
α
2 ū(x, t) = f(v̄(x, t)), (x, t) ∈ Ωλ × [t, T ],

ū(x, t) ≥ 0, (x, t) ∈ Ωλ × [t, T ]

(6.41)

we have either

ū(x, 0) > 0, x ∈ B1(0)

or

ū(x, 0) ≡ 0, x ∈ Rn

Proof. First, if ū(x, 0) ≥ 0 and ū(xo, 0) = 0, (xo, 0) then is a minimum, thus we have

∂ū
∂t
(xo, 0) = 0.
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If ū(x, 0) �≡ 0, then

(−∆)
α
2 ū(xo, 0)

= Cn,αPV

∫

Rn

−ū(y, 0)

|xo − y|n+α
dy

= Cn,αPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+α
dy +

∫

Σ̃λ0

−ū(y, 0)

|xo − y|n+α
dy}

= Cn,αPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+α
dy +

∫

Σλ0

−ū(yλ, 0)

|xo − yλ|n+α
dy}

= Cn,αPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+α
dy +

∫

Σλ0

ū(y, 0)

|xo − yλ|n+α
dy}

= Cn,αPV

∫

Σλ0

ū(y, 0){ 1

|xo − yλ|n+α
− 1

|xo − y|n+α
}dy

< 0

since

1

|xo − yλ|n+α
− 1

|xo − y|n+α
< 0

and

ū(y, 0) ≥ 0

and

ū(y, 0) �≡ 0

However, we have

∂ū(xo, 0)

∂t
+ (−∆)

α
2 ū(xo, 0)

:= (−∆)
α
2 ū(xo, 0)

= f(v̄(xo, 0))

≥ 0
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Which is a contradiction. Therefore, we have either ū(x, 0) > 0, x ∈ B1(0) or ū(x, 0) ≡

0, x ∈ Rn.

If ū(x, 0) > 0, x ∈ B1(0), we know λ0 < 0, if we take a point x̄ on the curved part

∂Ωλ0 , then it’s reflection point x̄λ0 is in the interior of the ball (see Figure 11)and hence

u(x̄λ0 , 0) > 0, therefore, Ū(x̄, 0) = ū(x̄λ0 , 0) − ū(x̄, 0) > 0. Ū(x, 0) > 0 somewhere, but

we already derive Ū(x, 0) ≡ 0, hence we must have Ū(x, 0) ≡ 0, x ∈ Rn.

Thus, we know u(x, tk) converges to 0 uniformly.

Following the same argument, we know v(x, tk) converges to 0 uniformly.

6.6.4 Derive a contradiction for large k for Uk

In order to derive a contradiction for large k, we modify tk a bit.

We still denote Uλ0(x, t+ tk) by Uk(x, t), Let

Uk(xk, 0) ≡ Uλ0(xk, tk) = mk (6.42)

which converges to zero.

Let

ak(x, t) = Uk(x, t)− 2mkη(εk(t− tk)) (6.43)

where η(t) ∈ C∞
0 is a cut-off function such that |η′(t)| ≤ c and

η(t) =




1, |t| ≤ 1,

0, |t| ≥ 2.
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When (x, t) is outside Ωλ0−δ × (tk − 2, tk + 2),

ak(x, t)

= Uk(x, t),

When (x, t) is inside Ωλ0−δ × (tk − 2, tk + 2), such that at (x, tk)

ak(x, tk)

= Uk(x, tk)− 2mk

The value of ak outside Ωλ0−δ × (tk − 2, tk + 2) is greater than the value of ak inside

Ωλ0−δ × (tk − 2, tk + 2), so ak(x, t) attains its minimum at some point, say (x̄k, t̄k) in

Ωλ0−δ × (tk − 2, tk + 2).

This implies,

∂ak
∂t

(x̄k, t̄k) = 0

Combining (6.42) and (6.43), it is easy to deduce

ak(xk, 0)

= Uk(xk, 0)− 2mk

= Uk − 2mk

= −mk

Thus

ak(x̄k, t̄k) ≤ −mk
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Let

ãk(x, t) = ak(x, t+ t̄k)

Then

ãk(x̄k, 0) = ak(x̄k, t̄k)

Then

∂ãk
∂t

+ (−�)sãk = cλãk + 2mkη(εk(t− tk))

By regularity theory for parabolic equations [45], there exists some functions ā(x, t)

such that k → ∞, ãk(x, t) → ā(x, t) converges uniformly for x ∈ Ωλo ,

Moreover

∂ā

∂t
+ (−∆)sā = cλā

We know

∂ak
∂t

∼ ∂Uk

∂t
− 2mkεkc

Therefore we conclude

∂Uk

∂t
∼ mkεk

Passing to a subsequence, (x̄k, t̄k) → (xo, to) ∈ Ωλo−δ × [−2, 2]

Uk → Ū uniformly, and

∂Ū

∂t
+ (−∆)sŪ = c̄Ū

As we have already derived

Ū(xo, to) = 0,
∂Ū

∂t
(xo, to) = 0
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Also following from (6.25)

∂Ū

∂t
(xo, to) + (−∆)

α
2 Ū(xo, to)

= f(v̄λ0(x
o, to + tk))− f(v̄(xo, to + tk))

=
f(v̄λ0(x

o, to + tk))

v̄pλ0
(xo, to + tk)

v̄pλ0
(xo, to + tk)−

f(v̄(x, to + tk))

v̄p(xo, to + tk)
v̄p(xo, to + tk)

≥ f(v̄(xo, to + tk))

v̄p(xo, to + tk)
[v̄pλ0

(xo, to + tk)− v̄p(xo, to + tk)]

=
f(v̄(xo, to + tk))

v̄p(xo, to + tk)
pξp−1(xo, to + tk)Vλ0(x

o, to + tk)

:= fv̄(ξ(x
o, tk))Vλ0(x

o, to + tk)

:= fv̄(ξ(x
o, tk))Vk(x

o, to)

:= fv̄(ξ(x
o, tk))V̄ (xo, to)

This implies

(−∆)
α
2 Ū(xo, to) ≥ fv̄(ξ(x

o, tk))V̄ (xo, to)

and

fv̄(ξ(x
o, tk))V̄ (xo, to) ≥ 0
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It follows

0 ≤ (−∆)
α
2 Ū(xo, to)

= Cn,αPV

∫

Rn

−Ū(y, to)

|xo − y|n+α
dy

= Cn,αPV {
∫

Σλ0

−Ū(y, to)

|xo − y|n+α
dy +

∫

Σ̃λ0

−Ū(y, to)

|xo − y|n+α
dy}

= Cn,αPV {
∫

Σλ0

−Ū(y, to)

|xo − y|n+α
dy +

∫

Σλ0

−Ū(yλ, to)

|xo − yλ|n+α
dy}

= Cn,αPV {
∫

Σλ0

−Ū(y, to)

|xo − y|n+α
dy +

∫

Σλ0

Ū(y, to)

|xo − yλ|n+α
dy}

= Cn,αPV

∫

Σλ0

Ū(y, to){ 1

|xo − yλ|n+α
− 1

|xo − y|n+α
}dy

≤ 0

since

1

|xo − yλ|n+α
− 1

|xo − y|n+α
< 0

and

Ū(y, to) ≥ 0

This implies

Ū(y, to) ≡ 0, ∀y ∈ Rn

Similar with above, for

uk(x, t) = u(x, t+ tk)

uk(x, t̄k) = u(x, t̄k + tk)

uk(x, t) → ū(x, t)

∂ū

∂t
+ (−∆)

α
2 ū = f̄(v̄(x, t))
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We have

ū(x, t) ≡ 0

Now for sufficiently large k,

(−∆)
α
2 ak(x̄k, t̄k)

= (−∆)
α
2 Uk

≥ −∂Uk

∂t
(x̄k, t̄k) + fv(ξ(x, t))Vk(x̄k, t̄k)

Since we know

(−∆)
α
2 ak(x̄k, t̄k)

≤ c

[d(x̄k, Tλo)]
α
ak(x̄k, t̄k)

≤ −c1mk

where c1 > 0

−∂Uk

∂t
(x̄k, t̄k) ∼ εkmk

If we assume ∂f
∂V

= 0, as Uk → 0 uniformly,

fv(ξ(x, t)) = o(1) → 0

Finally,

−c1mk ≥ o(1)mk

or

c1 ≤ −o(1)
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Since o(1) → 0 as k → ∞, which is a contradiction with −c1mk ≥ o(1)mk as k → ∞.

Hence, we have proved (6.36).

Since Uλ, Vλ depends on λ continuously, there exists ε > 0 and ε < δ, such that for all

λ ∈ (λ0, λ0 + ε), we have





Uλ(x, t) ≥ 0, (x, t) ∈ Ωλ0−δ × R,

Vλ(x, t) ≥ 0, (x, t) ∈ Ωλ0−δ × R,
(6.44)

Now apply the Narrow region theorem ?? and in our case the narrow region is

Ω−
λ \Ωλ0−δ × R

By Narrow region theorem, we derive




Uλ(x, t) ≥ 0, (x, t) ∈ Ω−
λ \Ωλ0−δ × R,

Vλ(x, t) ≥ 0, (x, t) ∈ Ω−
λ \Ωλ0−δ × R,

(6.45)

Combining (6.44) and (6.45), we conclude that for all λ ∈ (λ0, λ0 + ε)




Uλ(x, t) ≥ 0, (x, t) ∈ Ωλ0 × R,

Vλ(x, t) ≥ 0, (x, t) ∈ Ωλ0 × R,

This contradicts the definition of λ0. Therefore, we must have

λ0 = 0
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and





Uλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 × R,

Vλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 × R,

Similarly, one can move the plane Tλ from λ = 1 to the left and show that





Uλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 × R,

Vλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 × R,

Now we have shown that

λ0 = 0

and




Uλ0 ≡ 0, (x, t) ∈ Ωλ0 × R,

Vλ0 ≡ 0, (x, t) ∈ Ωλ0 × R,

This completes the step 2.

6.6.5 Conclude the solution is radially symmetric and monotone decreasing

So far, we have proved that u, v are symmetric about the plane T0. Since the x1 direction

can be chosen arbitrarily, we have actually shown that u, v are radially symmetric about

origin.

Since Uλ(x, t) �≡ 0, (x, t) ∈ Tλ × R, ∀0 < λ < λ0, if there exists (xo.to) such that

(xo, to) is the minimum point, from the above process, on one hand,

(−∆)
α
2 Uλ(x

o, to) ≤ 0
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On the other hand,

(−∆)
α
2 Uλ(x

o, to) = 0

This forces

Uλ ≡ 0

which is a contradiction. Therefore, u is monotone decreasing about the origin. Same

reason for v.

Part 2: Method of Sliding and Its

Applications: Monotonicity of solution

of fractional parabolic and

Monge-Ampére equations

7 Method of Sliding and Its Applications: Monotonicity

of solutions of fractional parabolic and Monge-Ampére

equations

7.1 Monotonicity of solution of fractional parabolic equation

In the following section, we will try to prove the solution of the fractional parabolic

equation with assumption below is monotone increasing using the sliding method.
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Theorem 7.1. (Monotonicity of solution of fractional parabolic equation)

Let Ω be a bounded domain in Rn which is convex in the xn-direction. Let 0 < s < 1,

and suppose that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
× (−∞,∞) is a positive bounded classical

solution of





∂u
∂t
(x, t) + (−∆)su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

(7.1)

We impose some conditions on u. Let u(x, t) = ϕ(x, t) in Ωc, suppose H:

For any three points x = (x′, xn), y = (x′, yn) and z = (x′, zn) lying on a segment

parallel to the xn axis, yn < xn < zn with y, z ∈ Ωc, we have

ϕ(y, t) < u(x, t) < ϕ(z, t), (x, t) ∈ Ω× R (7.2)

and

ϕ(y, t) ≤ ϕ(x, t) ≤ ϕ(z, t), (x, t) ∈ Ωc × R (7.3)

Assume that f is non-increasing about u and is uniformly Lipschitz continuous in u. i.e:

f(t, |x|, u1)− f(t, |x|, u2) ≤ c|u1 − u2|, ∀x ∈ Ω,

Then u(x, t) is monotone increasing with respect to xn in Ω, i.e: for any τ > 0, we have

u((x′, xn + τ), t) > u((x′, xn), t) for (x′, xn), (x
′, xn + τ) ∈ Ω and t ∈ R,

where x′ = (x1, · · · , xn−1) ∈ Rn−1
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xn

xτ

x Dτ

Ωτ

Ω

Figure 13: sliding method

7.1.1 Basic set-up

Write

x = (x′, xn)

For any τ ∈ R , define

uτ (x) = u(x′, xn + τ)

Let Ω be a bounded domain in Rn, which is convex in the xn-direction. By sliding Ω

downward τ units, we obtain Ωτ :

Ωτ = Ω− τen, en = (0, 0, · · · , 1)

Define

Dτ = Ωτ ∩ Ω
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and

τ̃ = sup{τ | τ > 0, Dτ �= ∅}

Assume that u(x, t) is a positive solution of equation (7.1). We compare the values of

u(x, t) with

uτ (x, t) = u((x′, xn + τ), t).

Let

W τ (x, t) = uτ (x, t)− u(x, t)

uτ (x, t) satisfies equation (7.1), from which, we have

∂W τ

∂t
(x, t) + (−�)sW τ (x, t)

= f(t, |x|, uτ )− f(t, |x|, u)

=
f(t, |x|, uτ )− f(t, |x|, u)

uτ (x, t)− u(x, t)
W τ (x, t)

:= cτ (x, t)W τ (x, t), (7.4)

where

cτ (x, t) =
f(t, |x|, uτ )− f(t, |x|, u)

uτ (x, t)− u(x, t)

Since f is Lipschitz continuous, we have

cτ (x, t) ≤ L, ∀x ∈ Dτ

where L is the Lipschitz constant.
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The main part of the proof is to show that

W τ (x, t) > 0, ∀(x, t) ∈ Dτ × R

We divide our proof in two steps.

Step 1: Begin sliding Ωτ downward τ units along the xn axis

So then

|x| < |xτ |

We will show that for τ sufficiently close to τ̃ when Dτ is narrow, we have

W τ (x, t) ≥ 0, (x, t) ∈ Dτ × R

Apparently, Dτ is a narrow region in the xn direction for τ sufficiently close to τ̃ . We

first establish a narrow region principle for the fractional parabolic operator, which is an

important ingredient in applying the sliding method on bounded domains.

Step 2: Decrease τ as long as W τ (x, t) ≥ 0 holds to its limiting position

We would show the limit position is τ = 0. After we have completed the second step,

we would prove ∀τ > 0, W τ (x, t) > 0, thus we have completed proof of monotonicity of

solution of fractional parabolic equation in the bounded domain.

7.2 Step 1: show W τ(x, t) ≥ 0

7.2.1 Narrow Region principle on a parabolic cylinder

Lemma 7.2. (Narrow Region principle on a parabolic cylinder) Let D be a bounded nar-

row region in Rn. Assume that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
∩ L2s × [t, T ]. W τ (x, t) =
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uτ (x, t)− u(x, t) is lower semi-continuous on D̄ × [t, T ], and satisfies





∂W τ

∂t
+ (−�)sW τ = c(x, t)W τ (x, t), (x, t) ∈ D × [t, T ],

W τ (x, t) ≥ 0, (x, t) ∈ (Rn \D)× [t, T ],

(7.5)

where c(x, t) is bounded from below in D. Let dn(D) be the width of D in the xn-direction.

Then:

W τ (x, t) ≥ 0, (x, t) ∈ D × [t, T ] (7.6)

Moreover, we have either W τ (x, t) > 0 in D × R or W τ (x, t) ≡ 0 in Rn × R:

Proof. First, we will prove

W τ (x, t) ≥ min{0, inf
D×[t,T ]

W τ (x, t)}, (x, t) ∈ D × [t, T ] (7.7)

If (7.7) does not hold, then the lower semi-continuity of W τ (x, t) on D× [t, T ] guaran-

tees that there exists an (xo, to) ∈ D × [t, T ] such that

W τ (xo, to) = min
D×(t,T ]

W τ < 0

And one can further deduce from condition (7.5) that (xo, to) is in the interior of Dτ ×

[t, T ]

Since (xo, to) is the minimum, thus

∂W τ (xo, to)

∂t
= 0
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Similar to the argument in previous section, we have

(−∆)sW τ (xo, to)

= Cn,sPV

∫

Rn

W τ (xo, to)−W τ (y, to)

|xo − y|n+2s
dy

= Cn,sPV {
∫

D

W τ (xo, to)−W τ (y, to)

|xo − y|n+2s
dy +

∫

Rn\D

W τ (xo, to)−W τ (y, to)

|xo − y|n+2s
dy}

≤ Cn,sPV

∫

Rn\D

W τ (xo, to)−W τ (y, to)

|xo − y|n+2s
dy}

≤ Cn,sPV

∫

Rn\D

W τ (xo, to)

|xo − y|n+2s
dy

≤ c0W
τ (xo, to)

∫

Rn\D

1

|xo − y|n+2s
dy

By lemma 5.7, we have

(−∆)sW τ (xo, to) ≤ cW τ (xo, to)

dn(D)2s
< 0 (7.8)

Combining (7.4) and (7.8), we deduce

cτ (xo, to)W τ (xo, to) ≤ cW τ (xo, to)

dn(D)2s

Then we derive

c

dn(D)2s
≤ cτ (xo, to)

for τ sufficiently close to τ̃ , dn(D) would be sufficiently small, since cτ is bounded, we

derive a contradiction. Therefore, (7.7) must be valid.

Let

W̄ = em(t−t)W τ (x, t), m > 0
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So then

∂W̄

∂t
+ (−�)sW̄ = c̄W̄

with

c̄

is still bounded.

This time, we want to show

W τ (x, t) ≥ 0 (7.9)

Suppose otherwise, (7.9) does not hold, then W̄ (x, t) is negative somewhere, hence

there exists an xo ∈ D and to ∈ [t, T ] such that

W̄ (xo, to) = min
D×(t,T ]

W̄ < 0

If

to < T

∂W̄

∂t
(xo, to) = 0

If

to = T

∂W̄

∂t
(xo, to) ≤ 0

From (7.4), we derive

(−∆)sW̄ (xo, to) ≥ c̄W̄ (xo, to)
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We also have

(−∆)sW̄ (xo, to) ≤ c

dn(D)2s
W̄ (xo, to) (7.10)

We deduce

c

dn(D)2s
W̄ (xo, to) ≥ c̄W̄ (xo, to)

Then we derive

c

dn(D)2s
≤ c̄(xo, to)

Which is a contradiction for dn(D) sufficiently small. Thus,

W̄ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}, ∀(x, t) ∈ D × (t, T )

Thus

em(t−t)W τ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}

So

W τ (x, t) ≥ e−m(t−t) min{0, inf
x∈D

W̄ (x, t)}

W τ (x, t) is bounded from below. Let t → −∞, W τ (x, t) →≥ 0.

We conclude that for τ sufficiently close to τ̃ when Dτ is narrow,

W τ (x, t) ≥ 0

If W τ (xo, to) = 0 at (xo, to) ∈ Dτ ×R, then (xo, to) is a minimum point of W τ (x, t) in

Dτ × R.
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So then

W τ (xo, to)

∂t
= 0

If W τ (x, t) �≡ 0 in Rn×R, then there exists a point (yo, to) and one of the neighborhood

N(yo, to) such that

W τ (y, to) ≥ c > 0,

in N(yo, to)

Then we have

(−∆)sW τ (xo, to)

= Cn,sPV

∫

Rn

W τ (xo, to)−W τ (y, to)

|xo − y|n+2s
dy

= Cn,sPV

∫

Rn

−W τ (y, to)

|xo − y|n+2s
dy

≤ Cn,sPV

∫

N(yo,to)

−c

|xo − y|n+2s
dy

< 0 (7.11)

This is a contradiction with (7.5).

Then we have either

W τ (x, t) > 0

in Dτ × R or

W τ (x, t) ≡ 0

in Rn × R.

So far, we have proved the Narrow Region Theorem 7.5.
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We first proved that for τ sufficiently close to τ̃ when Dτ is narrow, we have

W τ (x, t) ≥ 0 (7.12)

7.3 Step 2: decrease τ as long as W τ ≥ 0 holds to its limiting position

The inequality (7.12) provides a starting point, from which we can carry out the sliding.

Now we decrease τ as long as W τ (x, t) ≥ 0 holds to its limiting position. Define

τ0 = inf{τ | W τ (x, t) ≥ 0, ∀(x, t) ∈ Dτ × R, 0 < τ < τ̃}

In this part, we show that

τ0 = 0

Suppose

τ0 > 0

we will show that Ωτ can be slid upward a little bit more and we will have

W τ (x, t) ≥ 0

To be more rigorous, there exists some ε > 0, such that for any τ ∈ (τ0 − ε, τ0), we have

W τ (x, t) ≥ 0, x ∈ Dτ

This is a contradiction with the definition of τ0. Hence we must have

τ0 = 0
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7.3.1 Show W τ0 > 0 for (x, t) ∈ Dτ0 × R

Since W τ0(x, t) ≥ 0 for (x, t) ∈ Dτ0 × R and W τ0(x, t) > 0 for (x, t) ∈ ∂Dτ0 × R, we

have

W τ0(x, t) �≡ 0 (7.13)

for (x, t) ∈ Dτ0 × R

We want to show W τ0(x, t) > 0 for (x, t) ∈ Dτ0 × R

Otherwise, ∃(xo, to) ∈ Dτ0 × R such that W τ0(xo, to) = 0

Since W τ0(x, t) ≥ 0 inside Dτ0 × R, so for W τ0(xo, to) = 0, we know (xo, to) is the

minimum.

Then

∂W τ0(xo, to)

∂t
= 0

Following from (7.4), we then derive

∂W τ0

∂t
(xo, to) + (−∆)sW τ0(xo, to)

= f(to, |xo|, uτ0)− f(to, |xo|, u)

=
f(to, |xo|, uτ0)− f(to, |xo|, u)

uτ0(xo, to)− u(xo, to)
W τ0(xo, to)

:= cτ0(xo, to)W τ0(xo, to),

So that

(−�)sW τ0(xo, to) = 0
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It follows that

0 = (−∆)sW τ0(xo, to)

= Cn,sPV

∫

Rn

−W τ0(y, to)

|xo − y|n+2s
dy

≤ 0 (7.14)

since

1

|xo − y|n+2s
> 0

and

W τ0(y, to) ≥ 0

This implies that

W τ0(y, to) ≡ 0, (y, t) ∈ Rn × R. (7.15)

which contradicts with (7.13).

We conclude

W τ0(x, t) > 0 (7.16)

for every (x, t) ∈ Dτ0 × R.

However, since t ∈ (−∞,∞), W τ0(x, t) may not be bounded away from 0.

We want to further derive

infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R (7.17)

I will prove (7.17) by contradiction.
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7.3.2 Prove by contradiction: Show W̄ (y, 0) ≡ 0, ∀(y, 0) ∈ Dτ0−ε × R

Proof : If (7.17) is violated, then ∃(xk, tk) ∈ Dτ0−ε × R such that W τ0(xk, tk) → 0

Without loss of generality, by Bolzano-Weierstrass theorem, ∃ subsequences of xk, here

we still denote this subsequence by xk, such that xk → xo ∈ Dτ0−ε

Now for each tk(k ≥ k0), Let

Wk(x, t) = W τ0(x, t+ tk)

so

Wk(xk, 0) = W τ0(xk, tk) → 0

From (7.4), we derive:

∂Wk

∂t
(x, t) + (−�)sWk(x, t)

= f(t+ tk, |xτ0 |, uτ0)− f(t+ tk, |x|, u)

=
f(t+ tk, |xτ0 |, uτ0)− f(t+ tk, |x|, u)

uτ0(x, t+ tk)− u(x, t+ tk)
Wk(x, t)

:= cτ0(x, t+ tk)Wk(x, t),

So Wk satisfies

∂Wk

∂t
(x, t) + (−�)sWk(x, t) = cτ0(x, t+ tk)Wk(x, t) (7.18)

By regularity theory for parabolic equations [45], there exists some functions W̄ (x, t)

and c̄(x, t) such that k → ∞, Wk(x, t) converges uniformly to W̄ (x, t) for (x, t) ∈ Dτ0×R,
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and W̄ satisfies:

∂W̄

∂t
+ (−�)sW̄ = c̄(x, t)W̄ (x, t)

Since

Wk(xk, 0) = W τ0(xk, tk) → 0

W̄ (xo, 0) = 0

and

W̄ ≥ 0

So (xo, 0) is the minimum.

∂W̄

∂t
(xo, 0) = 0

Also from (7.4), we derive,

∂W̄

∂t
(xo, 0) + (−∆)sW̄ (xo, 0)

= f(tk, |xoτ0 |, ūτ0)− f(tk, |xo|, ū)

=
f(tk, |xoτ0 |, ūτ0)− f(tk, |xo|, ū)

ūτ0(xo, tk)− ū(xo, tk)
W̄ (xo, 0)

:= cτ (xo, tk)W̄ (xo, 0),

we derive

(−�)sW̄ (xo, 0) = 0
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It follows that

0 = (−∆)sW̄ (xo, 0)

= Cn,sPV

∫

Rn

−W̄ (y, 0)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−W̄ (y, 0)

|xo − y|n+2s
dy +

∫

Σ̃λ0

W̄ (y, 0)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−W̄ (y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

−W̄ (yλ, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−W̄ (y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

W̄ (y, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

W̄ (y, 0){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0 (7.19)

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

W̄ (y, 0) ≥ 0

This implies that

W̄ (y, 0) ≡ 0, ∀y ∈ Rn

7.3.3 Show ū(x, 0) ≡ 0

Let uk(x, t) = u(x, t+ tk), then by (7.1), we have

∂uk(x, t)

∂t
+ (−∆)suk(x, t) = f(t+ tk, uk(x, t))

By regularity theory for parabolic equations [45], there exists some functions ū(x, t)
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such that as k → ∞, uk(x, t) converges uniformly to ū(x, t) for (x, t) ∈ Dτ0 × R, f(t, u)

converges uniformly to f̄(0, ū) for x ∈ Dτ0

and

∂ū(x, t)

∂t
+ (−∆)sū(x, t) = f̄(t, ū(x, t))

Since

f(0, u) ≥ 0

Thus

f̄(0, ū) ≥ 0

In order to show that

ū(x, 0) ≡ 0, x ∈ Rn, (7.20)

we apply the following:

Lemma 7.3. (Strong Maximum Principle for ∂ū
∂t

+ (−∆)sū = f̄(t, ū)).

Assume that ū(x, t) ∈ [C1,1
loc (Ωλ) ∩ C(Ω̄λ) ∩ L2s]× C1([t, T ])




∂ū(x,t)
∂t

+ (−∆)sū(x, t) = f̄(t, ū), (x, t) ∈ Dτ × [t, T ],

ū(x, t) ≥ 0, (x, t) ∈ Dτ × [t, T ]

(7.21)

we have either

ū(x, 0) > 0, x ∈ Dτ
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or

ū(x, 0) ≡ 0, x ∈ Rn

Proof. First, if ū(x, 0) ≥ 0 and ū(xo, 0) = 0, (xo, 0) then is a minimum, thus we have

∂ū
∂t
(xo, 0) = 0.

If ū(x, 0) �≡ 0, then

(−∆)sū(xo, 0)

= Cn,sPV

∫

Rn

−ū(y, 0)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−ū(y, 0)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

−ū(yλ, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−ū(y, 0)

|xo − y|n+2s
dy +

∫

Σλ0

ū(y, 0)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

ū(y, 0){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

< 0

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

ū(y, 0) ≥ 0

and

ū(y, 0) �≡ 0

which, by 7.21, is a contradiction with f̄(0, ū) ≥ 0.
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Therefore, we have either ū(x, 0) > 0, x ∈ Dτ or ū(x, 0) ≡ 0, x ∈ Rn.

If ū(x, 0) > 0, x ∈ Dτ , then ū(xτ0 , 0) > ū(x, 0), therefore, W̄ (x̄, 0) = ū(x̄τ0 , 0) −

u(x̄, 0) > 0. W̄ (x, 0) > 0 somewhere, but we already derive W̄ (x, 0) ≡ 0, hence we must

have ū(x, 0) ≡ 0, x ∈ Rn.

Thus, we know u(x, tk) converges to 0 uniformly.

7.3.4 Derive a contradiction for large k

In order to derive a contradiction for large k, we modify tk a bit.

We still denote Wk(x, t) by W τ0(x, t+ tk), Let

Wk(xk, 0) ≡ W τ0(xk, tk) = mk (7.22)

which converges to zero.

Let

Vk(x, t) = Wk(x, t)− 2mkη(εk(t− tk)) (7.23)

where η(t) ∈ C∞
0 is a cut-off function such that |η′(t)| ≤ c and

η(t) =




1, |t| ≤ 1,

0, |t| ≥ 2.
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When (x, t) is outside Dτ0−ε × (tk − 2, tk + 2),

Vk(x, t)

= Wk(x, t),

When (x, t) is inside Dτ0−ε × (tk − 2, tk + 2), such that at (x, tk)

Vk(x, tk)

= Wk(x, tk)− 2mk

The value of Vk outside Dτ0−ε × (tk − 2, tk + 2) is greater than the value of Vk inside

Dτ0−ε × (tk − 2, tk + 2), so Vk(x, t) attains its minimum at some point, say (x̄k, t̄k) in

Dτ0−ε × (tk − 2, tk + 2).

This implies,

∂Vk

∂t
(x̄k, t̄k) = 0

Combining (7.22) and (7.23), it is easy to deduce

Vk(xk, 0)

= Wk(xk, 0)− 2mk

= mk − 2mk

= −mk

Thus

Vk(x̄k, t̄k) ≤ −mk
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Let

Ṽk(x, t) = Vk(x, t+ t̄k)

Then

Ṽk(x̄k, 0) = Vk(x̄k, t̄k)

Then

∂Ṽk

∂t
+ (−�)sṼk = cλṼk + 2mkη(εk(t− tk))

By regularity theory for parabolic equations [45], there exists some functions V̄ (x, t)

such that k → ∞, Ṽk(x, t) → V̄ (x, t) converges uniformly for x ∈ Dτ0 ,

Moreover

∂V̄

∂t
+ (−∆)sV̄ = cλV̄

We know

∂Vk

∂t
∼ ∂Wk

∂t
− 2mkεkc

Therefore we conclude

∂Wk

∂t
∼ mkεk

Passing to a subsequence, (x̄k, t̄k) → (xo, to) ∈ Dτ0−ε × [−2, 2]

Wk → W̄ uniformly, and

∂W̄

∂t
+ (−∆)sW̄ = c̄W̄

As we have already derived

W̄ (xo, to) = 0,
∂W̄

∂t
(xo, to) = 0
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Also following from (7.4)

∂W̄

∂t
(xo, to) + (−∆)sW̄ (xo, to)

= f(to, |xoτ0 |, uτ0)− f(to, |xo|, u)

=
f(to, |xoτ0 |, uτ0)− f(to, |xo|, u)

ūτ0(xo, to)− ū(xo, to)
W̄ (xo, to)

:= cτ (xo, to)W̄ (xo, to),

It is easy to deduct

(−∆)sW̄ (xo, to) = 0

It follows

(−∆)sW̄ (xo, to)

= Cn,sPV

∫

Rn

−W̄ (y, to)

|xo − y|n+2s
dy

= Cn,sPV {
∫

Σλ0

−W̄ (y, to)

|xo − y|n+2s
dy +

∫

Σ̃λ0

−W̄ (y, to)

|xo − y|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−W̄ (y, to)

|xo − y|n+2s
dy +

∫

Σλ0

−W̄ (yλ, to)

|xo − yλ|n+2s
dy}

= Cn,sPV {
∫

Σλ0

−W̄ (y, to)

|xo − y|n+2s
dy +

∫

Σλ0

W̄ (y, to)

|xo − yλ|n+2s
dy}

= Cn,sPV

∫

Σλ0

W̄ (y, to){ 1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
}dy

≤ 0

since

1

|xo − yλ|n+2s
− 1

|xo − y|n+2s
< 0

and

W̄ (y, to) ≥ 0
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This implies

W̄ (x, to) ≡ 0, ∀y ∈ Rn

Similar with above, assume f(t, 0) ≥ 0, for

uk(x, t) = u(x, t+ tk)

uk(x, t̄k) = u(x, t̄k + tk)

uk(x, t) → ū(x, t)

∂ū

∂t
+ (−∆)sū = f(t, ū)

We have

ū(x, t) ≡ 0

Now for sufficiently large k,

(−∆)sVk(x̄k, t̄k)

= (−∆)sWk

= −∂Wk

∂t
(x̄k, t̄k) + cτ0(x̄k, t̄k + tk)Wk(x̄k, t̄k)

Since we know

(−∆)sVk(x̄k, t̄k)

≤ c

[d(x̄k, Tλo)]
2s
Vk(x̄k, t̄k)

≤ −c1mk
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where c1 > 0

−∂Wk

∂t
(x̄k, t̄k) ∼ εkmk

If we assume ∂f
∂u
(t, 0) = 0, as uk → 0 uniformly,

cτ0(x̄k, t̄k + tk) = o(1) → 0

Finally,

−c1mk ≥ o(1)mk

or

c1 ≤ −o(1)

Since o(1) → 0 as k → ∞, which is a contradiction with −c1mk ≥ o(1)mk as k → ∞.

Now we can carve out from Dτ0 a closed set K ⊂ Dτ0 such that Dτ0\K is narrow.

According to (7.16), we have

W τ0(x, t) ≥ C0 > 0, in K (7.24)

Since W τ is continuous with respect to τ , for small ε > 0, we have:

W τ0−ε(x, t) ≥ 0, in K (7.25)

According to (H), we have

W τ0−ε(x, t) ≥ 0, in (Dτ0−ε)c
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It is obvious that (Dτ0−ε\K)c = K ∪ (Dτ0−ε)c, then





∂W τ0−ε

∂t
+ (−∆)sW τ0−ε = c(x, t)W τ0−ε(x, t), (x, t) ∈ Dτ0−ε\K × R,

W τ0−ε(x, t) ≥ 0, (x, t) ∈ (Dτ0−ε\K)c × R,
(7.26)

By Lemma 7.5, we have

W τ0−ε(xk, tk) ≥ 0, (x, t) ∈ Dτ0−ε\K × R (7.27)

From this and (7.25), we obtain W τ (x, t) ≥ 0 for τ ∈ (τ0 − ε, τ0) which contradicts the

definition of τ0.

Since W τ (x, t) �≡ 0, (x, t) ∈ Dτ × R, ∀0 < τ < τ̃ , if there exists (xo, to) such that

(xo, to) is the minimum point, from the above process, on one hand,

(−∆)sW τ (xo, to) ≤ 0

On the other hand,

(−∆)sW τ (xo, to) = 0

This forces

W τ ≡ 0

which contradicts (H)

Thus we have proved the Theorem.
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7.4 Monotonicity of solutions of parabolic Monge-Ampére equations

In the following section, we will try to prove the solution of the parabolic nonlocal

Monge-Ampére equation with assumption below is monotone increasing using the sliding

method.

Theorem 7.4. (Monotonicity of solution of parabolic Monge Ampere equation)

Let Ω be a bounded domain in Rn which is convex in the xn-direction. Let 0 < s < 1,

and suppose that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
× (−∞,∞) is a positive bounded classical

solution of




∂u
∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Ω× (−∞,∞),

u(x, t) = ϕ(x, t), (x, t) ∈ Ωc × (−∞,∞),

(7.28)

We impose some conditions on u. Let u(x, t) = ϕ(x, t) in Ωc, suppose H:

For any three points x = (x′, xn), y = (x′, yn) and z = (x′, zn) lying on a segment

parallel to the xn axis, yn < xn < zn with y, z ∈ Ωc, we have

ϕ(y, t) < u(x, t) < ϕ(z, t), (x, t) ∈ Ω× R (7.29)

and

ϕ(y, t) ≤ ϕ(x, t) ≤ ϕ(z, t), (x, t) ∈ Ωc × R (7.30)

Assume that f is uniformly Lipschitz continuous in u. i.e:

f(t, |x|, u1)− f(t, |x|, u2) ≤ c|u1 − u2|, ∀x ∈ Ω,
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xn

xτ

x Dτ

Ωτ

Ω

Figure 14: sliding method

then u(x, t) is monotone increasing with respect to xn in Ω, i.e: for any τ > 0, we have

u((x′, xn + τ), t) > u((x′, xn), t) for (x′, xn), (x
′, xn + τ) ∈ Ω and t ∈ R,

where x′ = (x1, · · · , xn−1) ∈ Rn−1

7.4.1 Basic set-up

Write

x = (x′, xn)

For any τ ∈ R , define

uτ (x) = u(x′, xn + τ)

Let Ω be a bounded domain in Rn, which is convex in the xn-direction. By sliding Ω

downward τ units, we obtain Ωτ :

Ωτ = Ω− τen, en = (0, 0, · · · , 1)
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Define

Dτ = Ωτ ∩ Ω

and

τ̃ = sup{τ | τ > 0, Dτ �= ∅}

Assume that u(x, t) is a positive solution of equation (7.28). We compare the values of

u(x, t) with

uτ (x, t) = u((x′, xn + τ), t).

Let

W τ (x, t) = uτ (x, t)− u(x, t)

uτ (x, t) satisfies equation (7.28), from which, we have

∂W τ

∂t
(x, t)−Dθ

su
τ (x, t) +Dθ

su(x, t)

= f(t, |x|, uτ )− f(t, |x|, u)

=
f(t, |x|, uτ )− f(t, |x|, u)

uτ (x, t)− u(x, t)
W τ (x, t)

:= cτ (x, t)W τ (x, t), (7.31)

where

cτ (x, t) =
f(t, |x|, uτ )− f(t, |x|, u)

uτ (x, t)− u(x, t)

Since f is Lipschitz continuous, we have

cτ (x, t) ≤ L, ∀x ∈ Dτ
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where L is the Lipschitz constant.

The main part of the proof is to show that

W τ (x, t) > 0, ∀(x, t) ∈ Dτ × R

We divide our proof in two steps.

Step 1: Begin sliding Ωτ downward τ units along the xn axis

So then

|x| < |xτ |

We will show that for τ sufficiently close to τ̃ when Dτ is narrow, we have

W τ (x, t) ≥ 0, (x, t) ∈ Dτ × R

Apparently, Dτ is a narrow region in the xn direction for τ sufficiently close to τ̃ . We

first establish a narrow region principle for the parabolic Monge-Ampere equation, which

is an important ingredient in applying the sliding method on bounded domains.

Step 2: Decrease τ as long as W τ (x, t) ≥ 0 holds to its limiting position

We would show the limit position is τ = 0. After we have completed the second step,

we would prove ∀τ > 0, W τ (x, t) > 0, thus we have completed proof of monotonicity of

solution of parabolic Monge-Ampere equation in the bounded domain.
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7.5 Step 1: show W τ(x, t) ≥ 0

7.5.1 Narrow Region principle on a parabolic cylinder

Lemma 7.5. (Narrow Region principle on a parabolic cylinder) Let D be a bounded nar-

row region in Rn. Assume that u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
∩ L2s × [t, T ]. W τ (x, t) =

uτ (x, t)− u(x, t) is lower semi-continuous on D̄ × [t, T ], and satisfies





∂W τ

∂t
−Dθ

su
τ +Dθ

su = c(x, t)W τ (x, t), (x, t) ∈ D × [t, T ],

W τ (x, t) ≥ 0, (x, t) ∈ (Rn \D)× [t, T ],

(7.32)

where c(x, t) is bounded from below in D. Let dn(D) be the width of D in the xn-direction.

Then:

W τ (x, t) ≥ 0, (x, t) ∈ D × [t, T ] (7.33)

Moreover, we have either W τ (x, t) > 0 in D × R or W τ (x, t) ≡ 0 in Rn × R:

Proof. First, we will prove

W τ (x, t) ≥ min{0, inf
D×[t,T ]

W τ (x, t)}, (x, t) ∈ D × [t, T ] (7.34)

If (7.34) does not hold, then the lower semi-continuity of W τ (x, t) on D × [t, T ] guar-

antees that there exists an (xo, to) ∈ D × [t, T ] such that

W τ (xo, to) = min
D×(t,T ]

W τ < 0

And one can further deduce from condition (7.32) that (xo, to) is in the interior of D ×
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[t, T ]

Since (xo, to) is the minimum, thus

∂W τ (xo, to)

∂t
= 0

By definition of Dθ
s we have

Dθ
su(x

o, to)−Dθ
su

τ (xo, to)

= inf{P.V
∫

Rn

u(y, to)− u(xo, to)

|A−1(y − xo)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1(y − xo)|n+2s
dy}

For any η > 0, there exists an Aη, such that

Dθ
su(x

o, to)−Dθ
su

τ (xo, to)

= inf{P.V
∫

Rn

u(y, to)− u(xo, to)

|A−1(y − xo)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1(y − xo)|n+2s
dy}

≥ P.V

∫

Rn

u(y, to)− u(xo, to)

|A−1
η (y − xo)|n+2s

dy − η − P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1
η (y − xo)|n+2s

dy

= P.V

∫

Rn

W τ (xo, to)−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy − η

= P.V {
∫

D

W τ (xo, to)−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy +

∫

Rn\D

W τ (xo, to)−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy} − η

≤ P.V

∫

Rn\D

W τ (xo, to)−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy − η

≤ P.V

∫

Rn\D

W τ (xo, to)

|A−1
η (y − xo)|n+2s

dy − η

≤ c0W
τ (xo, to)

∫

Rn\D

1

|A−1
η (y − xo)|n+2s

dy − η

By lemma 5.7, we have

Dθ
su(x

o, to)−Dθ
su

τ (xo, to) ≤ cW τ (xo, to)

dn(D)2s
< 0 (7.35)
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Combining (7.31) and (7.35), we deduce

cτ (xo, to)W τ (xo, to) ≤ cW τ (xo, to)

dn(D)2s

Then we derive

c

dn(D)2s
≤ cτ (xo, to)

for τ sufficiently close to τ̃ , dn(D) would be sufficiently small, since cτ is bounded, we

derive a contradiction. Therefore, (7.34) must be valid.

Let

W̄ = em(t−t)W τ (x, t), m > 0

From 7.31,

∂W̄ (x, t)

∂t
−Dθ

s ū
τ (x, t) +Dθ

s ū(x, t)

= c̄(x, t)W̄ (x, t)

with c̄(x, t) is still bounded.

This time, we want to show

W τ (x, t) ≥ 0 (7.36)

Suppose otherwise, (7.36) does not hold, then W̄ (x, t) is negative somewhere, hence

there exists an xo ∈ D and to ∈ [t, T ] such that

W̄ (xo, to) = min
D×(t,T ]

W̄ < 0
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If

to < T

∂W̄

∂t
(xo, to) = 0

If

to = T

∂W̄

∂t
(xo, to) ≤ 0

From (7.31), we derive

(−∆)sW̄ (xo, to) ≥ c̄(xo, to)W̄ (xo, to)

We also have

(−∆)sW̄ (xo, to) ≤ c

dn(D)2s
W̄ (xo, to) (7.37)

We deduce

c

dn(D)2s
W̄ (xo, to) ≥ c̄(xo, to)W̄ (xo, to)

Then we derive

c

dn(D)2s
≤ c̄(xo, to)

Which is a contradiction for dn(D) sufficiently small. Thus,

W̄ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}, ∀(x, t) ∈ D × (t, T )
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Thus

em(t−t)W τ (x, t) ≥ min{0, inf
x∈D

W̄ (x, t)}

So

W τ (x, t) ≥ e−m(t−t) min{0, inf
x∈D

W̄ (x, t)}

W τ (x, t) is bounded from below. Let t → −∞, W τ (x, t) →≥ 0.

We conclude that for τ sufficiently close to τ̃ when Dτ is narrow,

W τ (x, t) ≥ 0

If W τ (xo, to) = 0 at (xo, to) ∈ Dτ ×R, then (xo, to) is a minimum point of W τ (x, t) in

Dτ × R.

So then

W τ (xo, to)

∂t
= 0

If W τ (x, t) �≡ 0 in Rn×R, then there exists a point (yo, to) and one of the neighborhood

N(yo, to) such that

W τ (y, to) ≥ c > 0,

in N(yo, to)
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Then we have

Dθ
su(x

o, to)−Dθ
su

τ (xo, to)

= inf{P.V
∫

Rn

u(y, to)− u(xo, to)

|A−1(y − xo)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1(y − xo)|n+2s
dy}

≥ P.V

∫

Rn

u(y, to)− u(xo, to)

|A−1
η (y − xo)|n+2s

dy − η − P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1
η (y − xo)|n+2s

dy

= P.V

∫

Rn

W τ (xo, to)−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy − η

= P.V

∫

Rn

−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy − η

≤ c0

∫

Rn

−W τ (y, to)

|y − xo|n+2s
dy − η

≤ c0c

∫

N(yo,to)

−1

|y − xo|n+2s
dy − η

≤ −c0cC − η

where c0, c and C are positive constants. Let η → 0, we have

Dθ
su(x

o, to)−Dθ
su

τ (xo, to)

≤ −c0cC

< 0

However, from (7.32), we have

Dθ
su(x

o, to)−Dθ
su

τ (xo, to) = 0

This is a contradiction. Then we have either

W τ (x, t) > 0



225

in Dτ × R or

W τ (x, t) ≡ 0

in Rn × R.

So far, we have proved the Narrow Region Theorem 7.5.

We first proved that for τ sufficiently close to τ̃ when Dτ is narrow, we have

W τ (x, t) ≥ 0 (7.38)

7.6 Step 2: decrease τ as long as W τ ≥ 0 holds to its limiting position

The inequality (7.38) provides a starting point, from which we can carry out the sliding.

Now we decrease τ as long as W τ (x, t) ≥ 0 holds to its limiting position. Define

τ0 = inf{τ | W τ (x, t) ≥ 0, ∀(x, t) ∈ Dτ × R, 0 < τ < τ̃}

In this part, we show that

τ0 = 0

Suppose

τ0 > 0

we will show that Ωτ can be slid upward a little bit more and we will have

W τ (x, t) ≥ 0

To be more rigorous, there exists some ε > 0, such that for any τ ∈ (τ0 − ε, τ0), we have
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W τ (x, t) ≥ 0, x ∈ Dτ

This is a contradiction with the definition of τ0. Hence we must have

τ0 = 0

7.6.1 Show W τ0 > 0 for (x, t) ∈ Dτ0 × R

Since W τ0(x, t) ≥ 0 for (x, t) ∈ Dτ0 × R and W τ0(x, t) > 0 for (x, t) ∈ Ω ∩ ∂Dτ0 × R,

we have

W τ0(x, t) �≡ 0 (7.39)

for (x, t) ∈ Dτ0 × R

We want to show W τ0(x, t) > 0 for (x, t) ∈ Dτ0 × R

Otherwise, ∃(xo, to) ∈ Dτ0 × R such that W τ0(xo, to) = 0

Since W τ0(x, t) ≥ 0 inside Dτ0 × R, so for W τ0(xo, to) = 0, we know (xo, to) is the

minimum.

Then

∂W τ0(xo, to)

∂t
= 0

Following from (7.31), we then derive

∂W τ0

∂t
(xo, to)−Dθ

su
τ (xo, to) +Dθ

su(x
o, to)

= f(to, |xo|, uτ0)− f(to, |xo|, u)

=
f(to, |xo|, uτ0)− f(to, |xo|, u)

uτ0(xo, to)− u(xo, to)
W τ0(xo, to)

:= cτ0(xo, to)W τ0(xo, to),
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So that

Dθ
su(x

o, to)−Dθ
su

τ (xo, to) = 0 (7.40)

It follows that

0 = Dθ
su(x

o, to)−Dθ
su

τ (xo, to)

= inf{P.V
∫

Rn

u(y, to)− u(xo, to)

|A−1(y − xo)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1(y − xo)|n+2s
dy}

≥ P.V

∫

Rn

u(y, to)− u(xo, to)

|A−1
η (y − xo)|n+2s

dy − η − P.V

∫

Rn

uτ (y, to)− uτ (xo, to)

|A−1
η (y − xo)|n+2s

dy

= P.V

∫

Rn

W τ (xo, to)−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy − η

= P.V

∫

Rn

−W τ (y, to)

|A−1
η (y − xo)|n+2s

dy − η

≤ c0

∫

Rn

−W τ (y, to)

|y − xo|n+2s
dy − η

≤ c0c

∫

N(yo,to)

−1

|y − xo|n+2s
dy − η

≤ −c0cC − η (7.41)

where c0, c and C are positive constants. Let η → 0, we have

Dθ
su(x

o, to)−Dθ
su

τ (xo, to)

≤ −c0cC

< 0

which contradicts with (7.40).

We conclude

W τ0(x, t) > 0 (7.42)
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for every (x, t) ∈ Dτ0 × R.

However, since t ∈ (−∞,∞), W τ0(x, t) may not be bounded away from 0.

We want to further derive

infW τ0(x, t) > co > 0, (x, t) ∈ Dτ0−ε × R (7.43)

I will prove (7.43) by contradiction.

Proof : If (7.43) is violated, then ∃(xk, tk) ∈ Dτ0−ε × R such that W τ0(xk, tk) → 0

Without loss of generality, by Bolzano-Weierstrass theorem, ∃ subsequences of xk, here

we still denote this subsequence by xk, such that xk → xo ∈ Dτ0−ε

Now for each tk(k ≥ k0), Let

Wk(x, t) = W τ0(x, t+ tk)

so

Wk(xk, 0) = W τ0(xk, tk) → 0

From (7.31), we derive:

∂Wk

∂t
(x, t)−Dθ

su
τ0
k (x, t+ tk) +Dθ

suk(x, t+ tk)

= f(t+ tk, |xτ0 |, uτ0)− f(t+ tk, |x|, u)

=
f(t+ tk, |xτ0 |, uτ0)− f(t+ tk, |x|, u)

uτ0(x, t+ tk)− u(x, t+ tk)
Wk(x, t)

:= cτ0(x, t+ tk)Wk(x, t), (7.44)
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So Wk satisfies

∂Wk

∂t
(x, t)−Dθ

su
τ0
k (x, t+ tk) +Dθ

suk(x, t+ tk) = cτ0(x, t+ tk)Wk(x, t) (7.45)

By regularity theory for parabolic equations [45], there exists some functions W̄ (x, t)

and c̄(x, t) such that k → ∞, Wk(x, t) converges uniformly to W̄ (x, t) for (x, t) ∈ Dτ0×R,

there exists some functions ū(x, t) such that as k → ∞, uk(x, t) converges uniformly to

ū(x, t) for (x, t) ∈ Dτ0 × R,

and W̄ satisfies:

∂W̄

∂t
−Dθ

s ū
τ0 +Dθ

s ū = c̄(x, t)W̄ (x, t) (7.46)

Since

Wk(xk, 0) = W τ0(xk, tk) → 0

W̄ (xo, 0) = 0

and

W̄ ≥ 0

So (xo, 0) is the minimum.

∂W̄

∂t
(xo, 0) = 0
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Also from (7.31), we derive,

∂W̄

∂t
(xo, 0)−Dθ

s ū
τ0(xo, 0) +Dθ

s ū(x
o, 0)

= f(tk, |xoτ0 |, ūτ0)− f(tk, |xo|, ū)

=
f(tk, |xoτ0 |, ūτ0)− f(tk, |xo|, ū)

ūτ0(xo, tk)− ū(xo, tk)
W̄ (xo, 0)

:= cτ (xo, tk)W̄ (xo, 0),

we derive

Dθ
s ū(x

o, 0)−Dθ
s ū

τ0(xo, 0) = 0

It follows that

0 = Dθ
s ū(x

o, 0)−Dθ
s ū

τ0(xo, 0)

= inf{P.V
∫

Rn

ū(y, 0)− ū(xo, 0)

|A−1(y − xo)|n+2s
dy} − inf{P.V

∫

Rn

ūτ (y, 0)− ūτ0(xo, 0)

|A−1(y − xo)|n+2s
dy}

≥ P.V

∫

Rn

ū(y, 0)− ū(xo, 0)

|A−1
η (y − xo)|n+2s

dy − η − P.V

∫

Rn

ūτ0(y, 0)− ūτ0(xo, 0)

|A−1
η (y − xo)|n+2s

dy

= P.V

∫

Rn

W τ0(xo, 0)−W τ0(y, 0)

|A−1
η (y − xo)|n+2s

dy − η

= P.V

∫

Rn

−W τ0(y, 0)

|A−1
η (y − xo)|n+2s

dy − η

≤ c0

∫

Rn

−W τ0(y, 0)

|y − xo|n+2s
dy − η

≤ c0c

∫

N(yo,0)

−1

|y − xo|n+2s
dy − η

≤ −c0cC − η (7.47)
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where c0, c and C are positive constants. Let η → 0, we have

Dθ
s ū(x

o, 0)−Dθ
s ū

τ (xo, 0)

≤ −c0cC

< 0

which is a contradiction, therefore, we have proved (7.43).

Now we can carve out from Dτ0 a closed set K ⊂ Dτ0 such that Dτ0\K is narrow.

According to (7.42), we have

W τ0(x, t) ≥ c0 > 0, in K (7.48)

Since W τ is continuous with respect to τ , for small ε > 0, we have:

W τ0−ε(x, t) ≥ 0, in K (7.49)

According to (H), we have

W τ0−ε(x, t) ≥ 0, in (Dτ0−ε)c × R

It is obvious that (Dτ0−ε\K)c = K ∪ (Dτ0−ε)c, then




∂W τ0−ε

∂t
−Dθ

su
τ0−ε +Dθ

su
τ0−ε = c(x, t)W τ0−ε(x, t), (x, t) ∈ Dτ0−ε\K × R,

W τ0−ε(x, t) ≥ 0, (x, t) ∈ (Dτ0−ε\K)c × R,
(7.50)
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By Lemma 7.5, we have

W τ0−ε(x, t) ≥ 0 (7.51)

in Dτ0−ε\K.

From this and (7.49), we obtain W τ (x, t) ≥ 0 for τ ∈ (τ0 − ε, τ0) which contradicts the

definition of τ0.

Since W τ (x, t) �≡ 0, (x, t) ∈ Dτ × R, ∀0 < τ < τ̃ , if there exists (xo, to) such that

(xo, to) is the minimum point, from the above process, on one hand,

Dθ
su(x

o, to)−Dθ
su

τ (xo, to) < 0

On the other hand,

Dθ
su(x

o, to)−Dθ
su

τ (xo, to) = 0

This forces

W τ ≡ 0

which contradicts (H)

Thus we have proved the Theorem.

7.7 u is strictly decreasing with respect to xn in the whole space

In this section, we would prove u must be strictly increasing with respect to xn, and it

depends on xn only.
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Theorem 7.6. Let u(x, t) ∈
(
C1,1

loc (Ω) ∩ C(Ω̄)
)
∩ L2s × [t, T ] be a solution of

∂u

∂t
(x, t)−Dθ

su(x, t) = f(t, |x|, u), (x, t) ∈ Rn × (−∞,∞) (7.52)

with condition

|u(x, t)| ≤ 1

and

u((x′, xn), t) → ±1 (7.53)

uniformly in x′ = (x1, · · · , xn−1). Also, f(t, |x|, u) is non-increasing near u(x, t) = ±1.

Then u must be strictly increasing with respect to xn, and it depends on xn only.

The basic set-up is same as before except we let

W τ (x, t) = u(x, t)− uτ (x, t)

. We divide our proof in two steps.

Step 1: Begin sliding Ωτ downward τ units along the xn axis

So then

|x| < |xτ |

We will show that for τ sufficiently close to τ̃ , that is, when τ is sufficiently large, Dτ

is narrow, we have

W τ (x, t) ≤ 0, (x, t) ∈ Dτ × R

Step 2: Decrease τ as long as W τ (x, t) ≤ 0 holds to its limiting position
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We would show the limit position is τ = 0. In second step, we would divide the proof

into two cases, one is |xn| ≤ M , the other is |xn| ≥ M , in both cases we would show

the limiting position is τ = 0. After we have completed the second step, we would prove

∀τ > 0, W τ (x, t) < 0, thus we have completed proof of monotonicity of solution of

parabolic Monge-Ampere equation in the whole space. In the last section, we would show

u(x, t) depends on xn only, that is, u(x, t) = u(xn, t).

7.8 Step 1: show W τ(x, t) ≤ 0

In step 1, we will show that for τ sufficiently large,

W τ (x, t) ≤ 0, (x, t) ∈ Rn × R (7.54)

Otherwise,

sup
Rn×R

W τ (x, t) = A > 0

then there exists a sequence {xk, tk} ⊂ Rn × R such that

W τ (xk, tk) → A > 0 (7.55)

as k → ∞.

Denote xk = (xk
1, x

k
2, · · · , xk

n). Let η ∈ C∞
0 :

η(x, t) =




1, if |x|, |t| < 1,

0, if |x|, |t| ≥ 2
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So maxRn×R η(x, t) = 1. Set

ψk(x, t) = η(x− xk, t− tk)

According to (7.55), there exists a sequence {εk} → 0 such that

W τ (xk, tk) + εkψk(x
k, tk) = A

Set

U τ
k (x

k, tk) = W τ (xk, tk) + εkψk(x
k, tk)

Since we have

U τ
k (x, t) = W τ (x, t) ≤ A, x ∈ Rn\B2(x

k), t ∈ R\B2(t
k)

and

W τ (xk, tk) + εkψk(x
k, tk) = A

Then there exists (x̄k, t̄k) ∈ B1(x
k)× B1(t

k) such that

U τ
k (x̄

k, t̄k) = max
Rn×R

U τ
k (x

k, tk) = A

Therefore

∂U τ
k

∂t
(x̄k, t̄k) = 0

We have

εk = A−W τ (xk, tk)
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Therefore

∂W τ

∂t
(x̄k, t̄k) ∼ εk

By the definition of Dθ
s , we have

Dθ
s(W

τ + εkψk)(x̄
k, t̄k) = Dθ

s(U
τ
k )(x̄

k, t̄k) ≈ −(−�)s(U τ
k )(x̄

k, t̄k) ≤ −c0

We also have,

Dθ
sW

τ (x̄k, t̄k)

= inf{P.V
∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy}

and

Dθ
s(W

τ + εkψk)(x̄
k, t̄k)

= inf{P.V
∫

Rn

(W τ + εkψk)(y, t̄
k)− (W τ + εkψk)(x̄

k, t̄k)

|A−1(y − x̄k)|n+2s
dy}

= inf{P.V
∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k) + εkψk(y, t̄
k)− εkψk(x̄

k, t̄k)

|A−1(y − x̄k)|n+2s
dy}

≥ inf{P.V
∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy}+ inf{P.V

∫

Rn

εkψk(y, t̄
k)− εkψk(x̄

k, t̄k)

|A−1(y − x̄k)|n+2s
dy}

and we also have

inf{P.V
∫

Rn

εkψk(y, t̄
k)− εkψk(x̄

k, t̄k)

|A−1(y − x̄k)|n+2s
dy

= εkP.V

∫

Rn

ψk(y, t̄
k)− ψk(x̄

k, t̄k)

|A−1
k (y − x̄k)|n+2s

dy

≥ −cεk
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So we derive

Dθ
s(W

τ + εkψk)(x̄
k, t̄k)

≥ Dθ
sW

τ (x̄k, t̄k)− cεk

We also have

Dθ
sW

τ (x̄k, t̄k)− cεk

= inf{P.V
∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − cεk

= P.V

∫

Rn

W τ (y, t̄k)−W τ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy − εA − cεk

= P.V

∫

Rn

u(y, t̄k)− u(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy − P.V

∫

Rn

uτ (y, t̄k)− uτ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy − εA − cεk

≥ inf{P.V
∫

Rn

u(y, t̄k)− u(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, t̄k)− uτ (x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − 2εA − cεk

= Dθ
su(x̄

k, t̄k)−Dθ
su

τ (x̄k, t̄k)− 2εA − cεk

=
∂u

∂t
− f(t, |x̄k|, u)− ∂uτ

∂t
+ f(t, |x̄k|, uτ )− 2εA − cεk

=
∂W τ

∂t
+ f(t, |x̄k|, uτ )− f(t, |x̄k|, u)− 2εA − cεk

= f(t, |x̄k|, uτ )− f(t, |x̄k|, u)− 2εA − cεk

When τ is sufficiently large, we have either

1. uτ (x̄k, t̄k) is close to 1 or

2. u(x̄k, t̄k) is close to −1.

Since u(x̄k, t̄k) > uτ (x̄k, t̄k), in case 1, both u(x̄k, t̄k) and uτ (x̄k, t̄k) are close to 1,

while in case 2, both u(x̄k, t̄k) and uτ (x̄k, t̄k) are close to −1. Hence in any case, we can
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apply the monotonicity of f to derive that

f(t, |x̄k|, uτ ) ≥ f(t, |x̄k|, u)

Then we have

Dθ
sW

τ (x̄k, t̄k)− cεk ≥ −2εA − cεk → 0

Thus we derive

−c0 ≥ Dθ
s(W

τ + εkψk)(x̄
k, t̄k) ≥ Dθ

sW
τ (x̄k, t̄k)− cεk ≥ 0 (7.56)

which is a contradiction. This verifies (7.54).

7.9 Step 2: decrease τ as long as W τ ≤ 0 holds to its limiting position

The inequality (7.54) provides a starting point, from which we can carry out the sliding.

Now we decrease τ as long as W τ (x, t) ≤ 0 holds to its limiting position. Define

τ0 = inf{τ | W τ (x, t) ≤ 0, ∀(x, t) ∈ Rn × R}

In this part, we show that

τ0 = 0

Suppose

τ0 > 0



239

we will show that Ωτ can be slid upward a little bit more and we will have

W τ (x, t) ≤ 0

To be more rigorous, there exists some ε > 0, such that for any τ ∈ (τ0 − ε, τ0), we have

W τ (x, t) ≤ 0, x ∈ Dτ

This is a contradiction with the definition of τ0. Hence we must have

τ0 = 0

We will divide this section into two parts, first we will show τ0 = 0 is the limiting

position for |xn| ≤ M , second we will show τ0 = 0 is the limiting position for |xn| ≥ M .

7.9.1 Show sup−M≤xn<M W τ0 < 0

Otherwise, we have τ0 > 0 such that

sup
−M≤xn≤M

W τ0(x, t) < 0 (7.57)

If (7.57) does not hold, then

sup
−M≤xn≤M

W τ0(x, t) = 0

then there exists a sequence {xk, tk} ⊂ Rn−1 × [−M,M ]× R such that

W τ0(xk, tk) → 0 (7.58)
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as k → ∞

Denote xk = (xk
1, x

k
2, · · · , xk

n). Let η ∈ C∞
0 :

η(x, t) =





1, if |x|, |t| < 1,

0, if |x|, |t| ≥ 2

So maxRn×R η(x, t) = 1. Set

ψk(x, t) = η(x− xk, t− tk)

According to (7.55), there exists a sequence {εk} → 0 such that

W τ0(xk, tk) + εkψk(x
k, tk) = 0

Set

U τ0
k (xk, tk) = W τ0(xk, tk) + εkψk(x

k, tk)

Since we have

U τ0
k (x, t) = W τ0(x, t) ≤ 0, x ∈ Rn\B2(x

k), t ∈ R\B2(t
k)

and

W τ0(xk, tk) + εkψk(x
k, tk) = 0

Then there exists (x̄k, t̄k) ∈ B1(x
k)× B1(t

k) such that

U τ0
k (x̄k, t̄k) = max

Rn×R
U τ0
k (xk, tk) = 0
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By the definition of Dθ
s , we have

Dθ
s(W

τ0 + εkψk)(x̄
k, t̄k) = Dθ

s(U
τ0
k )(x̄k, t̄k) ≈ −(−�)s(U τ0

k )(x̄k, t̄k) ≤ 0

On one hand, similar to the proof in Step 1, we have

Dθ
s(W

τ0 + εkψk)(x̄
k, to) ≥ Dθ

sW
τ0(x̄k, to)− cεk (7.59)

We also have

Dθ
sW

τ0(x̄k, t̄k)− cεk

= inf{P.V
∫

Rn

W τ0(y, t̄k)−W τ0(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − cεk

≥ inf{P.V
∫

Rn

W τ0(y, t̄k)

|A−1(y − x̄k)|n+2s
dy} − inf{P.V

∫

Rn

W τ0(x̄k, t̄k)

|A−1
k (y − x̄k)|n+2s

dy} − εk − cεk

≥ −εk − cεk → 0 (7.60)

Denote uk(x, t) = u(xk, tk), W τ0
k (x, t) = W τ0(xk, tk)

Since u is uniformly continuous, by the Arzela-Ascoli Theorem, we have

uk(x, t) → u∞(x, t) uniformly in Rn × R, as k → ∞

Let k → ∞, by the continuity of f , and from (7.59) and (7.60), we have

W τ0
k (x, t) → 0, x ∈ (B2(0))

c uniformly

Then

u∞(x, t)− uτ0
∞(x, t) ≡ 0, x ∈ (B2(0))

c
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For all m ∈ N, we have

u∞(x′, xn) = u∞(x′, xn + τ0) = u∞(x′, xn + 2τ0) = · · · = u∞(x′, xn +mτ0)

If xn is sufficiently negative and m is sufficiently large, then

u∞(x′, xn) → −1

and

u∞(x′, xn +mτ0) → 1

This is a contradiction, therefore, (7.57) must be true.

Since sup−M≤xn≤M W τ0(x, t) < 0, so there exists a δ > 0 such that

sup
−M≤xn≤M

W τ (x, t) ≤ 0, ∀τ ∈ (τ0 − δ, τ0], |xn| ≤ M (7.61)

which contradicts the definition of τ0, therefore, we have τ0 = 0.

Now we only need to prove when |xn| ≥ M , τ0 > 0

W τ (x, t) ≤ 0, ∀τ ∈ (τ0 − δ, τ0], (7.62)

Otherwise,

sup
Rn\(Rn−1×[−M,M ])

W τ (x, t) = A > 0, ∀τ ∈ (τ0 − δ, τ0]
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then there exists a sequence {xk, tk} such that

W τ (xk, tk) → A > 0 (7.63)

as k → ∞

Denote xk = (xk
1, x

k
2, · · · , xk

n). Let η ∈ C∞
0 :

η(x, t) =





1, if |x|, |t| < 1,

0, if |x|, |t| ≥ 2

So maxRn×R η(x, t) = 1. Set

ψk(x, t) = η(x− xk, t− tk)

According to (7.55), there exists a sequence {εk} → 0 such that

W τ (xk, tk) + εkψk(x
k, tk) = A

Set

U τ
k (x

k, tk) = W τ (xk, tk) + εkψk(x
k, tk)

Since we have

U τ
k (x, t) = W τ (x, t) ≤ A, x ∈ Rn\B2(x

k), t ∈ R\B2(t
k)

and

W τ (xk, tk) + εkψk(x
k, tk) = A
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Then there exists (x̄k, t̄k) ∈ B1(x
k)× B1(t

k) such that

U τ
k (x̄

k, t̄k) = max
Rn×R

U τ
k (x

k, tk) = A

By the definition of Dθ
s , we have

Dθ
s(W

τ + εkψk)(x̄
k, t̄k) = Dθ

s(U
τ
k )(x̄

k, t̄k) ≈ −(−�)s(U τ
k )(x̄

k, t̄k) ≤ −c0

Similarly to previous steps, we have

Dθ
s(W

τ + εkψk)(x̄
k, t̄k)

≥ Dθ
sW

τ (x̄k, t̄k)− cεk

We also have

Dθ
sW

τ0(x̄k, t̄k)− cεk

= inf{P.V
∫

Rn

W τ0(y, t̄k)−W τ0(x̄k, t̄k)

|A−1(y − x̄k)|n+2s
dy} − cεk

≥ inf{P.V
∫

Rn

W τ0(y, t̄k)

|A−1(y − x̄k)|n+2s
dy} − inf{P.V

∫

Rn

W τ0(x̄k, t̄k)

|A−1
k (y − x̄k)|n+2s

dy} − εk − cεk

≥ −εk − cεk → 0 (7.64)

Let k → ∞, then εk → 0. We get a contradiction and obtain (7.62), which contradicts

the definition of τ0. Therefore, we derive τ0 = 0.

Finally, we will prove that u is strictly increasing with respect to xn and u(x, t) depends

on xn only.
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We already have

W τ (x, t) ≤ 0 in Rn × R, ∀τ > 0

If there exists (x0, t0) ∈ Rn×R such that W τ (x0, t0) = 0, then (x0, t0) is the maximum

point of W τ (x, t) in Rn × R

Therefore,

∂W τ

∂t
(x0, t0) = 0

On one hand,

Dθ
su(x0, t0)−Dθ

su
τ (x0, t0)

=
∂u

∂t
(x0, t0)− f(t0, |x0|, u)−

∂uτ

∂t
(x0, t0) + f(t0, |x0|, uτ )

=
∂W τ

∂t
(x0, t0) + f(t0, |x0|, uτ )− f(t0, |x0|, u)

= f(t0, |x0|, uτ )− f(t0, |x0|, u)

=
f(t0, |x0|, uτ )− f(t0, |x0|, u)

uτ (x0, t0)− u(x0, t0)
W τ (x0, t0)

= 0
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On the other hand,

Dθ
su(x0, t0)−Dθ

su
τ (x0, t0)

= inf{P.V
∫

Rn

u(y, t0)− u(x0, t0)

|A−1(y − x0)|n+2s
dy} − inf{P.V

∫

Rn

uτ (y, t0)− uτ (x0, t0)

|A−1(y − x0)|n+2s
dy}

≤ P.V

∫

Rn

u(y, t0)− u(x0, t0)

|A−1
δ (y − x0)|n+2s

dy − P.V

∫

Rn

uτ (y, t0)− uτ (x0, t0)

|A−1
δ (y − x0)|n+2s

dy + δ

= P.V

∫

Rn

W τ (y, t0)−W τ (x0, t0)

|A−1
δ (y − x0)|n+2s

dy + δ

≤ c0

∫

Rn

W τ (y, t0)

|y − x0|n+2s
dy + δ

≤ c0(−a)

∫

N(y0,t0)

1

|y − xo|n+2s
dy + δ

≤ c0(−a)c1 + δ

Let δ → 0, we have

0 = Dθ
su(x0, t0)−Dθ

su
τ (x0, t0) ≤ c0(−a)c1

This is a contradiction. Therefore, we have

W τ (x, t) < 0, (x, t) ∈ Rn × R, τ > 0

Then we will show that u(x) depends on xn only.

If we replace uτ (x) by u(x + τν), the argument still holds according to the above

process, where ν = (ν1, ν2, ν3, · · · , νn) with νn > 0 is an arbitrary vector that points

upward. With the similar arguments as in Step 1 and Step 2, we can obtain that, for each of

such ν,

u(x+ τν) > u(x)
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∀τ > 0 Let νn → 0, by continuity of u, we have that for arbitrary ν with νn = 0

u(x+ τν) ≥ u(x)

By replacing ν by −ν, we also have

u(x) ≥ u(x+ τν)

for arbitrary ν with νn = 0, So we have

u(x+ τν) = u(x) (7.65)

(7.65) means that u is independent of x′ = (x1, x2, · · · , xn−1). Therefore, u(x) = u(xn).

This proves the theorem 7.6.
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Part 3: Topic in long flight in infinite

horizon Lorentz Gas

8 Mathematical billiards: The periodic Lorentz gas

The background and history for Lorentz Gas was referenced from [10]. The Lorentz

Gas, initially introduced by Lorentz [38] (1905), serves as a model for the movement of

electrons within a metal. It characterizes a collection of unconnected point particles navi-

gating through an infinite arrangement of spherical obstacles. Lorentz specifically focused

on the stochastic behavior arising in the Boltzmann-Grad limit, wherein the scatterer size

diminishes to zero, investigating the dynamic properties under such conditions.

The initial step in proving the existence of a limiting process for the periodic Lorentz

gas involves understanding the distribution of free path lengths as the scatterer radius r ap-
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proaches zero. This crucial result, presented by Jens Marklof and Andreas Strömbergsson

in their paper [22], sets the foundation. The investigation of the free path length distri-

bution in the periodic Lorentz gas was previously explored by Pólya, who reformulated

the problem in terms of visibility within a periodic forest [16]. Jens Marklof and Andreas

Strömbergsson further advance the analysis of the limiting process in their papers [[23],

[24], and [25]]. They establish a Markov property, provide explicit formulas, and offer

asymptotic estimates for the resulting distributions.

Two major physics problems that served as the primary impetus for the initial inves-

tigation of mathematical billiards were: a) the ergodic hypothesis, and b) the pursuit to

comprehend Brownian motion based on microscopic principles. NS Krylov, who is a great

Russian statistical physicist, brought hyperbolic billiards, to the attention of the community

of mathematicians for further study of hyperbolic behaviors. In the field of mathematics,

the 1960s witnessed the emergence and rapid advancement of the theory of smooth hy-

perbolic dynamical systems, in which Sinai played a prominent role as one of the leading

contributors. Sinai’s significant contribution to this theory came in his 1970 paper [35],

where he introduced a new subject of study: hyperbolic billiards as hyperbolic dynami-

cal systems characterized by singularities. Sinai aspired to develop a mathematical theory

for Brownian motion, also known as the dynamical theory of Brownian motion (cf. [29]).

The ultimate objective of this theory is to deduce the behavior of Brownian motion based on

microscopic assumptions, specifically rooted in Newtonian dynamics. Sinai’s contributions

include statistical properties of hyperbolic billiards via Markov approximations. Roughly

speaking, the following steps outline the main development of his contributions:

1. Markov partitions and Markov approximations for Anosov systems (and Axiom A

systems) (cf. [[36], [34], [3], [37]]);
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2. Markov partitions and Markov approximations for 2D Sinai billiards (cf. [[4], [5]]);

3. Markov sieves and Markov approximations for 2D Sinai billiards (cf. [[6], [7]]);

Except Sinai, there are a lot of other mathematicians who offered a concise historical

summary regarding the role of Markov partitions in the field of dynamical systems theory.

Chernov and Young wrote an excellent survey [8], [39] for hyperbolic systems with singu-

larities, in particular for 2D Sinai billiards. Sinai’s comprehensive development of Anosov

maps [34], along with its far-reaching implications [36], unveiled the profound insights en-

compassed by the Markov partitions for Anosov maps. In 1980, Bunimovich and Sinai

updated the diffusively-rescaled version of the Lorentz process [4], they also used Markov

approximation to prove Lorentz process converges to Brownian motion [5], and they proved

the diffusively-rescaled version of the Lorentz process weakly converges to planar Wiener

process as time coefficient goes to infinity [5]. A decade later, Bunimovich, Chernov, and

Sinai revisited the subject in a pair of companion papers. In addition to simplifying the

initial constructions and proofs presented in [4] [5], the authors also provided clarification

and substantially relaxed the conditions that were previously imposed.

The findings of Jens Marklof and Andreas Strömbergsson in their work [22] comple-

ment classical research in ergodic theory, which focuses on the stochastic behavior in the

limit of long times while keeping the radius of each scatterer fixed. In a two-dimensional

setting with a finite horizon, Bunimovich and Sinai [21] demonstrated that the dynamics

become diffusive and adhere to a central limit theorem as time approaches infinity. The

notion of a ”finite horizon” implies that the scatterers are sufficiently large to ensure that

the distance traveled between consecutive collisions remains bounded. This assumption

was recently relaxed by Szász and Varjú [12] following earlier work by Bleher [33]. Recent

studies exploring the statistical properties of the periodic Lorentz gas in two dimensions
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also include references such as [9], [18], and [19]. It is important to note that, currently,

there is no proof available for the central limit theorem in higher dimensions, even in the

case of a finite horizon [30], [31].

Our paper investigates the long free-flight motion of particles in high-dimensional in-

finite horizons. Our results show that, with time T goes to infinity, the conditional dy-

namic invariant measure of the flying time converges to some probability measure of some

stochastic processes.

9 Introduction on Homogeneous dynamics

Homogeneous dynamics is the study of actions of subgroups of Lie groups on their

quotients called homogeneous spaces. This has been a very active area of research for

several decades. One application of homogeneous dynamics is to describe the periodic

Lorentz gas in the Boltzmann-Grad limit [22]. The Lorentz gas describes an ensemble of

noninteracting point particles in an infinite array of spherical scatterers. Jens Marklof and

Strömbergsson had developed a framework for proving, for a given deterministic scatterer

configuration, the convergence of the particle dynamics to a limiting transport process.

We will start by giving an introduction to the setting and problems in homogeneous

dynamics, and we will discuss various examples in detail. We will also describe the basic

set-up for how results from homogeneous dynamics are applied in the proof of the theorems

in our thesis.
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9.1 Homogeneous space

Let G be a Lie group, and let Γ be a discrete subgroup of G. Then the set

X = Γ\G = {Γg : g ∈ G}

is our homogeneous space.

9.1.1 Example 1

Let G = Rd, L = {c1v1+c2v2+ · · ·+cdvd : c1, c2, · · · , cd ∈ Z} for some v1, v2, · · · , vd ∈

Rd which forms a basis of Rd

Then

X = Γ\G = L\Rd = Rd/L

which is a torus, that is a homogeneous space.

9.1.2 Example 2

Let G = SL2(R) and Γ is a discrete subgroup of G with −I ∈ Γ. Recall that SL2(R)

acts by isometries on the hyperbolic upper half space:

H = {z = x+ iy : x, y ∈ R, y > 0}

with metric

ds =

√
dx2 + dy2

y

Now Γ\H is a hyperbolic surface of finite area
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A fundamental domain for Γ\H is:

F = {z ∈ H, |Rez| ≤ 1

z
, |z| ≥ 1}

H = ∪δ∈ΓδF and ∀δ1 �= δ2 ∈ Γ such that δ1F ∩ δ2F = ∅

So

X = Γ\G = SL2(Z)\SL2(R) ≈ T 1(Γ\H)

where Γ\G can be identified with the unit tangent bundle of Γ\H .

where Γ\H looks as follows:

-1 1
-1
z

1
z

Figure 15: Γ\H

9.1.3 Example 3

G = SLd(R) and Γ = SLd(Z), d ≥ 2 Then

X = Γ\G = SLd(Z)\SLd(R) = the space of lattices in Rd of covolume 1
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with identification map

Γg → Zdg

is a bijection onto the set of lattices of covolume 1.

where the definition of lattice is defined as follows:

A lattice in Rd is a set of the form

L = Zv1 + · · ·+ Zvd = {m1v1 + · · ·+mdvd | mj ∈ Z}

with v1, · · · , vd being an R basis of Rd.

Then

F = {x1v1 + · · ·+ xdvd, x1, · · · , xd ∈ [0, 1)}

is a fundamental cell of Rd/L = L\Rd, which means it is same to take left and right

cosets.

And

covol(L) = vol(Rd/L) = vol(F ) = | det(v1, v2, · · · , vd)|

Also, an affine lattice in Rd is a set L′ ⊂ Rd of the form

L′ = w + L

with w ∈ Rd and L is a lattice.

covol(L) = covol(L′)
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Set

G′ = ASLd(R) := SLd(R)�Rd

G′ acts on Rd as

(g1, w1)(g2, w2) = (g1g2, w1g2 + w2)

based on the law that

v(g, w) = vg + w

9.2 What is homogeneous dynamics

Consider a homogeneous space of the form:

X = Γ\G = {Γg : g ∈ G}

where G is a Lie group and Γ is a lattice in G.

A lattice Γ in G is a discrete subgroup such that there is a fundamental domain FΓ of the

Γ action on G with finite left Haar measure (Derivation of Haar measure would be based

on Ratner’s theorem, which would be explained in section 9.3).

We can generate our dynamics on X = Γ\G by right multiplication by a fixed element:

Let (ht)t∈R be a 1-parameter subgroup of G, and Φt is a flow on X , then

Φt(Γg) := Γght

and the flow preserves the measure.

Example 1: geodesic flow
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Let at =



e

t
2 0

0 e−
t
2


 then Φt(Γg) := Γgat is a geodesic flow on T 1(Γ\H).

More generally, We can define the geodesic flow as follows:

Φt(I) := Iat =



e

t
2 0

0 e−
t
2




Φt(I) : PSL2(R) → PSL2(R)

g → gΦt

where

PSL2(R) = SL2(R)\{±I2}

Example 2: horocycle flow

Let nt =



1 t

0 1


 then ht(Γg) := Γgnt is a horocycle flow on T 1(Γ\H).

Also, Let n−
t =



1 0

t 1


 then h−

t (Γg) := Γgn−
t is a horocycle flow on T 1(Γ\H).

More generally, G = SLd(R) and any

nt =




1 ∗ ∗ · · · ∗

0 1 ∗ · · · ∗

0 0 1 ∗

...
... . . . ...

0 0 · · · 0 1
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n−
t =




1 0 0 · · · 0

∗ 1 0 · · · 0

∗ ∗ 1 0

...
... . . . ...

∗ ∗ · · · 0 1




is a horocycle map.

9.3 Ratner’s theorem

We asserts that the orbit of any unipotent flow is dense in some homogeneous space of

finite volume, based on Ratner’s orbit closure theorem [cf [27],Theorem A]:

Theorem 9.1. (Ratner’s orbit closure theorem) Let X = G/Γ be a homogeneous space of

finite volume with a connected finite-dimensional Lie group G, and let U be a connected

subgroup of G generated by unipotent elements. Let Ux be an orbit of U in X . Then the

closure Ux is itself a homogeneous space of finite volume; In particular, there exists a closed

subgroup U ≤ H ≤ G such that Ux = Hx.

Ratner’s orbit closure theorem was applied to prove the Oppenheim conjecture in Num-

ber theory. In certain scenarios, density is not enough; We also desire equidistribution.

Fortunately, Ratner also have a theorem on that [cf [26],Theorem 1]:

Theorem 9.2. (Ratner’s equidistribution theorem) Let X = G/Γ be a homogeneous space

of finite volume with a connected finite-dimensional Lie group G, and let U be a connected

subgroup of G generated by unipotent elements. Assume also that U is a one-parameter

group, thus U = {gt : t ∈ R} for some homomorphism t �→ gt. Then Ux is equidistributed
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in Hx; Thus for any continuous function f : Hx → R we have

lim
T→∞

1

T

∫ T

0

f(gtx) dt =

∫

Hx

f

where
∫
Hx

represents integration on the normalised Haar measure on Hx.

By employing the equidistribution theorem alongside a dash of ergodic theory, a measure-

theoretic corollary emerges, describing the ergodic measures of a group formed by unipo-

tent elements [cf [27],Theorem B]:

Theorem 9.3. (Ratner’s equidistribution theorem) Let X be a finite volume homogeneous

space for a connected Lie group G, and let U be a connected subgroup of G generated

by unipotent elements. Let µ be a probability measure on X which is ergodic under the

action of U . Then µ is the Haar measure of some closed finite volume orbit Hx for some

U ≤ H ≤ G.

Ratner’s theorem and the Iwasawa decomposition are related in the context of homoge-

neous spaces and Lie groups.

Ratner’s theorem, specifically the Ratner-Margulis theorem, is a significant result in

the field of ergodic theory and homogeneous dynamics. It provides deep insights into the

long-term behavior of orbits in homogeneous spaces.

On the other hand, the Iwasawa decomposition is a decomposition theorem that is par-

ticularly relevant for connected semisimple Lie groups. It states that any element in such a

Lie group can be expressed uniquely as the product of three components: an element from a

maximal compact subgroup, an element from a maximal abelian subgroup, and an element

from a unipotent subgroup.

The connection between Ratner’s theorem and the Iwasawa decomposition lies in their
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implications for the structure and dynamics of homogeneous spaces associated with semisim-

ple Lie groups. In particular, Ratner’s theorem can be employed to analyze the orbits of

unipotent flows on homogeneous spaces, which aligns with the unipotent component in

the Iwasawa decomposition. The theorem provides information about the distribution and

equidistribution of these orbits, shedding light on their dynamical behavior. Let me simply

introduce the Iwasawa decomposition in the following:

9.3.1 Iwasawa decomposition

Define

A =







a1 0 0 0 0

0 a2 0 0 0

0 0 a3 0 0

...
... . . . ...

0 0 · · · 0 ad




: a1, a2, · · · , ad > 0




and

N =







1 n12 n13 n14 · · ·

0 1 n23 · · · · · ·

0 0 1 n34 · · ·

...
... . . . ...

0 0 · · · 0 1




: nij ∈ R




and

K = SO(d) = {k ∈ SLd(R) : ktk = 1d}
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The theorem of Iwasawa decomposition states that, for every g ∈ G, where G is a real

Lie group, there exists n ∈ N , a ∈ A, k ∈ K such that g = nak

The sketch of the proof is as follows:

Proof.

g =




v1

v2

...

vd




Apply Gram-Schmidt process to vd, vd−1, · · · , v1, we get orthogonal vectors wd, wd−1, · · · , w1

with

vjR>0 ∈ wj + Span{wj, · · · , wd}

So

g =




v1

v2

...

vd




=




a1 ∗ ∗ ∗ ∗

0 a2 ∗ ∗ ∗

0 0 a3 ∗ ∗

...
... . . . ...

0 0 · · · 0 ad







w1

w2

...

wd




with 


a1 ∗ ∗ ∗ ∗

0 a2 ∗ ∗ ∗

0 0 a3 ∗ ∗

...
... . . . ...

0 0 · · · 0 ad




∈ AN
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and 


w1

w2

...

wd




∈ K

For g = nak,

dµ(g) = dn(Πi<j
aj
ai
)(Πd−1

j=1

daj
aj

)dk

where dn is the Haar measure on N , dk is the Haar measure on K.

and

Πd−1
j=1

daj
aj

is the Haar measure in A.

The computation on the Haar measure of g based on the law that

dν(g) = |detg|−ddx11dx12 · · · dxdd

for every

g =




x11 x12 x13 x14 · · ·

0 x22 x23 · · · · · ·

0 0 x33 x34 · · ·

...
... . . . ...

0 0 · · · 0 xdd
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9.4 Review of Marklof-Strömbergsson’s Methodology

9.4.1 Basic set-up

Fix a lattice L ⊂ Rd of covolume one, also fix a choice of M0 ∈ SL(d,R) such that

L = ZdM0, given α ∈ Rd we then define the affine lattice

Lα := (Zd + α)M0 = Zd(1, α)(M0, 0)

Consider the set PT of lattice points y ∈ Lα inside the ball Bd
T of radius T

More generally, the spherical shell Bd
T is defined as:

Bd
T (c) = {x ∈ Rd : cT ≤ ‖x‖ < T}, 0 ≤ c < 1

For T large there are approximately C · vol(Bd
1)T

d such points. It is well known that as

T → ∞, these points become uniformly distributed on Sd−1
T .

In Marklof’s paper, they study the corresponding directions such that

‖y‖−1y ∈ Sd−1
1

for

y ∈ PT = Lα ∩ Bd
T (c)\{0}

They define DT (σ, v) ⊂ Sd−1
1 to be an open disc with center v and set a counting

function as

Nc,T (σ, v) = #{y ∈ PT : ‖y‖−1y ∈ DT (σ, v)}
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Referenced from theorem 2.1, Let λ be a Borel probability measure on Sd
1 absolutely

continuous with respect to Lebesgue measure. Then, for every σ ≥ 0 and r ∈ Z≥0, the

limit

Ec,α(r, σ) := limT→∞λ({v ∈ Sd−1
1 : Nc,T (σ, v) = r})

exists, and for fixed c, α, r the convergence is uniform with respect to σ in any compact

subset of R≥0. The limit function is given by

Ec,α(r, σ) := µ({(M.ξ) ∈ X : #((ZdM + ξ) ∩Θ(c, σ)) = r})

for α �∈ Qd

where

Θ(c, σ) = {(x1, · · · , xd) ∈ Rd : c < x1 < 1, ‖(x2, · · · , xd)‖ ≤ x1A(c, σ)}

is a cone, and A(c, σ) is an area function related with c, σ and volume of Bd−1
1 .

Also, ASL(d,R) = SL(d,R)×Rd is the semi-direct product group with multiplication

law

(M, ξ)(M
′
ξ
′
) = (MM

′
, ξM

′
+ ξ

′
)

and X is defined as

X = ASL(d,Z)\ASL(d,R)

In our paper, we use the same methodology except that we change the cone to parabloid.



268

Figure 16: Cone
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10 Our model: Lorentz gas on the billiard

Fix some dimension D ≥ 3 and a finite collection of disjoint open convex subsets

B1, ..., Bk (called scatterers in the sequel) of TD with C3 smooth boundary.

Here, TD is the unit D-torus, canonically identified with [0, 1]D.

We study the Lorentz gas, that is the dynamics of a point particle on the billiard table

D = RD \ ∪k
i=1 ∪�∈ZD (Bi + ¥) ,

where the particle flies freely in the interior of D and bounces back elastically from the

set (Bi + ¥) upon reaching ∂D. The speed of the particle is constant 1 and its velocity is

denoted by v ∈ SD−1, where SD−1 is the unit sphere in RD.

The phase space of the dynamics is

Ω := D × SD−1

where on the boundary, pre- and post-collisional vectors are identified (that is, if q ∈ ∂D,

then (q, v) is identified with (q, v′) if v = v⊥ + v‖ and v′ = −v⊥ + v2 where v⊥ is perpen-

dicular to ∂D at q and v‖ in the tangent space of ∂D at q).

Let us write

D0 = D ∩ TD

Let ν0 be the normalized Lebesgue measure on Ω0 := D0 × SD−1. Then the Sinai billiard

flow Φt
0 : Ω0 → Ω0, defined for any t ∈ R, preserves the measure ν0
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Similarly, the Zd extension of the Sinai billarid flow, namely the flow

Φt : Ω → Ω

preserves the infnite measure

ν = ν0 × countingZD

Let τ : Ω → [0,∞] be the first collision time. Let M = ∂D × SD−1
1 denote thus the

boundary of the phase space, where SD−1
1 = {v ∈ SD−1 : v1 > 0} and v = (1, 0, ..., 0) is

identified with the unit normal vector of ∂D pointing into D. With this common choice, we

use the post-collisional velocity to represent both the pre- and the post-collisional velocity

at the time of the collision.

Let F : Ω → M be the first collision map, that is F(x) = Φτ(x)(x).

We note that F(x) may not be defined in case τ(x) = ∞. The measure of such points

x is zero and their geometry is the major topic of the present work.

We denote by

τk : Ω → [0,∞]; τk(x) = τ ◦ Fk

the time of the kth collision. Note that in case τk = ∞, τk+1 is undefined, but this will only

happen on a set of ν-measure zero. Since we only study sets of positive ν measure, we can

disregard the fact that τk may be undefined.

Throughout this work, We assume that the billiard table D is such that there exists a

hyperplane V and an interval I ⊂ R of non-empty interior so that

(V + V ⊥I) ⊂ D (10.1)
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where V ⊥ is a unit vector orthogonal to V .

According to a common terminology, billiard tables allowing infinite free flight without

collision are said to have called inifnite horizon (and those without infinife flight, in fact then

necessarily only having bounded flight, are of finite horizon). We note that the condition

10.1 implies that the table is of infinite horizon but in case D ≥ 3 is stronger than that

because there are billiard tables where infinite unbounded flights are only possible along

subspaces of codimension at least 2.

We will call the set V + V ⊥I a principal corridor, where ”principal” refers to the fact

that V is of codimension 1.

The geometry of billiard tables with infinite horizon have been studied in the literature.

We note that in dimension D = 2, since dimV = 1, the geometry is quite simple and it has

been extensively studied in [1, 38, 32].

In dimension D ≥ 3, the geometry can be substantially more complicated. The asymp-

totic measure of longth flight has been studied in [11] and [28]. In particular, it is proven in

[28] that for billiard tables with at least one principal corridor,

ν0(τ > T ) ∼ C

T

as T → ∞ with an explicit constant C.

In this work, we are interested in the length of a few consecutive long free flights. In

dimension D = 2, it is well known that a flight of length T � 1 is typically followed by a

flight of length C
√
T . Here, we extend this result to any dimension D and in particular we

resolve Conjecture C from [28].
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10.1 Geometry of corridors

Let H = V + IV ⊥ be any set as in (10.1) where I = [a, b] is maximal for containment

(recall that the scatterers Bi are open). We say that H is a principal corridor, associated

with V and I = [a, b]. When proving Theorem 11.1, we can assume that (q, v) is such that

q is in a small neighborhood of H and v is close to V . Indeed, by the main result of [28],

the contribution of points not close to a principal horizon is negligible.

Let us assume there is a single spherical scatterer or radius r < 1/2 inside D0.

Let νH,c be the normalized Lebesgue measure on UH,c := (V + cV ⊥)/Lb for a fixed

corridor H and side c = a, b. To simplify notation let us write ν̂ = νH,c. Let λT be the

normalized Lebesgue measure on the set

{
v ∈ SD−1 : v · V ⊥ =

1

T

}

We need to keep in mind that a horizon H and an endpoint c has been fixed.

An important special case is when D = RD \ ∪�∈ZDB(¥, r), where B(¥, r) is the ball of

radius r centered at ¥. r < 1/2 clearly hold by assumption. In case r <
√
2/4, for every

principal corridor H , VH is a coordinate direction, i.e. V ⊥
H = ei for some i = 1, ..., D (ei

denoting the ith coordinate direction) and IH is an interval of length 1 − 2r and for both

endpoints of this interval c, we have Lc = ZD−1.

(See Appendix for proof of this part)
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11 Theorems we want to prove

Here, we are interested in the length of a few consecutive long free flights. Namely, we

want to prove the following theorems.

11.1 Theorem 1: Main theorem

Theorem 11.1. Let D ≥ 2 and assume there is a single spherical scatterer with radius

r < 1
2
. There exists a stochastic process X1,X2, ... so that for any finite n and for any sets

Ai ⊂ R with Leb(∂Ai) = 0,

lim
T→∞

ν0(τ1 > T, τi ∈ AiT
1/Di−1

, i = 1, ..., n)

ν0(τ1 > T )
= P(Xi ∈ Ai, i = 1, ..., n).

11.2 Theorem 2: Special case for theorem 1

Theorem 11.2. Let D ≥ 2 and assume there is a single spherical scatterer with radius

r < 1
2
. For n = 1 and for the set A ⊂ R with Leb(∂A) = 0, (In this case A is an interval)

lim
T→∞

ν0(τ1 > T, τ1 ∈ AT, i = 1)

ν0(τ1 > T )
= P(X1 ∈ A) ∼ 1

A
.

11.3 Theorem 3: Special case for theorem 1

Theorem 11.3. Let D = 2, D = R2 \ ∪z∈Z2B(z, r) with
√
2/4 < r < 1/2. This condition

ensures that principal corridors exist and they are all parallel to coordinate hyperplanes.

There exists a stochastic process X1,X2, ... so that for any finite n and for any sets Ai ⊂ R
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with Leb(∂Ai) = 0,

lim
T→∞

ν0(τ1 > T, τi ∈ AiT
1/2i−1

, i = 1, ..., n)

ν0(τ1 > T )
= P(Xi ∈ Ai, i = 1, ..., n).

We also generalize the theorem 3 to any n and any r as the following sections would

prove.

11.4 Theorem 4: Marklof-Strömbergsson theory

Theorem 11.4. There exists a continuous function Ψ : R+ → R so that for all ξ,

lim
T→∞

(ν̂ × λT )(τ > ξT
D−2
D ) =

∫ ∞

ξ

Ψ(ξ′)dξ′.

A variant of Theorem 4 was recently established by Boca and Zaharescu [2] in dimen-

sion d = 2, utilizing techniques from analytic number theory. Their earlier collaboration

with Gologan [15], as well as the work by Caglioti and Golse [13], are also relevant in this

context. In Marklof-Strömbergsson’s study, they employ dynamics and equidistribution of

flows on homogeneous spaces and extend the results to arbitrary dimensions. Previous re-

search in higher dimensions (d > 2) includes the papers by Bourgain, Golse, and Wennberg

[20], [14], which provide estimates on the tail behavior of potential limiting distributions of

converging subsequences. In our theorem, we generalize the result to D dimensional.
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11.5 Theorem 5

Theorem 11.5. There exists a continuous density function Φ so that for all ξ, ξ̄, [a, b] ⊂

[0, 1]

lim
T→∞

(ν × λT )(τ ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w ∈ [a, b]) =

∫ ξ̄

ξ

∫ b

a

Φ(ξ, w)dwdξ.

The function Φ is explicitly given by

Φ(ξ, w) =





νy({M ∈ Xq(y) : (Zd + α)M ∩ (Υ(0, ξ, 1) + z)}) if α ∈ q−1Zd

νy({g ∈ X(y) : Zdg ∩Υ(0, ξ, 1) + z) = ∅}) if α /∈ Qd

where y = ξe1 +
√
2ξ√

κcovol(L)1/d
we2, and

Υ(ξ) =

{
(x1, ..., xd) ∈ Rd : 0 < x1 <

ξ

[covol(L)]1/d
, ‖(x2, ..., xd)‖ ≤

√
2x1√

κ[covol(L)]1/2d

}
.

11.6 Theorem 6

Theorem 11.6. There exists a continuous density function Φ, ψ so that for all ξ, ξ′,

lim
T→∞

(ν × λT )(τ1 ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w1 ∈ [a, b]

τ2 ∈ [ξ′T
D−2
2D , ξ̄′T

D−2
2D ], w2 ∈ [a′, b′])

=

∫ ξ̄

ξ

∫ b

a

Φ(ξ, w)

∫ ξ̄′

ξ′

∫ b′

a′
ψ(ξ′, w′, ξ, w)dwdξ.

where

ψ(ξ′, w′, ξ, w) = Φ(

√
κ

8

1√
ξ(1− w)

ξ′,

√
8

κ

√
ξ(1− w)w′)
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We extend Theorem 6 to cover cases with k collisions for particles, leading to the de-

velopment of Theorem 7.

11.7 Theorem 7

Theorem 11.7. There exists continuous density functions Φ, ψ, · · · so that for all ξ1, ξ2, · · · , ξk,

lim
T→∞

(ν × λT )(τ1 ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w1 ∈ [a, b], · · · ,

τk ∈ [ξkT
D−2
2D , ξ̄kT

D−2
2D ], wk ∈ [ak, bk])

=

∫ ξ̄1

ξ1

∫ b1

a1

Φ(ξ1, w1)

∫ ξ̄2

ξ2

∫ b2

a2

ψ(ξ1, w1, ξ2, w2)

∫ ξ̄3

ξ3

∫ b3

a3

ψ(ξ2, w2, ξ3, w3) · · ·
∫ ξ̄k

ξk

∫ bk

ak

ψ(ξk−1, wk−1, ξk, wk)

dwkdξkdwk−1dξk−1 · · · dw1dξ1

12 Proof of Theorem 1: Main Theorem

The proof of the theorem 1 is a combined result of Theorem 4, 5, 6, 7, so after we have

proved theorem 4, 5, 6, 7, then go back to theorem 1.

13 Proof of Theorem 2: Special case for theorem 1

Theorem 13.1. Let D ≥ 2 and assume there is a single spherical scatterer with radius

r < 1
2
. For n = 1 and for the set A ⊂ R with Leb(∂A) = 0,

lim
T→∞

ν0(τ1 > T, τ1 ∈ AT, i = 1)

ν0(τ1 > T )
= P(X1 ∈ A) ∼ 1

A
.

Proof. To gain some insight into our main result, we prove it for the special case n = 1
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first. In particular, we verify that X1 is distributed as the reciprocal of a uniform random

varible on [0, 1].

Fix any number A ≥ 1. Then we have

ν0(τ1 > AT |τ1 > T ) =
ν0(τ1 > AT )

ν0(τ1 > T )

By [28, Theorem 1], we have

ν0(τ1 > T ) ∼ ΣH∈HFH(t)

By [28], we have that in the case of a principal horizon H, IH is an interval and the

formula to compute FH(t) is:

FH(t) ∼
2 volSd−2|IH |2

(1− P) volSd−1 vol(V ⊥/L⊥
V )

1

t

where P is the volume fraction covered by scatters, which is a constant.

Then it is easy to verify

ν0(τ1 > T ) ∼ C

T

with T → ∞ with a constant C depending only on the billiard table D. Thus

ν0(τ1 > AT |τ1 > T ) =
ν0(τ1 > AT : τ1 > T )

ν0(τ1 > T )
=

ν0(τ1 > AT )

ν0(τ1 > T )

Therefore

ν0(τ1 > AT |τ1 > T ) ∼ 1

A
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This proves Theorem 11.1 for the case n = 1 and also proves that X1 is distributed as the

reciprocal of a uniform random varible on [0, 1].

14 Proof of Theorem 3: Special case for theorem 1

14.1 D = 2, single spherical scatterer

Theorem 14.1. Let D = 2, D = R2 \ ∪z∈Z2B(z, r) with
√
2/4 < r < 1/2. This condition

ensures that principal corridors exist and they are all parallel to coordinate hyperplanes.

There exists a stochastic process X1,X2, ... so that for any finite n and for any sets Ai ⊂ R

with Leb(∂Ai) = 0,

lim
T→∞

ν0(τ1 > T, τi ∈ AiT
1/2i−1

, i = 1, ..., n)

ν0(τ1 > T )
= P(Xi ∈ Ai, i = 1, ..., n).

1
t

α

π
2
− α− 1

t

γ = π
2
− (π

2
− α− 1

t
)

1
t s

t

∼ sk−1

φ

φ

2γ − 1
t

s
t

q

sk−1

Figure 17: Collision after a long flight in dimension 2

Proof. Let us assume that the initial position q1 is on the boundary of a horizontal corridor
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and the initial vector v = (v1, v2) is so that v2 = 1/t. for some large t. Thus the initial

angle with the horizontal direction is

β1 ∼
1

t
.

Furthermore, q is at a distance s1 �= 0 from the intersection point of the boundary of the

corridor and the scatterer, measured in the direction of the flight. See Figure 17.

From easy calculation, we have

γ =
π

2
− (

π

2
− α− 1

t
) = α +

1

t

By the definition of circle, we have:

x2 + (y − r)2 = r2 ⇒ (y − r)2 = r2 − x2

Simplify it:

y2 − 2yr + x2 = 0

Solve this quadratic equation:

y(x) = r −
√
r2 − x2

Differentiate this quadratic equation to second order:

y′(x) = −1

2

1√
r2 − x2

(−2x) =
x√

r2 − x2
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y′′(x) =

√
r2 − x2 + x2

√
r2−x2

r2 − x2

Find the value of second order differentiation at x = 0:

y′′(0) =
r

r2
=

1

r

Using second order Taylor series expansion, we have

s

t
=

1

2r
ε2

where ε is the width joining the hitting position with the vertical line starting from origin to

south pole. Then with easy calculation, we have:

ε =

√
2rs

t

α ≈ sinα =
ε

r

α ≈
√

2

r

√
s

t

So

γ ≈
√

2

r

√
s

t

Next angle would be

2γ − 1

t
≈ 2

√
2

r

√
s
1√
t

Choose

si ∼ UNI[0, 1]
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Then we have

β1 =
1

t

tβ1 = 1 = y1

β2 = 2

√
2

r

√
s2

1√
t

An elementary computation, hinted on Figure 17, shows that the postcollisional angle

with the horizontal direction (denoted by 2γ − 1/t on the figure) is asymptotic to

β2 ∼
√

8

r

√
s1

1√
t
∼

√
8

r

√
s1
√

β1

as t → ∞. Continue doing the iterations of computation:

√
tβ2 = 2

√
2

r

√
s2 = y2

β3 = 2

√
2

r

√
s3

1√
t2

t
1
4β3 = 2

√
2

r

√
s3 = y3

· · ·

We conclude

βi = 2

√
2

r

√
si
√
βi−1

yi = 2

√
2

r

√
si
√
yi−1

Note that these asymptotics hold for any fixed s1 ∈ (0, 1) and the convergence is uni-

form for s1 chosen from any compact subset of (0, 1). The convergence is not uniform for
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all s1 ∈ (0, 1). Indeed, if s1 = 0, then β2 = β1 and if s1 � 1/t, then β1 ∼ β2. Likewise,

the convergence is not uniform for s1 close to 1.

Let us write

y1 = tβ1 ∼ 1

and

y2 =
√
tβ2.

Then we have

y2 ∼
√

8

r

√
s1
√
y1

Now let q2 be the point where the trajectory crosses the other boundary of the corridor (this

would be the bottom boundary of the corridor whose top is depicted on Figure 17). Now

let s2 ∈ [0, 1) be the distance between q2 and the next intersection of the boundary of the

corridor with the scatterers (measured in the direction of the flight), etc. Arguing as before,

we find that after collision i− 1, the outgoing angle with the horizontal direction is

βi ∼
√

8

r

√
si−1

√
βi−1

and so with the notation

yi = βit
1/2i−1

,

we also have

yi ∼
√

8

r

√
si−1

√
yi−1

We claim that for any fixed n, in the limit t → ∞, s1, ..., sn converge to n iid random

variables each uniform on the interval [0, 1]. Assume now that the claim holds. Then noting
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that for k ≥ 2

τk ∼
1− 2r

βk

we find

Xk =
1− 2r

yk
=

1− 2r√
8
r

√
sk−1

√
yk−1

=

√
1− 2r√
8
r
sk−1

√
1− 2r
√
yk−1

That means

Xk =

√
1− 2r
8
r
sk−1

√
Xk−1 =

√
r − 2r2

8sk−1

√
Xk−1

This identifies the stochastic process Xk with the recursive definition

lnXk =
1

2
ln

r − 2r2

8
− 1

2
ln sk−1 +

1

2
ln(Xk−1).

for k ≥ 2 and X1 = 1/s0 where s0 is uniform on [0, 1] and independent from s1, ..., sn.

Sometimes such processes are called autoregressive of order 1.

It remains to prove the above claim. It is sufficient to prove it for n = 2 the general

case being similar by induction. For n = 2, it is sufficient to prove that for any u ∈ (0, 1)

and for any small ε > 0, for sufficiently large t, the conditional distribution of s2 given that

u < s1 < u + ε is ε1/3 close to the uniform distribution on [0, 1]. To this end, note that

under this assumption, the outgoing angle β2 satisfies C
√

u/t ≤ β2 ≤ C
√
(u+ ε)/t (with

C =
√
8/r) and hence the particle will reach the bottom of the corridor in a horizontal

distance v satisfying

C−1
√

t/(u+ ε) ≤ v ≤ C−1
√

t/u. (14.1)

Furthermore, if we consider the pushfoward of the initial uniform measure on the interval

[u, u+ε] on the top of the corridor to the bottom of the corridor by the particle’s next hitting

dynamics, then the uniform measure will be distorted by a factor C ′√ε � ε1/4. Noting that
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(14.1) contains a big number of copies of the unit interval, the result follows.

It is also very important to stress in D = 2, we could generalize the result to any n and

any r ∈ (0, 1
2
):

14.2 D = 2, any n and any r

In Section 20.1, we considered the case when D = 2, n is arbitrary and r < 1/
√
8. Now

we generalize that proof for any r ∈ (0, 1/2).

As discussed in [11, Section 6], given r ∈ (0, 1/2), we have a bijection between the

corridors and the set

Hr = {[0, 1]T , [1, 0]T} ∪ {[p, q]T , p > 0, GCD(p, q) = 1,
√
p2 + q2 <

1

2r
}

where v ∈ Hr is identified with the vector connecting two consecutive points on the inter-

section of one side of the corridor and ∂D. In [11, Section 6], ‖v‖ is denoted by L and 1/L

is denoted by ν⊥
H .

By the results of [11, 28], for any v ∈ Hr,

ν0(flight is in the corridor H with VH = span(v)|τ1 > T ) ∼

‖v‖(1/‖v‖ − 2r)2∑
w∈Hr

‖w‖(1/‖w‖ − 2r)2
=: Pv

as t → ∞. Now we can describe the stochastic process X . First, we choose a v ∈ Hr

according to the probability distribution Pv. Then once v is fixed, X1 is the reciprocal of a
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uniform random variable on [0, 1] (independent of the choice of v) and

lnXk =
1

2
ln

r/‖v‖ − 2r2

8
− 1

2
ln sk−1 +

1

2
ln(Xk−1).

for k ≥ 2, s1, ..., sn−1 are iid random variables, uniform on [0, ‖v‖]. The proof is identical

to that in Section 20.1 with the exception that the corridor is changed: now the distance

between consecutive boundary points is ‖v‖ and the width of the corridor is 1/‖v‖ − 2r.

15 Proof of Theorem 4: Marklof-Strömbergsson theory

Theorem 15.1. There exists a continuous function Ψ : R+ → R so that for all ξ,

lim
T→∞

(ν̂ × λT )(τ > ξT
D−2
D ) =

∫ ∞

ξ

Ψ(ξ′)dξ′.

To explain the scaling T
D−2
D in Theorem 13.1, assume that the free flight is of order

t with 1 � t � T . Then up to time t, the position qt will be close to H . Namely,

qt ∈ V + (b + h)V ⊥ where h = h(t) = t/T . The scatterers intersect the hyperplane

V + (b + h)V ⊥, at some small sets, which by assumption (H2) are approximate D − 1

dimensional spheres centered at Lb + hV ⊥ and of radius r = r(t) :=
√
2h/κ. In order to

have a collision, we need qt to enter one of these small spheres.It is reasonable to expect

this to happen once the r(t) neighborhood of the line segment ΠV (q0− qt) has volume ≈ 1,

where ΠV is the orthogonal projection to the hyperplane V . This means

t

(√
t

T

)D−2

≈ 1
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Figure 18: Paraboloid

whence

t ≈ T
D−2
D .

Proof. It will be convenient to write d = D − 1. Let us fix some matrix M0 ∈ Zd×(d+1) so

that ZdM0 = Lb.

Now let us fix q ∈ V + bV ⊥/Lb. Then since Lb is an affine lattice, by basic matrix

computation, there is some α(q) ∈ Rd so that (Zd + α)M0 = Lb Then we claim that

lim
T→∞

λT ((q, v) : τ > ξT
D−2
D ) = A(ξ, α(q)) (15.1)

for a function A(ξ, α) to be defined next.

In order to define A(ξ, α) we need some definitions. Let S(d,R) be the special linear
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group of degree d over R (i.e. the set of d × d matrices with determinant 1). Likewise, let

S(d,Z) be the special linear group of degree d over Z (i.e. the set of d× d integer matrices

with determinant 1).

Next, let

Γ(l) := {γ ∈ SL(d,Z) : γ ≡ 1d mod l}

also,

ASL(d,R) = SL(d,R)�Rd

ASL(d,Z) = SL(d,Z)� Zd,

where � is the semidirect product group with multiplication law

(M, ξ)(M
′
, ξ

′
) = (MM

′
, ξM

′
+ ξ

′
).

Next we define the homogeneous spaces

X1 = SL(d,Z) \ SL(d,R);Xl = Γ(l) \ SL(d,R);X = ASL(d,Z) \ ASL(d,R).

Now we are ready to define the function A(ξ, α) as

A(ξ, α) =




µ1(
{
M ∈ X1 : #(Zd

∗M ∩Υ(ξ)) = 0
}
) if α ∈ Zd

µl(
{
M ∈ Xl : #((Zd + k

l
)M ∩Υ(ξ)) = 0

}
) if α = k

l
∈ Qd, α /∈ Zd

µ(
{
(M, η) ∈ X : #((ZdM + η) ∩Υ(ξ)) = 0

}
) if α /∈ Qd

where µ1, µl and µ are normalized Haar measure on the spaces X1, Xl and X , respec-
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tively and

Υ(ξ) =

{
(x1, ..., xd) ∈ Rd : 0 < x1 <

ξ

[covol(L)]1/d
, ‖(x2, ..., xd)‖ ≤

√
2x1√

κ[covol(L)]1/2d

}
.(15.2)

The proof of (15.1) follows closely the proof of Theorems 2.1 and 3.1 in [22].

The only difference between our setup and the setup of [22] is that we consider the

paraboloid Υ while [22] uses cylinder (Theorem 3.1) and cone (Theorem 2.1).

For fixed T � 1, we have τ(q, v) > ξT
D−2
D if and only if for all t < ξT

D−2
D , we have

qt ∈ D. That is,

qt /∈ Bt,T ,

where

Bt,T = (RD \ D) ∩ (V + (b+ t/T )V ⊥).

That is, we need

ΠV+bV ⊥qt /∈ ΠV+bV ⊥Bt,T =: ∪�∈Lb
(bt,T + ¥) (15.3)

for all t ∈ [0, ξT (D−2)/D]. Note that bt,T is approximately a sphere centered at zero and of

radius
√

t/T/κ. Clearly, (15.3) is equivalent to the lattice Lb − q0 being disjoint to the set

CT := ∪t∈[0,ξT (D−2)/D](ΠV+bV ⊥(qt − q0)− bt,T ).

Let us identify V + bV ⊥ with Rd with the origin being in Lb. Then in particular, CT ⊂

Rd.

Let M1 = covol(Lb)
−1/dIdd that is colvol(Lb)

−1/d times the identity matrix of size

d × d. Now L′ = M1Lb is a lattice of covolume 1. We need this transformation since the

theory of Marklof and Strömbergsson is applicable to lattices of covolume 1.



289

Let us pick some pair (q, v) according to the measure λT . Given v, we define an orthogo-

nal matrix K ∈ Rd×d so that KΠV v = [‖ΠV v‖, 0, ..., 0]T . Note that ‖ΠV v‖ = 1+O(1/T ).

Next, define the diagonal matrix

DT =




T (2−D)/D 0 · · · 0

0 T 1/D · · · 0

...
... . . . ...

0 0 · · · T 1/D




∈ S(d,R) (15.4)

Applying the linear transformation DTKM1 to the set CT we obtain

ΥT := DTKM1(CT )

Now we claim that the open set ΥT satisfies

lim
T→∞

LebRd(ΥT∆Υ) = 0 (15.5)

where ∆ denotes symmetric difference.

To prove (15.5), note that by condition (H2), for all ξ > 0 and ε > 0 there is some T0

so that for all T > T0 and for all t ∈ [0, ξT (D−2)/D], we have

Bd

(
0,

√
2t

Tκ
(1− ε)

)
⊂ bt,T ⊂ Bd

(
0,

√
2t

Tκ
(1 + ε)

)

where Bd(0, ρ) is the ball of radius ρ centered at 0 ∈ Rd. Let ΥT,± be defined as ΥT except

that bt,T is replaced by Bd

(
0,
√

2t
Tκ

(1± ε)
)

.
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Recall

0 ≤ t ≤ ξT (D−2)/D

Writing

s =
t

T (D−2)/D

we have

0 ≤ s ≤ ξ, t = sT (D−2)/D

Following the definition of CT , we define CT,± as

CT,± = ∪t···

(
ΠV+bV ⊥(qt − q0)− Bd

(
0,

√
2t

Tκ
(1± ε)

))

and so by the definition of K,

KCT,± = ∪t···

(
(t‖ΠV v‖, 0, 0, · · · , 0)− Bd

(
0,

√
2t

Tκ
(1± ε)

))

where ‖ΠV v‖ = 1 +O( 1
T
). Next, we apply the diagonal matrix DT and find

DTKCT,± = ∪t...

(
(tT (2−D)/D‖ΠV v‖, 0, 0, · · · , 0)− Ed(t, T,±)

)

where Ed(t, T±) is a d dimensional ellipsoid defined by

Ed(t, T,±) = {(x1, ..., xd) : x
2
1T

−2(2−D)/D +
d∑

i=1

x2
iT

−2/D ≤ (1± ε)2
2t

Tκ
}.

Now let

Bd−1(0, ρ) = {(x1, ..., xd) : x1 = 0,
d∑

i=2

x2
i ≤ ρ2}
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be the d− 1 dimensional sphere of radius ρ embedded into the d dimensional space. Then

we conclude that for T sufficiently large,

DTKCT,+ ⊂ ∪t...

(
(tT (2−D)/D‖ΠV v‖, 0, 0, · · · , 0) +Bd−1

(
0,

√
2t

Tκ
(1 + 2ε)

))

Now using the definition of s, we see that

DTKCT,+ ⊂ ∪s∈[0,ξ]

(
(s‖ΠV v‖, 0, 0, · · · , 0) +Bd−1

(
0,

√
2s

κ
(1 + 2ε)

))

Finally, since M1 is constant times the identity matrix, we conclude

ΥT,+ = DTKM1(CT,+) ⊂

∪s∈[0,ξ]

(
s‖ΠV v‖

[covol(L)]1/d
(1, 0, ..., 0) +Bd−1

(
0,

√
2s√

κ[covol(L)]1/d
(1 + 2ε)

))

and likewise

ΥT,− ⊃

∪s∈[0,ξ]

(
s‖ΠV v‖

[covol(L)]1/d
(1, 0, ..., 0) +Bd−1

(
0,

√
2s√

κ[covol(L)]1/d
(1− 2ε)

))

Since ε is arbitrary, we have verified (15.5). With (15.5) verified, we can repeat the

argument in Section 9.2 of [22] to deduce the q-averaged version (15.1). This completes

the proof.

Now we proceed to describe the joint distribution of the free flight time and the relative

position of the collision point on the scatterer. To this end, we introduce a coordinate system

x1, ..., xd in the hyperplane of collision, relative to the flight and a variable w ∈ [0, 1]. The

definition is the following. Let P be the point of collision after the long flight as in Theorem
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x1
O

P

x2

r

w · r

Figure 19: Coordinate system in the plane E∗

13.1. Consider the hyperplane V ∗ through P parallel with the corridor. The intersection

of the scatterer of collision with this hyperplane is a sphere of dimension d = D − 1

and some radius r � 1. Let Q be the center of this sphere and let us choose coordinate

system x1, ...xd with origin Q in V ∗. First we choose x1 as the unit vector in the direction

of the projection of the incoming flight to V ∗. Now the vector
−→
QP and the direction x1

define a two dimensional plane E∗ inside V ∗ (except for the degenerate case when
−→
QP

is parallel with x1, in which case we choose x2, ..., xd arbitrarily so that x1, ..., xd is an

orthonormal basis and write w = 0). Now chose x2 unit vector perpendicular to x1 in E∗

so that the angle between
−→
QP and x2 is acute. Then we define w ∈ [0, 1] so that P in

the coordinate system x1, x2 has coordinates (−
√
1− w2r, wr), see Figure 19. Finally, we

choose x3, ..., xd arbitrarily so that x1, ..., xd is an orthonormal basis in V ∗.

Note that by definition w ∈ [0, 1] where intuitively w = 0 means ”heads on” collision

on the given latitude at height h and w = 1 means grazing collision.
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16 Proof of Theorem 5

Theorem 16.1. There exists a continuous density function Φ so that for all ξ, ξ̄, with 0 <

ξ < ξ̄ < ∞ and for all [a, b] ⊂ [0, 1]

lim
T→∞

(ν × λT )(τ ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w ∈ [a, b]) =

∫ ξ̄

ξ

∫ b

a

Φ(ξ, w)dwdξ.

We can give a precise definition of the function Φ appearing in Theorem 16.1. To this

end, we first need some definitions.

Recall that we have defined the homogeneous spaces

X = ASL(d,Z) \ ASL(d,R).

X(y) is the submanifold of X such that

X(y) := {g ∈ X : y ∈ Zdg}

Write Γ = ASL(x,Z), since Zd = 0Γ, we have

X(y) = {Γg : g ∈ ASL(d,R), 0g = y}

Thus

X(y) = {Γ(M, y) : M ∈ SL(d,R)}

Furthermore, we have

Γ(M1, y) = Γ(M2, y)
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in X if and only if SL(d,Z)M1 = SL(d,Z)M2

Hence we get an identification of the sets X(y) and X1 = SL(d,Z)\SL(d,R), through

X(y) = {(M, y) : M ∈ X1}

This gives X(y) the structure of an embedded submanifold of X , of dimensional d2−1.

We endow X(y) with the Borel probability measure νy which comes from µ1 on X1

under the identification.

Then we define the density function as:

Φ(ξ, w) = νy({g ∈ X(y) : Zdg ∩Υ(ξ) = ∅})

where y = ξe1 +
√
2ξ√

κcovol(L)1/d
we2, and Υ is defined by (15.2).

Now we give an intuitive explanation of the the above formulae. Assume that the have

a collision exactly at time ξT (D−2)/D. Recall the coordinate directions x1, ..., xd defined in

V ∗. Assume that the initial position is q0 ∈ UH,c. The flight is in the direction

v ≈ (1− 1/(2t2), 0, ..., 0, 1/t)

when using the coordinate system x1, ..., xd, xD. Projecting to the hyperplane V ∗ and apply-

ing the transformation DT as in (15.4), we will have a collision at ≈ ξe1 on a d dimensional

sphere with center at y = ξe1+
√
2ξ√

κcovol(L)1/d
we2. To ensure that no other collision happened

before, we need prohibit lattice points inside the paraboloid Υ(ξ). See Figure 20

We don’t give a formal proof of Theorem 16.1 because it requires little changes to the

very similar proof of [22, Theorem 4.4] and those changes are identical to the ones used in
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z

√
2ξ√

κcovol(L)1/d
we2

ξe1

y = ξe1 +
√
2ξ√

κcovol(L)1/d
we2

Figure 20: ξe1 + we2

the proof of our Theorem 13.1. We do comment on the fact that we simplified the notation

from [22, Theorem 4.4]. Indeed, with their notation, we have w = ‖w‖ and α /∈ Qd.

Noting that by [22, Remark 4.5], in case α /∈ Qd, the function denoted by Φα in [22] is

only a function of the two variables ξ, w. This is the simplification that we used.

q0

P
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17 Proof of Theorem 6

Theorem 17.1. There exists a continuous density function Φ, ψ so that for all ξ, ξ′,

lim
T→∞

(ν × λT )(τ1 ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w1 ∈ [a, b]

τ2 ∈ [ξ′T
D−2
2D , ξ̄′T

D−2
2D ], w2 ∈ [a′, b′])

=

∫ ξ̄

ξ

∫ b

a

Φ(ξ, w)

∫ ξ̄′

ξ′

∫ b′

a′
ψ(ξ′, w′, ξ, w)dwdξ.

where

ψ(ξ′, w′, ξ, w) = Φ(

√
κ

8

1√
ξ(1− w)

ξ′,

√
8

κ

√
ξ(1− w)w′)

Proof. We use sphere in 3-dimensional to prove this theorem. We have a point particle

following the inward vector and touches a specific position on the sphere, then bounces

away tracing in the outward vector, until it touches another sphere. Suppose the touching

point on another sphere is P . Project the inward vector on the first sphere and normalize

it as z, also, project the outward vector on the second sphere and normalize it as w. South

pole of the second sphere is S = (0, 0, 0), the origin of the sphere is O = (0, 0, 1
κ
), and the

inward vector is V = (1, 0, 1
T
).

In 2-dimensional, choose x1 such that

V = (1, 0, 0, · · · , 1
T
)

Choose x2 such that

−→w = (0, w, 0, · · · , 0)
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From easy calculation, we know

P = (−r
√
1− w2, rw, 0, ..., 0, h)

remind that

h =
t

T
= ξT

D−2
D

−1 = ξT− 2
D

So then we know

−→
OP = (−r

√
1− w2, rw, · · · , h− 1

κ
)

Approximate ‖OP‖ ≈ 1
κ

since r,w and h is sufficiently small.

Decompose V as parallel vector and perpendicular vector,

V = V‖ + V⊥

V⊥ =
< V,

−→
OP >

‖OP‖
· −→OP =< −r

√
1− w2 +

1

T
(h− 1

κ
) > ·κ · −→OP

Assuming ξ > ε and w < 1− ε

We know

V
′
= V − 2V⊥ ≈ (1, 0,

1

T
) + 2κr

√
1− w2

−→
OP

The last component of V ′ is
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V⊥

V‖

O

Q

P

Figure 21: Decompose V
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V
′

3 =
1

T
+ 2κr

√
1− w2(h− 1

κ
)

Since

1

T
− 2r

√
1− w2 ≈ −2r

√
1− w2 ≈ −2

√
2ξ

κ

√
1− w2T− 1

D ≈ −
√

8

κ

√
ξ
√
1− w2T− 1

D

Suppose

w1 = 1

Also from the calculation we know

w2 = −
√

8

κ

√
ξ1

√
1− w2

1

Then

T
′
=

1

−V
′
3

=

√
κ

8

1√
ξ1(1− w2

1)
T

1
D

V
′′

3 =

√
8

κ

√
ξ2
√
1− w2(T

′
)−

1
D
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18 Proof of Theorem 7

Theorem 18.1. There exists continuous density functions Φ, ψ, · · · so that for all ξ1, ξ2, · · · , ξk,

lim
T→∞

(ν × λT )(τ1 ∈ [ξT
D−2
D , ξ̄T

D−2
D ], w1 ∈ [a, b], · · · ,

τk ∈ [ξkT
D−2
2D , ξ̄kT

D−2
2D ], wk ∈ [ak, bk])

=

∫ ξ̄1

ξ1

∫ b1

a1

Φ(ξ1, w1)

∫ ξ̄2

ξ2

∫ b2

a2

ψ(ξ1, w1, ξ2, w2)

∫ ξ̄3

ξ3

∫ b3

a3

ψ(ξ2, w2, ξ3, w3) · · ·
∫ ξ̄k

ξk

∫ bk

ak

ψ(ξk−1, wk−1, ξk, wk)

dwkdξkdwk−1dξk−1 · · · dw1dξ1

Proof. Suppose

w1 = 1

Also from the calculation we know

w2 = −
√

8

κ

√
ξ1

√
1− w2

1

Then

T
′
=

1

−V
′
3

=

√
κ

8

1√
ξ1(1− w2

1)
T

1
D

V
′′

3 =

√
8

κ

√
ξ2

√
1− w2

2(T
′
)−

1
D

Following from above calculation, we derive

w1(T ) = V3 · T
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w2(T ) = V
′

3 · T
1
D

w3(T ) = V
′′

3 · T
1

D2

The long flight vector satisfies the following law:

|wk| = αk−1|wk−1|
1
D

Take the logarithm of both side, we derive

log |wk| =
1

D
log |wk−1|+ log(αk−1)

which mimics the autoregressive model.
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[28] Nándori, P., Szász, D., Varjú, T., Tail asymptotics of free path lengths for the periodic

Lorentz process: On Dettmann’s geometric conjectures.Communications in Mathe-

matical Physics 331 1: 111-137, (2014).

[29] Nelson, E., Dynamical Theories of Brownian Motion. Princeton University

Press(1967).

[30] N.I.Chernov, Statistical properties of the periodic Lorentz gas. Multidimensional case,

J.Statist. Phys. 74 (1994), 11–53. MR 95d:58083 Zbl 0946.37500
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19 Appendix

Proposition 19.1. In dimensional-D, for ∪Z⊂ZDBr(z), if there is some r >
√
2
4

, then L+ =

L− = Zd = ZD−1.
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Proof. For spheres of radius r centered at all points of ZD. For ∪z∈ZDBr(z), in 2-dimensional,

we have two circles centered at (1, 0), (0, 1). Define v as the line joining (0, 0) and (1, 1),

we project (1, 0), (0, 1) orthogonally onto v respectively:

Projv(1, 0) =
(1, 0) · v

|v|
v =

1

2

Projv(0, 1) =
(0, 1) · v

|v|
v =

1

2

when the diagonal line is greater than 4r, that is 4r <
√
2, r <

√
2
4

, the diagonal corridor

exists, we denote the diagonal corridor as V ⊥.

When the diagonal line is less than 4r, that is 4r >
√
2, r >

√
2
4

, then all coincides H ,

that is x line V ⊥ = (0, 1) or y line V ⊥ = (1, 0), L+ = L− = Zd = ZD−1.

So V ⊥ opens when r =
√
2
4

≈ 0.35

Figure 22: 4r >
√
2

In 3-dimensional, we have six balls centered at
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Figure 23: 4r <
√
2

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Define v as the line joining (0, 0, 0) and (1, 1, 1), we project (1, 0, 0), (0, 1, 0), (0, 0, 1)

orthogonally onto v respectively:

Projv(1, 0, 0) =
(1, 0, 0) · v

|v|
v =

1

3

Projv(0, 1, 0) =
(0, 1, 0) · v

|v|
v =

1

3

Projv(0, 0, 1) =
(0, 0, 1) · v

|v|
v =

1

3

Also, we project (1, 1, 0), (0, 1, 1), (1, 0, 1) orthogonally onto v respectively:

Projv(1, 1, 0) =
(1, 1, 0) · v

|v|
v =

2

3
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Projv(0, 1, 1) =
(0, 1, 1) · v

|v|
v =

2

3

Projv(1, 0, 1) =
(1, 0, 1) · v

|v|
v =

2

3

When the diagonal line is greater than 6r, that is 6r <
√
3, r <

√
3
6

, V ⊥ exists. See

Figure 24.

Figure 24: Corridor r = 0.4

When the diagonal line is less than 6r, that is 6r >
√
3, r >

√
3
6

, then all coincides

H , that is yz plane V ⊥ = (1, 0, 0) or xz plane V ⊥ = (0, 1, 0) or xz plane V ⊥ = (0, 0, 1),

L+ = L− = Zd = ZD−1.
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So V ⊥ opens when r =
√
3
6

≈ 0.29

in d-dimensional, when the diagonal line is greater than 2dr, that is 2dr <
√
d, r <

√
d

2d
,

V ⊥ exists.

And we see
√
d

2d
<

√
d−1

2(d−1)
, so if r >

√
2
4

, V ⊥ would be blocked in all dimensions.

That means, if there is some r >
√
2
4

, then we have V ⊥ = ei for some i, where:

ei =




0

0

· · ·

1

0

0

· · ·

0




the i− th element is 1.

If there is some
√
2
4

> r >
√
3
6

, then there is some i such that V ⊥
i = 0.

If there is some r <
√
3
6

, then V ⊥ = (1, 1, 1) is possible.




